2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
19 #include "x86_emulate.h"
20 #include "segment_descriptor.h"
23 #include <linux/kvm.h>
24 #include <linux/module.h>
25 #include <linux/errno.h>
26 #include <linux/percpu.h>
27 #include <linux/gfp.h>
29 #include <linux/miscdevice.h>
30 #include <linux/vmalloc.h>
31 #include <linux/reboot.h>
32 #include <linux/debugfs.h>
33 #include <linux/highmem.h>
34 #include <linux/file.h>
35 #include <linux/sysdev.h>
36 #include <linux/cpu.h>
37 #include <linux/sched.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
42 #include <asm/processor.h>
45 #include <asm/uaccess.h>
48 MODULE_AUTHOR("Qumranet");
49 MODULE_LICENSE("GPL");
51 static DEFINE_SPINLOCK(kvm_lock);
52 static LIST_HEAD(vm_list);
54 static cpumask_t cpus_hardware_enabled;
56 struct kvm_arch_ops *kvm_arch_ops;
57 struct kmem_cache *kvm_vcpu_cache;
58 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
60 static __read_mostly struct preempt_ops kvm_preempt_ops;
62 #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
64 static struct kvm_stats_debugfs_item {
67 struct dentry *dentry;
68 } debugfs_entries[] = {
69 { "pf_fixed", STAT_OFFSET(pf_fixed) },
70 { "pf_guest", STAT_OFFSET(pf_guest) },
71 { "tlb_flush", STAT_OFFSET(tlb_flush) },
72 { "invlpg", STAT_OFFSET(invlpg) },
73 { "exits", STAT_OFFSET(exits) },
74 { "io_exits", STAT_OFFSET(io_exits) },
75 { "mmio_exits", STAT_OFFSET(mmio_exits) },
76 { "signal_exits", STAT_OFFSET(signal_exits) },
77 { "irq_window", STAT_OFFSET(irq_window_exits) },
78 { "halt_exits", STAT_OFFSET(halt_exits) },
79 { "request_irq", STAT_OFFSET(request_irq_exits) },
80 { "irq_exits", STAT_OFFSET(irq_exits) },
81 { "light_exits", STAT_OFFSET(light_exits) },
82 { "efer_reload", STAT_OFFSET(efer_reload) },
86 static struct dentry *debugfs_dir;
88 #define MAX_IO_MSRS 256
90 #define CR0_RESERVED_BITS \
91 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
92 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
93 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
94 #define CR4_RESERVED_BITS \
95 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
96 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
97 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
98 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
100 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
101 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
104 // LDT or TSS descriptor in the GDT. 16 bytes.
105 struct segment_descriptor_64 {
106 struct segment_descriptor s;
113 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
116 unsigned long segment_base(u16 selector)
118 struct descriptor_table gdt;
119 struct segment_descriptor *d;
120 unsigned long table_base;
121 typedef unsigned long ul;
127 asm ("sgdt %0" : "=m"(gdt));
128 table_base = gdt.base;
130 if (selector & 4) { /* from ldt */
133 asm ("sldt %0" : "=g"(ldt_selector));
134 table_base = segment_base(ldt_selector);
136 d = (struct segment_descriptor *)(table_base + (selector & ~7));
137 v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
140 && (d->type == 2 || d->type == 9 || d->type == 11))
141 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
145 EXPORT_SYMBOL_GPL(segment_base);
147 static inline int valid_vcpu(int n)
149 return likely(n >= 0 && n < KVM_MAX_VCPUS);
152 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
154 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
157 vcpu->guest_fpu_loaded = 1;
158 fx_save(&vcpu->host_fx_image);
159 fx_restore(&vcpu->guest_fx_image);
161 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
163 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
165 if (!vcpu->guest_fpu_loaded)
168 vcpu->guest_fpu_loaded = 0;
169 fx_save(&vcpu->guest_fx_image);
170 fx_restore(&vcpu->host_fx_image);
172 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
175 * Switches to specified vcpu, until a matching vcpu_put()
177 static void vcpu_load(struct kvm_vcpu *vcpu)
181 mutex_lock(&vcpu->mutex);
183 preempt_notifier_register(&vcpu->preempt_notifier);
184 kvm_arch_ops->vcpu_load(vcpu, cpu);
188 static void vcpu_put(struct kvm_vcpu *vcpu)
191 kvm_arch_ops->vcpu_put(vcpu);
192 preempt_notifier_unregister(&vcpu->preempt_notifier);
194 mutex_unlock(&vcpu->mutex);
197 static void ack_flush(void *_completed)
199 atomic_t *completed = _completed;
201 atomic_inc(completed);
204 void kvm_flush_remote_tlbs(struct kvm *kvm)
208 struct kvm_vcpu *vcpu;
211 atomic_set(&completed, 0);
214 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
215 vcpu = kvm->vcpus[i];
218 if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
221 if (cpu != -1 && cpu != raw_smp_processor_id())
222 if (!cpu_isset(cpu, cpus)) {
229 * We really want smp_call_function_mask() here. But that's not
230 * available, so ipi all cpus in parallel and wait for them
233 for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
234 smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
235 while (atomic_read(&completed) != needed) {
241 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
246 mutex_init(&vcpu->mutex);
248 vcpu->mmu.root_hpa = INVALID_PAGE;
252 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
257 vcpu->run = page_address(page);
259 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
264 vcpu->pio_data = page_address(page);
266 r = kvm_mmu_create(vcpu);
268 goto fail_free_pio_data;
273 free_page((unsigned long)vcpu->pio_data);
275 free_page((unsigned long)vcpu->run);
279 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
281 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
283 kvm_mmu_destroy(vcpu);
284 free_page((unsigned long)vcpu->pio_data);
285 free_page((unsigned long)vcpu->run);
287 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
289 static struct kvm *kvm_create_vm(void)
291 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
294 return ERR_PTR(-ENOMEM);
296 kvm_io_bus_init(&kvm->pio_bus);
297 mutex_init(&kvm->lock);
298 INIT_LIST_HEAD(&kvm->active_mmu_pages);
299 kvm_io_bus_init(&kvm->mmio_bus);
300 spin_lock(&kvm_lock);
301 list_add(&kvm->vm_list, &vm_list);
302 spin_unlock(&kvm_lock);
307 * Free any memory in @free but not in @dont.
309 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
310 struct kvm_memory_slot *dont)
314 if (!dont || free->phys_mem != dont->phys_mem)
315 if (free->phys_mem) {
316 for (i = 0; i < free->npages; ++i)
317 if (free->phys_mem[i])
318 __free_page(free->phys_mem[i]);
319 vfree(free->phys_mem);
322 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
323 vfree(free->dirty_bitmap);
325 free->phys_mem = NULL;
327 free->dirty_bitmap = NULL;
330 static void kvm_free_physmem(struct kvm *kvm)
334 for (i = 0; i < kvm->nmemslots; ++i)
335 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
338 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
342 for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
343 if (vcpu->pio.guest_pages[i]) {
344 __free_page(vcpu->pio.guest_pages[i]);
345 vcpu->pio.guest_pages[i] = NULL;
349 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
352 kvm_mmu_unload(vcpu);
356 static void kvm_free_vcpus(struct kvm *kvm)
361 * Unpin any mmu pages first.
363 for (i = 0; i < KVM_MAX_VCPUS; ++i)
365 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
366 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
368 kvm_arch_ops->vcpu_free(kvm->vcpus[i]);
369 kvm->vcpus[i] = NULL;
375 static void kvm_destroy_vm(struct kvm *kvm)
377 spin_lock(&kvm_lock);
378 list_del(&kvm->vm_list);
379 spin_unlock(&kvm_lock);
380 kvm_io_bus_destroy(&kvm->pio_bus);
381 kvm_io_bus_destroy(&kvm->mmio_bus);
384 kvm_free_physmem(kvm);
388 static int kvm_vm_release(struct inode *inode, struct file *filp)
390 struct kvm *kvm = filp->private_data;
396 static void inject_gp(struct kvm_vcpu *vcpu)
398 kvm_arch_ops->inject_gp(vcpu, 0);
402 * Load the pae pdptrs. Return true is they are all valid.
