1 // SPDX-License-Identifier: GPL-2.0
6 #include <linux/swap.h>
8 #include <linux/blkdev.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
20 #include <trace/events/block.h>
22 #include "blk-rq-qos.h"
25 * Test patch to inline a certain number of bi_io_vec's inside the bio
26 * itself, to shrink a bio data allocation from two mempool calls to one
28 #define BIO_INLINE_VECS 4
31 * if you change this list, also change bvec_alloc or things will
32 * break badly! cannot be bigger than what you can fit into an
35 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
36 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
37 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
42 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
43 * IO code that does not need private memory pools.
45 struct bio_set fs_bio_set;
46 EXPORT_SYMBOL(fs_bio_set);
49 * Our slab pool management
52 struct kmem_cache *slab;
53 unsigned int slab_ref;
54 unsigned int slab_size;
57 static DEFINE_MUTEX(bio_slab_lock);
58 static struct bio_slab *bio_slabs;
59 static unsigned int bio_slab_nr, bio_slab_max;
61 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
63 unsigned int sz = sizeof(struct bio) + extra_size;
64 struct kmem_cache *slab = NULL;
65 struct bio_slab *bslab, *new_bio_slabs;
66 unsigned int new_bio_slab_max;
67 unsigned int i, entry = -1;
69 mutex_lock(&bio_slab_lock);
72 while (i < bio_slab_nr) {
73 bslab = &bio_slabs[i];
75 if (!bslab->slab && entry == -1)
77 else if (bslab->slab_size == sz) {
88 if (bio_slab_nr == bio_slab_max && entry == -1) {
89 new_bio_slab_max = bio_slab_max << 1;
90 new_bio_slabs = krealloc(bio_slabs,
91 new_bio_slab_max * sizeof(struct bio_slab),
95 bio_slab_max = new_bio_slab_max;
96 bio_slabs = new_bio_slabs;
99 entry = bio_slab_nr++;
101 bslab = &bio_slabs[entry];
103 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
104 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
105 SLAB_HWCACHE_ALIGN, NULL);
111 bslab->slab_size = sz;
113 mutex_unlock(&bio_slab_lock);
117 static void bio_put_slab(struct bio_set *bs)
119 struct bio_slab *bslab = NULL;
122 mutex_lock(&bio_slab_lock);
124 for (i = 0; i < bio_slab_nr; i++) {
125 if (bs->bio_slab == bio_slabs[i].slab) {
126 bslab = &bio_slabs[i];
131 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
134 WARN_ON(!bslab->slab_ref);
136 if (--bslab->slab_ref)
139 kmem_cache_destroy(bslab->slab);
143 mutex_unlock(&bio_slab_lock);
146 unsigned int bvec_nr_vecs(unsigned short idx)
148 return bvec_slabs[--idx].nr_vecs;
151 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
157 BIO_BUG_ON(idx >= BVEC_POOL_NR);
159 if (idx == BVEC_POOL_MAX) {
160 mempool_free(bv, pool);
162 struct biovec_slab *bvs = bvec_slabs + idx;
164 kmem_cache_free(bvs->slab, bv);
168 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
174 * see comment near bvec_array define!
192 case 129 ... BIO_MAX_PAGES:
200 * idx now points to the pool we want to allocate from. only the
201 * 1-vec entry pool is mempool backed.
203 if (*idx == BVEC_POOL_MAX) {
205 bvl = mempool_alloc(pool, gfp_mask);
207 struct biovec_slab *bvs = bvec_slabs + *idx;
208 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
211 * Make this allocation restricted and don't dump info on
212 * allocation failures, since we'll fallback to the mempool
213 * in case of failure.
215 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
218 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
219 * is set, retry with the 1-entry mempool
221 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
222 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
223 *idx = BVEC_POOL_MAX;
232 void bio_uninit(struct bio *bio)
234 bio_disassociate_blkg(bio);
236 EXPORT_SYMBOL(bio_uninit);
238 static void bio_free(struct bio *bio)
240 struct bio_set *bs = bio->bi_pool;
246 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
249 * If we have front padding, adjust the bio pointer before freeing
254 mempool_free(p, &bs->bio_pool);
256 /* Bio was allocated by bio_kmalloc() */
262 * Users of this function have their own bio allocation. Subsequently,
263 * they must remember to pair any call to bio_init() with bio_uninit()
264 * when IO has completed, or when the bio is released.
266 void bio_init(struct bio *bio, struct bio_vec *table,
267 unsigned short max_vecs)
269 memset(bio, 0, sizeof(*bio));
270 atomic_set(&bio->__bi_remaining, 1);
271 atomic_set(&bio->__bi_cnt, 1);
273 bio->bi_io_vec = table;
274 bio->bi_max_vecs = max_vecs;
276 EXPORT_SYMBOL(bio_init);
279 * bio_reset - reinitialize a bio
283 * After calling bio_reset(), @bio will be in the same state as a freshly
284 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
285 * preserved are the ones that are initialized by bio_alloc_bioset(). See
286 * comment in struct bio.
288 void bio_reset(struct bio *bio)
290 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
294 memset(bio, 0, BIO_RESET_BYTES);
295 bio->bi_flags = flags;
296 atomic_set(&bio->__bi_remaining, 1);
298 EXPORT_SYMBOL(bio_reset);
300 static struct bio *__bio_chain_endio(struct bio *bio)
302 struct bio *parent = bio->bi_private;
304 if (!parent->bi_status)
305 parent->bi_status = bio->bi_status;
310 static void bio_chain_endio(struct bio *bio)
312 bio_endio(__bio_chain_endio(bio));
316 * bio_chain - chain bio completions
317 * @bio: the target bio
318 * @parent: the @bio's parent bio
320 * The caller won't have a bi_end_io called when @bio completes - instead,
321 * @parent's bi_end_io won't be called until both @parent and @bio have
322 * completed; the chained bio will also be freed when it completes.
324 * The caller must not set bi_private or bi_end_io in @bio.
