1 // SPDX-License-Identifier: GPL-2.0
3 * USB4 specific functionality
5 * Copyright (C) 2019, Intel Corporation
10 #include <linux/delay.h>
11 #include <linux/ktime.h>
16 #define USB4_DATA_DWORDS 16
17 #define USB4_DATA_RETRIES 3
20 USB4_SWITCH_OP_QUERY_DP_RESOURCE = 0x10,
21 USB4_SWITCH_OP_ALLOC_DP_RESOURCE = 0x11,
22 USB4_SWITCH_OP_DEALLOC_DP_RESOURCE = 0x12,
23 USB4_SWITCH_OP_NVM_WRITE = 0x20,
24 USB4_SWITCH_OP_NVM_AUTH = 0x21,
25 USB4_SWITCH_OP_NVM_READ = 0x22,
26 USB4_SWITCH_OP_NVM_SET_OFFSET = 0x23,
27 USB4_SWITCH_OP_DROM_READ = 0x24,
28 USB4_SWITCH_OP_NVM_SECTOR_SIZE = 0x25,
32 USB4_SB_TARGET_ROUTER,
33 USB4_SB_TARGET_PARTNER,
34 USB4_SB_TARGET_RETIMER,
37 #define USB4_NVM_READ_OFFSET_MASK GENMASK(23, 2)
38 #define USB4_NVM_READ_OFFSET_SHIFT 2
39 #define USB4_NVM_READ_LENGTH_MASK GENMASK(27, 24)
40 #define USB4_NVM_READ_LENGTH_SHIFT 24
42 #define USB4_NVM_SET_OFFSET_MASK USB4_NVM_READ_OFFSET_MASK
43 #define USB4_NVM_SET_OFFSET_SHIFT USB4_NVM_READ_OFFSET_SHIFT
45 #define USB4_DROM_ADDRESS_MASK GENMASK(14, 2)
46 #define USB4_DROM_ADDRESS_SHIFT 2
47 #define USB4_DROM_SIZE_MASK GENMASK(19, 15)
48 #define USB4_DROM_SIZE_SHIFT 15
50 #define USB4_NVM_SECTOR_SIZE_MASK GENMASK(23, 0)
52 typedef int (*read_block_fn)(void *, unsigned int, void *, size_t);
53 typedef int (*write_block_fn)(void *, const void *, size_t);
55 static int usb4_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
56 u32 value, int timeout_msec)
58 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
64 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
68 if ((val & bit) == value)
71 usleep_range(50, 100);
72 } while (ktime_before(ktime_get(), timeout));
77 static int usb4_switch_op_read_data(struct tb_switch *sw, void *data,
80 if (dwords > USB4_DATA_DWORDS)
83 return tb_sw_read(sw, data, TB_CFG_SWITCH, ROUTER_CS_9, dwords);
86 static int usb4_switch_op_write_data(struct tb_switch *sw, const void *data,
89 if (dwords > USB4_DATA_DWORDS)
92 return tb_sw_write(sw, data, TB_CFG_SWITCH, ROUTER_CS_9, dwords);
95 static int usb4_switch_op_read_metadata(struct tb_switch *sw, u32 *metadata)
97 return tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
100 static int usb4_switch_op_write_metadata(struct tb_switch *sw, u32 metadata)
102 return tb_sw_write(sw, &metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
105 static int usb4_do_read_data(u16 address, void *buf, size_t size,
106 read_block_fn read_block, void *read_block_data)
108 unsigned int retries = USB4_DATA_RETRIES;
111 offset = address & 3;
112 address = address & ~3;
115 size_t nbytes = min_t(size_t, size, USB4_DATA_DWORDS * 4);
116 unsigned int dwaddress, dwords;
117 u8 data[USB4_DATA_DWORDS * 4];
120 dwaddress = address / 4;
121 dwords = ALIGN(nbytes, 4) / 4;
123 ret = read_block(read_block_data, dwaddress, data, dwords);
125 if (ret != -ENODEV && retries--)
130 memcpy(buf, data + offset, nbytes);
140 static int usb4_do_write_data(unsigned int address, const void *buf, size_t size,
141 write_block_fn write_next_block, void *write_block_data)
143 unsigned int retries = USB4_DATA_RETRIES;
146 offset = address & 3;
147 address = address & ~3;
150 u32 nbytes = min_t(u32, size, USB4_DATA_DWORDS * 4);
151 u8 data[USB4_DATA_DWORDS * 4];
154 memcpy(data + offset, buf, nbytes);
156 ret = write_next_block(write_block_data, data, nbytes / 4);
158 if (ret == -ETIMEDOUT) {
174 static int usb4_switch_op(struct tb_switch *sw, u16 opcode, u8 *status)
179 val = opcode | ROUTER_CS_26_OV;
180 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
184 ret = usb4_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500);
188 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
192 if (val & ROUTER_CS_26_ONS)
195 *status = (val & ROUTER_CS_26_STATUS_MASK) >> ROUTER_CS_26_STATUS_SHIFT;
199 static void usb4_switch_check_wakes(struct tb_switch *sw)
