2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
51 * Rudi Cilibrasi : Pass the right thing to
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
121 #include <net/mpls.h>
122 #include <linux/ipv6.h>
123 #include <linux/in.h>
124 #include <linux/jhash.h>
125 #include <linux/random.h>
126 #include <trace/events/napi.h>
127 #include <trace/events/net.h>
128 #include <trace/events/skb.h>
129 #include <linux/pci.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
139 #include "net-sysfs.h"
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
147 static DEFINE_SPINLOCK(ptype_lock);
148 static DEFINE_SPINLOCK(offload_lock);
149 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
150 struct list_head ptype_all __read_mostly; /* Taps */
151 static struct list_head offload_base __read_mostly;
153 static int netif_rx_internal(struct sk_buff *skb);
154 static int call_netdevice_notifiers_info(unsigned long val,
155 struct net_device *dev,
156 struct netdev_notifier_info *info);
159 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
162 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
164 * Writers must hold the rtnl semaphore while they loop through the
165 * dev_base_head list, and hold dev_base_lock for writing when they do the
166 * actual updates. This allows pure readers to access the list even
167 * while a writer is preparing to update it.
169 * To put it another way, dev_base_lock is held for writing only to
170 * protect against pure readers; the rtnl semaphore provides the
171 * protection against other writers.
173 * See, for example usages, register_netdevice() and
174 * unregister_netdevice(), which must be called with the rtnl
177 DEFINE_RWLOCK(dev_base_lock);
178 EXPORT_SYMBOL(dev_base_lock);
180 /* protects napi_hash addition/deletion and napi_gen_id */
181 static DEFINE_SPINLOCK(napi_hash_lock);
183 static unsigned int napi_gen_id;
184 static DEFINE_HASHTABLE(napi_hash, 8);
186 static seqcount_t devnet_rename_seq;
188 static inline void dev_base_seq_inc(struct net *net)
190 while (++net->dev_base_seq == 0);
193 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
197 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
200 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
205 static inline void rps_lock(struct softnet_data *sd)
208 spin_lock(&sd->input_pkt_queue.lock);
212 static inline void rps_unlock(struct softnet_data *sd)
215 spin_unlock(&sd->input_pkt_queue.lock);
219 /* Device list insertion */
220 static void list_netdevice(struct net_device *dev)
222 struct net *net = dev_net(dev);
226 write_lock_bh(&dev_base_lock);
227 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
228 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
229 hlist_add_head_rcu(&dev->index_hlist,
230 dev_index_hash(net, dev->ifindex));
231 write_unlock_bh(&dev_base_lock);
233 dev_base_seq_inc(net);
236 /* Device list removal
237 * caller must respect a RCU grace period before freeing/reusing dev
239 static void unlist_netdevice(struct net_device *dev)
243 /* Unlink dev from the device chain */
244 write_lock_bh(&dev_base_lock);
245 list_del_rcu(&dev->dev_list);
246 hlist_del_rcu(&dev->name_hlist);
247 hlist_del_rcu(&dev->index_hlist);
248 write_unlock_bh(&dev_base_lock);
250 dev_base_seq_inc(dev_net(dev));
257 static RAW_NOTIFIER_HEAD(netdev_chain);
260 * Device drivers call our routines to queue packets here. We empty the
261 * queue in the local softnet handler.
264 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
265 EXPORT_PER_CPU_SYMBOL(softnet_data);
267 #ifdef CONFIG_LOCKDEP
269 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
270 * according to dev->type
272 static const unsigned short netdev_lock_type[] =
273 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
274 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
275 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
276 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
277 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
278 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
279 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
280 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
281 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
282 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
283 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
284 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
285 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
286 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
287 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
289 static const char *const netdev_lock_name[] =
290 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
291 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
292 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
293 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
294 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
295 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
296 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
297 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
298 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
299 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
300 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
301 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
302 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
303 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
304 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
306 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
307 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
309 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
313 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
314 if (netdev_lock_type[i] == dev_type)
316 /* the last key is used by default */
317 return ARRAY_SIZE(netdev_lock_type) - 1;
320 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
321 unsigned short dev_type)
325 i = netdev_lock_pos(dev_type);
326 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
327 netdev_lock_name[i]);
330 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
334 i = netdev_lock_pos(dev->type);
335 lockdep_set_class_and_name(&dev->addr_list_lock,
336 &netdev_addr_lock_key[i],
337 netdev_lock_name[i]);
340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341 unsigned short dev_type)
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 /*******************************************************************************
351 Protocol management and registration routines
353 *******************************************************************************/
356 * Add a protocol ID to the list. Now that the input handler is
357 * smarter we can dispense with all the messy stuff that used to be
360 * BEWARE!!! Protocol handlers, mangling input packets,
361 * MUST BE last in hash buckets and checking protocol handlers
362 * MUST start from promiscuous ptype_all chain in net_bh.
363 * It is true now, do not change it.
364 * Explanation follows: if protocol handler, mangling packet, will
365 * be the first on list, it is not able to sense, that packet
366 * is cloned and should be copied-on-write, so that it will
367 * change it and subsequent readers will get broken packet.
371 static inline struct list_head *ptype_head(const struct packet_type *pt)
373 if (pt->type == htons(ETH_P_ALL))
374 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
376 return pt->dev ? &pt->dev->ptype_specific :
377 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
381 * dev_add_pack - add packet handler
382 * @pt: packet type declaration
384 * Add a protocol handler to the networking stack. The passed &packet_type
385 * is linked into kernel lists and may not be freed until it has been
386 * removed from the kernel lists.
388 * This call does not sleep therefore it can not
389 * guarantee all CPU's that are in middle of receiving packets
390 * will see the new packet type (until the next received packet).
393 void dev_add_pack(struct packet_type *pt)
395 struct list_head *head = ptype_head(pt);
397 spin_lock(&ptype_lock);
398 list_add_rcu(&pt->list, head);
399 spin_unlock(&ptype_lock);
401 EXPORT_SYMBOL(dev_add_pack);
404 * __dev_remove_pack - remove packet handler
405 * @pt: packet type declaration
407 * Remove a protocol handler that was previously added to the kernel
408 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
409 * from the kernel lists and can be freed or reused once this function
412 * The packet type might still be in use by receivers
413 * and must not be freed until after all the CPU's have gone
414 * through a quiescent state.
416 void __dev_remove_pack(struct packet_type *pt)
418 struct list_head *head = ptype_head(pt);
419 struct packet_type *pt1;
421 spin_lock(&ptype_lock);
423 list_for_each_entry(pt1, head, list) {
425 list_del_rcu(&pt->list);
430 pr_warn("dev_remove_pack: %p not found\n", pt);
432 spin_unlock(&ptype_lock);
434 EXPORT_SYMBOL(__dev_remove_pack);
437 * dev_remove_pack - remove packet handler
438 * @pt: packet type declaration
440 * Remove a protocol handler that was previously added to the kernel
441 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
442 * from the kernel lists and can be freed or reused once this function
445 * This call sleeps to guarantee that no CPU is looking at the packet
448 void dev_remove_pack(struct packet_type *pt)
450 __dev_remove_pack(pt);
454 EXPORT_SYMBOL(dev_remove_pack);
458 * dev_add_offload - register offload handlers
459 * @po: protocol offload declaration
461 * Add protocol offload handlers to the networking stack. The passed
462 * &proto_offload is linked into kernel lists and may not be freed until
463 * it has been removed from the kernel lists.
465 * This call does not sleep therefore it can not
466 * guarantee all CPU's that are in middle of receiving packets
467 * will see the new offload handlers (until the next received packet).
469 void dev_add_offload(struct packet_offload *po)
471 struct list_head *head = &offload_base;
473 spin_lock(&offload_lock);
474 list_add_rcu(&po->list, head);
475 spin_unlock(&offload_lock);
477 EXPORT_SYMBOL(dev_add_offload);
480 * __dev_remove_offload - remove offload handler
481 * @po: packet offload declaration
483 * Remove a protocol offload handler that was previously added to the
484 * kernel offload handlers by dev_add_offload(). The passed &offload_type
485 * is removed from the kernel lists and can be freed or reused once this
488 * The packet type might still be in use by receivers
489 * and must not be freed until after all the CPU's have gone
490 * through a quiescent state.
492 static void __dev_remove_offload(struct packet_offload *po)
494 struct list_head *head = &offload_base;
495 struct packet_offload *po1;
497 spin_lock(&offload_lock);
499 list_for_each_entry(po1, head, list) {
501 list_del_rcu(&po->list);
506 pr_warn("dev_remove_offload: %p not found\n", po);
508 spin_unlock(&offload_lock);
512 * dev_remove_offload - remove packet offload handler
513 * @po: packet offload declaration
515 * Remove a packet offload handler that was previously added to the kernel
516 * offload handlers by dev_add_offload(). The passed &offload_type is
517 * removed from the kernel lists and can be freed or reused once this
520 * This call sleeps to guarantee that no CPU is looking at the packet
523 void dev_remove_offload(struct packet_offload *po)
525 __dev_remove_offload(po);
529 EXPORT_SYMBOL(dev_remove_offload);
531 /******************************************************************************
533 Device Boot-time Settings Routines
535 *******************************************************************************/
537 /* Boot time configuration table */
538 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
541 * netdev_boot_setup_add - add new setup entry
542 * @name: name of the device
543 * @map: configured settings for the device
545 * Adds new setup entry to the dev_boot_setup list. The function
546 * returns 0 on error and 1 on success. This is a generic routine to
549 static int netdev_boot_setup_add(char *name, struct ifmap *map)
551 struct netdev_boot_setup *s;
555 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
556 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
557 memset(s[i].name, 0, sizeof(s[i].name));
558 strlcpy(s[i].name, name, IFNAMSIZ);
559 memcpy(&s[i].map, map, sizeof(s[i].map));
564 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
568 * netdev_boot_setup_check - check boot time settings
569 * @dev: the netdevice
571 * Check boot time settings for the device.
572 * The found settings are set for the device to be used
573 * later in the device probing.
574 * Returns 0 if no settings found, 1 if they are.
576 int netdev_boot_setup_check(struct net_device *dev)
578 struct netdev_boot_setup *s = dev_boot_setup;
581 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
582 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
583 !strcmp(dev->name, s[i].name)) {
584 dev->irq = s[i].map.irq;
585 dev->base_addr = s[i].map.base_addr;
586 dev->mem_start = s[i].map.mem_start;
587 dev->mem_end = s[i].map.mem_end;
593 EXPORT_SYMBOL(netdev_boot_setup_check);
597 * netdev_boot_base - get address from boot time settings
598 * @prefix: prefix for network device
599 * @unit: id for network device
601 * Check boot time settings for the base address of device.
602 * The found settings are set for the device to be used
603 * later in the device probing.
604 * Returns 0 if no settings found.
606 unsigned long netdev_boot_base(const char *prefix, int unit)
608 const struct netdev_boot_setup *s = dev_boot_setup;
612 sprintf(name, "%s%d", prefix, unit);
615 * If device already registered then return base of 1
616 * to indicate not to probe for this interface
618 if (__dev_get_by_name(&init_net, name))
621 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
622 if (!strcmp(name, s[i].name))
623 return s[i].map.base_addr;
628 * Saves at boot time configured settings for any netdevice.
630 int __init netdev_boot_setup(char *str)
635 str = get_options(str, ARRAY_SIZE(ints), ints);
640 memset(&map, 0, sizeof(map));
644 map.base_addr = ints[2];
646 map.mem_start = ints[3];
648 map.mem_end = ints[4];
650 /* Add new entry to the list */
651 return netdev_boot_setup_add(str, &map);
654 __setup("netdev=", netdev_boot_setup);
656 /*******************************************************************************
658 Device Interface Subroutines
660 *******************************************************************************/
663 * dev_get_iflink - get 'iflink' value of a interface
664 * @dev: targeted interface
666 * Indicates the ifindex the interface is linked to.
667 * Physical interfaces have the same 'ifindex' and 'iflink' values.
670 int dev_get_iflink(const struct net_device *dev)
672 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
673 return dev->netdev_ops->ndo_get_iflink(dev);
675 /* If dev->rtnl_link_ops is set, it's a virtual interface. */
676 if (dev->rtnl_link_ops)
681 EXPORT_SYMBOL(dev_get_iflink);
684 * __dev_get_by_name - find a device by its name
685 * @net: the applicable net namespace
686 * @name: name to find
688 * Find an interface by name. Must be called under RTNL semaphore
689 * or @dev_base_lock. If the name is found a pointer to the device
690 * is returned. If the name is not found then %NULL is returned. The
691 * reference counters are not incremented so the caller must be
692 * careful with locks.
695 struct net_device *__dev_get_by_name(struct net *net, const char *name)
697 struct net_device *dev;
698 struct hlist_head *head = dev_name_hash(net, name);
700 hlist_for_each_entry(dev, head, name_hlist)
701 if (!strncmp(dev->name, name, IFNAMSIZ))
706 EXPORT_SYMBOL(__dev_get_by_name);
709 * dev_get_by_name_rcu - find a device by its name
710 * @net: the applicable net namespace
711 * @name: name to find
713 * Find an interface by name.
714 * If the name is found a pointer to the device is returned.
715 * If the name is not found then %NULL is returned.
716 * The reference counters are not incremented so the caller must be
717 * careful with locks. The caller must hold RCU lock.
720 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
722 struct net_device *dev;
723 struct hlist_head *head = dev_name_hash(net, name);
725 hlist_for_each_entry_rcu(dev, head, name_hlist)
726 if (!strncmp(dev->name, name, IFNAMSIZ))
731 EXPORT_SYMBOL(dev_get_by_name_rcu);
734 * dev_get_by_name - find a device by its name
735 * @net: the applicable net namespace
736 * @name: name to find
738 * Find an interface by name. This can be called from any
739 * context and does its own locking. The returned handle has
740 * the usage count incremented and the caller must use dev_put() to
741 * release it when it is no longer needed. %NULL is returned if no
742 * matching device is found.
745 struct net_device *dev_get_by_name(struct net *net, const char *name)
747 struct net_device *dev;
750 dev = dev_get_by_name_rcu(net, name);
756 EXPORT_SYMBOL(dev_get_by_name);
759 * __dev_get_by_index - find a device by its ifindex
760 * @net: the applicable net namespace
761 * @ifindex: index of device
763 * Search for an interface by index. Returns %NULL if the device
764 * is not found or a pointer to the device. The device has not
765 * had its reference counter increased so the caller must be careful
766 * about locking. The caller must hold either the RTNL semaphore
770 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
772 struct net_device *dev;
773 struct hlist_head *head = dev_index_hash(net, ifindex);
775 hlist_for_each_entry(dev, head, index_hlist)
776 if (dev->ifindex == ifindex)
781 EXPORT_SYMBOL(__dev_get_by_index);
784 * dev_get_by_index_rcu - find a device by its ifindex
785 * @net: the applicable net namespace
786 * @ifindex: index of device
788 * Search for an interface by index. Returns %NULL if the device
789 * is not found or a pointer to the device. The device has not
790 * had its reference counter increased so the caller must be careful
791 * about locking. The caller must hold RCU lock.
794 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
796 struct net_device *dev;
797 struct hlist_head *head = dev_index_hash(net, ifindex);
799 hlist_for_each_entry_rcu(dev, head, index_hlist)
800 if (dev->ifindex == ifindex)
805 EXPORT_SYMBOL(dev_get_by_index_rcu);
809 * dev_get_by_index - find a device by its ifindex
810 * @net: the applicable net namespace
811 * @ifindex: index of device
813 * Search for an interface by index. Returns NULL if the device
814 * is not found or a pointer to the device. The device returned has
815 * had a reference added and the pointer is safe until the user calls
816 * dev_put to indicate they have finished with it.
819 struct net_device *dev_get_by_index(struct net *net, int ifindex)
821 struct net_device *dev;
824 dev = dev_get_by_index_rcu(net, ifindex);
830 EXPORT_SYMBOL(dev_get_by_index);
833 * netdev_get_name - get a netdevice name, knowing its ifindex.
834 * @net: network namespace
835 * @name: a pointer to the buffer where the name will be stored.
836 * @ifindex: the ifindex of the interface to get the name from.
838 * The use of raw_seqcount_begin() and cond_resched() before
839 * retrying is required as we want to give the writers a chance
840 * to complete when CONFIG_PREEMPT is not set.
842 int netdev_get_name(struct net *net, char *name, int ifindex)
844 struct net_device *dev;
848 seq = raw_seqcount_begin(&devnet_rename_seq);
850 dev = dev_get_by_index_rcu(net, ifindex);
856 strcpy(name, dev->name);
858 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
867 * dev_getbyhwaddr_rcu - find a device by its hardware address
868 * @net: the applicable net namespace
869 * @type: media type of device
870 * @ha: hardware address
872 * Search for an interface by MAC address. Returns NULL if the device
873 * is not found or a pointer to the device.
874 * The caller must hold RCU or RTNL.
875 * The returned device has not had its ref count increased
876 * and the caller must therefore be careful about locking
880 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
883 struct net_device *dev;
885 for_each_netdev_rcu(net, dev)
886 if (dev->type == type &&
887 !memcmp(dev->dev_addr, ha, dev->addr_len))
892 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
894 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
896 struct net_device *dev;
899 for_each_netdev(net, dev)
900 if (dev->type == type)
905 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
907 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
909 struct net_device *dev, *ret = NULL;
912 for_each_netdev_rcu(net, dev)
913 if (dev->type == type) {
921 EXPORT_SYMBOL(dev_getfirstbyhwtype);
924 * __dev_get_by_flags - find any device with given flags
925 * @net: the applicable net namespace
926 * @if_flags: IFF_* values
927 * @mask: bitmask of bits in if_flags to check
929 * Search for any interface with the given flags. Returns NULL if a device
930 * is not found or a pointer to the device. Must be called inside
931 * rtnl_lock(), and result refcount is unchanged.
934 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
937 struct net_device *dev, *ret;
942 for_each_netdev(net, dev) {
943 if (((dev->flags ^ if_flags) & mask) == 0) {
950 EXPORT_SYMBOL(__dev_get_by_flags);
953 * dev_valid_name - check if name is okay for network device
956 * Network device names need to be valid file names to
957 * to allow sysfs to work. We also disallow any kind of
960 bool dev_valid_name(const char *name)
964 if (strlen(name) >= IFNAMSIZ)
966 if (!strcmp(name, ".") || !strcmp(name, ".."))
970 if (*name == '/' || *name == ':' || isspace(*name))
976 EXPORT_SYMBOL(dev_valid_name);
979 * __dev_alloc_name - allocate a name for a device
980 * @net: network namespace to allocate the device name in
981 * @name: name format string
982 * @buf: scratch buffer and result name string
984 * Passed a format string - eg "lt%d" it will try and find a suitable
985 * id. It scans list of devices to build up a free map, then chooses
986 * the first empty slot. The caller must hold the dev_base or rtnl lock
987 * while allocating the name and adding the device in order to avoid
989 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
990 * Returns the number of the unit assigned or a negative errno code.