404 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
406 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
407 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
412 u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
414 mutex_lock(&vcpu->kvm->lock);
415 page = gfn_to_page(vcpu->kvm, pdpt_gfn);
421 pdpt = kmap_atomic(page, KM_USER0);
422 memcpy(pdpte, pdpt+offset, sizeof(pdpte));
423 kunmap_atomic(pdpt, KM_USER0);
425 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
426 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
433 memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
435 mutex_unlock(&vcpu->kvm->lock);
440 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
442 if (cr0 & CR0_RESERVED_BITS) {
443 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
449 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
450 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
455 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
456 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
457 "and a clear PE flag\n");
462 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
464 if ((vcpu->shadow_efer & EFER_LME)) {
468 printk(KERN_DEBUG "set_cr0: #GP, start paging "
469 "in long mode while PAE is disabled\n");
473 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
475 printk(KERN_DEBUG "set_cr0: #GP, start paging "
476 "in long mode while CS.L == 1\n");
483 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
484 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
492 kvm_arch_ops->set_cr0(vcpu, cr0);
495 mutex_lock(&vcpu->kvm->lock);
496 kvm_mmu_reset_context(vcpu);
497 mutex_unlock(&vcpu->kvm->lock);
500 EXPORT_SYMBOL_GPL(set_cr0);
502 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
504 set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
506 EXPORT_SYMBOL_GPL(lmsw);
508 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
510 if (cr4 & CR4_RESERVED_BITS) {
511 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
516 if (is_long_mode(vcpu)) {
517 if (!(cr4 & X86_CR4_PAE)) {
518 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
523 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
524 && !load_pdptrs(vcpu, vcpu->cr3)) {
525 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
530 if (cr4 & X86_CR4_VMXE) {
531 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
535 kvm_arch_ops->set_cr4(vcpu, cr4);
536 mutex_lock(&vcpu->kvm->lock);
537 kvm_mmu_reset_context(vcpu);
538 mutex_unlock(&vcpu->kvm->lock);
540 EXPORT_SYMBOL_GPL(set_cr4);
542 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
544 if (is_long_mode(vcpu)) {
545 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
546 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
552 if (cr3 & CR3_PAE_RESERVED_BITS) {
554 "set_cr3: #GP, reserved bits\n");
558 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
559 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
565 if (cr3 & CR3_NONPAE_RESERVED_BITS) {
567 "set_cr3: #GP, reserved bits\n");
574 mutex_lock(&vcpu->kvm->lock);
576 * Does the new cr3 value map to physical memory? (Note, we
577 * catch an invalid cr3 even in real-mode, because it would
578 * cause trouble later on when we turn on paging anyway.)
580 * A real CPU would silently accept an invalid cr3 and would
581 * attempt to use it - with largely undefined (and often hard
582 * to debug) behavior on the guest side.
584 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
588 vcpu->mmu.new_cr3(vcpu);
590 mutex_unlock(&vcpu->kvm->lock);
592 EXPORT_SYMBOL_GPL(set_cr3);
594 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
596 if (cr8 & CR8_RESERVED_BITS) {
597 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
603 EXPORT_SYMBOL_GPL(set_cr8);
605 unsigned long get_cr8(struct kvm_vcpu *vcpu)
609 EXPORT_SYMBOL_GPL(get_cr8);
611 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
613 return vcpu->apic_base;
615 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
617 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
619 vcpu->apic_base = data;
621 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
623 void fx_init(struct kvm_vcpu *vcpu)
625 unsigned after_mxcsr_mask;
627 /* Initialize guest FPU by resetting ours and saving into guest's */
629 fx_save(&vcpu->host_fx_image);
631 fx_save(&vcpu->guest_fx_image);
632 fx_restore(&vcpu->host_fx_image);
635 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
636 vcpu->guest_fx_image.mxcsr = 0x1f80;
637 memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
638 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
640 EXPORT_SYMBOL_GPL(fx_init);
643 * Allocate some memory and give it an address in the guest physical address
646 * Discontiguous memory is allowed, mostly for framebuffers.
648 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
649 struct kvm_memory_region *mem)
653 unsigned long npages;
655 struct kvm_memory_slot *memslot;
656 struct kvm_memory_slot old, new;
657 int memory_config_version;
660 /* General sanity checks */
661 if (mem->memory_size & (PAGE_SIZE - 1))
663 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
665 if (mem->slot >= KVM_MEMORY_SLOTS)
667 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
670 memslot = &kvm->memslots[mem->slot];
671 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
672 npages = mem->memory_size >> PAGE_SHIFT;
675 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
678 mutex_lock(&kvm->lock);
680 memory_config_version = kvm->memory_config_version;
681 new = old = *memslot;
683 new.base_gfn = base_gfn;
685 new.flags = mem->flags;
687 /* Disallow changing a memory slot's size. */
689 if (npages && old.npages && npages != old.npages)
692 /* Check for overlaps */
694 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
695 struct kvm_memory_slot *s = &kvm->memslots[i];
699 if (!((base_gfn + npages <= s->base_gfn) ||
700 (base_gfn >= s->base_gfn + s->npages)))
704 * Do memory allocations outside lock. memory_config_version will
707 mutex_unlock(&kvm->lock);
709 /* Deallocate if slot is being removed */
713 /* Free page dirty bitmap if unneeded */
714 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
715 new.dirty_bitmap = NULL;
719 /* Allocate if a slot is being created */
720 if (npages && !new.phys_mem) {
721 new.phys_mem = vmalloc(npages * sizeof(struct page *));
726 memset(new.phys_mem, 0, npages * sizeof(struct page *));
727 for (i = 0; i < npages; ++i) {
728 new.phys_mem[i] = alloc_page(GFP_HIGHUSER
730 if (!new.phys_mem[i])
732 set_page_private(new.phys_mem[i],0);
736 /* Allocate page dirty bitmap if needed */
737 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
738 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
740 new.dirty_bitmap = vmalloc(dirty_bytes);
741 if (!new.dirty_bitmap)
743 memset(new.dirty_bitmap, 0, dirty_bytes);
746 mutex_lock(&kvm->lock);
748 if (memory_config_version != kvm->memory_config_version) {
749 mutex_unlock(&kvm->lock);
750 kvm_free_physmem_slot(&new, &old);
758 if (mem->slot >= kvm->nmemslots)
759 kvm->nmemslots = mem->slot + 1;
762 ++kvm->memory_config_version;
764 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
765 kvm_flush_remote_tlbs(kvm);
767 mutex_unlock(&kvm->lock);
769 kvm_free_physmem_slot(&old, &new);
773 mutex_unlock(&kvm->lock);
775 kvm_free_physmem_slot(&new, &old);
781 * Get (and clear) the dirty memory log for a memory slot.
