1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/sched/mm.h>
12 #include <linux/mpage.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/sched/signal.h>
22 #include <linux/fiemap.h>
23 #include <linux/iomap.h>
29 #include <trace/events/f2fs.h>
31 #define NUM_PREALLOC_POST_READ_CTXS 128
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
38 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE
40 int __init f2fs_init_bioset(void)
42 return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43 0, BIOSET_NEED_BVECS);
46 void f2fs_destroy_bioset(void)
48 bioset_exit(&f2fs_bioset);
51 static bool __is_cp_guaranteed(struct page *page)
53 struct address_space *mapping = page->mapping;
55 struct f2fs_sb_info *sbi;
60 inode = mapping->host;
61 sbi = F2FS_I_SB(inode);
63 if (inode->i_ino == F2FS_META_INO(sbi) ||
64 inode->i_ino == F2FS_NODE_INO(sbi) ||
65 S_ISDIR(inode->i_mode))
68 if (f2fs_is_compressed_page(page))
70 if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
71 page_private_gcing(page))
76 static enum count_type __read_io_type(struct page *page)
78 struct address_space *mapping = page_file_mapping(page);
81 struct inode *inode = mapping->host;
82 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
84 if (inode->i_ino == F2FS_META_INO(sbi))
87 if (inode->i_ino == F2FS_NODE_INO(sbi))
93 /* postprocessing steps for read bios */
94 enum bio_post_read_step {
95 #ifdef CONFIG_FS_ENCRYPTION
96 STEP_DECRYPT = 1 << 0,
98 STEP_DECRYPT = 0, /* compile out the decryption-related code */
100 #ifdef CONFIG_F2FS_FS_COMPRESSION
101 STEP_DECOMPRESS = 1 << 1,
103 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */
105 #ifdef CONFIG_FS_VERITY
106 STEP_VERITY = 1 << 2,
108 STEP_VERITY = 0, /* compile out the verity-related code */
112 struct bio_post_read_ctx {
114 struct f2fs_sb_info *sbi;
115 struct work_struct work;
116 unsigned int enabled_steps;
118 * decompression_attempted keeps track of whether
119 * f2fs_end_read_compressed_page() has been called on the pages in the
120 * bio that belong to a compressed cluster yet.
122 bool decompression_attempted;
127 * Update and unlock a bio's pages, and free the bio.
129 * This marks pages up-to-date only if there was no error in the bio (I/O error,
130 * decryption error, or verity error), as indicated by bio->bi_status.
132 * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
133 * aren't marked up-to-date here, as decompression is done on a per-compression-
134 * cluster basis rather than a per-bio basis. Instead, we only must do two
135 * things for each compressed page here: call f2fs_end_read_compressed_page()
136 * with failed=true if an error occurred before it would have normally gotten
137 * called (i.e., I/O error or decryption error, but *not* verity error), and
138 * release the bio's reference to the decompress_io_ctx of the page's cluster.
140 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
143 struct bvec_iter_all iter_all;
144 struct bio_post_read_ctx *ctx = bio->bi_private;
146 bio_for_each_segment_all(bv, bio, iter_all) {
147 struct page *page = bv->bv_page;
149 if (f2fs_is_compressed_page(page)) {
150 if (ctx && !ctx->decompression_attempted)
151 f2fs_end_read_compressed_page(page, true, 0,
153 f2fs_put_page_dic(page, in_task);
158 ClearPageUptodate(page);
160 SetPageUptodate(page);
161 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
166 mempool_free(ctx, bio_post_read_ctx_pool);
170 static void f2fs_verify_bio(struct work_struct *work)
172 struct bio_post_read_ctx *ctx =
173 container_of(work, struct bio_post_read_ctx, work);
174 struct bio *bio = ctx->bio;
175 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
178 * fsverity_verify_bio() may call readahead() again, and while verity
179 * will be disabled for this, decryption and/or decompression may still
180 * be needed, resulting in another bio_post_read_ctx being allocated.
181 * So to prevent deadlocks we need to release the current ctx to the
182 * mempool first. This assumes that verity is the last post-read step.
184 mempool_free(ctx, bio_post_read_ctx_pool);
185 bio->bi_private = NULL;
188 * Verify the bio's pages with fs-verity. Exclude compressed pages,
189 * as those were handled separately by f2fs_end_read_compressed_page().
191 if (may_have_compressed_pages) {
193 struct bvec_iter_all iter_all;
195 bio_for_each_segment_all(bv, bio, iter_all) {
196 struct page *page = bv->bv_page;
198 if (!f2fs_is_compressed_page(page) &&
199 !fsverity_verify_page(page)) {
200 bio->bi_status = BLK_STS_IOERR;
205 fsverity_verify_bio(bio);
208 f2fs_finish_read_bio(bio, true);
212 * If the bio's data needs to be verified with fs-verity, then enqueue the
213 * verity work for the bio. Otherwise finish the bio now.
215 * Note that to avoid deadlocks, the verity work can't be done on the
216 * decryption/decompression workqueue. This is because verifying the data pages
217 * can involve reading verity metadata pages from the file, and these verity
218 * metadata pages may be encrypted and/or compressed.
220 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
222 struct bio_post_read_ctx *ctx = bio->bi_private;
224 if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
225 INIT_WORK(&ctx->work, f2fs_verify_bio);
226 fsverity_enqueue_verify_work(&ctx->work);
228 f2fs_finish_read_bio(bio, in_task);
233 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
234 * remaining page was read by @ctx->bio.
236 * Note that a bio may span clusters (even a mix of compressed and uncompressed
237 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates
238 * that the bio includes at least one compressed page. The actual decompression
239 * is done on a per-cluster basis, not a per-bio basis.
241 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
245 struct bvec_iter_all iter_all;
246 bool all_compressed = true;
247 block_t blkaddr = ctx->fs_blkaddr;
249 bio_for_each_segment_all(bv, ctx->bio, iter_all) {
250 struct page *page = bv->bv_page;
252 if (f2fs_is_compressed_page(page))
253 f2fs_end_read_compressed_page(page, false, blkaddr,
256 all_compressed = false;
261 ctx->decompression_attempted = true;
264 * Optimization: if all the bio's pages are compressed, then scheduling
265 * the per-bio verity work is unnecessary, as verity will be fully
266 * handled at the compression cluster level.
269 ctx->enabled_steps &= ~STEP_VERITY;
272 static void f2fs_post_read_work(struct work_struct *work)
274 struct bio_post_read_ctx *ctx =
275 container_of(work, struct bio_post_read_ctx, work);
276 struct bio *bio = ctx->bio;
278 if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
279 f2fs_finish_read_bio(bio, true);
283 if (ctx->enabled_steps & STEP_DECOMPRESS)
284 f2fs_handle_step_decompress(ctx, true);
286 f2fs_verify_and_finish_bio(bio, true);
289 static void f2fs_read_end_io(struct bio *bio)
291 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
292 struct bio_post_read_ctx *ctx;
293 bool intask = in_task();
295 iostat_update_and_unbind_ctx(bio, 0);
296 ctx = bio->bi_private;
298 if (time_to_inject(sbi, FAULT_READ_IO)) {
299 f2fs_show_injection_info(sbi, FAULT_READ_IO);
300 bio->bi_status = BLK_STS_IOERR;
303 if (bio->bi_status) {
304 f2fs_finish_read_bio(bio, intask);
309 unsigned int enabled_steps = ctx->enabled_steps &
310 (STEP_DECRYPT | STEP_DECOMPRESS);
313 * If we have only decompression step between decompression and
314 * decrypt, we don't need post processing for this.
316 if (enabled_steps == STEP_DECOMPRESS &&
317 !f2fs_low_mem_mode(sbi)) {
318 f2fs_handle_step_decompress(ctx, intask);
319 } else if (enabled_steps) {
320 INIT_WORK(&ctx->work, f2fs_post_read_work);
321 queue_work(ctx->sbi->post_read_wq, &ctx->work);
326 f2fs_verify_and_finish_bio(bio, intask);
329 static void f2fs_write_end_io(struct bio *bio)
331 struct f2fs_sb_info *sbi;
332 struct bio_vec *bvec;
333 struct bvec_iter_all iter_all;
335 iostat_update_and_unbind_ctx(bio, 1);
336 sbi = bio->bi_private;
338 if (time_to_inject(sbi, FAULT_WRITE_IO)) {
339 f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
340 bio->bi_status = BLK_STS_IOERR;
343 bio_for_each_segment_all(bvec, bio, iter_all) {
344 struct page *page = bvec->bv_page;
345 enum count_type type = WB_DATA_TYPE(page);
347 if (page_private_dummy(page)) {
348 clear_page_private_dummy(page);
350 mempool_free(page, sbi->write_io_dummy);
352 if (unlikely(bio->bi_status))
353 f2fs_stop_checkpoint(sbi, true,
354 STOP_CP_REASON_WRITE_FAIL);
358 fscrypt_finalize_bounce_page(&page);
360 #ifdef CONFIG_F2FS_FS_COMPRESSION
361 if (f2fs_is_compressed_page(page)) {
362 f2fs_compress_write_end_io(bio, page);
367 if (unlikely(bio->bi_status)) {
368 mapping_set_error(page->mapping, -EIO);
369 if (type == F2FS_WB_CP_DATA)
370 f2fs_stop_checkpoint(sbi, true,
371 STOP_CP_REASON_WRITE_FAIL);
374 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
375 page->index != nid_of_node(page));
377 dec_page_count(sbi, type);
378 if (f2fs_in_warm_node_list(sbi, page))
379 f2fs_del_fsync_node_entry(sbi, page);
380 clear_page_private_gcing(page);
381 end_page_writeback(page);
383 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
384 wq_has_sleeper(&sbi->cp_wait))
385 wake_up(&sbi->cp_wait);
390 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
391 block_t blk_addr, sector_t *sector)
393 struct block_device *bdev = sbi->sb->s_bdev;
396 if (f2fs_is_multi_device(sbi)) {
397 for (i = 0; i < sbi->s_ndevs; i++) {
398 if (FDEV(i).start_blk <= blk_addr &&
399 FDEV(i).end_blk >= blk_addr) {
400 blk_addr -= FDEV(i).start_blk;
408 *sector = SECTOR_FROM_BLOCK(blk_addr);
412 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
416 if (!f2fs_is_multi_device(sbi))
419 for (i = 0; i < sbi->s_ndevs; i++)
420 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
425 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
427 unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
428 unsigned int fua_flag, meta_flag, io_flag;
429 blk_opf_t op_flags = 0;
431 if (fio->op != REQ_OP_WRITE)
433 if (fio->type == DATA)
434 io_flag = fio->sbi->data_io_flag;
435 else if (fio->type == NODE)
436 io_flag = fio->sbi->node_io_flag;
440 fua_flag = io_flag & temp_mask;
441 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
444 * data/node io flag bits per temp:
445 * REQ_META | REQ_FUA |
446 * 5 | 4 | 3 | 2 | 1 | 0 |
447 * Cold | Warm | Hot | Cold | Warm | Hot |
449 if ((1 << fio->temp) & meta_flag)
450 op_flags |= REQ_META;
451 if ((1 << fio->temp) & fua_flag)
456 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
458 struct f2fs_sb_info *sbi = fio->sbi;
459 struct block_device *bdev;
463 bdev = f2fs_target_device(sbi, fio->new_blkaddr, §or);
464 bio = bio_alloc_bioset(bdev, npages,
465 fio->op | fio->op_flags | f2fs_io_flags(fio),
466 GFP_NOIO, &f2fs_bioset);
467 bio->bi_iter.bi_sector = sector;
468 if (is_read_io(fio->op)) {
469 bio->bi_end_io = f2fs_read_end_io;
470 bio->bi_private = NULL;
472 bio->bi_end_io = f2fs_write_end_io;
473 bio->bi_private = sbi;
475 iostat_alloc_and_bind_ctx(sbi, bio, NULL);
478 wbc_init_bio(fio->io_wbc, bio);
483 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
485 const struct f2fs_io_info *fio,
489 * The f2fs garbage collector sets ->encrypted_page when it wants to
490 * read/write raw data without encryption.