993 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
997 const int max_netdevices = 8*PAGE_SIZE;
998 unsigned long *inuse;
999 struct net_device *d;
1001 p = strnchr(name, IFNAMSIZ-1, '%');
1004 * Verify the string as this thing may have come from
1005 * the user. There must be either one "%d" and no other "%"
1008 if (p[1] != 'd' || strchr(p + 2, '%'))
1011 /* Use one page as a bit array of possible slots */
1012 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1016 for_each_netdev(net, d) {
1017 if (!sscanf(d->name, name, &i))
1019 if (i < 0 || i >= max_netdevices)
1022 /* avoid cases where sscanf is not exact inverse of printf */
1023 snprintf(buf, IFNAMSIZ, name, i);
1024 if (!strncmp(buf, d->name, IFNAMSIZ))
1028 i = find_first_zero_bit(inuse, max_netdevices);
1029 free_page((unsigned long) inuse);
1033 snprintf(buf, IFNAMSIZ, name, i);
1034 if (!__dev_get_by_name(net, buf))
1037 /* It is possible to run out of possible slots
1038 * when the name is long and there isn't enough space left
1039 * for the digits, or if all bits are used.
1045 * dev_alloc_name - allocate a name for a device
1047 * @name: name format string
1049 * Passed a format string - eg "lt%d" it will try and find a suitable
1050 * id. It scans list of devices to build up a free map, then chooses
1051 * the first empty slot. The caller must hold the dev_base or rtnl lock
1052 * while allocating the name and adding the device in order to avoid
1054 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1055 * Returns the number of the unit assigned or a negative errno code.
1058 int dev_alloc_name(struct net_device *dev, const char *name)
1064 BUG_ON(!dev_net(dev));
1066 ret = __dev_alloc_name(net, name, buf);
1068 strlcpy(dev->name, buf, IFNAMSIZ);
1071 EXPORT_SYMBOL(dev_alloc_name);
1073 static int dev_alloc_name_ns(struct net *net,
1074 struct net_device *dev,
1080 ret = __dev_alloc_name(net, name, buf);
1082 strlcpy(dev->name, buf, IFNAMSIZ);
1086 static int dev_get_valid_name(struct net *net,
1087 struct net_device *dev,
1092 if (!dev_valid_name(name))
1095 if (strchr(name, '%'))
1096 return dev_alloc_name_ns(net, dev, name);
1097 else if (__dev_get_by_name(net, name))
1099 else if (dev->name != name)
1100 strlcpy(dev->name, name, IFNAMSIZ);
1106 * dev_change_name - change name of a device
1108 * @newname: name (or format string) must be at least IFNAMSIZ
1110 * Change name of a device, can pass format strings "eth%d".
1113 int dev_change_name(struct net_device *dev, const char *newname)
1115 unsigned char old_assign_type;
1116 char oldname[IFNAMSIZ];
1122 BUG_ON(!dev_net(dev));
1125 if (dev->flags & IFF_UP)
1128 write_seqcount_begin(&devnet_rename_seq);
1130 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1131 write_seqcount_end(&devnet_rename_seq);
1135 memcpy(oldname, dev->name, IFNAMSIZ);
1137 err = dev_get_valid_name(net, dev, newname);
1139 write_seqcount_end(&devnet_rename_seq);
1143 if (oldname[0] && !strchr(oldname, '%'))
1144 netdev_info(dev, "renamed from %s\n", oldname);
1146 old_assign_type = dev->name_assign_type;
1147 dev->name_assign_type = NET_NAME_RENAMED;
1150 ret = device_rename(&dev->dev, dev->name);
1152 memcpy(dev->name, oldname, IFNAMSIZ);
1153 dev->name_assign_type = old_assign_type;
1154 write_seqcount_end(&devnet_rename_seq);
1158 write_seqcount_end(&devnet_rename_seq);
1160 netdev_adjacent_rename_links(dev, oldname);
1162 write_lock_bh(&dev_base_lock);
1163 hlist_del_rcu(&dev->name_hlist);
1164 write_unlock_bh(&dev_base_lock);
1168 write_lock_bh(&dev_base_lock);
1169 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1170 write_unlock_bh(&dev_base_lock);
1172 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1173 ret = notifier_to_errno(ret);
1176 /* err >= 0 after dev_alloc_name() or stores the first errno */
1179 write_seqcount_begin(&devnet_rename_seq);
1180 memcpy(dev->name, oldname, IFNAMSIZ);
1181 memcpy(oldname, newname, IFNAMSIZ);
1182 dev->name_assign_type = old_assign_type;
1183 old_assign_type = NET_NAME_RENAMED;
1186 pr_err("%s: name change rollback failed: %d\n",
1195 * dev_set_alias - change ifalias of a device
1197 * @alias: name up to IFALIASZ
1198 * @len: limit of bytes to copy from info
1200 * Set ifalias for a device,
1202 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1208 if (len >= IFALIASZ)
1212 kfree(dev->ifalias);
1213 dev->ifalias = NULL;
1217 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1220 dev->ifalias = new_ifalias;
1222 strlcpy(dev->ifalias, alias, len+1);
1228 * netdev_features_change - device changes features
1229 * @dev: device to cause notification
1231 * Called to indicate a device has changed features.
1233 void netdev_features_change(struct net_device *dev)
1235 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1237 EXPORT_SYMBOL(netdev_features_change);
1240 * netdev_state_change - device changes state
1241 * @dev: device to cause notification
1243 * Called to indicate a device has changed state. This function calls
1244 * the notifier chains for netdev_chain and sends a NEWLINK message
1245 * to the routing socket.
1247 void netdev_state_change(struct net_device *dev)
1249 if (dev->flags & IFF_UP) {
1250 struct netdev_notifier_change_info change_info;
1252 change_info.flags_changed = 0;
1253 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1255 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1258 EXPORT_SYMBOL(netdev_state_change);
1261 * netdev_notify_peers - notify network peers about existence of @dev
1262 * @dev: network device
1264 * Generate traffic such that interested network peers are aware of
1265 * @dev, such as by generating a gratuitous ARP. This may be used when
1266 * a device wants to inform the rest of the network about some sort of
1267 * reconfiguration such as a failover event or virtual machine
1270 void netdev_notify_peers(struct net_device *dev)
1273 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1276 EXPORT_SYMBOL(netdev_notify_peers);
1278 static int __dev_open(struct net_device *dev)
1280 const struct net_device_ops *ops = dev->netdev_ops;
1285 if (!netif_device_present(dev))
1288 /* Block netpoll from trying to do any rx path servicing.
1289 * If we don't do this there is a chance ndo_poll_controller
1290 * or ndo_poll may be running while we open the device
1292 netpoll_poll_disable(dev);
1294 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1295 ret = notifier_to_errno(ret);
1299 set_bit(__LINK_STATE_START, &dev->state);
1301 if (ops->ndo_validate_addr)
1302 ret = ops->ndo_validate_addr(dev);
1304 if (!ret && ops->ndo_open)
1305 ret = ops->ndo_open(dev);
1307 netpoll_poll_enable(dev);
1310 clear_bit(__LINK_STATE_START, &dev->state);
1312 dev->flags |= IFF_UP;
1313 dev_set_rx_mode(dev);
1315 add_device_randomness(dev->dev_addr, dev->addr_len);
1322 * dev_open - prepare an interface for use.
1323 * @dev: device to open
1325 * Takes a device from down to up state. The device's private open
1326 * function is invoked and then the multicast lists are loaded. Finally
1327 * the device is moved into the up state and a %NETDEV_UP message is
1328 * sent to the netdev notifier chain.
1330 * Calling this function on an active interface is a nop. On a failure
1331 * a negative errno code is returned.
1333 int dev_open(struct net_device *dev)
1337 if (dev->flags & IFF_UP)
1340 ret = __dev_open(dev);
1344 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1345 call_netdevice_notifiers(NETDEV_UP, dev);
1349 EXPORT_SYMBOL(dev_open);
1351 static int __dev_close_many(struct list_head *head)
1353 struct net_device *dev;
1358 list_for_each_entry(dev, head, close_list) {
1359 /* Temporarily disable netpoll until the interface is down */
1360 netpoll_poll_disable(dev);
1362 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1364 clear_bit(__LINK_STATE_START, &dev->state);
1366 /* Synchronize to scheduled poll. We cannot touch poll list, it
1367 * can be even on different cpu. So just clear netif_running().
1369 * dev->stop() will invoke napi_disable() on all of it's
1370 * napi_struct instances on this device.
1372 smp_mb__after_atomic(); /* Commit netif_running(). */
1375 dev_deactivate_many(head);
1377 list_for_each_entry(dev, head, close_list) {
1378 const struct net_device_ops *ops = dev->netdev_ops;
1381 * Call the device specific close. This cannot fail.
1382 * Only if device is UP
1384 * We allow it to be called even after a DETACH hot-plug
1390 dev->flags &= ~IFF_UP;
1391 netpoll_poll_enable(dev);
1397 static int __dev_close(struct net_device *dev)
1402 list_add(&dev->close_list, &single);
1403 retval = __dev_close_many(&single);
1409 int dev_close_many(struct list_head *head, bool unlink)
1411 struct net_device *dev, *tmp;
1413 /* Remove the devices that don't need to be closed */
1414 list_for_each_entry_safe(dev, tmp, head, close_list)
1415 if (!(dev->flags & IFF_UP))
1416 list_del_init(&dev->close_list);
1418 __dev_close_many(head);
1420 list_for_each_entry_safe(dev, tmp, head, close_list) {
1421 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1422 call_netdevice_notifiers(NETDEV_DOWN, dev);
1424 list_del_init(&dev->close_list);
1429 EXPORT_SYMBOL(dev_close_many);
1432 * dev_close - shutdown an interface.
1433 * @dev: device to shutdown
1435 * This function moves an active device into down state. A
1436 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1437 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1440 int dev_close(struct net_device *dev)
1442 if (dev->flags & IFF_UP) {
1445 list_add(&dev->close_list, &single);
1446 dev_close_many(&single, true);
1451 EXPORT_SYMBOL(dev_close);
1455 * dev_disable_lro - disable Large Receive Offload on a device
1458 * Disable Large Receive Offload (LRO) on a net device. Must be
1459 * called under RTNL. This is needed if received packets may be
1460 * forwarded to another interface.
1462 void dev_disable_lro(struct net_device *dev)
1464 struct net_device *lower_dev;
1465 struct list_head *iter;
1467 dev->wanted_features &= ~NETIF_F_LRO;
1468 netdev_update_features(dev);
1470 if (unlikely(dev->features & NETIF_F_LRO))
1471 netdev_WARN(dev, "failed to disable LRO!\n");
1473 netdev_for_each_lower_dev(dev, lower_dev, iter)
1474 dev_disable_lro(lower_dev);
1476 EXPORT_SYMBOL(dev_disable_lro);
1478 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1479 struct net_device *dev)
1481 struct netdev_notifier_info info;
1483 netdev_notifier_info_init(&info, dev);
1484 return nb->notifier_call(nb, val, &info);
1487 static int dev_boot_phase = 1;
1490 * register_netdevice_notifier - register a network notifier block
1493 * Register a notifier to be called when network device events occur.
1494 * The notifier passed is linked into the kernel structures and must
1495 * not be reused until it has been unregistered. A negative errno code
1496 * is returned on a failure.
1498 * When registered all registration and up events are replayed
1499 * to the new notifier to allow device to have a race free
1500 * view of the network device list.
1503 int register_netdevice_notifier(struct notifier_block *nb)
1505 struct net_device *dev;
1506 struct net_device *last;
1511 err = raw_notifier_chain_register(&netdev_chain, nb);
1517 for_each_netdev(net, dev) {
1518 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1519 err = notifier_to_errno(err);
1523 if (!(dev->flags & IFF_UP))
1526 call_netdevice_notifier(nb, NETDEV_UP, dev);
1537 for_each_netdev(net, dev) {
1541 if (dev->flags & IFF_UP) {
1542 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1544 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1546 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1551 raw_notifier_chain_unregister(&netdev_chain, nb);
1554 EXPORT_SYMBOL(register_netdevice_notifier);
1557 * unregister_netdevice_notifier - unregister a network notifier block
1560 * Unregister a notifier previously registered by
1561 * register_netdevice_notifier(). The notifier is unlinked into the
1562 * kernel structures and may then be reused. A negative errno code
1563 * is returned on a failure.
1565 * After unregistering unregister and down device events are synthesized
1566 * for all devices on the device list to the removed notifier to remove
1567 * the need for special case cleanup code.
1570 int unregister_netdevice_notifier(struct notifier_block *nb)
1572 struct net_device *dev;
1577 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1582 for_each_netdev(net, dev) {
1583 if (dev->flags & IFF_UP) {
1584 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1586 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1588 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1595 EXPORT_SYMBOL(unregister_netdevice_notifier);
1598 * call_netdevice_notifiers_info - call all network notifier blocks
1599 * @val: value passed unmodified to notifier function
1600 * @dev: net_device pointer passed unmodified to notifier function
1601 * @info: notifier information data
1603 * Call all network notifier blocks. Parameters and return value
1604 * are as for raw_notifier_call_chain().
1607 static int call_netdevice_notifiers_info(unsigned long val,
1608 struct net_device *dev,
1609 struct netdev_notifier_info *info)
1612 netdev_notifier_info_init(info, dev);
1613 return raw_notifier_call_chain(&netdev_chain, val, info);
1617 * call_netdevice_notifiers - call all network notifier blocks
1618 * @val: value passed unmodified to notifier function
1619 * @dev: net_device pointer passed unmodified to notifier function
1621 * Call all network notifier blocks. Parameters and return value
1622 * are as for raw_notifier_call_chain().
1625 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1627 struct netdev_notifier_info info;
1629 return call_netdevice_notifiers_info(val, dev, &info);
1631 EXPORT_SYMBOL(call_netdevice_notifiers);
1633 static struct static_key netstamp_needed __read_mostly;
1634 #ifdef HAVE_JUMP_LABEL
1635 /* We are not allowed to call static_key_slow_dec() from irq context
1636 * If net_disable_timestamp() is called from irq context, defer the
1637 * static_key_slow_dec() calls.
1639 static atomic_t netstamp_needed_deferred;
1642 void net_enable_timestamp(void)
1644 #ifdef HAVE_JUMP_LABEL
1645 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1649 static_key_slow_dec(&netstamp_needed);
1653 static_key_slow_inc(&netstamp_needed);
1655 EXPORT_SYMBOL(net_enable_timestamp);
1657 void net_disable_timestamp(void)
1659 #ifdef HAVE_JUMP_LABEL
1660 if (in_interrupt()) {
1661 atomic_inc(&netstamp_needed_deferred);
1665 static_key_slow_dec(&netstamp_needed);
1667 EXPORT_SYMBOL(net_disable_timestamp);
1669 static inline void net_timestamp_set(struct sk_buff *skb)
1671 skb->tstamp.tv64 = 0;
1672 if (static_key_false(&netstamp_needed))
1673 __net_timestamp(skb);
1676 #define net_timestamp_check(COND, SKB) \
1677 if (static_key_false(&netstamp_needed)) { \
1678 if ((COND) && !(SKB)->tstamp.tv64) \
1679 __net_timestamp(SKB); \
1682 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1686 if (!(dev->flags & IFF_UP))
1689 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1690 if (skb->len <= len)
1693 /* if TSO is enabled, we don't care about the length as the packet
1694 * could be forwarded without being segmented before
1696 if (skb_is_gso(skb))
1701 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1703 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1705 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1706 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1707 atomic_long_inc(&dev->rx_dropped);
1713 if (unlikely(!is_skb_forwardable(dev, skb))) {
1714 atomic_long_inc(&dev->rx_dropped);
1719 skb_scrub_packet(skb, true);
1721 skb->protocol = eth_type_trans(skb, dev);
1722 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1726 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1729 * dev_forward_skb - loopback an skb to another netif
1731 * @dev: destination network device
1732 * @skb: buffer to forward
1735 * NET_RX_SUCCESS (no congestion)
1736 * NET_RX_DROP (packet was dropped, but freed)
1738 * dev_forward_skb can be used for injecting an skb from the
1739 * start_xmit function of one device into the receive queue
1740 * of another device.
1742 * The receiving device may be in another namespace, so
1743 * we have to clear all information in the skb that could
1744 * impact namespace isolation.
1746 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1748 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1750 EXPORT_SYMBOL_GPL(dev_forward_skb);
1752 static inline int deliver_skb(struct sk_buff *skb,
1753 struct packet_type *pt_prev,
1754 struct net_device *orig_dev)
1756 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1758 atomic_inc(&skb->users);
1759 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1762 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1763 struct packet_type **pt,
1764 struct net_device *orig_dev,
1766 struct list_head *ptype_list)
1768 struct packet_type *ptype, *pt_prev = *pt;
1770 list_for_each_entry_rcu(ptype, ptype_list, list) {
1771 if (ptype->type != type)
1774 deliver_skb(skb, pt_prev, orig_dev);
1780 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1782 if (!ptype->af_packet_priv || !skb->sk)
1785 if (ptype->id_match)
1786 return ptype->id_match(ptype, skb->sk);
1787 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1794 * Support routine. Sends outgoing frames to any network
1795 * taps currently in use.
1798 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1800 struct packet_type *ptype;
1801 struct sk_buff *skb2 = NULL;
1802 struct packet_type *pt_prev = NULL;
1803 struct list_head *ptype_list = &ptype_all;
1807 list_for_each_entry_rcu(ptype, ptype_list, list) {
1808 /* Never send packets back to the socket
1811 if (skb_loop_sk(ptype, skb))
1815 deliver_skb(skb2, pt_prev, skb->dev);
1820 /* need to clone skb, done only once */
1821 skb2 = skb_clone(skb, GFP_ATOMIC);
1825 net_timestamp_set(skb2);
1827 /* skb->nh should be correctly
1828 * set by sender, so that the second statement is
1829 * just protection against buggy protocols.
1831 skb_reset_mac_header(skb2);
1833 if (skb_network_header(skb2) < skb2->data ||
1834 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1835 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1836 ntohs(skb2->protocol),
1838 skb_reset_network_header(skb2);
1841 skb2->transport_header = skb2->network_header;
1842 skb2->pkt_type = PACKET_OUTGOING;
1846 if (ptype_list == &ptype_all) {
1847 ptype_list = &dev->ptype_all;
1852 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1857 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1858 * @dev: Network device
1859 * @txq: number of queues available
1861 * If real_num_tx_queues is changed the tc mappings may no longer be
1862 * valid. To resolve this verify the tc mapping remains valid and if
1863 * not NULL the mapping. With no priorities mapping to this
1864 * offset/count pair it will no longer be used. In the worst case TC0
1865 * is invalid nothing can be done so disable priority mappings. If is
1866 * expected that drivers will fix this mapping if they can before
1867 * calling netif_set_real_num_tx_queues.