201 struct tb_port *port;
205 if (!device_may_wakeup(&sw->dev))
209 if (tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1))
212 tb_sw_dbg(sw, "PCIe wake: %s, USB3 wake: %s\n",
213 (val & ROUTER_CS_6_WOPS) ? "yes" : "no",
214 (val & ROUTER_CS_6_WOUS) ? "yes" : "no");
216 wakeup = val & (ROUTER_CS_6_WOPS | ROUTER_CS_6_WOUS);
219 /* Check for any connected downstream ports for USB4 wake */
220 tb_switch_for_each_port(sw, port) {
221 if (!tb_port_has_remote(port))
224 if (tb_port_read(port, &val, TB_CFG_PORT,
225 port->cap_usb4 + PORT_CS_18, 1))
228 tb_port_dbg(port, "USB4 wake: %s\n",
229 (val & PORT_CS_18_WOU4S) ? "yes" : "no");
231 if (val & PORT_CS_18_WOU4S)
236 pm_wakeup_event(&sw->dev, 0);
239 static bool link_is_usb4(struct tb_port *port)
246 if (tb_port_read(port, &val, TB_CFG_PORT,
247 port->cap_usb4 + PORT_CS_18, 1))
250 return !(val & PORT_CS_18_TCM);
254 * usb4_switch_setup() - Additional setup for USB4 device
255 * @sw: USB4 router to setup
257 * USB4 routers need additional settings in order to enable all the
258 * tunneling. This function enables USB and PCIe tunneling if it can be
259 * enabled (e.g the parent switch also supports them). If USB tunneling
260 * is not available for some reason (like that there is Thunderbolt 3
261 * switch upstream) then the internal xHCI controller is enabled
264 int usb4_switch_setup(struct tb_switch *sw)
266 struct tb_port *downstream_port;
267 struct tb_switch *parent;
272 usb4_switch_check_wakes(sw);
277 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1);
281 parent = tb_switch_parent(sw);
282 downstream_port = tb_port_at(tb_route(sw), parent);
283 sw->link_usb4 = link_is_usb4(downstream_port);
284 tb_sw_dbg(sw, "link: %s\n", sw->link_usb4 ? "USB4" : "TBT3");
286 xhci = val & ROUTER_CS_6_HCI;
287 tbt3 = !(val & ROUTER_CS_6_TNS);
289 tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n",
290 tbt3 ? "yes" : "no", xhci ? "yes" : "no");
292 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
296 if (sw->link_usb4 && tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) {
297 val |= ROUTER_CS_5_UTO;
301 /* Only enable PCIe tunneling if the parent router supports it */
302 if (tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) {
303 val |= ROUTER_CS_5_PTO;
305 * xHCI can be enabled if PCIe tunneling is supported
306 * and the parent does not have any USB3 dowstream
307 * adapters (so we cannot do USB 3.x tunneling).
310 val |= ROUTER_CS_5_HCO;
313 /* TBT3 supported by the CM */
314 val |= ROUTER_CS_5_C3S;
315 /* Tunneling configuration is ready now */
316 val |= ROUTER_CS_5_CV;
318 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
322 return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR,
327 * usb4_switch_read_uid() - Read UID from USB4 router
329 * @uid: UID is stored here
331 * Reads 64-bit UID from USB4 router config space.
333 int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid)
335 return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2);
338 static int usb4_switch_drom_read_block(void *data,
339 unsigned int dwaddress, void *buf,
342 struct tb_switch *sw = data;
347 metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK;
348 metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) &
349 USB4_DROM_ADDRESS_MASK;
351 ret = usb4_switch_op_write_metadata(sw, metadata);
355 ret = usb4_switch_op(sw, USB4_SWITCH_OP_DROM_READ, &status);
362 return usb4_switch_op_read_data(sw, buf, dwords);
366 * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM
368 * @address: Byte address inside DROM to start reading
369 * @buf: Buffer where the DROM content is stored
370 * @size: Number of bytes to read from DROM
372 * Uses USB4 router operations to read router DROM. For devices this
373 * should always work but for hosts it may return %-EOPNOTSUPP in which
374 * case the host router does not have DROM.