326 void bio_chain(struct bio *bio, struct bio *parent)
328 BUG_ON(bio->bi_private || bio->bi_end_io);
330 bio->bi_private = parent;
331 bio->bi_end_io = bio_chain_endio;
332 bio_inc_remaining(parent);
334 EXPORT_SYMBOL(bio_chain);
336 static void bio_alloc_rescue(struct work_struct *work)
338 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
342 spin_lock(&bs->rescue_lock);
343 bio = bio_list_pop(&bs->rescue_list);
344 spin_unlock(&bs->rescue_lock);
349 generic_make_request(bio);
353 static void punt_bios_to_rescuer(struct bio_set *bs)
355 struct bio_list punt, nopunt;
358 if (WARN_ON_ONCE(!bs->rescue_workqueue))
361 * In order to guarantee forward progress we must punt only bios that
362 * were allocated from this bio_set; otherwise, if there was a bio on
363 * there for a stacking driver higher up in the stack, processing it
364 * could require allocating bios from this bio_set, and doing that from
365 * our own rescuer would be bad.
367 * Since bio lists are singly linked, pop them all instead of trying to
368 * remove from the middle of the list:
371 bio_list_init(&punt);
372 bio_list_init(&nopunt);
374 while ((bio = bio_list_pop(¤t->bio_list[0])))
375 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
376 current->bio_list[0] = nopunt;
378 bio_list_init(&nopunt);
379 while ((bio = bio_list_pop(¤t->bio_list[1])))
380 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
381 current->bio_list[1] = nopunt;
383 spin_lock(&bs->rescue_lock);
384 bio_list_merge(&bs->rescue_list, &punt);
385 spin_unlock(&bs->rescue_lock);
387 queue_work(bs->rescue_workqueue, &bs->rescue_work);
391 * bio_alloc_bioset - allocate a bio for I/O
392 * @gfp_mask: the GFP_* mask given to the slab allocator
393 * @nr_iovecs: number of iovecs to pre-allocate
394 * @bs: the bio_set to allocate from.
397 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
398 * backed by the @bs's mempool.
400 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
401 * always be able to allocate a bio. This is due to the mempool guarantees.
402 * To make this work, callers must never allocate more than 1 bio at a time
403 * from this pool. Callers that need to allocate more than 1 bio must always
404 * submit the previously allocated bio for IO before attempting to allocate
405 * a new one. Failure to do so can cause deadlocks under memory pressure.
407 * Note that when running under generic_make_request() (i.e. any block
408 * driver), bios are not submitted until after you return - see the code in
409 * generic_make_request() that converts recursion into iteration, to prevent
412 * This would normally mean allocating multiple bios under
413 * generic_make_request() would be susceptible to deadlocks, but we have
414 * deadlock avoidance code that resubmits any blocked bios from a rescuer
417 * However, we do not guarantee forward progress for allocations from other
418 * mempools. Doing multiple allocations from the same mempool under
419 * generic_make_request() should be avoided - instead, use bio_set's front_pad
420 * for per bio allocations.
423 * Pointer to new bio on success, NULL on failure.
425 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
428 gfp_t saved_gfp = gfp_mask;
430 unsigned inline_vecs;
431 struct bio_vec *bvl = NULL;
436 if (nr_iovecs > UIO_MAXIOV)
439 p = kmalloc(sizeof(struct bio) +
440 nr_iovecs * sizeof(struct bio_vec),
443 inline_vecs = nr_iovecs;
445 /* should not use nobvec bioset for nr_iovecs > 0 */
446 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
450 * generic_make_request() converts recursion to iteration; this
451 * means if we're running beneath it, any bios we allocate and
452 * submit will not be submitted (and thus freed) until after we
455 * This exposes us to a potential deadlock if we allocate
456 * multiple bios from the same bio_set() while running
457 * underneath generic_make_request(). If we were to allocate
458 * multiple bios (say a stacking block driver that was splitting
459 * bios), we would deadlock if we exhausted the mempool's
462 * We solve this, and guarantee forward progress, with a rescuer
463 * workqueue per bio_set. If we go to allocate and there are
464 * bios on current->bio_list, we first try the allocation
465 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
466 * bios we would be blocking to the rescuer workqueue before
467 * we retry with the original gfp_flags.
470 if (current->bio_list &&
471 (!bio_list_empty(¤t->bio_list[0]) ||
472 !bio_list_empty(¤t->bio_list[1])) &&
473 bs->rescue_workqueue)
474 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
476 p = mempool_alloc(&bs->bio_pool, gfp_mask);
477 if (!p && gfp_mask != saved_gfp) {
478 punt_bios_to_rescuer(bs);
479 gfp_mask = saved_gfp;
480 p = mempool_alloc(&bs->bio_pool, gfp_mask);
483 front_pad = bs->front_pad;
484 inline_vecs = BIO_INLINE_VECS;
491 bio_init(bio, NULL, 0);
493 if (nr_iovecs > inline_vecs) {
494 unsigned long idx = 0;
496 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
497 if (!bvl && gfp_mask != saved_gfp) {
498 punt_bios_to_rescuer(bs);
499 gfp_mask = saved_gfp;
500 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
506 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
507 } else if (nr_iovecs) {
508 bvl = bio->bi_inline_vecs;
512 bio->bi_max_vecs = nr_iovecs;
513 bio->bi_io_vec = bvl;
517 mempool_free(p, &bs->bio_pool);
520 EXPORT_SYMBOL(bio_alloc_bioset);
522 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
526 struct bvec_iter iter;
528 __bio_for_each_segment(bv, bio, iter, start) {
529 char *data = bvec_kmap_irq(&bv, &flags);
530 memset(data, 0, bv.bv_len);
531 flush_dcache_page(bv.bv_page);
532 bvec_kunmap_irq(data, &flags);
535 EXPORT_SYMBOL(zero_fill_bio_iter);
538 * bio_put - release a reference to a bio
539 * @bio: bio to release reference to
542 * Put a reference to a &struct bio, either one you have gotten with
543 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
545 void bio_put(struct bio *bio)
547 if (!bio_flagged(bio, BIO_REFFED))
550 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
555 if (atomic_dec_and_test(&bio->__bi_cnt))
559 EXPORT_SYMBOL(bio_put);
561 int bio_phys_segments(struct request_queue *q, struct bio *bio)
563 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
564 blk_recount_segments(q, bio);
566 return bio->bi_phys_segments;
570 * __bio_clone_fast - clone a bio that shares the original bio's biovec
571 * @bio: destination bio
572 * @bio_src: bio to clone
574 * Clone a &bio. Caller will own the returned bio, but not
575 * the actual data it points to. Reference count of returned
578 * Caller must ensure that @bio_src is not freed before @bio.
