]> Git Repo - linux.git/blob - fs/f2fs/data.c
PCI: Honor firmware's device disabled status
[linux.git] / fs / f2fs / data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/sched/mm.h>
12 #include <linux/mpage.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/sched/signal.h>
22 #include <linux/fiemap.h>
23 #include <linux/iomap.h>
24
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "iostat.h"
29 #include <trace/events/f2fs.h>
30
31 #define NUM_PREALLOC_POST_READ_CTXS     128
32
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
37
38 #define F2FS_BIO_POOL_SIZE      NR_CURSEG_TYPE
39
40 int __init f2fs_init_bioset(void)
41 {
42         return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43                                         0, BIOSET_NEED_BVECS);
44 }
45
46 void f2fs_destroy_bioset(void)
47 {
48         bioset_exit(&f2fs_bioset);
49 }
50
51 static bool __is_cp_guaranteed(struct page *page)
52 {
53         struct address_space *mapping = page->mapping;
54         struct inode *inode;
55         struct f2fs_sb_info *sbi;
56
57         if (!mapping)
58                 return false;
59
60         inode = mapping->host;
61         sbi = F2FS_I_SB(inode);
62
63         if (inode->i_ino == F2FS_META_INO(sbi) ||
64                         inode->i_ino == F2FS_NODE_INO(sbi) ||
65                         S_ISDIR(inode->i_mode))
66                 return true;
67
68         if (f2fs_is_compressed_page(page))
69                 return false;
70         if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
71                         page_private_gcing(page))
72                 return true;
73         return false;
74 }
75
76 static enum count_type __read_io_type(struct page *page)
77 {
78         struct address_space *mapping = page_file_mapping(page);
79
80         if (mapping) {
81                 struct inode *inode = mapping->host;
82                 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
83
84                 if (inode->i_ino == F2FS_META_INO(sbi))
85                         return F2FS_RD_META;
86
87                 if (inode->i_ino == F2FS_NODE_INO(sbi))
88                         return F2FS_RD_NODE;
89         }
90         return F2FS_RD_DATA;
91 }
92
93 /* postprocessing steps for read bios */
94 enum bio_post_read_step {
95 #ifdef CONFIG_FS_ENCRYPTION
96         STEP_DECRYPT    = 1 << 0,
97 #else
98         STEP_DECRYPT    = 0,    /* compile out the decryption-related code */
99 #endif
100 #ifdef CONFIG_F2FS_FS_COMPRESSION
101         STEP_DECOMPRESS = 1 << 1,
102 #else
103         STEP_DECOMPRESS = 0,    /* compile out the decompression-related code */
104 #endif
105 #ifdef CONFIG_FS_VERITY
106         STEP_VERITY     = 1 << 2,
107 #else
108         STEP_VERITY     = 0,    /* compile out the verity-related code */
109 #endif
110 };
111
112 struct bio_post_read_ctx {
113         struct bio *bio;
114         struct f2fs_sb_info *sbi;
115         struct work_struct work;
116         unsigned int enabled_steps;
117         /*
118          * decompression_attempted keeps track of whether
119          * f2fs_end_read_compressed_page() has been called on the pages in the
120          * bio that belong to a compressed cluster yet.
121          */
122         bool decompression_attempted;
123         block_t fs_blkaddr;
124 };
125
126 /*
127  * Update and unlock a bio's pages, and free the bio.
128  *
129  * This marks pages up-to-date only if there was no error in the bio (I/O error,
130  * decryption error, or verity error), as indicated by bio->bi_status.
131  *
132  * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
133  * aren't marked up-to-date here, as decompression is done on a per-compression-
134  * cluster basis rather than a per-bio basis.  Instead, we only must do two
135  * things for each compressed page here: call f2fs_end_read_compressed_page()
136  * with failed=true if an error occurred before it would have normally gotten
137  * called (i.e., I/O error or decryption error, but *not* verity error), and
138  * release the bio's reference to the decompress_io_ctx of the page's cluster.
139  */
140 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
141 {
142         struct bio_vec *bv;
143         struct bvec_iter_all iter_all;
144         struct bio_post_read_ctx *ctx = bio->bi_private;
145
146         bio_for_each_segment_all(bv, bio, iter_all) {
147                 struct page *page = bv->bv_page;
148
149                 if (f2fs_is_compressed_page(page)) {
150                         if (ctx && !ctx->decompression_attempted)
151                                 f2fs_end_read_compressed_page(page, true, 0,
152                                                         in_task);
153                         f2fs_put_page_dic(page, in_task);
154                         continue;
155                 }
156
157                 if (bio->bi_status)
158                         ClearPageUptodate(page);
159                 else
160                         SetPageUptodate(page);
161                 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
162                 unlock_page(page);
163         }
164
165         if (ctx)
166                 mempool_free(ctx, bio_post_read_ctx_pool);
167         bio_put(bio);
168 }
169
170 static void f2fs_verify_bio(struct work_struct *work)
171 {
172         struct bio_post_read_ctx *ctx =
173                 container_of(work, struct bio_post_read_ctx, work);
174         struct bio *bio = ctx->bio;
175         bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
176
177         /*
178          * fsverity_verify_bio() may call readahead() again, and while verity
179          * will be disabled for this, decryption and/or decompression may still
180          * be needed, resulting in another bio_post_read_ctx being allocated.
181          * So to prevent deadlocks we need to release the current ctx to the
182          * mempool first.  This assumes that verity is the last post-read step.
183          */
184         mempool_free(ctx, bio_post_read_ctx_pool);
185         bio->bi_private = NULL;
186
187         /*
188          * Verify the bio's pages with fs-verity.  Exclude compressed pages,
189          * as those were handled separately by f2fs_end_read_compressed_page().
190          */
191         if (may_have_compressed_pages) {
192                 struct bio_vec *bv;
193                 struct bvec_iter_all iter_all;
194
195                 bio_for_each_segment_all(bv, bio, iter_all) {
196                         struct page *page = bv->bv_page;
197
198                         if (!f2fs_is_compressed_page(page) &&
199                             !fsverity_verify_page(page)) {
200                                 bio->bi_status = BLK_STS_IOERR;
201                                 break;
202                         }
203                 }
204         } else {
205                 fsverity_verify_bio(bio);
206         }
207
208         f2fs_finish_read_bio(bio, true);
209 }
210
211 /*
212  * If the bio's data needs to be verified with fs-verity, then enqueue the
213  * verity work for the bio.  Otherwise finish the bio now.
214  *
215  * Note that to avoid deadlocks, the verity work can't be done on the
216  * decryption/decompression workqueue.  This is because verifying the data pages
217  * can involve reading verity metadata pages from the file, and these verity
218  * metadata pages may be encrypted and/or compressed.
219  */
220 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
221 {
222         struct bio_post_read_ctx *ctx = bio->bi_private;
223
224         if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
225                 INIT_WORK(&ctx->work, f2fs_verify_bio);
226                 fsverity_enqueue_verify_work(&ctx->work);
227         } else {
228                 f2fs_finish_read_bio(bio, in_task);
229         }
230 }
231
232 /*
233  * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
234  * remaining page was read by @ctx->bio.
235  *
236  * Note that a bio may span clusters (even a mix of compressed and uncompressed
237  * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
238  * that the bio includes at least one compressed page.  The actual decompression
239  * is done on a per-cluster basis, not a per-bio basis.
240  */
241 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
242                 bool in_task)
243 {
244         struct bio_vec *bv;
245         struct bvec_iter_all iter_all;
246         bool all_compressed = true;
247         block_t blkaddr = ctx->fs_blkaddr;
248
249         bio_for_each_segment_all(bv, ctx->bio, iter_all) {
250                 struct page *page = bv->bv_page;
251
252                 if (f2fs_is_compressed_page(page))
253                         f2fs_end_read_compressed_page(page, false, blkaddr,
254                                                       in_task);
255                 else
256                         all_compressed = false;
257
258                 blkaddr++;
259         }
260
261         ctx->decompression_attempted = true;
262
263         /*
264          * Optimization: if all the bio's pages are compressed, then scheduling
265          * the per-bio verity work is unnecessary, as verity will be fully
266          * handled at the compression cluster level.
267          */
268         if (all_compressed)
269                 ctx->enabled_steps &= ~STEP_VERITY;
270 }
271
272 static void f2fs_post_read_work(struct work_struct *work)
273 {
274         struct bio_post_read_ctx *ctx =
275                 container_of(work, struct bio_post_read_ctx, work);
276         struct bio *bio = ctx->bio;
277
278         if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
279                 f2fs_finish_read_bio(bio, true);
280                 return;
281         }
282
283         if (ctx->enabled_steps & STEP_DECOMPRESS)
284                 f2fs_handle_step_decompress(ctx, true);
285
286         f2fs_verify_and_finish_bio(bio, true);
287 }
288
289 static void f2fs_read_end_io(struct bio *bio)
290 {
291         struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
292         struct bio_post_read_ctx *ctx;
293         bool intask = in_task();
294
295         iostat_update_and_unbind_ctx(bio, 0);
296         ctx = bio->bi_private;
297
298         if (time_to_inject(sbi, FAULT_READ_IO)) {
299                 f2fs_show_injection_info(sbi, FAULT_READ_IO);
300                 bio->bi_status = BLK_STS_IOERR;
301         }
302
303         if (bio->bi_status) {
304                 f2fs_finish_read_bio(bio, intask);
305                 return;
306         }
307
308         if (ctx) {
309                 unsigned int enabled_steps = ctx->enabled_steps &
310                                         (STEP_DECRYPT | STEP_DECOMPRESS);
311
312                 /*
313                  * If we have only decompression step between decompression and
314                  * decrypt, we don't need post processing for this.
315                  */
316                 if (enabled_steps == STEP_DECOMPRESS &&
317                                 !f2fs_low_mem_mode(sbi)) {
318                         f2fs_handle_step_decompress(ctx, intask);
319                 } else if (enabled_steps) {
320                         INIT_WORK(&ctx->work, f2fs_post_read_work);
321                         queue_work(ctx->sbi->post_read_wq, &ctx->work);
322                         return;
323                 }
324         }
325
326         f2fs_verify_and_finish_bio(bio, intask);
327 }
328
329 static void f2fs_write_end_io(struct bio *bio)
330 {
331         struct f2fs_sb_info *sbi;
332         struct bio_vec *bvec;
333         struct bvec_iter_all iter_all;
334
335         iostat_update_and_unbind_ctx(bio, 1);
336         sbi = bio->bi_private;
337
338         if (time_to_inject(sbi, FAULT_WRITE_IO)) {
339                 f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
340                 bio->bi_status = BLK_STS_IOERR;
341         }
342
343         bio_for_each_segment_all(bvec, bio, iter_all) {
344                 struct page *page = bvec->bv_page;
345                 enum count_type type = WB_DATA_TYPE(page);
346
347                 if (page_private_dummy(page)) {
348                         clear_page_private_dummy(page);
349                         unlock_page(page);
350                         mempool_free(page, sbi->write_io_dummy);
351
352                         if (unlikely(bio->bi_status))
353                                 f2fs_stop_checkpoint(sbi, true,
354                                                 STOP_CP_REASON_WRITE_FAIL);
355                         continue;
356                 }
357
358                 fscrypt_finalize_bounce_page(&page);
359
360 #ifdef CONFIG_F2FS_FS_COMPRESSION
361                 if (f2fs_is_compressed_page(page)) {
362                         f2fs_compress_write_end_io(bio, page);
363                         continue;
364                 }
365 #endif
366
367                 if (unlikely(bio->bi_status)) {
368                         mapping_set_error(page->mapping, -EIO);
369                         if (type == F2FS_WB_CP_DATA)
370                                 f2fs_stop_checkpoint(sbi, true,
371                                                 STOP_CP_REASON_WRITE_FAIL);
372                 }
373
374                 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
375                                         page->index != nid_of_node(page));
376
377                 dec_page_count(sbi, type);
378                 if (f2fs_in_warm_node_list(sbi, page))
379                         f2fs_del_fsync_node_entry(sbi, page);
380                 clear_page_private_gcing(page);
381                 end_page_writeback(page);
382         }
383         if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
384                                 wq_has_sleeper(&sbi->cp_wait))
385                 wake_up(&sbi->cp_wait);
386
387         bio_put(bio);
388 }
389
390 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
391                 block_t blk_addr, sector_t *sector)
392 {
393         struct block_device *bdev = sbi->sb->s_bdev;
394         int i;
395
396         if (f2fs_is_multi_device(sbi)) {
397                 for (i = 0; i < sbi->s_ndevs; i++) {
398                         if (FDEV(i).start_blk <= blk_addr &&
399                             FDEV(i).end_blk >= blk_addr) {
400                                 blk_addr -= FDEV(i).start_blk;
401                                 bdev = FDEV(i).bdev;
402                                 break;
403                         }
404                 }
405         }
406
407         if (sector)
408                 *sector = SECTOR_FROM_BLOCK(blk_addr);
409         return bdev;
410 }
411
412 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
413 {
414         int i;
415
416         if (!f2fs_is_multi_device(sbi))
417                 return 0;
418
419         for (i = 0; i < sbi->s_ndevs; i++)
420                 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
421                         return i;
422         return 0;
423 }
424
425 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
426 {
427         unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
428         unsigned int fua_flag, meta_flag, io_flag;
429         blk_opf_t op_flags = 0;
430
431         if (fio->op != REQ_OP_WRITE)
432                 return 0;
433         if (fio->type == DATA)
434                 io_flag = fio->sbi->data_io_flag;
435         else if (fio->type == NODE)
436                 io_flag = fio->sbi->node_io_flag;
437         else
438                 return 0;
439
440         fua_flag = io_flag & temp_mask;
441         meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
442
443         /*
444          * data/node io flag bits per temp:
445          *      REQ_META     |      REQ_FUA      |
446          *    5 |    4 |   3 |    2 |    1 |   0 |
447          * Cold | Warm | Hot | Cold | Warm | Hot |
448          */
449         if ((1 << fio->temp) & meta_flag)
450                 op_flags |= REQ_META;
451         if ((1 << fio->temp) & fua_flag)
452                 op_flags |= REQ_FUA;
453         return op_flags;
454 }
455
456 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
457 {
458         struct f2fs_sb_info *sbi = fio->sbi;
459         struct block_device *bdev;
460         sector_t sector;
461         struct bio *bio;
462
463         bdev = f2fs_target_device(sbi, fio->new_blkaddr, &sector);
464         bio = bio_alloc_bioset(bdev, npages,
465                                 fio->op | fio->op_flags | f2fs_io_flags(fio),
466                                 GFP_NOIO, &f2fs_bioset);
467         bio->bi_iter.bi_sector = sector;
468         if (is_read_io(fio->op)) {
469                 bio->bi_end_io = f2fs_read_end_io;
470                 bio->bi_private = NULL;
471         } else {
472                 bio->bi_end_io = f2fs_write_end_io;
473                 bio->bi_private = sbi;
474         }
475         iostat_alloc_and_bind_ctx(sbi, bio, NULL);
476
477         if (fio->io_wbc)
478                 wbc_init_bio(fio->io_wbc, bio);
479
480         return bio;
481 }
482
483 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
484                                   pgoff_t first_idx,
485                                   const struct f2fs_io_info *fio,
486                                   gfp_t gfp_mask)
487 {
488         /*
489          * The f2fs garbage collector sets ->encrypted_page when it wants to
490          * read/write raw data without encryption.
491          */
492         if (!fio || !fio->encrypted_page)
493                 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
494 }
495
496 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
497                                      pgoff_t next_idx,
498                                      const struct f2fs_io_info *fio)
499 {
500         /*
501          * The f2fs garbage collector sets ->encrypted_page when it wants to
502          * read/write raw data without encryption.
503          */
504         if (fio && fio->encrypted_page)
505                 return !bio_has_crypt_ctx(bio);
506
507         return fscrypt_mergeable_bio(bio, inode, next_idx);
508 }
509
510 static inline void __submit_bio(struct f2fs_sb_info *sbi,
511                                 struct bio *bio, enum page_type type)
512 {
513         if (!is_read_io(bio_op(bio))) {
514                 unsigned int start;
515
516                 if (type != DATA && type != NODE)
517                         goto submit_io;
518
519                 if (f2fs_lfs_mode(sbi) && current->plug)
520                         blk_finish_plug(current->plug);
521
522                 if (!F2FS_IO_ALIGNED(sbi))
523                         goto submit_io;
524
525                 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
526                 start %= F2FS_IO_SIZE(sbi);
527
528                 if (start == 0)
529                         goto submit_io;
530
531                 /* fill dummy pages */
532                 for (; start < F2FS_IO_SIZE(sbi); start++) {
533                         struct page *page =
534                                 mempool_alloc(sbi->write_io_dummy,
535                                               GFP_NOIO | __GFP_NOFAIL);
536                         f2fs_bug_on(sbi, !page);
537
538                         lock_page(page);
539
540                         zero_user_segment(page, 0, PAGE_SIZE);
541                         set_page_private_dummy(page);
542
543                         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
544                                 f2fs_bug_on(sbi, 1);
545                 }
546                 /*
547                  * In the NODE case, we lose next block address chain. So, we
548                  * need to do checkpoint in f2fs_sync_file.