492 if (!fio || !fio->encrypted_page)
493 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
496 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
498 const struct f2fs_io_info *fio)
501 * The f2fs garbage collector sets ->encrypted_page when it wants to
502 * read/write raw data without encryption.
504 if (fio && fio->encrypted_page)
505 return !bio_has_crypt_ctx(bio);
507 return fscrypt_mergeable_bio(bio, inode, next_idx);
510 static inline void __submit_bio(struct f2fs_sb_info *sbi,
511 struct bio *bio, enum page_type type)
513 if (!is_read_io(bio_op(bio))) {
516 if (type != DATA && type != NODE)
519 if (f2fs_lfs_mode(sbi) && current->plug)
520 blk_finish_plug(current->plug);
522 if (!F2FS_IO_ALIGNED(sbi))
525 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
526 start %= F2FS_IO_SIZE(sbi);
531 /* fill dummy pages */
532 for (; start < F2FS_IO_SIZE(sbi); start++) {
534 mempool_alloc(sbi->write_io_dummy,
535 GFP_NOIO | __GFP_NOFAIL);
536 f2fs_bug_on(sbi, !page);
540 zero_user_segment(page, 0, PAGE_SIZE);
541 set_page_private_dummy(page);
543 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
547 * In the NODE case, we lose next block address chain. So, we
548 * need to do checkpoint in f2fs_sync_file.
551 set_sbi_flag(sbi, SBI_NEED_CP);
554 if (is_read_io(bio_op(bio)))
555 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
557 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
559 iostat_update_submit_ctx(bio, type);
563 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
564 struct bio *bio, enum page_type type)
566 __submit_bio(sbi, bio, type);
569 static void __submit_merged_bio(struct f2fs_bio_info *io)
571 struct f2fs_io_info *fio = &io->fio;
576 if (is_read_io(fio->op))
577 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
579 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
581 __submit_bio(io->sbi, io->bio, fio->type);
585 static bool __has_merged_page(struct bio *bio, struct inode *inode,
586 struct page *page, nid_t ino)
588 struct bio_vec *bvec;
589 struct bvec_iter_all iter_all;
594 if (!inode && !page && !ino)
597 bio_for_each_segment_all(bvec, bio, iter_all) {
598 struct page *target = bvec->bv_page;
600 if (fscrypt_is_bounce_page(target)) {
601 target = fscrypt_pagecache_page(target);
605 if (f2fs_is_compressed_page(target)) {
606 target = f2fs_compress_control_page(target);
611 if (inode && inode == target->mapping->host)
613 if (page && page == target)
615 if (ino && ino == ino_of_node(target))
622 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
626 for (i = 0; i < NR_PAGE_TYPE; i++) {
627 int n = (i == META) ? 1 : NR_TEMP_TYPE;
630 sbi->write_io[i] = f2fs_kmalloc(sbi,
631 array_size(n, sizeof(struct f2fs_bio_info)),
633 if (!sbi->write_io[i])
636 for (j = HOT; j < n; j++) {
637 init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem);
638 sbi->write_io[i][j].sbi = sbi;
639 sbi->write_io[i][j].bio = NULL;
640 spin_lock_init(&sbi->write_io[i][j].io_lock);
641 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
642 INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
643 init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock);
650 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
651 enum page_type type, enum temp_type temp)
653 enum page_type btype = PAGE_TYPE_OF_BIO(type);
654 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
656 f2fs_down_write(&io->io_rwsem);
658 /* change META to META_FLUSH in the checkpoint procedure */
659 if (type >= META_FLUSH) {
660 io->fio.type = META_FLUSH;
661 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
662 if (!test_opt(sbi, NOBARRIER))
663 io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
665 __submit_merged_bio(io);
666 f2fs_up_write(&io->io_rwsem);
669 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
670 struct inode *inode, struct page *page,
671 nid_t ino, enum page_type type, bool force)
676 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
678 enum page_type btype = PAGE_TYPE_OF_BIO(type);
679 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
681 f2fs_down_read(&io->io_rwsem);
682 ret = __has_merged_page(io->bio, inode, page, ino);
683 f2fs_up_read(&io->io_rwsem);
686 __f2fs_submit_merged_write(sbi, type, temp);
688 /* TODO: use HOT temp only for meta pages now. */
694 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
696 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
699 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
700 struct inode *inode, struct page *page,
701 nid_t ino, enum page_type type)
703 __submit_merged_write_cond(sbi, inode, page, ino, type, false);
706 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
708 f2fs_submit_merged_write(sbi, DATA);
709 f2fs_submit_merged_write(sbi, NODE);
710 f2fs_submit_merged_write(sbi, META);
714 * Fill the locked page with data located in the block address.
715 * A caller needs to unlock the page on failure.
717 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
720 struct page *page = fio->encrypted_page ?
721 fio->encrypted_page : fio->page;
723 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
724 fio->is_por ? META_POR : (__is_meta_io(fio) ?
725 META_GENERIC : DATA_GENERIC_ENHANCE))) {
726 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
727 return -EFSCORRUPTED;
730 trace_f2fs_submit_page_bio(page, fio);
732 /* Allocate a new bio */
733 bio = __bio_alloc(fio, 1);
735 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
736 fio->page->index, fio, GFP_NOIO);
738 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
743 if (fio->io_wbc && !is_read_io(fio->op))
744 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
746 inc_page_count(fio->sbi, is_read_io(fio->op) ?
747 __read_io_type(page) : WB_DATA_TYPE(fio->page));
749 __submit_bio(fio->sbi, bio, fio->type);
753 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
754 block_t last_blkaddr, block_t cur_blkaddr)
756 if (unlikely(sbi->max_io_bytes &&
757 bio->bi_iter.bi_size >= sbi->max_io_bytes))
759 if (last_blkaddr + 1 != cur_blkaddr)
761 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
764 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
765 struct f2fs_io_info *fio)
767 if (io->fio.op != fio->op)
769 return io->fio.op_flags == fio->op_flags;
772 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
773 struct f2fs_bio_info *io,
774 struct f2fs_io_info *fio,
775 block_t last_blkaddr,
778 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
779 unsigned int filled_blocks =
780 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
781 unsigned int io_size = F2FS_IO_SIZE(sbi);
782 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
784 /* IOs in bio is aligned and left space of vectors is not enough */
785 if (!(filled_blocks % io_size) && left_vecs < io_size)
788 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
790 return io_type_is_mergeable(io, fio);
793 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
794 struct page *page, enum temp_type temp)
796 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
797 struct bio_entry *be;
799 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
803 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
806 f2fs_down_write(&io->bio_list_lock);
807 list_add_tail(&be->list, &io->bio_list);
808 f2fs_up_write(&io->bio_list_lock);
811 static void del_bio_entry(struct bio_entry *be)
814 kmem_cache_free(bio_entry_slab, be);
817 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
820 struct f2fs_sb_info *sbi = fio->sbi;
825 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
826 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
827 struct list_head *head = &io->bio_list;
828 struct bio_entry *be;
830 f2fs_down_write(&io->bio_list_lock);
831 list_for_each_entry(be, head, list) {
837 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
840 if (f2fs_crypt_mergeable_bio(*bio,
841 fio->page->mapping->host,
842 fio->page->index, fio) &&
843 bio_add_page(*bio, page, PAGE_SIZE, 0) ==
849 /* page can't be merged into bio; submit the bio */
851 __submit_bio(sbi, *bio, DATA);
854 f2fs_up_write(&io->bio_list_lock);
865 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
866 struct bio **bio, struct page *page)
870 struct bio *target = bio ? *bio : NULL;
872 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
873 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
874 struct list_head *head = &io->bio_list;
875 struct bio_entry *be;
877 if (list_empty(head))
880 f2fs_down_read(&io->bio_list_lock);
881 list_for_each_entry(be, head, list) {
883 found = (target == be->bio);
885 found = __has_merged_page(be->bio, NULL,
890 f2fs_up_read(&io->bio_list_lock);
897 f2fs_down_write(&io->bio_list_lock);
898 list_for_each_entry(be, head, list) {
900 found = (target == be->bio);
902 found = __has_merged_page(be->bio, NULL,
910 f2fs_up_write(&io->bio_list_lock);
914 __submit_bio(sbi, target, DATA);
921 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
923 struct bio *bio = *fio->bio;
924 struct page *page = fio->encrypted_page ?