580 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
582 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
585 * most users will be overriding ->bi_disk with a new target,
586 * so we don't set nor calculate new physical/hw segment counts here
588 bio->bi_disk = bio_src->bi_disk;
589 bio->bi_partno = bio_src->bi_partno;
590 bio_set_flag(bio, BIO_CLONED);
591 if (bio_flagged(bio_src, BIO_THROTTLED))
592 bio_set_flag(bio, BIO_THROTTLED);
593 bio->bi_opf = bio_src->bi_opf;
594 bio->bi_ioprio = bio_src->bi_ioprio;
595 bio->bi_write_hint = bio_src->bi_write_hint;
596 bio->bi_iter = bio_src->bi_iter;
597 bio->bi_io_vec = bio_src->bi_io_vec;
599 bio_clone_blkg_association(bio, bio_src);
600 blkcg_bio_issue_init(bio);
602 EXPORT_SYMBOL(__bio_clone_fast);
605 * bio_clone_fast - clone a bio that shares the original bio's biovec
607 * @gfp_mask: allocation priority
608 * @bs: bio_set to allocate from
610 * Like __bio_clone_fast, only also allocates the returned bio
612 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
616 b = bio_alloc_bioset(gfp_mask, 0, bs);
620 __bio_clone_fast(b, bio);
622 if (bio_integrity(bio)) {
625 ret = bio_integrity_clone(b, bio, gfp_mask);
635 EXPORT_SYMBOL(bio_clone_fast);
637 static inline bool page_is_mergeable(const struct bio_vec *bv,
638 struct page *page, unsigned int len, unsigned int off,
641 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
642 bv->bv_offset + bv->bv_len - 1;
643 phys_addr_t page_addr = page_to_phys(page);
645 if (vec_end_addr + 1 != page_addr + off)
647 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
650 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
651 if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
657 * Check if the @page can be added to the current segment(@bv), and make
658 * sure to call it only if page_is_mergeable(@bv, @page) is true
660 static bool can_add_page_to_seg(struct request_queue *q,
661 struct bio_vec *bv, struct page *page, unsigned len,
664 unsigned long mask = queue_segment_boundary(q);
665 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
666 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
668 if ((addr1 | mask) != (addr2 | mask))
671 if (bv->bv_len + len > queue_max_segment_size(q))
678 * __bio_add_pc_page - attempt to add page to passthrough bio
679 * @q: the target queue
680 * @bio: destination bio
682 * @len: vec entry length
683 * @offset: vec entry offset
684 * @put_same_page: put the page if it is same with last added page
686 * Attempt to add a page to the bio_vec maplist. This can fail for a
687 * number of reasons, such as the bio being full or target block device
688 * limitations. The target block device must allow bio's up to PAGE_SIZE,
689 * so it is always possible to add a single page to an empty bio.
691 * This should only be used by passthrough bios.
693 static int __bio_add_pc_page(struct request_queue *q, struct bio *bio,
694 struct page *page, unsigned int len, unsigned int offset,
697 struct bio_vec *bvec;
698 bool same_page = false;
701 * cloned bio must not modify vec list
703 if (unlikely(bio_flagged(bio, BIO_CLONED)))
706 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
709 if (bio->bi_vcnt > 0) {
710 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
712 if (page == bvec->bv_page &&
713 offset == bvec->bv_offset + bvec->bv_len) {
721 * If the queue doesn't support SG gaps and adding this
722 * offset would create a gap, disallow it.
724 if (bvec_gap_to_prev(q, bvec, offset))
727 if (page_is_mergeable(bvec, page, len, offset, &same_page) &&
728 can_add_page_to_seg(q, bvec, page, len, offset)) {
737 if (bio->bi_phys_segments >= queue_max_segments(q))
740 bvec = &bio->bi_io_vec[bio->bi_vcnt];
741 bvec->bv_page = page;
743 bvec->bv_offset = offset;
746 bio->bi_iter.bi_size += len;
747 bio->bi_phys_segments = bio->bi_vcnt;
748 bio_set_flag(bio, BIO_SEG_VALID);
752 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
753 struct page *page, unsigned int len, unsigned int offset)
755 return __bio_add_pc_page(q, bio, page, len, offset, false);
757 EXPORT_SYMBOL(bio_add_pc_page);
760 * __bio_try_merge_page - try appending data to an existing bvec.
761 * @bio: destination bio
762 * @page: start page to add
763 * @len: length of the data to add
764 * @off: offset of the data relative to @page
765 * @same_page: return if the segment has been merged inside the same page
767 * Try to add the data at @page + @off to the last bvec of @bio. This is a
768 * a useful optimisation for file systems with a block size smaller than the
771 * Warn if (@len, @off) crosses pages in case that @same_page is true.
773 * Return %true on success or %false on failure.
775 bool __bio_try_merge_page(struct bio *bio, struct page *page,
776 unsigned int len, unsigned int off, bool *same_page)
778 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
781 if (bio->bi_vcnt > 0) {
782 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
784 if (page_is_mergeable(bv, page, len, off, same_page)) {
786 bio->bi_iter.bi_size += len;
792 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
795 * __bio_add_page - add page(s) to a bio in a new segment
796 * @bio: destination bio
797 * @page: start page to add
798 * @len: length of the data to add, may cross pages
799 * @off: offset of the data relative to @page, may cross pages
801 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
802 * that @bio has space for another bvec.