549                  */
550                 if (type == NODE)
551                         set_sbi_flag(sbi, SBI_NEED_CP);
552         }
553 submit_io:
554         if (is_read_io(bio_op(bio)))
555                 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
556         else
557                 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
558
559         iostat_update_submit_ctx(bio, type);
560         submit_bio(bio);
561 }
562
563 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
564                                 struct bio *bio, enum page_type type)
565 {
566         __submit_bio(sbi, bio, type);
567 }
568
569 static void __submit_merged_bio(struct f2fs_bio_info *io)
570 {
571         struct f2fs_io_info *fio = &io->fio;
572
573         if (!io->bio)
574                 return;
575
576         if (is_read_io(fio->op))
577                 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
578         else
579                 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
580
581         __submit_bio(io->sbi, io->bio, fio->type);
582         io->bio = NULL;
583 }
584
585 static bool __has_merged_page(struct bio *bio, struct inode *inode,
586                                                 struct page *page, nid_t ino)
587 {
588         struct bio_vec *bvec;
589         struct bvec_iter_all iter_all;
590
591         if (!bio)
592                 return false;
593
594         if (!inode && !page && !ino)
595                 return true;
596
597         bio_for_each_segment_all(bvec, bio, iter_all) {
598                 struct page *target = bvec->bv_page;
599
600                 if (fscrypt_is_bounce_page(target)) {
601                         target = fscrypt_pagecache_page(target);
602                         if (IS_ERR(target))
603                                 continue;
604                 }
605                 if (f2fs_is_compressed_page(target)) {
606                         target = f2fs_compress_control_page(target);
607                         if (IS_ERR(target))
608                                 continue;
609                 }
610
611                 if (inode && inode == target->mapping->host)
612                         return true;
613                 if (page && page == target)
614                         return true;
615                 if (ino && ino == ino_of_node(target))
616                         return true;
617         }
618
619         return false;
620 }
621
622 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
623 {
624         int i;
625
626         for (i = 0; i < NR_PAGE_TYPE; i++) {
627                 int n = (i == META) ? 1 : NR_TEMP_TYPE;
628                 int j;
629
630                 sbi->write_io[i] = f2fs_kmalloc(sbi,
631                                 array_size(n, sizeof(struct f2fs_bio_info)),
632                                 GFP_KERNEL);
633                 if (!sbi->write_io[i])
634                         return -ENOMEM;
635
636                 for (j = HOT; j < n; j++) {
637                         init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem);
638                         sbi->write_io[i][j].sbi = sbi;
639                         sbi->write_io[i][j].bio = NULL;
640                         spin_lock_init(&sbi->write_io[i][j].io_lock);
641                         INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
642                         INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
643                         init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock);
644                 }
645         }
646
647         return 0;
648 }
649
650 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
651                                 enum page_type type, enum temp_type temp)
652 {
653         enum page_type btype = PAGE_TYPE_OF_BIO(type);
654         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
655
656         f2fs_down_write(&io->io_rwsem);
657
658         /* change META to META_FLUSH in the checkpoint procedure */
659         if (type >= META_FLUSH) {
660                 io->fio.type = META_FLUSH;
661                 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
662                 if (!test_opt(sbi, NOBARRIER))
663                         io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
664         }
665         __submit_merged_bio(io);
666         f2fs_up_write(&io->io_rwsem);
667 }
668
669 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
670                                 struct inode *inode, struct page *page,
671                                 nid_t ino, enum page_type type, bool force)
672 {
673         enum temp_type temp;
674         bool ret = true;
675
676         for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
677                 if (!force)     {
678                         enum page_type btype = PAGE_TYPE_OF_BIO(type);
679                         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
680
681                         f2fs_down_read(&io->io_rwsem);
682                         ret = __has_merged_page(io->bio, inode, page, ino);
683                         f2fs_up_read(&io->io_rwsem);
684                 }
685                 if (ret)
686                         __f2fs_submit_merged_write(sbi, type, temp);
687
688                 /* TODO: use HOT temp only for meta pages now. */
689                 if (type >= META)
690                         break;
691         }
692 }
693
694 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
695 {
696         __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
697 }
698
699 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
700                                 struct inode *inode, struct page *page,
701                                 nid_t ino, enum page_type type)
702 {
703         __submit_merged_write_cond(sbi, inode, page, ino, type, false);
704 }
705
706 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
707 {
708         f2fs_submit_merged_write(sbi, DATA);
709         f2fs_submit_merged_write(sbi, NODE);
710         f2fs_submit_merged_write(sbi, META);
711 }
712
713 /*
714  * Fill the locked page with data located in the block address.
715  * A caller needs to unlock the page on failure.
716  */
717 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
718 {
719         struct bio *bio;
720         struct page *page = fio->encrypted_page ?
721                         fio->encrypted_page : fio->page;
722
723         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
724                         fio->is_por ? META_POR : (__is_meta_io(fio) ?
725                         META_GENERIC : DATA_GENERIC_ENHANCE))) {
726                 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
727                 return -EFSCORRUPTED;
728         }
729
730         trace_f2fs_submit_page_bio(page, fio);
731
732         /* Allocate a new bio */
733         bio = __bio_alloc(fio, 1);
734
735         f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
736                                fio->page->index, fio, GFP_NOIO);
737
738         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
739                 bio_put(bio);
740                 return -EFAULT;
741         }
742
743         if (fio->io_wbc && !is_read_io(fio->op))
744                 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
745
746         inc_page_count(fio->sbi, is_read_io(fio->op) ?
747                         __read_io_type(page) : WB_DATA_TYPE(fio->page));
748
749         __submit_bio(fio->sbi, bio, fio->type);
750         return 0;
751 }
752
753 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
754                                 block_t last_blkaddr, block_t cur_blkaddr)
755 {
756         if (unlikely(sbi->max_io_bytes &&
757                         bio->bi_iter.bi_size >= sbi->max_io_bytes))
758                 return false;
759         if (last_blkaddr + 1 != cur_blkaddr)
760                 return false;
761         return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
762 }
763
764 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
765                                                 struct f2fs_io_info *fio)
766 {
767         if (io->fio.op != fio->op)
768                 return false;
769         return io->fio.op_flags == fio->op_flags;
770 }
771
772 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
773                                         struct f2fs_bio_info *io,
774                                         struct f2fs_io_info *fio,
775                                         block_t last_blkaddr,
776                                         block_t cur_blkaddr)
777 {
778         if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
779                 unsigned int filled_blocks =
780                                 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
781                 unsigned int io_size = F2FS_IO_SIZE(sbi);
782                 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
783
784                 /* IOs in bio is aligned and left space of vectors is not enough */
785                 if (!(filled_blocks % io_size) && left_vecs < io_size)
786                         return false;
787         }
788         if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
789                 return false;
790         return io_type_is_mergeable(io, fio);
791 }
792
793 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
794                                 struct page *page, enum temp_type temp)
795 {
796         struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
797         struct bio_entry *be;
798
799         be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
800         be->bio = bio;
801         bio_get(bio);
802
803         if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
804                 f2fs_bug_on(sbi, 1);
805
806         f2fs_down_write(&io->bio_list_lock);
807         list_add_tail(&be->list, &io->bio_list);
808         f2fs_up_write(&io->bio_list_lock);
809 }
810
811 static void del_bio_entry(struct bio_entry *be)
812 {
813         list_del(&be->list);
814         kmem_cache_free(bio_entry_slab, be);
815 }
816
817 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
818                                                         struct page *page)
819 {
820         struct f2fs_sb_info *sbi = fio->sbi;
821         enum temp_type temp;
822         bool found = false;
823         int ret = -EAGAIN;
824
825         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
826                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
827                 struct list_head *head = &io->bio_list;
828                 struct bio_entry *be;
829
830                 f2fs_down_write(&io->bio_list_lock);
831                 list_for_each_entry(be, head, list) {
832                         if (be->bio != *bio)
833                                 continue;
834
835                         found = true;
836
837                         f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
838                                                             *fio->last_block,
839                                                             fio->new_blkaddr));
840                         if (f2fs_crypt_mergeable_bio(*bio,
841                                         fio->page->mapping->host,
842                                         fio->page->index, fio) &&
843                             bio_add_page(*bio, page, PAGE_SIZE, 0) ==
844                                         PAGE_SIZE) {
845                                 ret = 0;
846                                 break;
847                         }
848
849                         /* page can't be merged into bio; submit the bio */
850                         del_bio_entry(be);
851                         __submit_bio(sbi, *bio, DATA);
852                         break;
853                 }
854                 f2fs_up_write(&io->bio_list_lock);
855         }
856
857         if (ret) {
858                 bio_put(*bio);
859                 *bio = NULL;
860         }
861
862         return ret;
863 }
864
865 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
866                                         struct bio **bio, struct page *page)
867 {
868         enum temp_type temp;
869         bool found = false;
870         struct bio *target = bio ? *bio : NULL;
871
872         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
873                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
874                 struct list_head *head = &io->bio_list;
875                 struct bio_entry *be;
876
877                 if (list_empty(head))
878                         continue;
879
880                 f2fs_down_read(&io->bio_list_lock);
881                 list_for_each_entry(be, head, list) {
882                         if (target)
883                                 found = (target == be->bio);
884                         else
885                                 found = __has_merged_page(be->bio, NULL,
886                                                                 page, 0);
887                         if (found)
888                                 break;
889                 }
890                 f2fs_up_read(&io->bio_list_lock);
891
892                 if (!found)
893                         continue;
894
895                 found = false;
896
897                 f2fs_down_write(&io->bio_list_lock);
898                 list_for_each_entry(be, head, list) {
899                         if (target)
900                                 found = (target == be->bio);
901                         else
902                                 found = __has_merged_page(be->bio, NULL,
903                                                                 page, 0);
904                         if (found) {
905                                 target = be->bio;
906                                 del_bio_entry(be);
907                                 break;
908                         }
909                 }
910                 f2fs_up_write(&io->bio_list_lock);
911         }
912
913         if (found)
914                 __submit_bio(sbi, target, DATA);
915         if (bio && *bio) {
916                 bio_put(*bio);
917                 *bio = NULL;
918         }
919 }
920
921 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
922 {
923         struct bio *bio = *fio->bio;
924         struct page *page = fio->encrypted_page ?
925                         fio->encrypted_page : fio->page;
926
927         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
928                         __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) {
929                 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
930                 return -EFSCORRUPTED;
931         }
932
933         trace_f2fs_submit_page_bio(page, fio);
934
935         if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
936                                                 fio->new_blkaddr))
937                 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
938 alloc_new:
939         if (!bio) {
940                 bio = __bio_alloc(fio, BIO_MAX_VECS);
941                 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
942                                        fio->page->index, fio, GFP_NOIO);
943
944                 add_bio_entry(fio->sbi, bio, page, fio->temp);
945         } else {
946                 if (add_ipu_page(fio, &bio, page))
947                         goto alloc_new;
948         }
949
950         if (fio->io_wbc)
951                 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
952
953         inc_page_count(fio->sbi, WB_DATA_TYPE(page));
954
955         *fio->last_block = fio->new_blkaddr;
956         *fio->bio = bio;
957
958         return 0;
959 }
960
961 void f2fs_submit_page_write(struct f2fs_io_info *fio)
962 {
963         struct f2fs_sb_info *sbi = fio->sbi;
964         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
965         struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
966         struct page *bio_page;
967
968         f2fs_bug_on(sbi, is_read_io(fio->op));
969
970         f2fs_down_write(&io->io_rwsem);
971 next:
972         if (fio->in_list) {
973                 spin_lock(&io->io_lock);
974                 if (list_empty(&io->io_list)) {
975                         spin_unlock(&io->io_lock);
976                         goto out;
977                 }
978                 fio = list_first_entry(&io->io_list,
979                                                 struct f2fs_io_info, list);
980                 list_del(&fio->list);
981                 spin_unlock(&io->io_lock);
982         }
983
984         verify_fio_blkaddr(fio);
985
986         if (fio->encrypted_page)
987                 bio_page = fio->encrypted_page;
988         else if (fio->compressed_page)
989                 bio_page = fio->compressed_page;
990         else
991                 bio_page = fio->page;
992
993         /* set submitted = true as a return value */
994         fio->submitted = true;
995
996         inc_page_count(sbi, WB_DATA_TYPE(bio_page));
997
998         if (io->bio &&
999             (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
1000                               fio->new_blkaddr) ||
1001              !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
1002                                        bio_page->index, fio)))
1003                 __submit_merged_bio(io);
1004 alloc_new:
1005         if (io->bio == NULL) {
1006                 if (F2FS_IO_ALIGNED(sbi) &&
1007                                 (fio->type == DATA || fio->type == NODE) &&
1008                                 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
1009                         dec_page_count(sbi, WB_DATA_TYPE(bio_page));
1010                         fio->retry = true;
1011                         goto skip;
1012                 }
1013                 io->bio = __bio_alloc(fio, BIO_MAX_VECS);
1014                 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
1015                                        bio_page->index, fio, GFP_NOIO);
1016                 io->fio = *fio;
1017         }
1018
1019         if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1020                 __submit_merged_bio(io);
1021                 goto alloc_new;
1022         }
1023
1024         if (fio->io_wbc)
1025                 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
1026
1027         io->last_block_in_bio = fio->new_blkaddr;
1028
1029         trace_f2fs_submit_page_write(fio->page, fio);
1030 skip:
1031         if (fio->in_list)
1032                 goto next;
1033 out:
1034         if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1035                                 !f2fs_is_checkpoint_ready(sbi))
1036                 __submit_merged_bio(io);
1037         f2fs_up_write(&io->io_rwsem);
1038 }
1039
1040 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1041                                       unsigned nr_pages, blk_opf_t op_flag,
1042                                       pgoff_t first_idx, bool for_write)
1043 {
1044         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1045         struct bio *bio;
1046         struct bio_post_read_ctx *ctx = NULL;
1047         unsigned int post_read_steps = 0;
1048         sector_t sector;
1049         struct block_device *bdev = f2fs_target_device(sbi, blkaddr, &sector);