1869 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1872 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1874 /* If TC0 is invalidated disable TC mapping */
1875 if (tc->offset + tc->count > txq) {
1876 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1881 /* Invalidated prio to tc mappings set to TC0 */
1882 for (i = 1; i < TC_BITMASK + 1; i++) {
1883 int q = netdev_get_prio_tc_map(dev, i);
1885 tc = &dev->tc_to_txq[q];
1886 if (tc->offset + tc->count > txq) {
1887 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1889 netdev_set_prio_tc_map(dev, i, 0);
1895 static DEFINE_MUTEX(xps_map_mutex);
1896 #define xmap_dereference(P) \
1897 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1899 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1902 struct xps_map *map = NULL;
1906 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1908 for (pos = 0; map && pos < map->len; pos++) {
1909 if (map->queues[pos] == index) {
1911 map->queues[pos] = map->queues[--map->len];
1913 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1914 kfree_rcu(map, rcu);
1924 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1926 struct xps_dev_maps *dev_maps;
1928 bool active = false;
1930 mutex_lock(&xps_map_mutex);
1931 dev_maps = xmap_dereference(dev->xps_maps);
1936 for_each_possible_cpu(cpu) {
1937 for (i = index; i < dev->num_tx_queues; i++) {
1938 if (!remove_xps_queue(dev_maps, cpu, i))
1941 if (i == dev->num_tx_queues)
1946 RCU_INIT_POINTER(dev->xps_maps, NULL);
1947 kfree_rcu(dev_maps, rcu);
1950 for (i = index; i < dev->num_tx_queues; i++)
1951 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1955 mutex_unlock(&xps_map_mutex);
1958 static struct xps_map *expand_xps_map(struct xps_map *map,
1961 struct xps_map *new_map;
1962 int alloc_len = XPS_MIN_MAP_ALLOC;
1965 for (pos = 0; map && pos < map->len; pos++) {
1966 if (map->queues[pos] != index)
1971 /* Need to add queue to this CPU's existing map */
1973 if (pos < map->alloc_len)
1976 alloc_len = map->alloc_len * 2;
1979 /* Need to allocate new map to store queue on this CPU's map */
1980 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1985 for (i = 0; i < pos; i++)
1986 new_map->queues[i] = map->queues[i];
1987 new_map->alloc_len = alloc_len;
1993 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1996 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1997 struct xps_map *map, *new_map;
1998 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1999 int cpu, numa_node_id = -2;
2000 bool active = false;
2002 mutex_lock(&xps_map_mutex);
2004 dev_maps = xmap_dereference(dev->xps_maps);
2006 /* allocate memory for queue storage */
2007 for_each_online_cpu(cpu) {
2008 if (!cpumask_test_cpu(cpu, mask))
2012 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2013 if (!new_dev_maps) {
2014 mutex_unlock(&xps_map_mutex);
2018 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2021 map = expand_xps_map(map, cpu, index);
2025 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2029 goto out_no_new_maps;
2031 for_each_possible_cpu(cpu) {
2032 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2033 /* add queue to CPU maps */
2036 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2037 while ((pos < map->len) && (map->queues[pos] != index))
2040 if (pos == map->len)
2041 map->queues[map->len++] = index;
2043 if (numa_node_id == -2)
2044 numa_node_id = cpu_to_node(cpu);
2045 else if (numa_node_id != cpu_to_node(cpu))
2048 } else if (dev_maps) {
2049 /* fill in the new device map from the old device map */
2050 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2051 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2056 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2058 /* Cleanup old maps */
2060 for_each_possible_cpu(cpu) {
2061 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2062 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2063 if (map && map != new_map)
2064 kfree_rcu(map, rcu);
2067 kfree_rcu(dev_maps, rcu);
2070 dev_maps = new_dev_maps;
2074 /* update Tx queue numa node */
2075 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2076 (numa_node_id >= 0) ? numa_node_id :
2082 /* removes queue from unused CPUs */
2083 for_each_possible_cpu(cpu) {
2084 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2087 if (remove_xps_queue(dev_maps, cpu, index))
2091 /* free map if not active */
2093 RCU_INIT_POINTER(dev->xps_maps, NULL);
2094 kfree_rcu(dev_maps, rcu);
2098 mutex_unlock(&xps_map_mutex);
2102 /* remove any maps that we added */
2103 for_each_possible_cpu(cpu) {
2104 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2105 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2107 if (new_map && new_map != map)
2111 mutex_unlock(&xps_map_mutex);
2113 kfree(new_dev_maps);
2116 EXPORT_SYMBOL(netif_set_xps_queue);
2120 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2121 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2123 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2127 if (txq < 1 || txq > dev->num_tx_queues)
2130 if (dev->reg_state == NETREG_REGISTERED ||
2131 dev->reg_state == NETREG_UNREGISTERING) {
2134 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2140 netif_setup_tc(dev, txq);
2142 if (txq < dev->real_num_tx_queues) {
2143 qdisc_reset_all_tx_gt(dev, txq);
2145 netif_reset_xps_queues_gt(dev, txq);
2150 dev->real_num_tx_queues = txq;
2153 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2157 * netif_set_real_num_rx_queues - set actual number of RX queues used
2158 * @dev: Network device
2159 * @rxq: Actual number of RX queues
2161 * This must be called either with the rtnl_lock held or before
2162 * registration of the net device. Returns 0 on success, or a
2163 * negative error code. If called before registration, it always
2166 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2170 if (rxq < 1 || rxq > dev->num_rx_queues)
2173 if (dev->reg_state == NETREG_REGISTERED) {
2176 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2182 dev->real_num_rx_queues = rxq;
2185 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2189 * netif_get_num_default_rss_queues - default number of RSS queues
2191 * This routine should set an upper limit on the number of RSS queues
2192 * used by default by multiqueue devices.
2194 int netif_get_num_default_rss_queues(void)
2196 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2198 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2200 static inline void __netif_reschedule(struct Qdisc *q)
2202 struct softnet_data *sd;
2203 unsigned long flags;
2205 local_irq_save(flags);
2206 sd = this_cpu_ptr(&softnet_data);
2207 q->next_sched = NULL;
2208 *sd->output_queue_tailp = q;
2209 sd->output_queue_tailp = &q->next_sched;
2210 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2211 local_irq_restore(flags);
2214 void __netif_schedule(struct Qdisc *q)
2216 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2217 __netif_reschedule(q);
2219 EXPORT_SYMBOL(__netif_schedule);
2221 struct dev_kfree_skb_cb {
2222 enum skb_free_reason reason;
2225 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2227 return (struct dev_kfree_skb_cb *)skb->cb;
2230 void netif_schedule_queue(struct netdev_queue *txq)
2233 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2234 struct Qdisc *q = rcu_dereference(txq->qdisc);
2236 __netif_schedule(q);
2240 EXPORT_SYMBOL(netif_schedule_queue);
2243 * netif_wake_subqueue - allow sending packets on subqueue
2244 * @dev: network device
2245 * @queue_index: sub queue index
2247 * Resume individual transmit queue of a device with multiple transmit queues.
2249 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2251 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2253 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2257 q = rcu_dereference(txq->qdisc);
2258 __netif_schedule(q);
2262 EXPORT_SYMBOL(netif_wake_subqueue);
2264 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2266 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2270 q = rcu_dereference(dev_queue->qdisc);
2271 __netif_schedule(q);
2275 EXPORT_SYMBOL(netif_tx_wake_queue);
2277 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2279 unsigned long flags;
2281 if (likely(atomic_read(&skb->users) == 1)) {
2283 atomic_set(&skb->users, 0);
2284 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2287 get_kfree_skb_cb(skb)->reason = reason;
2288 local_irq_save(flags);
2289 skb->next = __this_cpu_read(softnet_data.completion_queue);
2290 __this_cpu_write(softnet_data.completion_queue, skb);
2291 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2292 local_irq_restore(flags);
2294 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2296 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2298 if (in_irq() || irqs_disabled())
2299 __dev_kfree_skb_irq(skb, reason);
2303 EXPORT_SYMBOL(__dev_kfree_skb_any);
2307 * netif_device_detach - mark device as removed
2308 * @dev: network device
2310 * Mark device as removed from system and therefore no longer available.
2312 void netif_device_detach(struct net_device *dev)
2314 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2315 netif_running(dev)) {
2316 netif_tx_stop_all_queues(dev);
2319 EXPORT_SYMBOL(netif_device_detach);
2322 * netif_device_attach - mark device as attached
2323 * @dev: network device
2325 * Mark device as attached from system and restart if needed.
2327 void netif_device_attach(struct net_device *dev)
2329 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2330 netif_running(dev)) {
2331 netif_tx_wake_all_queues(dev);
2332 __netdev_watchdog_up(dev);
2335 EXPORT_SYMBOL(netif_device_attach);
2337 static void skb_warn_bad_offload(const struct sk_buff *skb)
2339 static const netdev_features_t null_features = 0;
2340 struct net_device *dev = skb->dev;
2341 const char *driver = "";
2343 if (!net_ratelimit())
2346 if (dev && dev->dev.parent)
2347 driver = dev_driver_string(dev->dev.parent);
2349 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2350 "gso_type=%d ip_summed=%d\n",
2351 driver, dev ? &dev->features : &null_features,
2352 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2353 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2354 skb_shinfo(skb)->gso_type, skb->ip_summed);
2358 * Invalidate hardware checksum when packet is to be mangled, and
2359 * complete checksum manually on outgoing path.
2361 int skb_checksum_help(struct sk_buff *skb)
2364 int ret = 0, offset;
2366 if (skb->ip_summed == CHECKSUM_COMPLETE)
2367 goto out_set_summed;
2369 if (unlikely(skb_shinfo(skb)->gso_size)) {
2370 skb_warn_bad_offload(skb);
2374 /* Before computing a checksum, we should make sure no frag could
2375 * be modified by an external entity : checksum could be wrong.
2377 if (skb_has_shared_frag(skb)) {
2378 ret = __skb_linearize(skb);
2383 offset = skb_checksum_start_offset(skb);
2384 BUG_ON(offset >= skb_headlen(skb));
2385 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2387 offset += skb->csum_offset;
2388 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2390 if (skb_cloned(skb) &&
2391 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2392 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2397 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2399 skb->ip_summed = CHECKSUM_NONE;
2403 EXPORT_SYMBOL(skb_checksum_help);
2405 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2407 __be16 type = skb->protocol;
2409 /* Tunnel gso handlers can set protocol to ethernet. */
2410 if (type == htons(ETH_P_TEB)) {
2413 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2416 eth = (struct ethhdr *)skb_mac_header(skb);
2417 type = eth->h_proto;
2420 return __vlan_get_protocol(skb, type, depth);
2424 * skb_mac_gso_segment - mac layer segmentation handler.
2425 * @skb: buffer to segment
2426 * @features: features for the output path (see dev->features)
2428 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2429 netdev_features_t features)
2431 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2432 struct packet_offload *ptype;
2433 int vlan_depth = skb->mac_len;
2434 __be16 type = skb_network_protocol(skb, &vlan_depth);
2436 if (unlikely(!type))
2437 return ERR_PTR(-EINVAL);
2439 __skb_pull(skb, vlan_depth);
2442 list_for_each_entry_rcu(ptype, &offload_base, list) {
2443 if (ptype->type == type && ptype->callbacks.gso_segment) {
2444 segs = ptype->callbacks.gso_segment(skb, features);
2450 __skb_push(skb, skb->data - skb_mac_header(skb));
2454 EXPORT_SYMBOL(skb_mac_gso_segment);
2457 /* openvswitch calls this on rx path, so we need a different check.
2459 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2462 return skb->ip_summed != CHECKSUM_PARTIAL;
2464 return skb->ip_summed == CHECKSUM_NONE;
2468 * __skb_gso_segment - Perform segmentation on skb.
2469 * @skb: buffer to segment
2470 * @features: features for the output path (see dev->features)
2471 * @tx_path: whether it is called in TX path
2473 * This function segments the given skb and returns a list of segments.
2475 * It may return NULL if the skb requires no segmentation. This is
2476 * only possible when GSO is used for verifying header integrity.
2478 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2479 netdev_features_t features, bool tx_path)
2481 if (unlikely(skb_needs_check(skb, tx_path))) {
2484 skb_warn_bad_offload(skb);
2486 err = skb_cow_head(skb, 0);
2488 return ERR_PTR(err);
2491 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2492 SKB_GSO_CB(skb)->encap_level = 0;
2494 skb_reset_mac_header(skb);
2495 skb_reset_mac_len(skb);
2497 return skb_mac_gso_segment(skb, features);
2499 EXPORT_SYMBOL(__skb_gso_segment);
2501 /* Take action when hardware reception checksum errors are detected. */
2503 void netdev_rx_csum_fault(struct net_device *dev)
2505 if (net_ratelimit()) {
2506 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2510 EXPORT_SYMBOL(netdev_rx_csum_fault);
2513 /* Actually, we should eliminate this check as soon as we know, that:
2514 * 1. IOMMU is present and allows to map all the memory.
2515 * 2. No high memory really exists on this machine.
2518 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2520 #ifdef CONFIG_HIGHMEM
2522 if (!(dev->features & NETIF_F_HIGHDMA)) {
2523 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2524 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2525 if (PageHighMem(skb_frag_page(frag)))
2530 if (PCI_DMA_BUS_IS_PHYS) {
2531 struct device *pdev = dev->dev.parent;
2535 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2536 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2537 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2538 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2546 /* If MPLS offload request, verify we are testing hardware MPLS features
2547 * instead of standard features for the netdev.
2549 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2550 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2551 netdev_features_t features,
2554 if (eth_p_mpls(type))
2555 features &= skb->dev->mpls_features;
2560 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2561 netdev_features_t features,
2568 static netdev_features_t harmonize_features(struct sk_buff *skb,
2569 netdev_features_t features)
2574 type = skb_network_protocol(skb, &tmp);
2575 features = net_mpls_features(skb, features, type);
2577 if (skb->ip_summed != CHECKSUM_NONE &&
2578 !can_checksum_protocol(features, type)) {
2579 features &= ~NETIF_F_ALL_CSUM;
2580 } else if (illegal_highdma(skb->dev, skb)) {
2581 features &= ~NETIF_F_SG;
2587 netdev_features_t passthru_features_check(struct sk_buff *skb,
2588 struct net_device *dev,
2589 netdev_features_t features)
2593 EXPORT_SYMBOL(passthru_features_check);
2595 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2596 struct net_device *dev,
2597 netdev_features_t features)
2599 return vlan_features_check(skb, features);
2602 netdev_features_t netif_skb_features(struct sk_buff *skb)
2604 struct net_device *dev = skb->dev;
2605 netdev_features_t features = dev->features;
2606 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2608 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2609 features &= ~NETIF_F_GSO_MASK;
2611 /* If encapsulation offload request, verify we are testing
2612 * hardware encapsulation features instead of standard
2613 * features for the netdev
2615 if (skb->encapsulation)
2616 features &= dev->hw_enc_features;
2618 if (skb_vlan_tagged(skb))
2619 features = netdev_intersect_features(features,
2620 dev->vlan_features |
2621 NETIF_F_HW_VLAN_CTAG_TX |
2622 NETIF_F_HW_VLAN_STAG_TX);
2624 if (dev->netdev_ops->ndo_features_check)
2625 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2628 features &= dflt_features_check(skb, dev, features);
2630 return harmonize_features(skb, features);
2632 EXPORT_SYMBOL(netif_skb_features);
2634 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2635 struct netdev_queue *txq, bool more)
2640 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2641 dev_queue_xmit_nit(skb, dev);
2644 trace_net_dev_start_xmit(skb, dev);
2645 rc = netdev_start_xmit(skb, dev, txq, more);
2646 trace_net_dev_xmit(skb, rc, dev, len);
2651 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2652 struct netdev_queue *txq, int *ret)
2654 struct sk_buff *skb = first;
2655 int rc = NETDEV_TX_OK;
2658 struct sk_buff *next = skb->next;
2661 rc = xmit_one(skb, dev, txq, next != NULL);
2662 if (unlikely(!dev_xmit_complete(rc))) {
2668 if (netif_xmit_stopped(txq) && skb) {
2669 rc = NETDEV_TX_BUSY;
2679 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2680 netdev_features_t features)
2682 if (skb_vlan_tag_present(skb) &&
2683 !vlan_hw_offload_capable(features, skb->vlan_proto))
2684 skb = __vlan_hwaccel_push_inside(skb);
2688 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2690 netdev_features_t features;
2695 features = netif_skb_features(skb);
2696 skb = validate_xmit_vlan(skb, features);
2700 if (netif_needs_gso(dev, skb, features)) {
2701 struct sk_buff *segs;
2703 segs = skb_gso_segment(skb, features);
2711 if (skb_needs_linearize(skb, features) &&
2712 __skb_linearize(skb))
2715 /* If packet is not checksummed and device does not
2716 * support checksumming for this protocol, complete
2717 * checksumming here.
2719 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2720 if (skb->encapsulation)
2721 skb_set_inner_transport_header(skb,
2722 skb_checksum_start_offset(skb));
2724 skb_set_transport_header(skb,
2725 skb_checksum_start_offset(skb));
2726 if (!(features & NETIF_F_ALL_CSUM) &&
2727 skb_checksum_help(skb))
2740 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2742 struct sk_buff *next, *head = NULL, *tail;
2744 for (; skb != NULL; skb = next) {
2748 /* in case skb wont be segmented, point to itself */
2751 skb = validate_xmit_skb(skb, dev);
2759 /* If skb was segmented, skb->prev points to
2760 * the last segment. If not, it still contains skb.
2767 static void qdisc_pkt_len_init(struct sk_buff *skb)
2769 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2771 qdisc_skb_cb(skb)->pkt_len = skb->len;
2773 /* To get more precise estimation of bytes sent on wire,
2774 * we add to pkt_len the headers size of all segments
2776 if (shinfo->gso_size) {
2777 unsigned int hdr_len;
2778 u16 gso_segs = shinfo->gso_segs;
2780 /* mac layer + network layer */
2781 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2783 /* + transport layer */
2784 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2785 hdr_len += tcp_hdrlen(skb);
2787 hdr_len += sizeof(struct udphdr);
2789 if (shinfo->gso_type & SKB_GSO_DODGY)
2790 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2793 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2797 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2798 struct net_device *dev,
2799 struct netdev_queue *txq)
2801 spinlock_t *root_lock = qdisc_lock(q);
2805 qdisc_pkt_len_init(skb);
2806 qdisc_calculate_pkt_len(skb, q);
2808 * Heuristic to force contended enqueues to serialize on a
2809 * separate lock before trying to get qdisc main lock.
2810 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2811 * often and dequeue packets faster.
2813 contended = qdisc_is_running(q);
2814 if (unlikely(contended))
2815 spin_lock(&q->busylock);
2817 spin_lock(root_lock);
2818 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2821 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2822 qdisc_run_begin(q)) {
2824 * This is a work-conserving queue; there are no old skbs
2825 * waiting to be sent out; and the qdisc is not running -
2826 * xmit the skb directly.
2829 qdisc_bstats_update(q, skb);
2831 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2832 if (unlikely(contended)) {
2833 spin_unlock(&q->busylock);
2840 rc = NET_XMIT_SUCCESS;
2842 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2843 if (qdisc_run_begin(q)) {
2844 if (unlikely(contended)) {
2845 spin_unlock(&q->busylock);
2851 spin_unlock(root_lock);
2852 if (unlikely(contended))
2853 spin_unlock(&q->busylock);
2857 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2858 static void skb_update_prio(struct sk_buff *skb)
2860 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2862 if (!skb->priority && skb->sk && map) {
2863 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2865 if (prioidx < map->priomap_len)
2866 skb->priority = map->priomap[prioidx];
2870 #define skb_update_prio(skb)
2873 DEFINE_PER_CPU(int, xmit_recursion);
2874 EXPORT_SYMBOL(xmit_recursion);
2876 #define RECURSION_LIMIT 10
2879 * dev_loopback_xmit - loop back @skb
2880 * @skb: buffer to transmit
2882 int dev_loopback_xmit(struct sock *sk, struct sk_buff *skb)
2884 skb_reset_mac_header(skb);
2885 __skb_pull(skb, skb_network_offset(skb));
2886 skb->pkt_type = PACKET_LOOPBACK;
2887 skb->ip_summed = CHECKSUM_UNNECESSARY;
2888 WARN_ON(!skb_dst(skb));
2893 EXPORT_SYMBOL(dev_loopback_xmit);
2896 * __dev_queue_xmit - transmit a buffer
2897 * @skb: buffer to transmit
2898 * @accel_priv: private data used for L2 forwarding offload
2900 * Queue a buffer for transmission to a network device. The caller must
2901 * have set the device and priority and built the buffer before calling
2902 * this function. The function can be called from an interrupt.