804 void __bio_add_page(struct bio *bio, struct page *page,
805 unsigned int len, unsigned int off)
807 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
809 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
810 WARN_ON_ONCE(bio_full(bio));
816 bio->bi_iter.bi_size += len;
819 EXPORT_SYMBOL_GPL(__bio_add_page);
822 * bio_add_page - attempt to add page(s) to bio
823 * @bio: destination bio
824 * @page: start page to add
825 * @len: vec entry length, may cross pages
826 * @offset: vec entry offset relative to @page, may cross pages
828 * Attempt to add page(s) to the bio_vec maplist. This will only fail
829 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
831 int bio_add_page(struct bio *bio, struct page *page,
832 unsigned int len, unsigned int offset)
834 bool same_page = false;
836 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
839 __bio_add_page(bio, page, len, offset);
843 EXPORT_SYMBOL(bio_add_page);
845 static void bio_get_pages(struct bio *bio)
847 struct bvec_iter_all iter_all;
848 struct bio_vec *bvec;
850 bio_for_each_segment_all(bvec, bio, iter_all)
851 get_page(bvec->bv_page);
854 static void bio_release_pages(struct bio *bio)
856 struct bvec_iter_all iter_all;
857 struct bio_vec *bvec;
859 bio_for_each_segment_all(bvec, bio, iter_all)
860 put_page(bvec->bv_page);
863 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
865 const struct bio_vec *bv = iter->bvec;
869 if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
872 len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
873 size = bio_add_page(bio, bv->bv_page, len,
874 bv->bv_offset + iter->iov_offset);
875 if (unlikely(size != len))
877 iov_iter_advance(iter, size);
881 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
884 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
885 * @bio: bio to add pages to
886 * @iter: iov iterator describing the region to be mapped
888 * Pins pages from *iter and appends them to @bio's bvec array. The
889 * pages will have to be released using put_page() when done.
890 * For multi-segment *iter, this function only adds pages from the
891 * the next non-empty segment of the iov iterator.
893 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
895 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
896 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
897 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
898 struct page **pages = (struct page **)bv;
899 bool same_page = false;
905 * Move page array up in the allocated memory for the bio vecs as far as
906 * possible so that we can start filling biovecs from the beginning
907 * without overwriting the temporary page array.
909 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
910 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
912 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
913 if (unlikely(size <= 0))
914 return size ? size : -EFAULT;
916 for (left = size, i = 0; left > 0; left -= len, i++) {
917 struct page *page = pages[i];
919 len = min_t(size_t, PAGE_SIZE - offset, left);
921 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
925 if (WARN_ON_ONCE(bio_full(bio)))
927 __bio_add_page(bio, page, len, offset);
932 iov_iter_advance(iter, size);
937 * bio_iov_iter_get_pages - add user or kernel pages to a bio
938 * @bio: bio to add pages to
939 * @iter: iov iterator describing the region to be added
941 * This takes either an iterator pointing to user memory, or one pointing to
942 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
943 * map them into the kernel. On IO completion, the caller should put those
944 * pages. If we're adding kernel pages, and the caller told us it's safe to
945 * do so, we just have to add the pages to the bio directly. We don't grab an
946 * extra reference to those pages (the user should already have that), and we
947 * don't put the page on IO completion. The caller needs to check if the bio is
948 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
951 * The function tries, but does not guarantee, to pin as many pages as
952 * fit into the bio, or are requested in *iter, whatever is smaller. If
953 * MM encounters an error pinning the requested pages, it stops. Error
954 * is returned only if 0 pages could be pinned.
956 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
958 const bool is_bvec = iov_iter_is_bvec(iter);
961 if (WARN_ON_ONCE(bio->bi_vcnt))
966 ret = __bio_iov_bvec_add_pages(bio, iter);
968 ret = __bio_iov_iter_get_pages(bio, iter);
969 } while (!ret && iov_iter_count(iter) && !bio_full(bio));
971 if (iov_iter_bvec_no_ref(iter))
972 bio_set_flag(bio, BIO_NO_PAGE_REF);
976 return bio->bi_vcnt ? 0 : ret;
979 static void submit_bio_wait_endio(struct bio *bio)
981 complete(bio->bi_private);
985 * submit_bio_wait - submit a bio, and wait until it completes
986 * @bio: The &struct bio which describes the I/O
988 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
989 * bio_endio() on failure.
991 * WARNING: Unlike to how submit_bio() is usually used, this function does not
992 * result in bio reference to be consumed. The caller must drop the reference
995 int submit_bio_wait(struct bio *bio)
997 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
999 bio->bi_private = &done;
1000 bio->bi_end_io = submit_bio_wait_endio;
1001 bio->bi_opf |= REQ_SYNC;
1003 wait_for_completion_io(&done);
1005 return blk_status_to_errno(bio->bi_status);
1007 EXPORT_SYMBOL(submit_bio_wait);
1010 * bio_advance - increment/complete a bio by some number of bytes
1011 * @bio: bio to advance
1012 * @bytes: number of bytes to complete
1014 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1015 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1016 * be updated on the last bvec as well.
1018 * @bio will then represent the remaining, uncompleted portion of the io.
1020 void bio_advance(struct bio *bio, unsigned bytes)
1022 if (bio_integrity(bio))
1023 bio_integrity_advance(bio, bytes);
1025 bio_advance_iter(bio, &bio->bi_iter, bytes);
1027 EXPORT_SYMBOL(bio_advance);
1029 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1030 struct bio *src, struct bvec_iter *src_iter)
1032 struct bio_vec src_bv, dst_bv;
1033 void *src_p, *dst_p;
1036 while (src_iter->bi_size && dst_iter->bi_size) {
1037 src_bv = bio_iter_iovec(src, *src_iter);
1038 dst_bv = bio_iter_iovec(dst, *dst_iter);
1040 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1042 src_p = kmap_atomic(src_bv.bv_page);
1043 dst_p = kmap_atomic(dst_bv.bv_page);
1045 memcpy(dst_p + dst_bv.bv_offset,
1046 src_p + src_bv.bv_offset,
1049 kunmap_atomic(dst_p);
1050 kunmap_atomic(src_p);
1052 flush_dcache_page(dst_bv.bv_page);
1054 bio_advance_iter(src, src_iter, bytes);
1055 bio_advance_iter(dst, dst_iter, bytes);
1058 EXPORT_SYMBOL(bio_copy_data_iter);
1061 * bio_copy_data - copy contents of data buffers from one bio to another
1063 * @dst: destination bio
1065 * Stops when it reaches the end of either @src or @dst - that is, copies
1066 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1068 void bio_copy_data(struct bio *dst, struct bio *src)
1070 struct bvec_iter src_iter = src->bi_iter;
1071 struct bvec_iter dst_iter = dst->bi_iter;
1073 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1075 EXPORT_SYMBOL(bio_copy_data);
1078 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1080 * @src: source bio list
1081 * @dst: destination bio list
1083 * Stops when it reaches the end of either the @src list or @dst list - that is,
1084 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1087 void bio_list_copy_data(struct bio *dst, struct bio *src)
1089 struct bvec_iter src_iter = src->bi_iter;
1090 struct bvec_iter dst_iter = dst->bi_iter;
1093 if (!src_iter.bi_size) {
1098 src_iter = src->bi_iter;
1101 if (!dst_iter.bi_size) {
1106 dst_iter = dst->bi_iter;
1109 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1112 EXPORT_SYMBOL(bio_list_copy_data);
1114 struct bio_map_data {
1116 struct iov_iter iter;
1120 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1123 struct bio_map_data *bmd;
1124 if (data->nr_segs > UIO_MAXIOV)
1127 bmd = kmalloc(sizeof(struct bio_map_data) +
1128 sizeof(struct iovec) * data->nr_segs, gfp_mask);
1131 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1133 bmd->iter.iov = bmd->iov;
1138 * bio_copy_from_iter - copy all pages from iov_iter to bio
1139 * @bio: The &struct bio which describes the I/O as destination
1140 * @iter: iov_iter as source
1142 * Copy all pages from iov_iter to bio.