1050
1051         bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1052                                REQ_OP_READ | op_flag,
1053                                for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1054         if (!bio)
1055                 return ERR_PTR(-ENOMEM);
1056         bio->bi_iter.bi_sector = sector;
1057         f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1058         bio->bi_end_io = f2fs_read_end_io;
1059
1060         if (fscrypt_inode_uses_fs_layer_crypto(inode))
1061                 post_read_steps |= STEP_DECRYPT;
1062
1063         if (f2fs_need_verity(inode, first_idx))
1064                 post_read_steps |= STEP_VERITY;
1065
1066         /*
1067          * STEP_DECOMPRESS is handled specially, since a compressed file might
1068          * contain both compressed and uncompressed clusters.  We'll allocate a
1069          * bio_post_read_ctx if the file is compressed, but the caller is
1070          * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1071          */
1072
1073         if (post_read_steps || f2fs_compressed_file(inode)) {
1074                 /* Due to the mempool, this never fails. */
1075                 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1076                 ctx->bio = bio;
1077                 ctx->sbi = sbi;
1078                 ctx->enabled_steps = post_read_steps;
1079                 ctx->fs_blkaddr = blkaddr;
1080                 ctx->decompression_attempted = false;
1081                 bio->bi_private = ctx;
1082         }
1083         iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1084
1085         return bio;
1086 }
1087
1088 /* This can handle encryption stuffs */
1089 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1090                                  block_t blkaddr, blk_opf_t op_flags,
1091                                  bool for_write)
1092 {
1093         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1094         struct bio *bio;
1095
1096         bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1097                                         page->index, for_write);
1098         if (IS_ERR(bio))
1099                 return PTR_ERR(bio);
1100
1101         /* wait for GCed page writeback via META_MAPPING */
1102         f2fs_wait_on_block_writeback(inode, blkaddr);
1103
1104         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1105                 bio_put(bio);
1106                 return -EFAULT;
1107         }
1108         inc_page_count(sbi, F2FS_RD_DATA);
1109         f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1110         __submit_bio(sbi, bio, DATA);
1111         return 0;
1112 }
1113
1114 static void __set_data_blkaddr(struct dnode_of_data *dn)
1115 {
1116         struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1117         __le32 *addr_array;
1118         int base = 0;
1119
1120         if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1121                 base = get_extra_isize(dn->inode);
1122
1123         /* Get physical address of data block */
1124         addr_array = blkaddr_in_node(rn);
1125         addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1126 }
1127
1128 /*
1129  * Lock ordering for the change of data block address:
1130  * ->data_page
1131  *  ->node_page
1132  *    update block addresses in the node page
1133  */
1134 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1135 {
1136         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1137         __set_data_blkaddr(dn);
1138         if (set_page_dirty(dn->node_page))
1139                 dn->node_changed = true;
1140 }
1141
1142 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1143 {
1144         dn->data_blkaddr = blkaddr;
1145         f2fs_set_data_blkaddr(dn);
1146         f2fs_update_read_extent_cache(dn);
1147 }
1148
1149 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1150 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1151 {
1152         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1153         int err;
1154
1155         if (!count)
1156                 return 0;
1157
1158         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1159                 return -EPERM;
1160         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1161                 return err;
1162
1163         trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1164                                                 dn->ofs_in_node, count);
1165
1166         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1167
1168         for (; count > 0; dn->ofs_in_node++) {
1169                 block_t blkaddr = f2fs_data_blkaddr(dn);
1170
1171                 if (blkaddr == NULL_ADDR) {
1172                         dn->data_blkaddr = NEW_ADDR;
1173                         __set_data_blkaddr(dn);
1174                         count--;
1175                 }
1176         }
1177
1178         if (set_page_dirty(dn->node_page))
1179                 dn->node_changed = true;
1180         return 0;
1181 }
1182
1183 /* Should keep dn->ofs_in_node unchanged */
1184 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1185 {
1186         unsigned int ofs_in_node = dn->ofs_in_node;
1187         int ret;
1188
1189         ret = f2fs_reserve_new_blocks(dn, 1);
1190         dn->ofs_in_node = ofs_in_node;
1191         return ret;
1192 }
1193
1194 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1195 {
1196         bool need_put = dn->inode_page ? false : true;
1197         int err;
1198
1199         err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1200         if (err)
1201                 return err;
1202
1203         if (dn->data_blkaddr == NULL_ADDR)
1204                 err = f2fs_reserve_new_block(dn);
1205         if (err || need_put)
1206                 f2fs_put_dnode(dn);
1207         return err;
1208 }
1209
1210 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1211 {
1212         struct extent_info ei = {0, };
1213         struct inode *inode = dn->inode;
1214
1215         if (f2fs_lookup_read_extent_cache(inode, index, &ei)) {
1216                 dn->data_blkaddr = ei.blk + index - ei.fofs;
1217                 return 0;
1218         }
1219
1220         return f2fs_reserve_block(dn, index);
1221 }
1222
1223 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1224                                      blk_opf_t op_flags, bool for_write,
1225                                      pgoff_t *next_pgofs)
1226 {
1227         struct address_space *mapping = inode->i_mapping;
1228         struct dnode_of_data dn;
1229         struct page *page;
1230         struct extent_info ei = {0, };
1231         int err;
1232
1233         page = f2fs_grab_cache_page(mapping, index, for_write);
1234         if (!page)
1235                 return ERR_PTR(-ENOMEM);
1236
1237         if (f2fs_lookup_read_extent_cache(inode, index, &ei)) {
1238                 dn.data_blkaddr = ei.blk + index - ei.fofs;
1239                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1240                                                 DATA_GENERIC_ENHANCE_READ)) {
1241                         err = -EFSCORRUPTED;
1242                         f2fs_handle_error(F2FS_I_SB(inode),
1243                                                 ERROR_INVALID_BLKADDR);
1244                         goto put_err;
1245                 }
1246                 goto got_it;
1247         }
1248
1249         set_new_dnode(&dn, inode, NULL, NULL, 0);
1250         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1251         if (err) {
1252                 if (err == -ENOENT && next_pgofs)
1253                         *next_pgofs = f2fs_get_next_page_offset(&dn, index);
1254                 goto put_err;
1255         }
1256         f2fs_put_dnode(&dn);
1257
1258         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1259                 err = -ENOENT;
1260                 if (next_pgofs)
1261                         *next_pgofs = index + 1;
1262                 goto put_err;
1263         }
1264         if (dn.data_blkaddr != NEW_ADDR &&
1265                         !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1266                                                 dn.data_blkaddr,
1267                                                 DATA_GENERIC_ENHANCE)) {
1268                 err = -EFSCORRUPTED;
1269                 f2fs_handle_error(F2FS_I_SB(inode),
1270                                         ERROR_INVALID_BLKADDR);
1271                 goto put_err;
1272         }
1273 got_it:
1274         if (PageUptodate(page)) {
1275                 unlock_page(page);
1276                 return page;
1277         }
1278
1279         /*
1280          * A new dentry page is allocated but not able to be written, since its
1281          * new inode page couldn't be allocated due to -ENOSPC.
1282          * In such the case, its blkaddr can be remained as NEW_ADDR.
1283          * see, f2fs_add_link -> f2fs_get_new_data_page ->
1284          * f2fs_init_inode_metadata.
1285          */
1286         if (dn.data_blkaddr == NEW_ADDR) {
1287                 zero_user_segment(page, 0, PAGE_SIZE);
1288                 if (!PageUptodate(page))
1289                         SetPageUptodate(page);
1290                 unlock_page(page);
1291                 return page;
1292         }
1293
1294         err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1295                                                 op_flags, for_write);
1296         if (err)
1297                 goto put_err;
1298         return page;
1299
1300 put_err:
1301         f2fs_put_page(page, 1);
1302         return ERR_PTR(err);
1303 }
1304
1305 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
1306                                         pgoff_t *next_pgofs)
1307 {
1308         struct address_space *mapping = inode->i_mapping;
1309         struct page *page;
1310
1311         page = find_get_page(mapping, index);
1312         if (page && PageUptodate(page))
1313                 return page;
1314         f2fs_put_page(page, 0);
1315
1316         page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs);
1317         if (IS_ERR(page))
1318                 return page;
1319
1320         if (PageUptodate(page))
1321                 return page;
1322
1323         wait_on_page_locked(page);
1324         if (unlikely(!PageUptodate(page))) {
1325                 f2fs_put_page(page, 0);
1326                 return ERR_PTR(-EIO);
1327         }
1328         return page;
1329 }
1330
1331 /*
1332  * If it tries to access a hole, return an error.
1333  * Because, the callers, functions in dir.c and GC, should be able to know
1334  * whether this page exists or not.
1335  */
1336 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1337                                                         bool for_write)
1338 {
1339         struct address_space *mapping = inode->i_mapping;
1340         struct page *page;
1341 repeat:
1342         page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL);
1343         if (IS_ERR(page))
1344                 return page;
1345
1346         /* wait for read completion */
1347         lock_page(page);
1348         if (unlikely(page->mapping != mapping)) {
1349                 f2fs_put_page(page, 1);
1350                 goto repeat;
1351         }
1352         if (unlikely(!PageUptodate(page))) {
1353                 f2fs_put_page(page, 1);
1354                 return ERR_PTR(-EIO);
1355         }
1356         return page;
1357 }
1358
1359 /*
1360  * Caller ensures that this data page is never allocated.
1361  * A new zero-filled data page is allocated in the page cache.
1362  *
1363  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1364  * f2fs_unlock_op().
1365  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1366  * ipage should be released by this function.
1367  */
1368 struct page *f2fs_get_new_data_page(struct inode *inode,
1369                 struct page *ipage, pgoff_t index, bool new_i_size)
1370 {
1371         struct address_space *mapping = inode->i_mapping;
1372         struct page *page;
1373         struct dnode_of_data dn;
1374         int err;
1375
1376         page = f2fs_grab_cache_page(mapping, index, true);
1377         if (!page) {
1378                 /*
1379                  * before exiting, we should make sure ipage will be released
1380                  * if any error occur.
1381                  */
1382                 f2fs_put_page(ipage, 1);
1383                 return ERR_PTR(-ENOMEM);
1384         }
1385
1386         set_new_dnode(&dn, inode, ipage, NULL, 0);
1387         err = f2fs_reserve_block(&dn, index);
1388         if (err) {
1389                 f2fs_put_page(page, 1);
1390                 return ERR_PTR(err);
1391         }
1392         if (!ipage)
1393                 f2fs_put_dnode(&dn);
1394
1395         if (PageUptodate(page))
1396                 goto got_it;
1397
1398         if (dn.data_blkaddr == NEW_ADDR) {
1399                 zero_user_segment(page, 0, PAGE_SIZE);
1400                 if (!PageUptodate(page))
1401                         SetPageUptodate(page);
1402         } else {
1403                 f2fs_put_page(page, 1);
1404
1405                 /* if ipage exists, blkaddr should be NEW_ADDR */
1406                 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1407                 page = f2fs_get_lock_data_page(inode, index, true);
1408                 if (IS_ERR(page))
1409                         return page;
1410         }
1411 got_it:
1412         if (new_i_size && i_size_read(inode) <
1413                                 ((loff_t)(index + 1) << PAGE_SHIFT))
1414                 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1415         return page;
1416 }
1417
1418 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1419 {
1420         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1421         struct f2fs_summary sum;
1422         struct node_info ni;
1423         block_t old_blkaddr;
1424         blkcnt_t count = 1;
1425         int err;
1426
1427         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1428                 return -EPERM;
1429
1430         err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1431         if (err)
1432                 return err;
1433
1434         dn->data_blkaddr = f2fs_data_blkaddr(dn);
1435         if (dn->data_blkaddr != NULL_ADDR)
1436                 goto alloc;
1437
1438         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1439                 return err;
1440
1441 alloc:
1442         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1443         old_blkaddr = dn->data_blkaddr;
1444         f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1445                                 &sum, seg_type, NULL);
1446         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1447                 invalidate_mapping_pages(META_MAPPING(sbi),
1448                                         old_blkaddr, old_blkaddr);
1449                 f2fs_invalidate_compress_page(sbi, old_blkaddr);
1450         }
1451         f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1452         return 0;
1453 }
1454
1455 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1456 {
1457         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1458                 if (lock)
1459                         f2fs_down_read(&sbi->node_change);
1460                 else
1461                         f2fs_up_read(&sbi->node_change);
1462         } else {
1463                 if (lock)
1464                         f2fs_lock_op(sbi);
1465                 else
1466                         f2fs_unlock_op(sbi);
1467         }
1468 }
1469
1470 /*
1471  * f2fs_map_blocks() tries to find or build mapping relationship which
1472  * maps continuous logical blocks to physical blocks, and return such
1473  * info via f2fs_map_blocks structure.
1474  */
1475 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1476                                                 int create, int flag)
1477 {
1478         unsigned int maxblocks = map->m_len;
1479         struct dnode_of_data dn;
1480         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1481         int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1482         pgoff_t pgofs, end_offset, end;
1483         int err = 0, ofs = 1;
1484         unsigned int ofs_in_node, last_ofs_in_node;
1485         blkcnt_t prealloc;
1486         struct extent_info ei = {0, };
1487         block_t blkaddr;
1488         unsigned int start_pgofs;
1489         int bidx = 0;
1490
1491         if (!maxblocks)
1492                 return 0;
1493
1494         map->m_bdev = inode->i_sb->s_bdev;
1495         map->m_multidev_dio =
1496                 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1497
1498         map->m_len = 0;
1499         map->m_flags = 0;
1500
1501         /* it only supports block size == page size */
1502         pgofs = (pgoff_t)map->m_lblk;
1503         end = pgofs + maxblocks;
1504
1505         if (!create && f2fs_lookup_read_extent_cache(inode, pgofs, &ei)) {
1506                 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1507                                                         map->m_may_create)
1508                         goto next_dnode;
1509
1510                 map->m_pblk = ei.blk + pgofs - ei.fofs;
1511                 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1512                 map->m_flags = F2FS_MAP_MAPPED;
1513                 if (map->m_next_extent)
1514                         *map->m_next_extent = pgofs + map->m_len;
1515
1516                 /* for hardware encryption, but to avoid potential issue in future */
1517                 if (flag == F2FS_GET_BLOCK_DIO)
1518                         f2fs_wait_on_block_writeback_range(inode,
1519                                                 map->m_pblk, map->m_len);
1520
1521                 if (map->m_multidev_dio) {
1522                         block_t blk_addr = map->m_pblk;
1523
1524                         bidx = f2fs_target_device_index(sbi, map->m_pblk);
1525
1526                         map->m_bdev = FDEV(bidx).bdev;
1527                         map->m_pblk -= FDEV(bidx).start_blk;
1528                         map->m_len = min(map->m_len,
1529                                 FDEV(bidx).end_blk + 1 - map->m_pblk);
1530
1531                         if (map->m_may_create)
1532                                 f2fs_update_device_state(sbi, inode->i_ino,
1533                                                         blk_addr, map->m_len);
1534                 }
1535                 goto out;
1536         }
1537
1538 next_dnode:
1539         if (map->m_may_create)
1540                 f2fs_do_map_lock(sbi, flag, true);
1541
1542         /* When reading holes, we need its node page */
1543         set_new_dnode(&dn, inode, NULL, NULL, 0);
1544         err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1545         if (err) {
1546                 if (flag == F2FS_GET_BLOCK_BMAP)
1547                         map->m_pblk = 0;
1548
1549                 if (err == -ENOENT) {
1550                         /*
1551                          * There is one exceptional case that read_node_page()
1552                          * may return -ENOENT due to filesystem has been
1553                          * shutdown or cp_error, so force to convert error
1554                          * number to EIO for such case.