783 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
784 struct kvm_dirty_log *log)
786 struct kvm_memory_slot *memslot;
789 unsigned long any = 0;
791 mutex_lock(&kvm->lock);
794 * Prevent changes to guest memory configuration even while the lock
798 mutex_unlock(&kvm->lock);
800 if (log->slot >= KVM_MEMORY_SLOTS)
803 memslot = &kvm->memslots[log->slot];
805 if (!memslot->dirty_bitmap)
808 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
810 for (i = 0; !any && i < n/sizeof(long); ++i)
811 any = memslot->dirty_bitmap[i];
814 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
817 /* If nothing is dirty, don't bother messing with page tables. */
819 mutex_lock(&kvm->lock);
820 kvm_mmu_slot_remove_write_access(kvm, log->slot);
821 kvm_flush_remote_tlbs(kvm);
822 memset(memslot->dirty_bitmap, 0, n);
823 mutex_unlock(&kvm->lock);
829 mutex_lock(&kvm->lock);
831 mutex_unlock(&kvm->lock);
836 * Set a new alias region. Aliases map a portion of physical memory into
837 * another portion. This is useful for memory windows, for example the PC
840 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
841 struct kvm_memory_alias *alias)
844 struct kvm_mem_alias *p;
847 /* General sanity checks */
848 if (alias->memory_size & (PAGE_SIZE - 1))
850 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
852 if (alias->slot >= KVM_ALIAS_SLOTS)
854 if (alias->guest_phys_addr + alias->memory_size
855 < alias->guest_phys_addr)
857 if (alias->target_phys_addr + alias->memory_size
858 < alias->target_phys_addr)
861 mutex_lock(&kvm->lock);
863 p = &kvm->aliases[alias->slot];
864 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
865 p->npages = alias->memory_size >> PAGE_SHIFT;
866 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
868 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
869 if (kvm->aliases[n - 1].npages)
873 kvm_mmu_zap_all(kvm);
875 mutex_unlock(&kvm->lock);
883 static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
886 struct kvm_mem_alias *alias;
888 for (i = 0; i < kvm->naliases; ++i) {
889 alias = &kvm->aliases[i];
890 if (gfn >= alias->base_gfn
891 && gfn < alias->base_gfn + alias->npages)
892 return alias->target_gfn + gfn - alias->base_gfn;
897 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
901 for (i = 0; i < kvm->nmemslots; ++i) {
902 struct kvm_memory_slot *memslot = &kvm->memslots[i];
904 if (gfn >= memslot->base_gfn
905 && gfn < memslot->base_gfn + memslot->npages)
911 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
913 gfn = unalias_gfn(kvm, gfn);
914 return __gfn_to_memslot(kvm, gfn);
917 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
919 struct kvm_memory_slot *slot;
921 gfn = unalias_gfn(kvm, gfn);
922 slot = __gfn_to_memslot(kvm, gfn);
925 return slot->phys_mem[gfn - slot->base_gfn];
927 EXPORT_SYMBOL_GPL(gfn_to_page);
929 /* WARNING: Does not work on aliased pages. */
930 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
932 struct kvm_memory_slot *memslot;
934 memslot = __gfn_to_memslot(kvm, gfn);
935 if (memslot && memslot->dirty_bitmap) {
936 unsigned long rel_gfn = gfn - memslot->base_gfn;
939 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
940 set_bit(rel_gfn, memslot->dirty_bitmap);
944 int emulator_read_std(unsigned long addr,
947 struct kvm_vcpu *vcpu)
952 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
953 unsigned offset = addr & (PAGE_SIZE-1);
954 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
959 if (gpa == UNMAPPED_GVA)
960 return X86EMUL_PROPAGATE_FAULT;
961 pfn = gpa >> PAGE_SHIFT;
962 page = gfn_to_page(vcpu->kvm, pfn);
964 return X86EMUL_UNHANDLEABLE;
965 page_virt = kmap_atomic(page, KM_USER0);
967 memcpy(data, page_virt + offset, tocopy);
969 kunmap_atomic(page_virt, KM_USER0);
976 return X86EMUL_CONTINUE;
978 EXPORT_SYMBOL_GPL(emulator_read_std);
980 static int emulator_write_std(unsigned long addr,
983 struct kvm_vcpu *vcpu)
985 pr_unimpl(vcpu, "emulator_write_std: addr %lx n %d\n", addr, bytes);
986 return X86EMUL_UNHANDLEABLE;
989 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
993 * Note that its important to have this wrapper function because
994 * in the very near future we will be checking for MMIOs against
995 * the LAPIC as well as the general MMIO bus
997 return kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1000 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
1003 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
1006 static int emulator_read_emulated(unsigned long addr,
1009 struct kvm_vcpu *vcpu)
1011 struct kvm_io_device *mmio_dev;
1014 if (vcpu->mmio_read_completed) {
1015 memcpy(val, vcpu->mmio_data, bytes);
1016 vcpu->mmio_read_completed = 0;
1017 return X86EMUL_CONTINUE;
1018 } else if (emulator_read_std(addr, val, bytes, vcpu)
1019 == X86EMUL_CONTINUE)
1020 return X86EMUL_CONTINUE;
1022 gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1023 if (gpa == UNMAPPED_GVA)
1024 return X86EMUL_PROPAGATE_FAULT;
1027 * Is this MMIO handled locally?
1029 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1031 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1032 return X86EMUL_CONTINUE;
1035 vcpu->mmio_needed = 1;
1036 vcpu->mmio_phys_addr = gpa;
1037 vcpu->mmio_size = bytes;
1038 vcpu->mmio_is_write = 0;
1040 return X86EMUL_UNHANDLEABLE;
1043 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1044 const void *val, int bytes)
1049 if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
1051 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1054 mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
1055 virt = kmap_atomic(page, KM_USER0);
1056 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1057 memcpy(virt + offset_in_page(gpa), val, bytes);
1058 kunmap_atomic(virt, KM_USER0);
1062 static int emulator_write_emulated_onepage(unsigned long addr,
1065 struct kvm_vcpu *vcpu)
1067 struct kvm_io_device *mmio_dev;
1068 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1070 if (gpa == UNMAPPED_GVA) {
1071 kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
1072 return X86EMUL_PROPAGATE_FAULT;
1075 if (emulator_write_phys(vcpu, gpa, val, bytes))
1076 return X86EMUL_CONTINUE;
1079 * Is this MMIO handled locally?
1081 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1083 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1084 return X86EMUL_CONTINUE;
1087 vcpu->mmio_needed = 1;
1088 vcpu->mmio_phys_addr = gpa;
1089 vcpu->mmio_size = bytes;
1090 vcpu->mmio_is_write = 1;
1091 memcpy(vcpu->mmio_data, val, bytes);
1093 return X86EMUL_CONTINUE;
1096 int emulator_write_emulated(unsigned long addr,
1099 struct kvm_vcpu *vcpu)
1101 /* Crossing a page boundary? */
1102 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1105 now = -addr & ~PAGE_MASK;
1106 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
1107 if (rc != X86EMUL_CONTINUE)
1113 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
1115 EXPORT_SYMBOL_GPL(emulator_write_emulated);
1117 static int emulator_cmpxchg_emulated(unsigned long addr,
1121 struct kvm_vcpu *vcpu)
1123 static int reported;
1127 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1129 return emulator_write_emulated(addr, new, bytes, vcpu);
1132 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1134 return kvm_arch_ops->get_segment_base(vcpu, seg);
1137 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1139 return X86EMUL_CONTINUE;
1142 int emulate_clts(struct kvm_vcpu *vcpu)
1146 cr0 = vcpu->cr0 & ~X86_CR0_TS;
1147 kvm_arch_ops->set_cr0(vcpu, cr0);
1148 return X86EMUL_CONTINUE;
1151 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1153 struct kvm_vcpu *vcpu = ctxt->vcpu;
1157 *dest = kvm_arch_ops->get_dr(vcpu, dr);
1158 return X86EMUL_CONTINUE;
1160 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
1161 return X86EMUL_UNHANDLEABLE;
1165 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1167 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1170 kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1172 /* FIXME: better handling */
1173 return X86EMUL_UNHANDLEABLE;
1175 return X86EMUL_CONTINUE;
1178 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
1180 static int reported;
1182 unsigned long rip = ctxt->vcpu->rip;
1183 unsigned long rip_linear;
1185 rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
1190 emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt->vcpu);
1192 printk(KERN_ERR "emulation failed but !mmio_needed?"