1143 * Returns 0 on success, or error on failure.
1145 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1147 struct bio_vec *bvec;
1148 struct bvec_iter_all iter_all;
1150 bio_for_each_segment_all(bvec, bio, iter_all) {
1153 ret = copy_page_from_iter(bvec->bv_page,
1158 if (!iov_iter_count(iter))
1161 if (ret < bvec->bv_len)
1169 * bio_copy_to_iter - copy all pages from bio to iov_iter
1170 * @bio: The &struct bio which describes the I/O as source
1171 * @iter: iov_iter as destination
1173 * Copy all pages from bio to iov_iter.
1174 * Returns 0 on success, or error on failure.
1176 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1178 struct bio_vec *bvec;
1179 struct bvec_iter_all iter_all;
1181 bio_for_each_segment_all(bvec, bio, iter_all) {
1184 ret = copy_page_to_iter(bvec->bv_page,
1189 if (!iov_iter_count(&iter))
1192 if (ret < bvec->bv_len)
1199 void bio_free_pages(struct bio *bio)
1201 struct bio_vec *bvec;
1202 struct bvec_iter_all iter_all;
1204 bio_for_each_segment_all(bvec, bio, iter_all)
1205 __free_page(bvec->bv_page);
1207 EXPORT_SYMBOL(bio_free_pages);
1210 * bio_uncopy_user - finish previously mapped bio
1211 * @bio: bio being terminated
1213 * Free pages allocated from bio_copy_user_iov() and write back data
1214 * to user space in case of a read.
1216 int bio_uncopy_user(struct bio *bio)
1218 struct bio_map_data *bmd = bio->bi_private;
1221 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1223 * if we're in a workqueue, the request is orphaned, so
1224 * don't copy into a random user address space, just free
1225 * and return -EINTR so user space doesn't expect any data.
1229 else if (bio_data_dir(bio) == READ)
1230 ret = bio_copy_to_iter(bio, bmd->iter);
1231 if (bmd->is_our_pages)
1232 bio_free_pages(bio);
1240 * bio_copy_user_iov - copy user data to bio
1241 * @q: destination block queue
1242 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1243 * @iter: iovec iterator
1244 * @gfp_mask: memory allocation flags
1246 * Prepares and returns a bio for indirect user io, bouncing data
1247 * to/from kernel pages as necessary. Must be paired with
1248 * call bio_uncopy_user() on io completion.
1250 struct bio *bio_copy_user_iov(struct request_queue *q,
1251 struct rq_map_data *map_data,
1252 struct iov_iter *iter,
1255 struct bio_map_data *bmd;
1260 unsigned int len = iter->count;
1261 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1263 bmd = bio_alloc_map_data(iter, gfp_mask);
1265 return ERR_PTR(-ENOMEM);
1268 * We need to do a deep copy of the iov_iter including the iovecs.
1269 * The caller provided iov might point to an on-stack or otherwise
1272 bmd->is_our_pages = map_data ? 0 : 1;
1274 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1275 if (nr_pages > BIO_MAX_PAGES)
1276 nr_pages = BIO_MAX_PAGES;
1279 bio = bio_kmalloc(gfp_mask, nr_pages);
1286 nr_pages = 1 << map_data->page_order;
1287 i = map_data->offset / PAGE_SIZE;
1290 unsigned int bytes = PAGE_SIZE;
1298 if (i == map_data->nr_entries * nr_pages) {
1303 page = map_data->pages[i / nr_pages];
1304 page += (i % nr_pages);
1308 page = alloc_page(q->bounce_gfp | gfp_mask);
1315 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1329 map_data->offset += bio->bi_iter.bi_size;
1334 if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
1335 (map_data && map_data->from_user)) {
1336 ret = bio_copy_from_iter(bio, iter);
1340 if (bmd->is_our_pages)
1342 iov_iter_advance(iter, bio->bi_iter.bi_size);
1345 bio->bi_private = bmd;
1346 if (map_data && map_data->null_mapped)
1347 bio_set_flag(bio, BIO_NULL_MAPPED);
1351 bio_free_pages(bio);
1355 return ERR_PTR(ret);
1359 * bio_map_user_iov - map user iovec into bio
1360 * @q: the struct request_queue for the bio
1361 * @iter: iovec iterator
1362 * @gfp_mask: memory allocation flags
1364 * Map the user space address into a bio suitable for io to a block
1365 * device. Returns an error pointer in case of error.