1555                          */
1556                         if (map->m_may_create &&
1557                                 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1558                                 f2fs_cp_error(sbi))) {
1559                                 err = -EIO;
1560                                 goto unlock_out;
1561                         }
1562
1563                         err = 0;
1564                         if (map->m_next_pgofs)
1565                                 *map->m_next_pgofs =
1566                                         f2fs_get_next_page_offset(&dn, pgofs);
1567                         if (map->m_next_extent)
1568                                 *map->m_next_extent =
1569                                         f2fs_get_next_page_offset(&dn, pgofs);
1570                 }
1571                 goto unlock_out;
1572         }
1573
1574         start_pgofs = pgofs;
1575         prealloc = 0;
1576         last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1577         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1578
1579 next_block:
1580         blkaddr = f2fs_data_blkaddr(&dn);
1581
1582         if (__is_valid_data_blkaddr(blkaddr) &&
1583                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1584                 err = -EFSCORRUPTED;
1585                 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1586                 goto sync_out;
1587         }
1588
1589         if (__is_valid_data_blkaddr(blkaddr)) {
1590                 /* use out-place-update for driect IO under LFS mode */
1591                 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1592                                                         map->m_may_create) {
1593                         err = __allocate_data_block(&dn, map->m_seg_type);
1594                         if (err)
1595                                 goto sync_out;
1596                         blkaddr = dn.data_blkaddr;
1597                         set_inode_flag(inode, FI_APPEND_WRITE);
1598                 }
1599         } else {
1600                 if (create) {
1601                         if (unlikely(f2fs_cp_error(sbi))) {
1602                                 err = -EIO;
1603                                 goto sync_out;
1604                         }
1605                         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1606                                 if (blkaddr == NULL_ADDR) {
1607                                         prealloc++;
1608                                         last_ofs_in_node = dn.ofs_in_node;
1609                                 }
1610                         } else {
1611                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1612                                         flag != F2FS_GET_BLOCK_DIO);
1613                                 err = __allocate_data_block(&dn,
1614                                                         map->m_seg_type);
1615                                 if (!err) {
1616                                         if (flag == F2FS_GET_BLOCK_PRE_DIO)
1617                                                 file_need_truncate(inode);
1618                                         set_inode_flag(inode, FI_APPEND_WRITE);
1619                                 }
1620                         }
1621                         if (err)
1622                                 goto sync_out;
1623                         map->m_flags |= F2FS_MAP_NEW;
1624                         blkaddr = dn.data_blkaddr;
1625                 } else {
1626                         if (f2fs_compressed_file(inode) &&
1627                                         f2fs_sanity_check_cluster(&dn) &&
1628                                         (flag != F2FS_GET_BLOCK_FIEMAP ||
1629                                         IS_ENABLED(CONFIG_F2FS_CHECK_FS))) {
1630                                 err = -EFSCORRUPTED;
1631                                 f2fs_handle_error(sbi,
1632                                                 ERROR_CORRUPTED_CLUSTER);
1633                                 goto sync_out;
1634                         }
1635                         if (flag == F2FS_GET_BLOCK_BMAP) {
1636                                 map->m_pblk = 0;
1637                                 goto sync_out;
1638                         }
1639                         if (flag == F2FS_GET_BLOCK_PRECACHE)
1640                                 goto sync_out;
1641                         if (flag == F2FS_GET_BLOCK_FIEMAP &&
1642                                                 blkaddr == NULL_ADDR) {
1643                                 if (map->m_next_pgofs)
1644                                         *map->m_next_pgofs = pgofs + 1;
1645                                 goto sync_out;
1646                         }
1647                         if (flag != F2FS_GET_BLOCK_FIEMAP) {
1648                                 /* for defragment case */
1649                                 if (map->m_next_pgofs)
1650                                         *map->m_next_pgofs = pgofs + 1;
1651                                 goto sync_out;
1652                         }
1653                 }
1654         }
1655
1656         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1657                 goto skip;
1658
1659         if (map->m_multidev_dio)
1660                 bidx = f2fs_target_device_index(sbi, blkaddr);
1661
1662         if (map->m_len == 0) {
1663                 /* preallocated unwritten block should be mapped for fiemap. */
1664                 if (blkaddr == NEW_ADDR)
1665                         map->m_flags |= F2FS_MAP_UNWRITTEN;
1666                 map->m_flags |= F2FS_MAP_MAPPED;
1667
1668                 map->m_pblk = blkaddr;
1669                 map->m_len = 1;
1670
1671                 if (map->m_multidev_dio)
1672                         map->m_bdev = FDEV(bidx).bdev;
1673         } else if ((map->m_pblk != NEW_ADDR &&
1674                         blkaddr == (map->m_pblk + ofs)) ||
1675                         (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1676                         flag == F2FS_GET_BLOCK_PRE_DIO) {
1677                 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1678                         goto sync_out;
1679                 ofs++;
1680                 map->m_len++;
1681         } else {
1682                 goto sync_out;
1683         }
1684
1685 skip:
1686         dn.ofs_in_node++;
1687         pgofs++;
1688
1689         /* preallocate blocks in batch for one dnode page */
1690         if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1691                         (pgofs == end || dn.ofs_in_node == end_offset)) {
1692
1693                 dn.ofs_in_node = ofs_in_node;
1694                 err = f2fs_reserve_new_blocks(&dn, prealloc);
1695                 if (err)
1696                         goto sync_out;
1697
1698                 map->m_len += dn.ofs_in_node - ofs_in_node;
1699                 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1700                         err = -ENOSPC;
1701                         goto sync_out;
1702                 }
1703                 dn.ofs_in_node = end_offset;
1704         }
1705
1706         if (pgofs >= end)
1707                 goto sync_out;
1708         else if (dn.ofs_in_node < end_offset)
1709                 goto next_block;
1710
1711         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1712                 if (map->m_flags & F2FS_MAP_MAPPED) {
1713                         unsigned int ofs = start_pgofs - map->m_lblk;
1714
1715                         f2fs_update_read_extent_cache_range(&dn,
1716                                 start_pgofs, map->m_pblk + ofs,
1717                                 map->m_len - ofs);
1718                 }
1719         }
1720
1721         f2fs_put_dnode(&dn);
1722
1723         if (map->m_may_create) {
1724                 f2fs_do_map_lock(sbi, flag, false);
1725                 f2fs_balance_fs(sbi, dn.node_changed);
1726         }
1727         goto next_dnode;
1728
1729 sync_out:
1730
1731         if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1732                 /*
1733                  * for hardware encryption, but to avoid potential issue
1734                  * in future
1735                  */
1736                 f2fs_wait_on_block_writeback_range(inode,
1737                                                 map->m_pblk, map->m_len);
1738
1739                 if (map->m_multidev_dio) {
1740                         block_t blk_addr = map->m_pblk;
1741
1742                         bidx = f2fs_target_device_index(sbi, map->m_pblk);
1743
1744                         map->m_bdev = FDEV(bidx).bdev;
1745                         map->m_pblk -= FDEV(bidx).start_blk;
1746
1747                         if (map->m_may_create)
1748                                 f2fs_update_device_state(sbi, inode->i_ino,
1749                                                         blk_addr, map->m_len);
1750
1751                         f2fs_bug_on(sbi, blk_addr + map->m_len >
1752                                                 FDEV(bidx).end_blk + 1);
1753                 }
1754         }
1755
1756         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1757                 if (map->m_flags & F2FS_MAP_MAPPED) {
1758                         unsigned int ofs = start_pgofs - map->m_lblk;
1759
1760                         f2fs_update_read_extent_cache_range(&dn,
1761                                 start_pgofs, map->m_pblk + ofs,
1762                                 map->m_len - ofs);
1763                 }
1764                 if (map->m_next_extent)
1765                         *map->m_next_extent = pgofs + 1;
1766         }
1767         f2fs_put_dnode(&dn);
1768 unlock_out:
1769         if (map->m_may_create) {
1770                 f2fs_do_map_lock(sbi, flag, false);
1771                 f2fs_balance_fs(sbi, dn.node_changed);
1772         }
1773 out:
1774         trace_f2fs_map_blocks(inode, map, create, flag, err);
1775         return err;
1776 }
1777
1778 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1779 {
1780         struct f2fs_map_blocks map;
1781         block_t last_lblk;
1782         int err;
1783
1784         if (pos + len > i_size_read(inode))
1785                 return false;
1786
1787         map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1788         map.m_next_pgofs = NULL;
1789         map.m_next_extent = NULL;
1790         map.m_seg_type = NO_CHECK_TYPE;
1791         map.m_may_create = false;
1792         last_lblk = F2FS_BLK_ALIGN(pos + len);
1793
1794         while (map.m_lblk < last_lblk) {
1795                 map.m_len = last_lblk - map.m_lblk;
1796                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1797                 if (err || map.m_len == 0)
1798                         return false;
1799                 map.m_lblk += map.m_len;
1800         }
1801         return true;
1802 }
1803
1804 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1805 {
1806         return (bytes >> inode->i_blkbits);
1807 }
1808
1809 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1810 {
1811         return (blks << inode->i_blkbits);
1812 }
1813
1814 static int f2fs_xattr_fiemap(struct inode *inode,
1815                                 struct fiemap_extent_info *fieinfo)
1816 {
1817         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1818         struct page *page;
1819         struct node_info ni;
1820         __u64 phys = 0, len;
1821         __u32 flags;
1822         nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1823         int err = 0;
1824
1825         if (f2fs_has_inline_xattr(inode)) {
1826                 int offset;
1827
1828                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1829                                                 inode->i_ino, false);
1830                 if (!page)
1831                         return -ENOMEM;
1832
1833                 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1834                 if (err) {
1835                         f2fs_put_page(page, 1);
1836                         return err;
1837                 }
1838
1839                 phys = blks_to_bytes(inode, ni.blk_addr);
1840                 offset = offsetof(struct f2fs_inode, i_addr) +
1841                                         sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1842                                         get_inline_xattr_addrs(inode));
1843
1844                 phys += offset;
1845                 len = inline_xattr_size(inode);
1846
1847                 f2fs_put_page(page, 1);
1848
1849                 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1850
1851                 if (!xnid)
1852                         flags |= FIEMAP_EXTENT_LAST;
1853
1854                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1855                 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1856                 if (err)
1857                         return err;
1858         }
1859
1860         if (xnid) {
1861                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1862                 if (!page)
1863                         return -ENOMEM;
1864
1865                 err = f2fs_get_node_info(sbi, xnid, &ni, false);
1866                 if (err) {
1867                         f2fs_put_page(page, 1);
1868                         return err;
1869                 }
1870
1871                 phys = blks_to_bytes(inode, ni.blk_addr);
1872                 len = inode->i_sb->s_blocksize;
1873
1874                 f2fs_put_page(page, 1);
1875
1876                 flags = FIEMAP_EXTENT_LAST;
1877         }
1878
1879         if (phys) {
1880                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1881                 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1882         }
1883
1884         return (err < 0 ? err : 0);
1885 }
1886
1887 static loff_t max_inode_blocks(struct inode *inode)
1888 {
1889         loff_t result = ADDRS_PER_INODE(inode);
1890         loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1891
1892         /* two direct node blocks */
1893         result += (leaf_count * 2);
1894
1895         /* two indirect node blocks */
1896         leaf_count *= NIDS_PER_BLOCK;
1897         result += (leaf_count * 2);
1898
1899         /* one double indirect node block */
1900         leaf_count *= NIDS_PER_BLOCK;
1901         result += leaf_count;
1902
1903         return result;
1904 }
1905
1906 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1907                 u64 start, u64 len)
1908 {
1909         struct f2fs_map_blocks map;
1910         sector_t start_blk, last_blk;
1911         pgoff_t next_pgofs;
1912         u64 logical = 0, phys = 0, size = 0;
1913         u32 flags = 0;
1914         int ret = 0;
1915         bool compr_cluster = false, compr_appended;
1916         unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1917         unsigned int count_in_cluster = 0;
1918         loff_t maxbytes;
1919
1920         if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1921                 ret = f2fs_precache_extents(inode);
1922                 if (ret)
1923                         return ret;
1924         }
1925
1926         ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1927         if (ret)
1928                 return ret;
1929
1930         inode_lock(inode);
1931
1932         maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1933         if (start > maxbytes) {
1934                 ret = -EFBIG;
1935                 goto out;
1936         }
1937
1938         if (len > maxbytes || (maxbytes - len) < start)
1939                 len = maxbytes - start;
1940
1941         if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1942                 ret = f2fs_xattr_fiemap(inode, fieinfo);
1943                 goto out;
1944         }
1945
1946         if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1947                 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1948                 if (ret != -EAGAIN)
1949                         goto out;
1950         }
1951
1952         if (bytes_to_blks(inode, len) == 0)
1953                 len = blks_to_bytes(inode, 1);
1954
1955         start_blk = bytes_to_blks(inode, start);
1956         last_blk = bytes_to_blks(inode, start + len - 1);
1957
1958 next:
1959         memset(&map, 0, sizeof(map));
1960         map.m_lblk = start_blk;
1961         map.m_len = bytes_to_blks(inode, len);
1962         map.m_next_pgofs = &next_pgofs;
1963         map.m_seg_type = NO_CHECK_TYPE;
1964
1965         if (compr_cluster) {
1966                 map.m_lblk += 1;
1967                 map.m_len = cluster_size - count_in_cluster;
1968         }
1969
1970         ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
1971         if (ret)
1972                 goto out;
1973
1974         /* HOLE */
1975         if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1976                 start_blk = next_pgofs;
1977
1978                 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1979                                                 max_inode_blocks(inode)))
1980                         goto prep_next;
1981
1982                 flags |= FIEMAP_EXTENT_LAST;
1983         }
1984
1985         compr_appended = false;
1986         /* In a case of compressed cluster, append this to the last extent */
1987         if (compr_cluster && ((map.m_flags & F2FS_MAP_UNWRITTEN) ||
1988                         !(map.m_flags & F2FS_MAP_FLAGS))) {
1989                 compr_appended = true;
1990                 goto skip_fill;
1991         }
1992
1993         if (size) {
1994                 flags |= FIEMAP_EXTENT_MERGED;
1995                 if (IS_ENCRYPTED(inode))
1996                         flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1997
1998                 ret = fiemap_fill_next_extent(fieinfo, logical,
1999                                 phys, size, flags);
2000                 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
2001                 if (ret)
2002                         goto out;
2003                 size = 0;
2004         }
2005
2006         if (start_blk > last_blk)
2007                 goto out;
2008
2009 skip_fill:
2010         if (map.m_pblk == COMPRESS_ADDR) {
2011                 compr_cluster = true;
2012                 count_in_cluster = 1;
2013         } else if (compr_appended) {
2014                 unsigned int appended_blks = cluster_size -
2015                                                 count_in_cluster + 1;
2016                 size += blks_to_bytes(inode, appended_blks);
2017                 start_blk += appended_blks;
2018                 compr_cluster = false;
2019         } else {
2020                 logical = blks_to_bytes(inode, start_blk);
2021                 phys = __is_valid_data_blkaddr(map.m_pblk) ?
2022                         blks_to_bytes(inode, map.m_pblk) : 0;
2023                 size = blks_to_bytes(inode, map.m_len);
2024                 flags = 0;
2025
2026                 if (compr_cluster) {
2027                         flags = FIEMAP_EXTENT_ENCODED;
2028                         count_in_cluster += map.m_len;
2029                         if (count_in_cluster == cluster_size) {
2030                                 compr_cluster = false;
2031                                 size += blks_to_bytes(inode, 1);
2032                         }
2033                 } else if (map.m_flags & F2FS_MAP_UNWRITTEN) {
2034                         flags = FIEMAP_EXTENT_UNWRITTEN;
2035                 }
2036
2037                 start_blk += bytes_to_blks(inode, size);
2038         }
2039
2040 prep_next:
2041         cond_resched();
2042         if (fatal_signal_pending(current))
2043                 ret = -EINTR;
2044         else
2045                 goto next;
2046 out:
2047         if (ret == 1)
2048                 ret = 0;
2049
2050         inode_unlock(inode);
2051         return ret;
2052 }
2053
2054 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2055 {
2056         if (IS_ENABLED(CONFIG_FS_VERITY) &&
2057             (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
2058                 return inode->i_sb->s_maxbytes;
2059
2060         return i_size_read(inode);
2061 }
2062
2063 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2064                                         unsigned nr_pages,
2065                                         struct f2fs_map_blocks *map,
2066                                         struct bio **bio_ret,
2067                                         sector_t *last_block_in_bio,
2068                                         bool is_readahead)
2069 {
2070         struct bio *bio = *bio_ret;
2071         const unsigned blocksize = blks_to_bytes(inode, 1);
2072         sector_t block_in_file;
2073         sector_t last_block;
2074         sector_t last_block_in_file;
2075         sector_t block_nr;
2076         int ret = 0;
2077
2078         block_in_file = (sector_t)page_index(page);
2079         last_block = block_in_file + nr_pages;
2080         last_block_in_file = bytes_to_blks(inode,
2081                         f2fs_readpage_limit(inode) + blocksize - 1);
2082         if (last_block > last_block_in_file)
2083                 last_block = last_block_in_file;
2084
2085         /* just zeroing out page which is beyond EOF */
2086         if (block_in_file >= last_block)
2087                 goto zero_out;
2088         /*
2089          * Map blocks using the previous result first.
2090          */
2091         if ((map->m_flags & F2FS_MAP_MAPPED) &&
2092                         block_in_file > map->m_lblk &&
2093                         block_in_file < (map->m_lblk + map->m_len))
2094                 goto got_it;
2095
2096         /*
2097          * Then do more f2fs_map_blocks() calls until we are
2098          * done with this page.
2099          */
2100         map->m_lblk = block_in_file;
2101         map->m_len = last_block - block_in_file;
2102
2103         ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2104         if (ret)
2105                 goto out;
2106 got_it:
2107         if ((map->m_flags & F2FS_MAP_MAPPED)) {
2108                 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2109                 SetPageMappedToDisk(page);
2110
2111                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2112                                                 DATA_GENERIC_ENHANCE_READ)) {
2113                         ret = -EFSCORRUPTED;
2114                         f2fs_handle_error(F2FS_I_SB(inode),
2115                                                 ERROR_INVALID_BLKADDR);
2116                         goto out;
2117                 }
2118         } else {
2119 zero_out:
2120                 zero_user_segment(page, 0, PAGE_SIZE);
2121                 if (f2fs_need_verity(inode, page->index) &&
2122                     !fsverity_verify_page(page)) {
2123                         ret = -EIO;
2124                         goto out;
2125                 }
2126                 if (!PageUptodate(page))
2127                         SetPageUptodate(page);
2128                 unlock_page(page);
2129                 goto out;
2130         }
2131
2132         /*
2133          * This page will go to BIO.  Do we need to send this
2134          * BIO off first?
2135          */
2136         if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2137                                        *last_block_in_bio, block_nr) ||
2138                     !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2139 submit_and_realloc:
2140                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2141                 bio = NULL;
2142         }
2143         if (bio == NULL) {
2144                 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2145                                 is_readahead ? REQ_RAHEAD : 0, page->index,
2146                                 false);
2147                 if (IS_ERR(bio)) {
2148                         ret = PTR_ERR(bio);
2149                         bio = NULL;
2150                         goto out;
2151                 }
2152         }
2153
2154         /*
2155          * If the page is under writeback, we need to wait for
2156          * its completion to see the correct decrypted data.