925 fio->encrypted_page : fio->page;
927 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
928 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) {
929 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
930 return -EFSCORRUPTED;
933 trace_f2fs_submit_page_bio(page, fio);
935 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
937 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
940 bio = __bio_alloc(fio, BIO_MAX_VECS);
941 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
942 fio->page->index, fio, GFP_NOIO);
944 add_bio_entry(fio->sbi, bio, page, fio->temp);
946 if (add_ipu_page(fio, &bio, page))
951 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
953 inc_page_count(fio->sbi, WB_DATA_TYPE(page));
955 *fio->last_block = fio->new_blkaddr;
961 void f2fs_submit_page_write(struct f2fs_io_info *fio)
963 struct f2fs_sb_info *sbi = fio->sbi;
964 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
965 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
966 struct page *bio_page;
968 f2fs_bug_on(sbi, is_read_io(fio->op));
970 f2fs_down_write(&io->io_rwsem);
973 spin_lock(&io->io_lock);
974 if (list_empty(&io->io_list)) {
975 spin_unlock(&io->io_lock);
978 fio = list_first_entry(&io->io_list,
979 struct f2fs_io_info, list);
980 list_del(&fio->list);
981 spin_unlock(&io->io_lock);
984 verify_fio_blkaddr(fio);
986 if (fio->encrypted_page)
987 bio_page = fio->encrypted_page;
988 else if (fio->compressed_page)
989 bio_page = fio->compressed_page;
991 bio_page = fio->page;
993 /* set submitted = true as a return value */
994 fio->submitted = true;
996 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
999 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
1000 fio->new_blkaddr) ||
1001 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
1002 bio_page->index, fio)))
1003 __submit_merged_bio(io);
1005 if (io->bio == NULL) {
1006 if (F2FS_IO_ALIGNED(sbi) &&
1007 (fio->type == DATA || fio->type == NODE) &&
1008 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
1009 dec_page_count(sbi, WB_DATA_TYPE(bio_page));
1013 io->bio = __bio_alloc(fio, BIO_MAX_VECS);
1014 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
1015 bio_page->index, fio, GFP_NOIO);
1019 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1020 __submit_merged_bio(io);
1025 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
1027 io->last_block_in_bio = fio->new_blkaddr;
1029 trace_f2fs_submit_page_write(fio->page, fio);
1034 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1035 !f2fs_is_checkpoint_ready(sbi))
1036 __submit_merged_bio(io);
1037 f2fs_up_write(&io->io_rwsem);
1040 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1041 unsigned nr_pages, blk_opf_t op_flag,
1042 pgoff_t first_idx, bool for_write)
1044 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1046 struct bio_post_read_ctx *ctx = NULL;
1047 unsigned int post_read_steps = 0;
1049 struct block_device *bdev = f2fs_target_device(sbi, blkaddr, §or);
1051 bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1052 REQ_OP_READ | op_flag,
1053 for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1055 return ERR_PTR(-ENOMEM);
1056 bio->bi_iter.bi_sector = sector;
1057 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1058 bio->bi_end_io = f2fs_read_end_io;
1060 if (fscrypt_inode_uses_fs_layer_crypto(inode))
1061 post_read_steps |= STEP_DECRYPT;
1063 if (f2fs_need_verity(inode, first_idx))
1064 post_read_steps |= STEP_VERITY;
1067 * STEP_DECOMPRESS is handled specially, since a compressed file might
1068 * contain both compressed and uncompressed clusters. We'll allocate a
1069 * bio_post_read_ctx if the file is compressed, but the caller is
1070 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1073 if (post_read_steps || f2fs_compressed_file(inode)) {
1074 /* Due to the mempool, this never fails. */
1075 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1078 ctx->enabled_steps = post_read_steps;
1079 ctx->fs_blkaddr = blkaddr;
1080 ctx->decompression_attempted = false;
1081 bio->bi_private = ctx;
1083 iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1088 /* This can handle encryption stuffs */
1089 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1090 block_t blkaddr, blk_opf_t op_flags,
1093 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1096 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1097 page->index, for_write);
1099 return PTR_ERR(bio);
1101 /* wait for GCed page writeback via META_MAPPING */
1102 f2fs_wait_on_block_writeback(inode, blkaddr);
1104 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1108 inc_page_count(sbi, F2FS_RD_DATA);
1109 f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1110 __submit_bio(sbi, bio, DATA);
1114 static void __set_data_blkaddr(struct dnode_of_data *dn)
1116 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1120 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1121 base = get_extra_isize(dn->inode);
1123 /* Get physical address of data block */
1124 addr_array = blkaddr_in_node(rn);
1125 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1129 * Lock ordering for the change of data block address:
1132 * update block addresses in the node page
1134 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1136 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1137 __set_data_blkaddr(dn);
1138 if (set_page_dirty(dn->node_page))
1139 dn->node_changed = true;
1142 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1144 dn->data_blkaddr = blkaddr;
1145 f2fs_set_data_blkaddr(dn);
1146 f2fs_update_read_extent_cache(dn);
1149 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1150 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1152 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1158 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1160 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1163 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1164 dn->ofs_in_node, count);
1166 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1168 for (; count > 0; dn->ofs_in_node++) {
1169 block_t blkaddr = f2fs_data_blkaddr(dn);
1171 if (blkaddr == NULL_ADDR) {
1172 dn->data_blkaddr = NEW_ADDR;
1173 __set_data_blkaddr(dn);
1178 if (set_page_dirty(dn->node_page))
1179 dn->node_changed = true;
1183 /* Should keep dn->ofs_in_node unchanged */
1184 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1186 unsigned int ofs_in_node = dn->ofs_in_node;
1189 ret = f2fs_reserve_new_blocks(dn, 1);
1190 dn->ofs_in_node = ofs_in_node;
1194 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1196 bool need_put = dn->inode_page ? false : true;
1199 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1203 if (dn->data_blkaddr == NULL_ADDR)
1204 err = f2fs_reserve_new_block(dn);
1205 if (err || need_put)
1210 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1212 struct extent_info ei = {0, };
1213 struct inode *inode = dn->inode;
1215 if (f2fs_lookup_read_extent_cache(inode, index, &ei)) {
1216 dn->data_blkaddr = ei.blk + index - ei.fofs;
1220 return f2fs_reserve_block(dn, index);
1223 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1224 blk_opf_t op_flags, bool for_write,
1225 pgoff_t *next_pgofs)
1227 struct address_space *mapping = inode->i_mapping;
1228 struct dnode_of_data dn;
1230 struct extent_info ei = {0, };
1233 page = f2fs_grab_cache_page(mapping, index, for_write);
1235 return ERR_PTR(-ENOMEM);
1237 if (f2fs_lookup_read_extent_cache(inode, index, &ei)) {
1238 dn.data_blkaddr = ei.blk + index - ei.fofs;
1239 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1240 DATA_GENERIC_ENHANCE_READ)) {
1241 err = -EFSCORRUPTED;
1242 f2fs_handle_error(F2FS_I_SB(inode),
1243 ERROR_INVALID_BLKADDR);
1249 set_new_dnode(&dn, inode, NULL, NULL, 0);
1250 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1252 if (err == -ENOENT && next_pgofs)
1253 *next_pgofs = f2fs_get_next_page_offset(&dn, index);
1256 f2fs_put_dnode(&dn);
1258 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1261 *next_pgofs = index + 1;
1264 if (dn.data_blkaddr != NEW_ADDR &&
1265 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1267 DATA_GENERIC_ENHANCE)) {
1268 err = -EFSCORRUPTED;
1269 f2fs_handle_error(F2FS_I_SB(inode),
1270 ERROR_INVALID_BLKADDR);
1274 if (PageUptodate(page)) {
1280 * A new dentry page is allocated but not able to be written, since its
1281 * new inode page couldn't be allocated due to -ENOSPC.
1282 * In such the case, its blkaddr can be remained as NEW_ADDR.
1283 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1284 * f2fs_init_inode_metadata.
1286 if (dn.data_blkaddr == NEW_ADDR) {
1287 zero_user_segment(page, 0, PAGE_SIZE);
1288 if (!PageUptodate(page))
1289 SetPageUptodate(page);
1294 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1295 op_flags, for_write);
1301 f2fs_put_page(page, 1);
1302 return ERR_PTR(err);
1305 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
1306 pgoff_t *next_pgofs)
1308 struct address_space *mapping = inode->i_mapping;
1311 page = find_get_page(mapping, index);
1312 if (page && PageUptodate(page))
1314 f2fs_put_page(page, 0);
1316 page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs);
1320 if (PageUptodate(page))
1323 wait_on_page_locked(page);
1324 if (unlikely(!PageUptodate(page))) {
1325 f2fs_put_page(page, 0);
1326 return ERR_PTR(-EIO);
1332 * If it tries to access a hole, return an error.
1333 * Because, the callers, functions in dir.c and GC, should be able to know
1334 * whether this page exists or not.
1336 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1339 struct address_space *mapping = inode->i_mapping;
1342 page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL);
1346 /* wait for read completion */
1348 if (unlikely(page->mapping != mapping)) {
1349 f2fs_put_page(page, 1);
1352 if (unlikely(!PageUptodate(page))) {
1353 f2fs_put_page(page, 1);
1354 return ERR_PTR(-EIO);
1360 * Caller ensures that this data page is never allocated.
1361 * A new zero-filled data page is allocated in the page cache.
1363 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1365 * Note that, ipage is set only by make_empty_dir, and if any error occur,
1366 * ipage should be released by this function.
1368 struct page *f2fs_get_new_data_page(struct inode *inode,
1369 struct page *ipage, pgoff_t index, bool new_i_size)
1371 struct address_space *mapping = inode->i_mapping;
1373 struct dnode_of_data dn;
1376 page = f2fs_grab_cache_page(mapping, index, true);
1379 * before exiting, we should make sure ipage will be released
1380 * if any error occur.
1382 f2fs_put_page(ipage, 1);
1383 return ERR_PTR(-ENOMEM);
1386 set_new_dnode(&dn, inode, ipage, NULL, 0);
1387 err = f2fs_reserve_block(&dn, index);
1389 f2fs_put_page(page, 1);
1390 return ERR_PTR(err);
1393 f2fs_put_dnode(&dn);
1395 if (PageUptodate(page))
1398 if (dn.data_blkaddr == NEW_ADDR) {
1399 zero_user_segment(page, 0, PAGE_SIZE);
1400 if (!PageUptodate(page))
1401 SetPageUptodate(page);
1403 f2fs_put_page(page, 1);
1405 /* if ipage exists, blkaddr should be NEW_ADDR */
1406 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1407 page = f2fs_get_lock_data_page(inode, index, true);
1412 if (new_i_size && i_size_read(inode) <
1413 ((loff_t)(index + 1) << PAGE_SHIFT))
1414 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1418 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1420 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1421 struct f2fs_summary sum;
1422 struct node_info ni;
1423 block_t old_blkaddr;
1427 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1430 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1434 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1435 if (dn->data_blkaddr != NULL_ADDR)
1438 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1442 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1443 old_blkaddr = dn->data_blkaddr;
1444 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1445 &sum, seg_type, NULL);
1446 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1447 invalidate_mapping_pages(META_MAPPING(sbi),
1448 old_blkaddr, old_blkaddr);
1449 f2fs_invalidate_compress_page(sbi, old_blkaddr);
1451 f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1455 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1457 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1459 f2fs_down_read(&sbi->node_change);
1461 f2fs_up_read(&sbi->node_change);
1466 f2fs_unlock_op(sbi);
1471 * f2fs_map_blocks() tries to find or build mapping relationship which
1472 * maps continuous logical blocks to physical blocks, and return such
1473 * info via f2fs_map_blocks structure.
1475 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1476 int create, int flag)
1478 unsigned int maxblocks = map->m_len;
1479 struct dnode_of_data dn;
1480 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1481 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1482 pgoff_t pgofs, end_offset, end;
1483 int err = 0, ofs = 1;
1484 unsigned int ofs_in_node, last_ofs_in_node;
1486 struct extent_info ei = {0, };
1488 unsigned int start_pgofs;
1494 map->m_bdev = inode->i_sb->s_bdev;
1495 map->m_multidev_dio =
1496 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1501 /* it only supports block size == page size */
1502 pgofs = (pgoff_t)map->m_lblk;
1503 end = pgofs + maxblocks;
1505 if (!create && f2fs_lookup_read_extent_cache(inode, pgofs, &ei)) {
1506 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1510 map->m_pblk = ei.blk + pgofs - ei.fofs;
1511 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1512 map->m_flags = F2FS_MAP_MAPPED;
1513 if (map->m_next_extent)
1514 *map->m_next_extent = pgofs + map->m_len;
1516 /* for hardware encryption, but to avoid potential issue in future */
1517 if (flag == F2FS_GET_BLOCK_DIO)
1518 f2fs_wait_on_block_writeback_range(inode,
1519 map->m_pblk, map->m_len);
1521 if (map->m_multidev_dio) {
1522 block_t blk_addr = map->m_pblk;
1524 bidx = f2fs_target_device_index(sbi, map->m_pblk);
1526 map->m_bdev = FDEV(bidx).bdev;
1527 map->m_pblk -= FDEV(bidx).start_blk;
1528 map->m_len = min(map->m_len,
1529 FDEV(bidx).end_blk + 1 - map->m_pblk);
1531 if (map->m_may_create)
1532 f2fs_update_device_state(sbi, inode->i_ino,
1533 blk_addr, map->m_len);
1539 if (map->m_may_create)
1540 f2fs_do_map_lock(sbi, flag, true);
1542 /* When reading holes, we need its node page */
1543 set_new_dnode(&dn, inode, NULL, NULL, 0);
1544 err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1546 if (flag == F2FS_GET_BLOCK_BMAP)
1549 if (err == -ENOENT) {
1551 * There is one exceptional case that read_node_page()
1552 * may return -ENOENT due to filesystem has been
1553 * shutdown or cp_error, so force to convert error
1554 * number to EIO for such case.