2904 * A negative errno code is returned on a failure. A success does not
2905 * guarantee the frame will be transmitted as it may be dropped due
2906 * to congestion or traffic shaping.
2908 * -----------------------------------------------------------------------------------
2909 * I notice this method can also return errors from the queue disciplines,
2910 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2913 * Regardless of the return value, the skb is consumed, so it is currently
2914 * difficult to retry a send to this method. (You can bump the ref count
2915 * before sending to hold a reference for retry if you are careful.)
2917 * When calling this method, interrupts MUST be enabled. This is because
2918 * the BH enable code must have IRQs enabled so that it will not deadlock.
2921 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2923 struct net_device *dev = skb->dev;
2924 struct netdev_queue *txq;
2928 skb_reset_mac_header(skb);
2930 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2931 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2933 /* Disable soft irqs for various locks below. Also
2934 * stops preemption for RCU.
2938 skb_update_prio(skb);
2940 /* If device/qdisc don't need skb->dst, release it right now while
2941 * its hot in this cpu cache.
2943 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2948 txq = netdev_pick_tx(dev, skb, accel_priv);
2949 q = rcu_dereference_bh(txq->qdisc);
2951 #ifdef CONFIG_NET_CLS_ACT
2952 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2954 trace_net_dev_queue(skb);
2956 rc = __dev_xmit_skb(skb, q, dev, txq);
2960 /* The device has no queue. Common case for software devices:
2961 loopback, all the sorts of tunnels...
2963 Really, it is unlikely that netif_tx_lock protection is necessary
2964 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2966 However, it is possible, that they rely on protection
2969 Check this and shot the lock. It is not prone from deadlocks.
2970 Either shot noqueue qdisc, it is even simpler 8)
2972 if (dev->flags & IFF_UP) {
2973 int cpu = smp_processor_id(); /* ok because BHs are off */
2975 if (txq->xmit_lock_owner != cpu) {
2977 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2978 goto recursion_alert;
2980 skb = validate_xmit_skb(skb, dev);
2984 HARD_TX_LOCK(dev, txq, cpu);
2986 if (!netif_xmit_stopped(txq)) {
2987 __this_cpu_inc(xmit_recursion);
2988 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
2989 __this_cpu_dec(xmit_recursion);
2990 if (dev_xmit_complete(rc)) {
2991 HARD_TX_UNLOCK(dev, txq);
2995 HARD_TX_UNLOCK(dev, txq);
2996 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2999 /* Recursion is detected! It is possible,
3003 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3010 rcu_read_unlock_bh();
3012 atomic_long_inc(&dev->tx_dropped);
3013 kfree_skb_list(skb);
3016 rcu_read_unlock_bh();
3020 int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb)
3022 return __dev_queue_xmit(skb, NULL);
3024 EXPORT_SYMBOL(dev_queue_xmit_sk);
3026 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3028 return __dev_queue_xmit(skb, accel_priv);
3030 EXPORT_SYMBOL(dev_queue_xmit_accel);
3033 /*=======================================================================
3035 =======================================================================*/
3037 int netdev_max_backlog __read_mostly = 1000;
3038 EXPORT_SYMBOL(netdev_max_backlog);
3040 int netdev_tstamp_prequeue __read_mostly = 1;
3041 int netdev_budget __read_mostly = 300;
3042 int weight_p __read_mostly = 64; /* old backlog weight */
3044 /* Called with irq disabled */
3045 static inline void ____napi_schedule(struct softnet_data *sd,
3046 struct napi_struct *napi)
3048 list_add_tail(&napi->poll_list, &sd->poll_list);
3049 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3054 /* One global table that all flow-based protocols share. */
3055 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3056 EXPORT_SYMBOL(rps_sock_flow_table);
3057 u32 rps_cpu_mask __read_mostly;
3058 EXPORT_SYMBOL(rps_cpu_mask);
3060 struct static_key rps_needed __read_mostly;
3062 static struct rps_dev_flow *
3063 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3064 struct rps_dev_flow *rflow, u16 next_cpu)
3066 if (next_cpu != RPS_NO_CPU) {
3067 #ifdef CONFIG_RFS_ACCEL
3068 struct netdev_rx_queue *rxqueue;
3069 struct rps_dev_flow_table *flow_table;
3070 struct rps_dev_flow *old_rflow;
3075 /* Should we steer this flow to a different hardware queue? */
3076 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3077 !(dev->features & NETIF_F_NTUPLE))
3079 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3080 if (rxq_index == skb_get_rx_queue(skb))
3083 rxqueue = dev->_rx + rxq_index;
3084 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3087 flow_id = skb_get_hash(skb) & flow_table->mask;
3088 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3089 rxq_index, flow_id);
3093 rflow = &flow_table->flows[flow_id];
3095 if (old_rflow->filter == rflow->filter)
3096 old_rflow->filter = RPS_NO_FILTER;
3100 per_cpu(softnet_data, next_cpu).input_queue_head;
3103 rflow->cpu = next_cpu;
3108 * get_rps_cpu is called from netif_receive_skb and returns the target
3109 * CPU from the RPS map of the receiving queue for a given skb.
3110 * rcu_read_lock must be held on entry.
3112 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3113 struct rps_dev_flow **rflowp)
3115 const struct rps_sock_flow_table *sock_flow_table;
3116 struct netdev_rx_queue *rxqueue = dev->_rx;
3117 struct rps_dev_flow_table *flow_table;
3118 struct rps_map *map;
3123 if (skb_rx_queue_recorded(skb)) {
3124 u16 index = skb_get_rx_queue(skb);
3126 if (unlikely(index >= dev->real_num_rx_queues)) {
3127 WARN_ONCE(dev->real_num_rx_queues > 1,
3128 "%s received packet on queue %u, but number "
3129 "of RX queues is %u\n",
3130 dev->name, index, dev->real_num_rx_queues);
3136 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3138 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3139 map = rcu_dereference(rxqueue->rps_map);
3140 if (!flow_table && !map)
3143 skb_reset_network_header(skb);
3144 hash = skb_get_hash(skb);
3148 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3149 if (flow_table && sock_flow_table) {
3150 struct rps_dev_flow *rflow;
3154 /* First check into global flow table if there is a match */
3155 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3156 if ((ident ^ hash) & ~rps_cpu_mask)
3159 next_cpu = ident & rps_cpu_mask;
3161 /* OK, now we know there is a match,
3162 * we can look at the local (per receive queue) flow table
3164 rflow = &flow_table->flows[hash & flow_table->mask];
3168 * If the desired CPU (where last recvmsg was done) is
3169 * different from current CPU (one in the rx-queue flow
3170 * table entry), switch if one of the following holds:
3171 * - Current CPU is unset (equal to RPS_NO_CPU).
3172 * - Current CPU is offline.
3173 * - The current CPU's queue tail has advanced beyond the
3174 * last packet that was enqueued using this table entry.
3175 * This guarantees that all previous packets for the flow
3176 * have been dequeued, thus preserving in order delivery.
3178 if (unlikely(tcpu != next_cpu) &&
3179 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3180 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3181 rflow->last_qtail)) >= 0)) {
3183 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3186 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3196 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3197 if (cpu_online(tcpu)) {
3207 #ifdef CONFIG_RFS_ACCEL
3210 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3211 * @dev: Device on which the filter was set
3212 * @rxq_index: RX queue index
3213 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3214 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3216 * Drivers that implement ndo_rx_flow_steer() should periodically call
3217 * this function for each installed filter and remove the filters for
3218 * which it returns %true.
3220 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3221 u32 flow_id, u16 filter_id)
3223 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3224 struct rps_dev_flow_table *flow_table;
3225 struct rps_dev_flow *rflow;
3230 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3231 if (flow_table && flow_id <= flow_table->mask) {
3232 rflow = &flow_table->flows[flow_id];
3233 cpu = ACCESS_ONCE(rflow->cpu);
3234 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3235 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3236 rflow->last_qtail) <
3237 (int)(10 * flow_table->mask)))
3243 EXPORT_SYMBOL(rps_may_expire_flow);
3245 #endif /* CONFIG_RFS_ACCEL */
3247 /* Called from hardirq (IPI) context */
3248 static void rps_trigger_softirq(void *data)
3250 struct softnet_data *sd = data;
3252 ____napi_schedule(sd, &sd->backlog);
3256 #endif /* CONFIG_RPS */
3259 * Check if this softnet_data structure is another cpu one
3260 * If yes, queue it to our IPI list and return 1
3263 static int rps_ipi_queued(struct softnet_data *sd)
3266 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3269 sd->rps_ipi_next = mysd->rps_ipi_list;
3270 mysd->rps_ipi_list = sd;
3272 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3275 #endif /* CONFIG_RPS */
3279 #ifdef CONFIG_NET_FLOW_LIMIT
3280 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3283 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3285 #ifdef CONFIG_NET_FLOW_LIMIT
3286 struct sd_flow_limit *fl;
3287 struct softnet_data *sd;
3288 unsigned int old_flow, new_flow;
3290 if (qlen < (netdev_max_backlog >> 1))
3293 sd = this_cpu_ptr(&softnet_data);
3296 fl = rcu_dereference(sd->flow_limit);
3298 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3299 old_flow = fl->history[fl->history_head];
3300 fl->history[fl->history_head] = new_flow;
3303 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3305 if (likely(fl->buckets[old_flow]))
3306 fl->buckets[old_flow]--;
3308 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3320 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3321 * queue (may be a remote CPU queue).
3323 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3324 unsigned int *qtail)
3326 struct softnet_data *sd;
3327 unsigned long flags;
3330 sd = &per_cpu(softnet_data, cpu);
3332 local_irq_save(flags);
3335 qlen = skb_queue_len(&sd->input_pkt_queue);
3336 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3339 __skb_queue_tail(&sd->input_pkt_queue, skb);
3340 input_queue_tail_incr_save(sd, qtail);
3342 local_irq_restore(flags);
3343 return NET_RX_SUCCESS;
3346 /* Schedule NAPI for backlog device
3347 * We can use non atomic operation since we own the queue lock
3349 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3350 if (!rps_ipi_queued(sd))
3351 ____napi_schedule(sd, &sd->backlog);
3359 local_irq_restore(flags);
3361 atomic_long_inc(&skb->dev->rx_dropped);
3366 static int netif_rx_internal(struct sk_buff *skb)
3370 net_timestamp_check(netdev_tstamp_prequeue, skb);
3372 trace_netif_rx(skb);
3374 if (static_key_false(&rps_needed)) {
3375 struct rps_dev_flow voidflow, *rflow = &voidflow;
3381 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3383 cpu = smp_processor_id();
3385 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3393 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3400 * netif_rx - post buffer to the network code
3401 * @skb: buffer to post
3403 * This function receives a packet from a device driver and queues it for
3404 * the upper (protocol) levels to process. It always succeeds. The buffer
3405 * may be dropped during processing for congestion control or by the
3409 * NET_RX_SUCCESS (no congestion)
3410 * NET_RX_DROP (packet was dropped)
3414 int netif_rx(struct sk_buff *skb)
3416 trace_netif_rx_entry(skb);
3418 return netif_rx_internal(skb);
3420 EXPORT_SYMBOL(netif_rx);
3422 int netif_rx_ni(struct sk_buff *skb)
3426 trace_netif_rx_ni_entry(skb);
3429 err = netif_rx_internal(skb);
3430 if (local_softirq_pending())
3436 EXPORT_SYMBOL(netif_rx_ni);
3438 static void net_tx_action(struct softirq_action *h)
3440 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3442 if (sd->completion_queue) {
3443 struct sk_buff *clist;
3445 local_irq_disable();
3446 clist = sd->completion_queue;
3447 sd->completion_queue = NULL;
3451 struct sk_buff *skb = clist;
3452 clist = clist->next;
3454 WARN_ON(atomic_read(&skb->users));
3455 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3456 trace_consume_skb(skb);
3458 trace_kfree_skb(skb, net_tx_action);
3463 if (sd->output_queue) {
3466 local_irq_disable();
3467 head = sd->output_queue;
3468 sd->output_queue = NULL;
3469 sd->output_queue_tailp = &sd->output_queue;
3473 struct Qdisc *q = head;
3474 spinlock_t *root_lock;
3476 head = head->next_sched;
3478 root_lock = qdisc_lock(q);
3479 if (spin_trylock(root_lock)) {
3480 smp_mb__before_atomic();
3481 clear_bit(__QDISC_STATE_SCHED,
3484 spin_unlock(root_lock);
3486 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3488 __netif_reschedule(q);
3490 smp_mb__before_atomic();
3491 clear_bit(__QDISC_STATE_SCHED,
3499 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3500 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3501 /* This hook is defined here for ATM LANE */
3502 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3503 unsigned char *addr) __read_mostly;
3504 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3507 #ifdef CONFIG_NET_CLS_ACT
3508 /* TODO: Maybe we should just force sch_ingress to be compiled in
3509 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3510 * a compare and 2 stores extra right now if we dont have it on
3511 * but have CONFIG_NET_CLS_ACT
3512 * NOTE: This doesn't stop any functionality; if you dont have
3513 * the ingress scheduler, you just can't add policies on ingress.
3516 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3518 struct net_device *dev = skb->dev;
3519 u32 ttl = G_TC_RTTL(skb->tc_verd);
3520 int result = TC_ACT_OK;
3523 if (unlikely(MAX_RED_LOOP < ttl++)) {
3524 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3525 skb->skb_iif, dev->ifindex);
3529 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3530 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3532 q = rcu_dereference(rxq->qdisc);
3533 if (q != &noop_qdisc) {
3534 spin_lock(qdisc_lock(q));
3535 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3536 result = qdisc_enqueue_root(skb, q);
3537 spin_unlock(qdisc_lock(q));
3543 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3544 struct packet_type **pt_prev,
3545 int *ret, struct net_device *orig_dev)
3547 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3549 if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
3553 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3557 switch (ing_filter(skb, rxq)) {
3571 * netdev_rx_handler_register - register receive handler
3572 * @dev: device to register a handler for
3573 * @rx_handler: receive handler to register
3574 * @rx_handler_data: data pointer that is used by rx handler
3576 * Register a receive handler for a device. This handler will then be
3577 * called from __netif_receive_skb. A negative errno code is returned
3580 * The caller must hold the rtnl_mutex.
3582 * For a general description of rx_handler, see enum rx_handler_result.
3584 int netdev_rx_handler_register(struct net_device *dev,
3585 rx_handler_func_t *rx_handler,
3586 void *rx_handler_data)
3590 if (dev->rx_handler)
3593 /* Note: rx_handler_data must be set before rx_handler */
3594 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3595 rcu_assign_pointer(dev->rx_handler, rx_handler);
3599 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3602 * netdev_rx_handler_unregister - unregister receive handler
3603 * @dev: device to unregister a handler from
3605 * Unregister a receive handler from a device.
3607 * The caller must hold the rtnl_mutex.
3609 void netdev_rx_handler_unregister(struct net_device *dev)
3613 RCU_INIT_POINTER(dev->rx_handler, NULL);
3614 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3615 * section has a guarantee to see a non NULL rx_handler_data
3619 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3621 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3624 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3625 * the special handling of PFMEMALLOC skbs.
3627 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3629 switch (skb->protocol) {
3630 case htons(ETH_P_ARP):
3631 case htons(ETH_P_IP):
3632 case htons(ETH_P_IPV6):
3633 case htons(ETH_P_8021Q):
3634 case htons(ETH_P_8021AD):
3641 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3643 struct packet_type *ptype, *pt_prev;
3644 rx_handler_func_t *rx_handler;
3645 struct net_device *orig_dev;
3646 bool deliver_exact = false;
3647 int ret = NET_RX_DROP;
3650 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3652 trace_netif_receive_skb(skb);
3654 orig_dev = skb->dev;
3656 skb_reset_network_header(skb);
3657 if (!skb_transport_header_was_set(skb))
3658 skb_reset_transport_header(skb);
3659 skb_reset_mac_len(skb);
3666 skb->skb_iif = skb->dev->ifindex;
3668 __this_cpu_inc(softnet_data.processed);
3670 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3671 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3672 skb = skb_vlan_untag(skb);
3677 #ifdef CONFIG_NET_CLS_ACT
3678 if (skb->tc_verd & TC_NCLS) {
3679 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3687 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3689 ret = deliver_skb(skb, pt_prev, orig_dev);
3693 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3695 ret = deliver_skb(skb, pt_prev, orig_dev);
3700 #ifdef CONFIG_NET_CLS_ACT
3701 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3707 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3710 if (skb_vlan_tag_present(skb)) {
3712 ret = deliver_skb(skb, pt_prev, orig_dev);
3715 if (vlan_do_receive(&skb))
3717 else if (unlikely(!skb))
3721 rx_handler = rcu_dereference(skb->dev->rx_handler);
3724 ret = deliver_skb(skb, pt_prev, orig_dev);
3727 switch (rx_handler(&skb)) {
3728 case RX_HANDLER_CONSUMED:
3729 ret = NET_RX_SUCCESS;
3731 case RX_HANDLER_ANOTHER:
3733 case RX_HANDLER_EXACT:
3734 deliver_exact = true;
3735 case RX_HANDLER_PASS:
3742 if (unlikely(skb_vlan_tag_present(skb))) {
3743 if (skb_vlan_tag_get_id(skb))
3744 skb->pkt_type = PACKET_OTHERHOST;
3745 /* Note: we might in the future use prio bits
3746 * and set skb->priority like in vlan_do_receive()
3747 * For the time being, just ignore Priority Code Point
3752 type = skb->protocol;
3754 /* deliver only exact match when indicated */
3755 if (likely(!deliver_exact)) {
3756 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3757 &ptype_base[ntohs(type) &
3761 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3762 &orig_dev->ptype_specific);
3764 if (unlikely(skb->dev != orig_dev)) {
3765 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3766 &skb->dev->ptype_specific);
3770 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3773 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3776 atomic_long_inc(&skb->dev->rx_dropped);
3778 /* Jamal, now you will not able to escape explaining
3779 * me how you were going to use this. :-)
3789 static int __netif_receive_skb(struct sk_buff *skb)
3793 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3794 unsigned long pflags = current->flags;
3797 * PFMEMALLOC skbs are special, they should
3798 * - be delivered to SOCK_MEMALLOC sockets only
3799 * - stay away from userspace
3800 * - have bounded memory usage
3802 * Use PF_MEMALLOC as this saves us from propagating the allocation
3803 * context down to all allocation sites.
3805 current->flags |= PF_MEMALLOC;
3806 ret = __netif_receive_skb_core(skb, true);
3807 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3809 ret = __netif_receive_skb_core(skb, false);
3814 static int netif_receive_skb_internal(struct sk_buff *skb)
3816 net_timestamp_check(netdev_tstamp_prequeue, skb);
3818 if (skb_defer_rx_timestamp(skb))
3819 return NET_RX_SUCCESS;
3822 if (static_key_false(&rps_needed)) {
3823 struct rps_dev_flow voidflow, *rflow = &voidflow;
3828 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3831 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3838 return __netif_receive_skb(skb);
3842 * netif_receive_skb - process receive buffer from network
3843 * @skb: buffer to process
3845 * netif_receive_skb() is the main receive data processing function.