2157          */
2158         f2fs_wait_on_block_writeback(inode, block_nr);
2159
2160         if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2161                 goto submit_and_realloc;
2162
2163         inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2164         f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2165                                                         F2FS_BLKSIZE);
2166         *last_block_in_bio = block_nr;
2167         goto out;
2168 out:
2169         *bio_ret = bio;
2170         return ret;
2171 }
2172
2173 #ifdef CONFIG_F2FS_FS_COMPRESSION
2174 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2175                                 unsigned nr_pages, sector_t *last_block_in_bio,
2176                                 bool is_readahead, bool for_write)
2177 {
2178         struct dnode_of_data dn;
2179         struct inode *inode = cc->inode;
2180         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2181         struct bio *bio = *bio_ret;
2182         unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2183         sector_t last_block_in_file;
2184         const unsigned blocksize = blks_to_bytes(inode, 1);
2185         struct decompress_io_ctx *dic = NULL;
2186         struct extent_info ei = {0, };
2187         bool from_dnode = true;
2188         int i;
2189         int ret = 0;
2190
2191         f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2192
2193         last_block_in_file = bytes_to_blks(inode,
2194                         f2fs_readpage_limit(inode) + blocksize - 1);
2195
2196         /* get rid of pages beyond EOF */
2197         for (i = 0; i < cc->cluster_size; i++) {
2198                 struct page *page = cc->rpages[i];
2199
2200                 if (!page)
2201                         continue;
2202                 if ((sector_t)page->index >= last_block_in_file) {
2203                         zero_user_segment(page, 0, PAGE_SIZE);
2204                         if (!PageUptodate(page))
2205                                 SetPageUptodate(page);
2206                 } else if (!PageUptodate(page)) {
2207                         continue;
2208                 }
2209                 unlock_page(page);
2210                 if (for_write)
2211                         put_page(page);
2212                 cc->rpages[i] = NULL;
2213                 cc->nr_rpages--;
2214         }
2215
2216         /* we are done since all pages are beyond EOF */
2217         if (f2fs_cluster_is_empty(cc))
2218                 goto out;
2219
2220         if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2221                 from_dnode = false;
2222
2223         if (!from_dnode)
2224                 goto skip_reading_dnode;
2225
2226         set_new_dnode(&dn, inode, NULL, NULL, 0);
2227         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2228         if (ret)
2229                 goto out;
2230
2231         f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2232
2233 skip_reading_dnode:
2234         for (i = 1; i < cc->cluster_size; i++) {
2235                 block_t blkaddr;
2236
2237                 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2238                                         dn.ofs_in_node + i) :
2239                                         ei.blk + i - 1;
2240
2241                 if (!__is_valid_data_blkaddr(blkaddr))
2242                         break;
2243
2244                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2245                         ret = -EFAULT;
2246                         goto out_put_dnode;
2247                 }
2248                 cc->nr_cpages++;
2249
2250                 if (!from_dnode && i >= ei.c_len)
2251                         break;
2252         }
2253
2254         /* nothing to decompress */
2255         if (cc->nr_cpages == 0) {
2256                 ret = 0;
2257                 goto out_put_dnode;
2258         }
2259
2260         dic = f2fs_alloc_dic(cc);
2261         if (IS_ERR(dic)) {
2262                 ret = PTR_ERR(dic);
2263                 goto out_put_dnode;
2264         }
2265
2266         for (i = 0; i < cc->nr_cpages; i++) {
2267                 struct page *page = dic->cpages[i];
2268                 block_t blkaddr;
2269                 struct bio_post_read_ctx *ctx;
2270
2271                 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2272                                         dn.ofs_in_node + i + 1) :
2273                                         ei.blk + i;
2274
2275                 f2fs_wait_on_block_writeback(inode, blkaddr);
2276
2277                 if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2278                         if (atomic_dec_and_test(&dic->remaining_pages))
2279                                 f2fs_decompress_cluster(dic, true);
2280                         continue;
2281                 }
2282
2283                 if (bio && (!page_is_mergeable(sbi, bio,
2284                                         *last_block_in_bio, blkaddr) ||
2285                     !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2286 submit_and_realloc:
2287                         __submit_bio(sbi, bio, DATA);
2288                         bio = NULL;
2289                 }
2290
2291                 if (!bio) {
2292                         bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2293                                         is_readahead ? REQ_RAHEAD : 0,
2294                                         page->index, for_write);
2295                         if (IS_ERR(bio)) {
2296                                 ret = PTR_ERR(bio);
2297                                 f2fs_decompress_end_io(dic, ret, true);
2298                                 f2fs_put_dnode(&dn);
2299                                 *bio_ret = NULL;
2300                                 return ret;
2301                         }
2302                 }
2303
2304                 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2305                         goto submit_and_realloc;
2306
2307                 ctx = get_post_read_ctx(bio);
2308                 ctx->enabled_steps |= STEP_DECOMPRESS;
2309                 refcount_inc(&dic->refcnt);
2310
2311                 inc_page_count(sbi, F2FS_RD_DATA);
2312                 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2313                 *last_block_in_bio = blkaddr;
2314         }
2315
2316         if (from_dnode)
2317                 f2fs_put_dnode(&dn);
2318
2319         *bio_ret = bio;
2320         return 0;
2321
2322 out_put_dnode:
2323         if (from_dnode)
2324                 f2fs_put_dnode(&dn);
2325 out:
2326         for (i = 0; i < cc->cluster_size; i++) {
2327                 if (cc->rpages[i]) {
2328                         ClearPageUptodate(cc->rpages[i]);
2329                         unlock_page(cc->rpages[i]);
2330                 }
2331         }
2332         *bio_ret = bio;
2333         return ret;
2334 }
2335 #endif
2336
2337 /*
2338  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2339  * Major change was from block_size == page_size in f2fs by default.
2340  */
2341 static int f2fs_mpage_readpages(struct inode *inode,
2342                 struct readahead_control *rac, struct page *page)
2343 {
2344         struct bio *bio = NULL;
2345         sector_t last_block_in_bio = 0;
2346         struct f2fs_map_blocks map;
2347 #ifdef CONFIG_F2FS_FS_COMPRESSION
2348         struct compress_ctx cc = {
2349                 .inode = inode,
2350                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2351                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2352                 .cluster_idx = NULL_CLUSTER,
2353                 .rpages = NULL,
2354                 .cpages = NULL,
2355                 .nr_rpages = 0,
2356                 .nr_cpages = 0,
2357         };
2358         pgoff_t nc_cluster_idx = NULL_CLUSTER;
2359 #endif
2360         unsigned nr_pages = rac ? readahead_count(rac) : 1;
2361         unsigned max_nr_pages = nr_pages;
2362         int ret = 0;
2363
2364         map.m_pblk = 0;
2365         map.m_lblk = 0;
2366         map.m_len = 0;
2367         map.m_flags = 0;
2368         map.m_next_pgofs = NULL;
2369         map.m_next_extent = NULL;
2370         map.m_seg_type = NO_CHECK_TYPE;
2371         map.m_may_create = false;
2372
2373         for (; nr_pages; nr_pages--) {
2374                 if (rac) {
2375                         page = readahead_page(rac);
2376                         prefetchw(&page->flags);
2377                 }
2378
2379 #ifdef CONFIG_F2FS_FS_COMPRESSION
2380                 if (f2fs_compressed_file(inode)) {
2381                         /* there are remained comressed pages, submit them */
2382                         if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2383                                 ret = f2fs_read_multi_pages(&cc, &bio,
2384                                                         max_nr_pages,
2385                                                         &last_block_in_bio,
2386                                                         rac != NULL, false);
2387                                 f2fs_destroy_compress_ctx(&cc, false);
2388                                 if (ret)
2389                                         goto set_error_page;
2390                         }
2391                         if (cc.cluster_idx == NULL_CLUSTER) {
2392                                 if (nc_cluster_idx ==
2393                                         page->index >> cc.log_cluster_size) {
2394                                         goto read_single_page;
2395                                 }
2396
2397                                 ret = f2fs_is_compressed_cluster(inode, page->index);
2398                                 if (ret < 0)
2399                                         goto set_error_page;
2400                                 else if (!ret) {
2401                                         nc_cluster_idx =
2402                                                 page->index >> cc.log_cluster_size;
2403                                         goto read_single_page;
2404                                 }
2405
2406                                 nc_cluster_idx = NULL_CLUSTER;
2407                         }
2408                         ret = f2fs_init_compress_ctx(&cc);
2409                         if (ret)
2410                                 goto set_error_page;
2411
2412                         f2fs_compress_ctx_add_page(&cc, page);
2413
2414                         goto next_page;
2415                 }
2416 read_single_page:
2417 #endif
2418
2419                 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2420                                         &bio, &last_block_in_bio, rac);
2421                 if (ret) {
2422 #ifdef CONFIG_F2FS_FS_COMPRESSION
2423 set_error_page:
2424 #endif
2425                         zero_user_segment(page, 0, PAGE_SIZE);
2426                         unlock_page(page);
2427                 }
2428 #ifdef CONFIG_F2FS_FS_COMPRESSION
2429 next_page:
2430 #endif
2431                 if (rac)
2432                         put_page(page);
2433
2434 #ifdef CONFIG_F2FS_FS_COMPRESSION
2435                 if (f2fs_compressed_file(inode)) {
2436                         /* last page */
2437                         if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2438                                 ret = f2fs_read_multi_pages(&cc, &bio,
2439                                                         max_nr_pages,
2440                                                         &last_block_in_bio,
2441                                                         rac != NULL, false);
2442                                 f2fs_destroy_compress_ctx(&cc, false);
2443                         }
2444                 }
2445 #endif
2446         }
2447         if (bio)
2448                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2449         return ret;
2450 }
2451
2452 static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2453 {
2454         struct page *page = &folio->page;
2455         struct inode *inode = page_file_mapping(page)->host;
2456         int ret = -EAGAIN;
2457
2458         trace_f2fs_readpage(page, DATA);
2459
2460         if (!f2fs_is_compress_backend_ready(inode)) {
2461                 unlock_page(page);
2462                 return -EOPNOTSUPP;
2463         }
2464
2465         /* If the file has inline data, try to read it directly */
2466         if (f2fs_has_inline_data(inode))
2467                 ret = f2fs_read_inline_data(inode, page);
2468         if (ret == -EAGAIN)
2469                 ret = f2fs_mpage_readpages(inode, NULL, page);
2470         return ret;
2471 }
2472
2473 static void f2fs_readahead(struct readahead_control *rac)
2474 {
2475         struct inode *inode = rac->mapping->host;
2476
2477         trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2478
2479         if (!f2fs_is_compress_backend_ready(inode))
2480                 return;
2481
2482         /* If the file has inline data, skip readahead */
2483         if (f2fs_has_inline_data(inode))
2484                 return;
2485
2486         f2fs_mpage_readpages(inode, rac, NULL);
2487 }
2488
2489 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2490 {
2491         struct inode *inode = fio->page->mapping->host;
2492         struct page *mpage, *page;
2493         gfp_t gfp_flags = GFP_NOFS;
2494
2495         if (!f2fs_encrypted_file(inode))
2496                 return 0;
2497
2498         page = fio->compressed_page ? fio->compressed_page : fio->page;
2499
2500         /* wait for GCed page writeback via META_MAPPING */
2501         f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2502
2503         if (fscrypt_inode_uses_inline_crypto(inode))
2504                 return 0;
2505
2506 retry_encrypt:
2507         fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2508                                         PAGE_SIZE, 0, gfp_flags);
2509         if (IS_ERR(fio->encrypted_page)) {
2510                 /* flush pending IOs and wait for a while in the ENOMEM case */
2511                 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2512                         f2fs_flush_merged_writes(fio->sbi);
2513                         memalloc_retry_wait(GFP_NOFS);
2514                         gfp_flags |= __GFP_NOFAIL;
2515                         goto retry_encrypt;
2516                 }
2517                 return PTR_ERR(fio->encrypted_page);
2518         }
2519
2520         mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2521         if (mpage) {
2522                 if (PageUptodate(mpage))
2523                         memcpy(page_address(mpage),
2524                                 page_address(fio->encrypted_page), PAGE_SIZE);
2525                 f2fs_put_page(mpage, 1);
2526         }
2527         return 0;
2528 }
2529
2530 static inline bool check_inplace_update_policy(struct inode *inode,
2531                                 struct f2fs_io_info *fio)
2532 {
2533         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2534         unsigned int policy = SM_I(sbi)->ipu_policy;
2535
2536         if (policy & (0x1 << F2FS_IPU_HONOR_OPU_WRITE) &&
2537                         is_inode_flag_set(inode, FI_OPU_WRITE))
2538                 return false;
2539         if (policy & (0x1 << F2FS_IPU_FORCE))
2540                 return true;
2541         if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2542                 return true;
2543         if (policy & (0x1 << F2FS_IPU_UTIL) &&
2544                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
2545                 return true;
2546         if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2547                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
2548                 return true;
2549
2550         /*
2551          * IPU for rewrite async pages
2552          */
2553         if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2554                         fio && fio->op == REQ_OP_WRITE &&
2555                         !(fio->op_flags & REQ_SYNC) &&
2556                         !IS_ENCRYPTED(inode))
2557                 return true;
2558
2559         /* this is only set during fdatasync */
2560         if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2561                         is_inode_flag_set(inode, FI_NEED_IPU))
2562                 return true;
2563
2564         if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2565                         !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2566                 return true;
2567
2568         return false;
2569 }
2570
2571 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2572 {
2573         /* swap file is migrating in aligned write mode */
2574         if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2575                 return false;
2576
2577         if (f2fs_is_pinned_file(inode))
2578                 return true;
2579
2580         /* if this is cold file, we should overwrite to avoid fragmentation */
2581         if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2582                 return true;
2583
2584         return check_inplace_update_policy(inode, fio);
2585 }
2586
2587 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2588 {
2589         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2590
2591         /* The below cases were checked when setting it. */
2592         if (f2fs_is_pinned_file(inode))
2593                 return false;
2594         if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2595                 return true;
2596         if (f2fs_lfs_mode(sbi))
2597                 return true;
2598         if (S_ISDIR(inode->i_mode))
2599                 return true;
2600         if (IS_NOQUOTA(inode))
2601                 return true;
2602         if (f2fs_is_atomic_file(inode))
2603                 return true;
2604
2605         /* swap file is migrating in aligned write mode */
2606         if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2607                 return true;
2608
2609         if (is_inode_flag_set(inode, FI_OPU_WRITE))
2610                 return true;
2611
2612         if (fio) {
2613                 if (page_private_gcing(fio->page))
2614                         return true;
2615                 if (page_private_dummy(fio->page))
2616                         return true;
2617                 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2618                         f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2619                         return true;
2620         }
2621         return false;
2622 }
2623
2624 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2625 {
2626         struct inode *inode = fio->page->mapping->host;
2627
2628         if (f2fs_should_update_outplace(inode, fio))
2629                 return false;
2630
2631         return f2fs_should_update_inplace(inode, fio);
2632 }
2633
2634 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2635 {
2636         struct page *page = fio->page;
2637         struct inode *inode = page->mapping->host;
2638         struct dnode_of_data dn;
2639         struct extent_info ei = {0, };
2640         struct node_info ni;
2641         bool ipu_force = false;
2642         int err = 0;
2643
2644         /* Use COW inode to make dnode_of_data for atomic write */
2645         if (f2fs_is_atomic_file(inode))
2646                 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2647         else
2648                 set_new_dnode(&dn, inode, NULL, NULL, 0);
2649
2650         if (need_inplace_update(fio) &&
2651             f2fs_lookup_read_extent_cache(inode, page->index, &ei)) {
2652                 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2653
2654                 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2655                                                 DATA_GENERIC_ENHANCE)) {
2656                         f2fs_handle_error(fio->sbi,
2657                                                 ERROR_INVALID_BLKADDR);
2658                         return -EFSCORRUPTED;
2659                 }
2660
2661                 ipu_force = true;
2662                 fio->need_lock = LOCK_DONE;
2663                 goto got_it;
2664         }
2665
2666         /* Deadlock due to between page->lock and f2fs_lock_op */
2667         if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2668                 return -EAGAIN;
2669
2670         err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2671         if (err)
2672                 goto out;
2673
2674         fio->old_blkaddr = dn.data_blkaddr;
2675
2676         /* This page is already truncated */
2677         if (fio->old_blkaddr == NULL_ADDR) {
2678                 ClearPageUptodate(page);
2679                 clear_page_private_gcing(page);
2680                 goto out_writepage;
2681         }
2682 got_it:
2683         if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2684                 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2685                                                 DATA_GENERIC_ENHANCE)) {
2686                 err = -EFSCORRUPTED;
2687                 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
2688                 goto out_writepage;
2689         }
2690
2691         /*
2692          * If current allocation needs SSR,
2693          * it had better in-place writes for updated data.