1367 struct bio *bio_map_user_iov(struct request_queue *q,
1368 struct iov_iter *iter,
1374 struct bio_vec *bvec;
1375 struct bvec_iter_all iter_all;
1377 if (!iov_iter_count(iter))
1378 return ERR_PTR(-EINVAL);
1380 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1382 return ERR_PTR(-ENOMEM);
1384 while (iov_iter_count(iter)) {
1385 struct page **pages;
1387 size_t offs, added = 0;
1390 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1391 if (unlikely(bytes <= 0)) {
1392 ret = bytes ? bytes : -EFAULT;
1396 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1398 if (unlikely(offs & queue_dma_alignment(q))) {
1402 for (j = 0; j < npages; j++) {
1403 struct page *page = pages[j];
1404 unsigned int n = PAGE_SIZE - offs;
1409 if (!__bio_add_pc_page(q, bio, page, n, offs,
1417 iov_iter_advance(iter, added);
1420 * release the pages we didn't map into the bio, if any
1423 put_page(pages[j++]);
1425 /* couldn't stuff something into bio? */
1430 bio_set_flag(bio, BIO_USER_MAPPED);
1433 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1434 * it would normally disappear when its bi_end_io is run.
1435 * however, we need it for the unmap, so grab an extra
1442 bio_for_each_segment_all(bvec, bio, iter_all) {
1443 put_page(bvec->bv_page);
1446 return ERR_PTR(ret);
1449 static void __bio_unmap_user(struct bio *bio)
1451 struct bio_vec *bvec;
1452 struct bvec_iter_all iter_all;
1455 * make sure we dirty pages we wrote to
1457 bio_for_each_segment_all(bvec, bio, iter_all) {
1458 if (bio_data_dir(bio) == READ)
1459 set_page_dirty_lock(bvec->bv_page);
1461 put_page(bvec->bv_page);
1468 * bio_unmap_user - unmap a bio
1469 * @bio: the bio being unmapped
1471 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1474 * bio_unmap_user() may sleep.
1476 void bio_unmap_user(struct bio *bio)
1478 __bio_unmap_user(bio);
1482 static void bio_map_kern_endio(struct bio *bio)
1488 * bio_map_kern - map kernel address into bio
1489 * @q: the struct request_queue for the bio
1490 * @data: pointer to buffer to map
1491 * @len: length in bytes
1492 * @gfp_mask: allocation flags for bio allocation
1494 * Map the kernel address into a bio suitable for io to a block
1495 * device. Returns an error pointer in case of error.
1497 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1500 unsigned long kaddr = (unsigned long)data;
1501 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1502 unsigned long start = kaddr >> PAGE_SHIFT;
1503 const int nr_pages = end - start;
1507 bio = bio_kmalloc(gfp_mask, nr_pages);
1509 return ERR_PTR(-ENOMEM);
1511 offset = offset_in_page(kaddr);
1512 for (i = 0; i < nr_pages; i++) {
1513 unsigned int bytes = PAGE_SIZE - offset;
1521 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1523 /* we don't support partial mappings */
1525 return ERR_PTR(-EINVAL);
1533 bio->bi_end_io = bio_map_kern_endio;
1536 EXPORT_SYMBOL(bio_map_kern);
1538 static void bio_copy_kern_endio(struct bio *bio)
1540 bio_free_pages(bio);
1544 static void bio_copy_kern_endio_read(struct bio *bio)
1546 char *p = bio->bi_private;
1547 struct bio_vec *bvec;
1548 struct bvec_iter_all iter_all;
1550 bio_for_each_segment_all(bvec, bio, iter_all) {
1551 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1555 bio_copy_kern_endio(bio);
1559 * bio_copy_kern - copy kernel address into bio
1560 * @q: the struct request_queue for the bio
1561 * @data: pointer to buffer to copy
1562 * @len: length in bytes
1563 * @gfp_mask: allocation flags for bio and page allocation
1564 * @reading: data direction is READ
1566 * copy the kernel address into a bio suitable for io to a block
1567 * device. Returns an error pointer in case of error.
1569 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1570 gfp_t gfp_mask, int reading)
1572 unsigned long kaddr = (unsigned long)data;
1573 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1574 unsigned long start = kaddr >> PAGE_SHIFT;
1583 return ERR_PTR(-EINVAL);
1585 nr_pages = end - start;
1586 bio = bio_kmalloc(gfp_mask, nr_pages);
1588 return ERR_PTR(-ENOMEM);
1592 unsigned int bytes = PAGE_SIZE;
1597 page = alloc_page(q->bounce_gfp | gfp_mask);
1602 memcpy(page_address(page), p, bytes);
1604 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1612 bio->bi_end_io = bio_copy_kern_endio_read;
1613 bio->bi_private = data;
1615 bio->bi_end_io = bio_copy_kern_endio;
1621 bio_free_pages(bio);
1623 return ERR_PTR(-ENOMEM);
1627 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1628 * for performing direct-IO in BIOs.
1630 * The problem is that we cannot run set_page_dirty() from interrupt context
1631 * because the required locks are not interrupt-safe. So what we can do is to
1632 * mark the pages dirty _before_ performing IO. And in interrupt context,
1633 * check that the pages are still dirty. If so, fine. If not, redirty them
1634 * in process context.
1636 * We special-case compound pages here: normally this means reads into hugetlb
1637 * pages. The logic in here doesn't really work right for compound pages
1638 * because the VM does not uniformly chase down the head page in all cases.
1639 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1640 * handle them at all. So we skip compound pages here at an early stage.
1642 * Note that this code is very hard to test under normal circumstances because
1643 * direct-io pins the pages with get_user_pages(). This makes
1644 * is_page_cache_freeable return false, and the VM will not clean the pages.
1645 * But other code (eg, flusher threads) could clean the pages if they are mapped
1648 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1649 * deferred bio dirtying paths.
1653 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1655 void bio_set_pages_dirty(struct bio *bio)
1657 struct bio_vec *bvec;
1658 struct bvec_iter_all iter_all;
1660 bio_for_each_segment_all(bvec, bio, iter_all) {
1661 if (!PageCompound(bvec->bv_page))
1662 set_page_dirty_lock(bvec->bv_page);
1667 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1668 * If they are, then fine. If, however, some pages are clean then they must
1669 * have been written out during the direct-IO read. So we take another ref on
1670 * the BIO and re-dirty the pages in process context.
1672 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1673 * here on. It will run one put_page() against each page and will run one
1674 * bio_put() against the BIO.