1556 if (map->m_may_create &&
1557 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1558 f2fs_cp_error(sbi))) {
1564 if (map->m_next_pgofs)
1565 *map->m_next_pgofs =
1566 f2fs_get_next_page_offset(&dn, pgofs);
1567 if (map->m_next_extent)
1568 *map->m_next_extent =
1569 f2fs_get_next_page_offset(&dn, pgofs);
1574 start_pgofs = pgofs;
1576 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1577 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1580 blkaddr = f2fs_data_blkaddr(&dn);
1582 if (__is_valid_data_blkaddr(blkaddr) &&
1583 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1584 err = -EFSCORRUPTED;
1585 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1589 if (__is_valid_data_blkaddr(blkaddr)) {
1590 /* use out-place-update for driect IO under LFS mode */
1591 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1592 map->m_may_create) {
1593 err = __allocate_data_block(&dn, map->m_seg_type);
1596 blkaddr = dn.data_blkaddr;
1597 set_inode_flag(inode, FI_APPEND_WRITE);
1601 if (unlikely(f2fs_cp_error(sbi))) {
1605 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1606 if (blkaddr == NULL_ADDR) {
1608 last_ofs_in_node = dn.ofs_in_node;
1611 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1612 flag != F2FS_GET_BLOCK_DIO);
1613 err = __allocate_data_block(&dn,
1616 if (flag == F2FS_GET_BLOCK_PRE_DIO)
1617 file_need_truncate(inode);
1618 set_inode_flag(inode, FI_APPEND_WRITE);
1623 map->m_flags |= F2FS_MAP_NEW;
1624 blkaddr = dn.data_blkaddr;
1626 if (f2fs_compressed_file(inode) &&
1627 f2fs_sanity_check_cluster(&dn) &&
1628 (flag != F2FS_GET_BLOCK_FIEMAP ||
1629 IS_ENABLED(CONFIG_F2FS_CHECK_FS))) {
1630 err = -EFSCORRUPTED;
1631 f2fs_handle_error(sbi,
1632 ERROR_CORRUPTED_CLUSTER);
1635 if (flag == F2FS_GET_BLOCK_BMAP) {
1639 if (flag == F2FS_GET_BLOCK_PRECACHE)
1641 if (flag == F2FS_GET_BLOCK_FIEMAP &&
1642 blkaddr == NULL_ADDR) {
1643 if (map->m_next_pgofs)
1644 *map->m_next_pgofs = pgofs + 1;
1647 if (flag != F2FS_GET_BLOCK_FIEMAP) {
1648 /* for defragment case */
1649 if (map->m_next_pgofs)
1650 *map->m_next_pgofs = pgofs + 1;
1656 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1659 if (map->m_multidev_dio)
1660 bidx = f2fs_target_device_index(sbi, blkaddr);
1662 if (map->m_len == 0) {
1663 /* preallocated unwritten block should be mapped for fiemap. */
1664 if (blkaddr == NEW_ADDR)
1665 map->m_flags |= F2FS_MAP_UNWRITTEN;
1666 map->m_flags |= F2FS_MAP_MAPPED;
1668 map->m_pblk = blkaddr;
1671 if (map->m_multidev_dio)
1672 map->m_bdev = FDEV(bidx).bdev;
1673 } else if ((map->m_pblk != NEW_ADDR &&
1674 blkaddr == (map->m_pblk + ofs)) ||
1675 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1676 flag == F2FS_GET_BLOCK_PRE_DIO) {
1677 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1689 /* preallocate blocks in batch for one dnode page */
1690 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1691 (pgofs == end || dn.ofs_in_node == end_offset)) {
1693 dn.ofs_in_node = ofs_in_node;
1694 err = f2fs_reserve_new_blocks(&dn, prealloc);
1698 map->m_len += dn.ofs_in_node - ofs_in_node;
1699 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1703 dn.ofs_in_node = end_offset;
1708 else if (dn.ofs_in_node < end_offset)
1711 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1712 if (map->m_flags & F2FS_MAP_MAPPED) {
1713 unsigned int ofs = start_pgofs - map->m_lblk;
1715 f2fs_update_read_extent_cache_range(&dn,
1716 start_pgofs, map->m_pblk + ofs,
1721 f2fs_put_dnode(&dn);
1723 if (map->m_may_create) {
1724 f2fs_do_map_lock(sbi, flag, false);
1725 f2fs_balance_fs(sbi, dn.node_changed);
1731 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1733 * for hardware encryption, but to avoid potential issue
1736 f2fs_wait_on_block_writeback_range(inode,
1737 map->m_pblk, map->m_len);
1739 if (map->m_multidev_dio) {
1740 block_t blk_addr = map->m_pblk;
1742 bidx = f2fs_target_device_index(sbi, map->m_pblk);
1744 map->m_bdev = FDEV(bidx).bdev;
1745 map->m_pblk -= FDEV(bidx).start_blk;
1747 if (map->m_may_create)
1748 f2fs_update_device_state(sbi, inode->i_ino,
1749 blk_addr, map->m_len);
1751 f2fs_bug_on(sbi, blk_addr + map->m_len >
1752 FDEV(bidx).end_blk + 1);
1756 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1757 if (map->m_flags & F2FS_MAP_MAPPED) {
1758 unsigned int ofs = start_pgofs - map->m_lblk;
1760 f2fs_update_read_extent_cache_range(&dn,
1761 start_pgofs, map->m_pblk + ofs,
1764 if (map->m_next_extent)
1765 *map->m_next_extent = pgofs + 1;
1767 f2fs_put_dnode(&dn);
1769 if (map->m_may_create) {
1770 f2fs_do_map_lock(sbi, flag, false);
1771 f2fs_balance_fs(sbi, dn.node_changed);
1774 trace_f2fs_map_blocks(inode, map, create, flag, err);
1778 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1780 struct f2fs_map_blocks map;
1784 if (pos + len > i_size_read(inode))
1787 map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1788 map.m_next_pgofs = NULL;
1789 map.m_next_extent = NULL;
1790 map.m_seg_type = NO_CHECK_TYPE;
1791 map.m_may_create = false;
1792 last_lblk = F2FS_BLK_ALIGN(pos + len);
1794 while (map.m_lblk < last_lblk) {
1795 map.m_len = last_lblk - map.m_lblk;
1796 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1797 if (err || map.m_len == 0)
1799 map.m_lblk += map.m_len;
1804 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1806 return (bytes >> inode->i_blkbits);
1809 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1811 return (blks << inode->i_blkbits);
1814 static int f2fs_xattr_fiemap(struct inode *inode,
1815 struct fiemap_extent_info *fieinfo)
1817 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1819 struct node_info ni;
1820 __u64 phys = 0, len;
1822 nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1825 if (f2fs_has_inline_xattr(inode)) {
1828 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1829 inode->i_ino, false);
1833 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1835 f2fs_put_page(page, 1);
1839 phys = blks_to_bytes(inode, ni.blk_addr);
1840 offset = offsetof(struct f2fs_inode, i_addr) +
1841 sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1842 get_inline_xattr_addrs(inode));
1845 len = inline_xattr_size(inode);
1847 f2fs_put_page(page, 1);
1849 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1852 flags |= FIEMAP_EXTENT_LAST;
1854 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1855 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1861 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1865 err = f2fs_get_node_info(sbi, xnid, &ni, false);
1867 f2fs_put_page(page, 1);
1871 phys = blks_to_bytes(inode, ni.blk_addr);
1872 len = inode->i_sb->s_blocksize;
1874 f2fs_put_page(page, 1);
1876 flags = FIEMAP_EXTENT_LAST;
1880 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1881 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1884 return (err < 0 ? err : 0);
1887 static loff_t max_inode_blocks(struct inode *inode)
1889 loff_t result = ADDRS_PER_INODE(inode);
1890 loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1892 /* two direct node blocks */
1893 result += (leaf_count * 2);
1895 /* two indirect node blocks */
1896 leaf_count *= NIDS_PER_BLOCK;
1897 result += (leaf_count * 2);
1899 /* one double indirect node block */
1900 leaf_count *= NIDS_PER_BLOCK;
1901 result += leaf_count;
1906 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1909 struct f2fs_map_blocks map;
1910 sector_t start_blk, last_blk;
1912 u64 logical = 0, phys = 0, size = 0;
1915 bool compr_cluster = false, compr_appended;
1916 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1917 unsigned int count_in_cluster = 0;
1920 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1921 ret = f2fs_precache_extents(inode);
1926 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1932 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1933 if (start > maxbytes) {
1938 if (len > maxbytes || (maxbytes - len) < start)
1939 len = maxbytes - start;
1941 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1942 ret = f2fs_xattr_fiemap(inode, fieinfo);
1946 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1947 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1952 if (bytes_to_blks(inode, len) == 0)
1953 len = blks_to_bytes(inode, 1);
1955 start_blk = bytes_to_blks(inode, start);
1956 last_blk = bytes_to_blks(inode, start + len - 1);
1959 memset(&map, 0, sizeof(map));
1960 map.m_lblk = start_blk;
1961 map.m_len = bytes_to_blks(inode, len);
1962 map.m_next_pgofs = &next_pgofs;
1963 map.m_seg_type = NO_CHECK_TYPE;
1965 if (compr_cluster) {
1967 map.m_len = cluster_size - count_in_cluster;
1970 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
1975 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1976 start_blk = next_pgofs;
1978 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1979 max_inode_blocks(inode)))
1982 flags |= FIEMAP_EXTENT_LAST;
1985 compr_appended = false;
1986 /* In a case of compressed cluster, append this to the last extent */
1987 if (compr_cluster && ((map.m_flags & F2FS_MAP_UNWRITTEN) ||
1988 !(map.m_flags & F2FS_MAP_FLAGS))) {
1989 compr_appended = true;
1994 flags |= FIEMAP_EXTENT_MERGED;
1995 if (IS_ENCRYPTED(inode))
1996 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1998 ret = fiemap_fill_next_extent(fieinfo, logical,
2000 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
2006 if (start_blk > last_blk)
2010 if (map.m_pblk == COMPRESS_ADDR) {
2011 compr_cluster = true;
2012 count_in_cluster = 1;
2013 } else if (compr_appended) {
2014 unsigned int appended_blks = cluster_size -
2015 count_in_cluster + 1;
2016 size += blks_to_bytes(inode, appended_blks);
2017 start_blk += appended_blks;
2018 compr_cluster = false;
2020 logical = blks_to_bytes(inode, start_blk);
2021 phys = __is_valid_data_blkaddr(map.m_pblk) ?
2022 blks_to_bytes(inode, map.m_pblk) : 0;
2023 size = blks_to_bytes(inode, map.m_len);
2026 if (compr_cluster) {
2027 flags = FIEMAP_EXTENT_ENCODED;
2028 count_in_cluster += map.m_len;
2029 if (count_in_cluster == cluster_size) {
2030 compr_cluster = false;
2031 size += blks_to_bytes(inode, 1);
2033 } else if (map.m_flags & F2FS_MAP_UNWRITTEN) {
2034 flags = FIEMAP_EXTENT_UNWRITTEN;
2037 start_blk += bytes_to_blks(inode, size);
2042 if (fatal_signal_pending(current))
2050 inode_unlock(inode);
2054 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2056 if (IS_ENABLED(CONFIG_FS_VERITY) &&
2057 (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
2058 return inode->i_sb->s_maxbytes;
2060 return i_size_read(inode);
2063 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2065 struct f2fs_map_blocks *map,
2066 struct bio **bio_ret,
2067 sector_t *last_block_in_bio,
2070 struct bio *bio = *bio_ret;
2071 const unsigned blocksize = blks_to_bytes(inode, 1);
2072 sector_t block_in_file;
2073 sector_t last_block;
2074 sector_t last_block_in_file;
2078 block_in_file = (sector_t)page_index(page);
2079 last_block = block_in_file + nr_pages;
2080 last_block_in_file = bytes_to_blks(inode,
2081 f2fs_readpage_limit(inode) + blocksize - 1);
2082 if (last_block > last_block_in_file)
2083 last_block = last_block_in_file;
2085 /* just zeroing out page which is beyond EOF */
2086 if (block_in_file >= last_block)
2089 * Map blocks using the previous result first.
2091 if ((map->m_flags & F2FS_MAP_MAPPED) &&
2092 block_in_file > map->m_lblk &&
2093 block_in_file < (map->m_lblk + map->m_len))
2097 * Then do more f2fs_map_blocks() calls until we are
2098 * done with this page.