2694          */
2695         if (ipu_force ||
2696                 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2697                                         need_inplace_update(fio))) {
2698                 err = f2fs_encrypt_one_page(fio);
2699                 if (err)
2700                         goto out_writepage;
2701
2702                 set_page_writeback(page);
2703                 ClearPageError(page);
2704                 f2fs_put_dnode(&dn);
2705                 if (fio->need_lock == LOCK_REQ)
2706                         f2fs_unlock_op(fio->sbi);
2707                 err = f2fs_inplace_write_data(fio);
2708                 if (err) {
2709                         if (fscrypt_inode_uses_fs_layer_crypto(inode))
2710                                 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2711                         if (PageWriteback(page))
2712                                 end_page_writeback(page);
2713                 } else {
2714                         set_inode_flag(inode, FI_UPDATE_WRITE);
2715                 }
2716                 trace_f2fs_do_write_data_page(fio->page, IPU);
2717                 return err;
2718         }
2719
2720         if (fio->need_lock == LOCK_RETRY) {
2721                 if (!f2fs_trylock_op(fio->sbi)) {
2722                         err = -EAGAIN;
2723                         goto out_writepage;
2724                 }
2725                 fio->need_lock = LOCK_REQ;
2726         }
2727
2728         err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2729         if (err)
2730                 goto out_writepage;
2731
2732         fio->version = ni.version;
2733
2734         err = f2fs_encrypt_one_page(fio);
2735         if (err)
2736                 goto out_writepage;
2737
2738         set_page_writeback(page);
2739         ClearPageError(page);
2740
2741         if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2742                 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2743
2744         /* LFS mode write path */
2745         f2fs_outplace_write_data(&dn, fio);
2746         trace_f2fs_do_write_data_page(page, OPU);
2747         set_inode_flag(inode, FI_APPEND_WRITE);
2748         if (page->index == 0)
2749                 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2750 out_writepage:
2751         f2fs_put_dnode(&dn);
2752 out:
2753         if (fio->need_lock == LOCK_REQ)
2754                 f2fs_unlock_op(fio->sbi);
2755         return err;
2756 }
2757
2758 int f2fs_write_single_data_page(struct page *page, int *submitted,
2759                                 struct bio **bio,
2760                                 sector_t *last_block,
2761                                 struct writeback_control *wbc,
2762                                 enum iostat_type io_type,
2763                                 int compr_blocks,
2764                                 bool allow_balance)
2765 {
2766         struct inode *inode = page->mapping->host;
2767         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2768         loff_t i_size = i_size_read(inode);
2769         const pgoff_t end_index = ((unsigned long long)i_size)
2770                                                         >> PAGE_SHIFT;
2771         loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2772         unsigned offset = 0;
2773         bool need_balance_fs = false;
2774         int err = 0;
2775         struct f2fs_io_info fio = {
2776                 .sbi = sbi,
2777                 .ino = inode->i_ino,
2778                 .type = DATA,
2779                 .op = REQ_OP_WRITE,
2780                 .op_flags = wbc_to_write_flags(wbc),
2781                 .old_blkaddr = NULL_ADDR,
2782                 .page = page,
2783                 .encrypted_page = NULL,
2784                 .submitted = false,
2785                 .compr_blocks = compr_blocks,
2786                 .need_lock = LOCK_RETRY,
2787                 .post_read = f2fs_post_read_required(inode),
2788                 .io_type = io_type,
2789                 .io_wbc = wbc,
2790                 .bio = bio,
2791                 .last_block = last_block,
2792         };
2793
2794         trace_f2fs_writepage(page, DATA);
2795
2796         /* we should bypass data pages to proceed the kworkder jobs */
2797         if (unlikely(f2fs_cp_error(sbi))) {
2798                 mapping_set_error(page->mapping, -EIO);
2799                 /*
2800                  * don't drop any dirty dentry pages for keeping lastest
2801                  * directory structure.
2802                  */
2803                 if (S_ISDIR(inode->i_mode))
2804                         goto redirty_out;
2805                 goto out;
2806         }
2807
2808         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2809                 goto redirty_out;
2810
2811         if (page->index < end_index ||
2812                         f2fs_verity_in_progress(inode) ||
2813                         compr_blocks)
2814                 goto write;
2815
2816         /*
2817          * If the offset is out-of-range of file size,
2818          * this page does not have to be written to disk.
2819          */
2820         offset = i_size & (PAGE_SIZE - 1);
2821         if ((page->index >= end_index + 1) || !offset)
2822                 goto out;
2823
2824         zero_user_segment(page, offset, PAGE_SIZE);
2825 write:
2826         if (f2fs_is_drop_cache(inode))
2827                 goto out;
2828
2829         /* Dentry/quota blocks are controlled by checkpoint */
2830         if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2831                 /*
2832                  * We need to wait for node_write to avoid block allocation during
2833                  * checkpoint. This can only happen to quota writes which can cause
2834                  * the below discard race condition.
2835                  */
2836                 if (IS_NOQUOTA(inode))
2837                         f2fs_down_read(&sbi->node_write);
2838
2839                 fio.need_lock = LOCK_DONE;
2840                 err = f2fs_do_write_data_page(&fio);
2841
2842                 if (IS_NOQUOTA(inode))
2843                         f2fs_up_read(&sbi->node_write);
2844
2845                 goto done;
2846         }
2847
2848         if (!wbc->for_reclaim)
2849                 need_balance_fs = true;
2850         else if (has_not_enough_free_secs(sbi, 0, 0))
2851                 goto redirty_out;
2852         else
2853                 set_inode_flag(inode, FI_HOT_DATA);
2854
2855         err = -EAGAIN;
2856         if (f2fs_has_inline_data(inode)) {
2857                 err = f2fs_write_inline_data(inode, page);
2858                 if (!err)
2859                         goto out;
2860         }
2861
2862         if (err == -EAGAIN) {
2863                 err = f2fs_do_write_data_page(&fio);
2864                 if (err == -EAGAIN) {
2865                         fio.need_lock = LOCK_REQ;
2866                         err = f2fs_do_write_data_page(&fio);
2867                 }
2868         }
2869
2870         if (err) {
2871                 file_set_keep_isize(inode);
2872         } else {
2873                 spin_lock(&F2FS_I(inode)->i_size_lock);
2874                 if (F2FS_I(inode)->last_disk_size < psize)
2875                         F2FS_I(inode)->last_disk_size = psize;
2876                 spin_unlock(&F2FS_I(inode)->i_size_lock);
2877         }
2878
2879 done:
2880         if (err && err != -ENOENT)
2881                 goto redirty_out;
2882
2883 out:
2884         inode_dec_dirty_pages(inode);
2885         if (err) {
2886                 ClearPageUptodate(page);
2887                 clear_page_private_gcing(page);
2888         }
2889
2890         if (wbc->for_reclaim) {
2891                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2892                 clear_inode_flag(inode, FI_HOT_DATA);
2893                 f2fs_remove_dirty_inode(inode);
2894                 submitted = NULL;
2895         }
2896         unlock_page(page);
2897         if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2898                         !F2FS_I(inode)->wb_task && allow_balance)
2899                 f2fs_balance_fs(sbi, need_balance_fs);
2900
2901         if (unlikely(f2fs_cp_error(sbi))) {
2902                 f2fs_submit_merged_write(sbi, DATA);
2903                 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2904                 submitted = NULL;
2905         }
2906
2907         if (submitted)
2908                 *submitted = fio.submitted ? 1 : 0;
2909
2910         return 0;
2911
2912 redirty_out:
2913         redirty_page_for_writepage(wbc, page);
2914         /*
2915          * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2916          * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2917          * file_write_and_wait_range() will see EIO error, which is critical
2918          * to return value of fsync() followed by atomic_write failure to user.
2919          */
2920         if (!err || wbc->for_reclaim)
2921                 return AOP_WRITEPAGE_ACTIVATE;
2922         unlock_page(page);
2923         return err;
2924 }
2925
2926 static int f2fs_write_data_page(struct page *page,
2927                                         struct writeback_control *wbc)
2928 {
2929 #ifdef CONFIG_F2FS_FS_COMPRESSION
2930         struct inode *inode = page->mapping->host;
2931
2932         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2933                 goto out;
2934
2935         if (f2fs_compressed_file(inode)) {
2936                 if (f2fs_is_compressed_cluster(inode, page->index)) {
2937                         redirty_page_for_writepage(wbc, page);
2938                         return AOP_WRITEPAGE_ACTIVATE;
2939                 }
2940         }
2941 out:
2942 #endif
2943
2944         return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2945                                                 wbc, FS_DATA_IO, 0, true);
2946 }
2947
2948 /*
2949  * This function was copied from write_cche_pages from mm/page-writeback.c.
2950  * The major change is making write step of cold data page separately from
2951  * warm/hot data page.
2952  */
2953 static int f2fs_write_cache_pages(struct address_space *mapping,
2954                                         struct writeback_control *wbc,
2955                                         enum iostat_type io_type)
2956 {
2957         int ret = 0;
2958         int done = 0, retry = 0;
2959         struct page *pages[F2FS_ONSTACK_PAGES];
2960         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2961         struct bio *bio = NULL;
2962         sector_t last_block;
2963 #ifdef CONFIG_F2FS_FS_COMPRESSION
2964         struct inode *inode = mapping->host;
2965         struct compress_ctx cc = {
2966                 .inode = inode,
2967                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2968                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2969                 .cluster_idx = NULL_CLUSTER,
2970                 .rpages = NULL,
2971                 .nr_rpages = 0,
2972                 .cpages = NULL,
2973                 .valid_nr_cpages = 0,
2974                 .rbuf = NULL,
2975                 .cbuf = NULL,
2976                 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2977                 .private = NULL,
2978         };
2979 #endif
2980         int nr_pages;
2981         pgoff_t index;
2982         pgoff_t end;            /* Inclusive */
2983         pgoff_t done_index;
2984         int range_whole = 0;
2985         xa_mark_t tag;
2986         int nwritten = 0;
2987         int submitted = 0;
2988         int i;
2989
2990         if (get_dirty_pages(mapping->host) <=
2991                                 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2992                 set_inode_flag(mapping->host, FI_HOT_DATA);
2993         else
2994                 clear_inode_flag(mapping->host, FI_HOT_DATA);
2995
2996         if (wbc->range_cyclic) {
2997                 index = mapping->writeback_index; /* prev offset */
2998                 end = -1;
2999         } else {
3000                 index = wbc->range_start >> PAGE_SHIFT;
3001                 end = wbc->range_end >> PAGE_SHIFT;
3002                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3003                         range_whole = 1;
3004         }
3005         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3006                 tag = PAGECACHE_TAG_TOWRITE;
3007         else
3008                 tag = PAGECACHE_TAG_DIRTY;
3009 retry:
3010         retry = 0;
3011         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3012                 tag_pages_for_writeback(mapping, index, end);
3013         done_index = index;
3014         while (!done && !retry && (index <= end)) {
3015                 nr_pages = find_get_pages_range_tag(mapping, &index, end,
3016                                 tag, F2FS_ONSTACK_PAGES, pages);
3017                 if (nr_pages == 0)
3018                         break;
3019
3020                 for (i = 0; i < nr_pages; i++) {
3021                         struct page *page = pages[i];
3022                         bool need_readd;
3023 readd:
3024                         need_readd = false;
3025 #ifdef CONFIG_F2FS_FS_COMPRESSION
3026                         if (f2fs_compressed_file(inode)) {
3027                                 void *fsdata = NULL;
3028                                 struct page *pagep;
3029                                 int ret2;
3030
3031                                 ret = f2fs_init_compress_ctx(&cc);
3032                                 if (ret) {
3033                                         done = 1;
3034                                         break;
3035                                 }
3036
3037                                 if (!f2fs_cluster_can_merge_page(&cc,
3038                                                                 page->index)) {
3039                                         ret = f2fs_write_multi_pages(&cc,
3040                                                 &submitted, wbc, io_type);
3041                                         if (!ret)
3042                                                 need_readd = true;
3043                                         goto result;
3044                                 }
3045
3046                                 if (unlikely(f2fs_cp_error(sbi)))
3047                                         goto lock_page;
3048
3049                                 if (!f2fs_cluster_is_empty(&cc))
3050                                         goto lock_page;
3051
3052                                 if (f2fs_all_cluster_page_ready(&cc,
3053                                         pages, i, nr_pages, true))
3054                                         goto lock_page;
3055
3056                                 ret2 = f2fs_prepare_compress_overwrite(
3057                                                         inode, &pagep,
3058                                                         page->index, &fsdata);
3059                                 if (ret2 < 0) {
3060                                         ret = ret2;
3061                                         done = 1;
3062                                         break;
3063                                 } else if (ret2 &&
3064                                         (!f2fs_compress_write_end(inode,
3065                                                 fsdata, page->index, 1) ||
3066                                          !f2fs_all_cluster_page_ready(&cc,
3067                                                 pages, i, nr_pages, false))) {
3068                                         retry = 1;
3069                                         break;
3070                                 }
3071                         }
3072 #endif
3073                         /* give a priority to WB_SYNC threads */
3074                         if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3075                                         wbc->sync_mode == WB_SYNC_NONE) {
3076                                 done = 1;
3077                                 break;
3078                         }
3079 #ifdef CONFIG_F2FS_FS_COMPRESSION
3080 lock_page:
3081 #endif
3082                         done_index = page->index;
3083 retry_write:
3084                         lock_page(page);
3085
3086                         if (unlikely(page->mapping != mapping)) {
3087 continue_unlock:
3088                                 unlock_page(page);
3089                                 continue;
3090                         }
3091
3092                         if (!PageDirty(page)) {
3093                                 /* someone wrote it for us */
3094                                 goto continue_unlock;
3095                         }
3096
3097                         if (PageWriteback(page)) {
3098                                 if (wbc->sync_mode != WB_SYNC_NONE)
3099                                         f2fs_wait_on_page_writeback(page,
3100                                                         DATA, true, true);
3101                                 else
3102                                         goto continue_unlock;
3103                         }
3104
3105                         if (!clear_page_dirty_for_io(page))
3106                                 goto continue_unlock;
3107
3108 #ifdef CONFIG_F2FS_FS_COMPRESSION
3109                         if (f2fs_compressed_file(inode)) {
3110                                 get_page(page);
3111                                 f2fs_compress_ctx_add_page(&cc, page);
3112                                 continue;
3113                         }
3114 #endif
3115                         ret = f2fs_write_single_data_page(page, &submitted,
3116                                         &bio, &last_block, wbc, io_type,
3117                                         0, true);
3118                         if (ret == AOP_WRITEPAGE_ACTIVATE)
3119                                 unlock_page(page);
3120 #ifdef CONFIG_F2FS_FS_COMPRESSION
3121 result:
3122 #endif
3123                         nwritten += submitted;
3124                         wbc->nr_to_write -= submitted;
3125
3126                         if (unlikely(ret)) {
3127                                 /*
3128                                  * keep nr_to_write, since vfs uses this to
3129                                  * get # of written pages.