1677 static void bio_dirty_fn(struct work_struct *work);
1679 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1680 static DEFINE_SPINLOCK(bio_dirty_lock);
1681 static struct bio *bio_dirty_list;
1684 * This runs in process context
1686 static void bio_dirty_fn(struct work_struct *work)
1688 struct bio *bio, *next;
1690 spin_lock_irq(&bio_dirty_lock);
1691 next = bio_dirty_list;
1692 bio_dirty_list = NULL;
1693 spin_unlock_irq(&bio_dirty_lock);
1695 while ((bio = next) != NULL) {
1696 next = bio->bi_private;
1698 bio_set_pages_dirty(bio);
1699 if (!bio_flagged(bio, BIO_NO_PAGE_REF))
1700 bio_release_pages(bio);
1705 void bio_check_pages_dirty(struct bio *bio)
1707 struct bio_vec *bvec;
1708 unsigned long flags;
1709 struct bvec_iter_all iter_all;
1711 bio_for_each_segment_all(bvec, bio, iter_all) {
1712 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1716 if (!bio_flagged(bio, BIO_NO_PAGE_REF))
1717 bio_release_pages(bio);
1721 spin_lock_irqsave(&bio_dirty_lock, flags);
1722 bio->bi_private = bio_dirty_list;
1723 bio_dirty_list = bio;
1724 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1725 schedule_work(&bio_dirty_work);
1728 void update_io_ticks(struct hd_struct *part, unsigned long now)
1730 unsigned long stamp;
1732 stamp = READ_ONCE(part->stamp);
1733 if (unlikely(stamp != now)) {
1734 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1735 __part_stat_add(part, io_ticks, 1);
1739 part = &part_to_disk(part)->part0;
1744 void generic_start_io_acct(struct request_queue *q, int op,
1745 unsigned long sectors, struct hd_struct *part)
1747 const int sgrp = op_stat_group(op);
1751 update_io_ticks(part, jiffies);
1752 part_stat_inc(part, ios[sgrp]);
1753 part_stat_add(part, sectors[sgrp], sectors);
1754 part_inc_in_flight(q, part, op_is_write(op));
1758 EXPORT_SYMBOL(generic_start_io_acct);
1760 void generic_end_io_acct(struct request_queue *q, int req_op,
1761 struct hd_struct *part, unsigned long start_time)
1763 unsigned long now = jiffies;
1764 unsigned long duration = now - start_time;
1765 const int sgrp = op_stat_group(req_op);
1769 update_io_ticks(part, now);
1770 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1771 part_stat_add(part, time_in_queue, duration);
1772 part_dec_in_flight(q, part, op_is_write(req_op));
1776 EXPORT_SYMBOL(generic_end_io_acct);
1778 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1779 void bio_flush_dcache_pages(struct bio *bi)
1781 struct bio_vec bvec;
1782 struct bvec_iter iter;
1784 bio_for_each_segment(bvec, bi, iter)
1785 flush_dcache_page(bvec.bv_page);
1787 EXPORT_SYMBOL(bio_flush_dcache_pages);
1790 static inline bool bio_remaining_done(struct bio *bio)
1793 * If we're not chaining, then ->__bi_remaining is always 1 and
1794 * we always end io on the first invocation.
1796 if (!bio_flagged(bio, BIO_CHAIN))
1799 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1801 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1802 bio_clear_flag(bio, BIO_CHAIN);
1810 * bio_endio - end I/O on a bio
1814 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1815 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1816 * bio unless they own it and thus know that it has an end_io function.
1818 * bio_endio() can be called several times on a bio that has been chained
1819 * using bio_chain(). The ->bi_end_io() function will only be called the
1820 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1821 * generated if BIO_TRACE_COMPLETION is set.
1823 void bio_endio(struct bio *bio)
1826 if (!bio_remaining_done(bio))
1828 if (!bio_integrity_endio(bio))
1832 rq_qos_done_bio(bio->bi_disk->queue, bio);
1835 * Need to have a real endio function for chained bios, otherwise
1836 * various corner cases will break (like stacking block devices that
1837 * save/restore bi_end_io) - however, we want to avoid unbounded
1838 * recursion and blowing the stack. Tail call optimization would
1839 * handle this, but compiling with frame pointers also disables
1840 * gcc's sibling call optimization.
1842 if (bio->bi_end_io == bio_chain_endio) {
1843 bio = __bio_chain_endio(bio);
1847 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1848 trace_block_bio_complete(bio->bi_disk->queue, bio,
1849 blk_status_to_errno(bio->bi_status));
1850 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1853 blk_throtl_bio_endio(bio);
1854 /* release cgroup info */
1857 bio->bi_end_io(bio);
1859 EXPORT_SYMBOL(bio_endio);
1862 * bio_split - split a bio
1863 * @bio: bio to split
1864 * @sectors: number of sectors to split from the front of @bio
1866 * @bs: bio set to allocate from
1868 * Allocates and returns a new bio which represents @sectors from the start of
1869 * @bio, and updates @bio to represent the remaining sectors.
1871 * Unless this is a discard request the newly allocated bio will point
1872 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1873 * @bio is not freed before the split.
1875 struct bio *bio_split(struct bio *bio, int sectors,
1876 gfp_t gfp, struct bio_set *bs)
1880 BUG_ON(sectors <= 0);
1881 BUG_ON(sectors >= bio_sectors(bio));
1883 split = bio_clone_fast(bio, gfp, bs);
1887 split->bi_iter.bi_size = sectors << 9;
1889 if (bio_integrity(split))
1890 bio_integrity_trim(split);
1892 bio_advance(bio, split->bi_iter.bi_size);
1894 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1895 bio_set_flag(split, BIO_TRACE_COMPLETION);
1899 EXPORT_SYMBOL(bio_split);
1902 * bio_trim - trim a bio
1904 * @offset: number of sectors to trim from the front of @bio
1905 * @size: size we want to trim @bio to, in sectors
1907 void bio_trim(struct bio *bio, int offset, int size)
1909 /* 'bio' is a cloned bio which we need to trim to match
1910 * the given offset and size.