1193 " rip %lx %02x %02x %02x %02x\n",
1194 rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1198 struct x86_emulate_ops emulate_ops = {
1199 .read_std = emulator_read_std,
1200 .write_std = emulator_write_std,
1201 .read_emulated = emulator_read_emulated,
1202 .write_emulated = emulator_write_emulated,
1203 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1206 int emulate_instruction(struct kvm_vcpu *vcpu,
1207 struct kvm_run *run,
1211 struct x86_emulate_ctxt emulate_ctxt;
1215 vcpu->mmio_fault_cr2 = cr2;
1216 kvm_arch_ops->cache_regs(vcpu);
1218 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1220 emulate_ctxt.vcpu = vcpu;
1221 emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1222 emulate_ctxt.cr2 = cr2;
1223 emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1224 ? X86EMUL_MODE_REAL : cs_l
1225 ? X86EMUL_MODE_PROT64 : cs_db
1226 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1228 if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1229 emulate_ctxt.cs_base = 0;
1230 emulate_ctxt.ds_base = 0;
1231 emulate_ctxt.es_base = 0;
1232 emulate_ctxt.ss_base = 0;
1234 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1235 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1236 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1237 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1240 emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1241 emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1243 vcpu->mmio_is_write = 0;
1244 vcpu->pio.string = 0;
1245 r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1246 if (vcpu->pio.string)
1247 return EMULATE_DO_MMIO;
1249 if ((r || vcpu->mmio_is_write) && run) {
1250 run->exit_reason = KVM_EXIT_MMIO;
1251 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1252 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1253 run->mmio.len = vcpu->mmio_size;
1254 run->mmio.is_write = vcpu->mmio_is_write;
1258 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1259 return EMULATE_DONE;
1260 if (!vcpu->mmio_needed) {
1261 report_emulation_failure(&emulate_ctxt);
1262 return EMULATE_FAIL;
1264 return EMULATE_DO_MMIO;
1267 kvm_arch_ops->decache_regs(vcpu);
1268 kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1270 if (vcpu->mmio_is_write) {
1271 vcpu->mmio_needed = 0;
1272 return EMULATE_DO_MMIO;
1275 return EMULATE_DONE;
1277 EXPORT_SYMBOL_GPL(emulate_instruction);
1279 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
1281 if (vcpu->irq_summary ||
1282 (irqchip_in_kernel(vcpu->kvm) && kvm_cpu_has_interrupt(vcpu)))
1285 vcpu->run->exit_reason = KVM_EXIT_HLT;
1286 ++vcpu->stat.halt_exits;
1289 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
1291 int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
1293 unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
1295 kvm_arch_ops->cache_regs(vcpu);
1297 #ifdef CONFIG_X86_64
1298 if (is_long_mode(vcpu)) {
1299 nr = vcpu->regs[VCPU_REGS_RAX];
1300 a0 = vcpu->regs[VCPU_REGS_RDI];
1301 a1 = vcpu->regs[VCPU_REGS_RSI];
1302 a2 = vcpu->regs[VCPU_REGS_RDX];
1303 a3 = vcpu->regs[VCPU_REGS_RCX];
1304 a4 = vcpu->regs[VCPU_REGS_R8];
1305 a5 = vcpu->regs[VCPU_REGS_R9];
1309 nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
1310 a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
1311 a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
1312 a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
1313 a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
1314 a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
1315 a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
1319 run->hypercall.nr = nr;
1320 run->hypercall.args[0] = a0;
1321 run->hypercall.args[1] = a1;
1322 run->hypercall.args[2] = a2;
1323 run->hypercall.args[3] = a3;
1324 run->hypercall.args[4] = a4;
1325 run->hypercall.args[5] = a5;
1326 run->hypercall.ret = ret;
1327 run->hypercall.longmode = is_long_mode(vcpu);
1328 kvm_arch_ops->decache_regs(vcpu);
1331 vcpu->regs[VCPU_REGS_RAX] = ret;
1332 kvm_arch_ops->decache_regs(vcpu);
1335 EXPORT_SYMBOL_GPL(kvm_hypercall);
1337 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1339 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1342 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1344 struct descriptor_table dt = { limit, base };
1346 kvm_arch_ops->set_gdt(vcpu, &dt);
1349 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1351 struct descriptor_table dt = { limit, base };
1353 kvm_arch_ops->set_idt(vcpu, &dt);
1356 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1357 unsigned long *rflags)
1360 *rflags = kvm_arch_ops->get_rflags(vcpu);
1363 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1365 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
1376 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1381 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1382 unsigned long *rflags)
1386 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1387 *rflags = kvm_arch_ops->get_rflags(vcpu);
1396 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1399 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1404 * Register the para guest with the host:
1406 static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
1408 struct kvm_vcpu_para_state *para_state;
1409 hpa_t para_state_hpa, hypercall_hpa;
1410 struct page *para_state_page;
1411 unsigned char *hypercall;
1412 gpa_t hypercall_gpa;
1414 printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
1415 printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
1418 * Needs to be page aligned:
1420 if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
1423 para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
1424 printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
1425 if (is_error_hpa(para_state_hpa))
1428 mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
1429 para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
1430 para_state = kmap(para_state_page);
1432 printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
1433 printk(KERN_DEBUG ".... size: %d\n", para_state->size);
1435 para_state->host_version = KVM_PARA_API_VERSION;
1437 * We cannot support guests that try to register themselves
1438 * with a newer API version than the host supports:
1440 if (para_state->guest_version > KVM_PARA_API_VERSION) {
1441 para_state->ret = -KVM_EINVAL;
1442 goto err_kunmap_skip;
1445 hypercall_gpa = para_state->hypercall_gpa;
1446 hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
1447 printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
1448 if (is_error_hpa(hypercall_hpa)) {
1449 para_state->ret = -KVM_EINVAL;
1450 goto err_kunmap_skip;
1453 printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
1454 vcpu->para_state_page = para_state_page;
1455 vcpu->para_state_gpa = para_state_gpa;
1456 vcpu->hypercall_gpa = hypercall_gpa;
1458 mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
1459 hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
1460 KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
1461 kvm_arch_ops->patch_hypercall(vcpu, hypercall);
1462 kunmap_atomic(hypercall, KM_USER1);
1464 para_state->ret = 0;
1466 kunmap(para_state_page);
1472 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1477 case 0xc0010010: /* SYSCFG */
1478 case 0xc0010015: /* HWCR */
1479 case MSR_IA32_PLATFORM_ID:
1480 case MSR_IA32_P5_MC_ADDR:
1481 case MSR_IA32_P5_MC_TYPE:
1482 case MSR_IA32_MC0_CTL:
1483 case MSR_IA32_MCG_STATUS:
1484 case MSR_IA32_MCG_CAP:
1485 case MSR_IA32_MC0_MISC:
1486 case MSR_IA32_MC0_MISC+4:
1487 case MSR_IA32_MC0_MISC+8:
1488 case MSR_IA32_MC0_MISC+12:
1489 case MSR_IA32_MC0_MISC+16:
1490 case MSR_IA32_UCODE_REV:
1491 case MSR_IA32_PERF_STATUS:
1492 case MSR_IA32_EBL_CR_POWERON:
1493 /* MTRR registers */
1495 case 0x200 ... 0x2ff:
1498 case 0xcd: /* fsb frequency */
1501 case MSR_IA32_APICBASE:
1502 data = kvm_get_apic_base(vcpu);
1504 case MSR_IA32_MISC_ENABLE:
1505 data = vcpu->ia32_misc_enable_msr;
1507 #ifdef CONFIG_X86_64
1509 data = vcpu->shadow_efer;
1513 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1519 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1522 * Reads an msr value (of 'msr_index') into 'pdata'.
1523 * Returns 0 on success, non-0 otherwise.
1524 * Assumes vcpu_load() was already called.
1526 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1528 return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1531 #ifdef CONFIG_X86_64
1533 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1535 if (efer & EFER_RESERVED_BITS) {
1536 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1543 && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1544 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1549 kvm_arch_ops->set_efer(vcpu, efer);
1552 efer |= vcpu->shadow_efer & EFER_LMA;
1554 vcpu->shadow_efer = efer;
1559 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1562 #ifdef CONFIG_X86_64
1564 set_efer(vcpu, data);
1567 case MSR_IA32_MC0_STATUS:
1568 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1569 __FUNCTION__, data);
1571 case MSR_IA32_MCG_STATUS:
1572 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
1573 __FUNCTION__, data);
1575 case MSR_IA32_UCODE_REV:
1576 case MSR_IA32_UCODE_WRITE:
1577 case 0x200 ... 0x2ff: /* MTRRs */
1579 case MSR_IA32_APICBASE:
1580 kvm_set_apic_base(vcpu, data);
1582 case MSR_IA32_MISC_ENABLE:
1583 vcpu->ia32_misc_enable_msr = data;
1586 * This is the 'probe whether the host is KVM' logic:
1588 case MSR_KVM_API_MAGIC:
1589 return vcpu_register_para(vcpu, data);
1592 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
1597 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1600 * Writes msr value into into the appropriate "register".
1601 * Returns 0 on success, non-0 otherwise.