3130                                  */
3131                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3132                                         ret = 0;
3133                                         goto next;
3134                                 } else if (ret == -EAGAIN) {
3135                                         ret = 0;
3136                                         if (wbc->sync_mode == WB_SYNC_ALL) {
3137                                                 f2fs_io_schedule_timeout(
3138                                                         DEFAULT_IO_TIMEOUT);
3139                                                 goto retry_write;
3140                                         }
3141                                         goto next;
3142                                 }
3143                                 done_index = page->index + 1;
3144                                 done = 1;
3145                                 break;
3146                         }
3147
3148                         if (wbc->nr_to_write <= 0 &&
3149                                         wbc->sync_mode == WB_SYNC_NONE) {
3150                                 done = 1;
3151                                 break;
3152                         }
3153 next:
3154                         if (need_readd)
3155                                 goto readd;
3156                 }
3157                 release_pages(pages, nr_pages);
3158                 cond_resched();
3159         }
3160 #ifdef CONFIG_F2FS_FS_COMPRESSION
3161         /* flush remained pages in compress cluster */
3162         if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3163                 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3164                 nwritten += submitted;
3165                 wbc->nr_to_write -= submitted;
3166                 if (ret) {
3167                         done = 1;
3168                         retry = 0;
3169                 }
3170         }
3171         if (f2fs_compressed_file(inode))
3172                 f2fs_destroy_compress_ctx(&cc, false);
3173 #endif
3174         if (retry) {
3175                 index = 0;
3176                 end = -1;
3177                 goto retry;
3178         }
3179         if (wbc->range_cyclic && !done)
3180                 done_index = 0;
3181         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3182                 mapping->writeback_index = done_index;
3183
3184         if (nwritten)
3185                 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3186                                                                 NULL, 0, DATA);
3187         /* submit cached bio of IPU write */
3188         if (bio)
3189                 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3190
3191         return ret;
3192 }
3193
3194 static inline bool __should_serialize_io(struct inode *inode,
3195                                         struct writeback_control *wbc)
3196 {
3197         /* to avoid deadlock in path of data flush */
3198         if (F2FS_I(inode)->wb_task)
3199                 return false;
3200
3201         if (!S_ISREG(inode->i_mode))
3202                 return false;
3203         if (IS_NOQUOTA(inode))
3204                 return false;
3205
3206         if (f2fs_need_compress_data(inode))
3207                 return true;
3208         if (wbc->sync_mode != WB_SYNC_ALL)
3209                 return true;
3210         if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3211                 return true;
3212         return false;
3213 }
3214
3215 static int __f2fs_write_data_pages(struct address_space *mapping,
3216                                                 struct writeback_control *wbc,
3217                                                 enum iostat_type io_type)
3218 {
3219         struct inode *inode = mapping->host;
3220         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3221         struct blk_plug plug;
3222         int ret;
3223         bool locked = false;
3224
3225         /* deal with chardevs and other special file */
3226         if (!mapping->a_ops->writepage)
3227                 return 0;
3228
3229         /* skip writing if there is no dirty page in this inode */
3230         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3231                 return 0;
3232
3233         /* during POR, we don't need to trigger writepage at all. */
3234         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3235                 goto skip_write;
3236
3237         if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3238                         wbc->sync_mode == WB_SYNC_NONE &&
3239                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3240                         f2fs_available_free_memory(sbi, DIRTY_DENTS))
3241                 goto skip_write;
3242
3243         /* skip writing in file defragment preparing stage */
3244         if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3245                 goto skip_write;
3246
3247         trace_f2fs_writepages(mapping->host, wbc, DATA);
3248
3249         /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3250         if (wbc->sync_mode == WB_SYNC_ALL)
3251                 atomic_inc(&sbi->wb_sync_req[DATA]);
3252         else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3253                 /* to avoid potential deadlock */
3254                 if (current->plug)
3255                         blk_finish_plug(current->plug);
3256                 goto skip_write;
3257         }
3258
3259         if (__should_serialize_io(inode, wbc)) {
3260                 mutex_lock(&sbi->writepages);
3261                 locked = true;
3262         }
3263
3264         blk_start_plug(&plug);
3265         ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3266         blk_finish_plug(&plug);
3267
3268         if (locked)
3269                 mutex_unlock(&sbi->writepages);
3270
3271         if (wbc->sync_mode == WB_SYNC_ALL)
3272                 atomic_dec(&sbi->wb_sync_req[DATA]);
3273         /*
3274          * if some pages were truncated, we cannot guarantee its mapping->host
3275          * to detect pending bios.
3276          */
3277
3278         f2fs_remove_dirty_inode(inode);
3279         return ret;
3280
3281 skip_write:
3282         wbc->pages_skipped += get_dirty_pages(inode);
3283         trace_f2fs_writepages(mapping->host, wbc, DATA);
3284         return 0;
3285 }
3286
3287 static int f2fs_write_data_pages(struct address_space *mapping,
3288                             struct writeback_control *wbc)
3289 {
3290         struct inode *inode = mapping->host;
3291
3292         return __f2fs_write_data_pages(mapping, wbc,
3293                         F2FS_I(inode)->cp_task == current ?
3294                         FS_CP_DATA_IO : FS_DATA_IO);
3295 }
3296
3297 void f2fs_write_failed(struct inode *inode, loff_t to)
3298 {
3299         loff_t i_size = i_size_read(inode);
3300
3301         if (IS_NOQUOTA(inode))
3302                 return;
3303
3304         /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3305         if (to > i_size && !f2fs_verity_in_progress(inode)) {
3306                 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3307                 filemap_invalidate_lock(inode->i_mapping);
3308
3309                 truncate_pagecache(inode, i_size);
3310                 f2fs_truncate_blocks(inode, i_size, true);
3311
3312                 filemap_invalidate_unlock(inode->i_mapping);
3313                 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3314         }
3315 }
3316
3317 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3318                         struct page *page, loff_t pos, unsigned len,
3319                         block_t *blk_addr, bool *node_changed)
3320 {
3321         struct inode *inode = page->mapping->host;
3322         pgoff_t index = page->index;
3323         struct dnode_of_data dn;
3324         struct page *ipage;
3325         bool locked = false;
3326         struct extent_info ei = {0, };
3327         int err = 0;
3328         int flag;
3329
3330         /*
3331          * If a whole page is being written and we already preallocated all the
3332          * blocks, then there is no need to get a block address now.
3333          */
3334         if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3335                 return 0;
3336
3337         /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3338         if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3339                 flag = F2FS_GET_BLOCK_DEFAULT;
3340         else
3341                 flag = F2FS_GET_BLOCK_PRE_AIO;
3342
3343         if (f2fs_has_inline_data(inode) ||
3344                         (pos & PAGE_MASK) >= i_size_read(inode)) {
3345                 f2fs_do_map_lock(sbi, flag, true);
3346                 locked = true;
3347         }
3348
3349 restart:
3350         /* check inline_data */
3351         ipage = f2fs_get_node_page(sbi, inode->i_ino);
3352         if (IS_ERR(ipage)) {
3353                 err = PTR_ERR(ipage);
3354                 goto unlock_out;
3355         }
3356
3357         set_new_dnode(&dn, inode, ipage, ipage, 0);
3358
3359         if (f2fs_has_inline_data(inode)) {
3360                 if (pos + len <= MAX_INLINE_DATA(inode)) {
3361                         f2fs_do_read_inline_data(page, ipage);
3362                         set_inode_flag(inode, FI_DATA_EXIST);
3363                         if (inode->i_nlink)
3364                                 set_page_private_inline(ipage);
3365                 } else {
3366                         err = f2fs_convert_inline_page(&dn, page);
3367                         if (err)
3368                                 goto out;
3369                         if (dn.data_blkaddr == NULL_ADDR)
3370                                 err = f2fs_get_block(&dn, index);
3371                 }
3372         } else if (locked) {
3373                 err = f2fs_get_block(&dn, index);
3374         } else {
3375                 if (f2fs_lookup_read_extent_cache(inode, index, &ei)) {
3376                         dn.data_blkaddr = ei.blk + index - ei.fofs;
3377                 } else {
3378                         /* hole case */
3379                         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3380                         if (err || dn.data_blkaddr == NULL_ADDR) {
3381                                 f2fs_put_dnode(&dn);
3382                                 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3383                                                                 true);
3384                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3385                                 locked = true;
3386                                 goto restart;
3387                         }
3388                 }
3389         }
3390
3391         /* convert_inline_page can make node_changed */
3392         *blk_addr = dn.data_blkaddr;
3393         *node_changed = dn.node_changed;
3394 out:
3395         f2fs_put_dnode(&dn);
3396 unlock_out:
3397         if (locked)
3398                 f2fs_do_map_lock(sbi, flag, false);
3399         return err;
3400 }
3401
3402 static int __find_data_block(struct inode *inode, pgoff_t index,
3403                                 block_t *blk_addr)
3404 {
3405         struct dnode_of_data dn;
3406         struct page *ipage;
3407         struct extent_info ei = {0, };
3408         int err = 0;
3409
3410         ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3411         if (IS_ERR(ipage))
3412                 return PTR_ERR(ipage);
3413
3414         set_new_dnode(&dn, inode, ipage, ipage, 0);
3415
3416         if (f2fs_lookup_read_extent_cache(inode, index, &ei)) {
3417                 dn.data_blkaddr = ei.blk + index - ei.fofs;
3418         } else {
3419                 /* hole case */
3420                 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3421                 if (err) {
3422                         dn.data_blkaddr = NULL_ADDR;
3423                         err = 0;
3424                 }
3425         }
3426         *blk_addr = dn.data_blkaddr;
3427         f2fs_put_dnode(&dn);
3428         return err;
3429 }
3430
3431 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3432                                 block_t *blk_addr, bool *node_changed)
3433 {
3434         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3435         struct dnode_of_data dn;
3436         struct page *ipage;
3437         int err = 0;
3438
3439         f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
3440
3441         ipage = f2fs_get_node_page(sbi, inode->i_ino);
3442         if (IS_ERR(ipage)) {
3443                 err = PTR_ERR(ipage);
3444                 goto unlock_out;
3445         }
3446         set_new_dnode(&dn, inode, ipage, ipage, 0);
3447
3448         err = f2fs_get_block(&dn, index);
3449
3450         *blk_addr = dn.data_blkaddr;
3451         *node_changed = dn.node_changed;
3452         f2fs_put_dnode(&dn);
3453
3454 unlock_out:
3455         f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
3456         return err;
3457 }
3458
3459 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3460                         struct page *page, loff_t pos, unsigned int len,
3461                         block_t *blk_addr, bool *node_changed)
3462 {
3463         struct inode *inode = page->mapping->host;
3464         struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3465         pgoff_t index = page->index;
3466         int err = 0;
3467         block_t ori_blk_addr = NULL_ADDR;
3468
3469         /* If pos is beyond the end of file, reserve a new block in COW inode */
3470         if ((pos & PAGE_MASK) >= i_size_read(inode))
3471                 goto reserve_block;
3472
3473         /* Look for the block in COW inode first */
3474         err = __find_data_block(cow_inode, index, blk_addr);
3475         if (err)
3476                 return err;
3477         else if (*blk_addr != NULL_ADDR)
3478                 return 0;
3479
3480         if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3481                 goto reserve_block;
3482
3483         /* Look for the block in the original inode */
3484         err = __find_data_block(inode, index, &ori_blk_addr);
3485         if (err)
3486                 return err;
3487
3488 reserve_block:
3489         /* Finally, we should reserve a new block in COW inode for the update */
3490         err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3491         if (err)
3492                 return err;
3493         inc_atomic_write_cnt(inode);
3494
3495         if (ori_blk_addr != NULL_ADDR)
3496                 *blk_addr = ori_blk_addr;
3497         return 0;
3498 }
3499
3500 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3501                 loff_t pos, unsigned len, struct page **pagep, void **fsdata)
3502 {
3503         struct inode *inode = mapping->host;
3504         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3505         struct page *page = NULL;
3506         pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3507         bool need_balance = false;
3508         block_t blkaddr = NULL_ADDR;
3509         int err = 0;
3510
3511         trace_f2fs_write_begin(inode, pos, len);
3512
3513         if (!f2fs_is_checkpoint_ready(sbi)) {
3514                 err = -ENOSPC;
3515                 goto fail;
3516         }
3517
3518         /*
3519          * We should check this at this moment to avoid deadlock on inode page
3520          * and #0 page. The locking rule for inline_data conversion should be:
3521          * lock_page(page #0) -> lock_page(inode_page)
3522          */
3523         if (index != 0) {
3524                 err = f2fs_convert_inline_inode(inode);
3525                 if (err)
3526                         goto fail;
3527         }
3528
3529 #ifdef CONFIG_F2FS_FS_COMPRESSION
3530         if (f2fs_compressed_file(inode)) {
3531                 int ret;
3532
3533                 *fsdata = NULL;
3534
3535                 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3536                         goto repeat;
3537
3538                 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3539                                                         index, fsdata);
3540                 if (ret < 0) {
3541                         err = ret;
3542                         goto fail;
3543                 } else if (ret) {
3544                         return 0;
3545                 }
3546         }
3547 #endif
3548
3549 repeat:
3550         /*
3551          * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3552          * wait_for_stable_page. Will wait that below with our IO control.
3553          */
3554         page = f2fs_pagecache_get_page(mapping, index,
3555                                 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3556         if (!page) {
3557                 err = -ENOMEM;
3558                 goto fail;
3559         }
3560
3561         /* TODO: cluster can be compressed due to race with .writepage */
3562
3563         *pagep = page;
3564
3565         if (f2fs_is_atomic_file(inode))
3566                 err = prepare_atomic_write_begin(sbi, page, pos, len,
3567                                         &blkaddr, &need_balance);
3568         else
3569                 err = prepare_write_begin(sbi, page, pos, len,
3570                                         &blkaddr, &need_balance);
3571         if (err)
3572                 goto fail;
3573
3574         if (need_balance && !IS_NOQUOTA(inode) &&
3575                         has_not_enough_free_secs(sbi, 0, 0)) {
3576                 unlock_page(page);
3577                 f2fs_balance_fs(sbi, true);
3578                 lock_page(page);
3579                 if (page->mapping != mapping) {
3580                         /* The page got truncated from under us */
3581                         f2fs_put_page(page, 1);
3582                         goto repeat;
3583                 }
3584         }
3585
3586         f2fs_wait_on_page_writeback(page, DATA, false, true);
3587
3588         if (len == PAGE_SIZE || PageUptodate(page))
3589                 return 0;
3590
3591         if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3592             !f2fs_verity_in_progress(inode)) {
3593                 zero_user_segment(page, len, PAGE_SIZE);
3594                 return 0;
3595         }
3596
3597         if (blkaddr == NEW_ADDR) {
3598                 zero_user_segment(page, 0, PAGE_SIZE);
3599                 SetPageUptodate(page);
3600         } else {
3601                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3602                                 DATA_GENERIC_ENHANCE_READ)) {
3603                         err = -EFSCORRUPTED;
3604                         f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3605                         goto fail;
3606                 }
3607                 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
3608                 if (err)
3609                         goto fail;
3610
3611                 lock_page(page);
3612                 if (unlikely(page->mapping != mapping)) {
3613                         f2fs_put_page(page, 1);
3614                         goto repeat;
3615                 }
3616                 if (unlikely(!PageUptodate(page))) {
3617                         err = -EIO;
3618                         goto fail;
3619                 }
3620         }
3621         return 0;
3622
3623 fail:
3624         f2fs_put_page(page, 1);
3625         f2fs_write_failed(inode, pos + len);
3626         return err;
3627 }
3628
3629 static int f2fs_write_end(struct file *file,
3630                         struct address_space *mapping,
3631                         loff_t pos, unsigned len, unsigned copied,
3632                         struct page *page, void *fsdata)
3633 {
3634         struct inode *inode = page->mapping->host;
3635
3636         trace_f2fs_write_end(inode, pos, len, copied);
3637
3638         /*
3639          * This should be come from len == PAGE_SIZE, and we expect copied
3640          * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3641          * let generic_perform_write() try to copy data again through copied=0.