376 int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf,
379 return usb4_do_read_data(address, buf, size,
380 usb4_switch_drom_read_block, sw);
384 * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding
387 * Checks whether conditions are met so that lane bonding can be
388 * established with the upstream router. Call only for device routers.
390 bool usb4_switch_lane_bonding_possible(struct tb_switch *sw)
396 up = tb_upstream_port(sw);
397 ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1);
401 return !!(val & PORT_CS_18_BE);
405 * usb4_switch_set_wake() - Enabled/disable wake
407 * @flags: Wakeup flags (%0 to disable)
409 * Enables/disables router to wake up from sleep.
411 int usb4_switch_set_wake(struct tb_switch *sw, unsigned int flags)
413 struct tb_port *port;
414 u64 route = tb_route(sw);
419 * Enable wakes coming from all USB4 downstream ports (from
420 * child routers). For device routers do this also for the
421 * upstream USB4 port.
423 tb_switch_for_each_port(sw, port) {
424 if (!route && tb_is_upstream_port(port))
427 ret = tb_port_read(port, &val, TB_CFG_PORT,
428 port->cap_usb4 + PORT_CS_19, 1);
432 val &= ~(PORT_CS_19_WOC | PORT_CS_19_WOD | PORT_CS_19_WOU4);
434 if (flags & TB_WAKE_ON_CONNECT)
435 val |= PORT_CS_19_WOC;
436 if (flags & TB_WAKE_ON_DISCONNECT)
437 val |= PORT_CS_19_WOD;
438 if (flags & TB_WAKE_ON_USB4)
439 val |= PORT_CS_19_WOU4;
441 ret = tb_port_write(port, &val, TB_CFG_PORT,
442 port->cap_usb4 + PORT_CS_19, 1);
448 * Enable wakes from PCIe and USB 3.x on this router. Only
449 * needed for device routers.
452 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
456 val &= ~(ROUTER_CS_5_WOP | ROUTER_CS_5_WOU);
457 if (flags & TB_WAKE_ON_USB3)
458 val |= ROUTER_CS_5_WOU;
459 if (flags & TB_WAKE_ON_PCIE)
460 val |= ROUTER_CS_5_WOP;
462 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
471 * usb4_switch_set_sleep() - Prepare the router to enter sleep
474 * Sets sleep bit for the router. Returns when the router sleep ready
475 * bit has been asserted.
477 int usb4_switch_set_sleep(struct tb_switch *sw)
482 /* Set sleep bit and wait for sleep ready to be asserted */
483 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
487 val |= ROUTER_CS_5_SLP;
489 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
493 return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR,
494 ROUTER_CS_6_SLPR, 500);
498 * usb4_switch_nvm_sector_size() - Return router NVM sector size
501 * If the router supports NVM operations this function returns the NVM
502 * sector size in bytes. If NVM operations are not supported returns
505 int usb4_switch_nvm_sector_size(struct tb_switch *sw)
511 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &status);
516 return status == 0x2 ? -EOPNOTSUPP : -EIO;
518 ret = usb4_switch_op_read_metadata(sw, &metadata);
522 return metadata & USB4_NVM_SECTOR_SIZE_MASK;
525 static int usb4_switch_nvm_read_block(void *data,
526 unsigned int dwaddress, void *buf, size_t dwords)
528 struct tb_switch *sw = data;
533 metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) &
534 USB4_NVM_READ_LENGTH_MASK;
535 metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) &
536 USB4_NVM_READ_OFFSET_MASK;
538 ret = usb4_switch_op_write_metadata(sw, metadata);
542 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_READ, &status);
549 return usb4_switch_op_read_data(sw, buf, dwords);
553 * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM
555 * @address: Starting address in bytes
556 * @buf: Read data is placed here
557 * @size: How many bytes to read
559 * Reads NVM contents of the router. If NVM is not supported returns
562 int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
565 return usb4_do_read_data(address, buf, size,
566 usb4_switch_nvm_read_block, sw);
569 static int usb4_switch_nvm_set_offset(struct tb_switch *sw,
570 unsigned int address)
572 u32 metadata, dwaddress;
576 dwaddress = address / 4;
577 metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
578 USB4_NVM_SET_OFFSET_MASK;
580 ret = usb4_switch_op_write_metadata(sw, metadata);
584 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &status);
588 return status ? -EIO : 0;
591 static int usb4_switch_nvm_write_next_block(void *data, const void *buf,
594 struct tb_switch *sw = data;
598 ret = usb4_switch_op_write_data(sw, buf, dwords);
602 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_WRITE, &status);
606 return status ? -EIO : 0;
610 * usb4_switch_nvm_write() - Write to the router NVM
612 * @address: Start address where to write in bytes
613 * @buf: Pointer to the data to write
614 * @size: Size of @buf in bytes
616 * Writes @buf to the router NVM using USB4 router operations. If NVM
617 * write is not supported returns %-EOPNOTSUPP.