2100 map->m_lblk = block_in_file;
2101 map->m_len = last_block - block_in_file;
2103 ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2107 if ((map->m_flags & F2FS_MAP_MAPPED)) {
2108 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2109 SetPageMappedToDisk(page);
2111 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2112 DATA_GENERIC_ENHANCE_READ)) {
2113 ret = -EFSCORRUPTED;
2114 f2fs_handle_error(F2FS_I_SB(inode),
2115 ERROR_INVALID_BLKADDR);
2120 zero_user_segment(page, 0, PAGE_SIZE);
2121 if (f2fs_need_verity(inode, page->index) &&
2122 !fsverity_verify_page(page)) {
2126 if (!PageUptodate(page))
2127 SetPageUptodate(page);
2133 * This page will go to BIO. Do we need to send this
2136 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2137 *last_block_in_bio, block_nr) ||
2138 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2140 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2144 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2145 is_readahead ? REQ_RAHEAD : 0, page->index,
2155 * If the page is under writeback, we need to wait for
2156 * its completion to see the correct decrypted data.
2158 f2fs_wait_on_block_writeback(inode, block_nr);
2160 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2161 goto submit_and_realloc;
2163 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2164 f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2166 *last_block_in_bio = block_nr;
2173 #ifdef CONFIG_F2FS_FS_COMPRESSION
2174 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2175 unsigned nr_pages, sector_t *last_block_in_bio,
2176 bool is_readahead, bool for_write)
2178 struct dnode_of_data dn;
2179 struct inode *inode = cc->inode;
2180 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2181 struct bio *bio = *bio_ret;
2182 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2183 sector_t last_block_in_file;
2184 const unsigned blocksize = blks_to_bytes(inode, 1);
2185 struct decompress_io_ctx *dic = NULL;
2186 struct extent_info ei = {0, };
2187 bool from_dnode = true;
2191 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2193 last_block_in_file = bytes_to_blks(inode,
2194 f2fs_readpage_limit(inode) + blocksize - 1);
2196 /* get rid of pages beyond EOF */
2197 for (i = 0; i < cc->cluster_size; i++) {
2198 struct page *page = cc->rpages[i];
2202 if ((sector_t)page->index >= last_block_in_file) {
2203 zero_user_segment(page, 0, PAGE_SIZE);
2204 if (!PageUptodate(page))
2205 SetPageUptodate(page);
2206 } else if (!PageUptodate(page)) {
2212 cc->rpages[i] = NULL;
2216 /* we are done since all pages are beyond EOF */
2217 if (f2fs_cluster_is_empty(cc))
2220 if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2224 goto skip_reading_dnode;
2226 set_new_dnode(&dn, inode, NULL, NULL, 0);
2227 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2231 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2234 for (i = 1; i < cc->cluster_size; i++) {
2237 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2238 dn.ofs_in_node + i) :
2241 if (!__is_valid_data_blkaddr(blkaddr))
2244 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2250 if (!from_dnode && i >= ei.c_len)
2254 /* nothing to decompress */
2255 if (cc->nr_cpages == 0) {
2260 dic = f2fs_alloc_dic(cc);
2266 for (i = 0; i < cc->nr_cpages; i++) {
2267 struct page *page = dic->cpages[i];
2269 struct bio_post_read_ctx *ctx;
2271 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2272 dn.ofs_in_node + i + 1) :
2275 f2fs_wait_on_block_writeback(inode, blkaddr);
2277 if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2278 if (atomic_dec_and_test(&dic->remaining_pages))
2279 f2fs_decompress_cluster(dic, true);
2283 if (bio && (!page_is_mergeable(sbi, bio,
2284 *last_block_in_bio, blkaddr) ||
2285 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2287 __submit_bio(sbi, bio, DATA);
2292 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2293 is_readahead ? REQ_RAHEAD : 0,
2294 page->index, for_write);
2297 f2fs_decompress_end_io(dic, ret, true);
2298 f2fs_put_dnode(&dn);
2304 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2305 goto submit_and_realloc;
2307 ctx = get_post_read_ctx(bio);
2308 ctx->enabled_steps |= STEP_DECOMPRESS;
2309 refcount_inc(&dic->refcnt);
2311 inc_page_count(sbi, F2FS_RD_DATA);
2312 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2313 *last_block_in_bio = blkaddr;
2317 f2fs_put_dnode(&dn);
2324 f2fs_put_dnode(&dn);
2326 for (i = 0; i < cc->cluster_size; i++) {
2327 if (cc->rpages[i]) {
2328 ClearPageUptodate(cc->rpages[i]);
2329 unlock_page(cc->rpages[i]);
2338 * This function was originally taken from fs/mpage.c, and customized for f2fs.
2339 * Major change was from block_size == page_size in f2fs by default.
2341 static int f2fs_mpage_readpages(struct inode *inode,
2342 struct readahead_control *rac, struct page *page)
2344 struct bio *bio = NULL;
2345 sector_t last_block_in_bio = 0;
2346 struct f2fs_map_blocks map;
2347 #ifdef CONFIG_F2FS_FS_COMPRESSION
2348 struct compress_ctx cc = {
2350 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2351 .cluster_size = F2FS_I(inode)->i_cluster_size,
2352 .cluster_idx = NULL_CLUSTER,
2358 pgoff_t nc_cluster_idx = NULL_CLUSTER;
2360 unsigned nr_pages = rac ? readahead_count(rac) : 1;
2361 unsigned max_nr_pages = nr_pages;
2368 map.m_next_pgofs = NULL;
2369 map.m_next_extent = NULL;
2370 map.m_seg_type = NO_CHECK_TYPE;
2371 map.m_may_create = false;
2373 for (; nr_pages; nr_pages--) {
2375 page = readahead_page(rac);
2376 prefetchw(&page->flags);
2379 #ifdef CONFIG_F2FS_FS_COMPRESSION
2380 if (f2fs_compressed_file(inode)) {
2381 /* there are remained comressed pages, submit them */
2382 if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2383 ret = f2fs_read_multi_pages(&cc, &bio,
2386 rac != NULL, false);
2387 f2fs_destroy_compress_ctx(&cc, false);
2389 goto set_error_page;
2391 if (cc.cluster_idx == NULL_CLUSTER) {
2392 if (nc_cluster_idx ==
2393 page->index >> cc.log_cluster_size) {
2394 goto read_single_page;
2397 ret = f2fs_is_compressed_cluster(inode, page->index);
2399 goto set_error_page;
2402 page->index >> cc.log_cluster_size;
2403 goto read_single_page;
2406 nc_cluster_idx = NULL_CLUSTER;
2408 ret = f2fs_init_compress_ctx(&cc);
2410 goto set_error_page;
2412 f2fs_compress_ctx_add_page(&cc, page);
2419 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2420 &bio, &last_block_in_bio, rac);
2422 #ifdef CONFIG_F2FS_FS_COMPRESSION
2425 zero_user_segment(page, 0, PAGE_SIZE);
2428 #ifdef CONFIG_F2FS_FS_COMPRESSION
2434 #ifdef CONFIG_F2FS_FS_COMPRESSION
2435 if (f2fs_compressed_file(inode)) {
2437 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2438 ret = f2fs_read_multi_pages(&cc, &bio,
2441 rac != NULL, false);
2442 f2fs_destroy_compress_ctx(&cc, false);
2448 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2452 static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2454 struct page *page = &folio->page;
2455 struct inode *inode = page_file_mapping(page)->host;
2458 trace_f2fs_readpage(page, DATA);
2460 if (!f2fs_is_compress_backend_ready(inode)) {
2465 /* If the file has inline data, try to read it directly */
2466 if (f2fs_has_inline_data(inode))
2467 ret = f2fs_read_inline_data(inode, page);
2469 ret = f2fs_mpage_readpages(inode, NULL, page);
2473 static void f2fs_readahead(struct readahead_control *rac)
2475 struct inode *inode = rac->mapping->host;
2477 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2479 if (!f2fs_is_compress_backend_ready(inode))
2482 /* If the file has inline data, skip readahead */
2483 if (f2fs_has_inline_data(inode))
2486 f2fs_mpage_readpages(inode, rac, NULL);
2489 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2491 struct inode *inode = fio->page->mapping->host;
2492 struct page *mpage, *page;
2493 gfp_t gfp_flags = GFP_NOFS;
2495 if (!f2fs_encrypted_file(inode))
2498 page = fio->compressed_page ? fio->compressed_page : fio->page;
2500 /* wait for GCed page writeback via META_MAPPING */
2501 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2503 if (fscrypt_inode_uses_inline_crypto(inode))
2507 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2508 PAGE_SIZE, 0, gfp_flags);
2509 if (IS_ERR(fio->encrypted_page)) {
2510 /* flush pending IOs and wait for a while in the ENOMEM case */
2511 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2512 f2fs_flush_merged_writes(fio->sbi);
2513 memalloc_retry_wait(GFP_NOFS);
2514 gfp_flags |= __GFP_NOFAIL;
2517 return PTR_ERR(fio->encrypted_page);
2520 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2522 if (PageUptodate(mpage))
2523 memcpy(page_address(mpage),
2524 page_address(fio->encrypted_page), PAGE_SIZE);
2525 f2fs_put_page(mpage, 1);
2530 static inline bool check_inplace_update_policy(struct inode *inode,
2531 struct f2fs_io_info *fio)
2533 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2534 unsigned int policy = SM_I(sbi)->ipu_policy;
2536 if (policy & (0x1 << F2FS_IPU_HONOR_OPU_WRITE) &&
2537 is_inode_flag_set(inode, FI_OPU_WRITE))
2539 if (policy & (0x1 << F2FS_IPU_FORCE))
2541 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2543 if (policy & (0x1 << F2FS_IPU_UTIL) &&
2544 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2546 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2547 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2551 * IPU for rewrite async pages
2553 if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2554 fio && fio->op == REQ_OP_WRITE &&
2555 !(fio->op_flags & REQ_SYNC) &&
2556 !IS_ENCRYPTED(inode))
2559 /* this is only set during fdatasync */
2560 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2561 is_inode_flag_set(inode, FI_NEED_IPU))
2564 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2565 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2571 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2573 /* swap file is migrating in aligned write mode */
2574 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2577 if (f2fs_is_pinned_file(inode))
2580 /* if this is cold file, we should overwrite to avoid fragmentation */
2581 if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2584 return check_inplace_update_policy(inode, fio);
2587 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2589 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2591 /* The below cases were checked when setting it. */
2592 if (f2fs_is_pinned_file(inode))
2594 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2596 if (f2fs_lfs_mode(sbi))
2598 if (S_ISDIR(inode->i_mode))
2600 if (IS_NOQUOTA(inode))
2602 if (f2fs_is_atomic_file(inode))
2605 /* swap file is migrating in aligned write mode */
2606 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2609 if (is_inode_flag_set(inode, FI_OPU_WRITE))
2613 if (page_private_gcing(fio->page))
2615 if (page_private_dummy(fio->page))
2617 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2618 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2624 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2626 struct inode *inode = fio->page->mapping->host;
2628 if (f2fs_should_update_outplace(inode, fio))
2631 return f2fs_should_update_inplace(inode, fio);
2634 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2636 struct page *page = fio->page;
2637 struct inode *inode = page->mapping->host;
2638 struct dnode_of_data dn;
2639 struct extent_info ei = {0, };
2640 struct node_info ni;
2641 bool ipu_force = false;
2644 /* Use COW inode to make dnode_of_data for atomic write */
2645 if (f2fs_is_atomic_file(inode))
2646 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2648 set_new_dnode(&dn, inode, NULL, NULL, 0);
2650 if (need_inplace_update(fio) &&
2651 f2fs_lookup_read_extent_cache(inode, page->index, &ei)) {
2652 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2654 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2655 DATA_GENERIC_ENHANCE)) {
2656 f2fs_handle_error(fio->sbi,
2657 ERROR_INVALID_BLKADDR);
2658 return -EFSCORRUPTED;
2662 fio->need_lock = LOCK_DONE;
2666 /* Deadlock due to between page->lock and f2fs_lock_op */
2667 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2670 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2674 fio->old_blkaddr = dn.data_blkaddr;
2676 /* This page is already truncated */
2677 if (fio->old_blkaddr == NULL_ADDR) {
2678 ClearPageUptodate(page);
2679 clear_page_private_gcing(page);
2683 if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2684 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2685 DATA_GENERIC_ENHANCE)) {
2686 err = -EFSCORRUPTED;
2687 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
2692 * If current allocation needs SSR,
2693 * it had better in-place writes for updated data.