1602 * Assumes vcpu_load() was already called.
1604 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1606 return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1609 void kvm_resched(struct kvm_vcpu *vcpu)
1611 if (!need_resched())
1615 EXPORT_SYMBOL_GPL(kvm_resched);
1617 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1621 struct kvm_cpuid_entry *e, *best;
1623 kvm_arch_ops->cache_regs(vcpu);
1624 function = vcpu->regs[VCPU_REGS_RAX];
1625 vcpu->regs[VCPU_REGS_RAX] = 0;
1626 vcpu->regs[VCPU_REGS_RBX] = 0;
1627 vcpu->regs[VCPU_REGS_RCX] = 0;
1628 vcpu->regs[VCPU_REGS_RDX] = 0;
1630 for (i = 0; i < vcpu->cpuid_nent; ++i) {
1631 e = &vcpu->cpuid_entries[i];
1632 if (e->function == function) {
1637 * Both basic or both extended?
1639 if (((e->function ^ function) & 0x80000000) == 0)
1640 if (!best || e->function > best->function)
1644 vcpu->regs[VCPU_REGS_RAX] = best->eax;
1645 vcpu->regs[VCPU_REGS_RBX] = best->ebx;
1646 vcpu->regs[VCPU_REGS_RCX] = best->ecx;
1647 vcpu->regs[VCPU_REGS_RDX] = best->edx;
1649 kvm_arch_ops->decache_regs(vcpu);
1650 kvm_arch_ops->skip_emulated_instruction(vcpu);
1652 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1654 static int pio_copy_data(struct kvm_vcpu *vcpu)
1656 void *p = vcpu->pio_data;
1659 int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
1661 q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
1664 free_pio_guest_pages(vcpu);
1667 q += vcpu->pio.guest_page_offset;
1668 bytes = vcpu->pio.size * vcpu->pio.cur_count;
1670 memcpy(q, p, bytes);
1672 memcpy(p, q, bytes);
1673 q -= vcpu->pio.guest_page_offset;
1675 free_pio_guest_pages(vcpu);
1679 static int complete_pio(struct kvm_vcpu *vcpu)
1681 struct kvm_pio_request *io = &vcpu->pio;
1685 kvm_arch_ops->cache_regs(vcpu);
1689 memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
1693 r = pio_copy_data(vcpu);
1695 kvm_arch_ops->cache_regs(vcpu);
1702 delta *= io->cur_count;
1704 * The size of the register should really depend on
1705 * current address size.
1707 vcpu->regs[VCPU_REGS_RCX] -= delta;
1713 vcpu->regs[VCPU_REGS_RDI] += delta;
1715 vcpu->regs[VCPU_REGS_RSI] += delta;
1718 kvm_arch_ops->decache_regs(vcpu);
1720 io->count -= io->cur_count;
1724 kvm_arch_ops->skip_emulated_instruction(vcpu);
1728 static void kernel_pio(struct kvm_io_device *pio_dev,
1729 struct kvm_vcpu *vcpu,
1732 /* TODO: String I/O for in kernel device */
1735 kvm_iodevice_read(pio_dev, vcpu->pio.port,
1739 kvm_iodevice_write(pio_dev, vcpu->pio.port,
1744 static void pio_string_write(struct kvm_io_device *pio_dev,
1745 struct kvm_vcpu *vcpu)
1747 struct kvm_pio_request *io = &vcpu->pio;
1748 void *pd = vcpu->pio_data;
1751 for (i = 0; i < io->cur_count; i++) {
1752 kvm_iodevice_write(pio_dev, io->port,
1759 int kvm_emulate_pio (struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1760 int size, unsigned port)
1762 struct kvm_io_device *pio_dev;
1764 vcpu->run->exit_reason = KVM_EXIT_IO;
1765 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1766 vcpu->run->io.size = vcpu->pio.size = size;
1767 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1768 vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
1769 vcpu->run->io.port = vcpu->pio.port = port;
1771 vcpu->pio.string = 0;
1773 vcpu->pio.guest_page_offset = 0;
1776 kvm_arch_ops->cache_regs(vcpu);
1777 memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
1778 kvm_arch_ops->decache_regs(vcpu);
1780 pio_dev = vcpu_find_pio_dev(vcpu, port);
1782 kernel_pio(pio_dev, vcpu, vcpu->pio_data);
1788 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
1790 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1791 int size, unsigned long count, int down,
1792 gva_t address, int rep, unsigned port)
1794 unsigned now, in_page;
1798 struct kvm_io_device *pio_dev;
1800 vcpu->run->exit_reason = KVM_EXIT_IO;
1801 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1802 vcpu->run->io.size = vcpu->pio.size = size;
1803 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1804 vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
1805 vcpu->run->io.port = vcpu->pio.port = port;
1807 vcpu->pio.string = 1;
1808 vcpu->pio.down = down;
1809 vcpu->pio.guest_page_offset = offset_in_page(address);
1810 vcpu->pio.rep = rep;
1813 kvm_arch_ops->skip_emulated_instruction(vcpu);
1818 in_page = PAGE_SIZE - offset_in_page(address);
1820 in_page = offset_in_page(address) + size;
1821 now = min(count, (unsigned long)in_page / size);
1824 * String I/O straddles page boundary. Pin two guest pages
1825 * so that we satisfy atomicity constraints. Do just one
1826 * transaction to avoid complexity.
1833 * String I/O in reverse. Yuck. Kill the guest, fix later.
1835 pr_unimpl(vcpu, "guest string pio down\n");
1839 vcpu->run->io.count = now;
1840 vcpu->pio.cur_count = now;
1842 for (i = 0; i < nr_pages; ++i) {
1843 mutex_lock(&vcpu->kvm->lock);
1844 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
1847 vcpu->pio.guest_pages[i] = page;
1848 mutex_unlock(&vcpu->kvm->lock);
1851 free_pio_guest_pages(vcpu);
1856 pio_dev = vcpu_find_pio_dev(vcpu, port);
1857 if (!vcpu->pio.in) {
1858 /* string PIO write */
1859 ret = pio_copy_data(vcpu);
1860 if (ret >= 0 && pio_dev) {
1861 pio_string_write(pio_dev, vcpu);
1863 if (vcpu->pio.count == 0)
1867 pr_unimpl(vcpu, "no string pio read support yet, "
1868 "port %x size %d count %ld\n",
1873 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
1875 static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1882 if (vcpu->sigset_active)
1883 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1885 /* re-sync apic's tpr */
1886 set_cr8(vcpu, kvm_run->cr8);
1888 if (vcpu->pio.cur_count) {
1889 r = complete_pio(vcpu);
1894 if (vcpu->mmio_needed) {
1895 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1896 vcpu->mmio_read_completed = 1;
1897 vcpu->mmio_needed = 0;
1898 r = emulate_instruction(vcpu, kvm_run,
1899 vcpu->mmio_fault_cr2, 0);
1900 if (r == EMULATE_DO_MMIO) {
1902 * Read-modify-write. Back to userspace.