619 int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address,
620 const void *buf, size_t size)
624 ret = usb4_switch_nvm_set_offset(sw, address);
628 return usb4_do_write_data(address, buf, size,
629 usb4_switch_nvm_write_next_block, sw);
633 * usb4_switch_nvm_authenticate() - Authenticate new NVM
636 * After the new NVM has been written via usb4_switch_nvm_write(), this
637 * function triggers NVM authentication process. If the authentication
638 * is successful the router is power cycled and the new NVM starts
639 * running. In case of failure returns negative errno.
641 int usb4_switch_nvm_authenticate(struct tb_switch *sw)
646 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, &status);
652 tb_sw_dbg(sw, "NVM authentication successful\n");
666 * usb4_switch_query_dp_resource() - Query availability of DP IN resource
670 * For DP tunneling this function can be used to query availability of
671 * DP IN resource. Returns true if the resource is available for DP
672 * tunneling, false otherwise.
674 bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
679 ret = usb4_switch_op_write_metadata(sw, in->port);
683 ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &status);
685 * If DP resource allocation is not supported assume it is
688 if (ret == -EOPNOTSUPP)
697 * usb4_switch_alloc_dp_resource() - Allocate DP IN resource
701 * Allocates DP IN resource for DP tunneling using USB4 router
702 * operations. If the resource was allocated returns %0. Otherwise
703 * returns negative errno, in particular %-EBUSY if the resource is
706 int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
711 ret = usb4_switch_op_write_metadata(sw, in->port);
715 ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &status);
716 if (ret == -EOPNOTSUPP)
721 return status ? -EBUSY : 0;
725 * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource
729 * Releases the previously allocated DP IN resource.
731 int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
736 ret = usb4_switch_op_write_metadata(sw, in->port);
740 ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &status);
741 if (ret == -EOPNOTSUPP)
746 return status ? -EIO : 0;
749 static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port)
754 /* Assume port is primary */
755 tb_switch_for_each_port(sw, p) {
756 if (!tb_port_is_null(p))
758 if (tb_is_upstream_port(p))
771 * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter
775 * USB4 routers have direct mapping between USB4 ports and PCIe
776 * downstream adapters where the PCIe topology is extended. This
777 * function returns the corresponding downstream PCIe adapter or %NULL
778 * if no such mapping was possible.
780 struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw,
781 const struct tb_port *port)
783 int usb4_idx = usb4_port_idx(sw, port);
787 /* Find PCIe down port matching usb4_port */
788 tb_switch_for_each_port(sw, p) {
789 if (!tb_port_is_pcie_down(p))
792 if (pcie_idx == usb4_idx)
802 * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter
806 * USB4 routers have direct mapping between USB4 ports and USB 3.x
807 * downstream adapters where the USB 3.x topology is extended. This
808 * function returns the corresponding downstream USB 3.x adapter or
809 * %NULL if no such mapping was possible.
811 struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw,
812 const struct tb_port *port)
814 int usb4_idx = usb4_port_idx(sw, port);
818 /* Find USB3 down port matching usb4_port */
819 tb_switch_for_each_port(sw, p) {
820 if (!tb_port_is_usb3_down(p))
823 if (usb_idx == usb4_idx)
833 * usb4_port_unlock() - Unlock USB4 downstream port
834 * @port: USB4 port to unlock
836 * Unlocks USB4 downstream port so that the connection manager can
837 * access the router below this port.
839 int usb4_port_unlock(struct tb_port *port)
844 ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
848 val &= ~ADP_CS_4_LCK;
849 return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
852 static int usb4_port_set_configured(struct tb_port *port, bool configured)
860 ret = tb_port_read(port, &val, TB_CFG_PORT,
861 port->cap_usb4 + PORT_CS_19, 1);
866 val |= PORT_CS_19_PC;
868 val &= ~PORT_CS_19_PC;
870 return tb_port_write(port, &val, TB_CFG_PORT,
871 port->cap_usb4 + PORT_CS_19, 1);
875 * usb4_port_configure() - Set USB4 port configured
878 * Sets the USB4 link to be configured for power management purposes.