2696 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2697 need_inplace_update(fio))) {
2698 err = f2fs_encrypt_one_page(fio);
2702 set_page_writeback(page);
2703 ClearPageError(page);
2704 f2fs_put_dnode(&dn);
2705 if (fio->need_lock == LOCK_REQ)
2706 f2fs_unlock_op(fio->sbi);
2707 err = f2fs_inplace_write_data(fio);
2709 if (fscrypt_inode_uses_fs_layer_crypto(inode))
2710 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2711 if (PageWriteback(page))
2712 end_page_writeback(page);
2714 set_inode_flag(inode, FI_UPDATE_WRITE);
2716 trace_f2fs_do_write_data_page(fio->page, IPU);
2720 if (fio->need_lock == LOCK_RETRY) {
2721 if (!f2fs_trylock_op(fio->sbi)) {
2725 fio->need_lock = LOCK_REQ;
2728 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2732 fio->version = ni.version;
2734 err = f2fs_encrypt_one_page(fio);
2738 set_page_writeback(page);
2739 ClearPageError(page);
2741 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2742 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2744 /* LFS mode write path */
2745 f2fs_outplace_write_data(&dn, fio);
2746 trace_f2fs_do_write_data_page(page, OPU);
2747 set_inode_flag(inode, FI_APPEND_WRITE);
2748 if (page->index == 0)
2749 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2751 f2fs_put_dnode(&dn);
2753 if (fio->need_lock == LOCK_REQ)
2754 f2fs_unlock_op(fio->sbi);
2758 int f2fs_write_single_data_page(struct page *page, int *submitted,
2760 sector_t *last_block,
2761 struct writeback_control *wbc,
2762 enum iostat_type io_type,
2766 struct inode *inode = page->mapping->host;
2767 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2768 loff_t i_size = i_size_read(inode);
2769 const pgoff_t end_index = ((unsigned long long)i_size)
2771 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2772 unsigned offset = 0;
2773 bool need_balance_fs = false;
2775 struct f2fs_io_info fio = {
2777 .ino = inode->i_ino,
2780 .op_flags = wbc_to_write_flags(wbc),
2781 .old_blkaddr = NULL_ADDR,
2783 .encrypted_page = NULL,
2785 .compr_blocks = compr_blocks,
2786 .need_lock = LOCK_RETRY,
2787 .post_read = f2fs_post_read_required(inode),
2791 .last_block = last_block,
2794 trace_f2fs_writepage(page, DATA);
2796 /* we should bypass data pages to proceed the kworkder jobs */
2797 if (unlikely(f2fs_cp_error(sbi))) {
2798 mapping_set_error(page->mapping, -EIO);
2800 * don't drop any dirty dentry pages for keeping lastest
2801 * directory structure.
2803 if (S_ISDIR(inode->i_mode))
2808 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2811 if (page->index < end_index ||
2812 f2fs_verity_in_progress(inode) ||
2817 * If the offset is out-of-range of file size,
2818 * this page does not have to be written to disk.
2820 offset = i_size & (PAGE_SIZE - 1);
2821 if ((page->index >= end_index + 1) || !offset)
2824 zero_user_segment(page, offset, PAGE_SIZE);
2826 if (f2fs_is_drop_cache(inode))
2829 /* Dentry/quota blocks are controlled by checkpoint */
2830 if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2832 * We need to wait for node_write to avoid block allocation during
2833 * checkpoint. This can only happen to quota writes which can cause
2834 * the below discard race condition.
2836 if (IS_NOQUOTA(inode))
2837 f2fs_down_read(&sbi->node_write);
2839 fio.need_lock = LOCK_DONE;
2840 err = f2fs_do_write_data_page(&fio);
2842 if (IS_NOQUOTA(inode))
2843 f2fs_up_read(&sbi->node_write);
2848 if (!wbc->for_reclaim)
2849 need_balance_fs = true;
2850 else if (has_not_enough_free_secs(sbi, 0, 0))
2853 set_inode_flag(inode, FI_HOT_DATA);
2856 if (f2fs_has_inline_data(inode)) {
2857 err = f2fs_write_inline_data(inode, page);
2862 if (err == -EAGAIN) {
2863 err = f2fs_do_write_data_page(&fio);
2864 if (err == -EAGAIN) {
2865 fio.need_lock = LOCK_REQ;
2866 err = f2fs_do_write_data_page(&fio);
2871 file_set_keep_isize(inode);
2873 spin_lock(&F2FS_I(inode)->i_size_lock);
2874 if (F2FS_I(inode)->last_disk_size < psize)
2875 F2FS_I(inode)->last_disk_size = psize;
2876 spin_unlock(&F2FS_I(inode)->i_size_lock);
2880 if (err && err != -ENOENT)
2884 inode_dec_dirty_pages(inode);
2886 ClearPageUptodate(page);
2887 clear_page_private_gcing(page);
2890 if (wbc->for_reclaim) {
2891 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2892 clear_inode_flag(inode, FI_HOT_DATA);
2893 f2fs_remove_dirty_inode(inode);
2897 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2898 !F2FS_I(inode)->wb_task && allow_balance)
2899 f2fs_balance_fs(sbi, need_balance_fs);
2901 if (unlikely(f2fs_cp_error(sbi))) {
2902 f2fs_submit_merged_write(sbi, DATA);
2903 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2908 *submitted = fio.submitted ? 1 : 0;
2913 redirty_page_for_writepage(wbc, page);
2915 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2916 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2917 * file_write_and_wait_range() will see EIO error, which is critical
2918 * to return value of fsync() followed by atomic_write failure to user.
2920 if (!err || wbc->for_reclaim)
2921 return AOP_WRITEPAGE_ACTIVATE;
2926 static int f2fs_write_data_page(struct page *page,
2927 struct writeback_control *wbc)
2929 #ifdef CONFIG_F2FS_FS_COMPRESSION
2930 struct inode *inode = page->mapping->host;
2932 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2935 if (f2fs_compressed_file(inode)) {
2936 if (f2fs_is_compressed_cluster(inode, page->index)) {
2937 redirty_page_for_writepage(wbc, page);
2938 return AOP_WRITEPAGE_ACTIVATE;
2944 return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2945 wbc, FS_DATA_IO, 0, true);
2949 * This function was copied from write_cche_pages from mm/page-writeback.c.
2950 * The major change is making write step of cold data page separately from
2951 * warm/hot data page.
2953 static int f2fs_write_cache_pages(struct address_space *mapping,
2954 struct writeback_control *wbc,
2955 enum iostat_type io_type)
2958 int done = 0, retry = 0;
2959 struct page *pages[F2FS_ONSTACK_PAGES];
2960 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2961 struct bio *bio = NULL;
2962 sector_t last_block;
2963 #ifdef CONFIG_F2FS_FS_COMPRESSION
2964 struct inode *inode = mapping->host;
2965 struct compress_ctx cc = {
2967 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2968 .cluster_size = F2FS_I(inode)->i_cluster_size,
2969 .cluster_idx = NULL_CLUSTER,
2973 .valid_nr_cpages = 0,
2976 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2982 pgoff_t end; /* Inclusive */
2984 int range_whole = 0;
2990 if (get_dirty_pages(mapping->host) <=
2991 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2992 set_inode_flag(mapping->host, FI_HOT_DATA);
2994 clear_inode_flag(mapping->host, FI_HOT_DATA);
2996 if (wbc->range_cyclic) {
2997 index = mapping->writeback_index; /* prev offset */
3000 index = wbc->range_start >> PAGE_SHIFT;
3001 end = wbc->range_end >> PAGE_SHIFT;
3002 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3005 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3006 tag = PAGECACHE_TAG_TOWRITE;
3008 tag = PAGECACHE_TAG_DIRTY;
3011 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3012 tag_pages_for_writeback(mapping, index, end);
3014 while (!done && !retry && (index <= end)) {
3015 nr_pages = find_get_pages_range_tag(mapping, &index, end,
3016 tag, F2FS_ONSTACK_PAGES, pages);
3020 for (i = 0; i < nr_pages; i++) {
3021 struct page *page = pages[i];
3025 #ifdef CONFIG_F2FS_FS_COMPRESSION
3026 if (f2fs_compressed_file(inode)) {
3027 void *fsdata = NULL;
3031 ret = f2fs_init_compress_ctx(&cc);
3037 if (!f2fs_cluster_can_merge_page(&cc,
3039 ret = f2fs_write_multi_pages(&cc,
3040 &submitted, wbc, io_type);
3046 if (unlikely(f2fs_cp_error(sbi)))
3049 if (!f2fs_cluster_is_empty(&cc))
3052 if (f2fs_all_cluster_page_ready(&cc,
3053 pages, i, nr_pages, true))
3056 ret2 = f2fs_prepare_compress_overwrite(
3058 page->index, &fsdata);
3064 (!f2fs_compress_write_end(inode,
3065 fsdata, page->index, 1) ||
3066 !f2fs_all_cluster_page_ready(&cc,
3067 pages, i, nr_pages, false))) {
3073 /* give a priority to WB_SYNC threads */
3074 if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3075 wbc->sync_mode == WB_SYNC_NONE) {
3079 #ifdef CONFIG_F2FS_FS_COMPRESSION
3082 done_index = page->index;
3086 if (unlikely(page->mapping != mapping)) {
3092 if (!PageDirty(page)) {
3093 /* someone wrote it for us */
3094 goto continue_unlock;
3097 if (PageWriteback(page)) {
3098 if (wbc->sync_mode != WB_SYNC_NONE)
3099 f2fs_wait_on_page_writeback(page,
3102 goto continue_unlock;
3105 if (!clear_page_dirty_for_io(page))
3106 goto continue_unlock;
3108 #ifdef CONFIG_F2FS_FS_COMPRESSION
3109 if (f2fs_compressed_file(inode)) {
3111 f2fs_compress_ctx_add_page(&cc, page);
3115 ret = f2fs_write_single_data_page(page, &submitted,
3116 &bio, &last_block, wbc, io_type,
3118 if (ret == AOP_WRITEPAGE_ACTIVATE)
3120 #ifdef CONFIG_F2FS_FS_COMPRESSION
3123 nwritten += submitted;
3124 wbc->nr_to_write -= submitted;
3126 if (unlikely(ret)) {
3128 * keep nr_to_write, since vfs uses this to
3129 * get # of written pages.