3846 * It always succeeds. The buffer may be dropped during processing
3847 * for congestion control or by the protocol layers.
3849 * This function may only be called from softirq context and interrupts
3850 * should be enabled.
3852 * Return values (usually ignored):
3853 * NET_RX_SUCCESS: no congestion
3854 * NET_RX_DROP: packet was dropped
3856 int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb)
3858 trace_netif_receive_skb_entry(skb);
3860 return netif_receive_skb_internal(skb);
3862 EXPORT_SYMBOL(netif_receive_skb_sk);
3864 /* Network device is going away, flush any packets still pending
3865 * Called with irqs disabled.
3867 static void flush_backlog(void *arg)
3869 struct net_device *dev = arg;
3870 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3871 struct sk_buff *skb, *tmp;
3874 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3875 if (skb->dev == dev) {
3876 __skb_unlink(skb, &sd->input_pkt_queue);
3878 input_queue_head_incr(sd);
3883 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3884 if (skb->dev == dev) {
3885 __skb_unlink(skb, &sd->process_queue);
3887 input_queue_head_incr(sd);
3892 static int napi_gro_complete(struct sk_buff *skb)
3894 struct packet_offload *ptype;
3895 __be16 type = skb->protocol;
3896 struct list_head *head = &offload_base;
3899 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3901 if (NAPI_GRO_CB(skb)->count == 1) {
3902 skb_shinfo(skb)->gso_size = 0;
3907 list_for_each_entry_rcu(ptype, head, list) {
3908 if (ptype->type != type || !ptype->callbacks.gro_complete)
3911 err = ptype->callbacks.gro_complete(skb, 0);
3917 WARN_ON(&ptype->list == head);
3919 return NET_RX_SUCCESS;
3923 return netif_receive_skb_internal(skb);
3926 /* napi->gro_list contains packets ordered by age.
3927 * youngest packets at the head of it.
3928 * Complete skbs in reverse order to reduce latencies.
3930 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3932 struct sk_buff *skb, *prev = NULL;
3934 /* scan list and build reverse chain */
3935 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3940 for (skb = prev; skb; skb = prev) {
3943 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3947 napi_gro_complete(skb);
3951 napi->gro_list = NULL;
3953 EXPORT_SYMBOL(napi_gro_flush);
3955 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3958 unsigned int maclen = skb->dev->hard_header_len;
3959 u32 hash = skb_get_hash_raw(skb);
3961 for (p = napi->gro_list; p; p = p->next) {
3962 unsigned long diffs;
3964 NAPI_GRO_CB(p)->flush = 0;
3966 if (hash != skb_get_hash_raw(p)) {
3967 NAPI_GRO_CB(p)->same_flow = 0;
3971 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3972 diffs |= p->vlan_tci ^ skb->vlan_tci;
3973 if (maclen == ETH_HLEN)
3974 diffs |= compare_ether_header(skb_mac_header(p),
3975 skb_mac_header(skb));
3977 diffs = memcmp(skb_mac_header(p),
3978 skb_mac_header(skb),
3980 NAPI_GRO_CB(p)->same_flow = !diffs;
3984 static void skb_gro_reset_offset(struct sk_buff *skb)
3986 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3987 const skb_frag_t *frag0 = &pinfo->frags[0];
3989 NAPI_GRO_CB(skb)->data_offset = 0;
3990 NAPI_GRO_CB(skb)->frag0 = NULL;
3991 NAPI_GRO_CB(skb)->frag0_len = 0;
3993 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3995 !PageHighMem(skb_frag_page(frag0))) {
3996 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3997 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4001 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4003 struct skb_shared_info *pinfo = skb_shinfo(skb);
4005 BUG_ON(skb->end - skb->tail < grow);
4007 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4009 skb->data_len -= grow;
4012 pinfo->frags[0].page_offset += grow;
4013 skb_frag_size_sub(&pinfo->frags[0], grow);
4015 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4016 skb_frag_unref(skb, 0);
4017 memmove(pinfo->frags, pinfo->frags + 1,
4018 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4022 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4024 struct sk_buff **pp = NULL;
4025 struct packet_offload *ptype;
4026 __be16 type = skb->protocol;
4027 struct list_head *head = &offload_base;
4029 enum gro_result ret;
4032 if (!(skb->dev->features & NETIF_F_GRO))
4035 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4038 gro_list_prepare(napi, skb);
4041 list_for_each_entry_rcu(ptype, head, list) {
4042 if (ptype->type != type || !ptype->callbacks.gro_receive)
4045 skb_set_network_header(skb, skb_gro_offset(skb));
4046 skb_reset_mac_len(skb);
4047 NAPI_GRO_CB(skb)->same_flow = 0;
4048 NAPI_GRO_CB(skb)->flush = 0;
4049 NAPI_GRO_CB(skb)->free = 0;
4050 NAPI_GRO_CB(skb)->udp_mark = 0;
4051 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4053 /* Setup for GRO checksum validation */
4054 switch (skb->ip_summed) {
4055 case CHECKSUM_COMPLETE:
4056 NAPI_GRO_CB(skb)->csum = skb->csum;
4057 NAPI_GRO_CB(skb)->csum_valid = 1;
4058 NAPI_GRO_CB(skb)->csum_cnt = 0;
4060 case CHECKSUM_UNNECESSARY:
4061 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4062 NAPI_GRO_CB(skb)->csum_valid = 0;
4065 NAPI_GRO_CB(skb)->csum_cnt = 0;
4066 NAPI_GRO_CB(skb)->csum_valid = 0;
4069 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4074 if (&ptype->list == head)
4077 same_flow = NAPI_GRO_CB(skb)->same_flow;
4078 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4081 struct sk_buff *nskb = *pp;
4085 napi_gro_complete(nskb);
4092 if (NAPI_GRO_CB(skb)->flush)
4095 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4096 struct sk_buff *nskb = napi->gro_list;
4098 /* locate the end of the list to select the 'oldest' flow */
4099 while (nskb->next) {
4105 napi_gro_complete(nskb);
4109 NAPI_GRO_CB(skb)->count = 1;
4110 NAPI_GRO_CB(skb)->age = jiffies;
4111 NAPI_GRO_CB(skb)->last = skb;
4112 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4113 skb->next = napi->gro_list;
4114 napi->gro_list = skb;
4118 grow = skb_gro_offset(skb) - skb_headlen(skb);
4120 gro_pull_from_frag0(skb, grow);
4129 struct packet_offload *gro_find_receive_by_type(__be16 type)
4131 struct list_head *offload_head = &offload_base;
4132 struct packet_offload *ptype;
4134 list_for_each_entry_rcu(ptype, offload_head, list) {
4135 if (ptype->type != type || !ptype->callbacks.gro_receive)
4141 EXPORT_SYMBOL(gro_find_receive_by_type);
4143 struct packet_offload *gro_find_complete_by_type(__be16 type)
4145 struct list_head *offload_head = &offload_base;
4146 struct packet_offload *ptype;
4148 list_for_each_entry_rcu(ptype, offload_head, list) {
4149 if (ptype->type != type || !ptype->callbacks.gro_complete)
4155 EXPORT_SYMBOL(gro_find_complete_by_type);
4157 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4161 if (netif_receive_skb_internal(skb))
4169 case GRO_MERGED_FREE:
4170 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4171 kmem_cache_free(skbuff_head_cache, skb);
4184 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4186 trace_napi_gro_receive_entry(skb);
4188 skb_gro_reset_offset(skb);
4190 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4192 EXPORT_SYMBOL(napi_gro_receive);
4194 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4196 if (unlikely(skb->pfmemalloc)) {
4200 __skb_pull(skb, skb_headlen(skb));
4201 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4202 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4204 skb->dev = napi->dev;
4206 skb->encapsulation = 0;
4207 skb_shinfo(skb)->gso_type = 0;
4208 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4213 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4215 struct sk_buff *skb = napi->skb;
4218 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4223 EXPORT_SYMBOL(napi_get_frags);
4225 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4226 struct sk_buff *skb,
4232 __skb_push(skb, ETH_HLEN);
4233 skb->protocol = eth_type_trans(skb, skb->dev);
4234 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4239 case GRO_MERGED_FREE:
4240 napi_reuse_skb(napi, skb);
4250 /* Upper GRO stack assumes network header starts at gro_offset=0
4251 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4252 * We copy ethernet header into skb->data to have a common layout.
4254 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4256 struct sk_buff *skb = napi->skb;
4257 const struct ethhdr *eth;
4258 unsigned int hlen = sizeof(*eth);
4262 skb_reset_mac_header(skb);
4263 skb_gro_reset_offset(skb);
4265 eth = skb_gro_header_fast(skb, 0);
4266 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4267 eth = skb_gro_header_slow(skb, hlen, 0);
4268 if (unlikely(!eth)) {
4269 napi_reuse_skb(napi, skb);
4273 gro_pull_from_frag0(skb, hlen);
4274 NAPI_GRO_CB(skb)->frag0 += hlen;
4275 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4277 __skb_pull(skb, hlen);
4280 * This works because the only protocols we care about don't require
4282 * We'll fix it up properly in napi_frags_finish()
4284 skb->protocol = eth->h_proto;
4289 gro_result_t napi_gro_frags(struct napi_struct *napi)
4291 struct sk_buff *skb = napi_frags_skb(napi);
4296 trace_napi_gro_frags_entry(skb);
4298 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4300 EXPORT_SYMBOL(napi_gro_frags);
4302 /* Compute the checksum from gro_offset and return the folded value
4303 * after adding in any pseudo checksum.
4305 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4310 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4312 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4313 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4315 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4316 !skb->csum_complete_sw)
4317 netdev_rx_csum_fault(skb->dev);
4320 NAPI_GRO_CB(skb)->csum = wsum;
4321 NAPI_GRO_CB(skb)->csum_valid = 1;
4325 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4328 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4329 * Note: called with local irq disabled, but exits with local irq enabled.
4331 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4334 struct softnet_data *remsd = sd->rps_ipi_list;
4337 sd->rps_ipi_list = NULL;
4341 /* Send pending IPI's to kick RPS processing on remote cpus. */
4343 struct softnet_data *next = remsd->rps_ipi_next;
4345 if (cpu_online(remsd->cpu))
4346 smp_call_function_single_async(remsd->cpu,
4355 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4358 return sd->rps_ipi_list != NULL;
4364 static int process_backlog(struct napi_struct *napi, int quota)
4367 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4369 /* Check if we have pending ipi, its better to send them now,
4370 * not waiting net_rx_action() end.
4372 if (sd_has_rps_ipi_waiting(sd)) {
4373 local_irq_disable();
4374 net_rps_action_and_irq_enable(sd);
4377 napi->weight = weight_p;
4378 local_irq_disable();
4380 struct sk_buff *skb;
4382 while ((skb = __skb_dequeue(&sd->process_queue))) {
4384 __netif_receive_skb(skb);
4385 local_irq_disable();
4386 input_queue_head_incr(sd);
4387 if (++work >= quota) {
4394 if (skb_queue_empty(&sd->input_pkt_queue)) {
4396 * Inline a custom version of __napi_complete().
4397 * only current cpu owns and manipulates this napi,
4398 * and NAPI_STATE_SCHED is the only possible flag set
4400 * We can use a plain write instead of clear_bit(),
4401 * and we dont need an smp_mb() memory barrier.
4409 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4410 &sd->process_queue);
4419 * __napi_schedule - schedule for receive
4420 * @n: entry to schedule
4422 * The entry's receive function will be scheduled to run.
4423 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4425 void __napi_schedule(struct napi_struct *n)
4427 unsigned long flags;
4429 local_irq_save(flags);
4430 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4431 local_irq_restore(flags);
4433 EXPORT_SYMBOL(__napi_schedule);
4436 * __napi_schedule_irqoff - schedule for receive
4437 * @n: entry to schedule
4439 * Variant of __napi_schedule() assuming hard irqs are masked
4441 void __napi_schedule_irqoff(struct napi_struct *n)
4443 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4445 EXPORT_SYMBOL(__napi_schedule_irqoff);
4447 void __napi_complete(struct napi_struct *n)
4449 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4451 list_del_init(&n->poll_list);
4452 smp_mb__before_atomic();
4453 clear_bit(NAPI_STATE_SCHED, &n->state);
4455 EXPORT_SYMBOL(__napi_complete);
4457 void napi_complete_done(struct napi_struct *n, int work_done)
4459 unsigned long flags;
4462 * don't let napi dequeue from the cpu poll list
4463 * just in case its running on a different cpu
4465 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4469 unsigned long timeout = 0;
4472 timeout = n->dev->gro_flush_timeout;
4475 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4476 HRTIMER_MODE_REL_PINNED);
4478 napi_gro_flush(n, false);
4480 if (likely(list_empty(&n->poll_list))) {
4481 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4483 /* If n->poll_list is not empty, we need to mask irqs */
4484 local_irq_save(flags);
4486 local_irq_restore(flags);
4489 EXPORT_SYMBOL(napi_complete_done);
4491 /* must be called under rcu_read_lock(), as we dont take a reference */
4492 struct napi_struct *napi_by_id(unsigned int napi_id)
4494 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4495 struct napi_struct *napi;
4497 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4498 if (napi->napi_id == napi_id)
4503 EXPORT_SYMBOL_GPL(napi_by_id);
4505 void napi_hash_add(struct napi_struct *napi)
4507 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4509 spin_lock(&napi_hash_lock);
4511 /* 0 is not a valid id, we also skip an id that is taken
4512 * we expect both events to be extremely rare
4515 while (!napi->napi_id) {
4516 napi->napi_id = ++napi_gen_id;
4517 if (napi_by_id(napi->napi_id))
4521 hlist_add_head_rcu(&napi->napi_hash_node,
4522 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4524 spin_unlock(&napi_hash_lock);
4527 EXPORT_SYMBOL_GPL(napi_hash_add);
4529 /* Warning : caller is responsible to make sure rcu grace period
4530 * is respected before freeing memory containing @napi
4532 void napi_hash_del(struct napi_struct *napi)
4534 spin_lock(&napi_hash_lock);
4536 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4537 hlist_del_rcu(&napi->napi_hash_node);
4539 spin_unlock(&napi_hash_lock);
4541 EXPORT_SYMBOL_GPL(napi_hash_del);
4543 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4545 struct napi_struct *napi;
4547 napi = container_of(timer, struct napi_struct, timer);
4549 napi_schedule(napi);
4551 return HRTIMER_NORESTART;
4554 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4555 int (*poll)(struct napi_struct *, int), int weight)
4557 INIT_LIST_HEAD(&napi->poll_list);
4558 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4559 napi->timer.function = napi_watchdog;
4560 napi->gro_count = 0;
4561 napi->gro_list = NULL;
4564 if (weight > NAPI_POLL_WEIGHT)
4565 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4567 napi->weight = weight;
4568 list_add(&napi->dev_list, &dev->napi_list);
4570 #ifdef CONFIG_NETPOLL
4571 spin_lock_init(&napi->poll_lock);
4572 napi->poll_owner = -1;
4574 set_bit(NAPI_STATE_SCHED, &napi->state);
4576 EXPORT_SYMBOL(netif_napi_add);
4578 void napi_disable(struct napi_struct *n)
4581 set_bit(NAPI_STATE_DISABLE, &n->state);
4583 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4586 hrtimer_cancel(&n->timer);
4588 clear_bit(NAPI_STATE_DISABLE, &n->state);
4590 EXPORT_SYMBOL(napi_disable);
4592 void netif_napi_del(struct napi_struct *napi)
4594 list_del_init(&napi->dev_list);
4595 napi_free_frags(napi);
4597 kfree_skb_list(napi->gro_list);
4598 napi->gro_list = NULL;
4599 napi->gro_count = 0;
4601 EXPORT_SYMBOL(netif_napi_del);
4603 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4608 list_del_init(&n->poll_list);
4610 have = netpoll_poll_lock(n);
4614 /* This NAPI_STATE_SCHED test is for avoiding a race
4615 * with netpoll's poll_napi(). Only the entity which
4616 * obtains the lock and sees NAPI_STATE_SCHED set will
4617 * actually make the ->poll() call. Therefore we avoid
4618 * accidentally calling ->poll() when NAPI is not scheduled.
4621 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4622 work = n->poll(n, weight);
4626 WARN_ON_ONCE(work > weight);
4628 if (likely(work < weight))
4631 /* Drivers must not modify the NAPI state if they
4632 * consume the entire weight. In such cases this code
4633 * still "owns" the NAPI instance and therefore can
4634 * move the instance around on the list at-will.
4636 if (unlikely(napi_disable_pending(n))) {
4642 /* flush too old packets
4643 * If HZ < 1000, flush all packets.
4645 napi_gro_flush(n, HZ >= 1000);
4648 /* Some drivers may have called napi_schedule
4649 * prior to exhausting their budget.
4651 if (unlikely(!list_empty(&n->poll_list))) {
4652 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4653 n->dev ? n->dev->name : "backlog");
4657 list_add_tail(&n->poll_list, repoll);
4660 netpoll_poll_unlock(have);
4665 static void net_rx_action(struct softirq_action *h)
4667 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4668 unsigned long time_limit = jiffies + 2;
4669 int budget = netdev_budget;
4673 local_irq_disable();
4674 list_splice_init(&sd->poll_list, &list);
4678 struct napi_struct *n;
4680 if (list_empty(&list)) {
4681 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4686 n = list_first_entry(&list, struct napi_struct, poll_list);
4687 budget -= napi_poll(n, &repoll);
4689 /* If softirq window is exhausted then punt.
4690 * Allow this to run for 2 jiffies since which will allow
4691 * an average latency of 1.5/HZ.
4693 if (unlikely(budget <= 0 ||
4694 time_after_eq(jiffies, time_limit))) {
4700 local_irq_disable();
4702 list_splice_tail_init(&sd->poll_list, &list);
4703 list_splice_tail(&repoll, &list);
4704 list_splice(&list, &sd->poll_list);
4705 if (!list_empty(&sd->poll_list))
4706 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4708 net_rps_action_and_irq_enable(sd);
4711 struct netdev_adjacent {
4712 struct net_device *dev;
4714 /* upper master flag, there can only be one master device per list */
4717 /* counter for the number of times this device was added to us */
4720 /* private field for the users */
4723 struct list_head list;
4724 struct rcu_head rcu;
4727 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4728 struct net_device *adj_dev,
4729 struct list_head *adj_list)
4731 struct netdev_adjacent *adj;
4733 list_for_each_entry(adj, adj_list, list) {
4734 if (adj->dev == adj_dev)
4741 * netdev_has_upper_dev - Check if device is linked to an upper device
4743 * @upper_dev: upper device to check
4745 * Find out if a device is linked to specified upper device and return true
4746 * in case it is. Note that this checks only immediate upper device,
4747 * not through a complete stack of devices. The caller must hold the RTNL lock.
4749 bool netdev_has_upper_dev(struct net_device *dev,
4750 struct net_device *upper_dev)
4754 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4756 EXPORT_SYMBOL(netdev_has_upper_dev);
4759 * netdev_has_any_upper_dev - Check if device is linked to some device
4762 * Find out if a device is linked to an upper device and return true in case
4763 * it is. The caller must hold the RTNL lock.
4765 static bool netdev_has_any_upper_dev(struct net_device *dev)
4769 return !list_empty(&dev->all_adj_list.upper);
4773 * netdev_master_upper_dev_get - Get master upper device
4776 * Find a master upper device and return pointer to it or NULL in case
4777 * it's not there. The caller must hold the RTNL lock.