1909 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
1910 kvm_arch_ops->cache_regs(vcpu);
1911 vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
1912 kvm_arch_ops->decache_regs(vcpu);
1915 r = kvm_arch_ops->run(vcpu, kvm_run);
1918 if (vcpu->sigset_active)
1919 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1925 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
1926 struct kvm_regs *regs)
1930 kvm_arch_ops->cache_regs(vcpu);
1932 regs->rax = vcpu->regs[VCPU_REGS_RAX];
1933 regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1934 regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1935 regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1936 regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1937 regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1938 regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1939 regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1940 #ifdef CONFIG_X86_64
1941 regs->r8 = vcpu->regs[VCPU_REGS_R8];
1942 regs->r9 = vcpu->regs[VCPU_REGS_R9];
1943 regs->r10 = vcpu->regs[VCPU_REGS_R10];
1944 regs->r11 = vcpu->regs[VCPU_REGS_R11];
1945 regs->r12 = vcpu->regs[VCPU_REGS_R12];
1946 regs->r13 = vcpu->regs[VCPU_REGS_R13];
1947 regs->r14 = vcpu->regs[VCPU_REGS_R14];
1948 regs->r15 = vcpu->regs[VCPU_REGS_R15];
1951 regs->rip = vcpu->rip;
1952 regs->rflags = kvm_arch_ops->get_rflags(vcpu);
1955 * Don't leak debug flags in case they were set for guest debugging
1957 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1958 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1965 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
1966 struct kvm_regs *regs)
1970 vcpu->regs[VCPU_REGS_RAX] = regs->rax;
1971 vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
1972 vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
1973 vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
1974 vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
1975 vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
1976 vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
1977 vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
1978 #ifdef CONFIG_X86_64
1979 vcpu->regs[VCPU_REGS_R8] = regs->r8;
1980 vcpu->regs[VCPU_REGS_R9] = regs->r9;
1981 vcpu->regs[VCPU_REGS_R10] = regs->r10;
1982 vcpu->regs[VCPU_REGS_R11] = regs->r11;
1983 vcpu->regs[VCPU_REGS_R12] = regs->r12;
1984 vcpu->regs[VCPU_REGS_R13] = regs->r13;
1985 vcpu->regs[VCPU_REGS_R14] = regs->r14;
1986 vcpu->regs[VCPU_REGS_R15] = regs->r15;
1989 vcpu->rip = regs->rip;
1990 kvm_arch_ops->set_rflags(vcpu, regs->rflags);
1992 kvm_arch_ops->decache_regs(vcpu);
1999 static void get_segment(struct kvm_vcpu *vcpu,
2000 struct kvm_segment *var, int seg)
2002 return kvm_arch_ops->get_segment(vcpu, var, seg);
2005 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
2006 struct kvm_sregs *sregs)
2008 struct descriptor_table dt;
2012 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2013 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2014 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2015 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2016 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2017 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2019 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2020 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2022 kvm_arch_ops->get_idt(vcpu, &dt);
2023 sregs->idt.limit = dt.limit;
2024 sregs->idt.base = dt.base;
2025 kvm_arch_ops->get_gdt(vcpu, &dt);
2026 sregs->gdt.limit = dt.limit;
2027 sregs->gdt.base = dt.base;
2029 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
2030 sregs->cr0 = vcpu->cr0;
2031 sregs->cr2 = vcpu->cr2;
2032 sregs->cr3 = vcpu->cr3;
2033 sregs->cr4 = vcpu->cr4;
2034 sregs->cr8 = get_cr8(vcpu);
2035 sregs->efer = vcpu->shadow_efer;
2036 sregs->apic_base = kvm_get_apic_base(vcpu);
2038 memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
2039 sizeof sregs->interrupt_bitmap);
2046 static void set_segment(struct kvm_vcpu *vcpu,
2047 struct kvm_segment *var, int seg)
2049 return kvm_arch_ops->set_segment(vcpu, var, seg);
2052 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2053 struct kvm_sregs *sregs)
2055 int mmu_reset_needed = 0;
2057 struct descriptor_table dt;
2061 dt.limit = sregs->idt.limit;
2062 dt.base = sregs->idt.base;
2063 kvm_arch_ops->set_idt(vcpu, &dt);
2064 dt.limit = sregs->gdt.limit;
2065 dt.base = sregs->gdt.base;
2066 kvm_arch_ops->set_gdt(vcpu, &dt);
2068 vcpu->cr2 = sregs->cr2;
2069 mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
2070 vcpu->cr3 = sregs->cr3;
2072 set_cr8(vcpu, sregs->cr8);
2074 mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
2075 #ifdef CONFIG_X86_64
2076 kvm_arch_ops->set_efer(vcpu, sregs->efer);
2078 kvm_set_apic_base(vcpu, sregs->apic_base);
2080 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
2082 mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
2083 kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
2085 mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
2086 kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
2087 if (!is_long_mode(vcpu) && is_pae(vcpu))
2088 load_pdptrs(vcpu, vcpu->cr3);
2090 if (mmu_reset_needed)
2091 kvm_mmu_reset_context(vcpu);
2093 memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
2094 sizeof vcpu->irq_pending);
2095 vcpu->irq_summary = 0;
2096 for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
2097 if (vcpu->irq_pending[i])
2098 __set_bit(i, &vcpu->irq_summary);
2100 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2101 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2102 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2103 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2104 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2105 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2107 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2108 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2116 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
2117 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
2119 * This list is modified at module load time to reflect the
2120 * capabilities of the host cpu.
2122 static u32 msrs_to_save[] = {
2123 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
2125 #ifdef CONFIG_X86_64
2126 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
2128 MSR_IA32_TIME_STAMP_COUNTER,
2131 static unsigned num_msrs_to_save;
2133 static u32 emulated_msrs[] = {
2134 MSR_IA32_MISC_ENABLE,
2137 static __init void kvm_init_msr_list(void)
2142 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2143 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2146 msrs_to_save[j] = msrs_to_save[i];
2149 num_msrs_to_save = j;
2153 * Adapt set_msr() to msr_io()'s calling convention
2155 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2157 return kvm_set_msr(vcpu, index, *data);
2161 * Read or write a bunch of msrs. All parameters are kernel addresses.
2163 * @return number of msrs set successfully.
2165 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2166 struct kvm_msr_entry *entries,
2167 int (*do_msr)(struct kvm_vcpu *vcpu,
2168 unsigned index, u64 *data))
2174 for (i = 0; i < msrs->nmsrs; ++i)
2175 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2184 * Read or write a bunch of msrs. Parameters are user addresses.
2186 * @return number of msrs set successfully.
2188 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2189 int (*do_msr)(struct kvm_vcpu *vcpu,
2190 unsigned index, u64 *data),
2193 struct kvm_msrs msrs;
2194 struct kvm_msr_entry *entries;
2199 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2203 if (msrs.nmsrs >= MAX_IO_MSRS)
2207 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2208 entries = vmalloc(size);
2213 if (copy_from_user(entries, user_msrs->entries, size))
2216 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2221 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2233 * Translate a guest virtual address to a guest physical address.
2235 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2236 struct kvm_translation *tr)
2238 unsigned long vaddr = tr->linear_address;
2242 mutex_lock(&vcpu->kvm->lock);
2243 gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
2244 tr->physical_address = gpa;
2245 tr->valid = gpa != UNMAPPED_GVA;
2248 mutex_unlock(&vcpu->kvm->lock);
2254 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2255 struct kvm_interrupt *irq)
2257 if (irq->irq < 0 || irq->irq >= 256)
2261 set_bit(irq->irq, vcpu->irq_pending);
2262 set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
2269 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
2270 struct kvm_debug_guest *dbg)
2276 r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
2283 static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
2284 unsigned long address,
2287 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2288 unsigned long pgoff;
2291 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2293 page = virt_to_page(vcpu->run);
2294 else if (pgoff == KVM_PIO_PAGE_OFFSET)
2295 page = virt_to_page(vcpu->pio_data);
2297 return NOPAGE_SIGBUS;
2300 *type = VM_FAULT_MINOR;
2305 static struct vm_operations_struct kvm_vcpu_vm_ops = {
2306 .nopage = kvm_vcpu_nopage,
2309 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2311 vma->vm_ops = &kvm_vcpu_vm_ops;
2315 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2317 struct kvm_vcpu *vcpu = filp->private_data;
2319 fput(vcpu->kvm->filp);
2323 static struct file_operations kvm_vcpu_fops = {
2324 .release = kvm_vcpu_release,
2325 .unlocked_ioctl = kvm_vcpu_ioctl,
2326 .compat_ioctl = kvm_vcpu_ioctl,
2327 .mmap = kvm_vcpu_mmap,
2331 * Allocates an inode for the vcpu.
2333 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2336 struct inode *inode;
2339 r = anon_inode_getfd(&fd, &inode, &file,
2340 "kvm-vcpu", &kvm_vcpu_fops, vcpu);
2343 atomic_inc(&vcpu->kvm->filp->f_count);
2348 * Creates some virtual cpus. Good luck creating more than one.