3131 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3134 } else if (ret == -EAGAIN) {
3136 if (wbc->sync_mode == WB_SYNC_ALL) {
3137 f2fs_io_schedule_timeout(
3138 DEFAULT_IO_TIMEOUT);
3143 done_index = page->index + 1;
3148 if (wbc->nr_to_write <= 0 &&
3149 wbc->sync_mode == WB_SYNC_NONE) {
3157 release_pages(pages, nr_pages);
3160 #ifdef CONFIG_F2FS_FS_COMPRESSION
3161 /* flush remained pages in compress cluster */
3162 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3163 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3164 nwritten += submitted;
3165 wbc->nr_to_write -= submitted;
3171 if (f2fs_compressed_file(inode))
3172 f2fs_destroy_compress_ctx(&cc, false);
3179 if (wbc->range_cyclic && !done)
3181 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3182 mapping->writeback_index = done_index;
3185 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3187 /* submit cached bio of IPU write */
3189 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3194 static inline bool __should_serialize_io(struct inode *inode,
3195 struct writeback_control *wbc)
3197 /* to avoid deadlock in path of data flush */
3198 if (F2FS_I(inode)->wb_task)
3201 if (!S_ISREG(inode->i_mode))
3203 if (IS_NOQUOTA(inode))
3206 if (f2fs_need_compress_data(inode))
3208 if (wbc->sync_mode != WB_SYNC_ALL)
3210 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3215 static int __f2fs_write_data_pages(struct address_space *mapping,
3216 struct writeback_control *wbc,
3217 enum iostat_type io_type)
3219 struct inode *inode = mapping->host;
3220 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3221 struct blk_plug plug;
3223 bool locked = false;
3225 /* deal with chardevs and other special file */
3226 if (!mapping->a_ops->writepage)
3229 /* skip writing if there is no dirty page in this inode */
3230 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3233 /* during POR, we don't need to trigger writepage at all. */
3234 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3237 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3238 wbc->sync_mode == WB_SYNC_NONE &&
3239 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3240 f2fs_available_free_memory(sbi, DIRTY_DENTS))
3243 /* skip writing in file defragment preparing stage */
3244 if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3247 trace_f2fs_writepages(mapping->host, wbc, DATA);
3249 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3250 if (wbc->sync_mode == WB_SYNC_ALL)
3251 atomic_inc(&sbi->wb_sync_req[DATA]);
3252 else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3253 /* to avoid potential deadlock */
3255 blk_finish_plug(current->plug);
3259 if (__should_serialize_io(inode, wbc)) {
3260 mutex_lock(&sbi->writepages);
3264 blk_start_plug(&plug);
3265 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3266 blk_finish_plug(&plug);
3269 mutex_unlock(&sbi->writepages);
3271 if (wbc->sync_mode == WB_SYNC_ALL)
3272 atomic_dec(&sbi->wb_sync_req[DATA]);
3274 * if some pages were truncated, we cannot guarantee its mapping->host
3275 * to detect pending bios.
3278 f2fs_remove_dirty_inode(inode);
3282 wbc->pages_skipped += get_dirty_pages(inode);
3283 trace_f2fs_writepages(mapping->host, wbc, DATA);
3287 static int f2fs_write_data_pages(struct address_space *mapping,
3288 struct writeback_control *wbc)
3290 struct inode *inode = mapping->host;
3292 return __f2fs_write_data_pages(mapping, wbc,
3293 F2FS_I(inode)->cp_task == current ?
3294 FS_CP_DATA_IO : FS_DATA_IO);
3297 void f2fs_write_failed(struct inode *inode, loff_t to)
3299 loff_t i_size = i_size_read(inode);
3301 if (IS_NOQUOTA(inode))
3304 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3305 if (to > i_size && !f2fs_verity_in_progress(inode)) {
3306 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3307 filemap_invalidate_lock(inode->i_mapping);
3309 truncate_pagecache(inode, i_size);
3310 f2fs_truncate_blocks(inode, i_size, true);
3312 filemap_invalidate_unlock(inode->i_mapping);
3313 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3317 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3318 struct page *page, loff_t pos, unsigned len,
3319 block_t *blk_addr, bool *node_changed)
3321 struct inode *inode = page->mapping->host;
3322 pgoff_t index = page->index;
3323 struct dnode_of_data dn;
3325 bool locked = false;
3326 struct extent_info ei = {0, };
3331 * If a whole page is being written and we already preallocated all the
3332 * blocks, then there is no need to get a block address now.
3334 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3337 /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3338 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3339 flag = F2FS_GET_BLOCK_DEFAULT;
3341 flag = F2FS_GET_BLOCK_PRE_AIO;
3343 if (f2fs_has_inline_data(inode) ||
3344 (pos & PAGE_MASK) >= i_size_read(inode)) {
3345 f2fs_do_map_lock(sbi, flag, true);
3350 /* check inline_data */
3351 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3352 if (IS_ERR(ipage)) {
3353 err = PTR_ERR(ipage);
3357 set_new_dnode(&dn, inode, ipage, ipage, 0);
3359 if (f2fs_has_inline_data(inode)) {
3360 if (pos + len <= MAX_INLINE_DATA(inode)) {
3361 f2fs_do_read_inline_data(page, ipage);
3362 set_inode_flag(inode, FI_DATA_EXIST);
3364 set_page_private_inline(ipage);
3366 err = f2fs_convert_inline_page(&dn, page);
3369 if (dn.data_blkaddr == NULL_ADDR)
3370 err = f2fs_get_block(&dn, index);
3372 } else if (locked) {
3373 err = f2fs_get_block(&dn, index);
3375 if (f2fs_lookup_read_extent_cache(inode, index, &ei)) {
3376 dn.data_blkaddr = ei.blk + index - ei.fofs;
3379 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3380 if (err || dn.data_blkaddr == NULL_ADDR) {
3381 f2fs_put_dnode(&dn);
3382 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3384 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3391 /* convert_inline_page can make node_changed */
3392 *blk_addr = dn.data_blkaddr;
3393 *node_changed = dn.node_changed;
3395 f2fs_put_dnode(&dn);
3398 f2fs_do_map_lock(sbi, flag, false);
3402 static int __find_data_block(struct inode *inode, pgoff_t index,
3405 struct dnode_of_data dn;
3407 struct extent_info ei = {0, };
3410 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3412 return PTR_ERR(ipage);
3414 set_new_dnode(&dn, inode, ipage, ipage, 0);
3416 if (f2fs_lookup_read_extent_cache(inode, index, &ei)) {
3417 dn.data_blkaddr = ei.blk + index - ei.fofs;
3420 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3422 dn.data_blkaddr = NULL_ADDR;
3426 *blk_addr = dn.data_blkaddr;
3427 f2fs_put_dnode(&dn);
3431 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3432 block_t *blk_addr, bool *node_changed)
3434 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3435 struct dnode_of_data dn;
3439 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
3441 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3442 if (IS_ERR(ipage)) {
3443 err = PTR_ERR(ipage);
3446 set_new_dnode(&dn, inode, ipage, ipage, 0);
3448 err = f2fs_get_block(&dn, index);
3450 *blk_addr = dn.data_blkaddr;
3451 *node_changed = dn.node_changed;
3452 f2fs_put_dnode(&dn);
3455 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
3459 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3460 struct page *page, loff_t pos, unsigned int len,
3461 block_t *blk_addr, bool *node_changed)
3463 struct inode *inode = page->mapping->host;
3464 struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3465 pgoff_t index = page->index;
3467 block_t ori_blk_addr = NULL_ADDR;
3469 /* If pos is beyond the end of file, reserve a new block in COW inode */
3470 if ((pos & PAGE_MASK) >= i_size_read(inode))
3473 /* Look for the block in COW inode first */
3474 err = __find_data_block(cow_inode, index, blk_addr);
3477 else if (*blk_addr != NULL_ADDR)
3480 if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3483 /* Look for the block in the original inode */
3484 err = __find_data_block(inode, index, &ori_blk_addr);
3489 /* Finally, we should reserve a new block in COW inode for the update */
3490 err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3493 inc_atomic_write_cnt(inode);
3495 if (ori_blk_addr != NULL_ADDR)
3496 *blk_addr = ori_blk_addr;
3500 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3501 loff_t pos, unsigned len, struct page **pagep, void **fsdata)
3503 struct inode *inode = mapping->host;
3504 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3505 struct page *page = NULL;
3506 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3507 bool need_balance = false;
3508 block_t blkaddr = NULL_ADDR;
3511 trace_f2fs_write_begin(inode, pos, len);
3513 if (!f2fs_is_checkpoint_ready(sbi)) {
3519 * We should check this at this moment to avoid deadlock on inode page
3520 * and #0 page. The locking rule for inline_data conversion should be:
3521 * lock_page(page #0) -> lock_page(inode_page)
3524 err = f2fs_convert_inline_inode(inode);
3529 #ifdef CONFIG_F2FS_FS_COMPRESSION
3530 if (f2fs_compressed_file(inode)) {
3535 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3538 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3551 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3552 * wait_for_stable_page. Will wait that below with our IO control.
3554 page = f2fs_pagecache_get_page(mapping, index,
3555 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3561 /* TODO: cluster can be compressed due to race with .writepage */
3565 if (f2fs_is_atomic_file(inode))
3566 err = prepare_atomic_write_begin(sbi, page, pos, len,
3567 &blkaddr, &need_balance);
3569 err = prepare_write_begin(sbi, page, pos, len,
3570 &blkaddr, &need_balance);
3574 if (need_balance && !IS_NOQUOTA(inode) &&
3575 has_not_enough_free_secs(sbi, 0, 0)) {
3577 f2fs_balance_fs(sbi, true);
3579 if (page->mapping != mapping) {
3580 /* The page got truncated from under us */
3581 f2fs_put_page(page, 1);
3586 f2fs_wait_on_page_writeback(page, DATA, false, true);
3588 if (len == PAGE_SIZE || PageUptodate(page))
3591 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3592 !f2fs_verity_in_progress(inode)) {
3593 zero_user_segment(page, len, PAGE_SIZE);
3597 if (blkaddr == NEW_ADDR) {
3598 zero_user_segment(page, 0, PAGE_SIZE);
3599 SetPageUptodate(page);
3601 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3602 DATA_GENERIC_ENHANCE_READ)) {
3603 err = -EFSCORRUPTED;
3604 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3607 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
3612 if (unlikely(page->mapping != mapping)) {
3613 f2fs_put_page(page, 1);
3616 if (unlikely(!PageUptodate(page))) {
3624 f2fs_put_page(page, 1);
3625 f2fs_write_failed(inode, pos + len);
3629 static int f2fs_write_end(struct file *file,
3630 struct address_space *mapping,
3631 loff_t pos, unsigned len, unsigned copied,
3632 struct page *page, void *fsdata)
3634 struct inode *inode = page->mapping->host;
3636 trace_f2fs_write_end(inode, pos, len, copied);
3639 * This should be come from len == PAGE_SIZE, and we expect copied
3640 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3641 * let generic_perform_write() try to copy data again through copied=0.