4779 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4781 struct netdev_adjacent *upper;
4785 if (list_empty(&dev->adj_list.upper))
4788 upper = list_first_entry(&dev->adj_list.upper,
4789 struct netdev_adjacent, list);
4790 if (likely(upper->master))
4794 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4796 void *netdev_adjacent_get_private(struct list_head *adj_list)
4798 struct netdev_adjacent *adj;
4800 adj = list_entry(adj_list, struct netdev_adjacent, list);
4802 return adj->private;
4804 EXPORT_SYMBOL(netdev_adjacent_get_private);
4807 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4809 * @iter: list_head ** of the current position
4811 * Gets the next device from the dev's upper list, starting from iter
4812 * position. The caller must hold RCU read lock.
4814 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4815 struct list_head **iter)
4817 struct netdev_adjacent *upper;
4819 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4821 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4823 if (&upper->list == &dev->adj_list.upper)
4826 *iter = &upper->list;
4830 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4833 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4835 * @iter: list_head ** of the current position
4837 * Gets the next device from the dev's upper list, starting from iter
4838 * position. The caller must hold RCU read lock.
4840 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4841 struct list_head **iter)
4843 struct netdev_adjacent *upper;
4845 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4847 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4849 if (&upper->list == &dev->all_adj_list.upper)
4852 *iter = &upper->list;
4856 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4859 * netdev_lower_get_next_private - Get the next ->private from the
4860 * lower neighbour list
4862 * @iter: list_head ** of the current position
4864 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4865 * list, starting from iter position. The caller must hold either hold the
4866 * RTNL lock or its own locking that guarantees that the neighbour lower
4867 * list will remain unchainged.
4869 void *netdev_lower_get_next_private(struct net_device *dev,
4870 struct list_head **iter)
4872 struct netdev_adjacent *lower;
4874 lower = list_entry(*iter, struct netdev_adjacent, list);
4876 if (&lower->list == &dev->adj_list.lower)
4879 *iter = lower->list.next;
4881 return lower->private;
4883 EXPORT_SYMBOL(netdev_lower_get_next_private);
4886 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4887 * lower neighbour list, RCU
4890 * @iter: list_head ** of the current position
4892 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4893 * list, starting from iter position. The caller must hold RCU read lock.
4895 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4896 struct list_head **iter)
4898 struct netdev_adjacent *lower;
4900 WARN_ON_ONCE(!rcu_read_lock_held());
4902 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4904 if (&lower->list == &dev->adj_list.lower)
4907 *iter = &lower->list;
4909 return lower->private;
4911 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4914 * netdev_lower_get_next - Get the next device from the lower neighbour
4917 * @iter: list_head ** of the current position
4919 * Gets the next netdev_adjacent from the dev's lower neighbour
4920 * list, starting from iter position. The caller must hold RTNL lock or
4921 * its own locking that guarantees that the neighbour lower
4922 * list will remain unchainged.
4924 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4926 struct netdev_adjacent *lower;
4928 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4930 if (&lower->list == &dev->adj_list.lower)
4933 *iter = &lower->list;
4937 EXPORT_SYMBOL(netdev_lower_get_next);
4940 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4941 * lower neighbour list, RCU
4945 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4946 * list. The caller must hold RCU read lock.
4948 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4950 struct netdev_adjacent *lower;
4952 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4953 struct netdev_adjacent, list);
4955 return lower->private;
4958 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4961 * netdev_master_upper_dev_get_rcu - Get master upper device
4964 * Find a master upper device and return pointer to it or NULL in case
4965 * it's not there. The caller must hold the RCU read lock.
4967 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4969 struct netdev_adjacent *upper;
4971 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4972 struct netdev_adjacent, list);
4973 if (upper && likely(upper->master))
4977 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4979 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4980 struct net_device *adj_dev,
4981 struct list_head *dev_list)
4983 char linkname[IFNAMSIZ+7];
4984 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4985 "upper_%s" : "lower_%s", adj_dev->name);
4986 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4989 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4991 struct list_head *dev_list)
4993 char linkname[IFNAMSIZ+7];
4994 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4995 "upper_%s" : "lower_%s", name);
4996 sysfs_remove_link(&(dev->dev.kobj), linkname);
4999 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5000 struct net_device *adj_dev,
5001 struct list_head *dev_list)
5003 return (dev_list == &dev->adj_list.upper ||
5004 dev_list == &dev->adj_list.lower) &&
5005 net_eq(dev_net(dev), dev_net(adj_dev));
5008 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5009 struct net_device *adj_dev,
5010 struct list_head *dev_list,
5011 void *private, bool master)
5013 struct netdev_adjacent *adj;
5016 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5023 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5028 adj->master = master;
5030 adj->private = private;
5033 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5034 adj_dev->name, dev->name, adj_dev->name);
5036 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5037 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5042 /* Ensure that master link is always the first item in list. */
5044 ret = sysfs_create_link(&(dev->dev.kobj),
5045 &(adj_dev->dev.kobj), "master");
5047 goto remove_symlinks;
5049 list_add_rcu(&adj->list, dev_list);
5051 list_add_tail_rcu(&adj->list, dev_list);
5057 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5058 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5066 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5067 struct net_device *adj_dev,
5068 struct list_head *dev_list)
5070 struct netdev_adjacent *adj;
5072 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5075 pr_err("tried to remove device %s from %s\n",
5076 dev->name, adj_dev->name);
5080 if (adj->ref_nr > 1) {
5081 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5088 sysfs_remove_link(&(dev->dev.kobj), "master");
5090 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5091 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5093 list_del_rcu(&adj->list);
5094 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5095 adj_dev->name, dev->name, adj_dev->name);
5097 kfree_rcu(adj, rcu);
5100 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5101 struct net_device *upper_dev,
5102 struct list_head *up_list,
5103 struct list_head *down_list,
5104 void *private, bool master)
5108 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5113 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5116 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5123 static int __netdev_adjacent_dev_link(struct net_device *dev,
5124 struct net_device *upper_dev)
5126 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5127 &dev->all_adj_list.upper,
5128 &upper_dev->all_adj_list.lower,
5132 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5133 struct net_device *upper_dev,
5134 struct list_head *up_list,
5135 struct list_head *down_list)
5137 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5138 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5141 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5142 struct net_device *upper_dev)
5144 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5145 &dev->all_adj_list.upper,
5146 &upper_dev->all_adj_list.lower);
5149 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5150 struct net_device *upper_dev,
5151 void *private, bool master)
5153 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5158 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5159 &dev->adj_list.upper,
5160 &upper_dev->adj_list.lower,
5163 __netdev_adjacent_dev_unlink(dev, upper_dev);
5170 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5171 struct net_device *upper_dev)
5173 __netdev_adjacent_dev_unlink(dev, upper_dev);
5174 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5175 &dev->adj_list.upper,
5176 &upper_dev->adj_list.lower);
5179 static int __netdev_upper_dev_link(struct net_device *dev,
5180 struct net_device *upper_dev, bool master,
5183 struct netdev_adjacent *i, *j, *to_i, *to_j;
5188 if (dev == upper_dev)
5191 /* To prevent loops, check if dev is not upper device to upper_dev. */
5192 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5195 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
5198 if (master && netdev_master_upper_dev_get(dev))
5201 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5206 /* Now that we linked these devs, make all the upper_dev's
5207 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5208 * versa, and don't forget the devices itself. All of these
5209 * links are non-neighbours.
5211 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5212 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5213 pr_debug("Interlinking %s with %s, non-neighbour\n",
5214 i->dev->name, j->dev->name);
5215 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5221 /* add dev to every upper_dev's upper device */
5222 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5223 pr_debug("linking %s's upper device %s with %s\n",
5224 upper_dev->name, i->dev->name, dev->name);
5225 ret = __netdev_adjacent_dev_link(dev, i->dev);
5227 goto rollback_upper_mesh;
5230 /* add upper_dev to every dev's lower device */
5231 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5232 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5233 i->dev->name, upper_dev->name);
5234 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5236 goto rollback_lower_mesh;
5239 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5242 rollback_lower_mesh:
5244 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5247 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5252 rollback_upper_mesh:
5254 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5257 __netdev_adjacent_dev_unlink(dev, i->dev);
5265 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5266 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5267 if (i == to_i && j == to_j)
5269 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5275 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5281 * netdev_upper_dev_link - Add a link to the upper device
5283 * @upper_dev: new upper device
5285 * Adds a link to device which is upper to this one. The caller must hold
5286 * the RTNL lock. On a failure a negative errno code is returned.
5287 * On success the reference counts are adjusted and the function
5290 int netdev_upper_dev_link(struct net_device *dev,
5291 struct net_device *upper_dev)
5293 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5295 EXPORT_SYMBOL(netdev_upper_dev_link);
5298 * netdev_master_upper_dev_link - Add a master link to the upper device
5300 * @upper_dev: new upper device
5302 * Adds a link to device which is upper to this one. In this case, only
5303 * one master upper device can be linked, although other non-master devices
5304 * might be linked as well. The caller must hold the RTNL lock.
5305 * On a failure a negative errno code is returned. On success the reference
5306 * counts are adjusted and the function returns zero.
5308 int netdev_master_upper_dev_link(struct net_device *dev,
5309 struct net_device *upper_dev)
5311 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5313 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5315 int netdev_master_upper_dev_link_private(struct net_device *dev,
5316 struct net_device *upper_dev,
5319 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5321 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5324 * netdev_upper_dev_unlink - Removes a link to upper device
5326 * @upper_dev: new upper device
5328 * Removes a link to device which is upper to this one. The caller must hold
5331 void netdev_upper_dev_unlink(struct net_device *dev,
5332 struct net_device *upper_dev)
5334 struct netdev_adjacent *i, *j;
5337 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5339 /* Here is the tricky part. We must remove all dev's lower
5340 * devices from all upper_dev's upper devices and vice
5341 * versa, to maintain the graph relationship.
5343 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5344 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5345 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5347 /* remove also the devices itself from lower/upper device
5350 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5351 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5353 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5354 __netdev_adjacent_dev_unlink(dev, i->dev);
5356 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5358 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5361 * netdev_bonding_info_change - Dispatch event about slave change
5363 * @bonding_info: info to dispatch
5365 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5366 * The caller must hold the RTNL lock.
5368 void netdev_bonding_info_change(struct net_device *dev,
5369 struct netdev_bonding_info *bonding_info)
5371 struct netdev_notifier_bonding_info info;
5373 memcpy(&info.bonding_info, bonding_info,
5374 sizeof(struct netdev_bonding_info));
5375 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5378 EXPORT_SYMBOL(netdev_bonding_info_change);
5380 static void netdev_adjacent_add_links(struct net_device *dev)
5382 struct netdev_adjacent *iter;
5384 struct net *net = dev_net(dev);
5386 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5387 if (!net_eq(net,dev_net(iter->dev)))
5389 netdev_adjacent_sysfs_add(iter->dev, dev,
5390 &iter->dev->adj_list.lower);
5391 netdev_adjacent_sysfs_add(dev, iter->dev,
5392 &dev->adj_list.upper);
5395 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5396 if (!net_eq(net,dev_net(iter->dev)))
5398 netdev_adjacent_sysfs_add(iter->dev, dev,
5399 &iter->dev->adj_list.upper);
5400 netdev_adjacent_sysfs_add(dev, iter->dev,
5401 &dev->adj_list.lower);
5405 static void netdev_adjacent_del_links(struct net_device *dev)
5407 struct netdev_adjacent *iter;
5409 struct net *net = dev_net(dev);
5411 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5412 if (!net_eq(net,dev_net(iter->dev)))
5414 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5415 &iter->dev->adj_list.lower);
5416 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5417 &dev->adj_list.upper);
5420 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5421 if (!net_eq(net,dev_net(iter->dev)))
5423 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5424 &iter->dev->adj_list.upper);
5425 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5426 &dev->adj_list.lower);
5430 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5432 struct netdev_adjacent *iter;
5434 struct net *net = dev_net(dev);
5436 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5437 if (!net_eq(net,dev_net(iter->dev)))
5439 netdev_adjacent_sysfs_del(iter->dev, oldname,
5440 &iter->dev->adj_list.lower);
5441 netdev_adjacent_sysfs_add(iter->dev, dev,
5442 &iter->dev->adj_list.lower);
5445 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5446 if (!net_eq(net,dev_net(iter->dev)))
5448 netdev_adjacent_sysfs_del(iter->dev, oldname,
5449 &iter->dev->adj_list.upper);
5450 netdev_adjacent_sysfs_add(iter->dev, dev,
5451 &iter->dev->adj_list.upper);
5455 void *netdev_lower_dev_get_private(struct net_device *dev,
5456 struct net_device *lower_dev)
5458 struct netdev_adjacent *lower;
5462 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5466 return lower->private;
5468 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5471 int dev_get_nest_level(struct net_device *dev,
5472 bool (*type_check)(struct net_device *dev))
5474 struct net_device *lower = NULL;
5475 struct list_head *iter;
5481 netdev_for_each_lower_dev(dev, lower, iter) {
5482 nest = dev_get_nest_level(lower, type_check);
5483 if (max_nest < nest)
5487 if (type_check(dev))
5492 EXPORT_SYMBOL(dev_get_nest_level);
5494 static void dev_change_rx_flags(struct net_device *dev, int flags)
5496 const struct net_device_ops *ops = dev->netdev_ops;
5498 if (ops->ndo_change_rx_flags)
5499 ops->ndo_change_rx_flags(dev, flags);
5502 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5504 unsigned int old_flags = dev->flags;
5510 dev->flags |= IFF_PROMISC;
5511 dev->promiscuity += inc;
5512 if (dev->promiscuity == 0) {
5515 * If inc causes overflow, untouch promisc and return error.
5518 dev->flags &= ~IFF_PROMISC;
5520 dev->promiscuity -= inc;
5521 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5526 if (dev->flags != old_flags) {
5527 pr_info("device %s %s promiscuous mode\n",
5529 dev->flags & IFF_PROMISC ? "entered" : "left");
5530 if (audit_enabled) {
5531 current_uid_gid(&uid, &gid);
5532 audit_log(current->audit_context, GFP_ATOMIC,
5533 AUDIT_ANOM_PROMISCUOUS,
5534 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5535 dev->name, (dev->flags & IFF_PROMISC),
5536 (old_flags & IFF_PROMISC),
5537 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5538 from_kuid(&init_user_ns, uid),
5539 from_kgid(&init_user_ns, gid),
5540 audit_get_sessionid(current));
5543 dev_change_rx_flags(dev, IFF_PROMISC);
5546 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5551 * dev_set_promiscuity - update promiscuity count on a device
5555 * Add or remove promiscuity from a device. While the count in the device
5556 * remains above zero the interface remains promiscuous. Once it hits zero
5557 * the device reverts back to normal filtering operation. A negative inc
5558 * value is used to drop promiscuity on the device.
5559 * Return 0 if successful or a negative errno code on error.
5561 int dev_set_promiscuity(struct net_device *dev, int inc)
5563 unsigned int old_flags = dev->flags;
5566 err = __dev_set_promiscuity(dev, inc, true);
5569 if (dev->flags != old_flags)
5570 dev_set_rx_mode(dev);
5573 EXPORT_SYMBOL(dev_set_promiscuity);
5575 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5577 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5581 dev->flags |= IFF_ALLMULTI;
5582 dev->allmulti += inc;
5583 if (dev->allmulti == 0) {
5586 * If inc causes overflow, untouch allmulti and return error.
5589 dev->flags &= ~IFF_ALLMULTI;
5591 dev->allmulti -= inc;
5592 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5597 if (dev->flags ^ old_flags) {
5598 dev_change_rx_flags(dev, IFF_ALLMULTI);
5599 dev_set_rx_mode(dev);
5601 __dev_notify_flags(dev, old_flags,
5602 dev->gflags ^ old_gflags);
5608 * dev_set_allmulti - update allmulti count on a device
5612 * Add or remove reception of all multicast frames to a device. While the
5613 * count in the device remains above zero the interface remains listening
5614 * to all interfaces. Once it hits zero the device reverts back to normal
5615 * filtering operation. A negative @inc value is used to drop the counter
5616 * when releasing a resource needing all multicasts.
5617 * Return 0 if successful or a negative errno code on error.
5620 int dev_set_allmulti(struct net_device *dev, int inc)
5622 return __dev_set_allmulti(dev, inc, true);
5624 EXPORT_SYMBOL(dev_set_allmulti);
5627 * Upload unicast and multicast address lists to device and
5628 * configure RX filtering. When the device doesn't support unicast
5629 * filtering it is put in promiscuous mode while unicast addresses
5632 void __dev_set_rx_mode(struct net_device *dev)
5634 const struct net_device_ops *ops = dev->netdev_ops;
5636 /* dev_open will call this function so the list will stay sane. */
5637 if (!(dev->flags&IFF_UP))
5640 if (!netif_device_present(dev))
5643 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5644 /* Unicast addresses changes may only happen under the rtnl,
5645 * therefore calling __dev_set_promiscuity here is safe.
5647 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5648 __dev_set_promiscuity(dev, 1, false);
5649 dev->uc_promisc = true;
5650 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5651 __dev_set_promiscuity(dev, -1, false);
5652 dev->uc_promisc = false;
5656 if (ops->ndo_set_rx_mode)
5657 ops->ndo_set_rx_mode(dev);
5660 void dev_set_rx_mode(struct net_device *dev)
5662 netif_addr_lock_bh(dev);
5663 __dev_set_rx_mode(dev);
5664 netif_addr_unlock_bh(dev);
5668 * dev_get_flags - get flags reported to userspace
5671 * Get the combination of flag bits exported through APIs to userspace.
5673 unsigned int dev_get_flags(const struct net_device *dev)
5677 flags = (dev->flags & ~(IFF_PROMISC |
5682 (dev->gflags & (IFF_PROMISC |
5685 if (netif_running(dev)) {
5686 if (netif_oper_up(dev))
5687 flags |= IFF_RUNNING;
5688 if (netif_carrier_ok(dev))
5689 flags |= IFF_LOWER_UP;
5690 if (netif_dormant(dev))
5691 flags |= IFF_DORMANT;
5696 EXPORT_SYMBOL(dev_get_flags);
5698 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5700 unsigned int old_flags = dev->flags;
5706 * Set the flags on our device.
5709 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5710 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5712 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5716 * Load in the correct multicast list now the flags have changed.
5719 if ((old_flags ^ flags) & IFF_MULTICAST)
5720 dev_change_rx_flags(dev, IFF_MULTICAST);
5722 dev_set_rx_mode(dev);
5725 * Have we downed the interface. We handle IFF_UP ourselves
5726 * according to user attempts to set it, rather than blindly
5731 if ((old_flags ^ flags) & IFF_UP)
5732 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5734 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5735 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5736 unsigned int old_flags = dev->flags;
5738 dev->gflags ^= IFF_PROMISC;
5740 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5741 if (dev->flags != old_flags)
5742 dev_set_rx_mode(dev);
5745 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5746 is important. Some (broken) drivers set IFF_PROMISC, when
5747 IFF_ALLMULTI is requested not asking us and not reporting.
5749 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5750 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5752 dev->gflags ^= IFF_ALLMULTI;
5753 __dev_set_allmulti(dev, inc, false);
5759 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5760 unsigned int gchanges)
5762 unsigned int changes = dev->flags ^ old_flags;
5765 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5767 if (changes & IFF_UP) {
5768 if (dev->flags & IFF_UP)
5769 call_netdevice_notifiers(NETDEV_UP, dev);
5771 call_netdevice_notifiers(NETDEV_DOWN, dev);
5774 if (dev->flags & IFF_UP &&
5775 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5776 struct netdev_notifier_change_info change_info;
5778 change_info.flags_changed = changes;
5779 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5785 * dev_change_flags - change device settings
5787 * @flags: device state flags
5789 * Change settings on device based state flags. The flags are
5790 * in the userspace exported format.