2350 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
2353 struct kvm_vcpu *vcpu;
2358 vcpu = kvm_arch_ops->vcpu_create(kvm, n);
2360 return PTR_ERR(vcpu);
2362 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2364 /* We do fxsave: this must be aligned. */
2365 BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
2368 r = kvm_mmu_setup(vcpu);
2373 mutex_lock(&kvm->lock);
2374 if (kvm->vcpus[n]) {
2376 mutex_unlock(&kvm->lock);
2379 kvm->vcpus[n] = vcpu;
2380 mutex_unlock(&kvm->lock);
2382 /* Now it's all set up, let userspace reach it */
2383 r = create_vcpu_fd(vcpu);
2389 mutex_lock(&kvm->lock);
2390 kvm->vcpus[n] = NULL;
2391 mutex_unlock(&kvm->lock);
2395 kvm_mmu_unload(vcpu);
2399 kvm_arch_ops->vcpu_free(vcpu);
2403 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2407 struct kvm_cpuid_entry *e, *entry;
2409 rdmsrl(MSR_EFER, efer);
2411 for (i = 0; i < vcpu->cpuid_nent; ++i) {
2412 e = &vcpu->cpuid_entries[i];
2413 if (e->function == 0x80000001) {
2418 if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
2419 entry->edx &= ~(1 << 20);
2420 printk(KERN_INFO "kvm: guest NX capability removed\n");
2424 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2425 struct kvm_cpuid *cpuid,
2426 struct kvm_cpuid_entry __user *entries)
2431 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2434 if (copy_from_user(&vcpu->cpuid_entries, entries,
2435 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2437 vcpu->cpuid_nent = cpuid->nent;
2438 cpuid_fix_nx_cap(vcpu);
2445 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2448 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2449 vcpu->sigset_active = 1;
2450 vcpu->sigset = *sigset;
2452 vcpu->sigset_active = 0;
2457 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
2458 * we have asm/x86/processor.h
2469 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
2470 #ifdef CONFIG_X86_64
2471 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
2473 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
2477 static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2479 struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
2483 memcpy(fpu->fpr, fxsave->st_space, 128);
2484 fpu->fcw = fxsave->cwd;
2485 fpu->fsw = fxsave->swd;
2486 fpu->ftwx = fxsave->twd;
2487 fpu->last_opcode = fxsave->fop;
2488 fpu->last_ip = fxsave->rip;
2489 fpu->last_dp = fxsave->rdp;
2490 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
2497 static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2499 struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
2503 memcpy(fxsave->st_space, fpu->fpr, 128);
2504 fxsave->cwd = fpu->fcw;
2505 fxsave->swd = fpu->fsw;
2506 fxsave->twd = fpu->ftwx;
2507 fxsave->fop = fpu->last_opcode;
2508 fxsave->rip = fpu->last_ip;
2509 fxsave->rdp = fpu->last_dp;
2510 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
2517 static long kvm_vcpu_ioctl(struct file *filp,
2518 unsigned int ioctl, unsigned long arg)
2520 struct kvm_vcpu *vcpu = filp->private_data;
2521 void __user *argp = (void __user *)arg;
2529 r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
2531 case KVM_GET_REGS: {
2532 struct kvm_regs kvm_regs;
2534 memset(&kvm_regs, 0, sizeof kvm_regs);
2535 r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
2539 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
2544 case KVM_SET_REGS: {
2545 struct kvm_regs kvm_regs;
2548 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
2550 r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
2556 case KVM_GET_SREGS: {
2557 struct kvm_sregs kvm_sregs;
2559 memset(&kvm_sregs, 0, sizeof kvm_sregs);
2560 r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
2564 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
2569 case KVM_SET_SREGS: {
2570 struct kvm_sregs kvm_sregs;
2573 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
2575 r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
2581 case KVM_TRANSLATE: {
2582 struct kvm_translation tr;
2585 if (copy_from_user(&tr, argp, sizeof tr))
2587 r = kvm_vcpu_ioctl_translate(vcpu, &tr);
2591 if (copy_to_user(argp, &tr, sizeof tr))
2596 case KVM_INTERRUPT: {
2597 struct kvm_interrupt irq;
2600 if (copy_from_user(&irq, argp, sizeof irq))
2602 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2608 case KVM_DEBUG_GUEST: {
2609 struct kvm_debug_guest dbg;
2612 if (copy_from_user(&dbg, argp, sizeof dbg))
2614 r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
2621 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2624 r = msr_io(vcpu, argp, do_set_msr, 0);
2626 case KVM_SET_CPUID: {
2627 struct kvm_cpuid __user *cpuid_arg = argp;
2628 struct kvm_cpuid cpuid;
2631 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2633 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2638 case KVM_SET_SIGNAL_MASK: {
2639 struct kvm_signal_mask __user *sigmask_arg = argp;
2640 struct kvm_signal_mask kvm_sigmask;
2641 sigset_t sigset, *p;
2646 if (copy_from_user(&kvm_sigmask, argp,
2647 sizeof kvm_sigmask))
2650 if (kvm_sigmask.len != sizeof sigset)
2653 if (copy_from_user(&sigset, sigmask_arg->sigset,
2658 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2664 memset(&fpu, 0, sizeof fpu);
2665 r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
2669 if (copy_to_user(argp, &fpu, sizeof fpu))
2678 if (copy_from_user(&fpu, argp, sizeof fpu))
2680 r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
2693 static long kvm_vm_ioctl(struct file *filp,
2694 unsigned int ioctl, unsigned long arg)
2696 struct kvm *kvm = filp->private_data;
2697 void __user *argp = (void __user *)arg;
2701 case KVM_CREATE_VCPU:
2702 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2706 case KVM_SET_MEMORY_REGION: {
2707 struct kvm_memory_region kvm_mem;
2710 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2712 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
2717 case KVM_GET_DIRTY_LOG: {
2718 struct kvm_dirty_log log;
2721 if (copy_from_user(&log, argp, sizeof log))
2723 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2728 case KVM_SET_MEMORY_ALIAS: {
2729 struct kvm_memory_alias alias;
2732 if (copy_from_user(&alias, argp, sizeof alias))
2734 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
2739 case KVM_CREATE_IRQCHIP:
2741 kvm->vpic = kvm_create_pic(kvm);
2747 case KVM_IRQ_LINE: {
2748 struct kvm_irq_level irq_event;
2751 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2753 if (irqchip_in_kernel(kvm)) {
2754 if (irq_event.irq < 16)
2755 kvm_pic_set_irq(pic_irqchip(kvm),
2770 static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
2771 unsigned long address,
2774 struct kvm *kvm = vma->vm_file->private_data;
2775 unsigned long pgoff;
2778 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2779 page = gfn_to_page(kvm, pgoff);
2781 return NOPAGE_SIGBUS;
2784 *type = VM_FAULT_MINOR;
2789 static struct vm_operations_struct kvm_vm_vm_ops = {
2790 .nopage = kvm_vm_nopage,
2793 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2795 vma->vm_ops = &kvm_vm_vm_ops;
2799 static struct file_operations kvm_vm_fops = {
2800 .release = kvm_vm_release,
2801 .unlocked_ioctl = kvm_vm_ioctl,
2802 .compat_ioctl = kvm_vm_ioctl,
2803 .mmap = kvm_vm_mmap,
2806 static int kvm_dev_ioctl_create_vm(void)
2809 struct inode *inode;
2813 kvm = kvm_create_vm();
2815 return PTR_ERR(kvm);
2816 r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
2818 kvm_destroy_vm(kvm);
2827 static long kvm_dev_ioctl(struct file *filp,
2828 unsigned int ioctl, unsigned long arg)
2830 void __user *argp = (void __user *)arg;
2834 case KVM_GET_API_VERSION:
2838 r = KVM_API_VERSION;
2844 r = kvm_dev_ioctl_create_vm();
2846 case KVM_GET_MSR_INDEX_LIST: {
2847 struct kvm_msr_list __user *user_msr_list = argp;