3643 if (!PageUptodate(page)) {
3644 if (unlikely(copied != len))
3647 SetPageUptodate(page);
3650 #ifdef CONFIG_F2FS_FS_COMPRESSION
3651 /* overwrite compressed file */
3652 if (f2fs_compressed_file(inode) && fsdata) {
3653 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3654 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3656 if (pos + copied > i_size_read(inode) &&
3657 !f2fs_verity_in_progress(inode))
3658 f2fs_i_size_write(inode, pos + copied);
3666 set_page_dirty(page);
3668 if (pos + copied > i_size_read(inode) &&
3669 !f2fs_verity_in_progress(inode)) {
3670 f2fs_i_size_write(inode, pos + copied);
3671 if (f2fs_is_atomic_file(inode))
3672 f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3676 f2fs_put_page(page, 1);
3677 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3681 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3683 struct inode *inode = folio->mapping->host;
3684 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3686 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3687 (offset || length != folio_size(folio)))
3690 if (folio_test_dirty(folio)) {
3691 if (inode->i_ino == F2FS_META_INO(sbi)) {
3692 dec_page_count(sbi, F2FS_DIRTY_META);
3693 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3694 dec_page_count(sbi, F2FS_DIRTY_NODES);
3696 inode_dec_dirty_pages(inode);
3697 f2fs_remove_dirty_inode(inode);
3701 clear_page_private_gcing(&folio->page);
3703 if (test_opt(sbi, COMPRESS_CACHE) &&
3704 inode->i_ino == F2FS_COMPRESS_INO(sbi))
3705 clear_page_private_data(&folio->page);
3707 folio_detach_private(folio);
3710 bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3712 struct f2fs_sb_info *sbi;
3714 /* If this is dirty folio, keep private data */
3715 if (folio_test_dirty(folio))
3718 sbi = F2FS_M_SB(folio->mapping);
3719 if (test_opt(sbi, COMPRESS_CACHE)) {
3720 struct inode *inode = folio->mapping->host;
3722 if (inode->i_ino == F2FS_COMPRESS_INO(sbi))
3723 clear_page_private_data(&folio->page);
3726 clear_page_private_gcing(&folio->page);
3728 folio_detach_private(folio);
3732 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3733 struct folio *folio)
3735 struct inode *inode = mapping->host;
3737 trace_f2fs_set_page_dirty(&folio->page, DATA);
3739 if (!folio_test_uptodate(folio))
3740 folio_mark_uptodate(folio);
3741 BUG_ON(folio_test_swapcache(folio));
3743 if (filemap_dirty_folio(mapping, folio)) {
3744 f2fs_update_dirty_folio(inode, folio);
3751 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3753 #ifdef CONFIG_F2FS_FS_COMPRESSION
3754 struct dnode_of_data dn;
3755 sector_t start_idx, blknr = 0;
3758 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3760 set_new_dnode(&dn, inode, NULL, NULL, 0);
3761 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3765 if (dn.data_blkaddr != COMPRESS_ADDR) {
3766 dn.ofs_in_node += block - start_idx;
3767 blknr = f2fs_data_blkaddr(&dn);
3768 if (!__is_valid_data_blkaddr(blknr))
3772 f2fs_put_dnode(&dn);
3780 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3782 struct inode *inode = mapping->host;
3785 if (f2fs_has_inline_data(inode))
3788 /* make sure allocating whole blocks */
3789 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3790 filemap_write_and_wait(mapping);
3792 /* Block number less than F2FS MAX BLOCKS */
3793 if (unlikely(block >= max_file_blocks(inode)))
3796 if (f2fs_compressed_file(inode)) {
3797 blknr = f2fs_bmap_compress(inode, block);
3799 struct f2fs_map_blocks map;
3801 memset(&map, 0, sizeof(map));
3804 map.m_next_pgofs = NULL;
3805 map.m_seg_type = NO_CHECK_TYPE;
3807 if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP))
3811 trace_f2fs_bmap(inode, block, blknr);
3816 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3817 unsigned int blkcnt)
3819 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3820 unsigned int blkofs;
3821 unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3822 unsigned int secidx = start_blk / blk_per_sec;
3823 unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3826 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3827 filemap_invalidate_lock(inode->i_mapping);
3829 set_inode_flag(inode, FI_ALIGNED_WRITE);
3830 set_inode_flag(inode, FI_OPU_WRITE);
3832 for (; secidx < end_sec; secidx++) {
3833 f2fs_down_write(&sbi->pin_sem);
3836 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3837 f2fs_unlock_op(sbi);
3839 set_inode_flag(inode, FI_SKIP_WRITES);
3841 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
3843 unsigned int blkidx = secidx * blk_per_sec + blkofs;
3845 page = f2fs_get_lock_data_page(inode, blkidx, true);
3847 f2fs_up_write(&sbi->pin_sem);
3848 ret = PTR_ERR(page);
3852 set_page_dirty(page);
3853 f2fs_put_page(page, 1);
3856 clear_inode_flag(inode, FI_SKIP_WRITES);
3858 ret = filemap_fdatawrite(inode->i_mapping);
3860 f2fs_up_write(&sbi->pin_sem);
3867 clear_inode_flag(inode, FI_SKIP_WRITES);
3868 clear_inode_flag(inode, FI_OPU_WRITE);
3869 clear_inode_flag(inode, FI_ALIGNED_WRITE);
3871 filemap_invalidate_unlock(inode->i_mapping);
3872 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3877 static int check_swap_activate(struct swap_info_struct *sis,
3878 struct file *swap_file, sector_t *span)
3880 struct address_space *mapping = swap_file->f_mapping;
3881 struct inode *inode = mapping->host;
3882 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3883 sector_t cur_lblock;
3884 sector_t last_lblock;
3886 sector_t lowest_pblock = -1;
3887 sector_t highest_pblock = 0;
3889 unsigned long nr_pblocks;
3890 unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3891 unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3892 unsigned int not_aligned = 0;
3896 * Map all the blocks into the extent list. This code doesn't try
3900 last_lblock = bytes_to_blks(inode, i_size_read(inode));
3902 while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3903 struct f2fs_map_blocks map;
3907 memset(&map, 0, sizeof(map));
3908 map.m_lblk = cur_lblock;
3909 map.m_len = last_lblock - cur_lblock;
3910 map.m_next_pgofs = NULL;
3911 map.m_next_extent = NULL;
3912 map.m_seg_type = NO_CHECK_TYPE;
3913 map.m_may_create = false;
3915 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
3920 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3921 f2fs_err(sbi, "Swapfile has holes");
3926 pblock = map.m_pblk;
3927 nr_pblocks = map.m_len;
3929 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
3930 nr_pblocks & sec_blks_mask) {
3933 nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3934 if (cur_lblock + nr_pblocks > sis->max)
3935 nr_pblocks -= blks_per_sec;
3938 /* this extent is last one */
3939 nr_pblocks = map.m_len;
3940 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
3944 ret = f2fs_migrate_blocks(inode, cur_lblock,
3951 if (cur_lblock + nr_pblocks >= sis->max)
3952 nr_pblocks = sis->max - cur_lblock;
3954 if (cur_lblock) { /* exclude the header page */
3955 if (pblock < lowest_pblock)
3956 lowest_pblock = pblock;
3957 if (pblock + nr_pblocks - 1 > highest_pblock)
3958 highest_pblock = pblock + nr_pblocks - 1;
3962 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3964 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
3968 cur_lblock += nr_pblocks;
3971 *span = 1 + highest_pblock - lowest_pblock;
3972 if (cur_lblock == 0)
3973 cur_lblock = 1; /* force Empty message */
3974 sis->max = cur_lblock;
3975 sis->pages = cur_lblock - 1;
3976 sis->highest_bit = cur_lblock - 1;
3979 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
3980 not_aligned, blks_per_sec * F2FS_BLKSIZE);
3984 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3987 struct inode *inode = file_inode(file);
3990 if (!S_ISREG(inode->i_mode))
3993 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3996 if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
3997 f2fs_err(F2FS_I_SB(inode),
3998 "Swapfile not supported in LFS mode");
4002 ret = f2fs_convert_inline_inode(inode);
4006 if (!f2fs_disable_compressed_file(inode))
4009 f2fs_precache_extents(inode);
4011 ret = check_swap_activate(sis, file, span);
4015 stat_inc_swapfile_inode(inode);
4016 set_inode_flag(inode, FI_PIN_FILE);
4017 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
4021 static void f2fs_swap_deactivate(struct file *file)
4023 struct inode *inode = file_inode(file);
4025 stat_dec_swapfile_inode(inode);
4026 clear_inode_flag(inode, FI_PIN_FILE);
4029 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4035 static void f2fs_swap_deactivate(struct file *file)
4040 const struct address_space_operations f2fs_dblock_aops = {
4041 .read_folio = f2fs_read_data_folio,
4042 .readahead = f2fs_readahead,
4043 .writepage = f2fs_write_data_page,
4044 .writepages = f2fs_write_data_pages,
4045 .write_begin = f2fs_write_begin,
4046 .write_end = f2fs_write_end,
4047 .dirty_folio = f2fs_dirty_data_folio,
4048 .migrate_folio = filemap_migrate_folio,
4049 .invalidate_folio = f2fs_invalidate_folio,
4050 .release_folio = f2fs_release_folio,
4051 .direct_IO = noop_direct_IO,
4053 .swap_activate = f2fs_swap_activate,
4054 .swap_deactivate = f2fs_swap_deactivate,
4057 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4059 struct address_space *mapping = page_mapping(page);
4060 unsigned long flags;
4062 xa_lock_irqsave(&mapping->i_pages, flags);
4063 __xa_clear_mark(&mapping->i_pages, page_index(page),
4064 PAGECACHE_TAG_DIRTY);
4065 xa_unlock_irqrestore(&mapping->i_pages, flags);
4068 int __init f2fs_init_post_read_processing(void)
4070 bio_post_read_ctx_cache =
4071 kmem_cache_create("f2fs_bio_post_read_ctx",
4072 sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4073 if (!bio_post_read_ctx_cache)
4075 bio_post_read_ctx_pool =
4076 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4077 bio_post_read_ctx_cache);
4078 if (!bio_post_read_ctx_pool)
4079 goto fail_free_cache;
4083 kmem_cache_destroy(bio_post_read_ctx_cache);
4088 void f2fs_destroy_post_read_processing(void)
4090 mempool_destroy(bio_post_read_ctx_pool);
4091 kmem_cache_destroy(bio_post_read_ctx_cache);
4094 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4096 if (!f2fs_sb_has_encrypt(sbi) &&
4097 !f2fs_sb_has_verity(sbi) &&
4098 !f2fs_sb_has_compression(sbi))
4101 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4102 WQ_UNBOUND | WQ_HIGHPRI,
4104 return sbi->post_read_wq ? 0 : -ENOMEM;
4107 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4109 if (sbi->post_read_wq)
4110 destroy_workqueue(sbi->post_read_wq);
4113 int __init f2fs_init_bio_entry_cache(void)
4115 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4116 sizeof(struct bio_entry));
4117 return bio_entry_slab ? 0 : -ENOMEM;
4120 void f2fs_destroy_bio_entry_cache(void)
4122 kmem_cache_destroy(bio_entry_slab);
4125 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4126 unsigned int flags, struct iomap *iomap,
4127 struct iomap *srcmap)
4129 struct f2fs_map_blocks map = {};
4130 pgoff_t next_pgofs = 0;
4133 map.m_lblk = bytes_to_blks(inode, offset);
4134 map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4135 map.m_next_pgofs = &next_pgofs;
4136 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4137 if (flags & IOMAP_WRITE)
4138 map.m_may_create = true;
4140 err = f2fs_map_blocks(inode, &map, flags & IOMAP_WRITE,
4141 F2FS_GET_BLOCK_DIO);
4145 iomap->offset = blks_to_bytes(inode, map.m_lblk);
4148 * When inline encryption is enabled, sometimes I/O to an encrypted file
4149 * has to be broken up to guarantee DUN contiguity. Handle this by
4150 * limiting the length of the mapping returned.
4152 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4154 if (map.m_flags & (F2FS_MAP_MAPPED | F2FS_MAP_UNWRITTEN)) {
4155 iomap->length = blks_to_bytes(inode, map.m_len);
4156 if (map.m_flags & F2FS_MAP_MAPPED) {
4157 iomap->type = IOMAP_MAPPED;
4158 iomap->flags |= IOMAP_F_MERGED;
4160 iomap->type = IOMAP_UNWRITTEN;
4162 if (WARN_ON_ONCE(!__is_valid_data_blkaddr(map.m_pblk)))
4165 iomap->bdev = map.m_bdev;
4166 iomap->addr = blks_to_bytes(inode, map.m_pblk);
4168 iomap->length = blks_to_bytes(inode, next_pgofs) -
4170 iomap->type = IOMAP_HOLE;
4171 iomap->addr = IOMAP_NULL_ADDR;
4174 if (map.m_flags & F2FS_MAP_NEW)
4175 iomap->flags |= IOMAP_F_NEW;
4176 if ((inode->i_state & I_DIRTY_DATASYNC) ||
4177 offset + length > i_size_read(inode))
4178 iomap->flags |= IOMAP_F_DIRTY;
4183 const struct iomap_ops f2fs_iomap_ops = {
4184 .iomap_begin = f2fs_iomap_begin,