5792 int dev_change_flags(struct net_device *dev, unsigned int flags)
5795 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5797 ret = __dev_change_flags(dev, flags);
5801 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5802 __dev_notify_flags(dev, old_flags, changes);
5805 EXPORT_SYMBOL(dev_change_flags);
5807 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5809 const struct net_device_ops *ops = dev->netdev_ops;
5811 if (ops->ndo_change_mtu)
5812 return ops->ndo_change_mtu(dev, new_mtu);
5819 * dev_set_mtu - Change maximum transfer unit
5821 * @new_mtu: new transfer unit
5823 * Change the maximum transfer size of the network device.
5825 int dev_set_mtu(struct net_device *dev, int new_mtu)
5829 if (new_mtu == dev->mtu)
5832 /* MTU must be positive. */
5836 if (!netif_device_present(dev))
5839 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5840 err = notifier_to_errno(err);
5844 orig_mtu = dev->mtu;
5845 err = __dev_set_mtu(dev, new_mtu);
5848 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5849 err = notifier_to_errno(err);
5851 /* setting mtu back and notifying everyone again,
5852 * so that they have a chance to revert changes.
5854 __dev_set_mtu(dev, orig_mtu);
5855 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5860 EXPORT_SYMBOL(dev_set_mtu);
5863 * dev_set_group - Change group this device belongs to
5865 * @new_group: group this device should belong to
5867 void dev_set_group(struct net_device *dev, int new_group)
5869 dev->group = new_group;
5871 EXPORT_SYMBOL(dev_set_group);
5874 * dev_set_mac_address - Change Media Access Control Address
5878 * Change the hardware (MAC) address of the device
5880 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5882 const struct net_device_ops *ops = dev->netdev_ops;
5885 if (!ops->ndo_set_mac_address)
5887 if (sa->sa_family != dev->type)
5889 if (!netif_device_present(dev))
5891 err = ops->ndo_set_mac_address(dev, sa);
5894 dev->addr_assign_type = NET_ADDR_SET;
5895 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5896 add_device_randomness(dev->dev_addr, dev->addr_len);
5899 EXPORT_SYMBOL(dev_set_mac_address);
5902 * dev_change_carrier - Change device carrier
5904 * @new_carrier: new value
5906 * Change device carrier
5908 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5910 const struct net_device_ops *ops = dev->netdev_ops;
5912 if (!ops->ndo_change_carrier)
5914 if (!netif_device_present(dev))
5916 return ops->ndo_change_carrier(dev, new_carrier);
5918 EXPORT_SYMBOL(dev_change_carrier);
5921 * dev_get_phys_port_id - Get device physical port ID
5925 * Get device physical port ID
5927 int dev_get_phys_port_id(struct net_device *dev,
5928 struct netdev_phys_item_id *ppid)
5930 const struct net_device_ops *ops = dev->netdev_ops;
5932 if (!ops->ndo_get_phys_port_id)
5934 return ops->ndo_get_phys_port_id(dev, ppid);
5936 EXPORT_SYMBOL(dev_get_phys_port_id);
5939 * dev_get_phys_port_name - Get device physical port name
5943 * Get device physical port name
5945 int dev_get_phys_port_name(struct net_device *dev,
5946 char *name, size_t len)
5948 const struct net_device_ops *ops = dev->netdev_ops;
5950 if (!ops->ndo_get_phys_port_name)
5952 return ops->ndo_get_phys_port_name(dev, name, len);
5954 EXPORT_SYMBOL(dev_get_phys_port_name);
5957 * dev_new_index - allocate an ifindex
5958 * @net: the applicable net namespace
5960 * Returns a suitable unique value for a new device interface
5961 * number. The caller must hold the rtnl semaphore or the
5962 * dev_base_lock to be sure it remains unique.
5964 static int dev_new_index(struct net *net)
5966 int ifindex = net->ifindex;
5970 if (!__dev_get_by_index(net, ifindex))
5971 return net->ifindex = ifindex;
5975 /* Delayed registration/unregisteration */
5976 static LIST_HEAD(net_todo_list);
5977 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5979 static void net_set_todo(struct net_device *dev)
5981 list_add_tail(&dev->todo_list, &net_todo_list);
5982 dev_net(dev)->dev_unreg_count++;
5985 static void rollback_registered_many(struct list_head *head)
5987 struct net_device *dev, *tmp;
5988 LIST_HEAD(close_head);
5990 BUG_ON(dev_boot_phase);
5993 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5994 /* Some devices call without registering
5995 * for initialization unwind. Remove those
5996 * devices and proceed with the remaining.
5998 if (dev->reg_state == NETREG_UNINITIALIZED) {
5999 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6003 list_del(&dev->unreg_list);
6006 dev->dismantle = true;
6007 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6010 /* If device is running, close it first. */
6011 list_for_each_entry(dev, head, unreg_list)
6012 list_add_tail(&dev->close_list, &close_head);
6013 dev_close_many(&close_head, true);
6015 list_for_each_entry(dev, head, unreg_list) {
6016 /* And unlink it from device chain. */
6017 unlist_netdevice(dev);
6019 dev->reg_state = NETREG_UNREGISTERING;
6024 list_for_each_entry(dev, head, unreg_list) {
6025 struct sk_buff *skb = NULL;
6027 /* Shutdown queueing discipline. */
6031 /* Notify protocols, that we are about to destroy
6032 this device. They should clean all the things.
6034 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6036 if (!dev->rtnl_link_ops ||
6037 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6038 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6042 * Flush the unicast and multicast chains
6047 if (dev->netdev_ops->ndo_uninit)
6048 dev->netdev_ops->ndo_uninit(dev);
6051 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6053 /* Notifier chain MUST detach us all upper devices. */
6054 WARN_ON(netdev_has_any_upper_dev(dev));
6056 /* Remove entries from kobject tree */
6057 netdev_unregister_kobject(dev);
6059 /* Remove XPS queueing entries */
6060 netif_reset_xps_queues_gt(dev, 0);
6066 list_for_each_entry(dev, head, unreg_list)
6070 static void rollback_registered(struct net_device *dev)
6074 list_add(&dev->unreg_list, &single);
6075 rollback_registered_many(&single);
6079 static netdev_features_t netdev_fix_features(struct net_device *dev,
6080 netdev_features_t features)
6082 /* Fix illegal checksum combinations */
6083 if ((features & NETIF_F_HW_CSUM) &&
6084 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6085 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6086 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6089 /* TSO requires that SG is present as well. */
6090 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6091 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6092 features &= ~NETIF_F_ALL_TSO;
6095 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6096 !(features & NETIF_F_IP_CSUM)) {
6097 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6098 features &= ~NETIF_F_TSO;
6099 features &= ~NETIF_F_TSO_ECN;
6102 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6103 !(features & NETIF_F_IPV6_CSUM)) {
6104 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6105 features &= ~NETIF_F_TSO6;
6108 /* TSO ECN requires that TSO is present as well. */
6109 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6110 features &= ~NETIF_F_TSO_ECN;
6112 /* Software GSO depends on SG. */
6113 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6114 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6115 features &= ~NETIF_F_GSO;
6118 /* UFO needs SG and checksumming */
6119 if (features & NETIF_F_UFO) {
6120 /* maybe split UFO into V4 and V6? */
6121 if (!((features & NETIF_F_GEN_CSUM) ||
6122 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6123 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6125 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6126 features &= ~NETIF_F_UFO;
6129 if (!(features & NETIF_F_SG)) {
6131 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6132 features &= ~NETIF_F_UFO;
6136 #ifdef CONFIG_NET_RX_BUSY_POLL
6137 if (dev->netdev_ops->ndo_busy_poll)
6138 features |= NETIF_F_BUSY_POLL;
6141 features &= ~NETIF_F_BUSY_POLL;
6146 int __netdev_update_features(struct net_device *dev)
6148 netdev_features_t features;
6153 features = netdev_get_wanted_features(dev);
6155 if (dev->netdev_ops->ndo_fix_features)
6156 features = dev->netdev_ops->ndo_fix_features(dev, features);
6158 /* driver might be less strict about feature dependencies */
6159 features = netdev_fix_features(dev, features);
6161 if (dev->features == features)
6164 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6165 &dev->features, &features);
6167 if (dev->netdev_ops->ndo_set_features)
6168 err = dev->netdev_ops->ndo_set_features(dev, features);
6170 if (unlikely(err < 0)) {
6172 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6173 err, &features, &dev->features);
6178 dev->features = features;
6184 * netdev_update_features - recalculate device features
6185 * @dev: the device to check
6187 * Recalculate dev->features set and send notifications if it
6188 * has changed. Should be called after driver or hardware dependent
6189 * conditions might have changed that influence the features.
6191 void netdev_update_features(struct net_device *dev)
6193 if (__netdev_update_features(dev))
6194 netdev_features_change(dev);
6196 EXPORT_SYMBOL(netdev_update_features);
6199 * netdev_change_features - recalculate device features
6200 * @dev: the device to check
6202 * Recalculate dev->features set and send notifications even
6203 * if they have not changed. Should be called instead of
6204 * netdev_update_features() if also dev->vlan_features might
6205 * have changed to allow the changes to be propagated to stacked
6208 void netdev_change_features(struct net_device *dev)
6210 __netdev_update_features(dev);
6211 netdev_features_change(dev);
6213 EXPORT_SYMBOL(netdev_change_features);
6216 * netif_stacked_transfer_operstate - transfer operstate
6217 * @rootdev: the root or lower level device to transfer state from
6218 * @dev: the device to transfer operstate to
6220 * Transfer operational state from root to device. This is normally
6221 * called when a stacking relationship exists between the root
6222 * device and the device(a leaf device).
6224 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6225 struct net_device *dev)
6227 if (rootdev->operstate == IF_OPER_DORMANT)
6228 netif_dormant_on(dev);
6230 netif_dormant_off(dev);
6232 if (netif_carrier_ok(rootdev)) {
6233 if (!netif_carrier_ok(dev))
6234 netif_carrier_on(dev);
6236 if (netif_carrier_ok(dev))
6237 netif_carrier_off(dev);
6240 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6243 static int netif_alloc_rx_queues(struct net_device *dev)
6245 unsigned int i, count = dev->num_rx_queues;
6246 struct netdev_rx_queue *rx;
6247 size_t sz = count * sizeof(*rx);
6251 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6259 for (i = 0; i < count; i++)
6265 static void netdev_init_one_queue(struct net_device *dev,
6266 struct netdev_queue *queue, void *_unused)
6268 /* Initialize queue lock */
6269 spin_lock_init(&queue->_xmit_lock);
6270 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6271 queue->xmit_lock_owner = -1;
6272 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6275 dql_init(&queue->dql, HZ);
6279 static void netif_free_tx_queues(struct net_device *dev)
6284 static int netif_alloc_netdev_queues(struct net_device *dev)
6286 unsigned int count = dev->num_tx_queues;
6287 struct netdev_queue *tx;
6288 size_t sz = count * sizeof(*tx);
6290 BUG_ON(count < 1 || count > 0xffff);
6292 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6300 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6301 spin_lock_init(&dev->tx_global_lock);
6307 * register_netdevice - register a network device
6308 * @dev: device to register
6310 * Take a completed network device structure and add it to the kernel
6311 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6312 * chain. 0 is returned on success. A negative errno code is returned
6313 * on a failure to set up the device, or if the name is a duplicate.
6315 * Callers must hold the rtnl semaphore. You may want
6316 * register_netdev() instead of this.
6319 * The locking appears insufficient to guarantee two parallel registers
6320 * will not get the same name.
6323 int register_netdevice(struct net_device *dev)
6326 struct net *net = dev_net(dev);
6328 BUG_ON(dev_boot_phase);
6333 /* When net_device's are persistent, this will be fatal. */
6334 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6337 spin_lock_init(&dev->addr_list_lock);
6338 netdev_set_addr_lockdep_class(dev);
6340 ret = dev_get_valid_name(net, dev, dev->name);
6344 /* Init, if this function is available */
6345 if (dev->netdev_ops->ndo_init) {
6346 ret = dev->netdev_ops->ndo_init(dev);
6354 if (((dev->hw_features | dev->features) &
6355 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6356 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6357 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6358 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6365 dev->ifindex = dev_new_index(net);
6366 else if (__dev_get_by_index(net, dev->ifindex))
6369 /* Transfer changeable features to wanted_features and enable
6370 * software offloads (GSO and GRO).
6372 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6373 dev->features |= NETIF_F_SOFT_FEATURES;
6374 dev->wanted_features = dev->features & dev->hw_features;
6376 if (!(dev->flags & IFF_LOOPBACK)) {
6377 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6380 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6382 dev->vlan_features |= NETIF_F_HIGHDMA;
6384 /* Make NETIF_F_SG inheritable to tunnel devices.
6386 dev->hw_enc_features |= NETIF_F_SG;
6388 /* Make NETIF_F_SG inheritable to MPLS.
6390 dev->mpls_features |= NETIF_F_SG;
6392 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6393 ret = notifier_to_errno(ret);
6397 ret = netdev_register_kobject(dev);
6400 dev->reg_state = NETREG_REGISTERED;
6402 __netdev_update_features(dev);
6405 * Default initial state at registry is that the
6406 * device is present.
6409 set_bit(__LINK_STATE_PRESENT, &dev->state);
6411 linkwatch_init_dev(dev);
6413 dev_init_scheduler(dev);
6415 list_netdevice(dev);
6416 add_device_randomness(dev->dev_addr, dev->addr_len);
6418 /* If the device has permanent device address, driver should
6419 * set dev_addr and also addr_assign_type should be set to
6420 * NET_ADDR_PERM (default value).
6422 if (dev->addr_assign_type == NET_ADDR_PERM)
6423 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6425 /* Notify protocols, that a new device appeared. */
6426 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6427 ret = notifier_to_errno(ret);
6429 rollback_registered(dev);
6430 dev->reg_state = NETREG_UNREGISTERED;
6433 * Prevent userspace races by waiting until the network
6434 * device is fully setup before sending notifications.
6436 if (!dev->rtnl_link_ops ||
6437 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6438 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6444 if (dev->netdev_ops->ndo_uninit)
6445 dev->netdev_ops->ndo_uninit(dev);
6448 EXPORT_SYMBOL(register_netdevice);
6451 * init_dummy_netdev - init a dummy network device for NAPI
6452 * @dev: device to init
6454 * This takes a network device structure and initialize the minimum
6455 * amount of fields so it can be used to schedule NAPI polls without
6456 * registering a full blown interface. This is to be used by drivers
6457 * that need to tie several hardware interfaces to a single NAPI
6458 * poll scheduler due to HW limitations.
6460 int init_dummy_netdev(struct net_device *dev)
6462 /* Clear everything. Note we don't initialize spinlocks
6463 * are they aren't supposed to be taken by any of the
6464 * NAPI code and this dummy netdev is supposed to be
6465 * only ever used for NAPI polls
6467 memset(dev, 0, sizeof(struct net_device));
6469 /* make sure we BUG if trying to hit standard
6470 * register/unregister code path
6472 dev->reg_state = NETREG_DUMMY;
6474 /* NAPI wants this */
6475 INIT_LIST_HEAD(&dev->napi_list);
6477 /* a dummy interface is started by default */
6478 set_bit(__LINK_STATE_PRESENT, &dev->state);
6479 set_bit(__LINK_STATE_START, &dev->state);
6481 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6482 * because users of this 'device' dont need to change
6488 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6492 * register_netdev - register a network device
6493 * @dev: device to register
6495 * Take a completed network device structure and add it to the kernel
6496 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6497 * chain. 0 is returned on success. A negative errno code is returned
6498 * on a failure to set up the device, or if the name is a duplicate.
6500 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6501 * and expands the device name if you passed a format string to
6504 int register_netdev(struct net_device *dev)
6509 err = register_netdevice(dev);
6513 EXPORT_SYMBOL(register_netdev);
6515 int netdev_refcnt_read(const struct net_device *dev)
6519 for_each_possible_cpu(i)
6520 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6523 EXPORT_SYMBOL(netdev_refcnt_read);
6526 * netdev_wait_allrefs - wait until all references are gone.
6527 * @dev: target net_device
6529 * This is called when unregistering network devices.
6531 * Any protocol or device that holds a reference should register
6532 * for netdevice notification, and cleanup and put back the
6533 * reference if they receive an UNREGISTER event.
6534 * We can get stuck here if buggy protocols don't correctly
6537 static void netdev_wait_allrefs(struct net_device *dev)
6539 unsigned long rebroadcast_time, warning_time;
6542 linkwatch_forget_dev(dev);
6544 rebroadcast_time = warning_time = jiffies;
6545 refcnt = netdev_refcnt_read(dev);
6547 while (refcnt != 0) {
6548 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6551 /* Rebroadcast unregister notification */
6552 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6558 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6559 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6561 /* We must not have linkwatch events
6562 * pending on unregister. If this
6563 * happens, we simply run the queue
6564 * unscheduled, resulting in a noop
6567 linkwatch_run_queue();
6572 rebroadcast_time = jiffies;
6577 refcnt = netdev_refcnt_read(dev);
6579 if (time_after(jiffies, warning_time + 10 * HZ)) {
6580 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6582 warning_time = jiffies;
6591 * register_netdevice(x1);
6592 * register_netdevice(x2);
6594 * unregister_netdevice(y1);
6595 * unregister_netdevice(y2);
6601 * We are invoked by rtnl_unlock().
6602 * This allows us to deal with problems:
6603 * 1) We can delete sysfs objects which invoke hotplug
6604 * without deadlocking with linkwatch via keventd.
6605 * 2) Since we run with the RTNL semaphore not held, we can sleep
6606 * safely in order to wait for the netdev refcnt to drop to zero.
6608 * We must not return until all unregister events added during
6609 * the interval the lock was held have been completed.
6611 void netdev_run_todo(void)
6613 struct list_head list;
6615 /* Snapshot list, allow later requests */
6616 list_replace_init(&net_todo_list, &list);
6621 /* Wait for rcu callbacks to finish before next phase */
6622 if (!list_empty(&list))
6625 while (!list_empty(&list)) {
6626 struct net_device *dev
6627 = list_first_entry(&list, struct net_device, todo_list);
6628 list_del(&dev->todo_list);
6631 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6634 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6635 pr_err("network todo '%s' but state %d\n",
6636 dev->name, dev->reg_state);
6641 dev->reg_state = NETREG_UNREGISTERED;
6643 on_each_cpu(flush_backlog, dev, 1);
6645 netdev_wait_allrefs(dev);
6648 BUG_ON(netdev_refcnt_read(dev));
6649 BUG_ON(!list_empty(&dev->ptype_all));
6650 BUG_ON(!list_empty(&dev->ptype_specific));
6651 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6652 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6653 WARN_ON(dev->dn_ptr);
6655 if (dev->destructor)
6656 dev->destructor(dev);
6658 /* Report a network device has been unregistered */
6660 dev_net(dev)->dev_unreg_count--;
6662 wake_up(&netdev_unregistering_wq);
6664 /* Free network device */
6665 kobject_put(&dev->dev.kobj);
6669 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6670 * fields in the same order, with only the type differing.