2848 struct kvm_msr_list msr_list;
2852 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2855 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2856 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2859 if (n < num_msrs_to_save)
2862 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2863 num_msrs_to_save * sizeof(u32)))
2865 if (copy_to_user(user_msr_list->indices
2866 + num_msrs_to_save * sizeof(u32),
2868 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2873 case KVM_CHECK_EXTENSION: {
2874 int ext = (long)argp;
2877 case KVM_CAP_IRQCHIP:
2886 case KVM_GET_VCPU_MMAP_SIZE:
2899 static struct file_operations kvm_chardev_ops = {
2900 .unlocked_ioctl = kvm_dev_ioctl,
2901 .compat_ioctl = kvm_dev_ioctl,
2904 static struct miscdevice kvm_dev = {
2911 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
2914 static void decache_vcpus_on_cpu(int cpu)
2917 struct kvm_vcpu *vcpu;
2920 spin_lock(&kvm_lock);
2921 list_for_each_entry(vm, &vm_list, vm_list)
2922 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2923 vcpu = vm->vcpus[i];
2927 * If the vcpu is locked, then it is running on some
2928 * other cpu and therefore it is not cached on the
2931 * If it's not locked, check the last cpu it executed
2934 if (mutex_trylock(&vcpu->mutex)) {
2935 if (vcpu->cpu == cpu) {
2936 kvm_arch_ops->vcpu_decache(vcpu);
2939 mutex_unlock(&vcpu->mutex);
2942 spin_unlock(&kvm_lock);
2945 static void hardware_enable(void *junk)
2947 int cpu = raw_smp_processor_id();
2949 if (cpu_isset(cpu, cpus_hardware_enabled))
2951 cpu_set(cpu, cpus_hardware_enabled);
2952 kvm_arch_ops->hardware_enable(NULL);
2955 static void hardware_disable(void *junk)
2957 int cpu = raw_smp_processor_id();
2959 if (!cpu_isset(cpu, cpus_hardware_enabled))
2961 cpu_clear(cpu, cpus_hardware_enabled);
2962 decache_vcpus_on_cpu(cpu);
2963 kvm_arch_ops->hardware_disable(NULL);
2966 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2973 case CPU_DYING_FROZEN:
2974 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2976 hardware_disable(NULL);
2978 case CPU_UP_CANCELED:
2979 case CPU_UP_CANCELED_FROZEN:
2980 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2982 smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
2985 case CPU_ONLINE_FROZEN:
2986 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2988 smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
2994 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2997 if (val == SYS_RESTART) {
2999 * Some (well, at least mine) BIOSes hang on reboot if
3002 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
3003 on_each_cpu(hardware_disable, NULL, 0, 1);
3008 static struct notifier_block kvm_reboot_notifier = {
3009 .notifier_call = kvm_reboot,
3013 void kvm_io_bus_init(struct kvm_io_bus *bus)
3015 memset(bus, 0, sizeof(*bus));
3018 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3022 for (i = 0; i < bus->dev_count; i++) {
3023 struct kvm_io_device *pos = bus->devs[i];
3025 kvm_iodevice_destructor(pos);
3029 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
3033 for (i = 0; i < bus->dev_count; i++) {
3034 struct kvm_io_device *pos = bus->devs[i];
3036 if (pos->in_range(pos, addr))
3043 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
3045 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
3047 bus->devs[bus->dev_count++] = dev;
3050 static struct notifier_block kvm_cpu_notifier = {
3051 .notifier_call = kvm_cpu_hotplug,
3052 .priority = 20, /* must be > scheduler priority */
3055 static u64 stat_get(void *_offset)
3057 unsigned offset = (long)_offset;
3060 struct kvm_vcpu *vcpu;
3063 spin_lock(&kvm_lock);
3064 list_for_each_entry(kvm, &vm_list, vm_list)
3065 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3066 vcpu = kvm->vcpus[i];
3068 total += *(u32 *)((void *)vcpu + offset);
3070 spin_unlock(&kvm_lock);
3074 DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
3076 static __init void kvm_init_debug(void)
3078 struct kvm_stats_debugfs_item *p;
3080 debugfs_dir = debugfs_create_dir("kvm", NULL);
3081 for (p = debugfs_entries; p->name; ++p)
3082 p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
3083 (void *)(long)p->offset,
3087 static void kvm_exit_debug(void)
3089 struct kvm_stats_debugfs_item *p;
3091 for (p = debugfs_entries; p->name; ++p)
3092 debugfs_remove(p->dentry);
3093 debugfs_remove(debugfs_dir);
3096 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
3098 hardware_disable(NULL);
3102 static int kvm_resume(struct sys_device *dev)
3104 hardware_enable(NULL);
3108 static struct sysdev_class kvm_sysdev_class = {
3109 set_kset_name("kvm"),
3110 .suspend = kvm_suspend,
3111 .resume = kvm_resume,
3114 static struct sys_device kvm_sysdev = {
3116 .cls = &kvm_sysdev_class,
3119 hpa_t bad_page_address;
3122 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3124 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3127 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3129 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3131 kvm_arch_ops->vcpu_load(vcpu, cpu);
3134 static void kvm_sched_out(struct preempt_notifier *pn,
3135 struct task_struct *next)
3137 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3139 kvm_arch_ops->vcpu_put(vcpu);
3142 int kvm_init_arch(struct kvm_arch_ops *ops, unsigned int vcpu_size,
3143 struct module *module)
3149 printk(KERN_ERR "kvm: already loaded the other module\n");
3153 if (!ops->cpu_has_kvm_support()) {
3154 printk(KERN_ERR "kvm: no hardware support\n");
3157 if (ops->disabled_by_bios()) {
3158 printk(KERN_ERR "kvm: disabled by bios\n");
3164 r = kvm_arch_ops->hardware_setup();
3168 for_each_online_cpu(cpu) {
3169 smp_call_function_single(cpu,
3170 kvm_arch_ops->check_processor_compatibility,
3176 on_each_cpu(hardware_enable, NULL, 0, 1);
3177 r = register_cpu_notifier(&kvm_cpu_notifier);
3180 register_reboot_notifier(&kvm_reboot_notifier);
3182 r = sysdev_class_register(&kvm_sysdev_class);
3186 r = sysdev_register(&kvm_sysdev);
3190 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3191 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
3192 __alignof__(struct kvm_vcpu), 0, 0);
3193 if (!kvm_vcpu_cache) {
3198 kvm_chardev_ops.owner = module;
3200 r = misc_register(&kvm_dev);
3202 printk (KERN_ERR "kvm: misc device register failed\n");
3206 kvm_preempt_ops.sched_in = kvm_sched_in;
3207 kvm_preempt_ops.sched_out = kvm_sched_out;
3212 kmem_cache_destroy(kvm_vcpu_cache);
3214 sysdev_unregister(&kvm_sysdev);
3216 sysdev_class_unregister(&kvm_sysdev_class);
3218 unregister_reboot_notifier(&kvm_reboot_notifier);
3219 unregister_cpu_notifier(&kvm_cpu_notifier);
3221 on_each_cpu(hardware_disable, NULL, 0, 1);
3223 kvm_arch_ops->hardware_unsetup();
3225 kvm_arch_ops = NULL;
3229 void kvm_exit_arch(void)
3231 misc_deregister(&kvm_dev);
3232 kmem_cache_destroy(kvm_vcpu_cache);
3233 sysdev_unregister(&kvm_sysdev);
3234 sysdev_class_unregister(&kvm_sysdev_class);
3235 unregister_reboot_notifier(&kvm_reboot_notifier);
3236 unregister_cpu_notifier(&kvm_cpu_notifier);
3237 on_each_cpu(hardware_disable, NULL, 0, 1);
3238 kvm_arch_ops->hardware_unsetup();
3239 kvm_arch_ops = NULL;
3242 static __init int kvm_init(void)
3244 static struct page *bad_page;
3247 r = kvm_mmu_module_init();
3253 kvm_init_msr_list();
3255 if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
3260 bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
3261 memset(__va(bad_page_address), 0, PAGE_SIZE);
3267 kvm_mmu_module_exit();
3272 static __exit void kvm_exit(void)
3275 __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
3276 kvm_mmu_module_exit();
3279 module_init(kvm_init)
3280 module_exit(kvm_exit)
3282 EXPORT_SYMBOL_GPL(kvm_init_arch);
3283 EXPORT_SYMBOL_GPL(kvm_exit_arch);