1914 if (offset == 0 && size == bio->bi_iter.bi_size)
1917 bio_clear_flag(bio, BIO_SEG_VALID);
1919 bio_advance(bio, offset << 9);
1921 bio->bi_iter.bi_size = size;
1923 if (bio_integrity(bio))
1924 bio_integrity_trim(bio);
1927 EXPORT_SYMBOL_GPL(bio_trim);
1930 * create memory pools for biovec's in a bio_set.
1931 * use the global biovec slabs created for general use.
1933 int biovec_init_pool(mempool_t *pool, int pool_entries)
1935 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1937 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1941 * bioset_exit - exit a bioset initialized with bioset_init()
1943 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1946 void bioset_exit(struct bio_set *bs)
1948 if (bs->rescue_workqueue)
1949 destroy_workqueue(bs->rescue_workqueue);
1950 bs->rescue_workqueue = NULL;
1952 mempool_exit(&bs->bio_pool);
1953 mempool_exit(&bs->bvec_pool);
1955 bioset_integrity_free(bs);
1958 bs->bio_slab = NULL;
1960 EXPORT_SYMBOL(bioset_exit);
1963 * bioset_init - Initialize a bio_set
1964 * @bs: pool to initialize
1965 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1966 * @front_pad: Number of bytes to allocate in front of the returned bio
1967 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1968 * and %BIOSET_NEED_RESCUER
1971 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1972 * to ask for a number of bytes to be allocated in front of the bio.
1973 * Front pad allocation is useful for embedding the bio inside
1974 * another structure, to avoid allocating extra data to go with the bio.
1975 * Note that the bio must be embedded at the END of that structure always,
1976 * or things will break badly.
1977 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1978 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1979 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1980 * dispatch queued requests when the mempool runs out of space.
1983 int bioset_init(struct bio_set *bs,
1984 unsigned int pool_size,
1985 unsigned int front_pad,
1988 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1990 bs->front_pad = front_pad;
1992 spin_lock_init(&bs->rescue_lock);
1993 bio_list_init(&bs->rescue_list);
1994 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1996 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
2000 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
2003 if ((flags & BIOSET_NEED_BVECS) &&
2004 biovec_init_pool(&bs->bvec_pool, pool_size))
2007 if (!(flags & BIOSET_NEED_RESCUER))
2010 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2011 if (!bs->rescue_workqueue)
2019 EXPORT_SYMBOL(bioset_init);
2022 * Initialize and setup a new bio_set, based on the settings from
2025 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
2030 if (src->bvec_pool.min_nr)
2031 flags |= BIOSET_NEED_BVECS;
2032 if (src->rescue_workqueue)
2033 flags |= BIOSET_NEED_RESCUER;
2035 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
2037 EXPORT_SYMBOL(bioset_init_from_src);
2039 #ifdef CONFIG_BLK_CGROUP
2042 * bio_disassociate_blkg - puts back the blkg reference if associated
2045 * Helper to disassociate the blkg from @bio if a blkg is associated.
2047 void bio_disassociate_blkg(struct bio *bio)
2050 blkg_put(bio->bi_blkg);
2051 bio->bi_blkg = NULL;
2054 EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
2057 * __bio_associate_blkg - associate a bio with the a blkg
2059 * @blkg: the blkg to associate
2061 * This tries to associate @bio with the specified @blkg. Association failure
2062 * is handled by walking up the blkg tree. Therefore, the blkg associated can
2063 * be anything between @blkg and the root_blkg. This situation only happens
2064 * when a cgroup is dying and then the remaining bios will spill to the closest
2067 * A reference will be taken on the @blkg and will be released when @bio is
2070 static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2072 bio_disassociate_blkg(bio);
2074 bio->bi_blkg = blkg_tryget_closest(blkg);
2078 * bio_associate_blkg_from_css - associate a bio with a specified css
2082 * Associate @bio with the blkg found by combining the css's blkg and the
2083 * request_queue of the @bio. This falls back to the queue's root_blkg if
2084 * the association fails with the css.
2086 void bio_associate_blkg_from_css(struct bio *bio,
2087 struct cgroup_subsys_state *css)
2089 struct request_queue *q = bio->bi_disk->queue;
2090 struct blkcg_gq *blkg;
2094 if (!css || !css->parent)
2095 blkg = q->root_blkg;
2097 blkg = blkg_lookup_create(css_to_blkcg(css), q);
2099 __bio_associate_blkg(bio, blkg);
2103 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2107 * bio_associate_blkg_from_page - associate a bio with the page's blkg
2109 * @page: the page to lookup the blkcg from
2111 * Associate @bio with the blkg from @page's owning memcg and the respective
2112 * request_queue. If cgroup_e_css returns %NULL, fall back to the queue's
2115 void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
2117 struct cgroup_subsys_state *css;
2119 if (!page->mem_cgroup)
2124 css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2125 bio_associate_blkg_from_css(bio, css);
2129 #endif /* CONFIG_MEMCG */
2132 * bio_associate_blkg - associate a bio with a blkg
2135 * Associate @bio with the blkg found from the bio's css and request_queue.
2136 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2137 * already associated, the css is reused and association redone as the
2138 * request_queue may have changed.
2140 void bio_associate_blkg(struct bio *bio)
2142 struct cgroup_subsys_state *css;
2147 css = &bio_blkcg(bio)->css;
2151 bio_associate_blkg_from_css(bio, css);
2155 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2158 * bio_clone_blkg_association - clone blkg association from src to dst bio
2159 * @dst: destination bio
2162 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2167 __bio_associate_blkg(dst, src->bi_blkg);
2171 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2172 #endif /* CONFIG_BLK_CGROUP */
2174 static void __init biovec_init_slabs(void)
2178 for (i = 0; i < BVEC_POOL_NR; i++) {
2180 struct biovec_slab *bvs = bvec_slabs + i;
2182 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2187 size = bvs->nr_vecs * sizeof(struct bio_vec);
2188 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2189 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2193 static int __init init_bio(void)
2197 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2200 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
2203 panic("bio: can't allocate bios\n");
2205 bio_integrity_init();
2206 biovec_init_slabs();
2208 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
2209 panic("bio: can't allocate bios\n");
2211 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2212 panic("bio: can't create integrity pool\n");
2216 subsys_initcall(init_bio);