6672 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6673 const struct net_device_stats *netdev_stats)
6675 #if BITS_PER_LONG == 64
6676 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6677 memcpy(stats64, netdev_stats, sizeof(*stats64));
6679 size_t i, n = sizeof(*stats64) / sizeof(u64);
6680 const unsigned long *src = (const unsigned long *)netdev_stats;
6681 u64 *dst = (u64 *)stats64;
6683 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6684 sizeof(*stats64) / sizeof(u64));
6685 for (i = 0; i < n; i++)
6689 EXPORT_SYMBOL(netdev_stats_to_stats64);
6692 * dev_get_stats - get network device statistics
6693 * @dev: device to get statistics from
6694 * @storage: place to store stats
6696 * Get network statistics from device. Return @storage.
6697 * The device driver may provide its own method by setting
6698 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6699 * otherwise the internal statistics structure is used.
6701 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6702 struct rtnl_link_stats64 *storage)
6704 const struct net_device_ops *ops = dev->netdev_ops;
6706 if (ops->ndo_get_stats64) {
6707 memset(storage, 0, sizeof(*storage));
6708 ops->ndo_get_stats64(dev, storage);
6709 } else if (ops->ndo_get_stats) {
6710 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6712 netdev_stats_to_stats64(storage, &dev->stats);
6714 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6715 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6718 EXPORT_SYMBOL(dev_get_stats);
6720 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6722 struct netdev_queue *queue = dev_ingress_queue(dev);
6724 #ifdef CONFIG_NET_CLS_ACT
6727 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6730 netdev_init_one_queue(dev, queue, NULL);
6731 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
6732 queue->qdisc_sleeping = &noop_qdisc;
6733 rcu_assign_pointer(dev->ingress_queue, queue);
6738 static const struct ethtool_ops default_ethtool_ops;
6740 void netdev_set_default_ethtool_ops(struct net_device *dev,
6741 const struct ethtool_ops *ops)
6743 if (dev->ethtool_ops == &default_ethtool_ops)
6744 dev->ethtool_ops = ops;
6746 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6748 void netdev_freemem(struct net_device *dev)
6750 char *addr = (char *)dev - dev->padded;
6756 * alloc_netdev_mqs - allocate network device
6757 * @sizeof_priv: size of private data to allocate space for
6758 * @name: device name format string
6759 * @name_assign_type: origin of device name
6760 * @setup: callback to initialize device
6761 * @txqs: the number of TX subqueues to allocate
6762 * @rxqs: the number of RX subqueues to allocate
6764 * Allocates a struct net_device with private data area for driver use
6765 * and performs basic initialization. Also allocates subqueue structs
6766 * for each queue on the device.
6768 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6769 unsigned char name_assign_type,
6770 void (*setup)(struct net_device *),
6771 unsigned int txqs, unsigned int rxqs)
6773 struct net_device *dev;
6775 struct net_device *p;
6777 BUG_ON(strlen(name) >= sizeof(dev->name));
6780 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6786 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6791 alloc_size = sizeof(struct net_device);
6793 /* ensure 32-byte alignment of private area */
6794 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6795 alloc_size += sizeof_priv;
6797 /* ensure 32-byte alignment of whole construct */
6798 alloc_size += NETDEV_ALIGN - 1;
6800 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6802 p = vzalloc(alloc_size);
6806 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6807 dev->padded = (char *)dev - (char *)p;
6809 dev->pcpu_refcnt = alloc_percpu(int);
6810 if (!dev->pcpu_refcnt)
6813 if (dev_addr_init(dev))
6819 dev_net_set(dev, &init_net);
6821 dev->gso_max_size = GSO_MAX_SIZE;
6822 dev->gso_max_segs = GSO_MAX_SEGS;
6823 dev->gso_min_segs = 0;
6825 INIT_LIST_HEAD(&dev->napi_list);
6826 INIT_LIST_HEAD(&dev->unreg_list);
6827 INIT_LIST_HEAD(&dev->close_list);
6828 INIT_LIST_HEAD(&dev->link_watch_list);
6829 INIT_LIST_HEAD(&dev->adj_list.upper);
6830 INIT_LIST_HEAD(&dev->adj_list.lower);
6831 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6832 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6833 INIT_LIST_HEAD(&dev->ptype_all);
6834 INIT_LIST_HEAD(&dev->ptype_specific);
6835 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6838 dev->num_tx_queues = txqs;
6839 dev->real_num_tx_queues = txqs;
6840 if (netif_alloc_netdev_queues(dev))
6844 dev->num_rx_queues = rxqs;
6845 dev->real_num_rx_queues = rxqs;
6846 if (netif_alloc_rx_queues(dev))
6850 strcpy(dev->name, name);
6851 dev->name_assign_type = name_assign_type;
6852 dev->group = INIT_NETDEV_GROUP;
6853 if (!dev->ethtool_ops)
6854 dev->ethtool_ops = &default_ethtool_ops;
6862 free_percpu(dev->pcpu_refcnt);
6864 netdev_freemem(dev);
6867 EXPORT_SYMBOL(alloc_netdev_mqs);
6870 * free_netdev - free network device
6873 * This function does the last stage of destroying an allocated device
6874 * interface. The reference to the device object is released.
6875 * If this is the last reference then it will be freed.
6877 void free_netdev(struct net_device *dev)
6879 struct napi_struct *p, *n;
6881 netif_free_tx_queues(dev);
6886 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6888 /* Flush device addresses */
6889 dev_addr_flush(dev);
6891 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6894 free_percpu(dev->pcpu_refcnt);
6895 dev->pcpu_refcnt = NULL;
6897 /* Compatibility with error handling in drivers */
6898 if (dev->reg_state == NETREG_UNINITIALIZED) {
6899 netdev_freemem(dev);
6903 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6904 dev->reg_state = NETREG_RELEASED;
6906 /* will free via device release */
6907 put_device(&dev->dev);
6909 EXPORT_SYMBOL(free_netdev);
6912 * synchronize_net - Synchronize with packet receive processing
6914 * Wait for packets currently being received to be done.
6915 * Does not block later packets from starting.
6917 void synchronize_net(void)
6920 if (rtnl_is_locked())
6921 synchronize_rcu_expedited();
6925 EXPORT_SYMBOL(synchronize_net);
6928 * unregister_netdevice_queue - remove device from the kernel
6932 * This function shuts down a device interface and removes it
6933 * from the kernel tables.
6934 * If head not NULL, device is queued to be unregistered later.
6936 * Callers must hold the rtnl semaphore. You may want
6937 * unregister_netdev() instead of this.
6940 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6945 list_move_tail(&dev->unreg_list, head);
6947 rollback_registered(dev);
6948 /* Finish processing unregister after unlock */
6952 EXPORT_SYMBOL(unregister_netdevice_queue);
6955 * unregister_netdevice_many - unregister many devices
6956 * @head: list of devices
6958 * Note: As most callers use a stack allocated list_head,
6959 * we force a list_del() to make sure stack wont be corrupted later.
6961 void unregister_netdevice_many(struct list_head *head)
6963 struct net_device *dev;
6965 if (!list_empty(head)) {
6966 rollback_registered_many(head);
6967 list_for_each_entry(dev, head, unreg_list)
6972 EXPORT_SYMBOL(unregister_netdevice_many);
6975 * unregister_netdev - remove device from the kernel
6978 * This function shuts down a device interface and removes it
6979 * from the kernel tables.
6981 * This is just a wrapper for unregister_netdevice that takes
6982 * the rtnl semaphore. In general you want to use this and not
6983 * unregister_netdevice.
6985 void unregister_netdev(struct net_device *dev)
6988 unregister_netdevice(dev);
6991 EXPORT_SYMBOL(unregister_netdev);
6994 * dev_change_net_namespace - move device to different nethost namespace
6996 * @net: network namespace
6997 * @pat: If not NULL name pattern to try if the current device name
6998 * is already taken in the destination network namespace.
7000 * This function shuts down a device interface and moves it
7001 * to a new network namespace. On success 0 is returned, on
7002 * a failure a netagive errno code is returned.
7004 * Callers must hold the rtnl semaphore.
7007 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7013 /* Don't allow namespace local devices to be moved. */
7015 if (dev->features & NETIF_F_NETNS_LOCAL)
7018 /* Ensure the device has been registrered */
7019 if (dev->reg_state != NETREG_REGISTERED)
7022 /* Get out if there is nothing todo */
7024 if (net_eq(dev_net(dev), net))
7027 /* Pick the destination device name, and ensure
7028 * we can use it in the destination network namespace.
7031 if (__dev_get_by_name(net, dev->name)) {
7032 /* We get here if we can't use the current device name */
7035 if (dev_get_valid_name(net, dev, pat) < 0)
7040 * And now a mini version of register_netdevice unregister_netdevice.
7043 /* If device is running close it first. */
7046 /* And unlink it from device chain */
7048 unlist_netdevice(dev);
7052 /* Shutdown queueing discipline. */
7055 /* Notify protocols, that we are about to destroy
7056 this device. They should clean all the things.
7058 Note that dev->reg_state stays at NETREG_REGISTERED.
7059 This is wanted because this way 8021q and macvlan know
7060 the device is just moving and can keep their slaves up.
7062 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7064 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7065 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7068 * Flush the unicast and multicast chains
7073 /* Send a netdev-removed uevent to the old namespace */
7074 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7075 netdev_adjacent_del_links(dev);
7077 /* Actually switch the network namespace */
7078 dev_net_set(dev, net);
7080 /* If there is an ifindex conflict assign a new one */
7081 if (__dev_get_by_index(net, dev->ifindex))
7082 dev->ifindex = dev_new_index(net);
7084 /* Send a netdev-add uevent to the new namespace */
7085 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7086 netdev_adjacent_add_links(dev);
7088 /* Fixup kobjects */
7089 err = device_rename(&dev->dev, dev->name);
7092 /* Add the device back in the hashes */
7093 list_netdevice(dev);
7095 /* Notify protocols, that a new device appeared. */
7096 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7099 * Prevent userspace races by waiting until the network
7100 * device is fully setup before sending notifications.
7102 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7109 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7111 static int dev_cpu_callback(struct notifier_block *nfb,
7112 unsigned long action,
7115 struct sk_buff **list_skb;
7116 struct sk_buff *skb;
7117 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7118 struct softnet_data *sd, *oldsd;
7120 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7123 local_irq_disable();
7124 cpu = smp_processor_id();
7125 sd = &per_cpu(softnet_data, cpu);
7126 oldsd = &per_cpu(softnet_data, oldcpu);
7128 /* Find end of our completion_queue. */
7129 list_skb = &sd->completion_queue;
7131 list_skb = &(*list_skb)->next;
7132 /* Append completion queue from offline CPU. */
7133 *list_skb = oldsd->completion_queue;
7134 oldsd->completion_queue = NULL;
7136 /* Append output queue from offline CPU. */
7137 if (oldsd->output_queue) {
7138 *sd->output_queue_tailp = oldsd->output_queue;
7139 sd->output_queue_tailp = oldsd->output_queue_tailp;
7140 oldsd->output_queue = NULL;
7141 oldsd->output_queue_tailp = &oldsd->output_queue;
7143 /* Append NAPI poll list from offline CPU, with one exception :
7144 * process_backlog() must be called by cpu owning percpu backlog.
7145 * We properly handle process_queue & input_pkt_queue later.
7147 while (!list_empty(&oldsd->poll_list)) {
7148 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7152 list_del_init(&napi->poll_list);
7153 if (napi->poll == process_backlog)
7156 ____napi_schedule(sd, napi);
7159 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7162 /* Process offline CPU's input_pkt_queue */
7163 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7165 input_queue_head_incr(oldsd);
7167 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7169 input_queue_head_incr(oldsd);
7177 * netdev_increment_features - increment feature set by one
7178 * @all: current feature set
7179 * @one: new feature set
7180 * @mask: mask feature set
7182 * Computes a new feature set after adding a device with feature set
7183 * @one to the master device with current feature set @all. Will not
7184 * enable anything that is off in @mask. Returns the new feature set.
7186 netdev_features_t netdev_increment_features(netdev_features_t all,
7187 netdev_features_t one, netdev_features_t mask)
7189 if (mask & NETIF_F_GEN_CSUM)
7190 mask |= NETIF_F_ALL_CSUM;
7191 mask |= NETIF_F_VLAN_CHALLENGED;
7193 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7194 all &= one | ~NETIF_F_ALL_FOR_ALL;
7196 /* If one device supports hw checksumming, set for all. */
7197 if (all & NETIF_F_GEN_CSUM)
7198 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7202 EXPORT_SYMBOL(netdev_increment_features);
7204 static struct hlist_head * __net_init netdev_create_hash(void)
7207 struct hlist_head *hash;
7209 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7211 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7212 INIT_HLIST_HEAD(&hash[i]);
7217 /* Initialize per network namespace state */
7218 static int __net_init netdev_init(struct net *net)
7220 if (net != &init_net)
7221 INIT_LIST_HEAD(&net->dev_base_head);
7223 net->dev_name_head = netdev_create_hash();
7224 if (net->dev_name_head == NULL)
7227 net->dev_index_head = netdev_create_hash();
7228 if (net->dev_index_head == NULL)
7234 kfree(net->dev_name_head);
7240 * netdev_drivername - network driver for the device
7241 * @dev: network device
7243 * Determine network driver for device.
7245 const char *netdev_drivername(const struct net_device *dev)
7247 const struct device_driver *driver;
7248 const struct device *parent;
7249 const char *empty = "";
7251 parent = dev->dev.parent;
7255 driver = parent->driver;
7256 if (driver && driver->name)
7257 return driver->name;
7261 static void __netdev_printk(const char *level, const struct net_device *dev,
7262 struct va_format *vaf)
7264 if (dev && dev->dev.parent) {
7265 dev_printk_emit(level[1] - '0',
7268 dev_driver_string(dev->dev.parent),
7269 dev_name(dev->dev.parent),
7270 netdev_name(dev), netdev_reg_state(dev),
7273 printk("%s%s%s: %pV",
7274 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7276 printk("%s(NULL net_device): %pV", level, vaf);
7280 void netdev_printk(const char *level, const struct net_device *dev,
7281 const char *format, ...)
7283 struct va_format vaf;
7286 va_start(args, format);
7291 __netdev_printk(level, dev, &vaf);
7295 EXPORT_SYMBOL(netdev_printk);
7297 #define define_netdev_printk_level(func, level) \
7298 void func(const struct net_device *dev, const char *fmt, ...) \
7300 struct va_format vaf; \
7303 va_start(args, fmt); \
7308 __netdev_printk(level, dev, &vaf); \
7312 EXPORT_SYMBOL(func);
7314 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7315 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7316 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7317 define_netdev_printk_level(netdev_err, KERN_ERR);
7318 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7319 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7320 define_netdev_printk_level(netdev_info, KERN_INFO);
7322 static void __net_exit netdev_exit(struct net *net)
7324 kfree(net->dev_name_head);
7325 kfree(net->dev_index_head);
7328 static struct pernet_operations __net_initdata netdev_net_ops = {
7329 .init = netdev_init,
7330 .exit = netdev_exit,
7333 static void __net_exit default_device_exit(struct net *net)
7335 struct net_device *dev, *aux;
7337 * Push all migratable network devices back to the
7338 * initial network namespace
7341 for_each_netdev_safe(net, dev, aux) {
7343 char fb_name[IFNAMSIZ];
7345 /* Ignore unmoveable devices (i.e. loopback) */
7346 if (dev->features & NETIF_F_NETNS_LOCAL)
7349 /* Leave virtual devices for the generic cleanup */
7350 if (dev->rtnl_link_ops)
7353 /* Push remaining network devices to init_net */
7354 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7355 err = dev_change_net_namespace(dev, &init_net, fb_name);
7357 pr_emerg("%s: failed to move %s to init_net: %d\n",
7358 __func__, dev->name, err);
7365 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7367 /* Return with the rtnl_lock held when there are no network
7368 * devices unregistering in any network namespace in net_list.
7372 DEFINE_WAIT_FUNC(wait, woken_wake_function);
7374 add_wait_queue(&netdev_unregistering_wq, &wait);
7376 unregistering = false;
7378 list_for_each_entry(net, net_list, exit_list) {
7379 if (net->dev_unreg_count > 0) {
7380 unregistering = true;
7388 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7390 remove_wait_queue(&netdev_unregistering_wq, &wait);
7393 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7395 /* At exit all network devices most be removed from a network
7396 * namespace. Do this in the reverse order of registration.
7397 * Do this across as many network namespaces as possible to
7398 * improve batching efficiency.
7400 struct net_device *dev;
7402 LIST_HEAD(dev_kill_list);
7404 /* To prevent network device cleanup code from dereferencing
7405 * loopback devices or network devices that have been freed
7406 * wait here for all pending unregistrations to complete,
7407 * before unregistring the loopback device and allowing the
7408 * network namespace be freed.
7410 * The netdev todo list containing all network devices
7411 * unregistrations that happen in default_device_exit_batch
7412 * will run in the rtnl_unlock() at the end of
7413 * default_device_exit_batch.
7415 rtnl_lock_unregistering(net_list);
7416 list_for_each_entry(net, net_list, exit_list) {
7417 for_each_netdev_reverse(net, dev) {
7418 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7419 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7421 unregister_netdevice_queue(dev, &dev_kill_list);
7424 unregister_netdevice_many(&dev_kill_list);
7428 static struct pernet_operations __net_initdata default_device_ops = {
7429 .exit = default_device_exit,
7430 .exit_batch = default_device_exit_batch,
7434 * Initialize the DEV module. At boot time this walks the device list and
7435 * unhooks any devices that fail to initialise (normally hardware not
7436 * present) and leaves us with a valid list of present and active devices.
7441 * This is called single threaded during boot, so no need
7442 * to take the rtnl semaphore.
7444 static int __init net_dev_init(void)
7446 int i, rc = -ENOMEM;
7448 BUG_ON(!dev_boot_phase);
7450 if (dev_proc_init())
7453 if (netdev_kobject_init())
7456 INIT_LIST_HEAD(&ptype_all);
7457 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7458 INIT_LIST_HEAD(&ptype_base[i]);
7460 INIT_LIST_HEAD(&offload_base);
7462 if (register_pernet_subsys(&netdev_net_ops))
7466 * Initialise the packet receive queues.
7469 for_each_possible_cpu(i) {
7470 struct softnet_data *sd = &per_cpu(softnet_data, i);
7472 skb_queue_head_init(&sd->input_pkt_queue);
7473 skb_queue_head_init(&sd->process_queue);
7474 INIT_LIST_HEAD(&sd->poll_list);
7475 sd->output_queue_tailp = &sd->output_queue;
7477 sd->csd.func = rps_trigger_softirq;
7482 sd->backlog.poll = process_backlog;
7483 sd->backlog.weight = weight_p;
7488 /* The loopback device is special if any other network devices
7489 * is present in a network namespace the loopback device must
7490 * be present. Since we now dynamically allocate and free the
7491 * loopback device ensure this invariant is maintained by
7492 * keeping the loopback device as the first device on the
7493 * list of network devices. Ensuring the loopback devices
7494 * is the first device that appears and the last network device
7497 if (register_pernet_device(&loopback_net_ops))
7500 if (register_pernet_device(&default_device_ops))
7503 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7504 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7506 hotcpu_notifier(dev_cpu_callback, 0);
7513 subsys_initcall(net_dev_init);