3642          */
3643         if (!PageUptodate(page)) {
3644                 if (unlikely(copied != len))
3645                         copied = 0;
3646                 else
3647                         SetPageUptodate(page);
3648         }
3649
3650 #ifdef CONFIG_F2FS_FS_COMPRESSION
3651         /* overwrite compressed file */
3652         if (f2fs_compressed_file(inode) && fsdata) {
3653                 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3654                 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3655
3656                 if (pos + copied > i_size_read(inode) &&
3657                                 !f2fs_verity_in_progress(inode))
3658                         f2fs_i_size_write(inode, pos + copied);
3659                 return copied;
3660         }
3661 #endif
3662
3663         if (!copied)
3664                 goto unlock_out;
3665
3666         set_page_dirty(page);
3667
3668         if (pos + copied > i_size_read(inode) &&
3669             !f2fs_verity_in_progress(inode)) {
3670                 f2fs_i_size_write(inode, pos + copied);
3671                 if (f2fs_is_atomic_file(inode))
3672                         f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3673                                         pos + copied);
3674         }
3675 unlock_out:
3676         f2fs_put_page(page, 1);
3677         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3678         return copied;
3679 }
3680
3681 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3682 {
3683         struct inode *inode = folio->mapping->host;
3684         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3685
3686         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3687                                 (offset || length != folio_size(folio)))
3688                 return;
3689
3690         if (folio_test_dirty(folio)) {
3691                 if (inode->i_ino == F2FS_META_INO(sbi)) {
3692                         dec_page_count(sbi, F2FS_DIRTY_META);
3693                 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3694                         dec_page_count(sbi, F2FS_DIRTY_NODES);
3695                 } else {
3696                         inode_dec_dirty_pages(inode);
3697                         f2fs_remove_dirty_inode(inode);
3698                 }
3699         }
3700
3701         clear_page_private_gcing(&folio->page);
3702
3703         if (test_opt(sbi, COMPRESS_CACHE) &&
3704                         inode->i_ino == F2FS_COMPRESS_INO(sbi))
3705                 clear_page_private_data(&folio->page);
3706
3707         folio_detach_private(folio);
3708 }
3709
3710 bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3711 {
3712         struct f2fs_sb_info *sbi;
3713
3714         /* If this is dirty folio, keep private data */
3715         if (folio_test_dirty(folio))
3716                 return false;
3717
3718         sbi = F2FS_M_SB(folio->mapping);
3719         if (test_opt(sbi, COMPRESS_CACHE)) {
3720                 struct inode *inode = folio->mapping->host;
3721
3722                 if (inode->i_ino == F2FS_COMPRESS_INO(sbi))
3723                         clear_page_private_data(&folio->page);
3724         }
3725
3726         clear_page_private_gcing(&folio->page);
3727
3728         folio_detach_private(folio);
3729         return true;
3730 }
3731
3732 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3733                 struct folio *folio)
3734 {
3735         struct inode *inode = mapping->host;
3736
3737         trace_f2fs_set_page_dirty(&folio->page, DATA);
3738
3739         if (!folio_test_uptodate(folio))
3740                 folio_mark_uptodate(folio);
3741         BUG_ON(folio_test_swapcache(folio));
3742
3743         if (filemap_dirty_folio(mapping, folio)) {
3744                 f2fs_update_dirty_folio(inode, folio);
3745                 return true;
3746         }
3747         return false;
3748 }
3749
3750
3751 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3752 {
3753 #ifdef CONFIG_F2FS_FS_COMPRESSION
3754         struct dnode_of_data dn;
3755         sector_t start_idx, blknr = 0;
3756         int ret;
3757
3758         start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3759
3760         set_new_dnode(&dn, inode, NULL, NULL, 0);
3761         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3762         if (ret)
3763                 return 0;
3764
3765         if (dn.data_blkaddr != COMPRESS_ADDR) {
3766                 dn.ofs_in_node += block - start_idx;
3767                 blknr = f2fs_data_blkaddr(&dn);
3768                 if (!__is_valid_data_blkaddr(blknr))
3769                         blknr = 0;
3770         }
3771
3772         f2fs_put_dnode(&dn);
3773         return blknr;
3774 #else
3775         return 0;
3776 #endif
3777 }
3778
3779
3780 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3781 {
3782         struct inode *inode = mapping->host;
3783         sector_t blknr = 0;
3784
3785         if (f2fs_has_inline_data(inode))
3786                 goto out;
3787
3788         /* make sure allocating whole blocks */
3789         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3790                 filemap_write_and_wait(mapping);
3791
3792         /* Block number less than F2FS MAX BLOCKS */
3793         if (unlikely(block >= max_file_blocks(inode)))
3794                 goto out;
3795
3796         if (f2fs_compressed_file(inode)) {
3797                 blknr = f2fs_bmap_compress(inode, block);
3798         } else {
3799                 struct f2fs_map_blocks map;
3800
3801                 memset(&map, 0, sizeof(map));
3802                 map.m_lblk = block;
3803                 map.m_len = 1;
3804                 map.m_next_pgofs = NULL;
3805                 map.m_seg_type = NO_CHECK_TYPE;
3806
3807                 if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP))
3808                         blknr = map.m_pblk;
3809         }
3810 out:
3811         trace_f2fs_bmap(inode, block, blknr);
3812         return blknr;
3813 }
3814
3815 #ifdef CONFIG_SWAP
3816 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3817                                                         unsigned int blkcnt)
3818 {
3819         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3820         unsigned int blkofs;
3821         unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3822         unsigned int secidx = start_blk / blk_per_sec;
3823         unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3824         int ret = 0;
3825
3826         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3827         filemap_invalidate_lock(inode->i_mapping);
3828
3829         set_inode_flag(inode, FI_ALIGNED_WRITE);
3830         set_inode_flag(inode, FI_OPU_WRITE);
3831
3832         for (; secidx < end_sec; secidx++) {
3833                 f2fs_down_write(&sbi->pin_sem);
3834
3835                 f2fs_lock_op(sbi);
3836                 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3837                 f2fs_unlock_op(sbi);
3838
3839                 set_inode_flag(inode, FI_SKIP_WRITES);
3840
3841                 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
3842                         struct page *page;
3843                         unsigned int blkidx = secidx * blk_per_sec + blkofs;
3844
3845                         page = f2fs_get_lock_data_page(inode, blkidx, true);
3846                         if (IS_ERR(page)) {
3847                                 f2fs_up_write(&sbi->pin_sem);
3848                                 ret = PTR_ERR(page);
3849                                 goto done;
3850                         }
3851
3852                         set_page_dirty(page);
3853                         f2fs_put_page(page, 1);
3854                 }
3855
3856                 clear_inode_flag(inode, FI_SKIP_WRITES);
3857
3858                 ret = filemap_fdatawrite(inode->i_mapping);
3859
3860                 f2fs_up_write(&sbi->pin_sem);
3861
3862                 if (ret)
3863                         break;
3864         }
3865
3866 done:
3867         clear_inode_flag(inode, FI_SKIP_WRITES);
3868         clear_inode_flag(inode, FI_OPU_WRITE);
3869         clear_inode_flag(inode, FI_ALIGNED_WRITE);
3870
3871         filemap_invalidate_unlock(inode->i_mapping);
3872         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3873
3874         return ret;
3875 }
3876
3877 static int check_swap_activate(struct swap_info_struct *sis,
3878                                 struct file *swap_file, sector_t *span)
3879 {
3880         struct address_space *mapping = swap_file->f_mapping;
3881         struct inode *inode = mapping->host;
3882         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3883         sector_t cur_lblock;
3884         sector_t last_lblock;
3885         sector_t pblock;
3886         sector_t lowest_pblock = -1;
3887         sector_t highest_pblock = 0;
3888         int nr_extents = 0;
3889         unsigned long nr_pblocks;
3890         unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3891         unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3892         unsigned int not_aligned = 0;
3893         int ret = 0;
3894
3895         /*
3896          * Map all the blocks into the extent list.  This code doesn't try
3897          * to be very smart.
3898          */
3899         cur_lblock = 0;
3900         last_lblock = bytes_to_blks(inode, i_size_read(inode));
3901
3902         while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3903                 struct f2fs_map_blocks map;
3904 retry:
3905                 cond_resched();
3906
3907                 memset(&map, 0, sizeof(map));
3908                 map.m_lblk = cur_lblock;
3909                 map.m_len = last_lblock - cur_lblock;
3910                 map.m_next_pgofs = NULL;
3911                 map.m_next_extent = NULL;
3912                 map.m_seg_type = NO_CHECK_TYPE;
3913                 map.m_may_create = false;
3914
3915                 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
3916                 if (ret)
3917                         goto out;
3918
3919                 /* hole */
3920                 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3921                         f2fs_err(sbi, "Swapfile has holes");
3922                         ret = -EINVAL;
3923                         goto out;
3924                 }
3925
3926                 pblock = map.m_pblk;
3927                 nr_pblocks = map.m_len;
3928
3929                 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
3930                                 nr_pblocks & sec_blks_mask) {
3931                         not_aligned++;
3932
3933                         nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3934                         if (cur_lblock + nr_pblocks > sis->max)
3935                                 nr_pblocks -= blks_per_sec;
3936
3937                         if (!nr_pblocks) {
3938                                 /* this extent is last one */
3939                                 nr_pblocks = map.m_len;
3940                                 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
3941                                 goto next;
3942                         }
3943
3944                         ret = f2fs_migrate_blocks(inode, cur_lblock,
3945                                                         nr_pblocks);
3946                         if (ret)
3947                                 goto out;
3948                         goto retry;
3949                 }
3950 next:
3951                 if (cur_lblock + nr_pblocks >= sis->max)
3952                         nr_pblocks = sis->max - cur_lblock;
3953
3954                 if (cur_lblock) {       /* exclude the header page */
3955                         if (pblock < lowest_pblock)
3956                                 lowest_pblock = pblock;
3957                         if (pblock + nr_pblocks - 1 > highest_pblock)
3958                                 highest_pblock = pblock + nr_pblocks - 1;
3959                 }
3960
3961                 /*
3962                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3963                  */
3964                 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
3965                 if (ret < 0)
3966                         goto out;
3967                 nr_extents += ret;
3968                 cur_lblock += nr_pblocks;
3969         }
3970         ret = nr_extents;
3971         *span = 1 + highest_pblock - lowest_pblock;
3972         if (cur_lblock == 0)
3973                 cur_lblock = 1; /* force Empty message */
3974         sis->max = cur_lblock;
3975         sis->pages = cur_lblock - 1;
3976         sis->highest_bit = cur_lblock - 1;
3977 out:
3978         if (not_aligned)
3979                 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
3980                           not_aligned, blks_per_sec * F2FS_BLKSIZE);
3981         return ret;
3982 }
3983
3984 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3985                                 sector_t *span)
3986 {
3987         struct inode *inode = file_inode(file);
3988         int ret;
3989
3990         if (!S_ISREG(inode->i_mode))
3991                 return -EINVAL;
3992
3993         if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3994                 return -EROFS;
3995
3996         if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
3997                 f2fs_err(F2FS_I_SB(inode),
3998                         "Swapfile not supported in LFS mode");
3999                 return -EINVAL;
4000         }
4001
4002         ret = f2fs_convert_inline_inode(inode);
4003         if (ret)
4004                 return ret;
4005
4006         if (!f2fs_disable_compressed_file(inode))
4007                 return -EINVAL;
4008
4009         f2fs_precache_extents(inode);
4010
4011         ret = check_swap_activate(sis, file, span);
4012         if (ret < 0)
4013                 return ret;
4014
4015         stat_inc_swapfile_inode(inode);
4016         set_inode_flag(inode, FI_PIN_FILE);
4017         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
4018         return ret;
4019 }
4020
4021 static void f2fs_swap_deactivate(struct file *file)
4022 {
4023         struct inode *inode = file_inode(file);
4024
4025         stat_dec_swapfile_inode(inode);
4026         clear_inode_flag(inode, FI_PIN_FILE);
4027 }
4028 #else
4029 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4030                                 sector_t *span)
4031 {
4032         return -EOPNOTSUPP;
4033 }
4034
4035 static void f2fs_swap_deactivate(struct file *file)
4036 {
4037 }
4038 #endif
4039
4040 const struct address_space_operations f2fs_dblock_aops = {
4041         .read_folio     = f2fs_read_data_folio,
4042         .readahead      = f2fs_readahead,
4043         .writepage      = f2fs_write_data_page,
4044         .writepages     = f2fs_write_data_pages,
4045         .write_begin    = f2fs_write_begin,
4046         .write_end      = f2fs_write_end,
4047         .dirty_folio    = f2fs_dirty_data_folio,
4048         .migrate_folio  = filemap_migrate_folio,
4049         .invalidate_folio = f2fs_invalidate_folio,
4050         .release_folio  = f2fs_release_folio,
4051         .direct_IO      = noop_direct_IO,
4052         .bmap           = f2fs_bmap,
4053         .swap_activate  = f2fs_swap_activate,
4054         .swap_deactivate = f2fs_swap_deactivate,
4055 };
4056
4057 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4058 {
4059         struct address_space *mapping = page_mapping(page);
4060         unsigned long flags;
4061
4062         xa_lock_irqsave(&mapping->i_pages, flags);
4063         __xa_clear_mark(&mapping->i_pages, page_index(page),
4064                                                 PAGECACHE_TAG_DIRTY);
4065         xa_unlock_irqrestore(&mapping->i_pages, flags);
4066 }
4067
4068 int __init f2fs_init_post_read_processing(void)
4069 {
4070         bio_post_read_ctx_cache =
4071                 kmem_cache_create("f2fs_bio_post_read_ctx",
4072                                   sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4073         if (!bio_post_read_ctx_cache)
4074                 goto fail;
4075         bio_post_read_ctx_pool =
4076                 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4077                                          bio_post_read_ctx_cache);
4078         if (!bio_post_read_ctx_pool)
4079                 goto fail_free_cache;
4080         return 0;
4081
4082 fail_free_cache:
4083         kmem_cache_destroy(bio_post_read_ctx_cache);
4084 fail:
4085         return -ENOMEM;
4086 }
4087
4088 void f2fs_destroy_post_read_processing(void)
4089 {
4090         mempool_destroy(bio_post_read_ctx_pool);
4091         kmem_cache_destroy(bio_post_read_ctx_cache);
4092 }
4093
4094 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4095 {
4096         if (!f2fs_sb_has_encrypt(sbi) &&
4097                 !f2fs_sb_has_verity(sbi) &&
4098                 !f2fs_sb_has_compression(sbi))
4099                 return 0;
4100
4101         sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4102                                                  WQ_UNBOUND | WQ_HIGHPRI,
4103                                                  num_online_cpus());
4104         return sbi->post_read_wq ? 0 : -ENOMEM;
4105 }
4106
4107 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4108 {
4109         if (sbi->post_read_wq)
4110                 destroy_workqueue(sbi->post_read_wq);
4111 }
4112
4113 int __init f2fs_init_bio_entry_cache(void)
4114 {
4115         bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4116                         sizeof(struct bio_entry));
4117         return bio_entry_slab ? 0 : -ENOMEM;
4118 }
4119
4120 void f2fs_destroy_bio_entry_cache(void)
4121 {
4122         kmem_cache_destroy(bio_entry_slab);
4123 }
4124
4125 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4126                             unsigned int flags, struct iomap *iomap,
4127                             struct iomap *srcmap)
4128 {
4129         struct f2fs_map_blocks map = {};
4130         pgoff_t next_pgofs = 0;
4131         int err;
4132
4133         map.m_lblk = bytes_to_blks(inode, offset);
4134         map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4135         map.m_next_pgofs = &next_pgofs;
4136         map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4137         if (flags & IOMAP_WRITE)
4138                 map.m_may_create = true;
4139
4140         err = f2fs_map_blocks(inode, &map, flags & IOMAP_WRITE,
4141                               F2FS_GET_BLOCK_DIO);
4142         if (err)
4143                 return err;
4144
4145         iomap->offset = blks_to_bytes(inode, map.m_lblk);
4146
4147         /*
4148          * When inline encryption is enabled, sometimes I/O to an encrypted file
4149          * has to be broken up to guarantee DUN contiguity.  Handle this by
4150          * limiting the length of the mapping returned.
4151          */
4152         map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4153
4154         if (map.m_flags & (F2FS_MAP_MAPPED | F2FS_MAP_UNWRITTEN)) {
4155                 iomap->length = blks_to_bytes(inode, map.m_len);
4156                 if (map.m_flags & F2FS_MAP_MAPPED) {
4157                         iomap->type = IOMAP_MAPPED;
4158                         iomap->flags |= IOMAP_F_MERGED;
4159                 } else {
4160                         iomap->type = IOMAP_UNWRITTEN;
4161                 }
4162                 if (WARN_ON_ONCE(!__is_valid_data_blkaddr(map.m_pblk)))
4163                         return -EINVAL;
4164
4165                 iomap->bdev = map.m_bdev;
4166                 iomap->addr = blks_to_bytes(inode, map.m_pblk);
4167         } else {
4168                 iomap->length = blks_to_bytes(inode, next_pgofs) -
4169                                 iomap->offset;
4170                 iomap->type = IOMAP_HOLE;
4171                 iomap->addr = IOMAP_NULL_ADDR;
4172         }
4173
4174         if (map.m_flags & F2FS_MAP_NEW)
4175                 iomap->flags |= IOMAP_F_NEW;
4176         if ((inode->i_state & I_DIRTY_DATASYNC) ||
4177             offset + length > i_size_read(inode))
4178                 iomap->flags |= IOMAP_F_DIRTY;
4179
4180         return 0;
4181 }
4182
4183 const struct iomap_ops f2fs_iomap_ops = {
4184         .iomap_begin    = f2fs_iomap_begin,
4185 };
This page took 0.352971 seconds and 4 git commands to generate.