880 int usb4_port_configure(struct tb_port *port)
882 return usb4_port_set_configured(port, true);
886 * usb4_port_unconfigure() - Set USB4 port unconfigured
889 * Sets the USB4 link to be unconfigured for power management purposes.
891 void usb4_port_unconfigure(struct tb_port *port)
893 usb4_port_set_configured(port, false);
896 static int usb4_set_xdomain_configured(struct tb_port *port, bool configured)
904 ret = tb_port_read(port, &val, TB_CFG_PORT,
905 port->cap_usb4 + PORT_CS_19, 1);
910 val |= PORT_CS_19_PID;
912 val &= ~PORT_CS_19_PID;
914 return tb_port_write(port, &val, TB_CFG_PORT,
915 port->cap_usb4 + PORT_CS_19, 1);
919 * usb4_port_configure_xdomain() - Configure port for XDomain
920 * @port: USB4 port connected to another host
922 * Marks the USB4 port as being connected to another host. Returns %0 in
923 * success and negative errno in failure.
925 int usb4_port_configure_xdomain(struct tb_port *port)
927 return usb4_set_xdomain_configured(port, true);
931 * usb4_port_unconfigure_xdomain() - Unconfigure port for XDomain
932 * @port: USB4 port that was connected to another host
934 * Clears USB4 port from being marked as XDomain.
936 void usb4_port_unconfigure_xdomain(struct tb_port *port)
938 usb4_set_xdomain_configured(port, false);
941 static int usb4_port_wait_for_bit(struct tb_port *port, u32 offset, u32 bit,
942 u32 value, int timeout_msec)
944 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
950 ret = tb_port_read(port, &val, TB_CFG_PORT, offset, 1);
954 if ((val & bit) == value)
957 usleep_range(50, 100);
958 } while (ktime_before(ktime_get(), timeout));
963 static int usb4_port_read_data(struct tb_port *port, void *data, size_t dwords)
965 if (dwords > USB4_DATA_DWORDS)
968 return tb_port_read(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
972 static int usb4_port_write_data(struct tb_port *port, const void *data,
975 if (dwords > USB4_DATA_DWORDS)
978 return tb_port_write(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
982 static int usb4_port_sb_read(struct tb_port *port, enum usb4_sb_target target,
983 u8 index, u8 reg, void *buf, u8 size)
985 size_t dwords = DIV_ROUND_UP(size, 4);
993 val |= size << PORT_CS_1_LENGTH_SHIFT;
994 val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
995 if (target == USB4_SB_TARGET_RETIMER)
996 val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
997 val |= PORT_CS_1_PND;
999 ret = tb_port_write(port, &val, TB_CFG_PORT,
1000 port->cap_usb4 + PORT_CS_1, 1);
1004 ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1005 PORT_CS_1_PND, 0, 500);
1009 ret = tb_port_read(port, &val, TB_CFG_PORT,
1010 port->cap_usb4 + PORT_CS_1, 1);
1014 if (val & PORT_CS_1_NR)
1016 if (val & PORT_CS_1_RC)
1019 return buf ? usb4_port_read_data(port, buf, dwords) : 0;
1022 static int usb4_port_sb_write(struct tb_port *port, enum usb4_sb_target target,
1023 u8 index, u8 reg, const void *buf, u8 size)
1025 size_t dwords = DIV_ROUND_UP(size, 4);
1029 if (!port->cap_usb4)
1033 ret = usb4_port_write_data(port, buf, dwords);
1039 val |= size << PORT_CS_1_LENGTH_SHIFT;
1040 val |= PORT_CS_1_WNR_WRITE;
1041 val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1042 if (target == USB4_SB_TARGET_RETIMER)
1043 val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1044 val |= PORT_CS_1_PND;
1046 ret = tb_port_write(port, &val, TB_CFG_PORT,
1047 port->cap_usb4 + PORT_CS_1, 1);
1051 ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1052 PORT_CS_1_PND, 0, 500);
1056 ret = tb_port_read(port, &val, TB_CFG_PORT,
1057 port->cap_usb4 + PORT_CS_1, 1);
1061 if (val & PORT_CS_1_NR)
1063 if (val & PORT_CS_1_RC)
1069 static int usb4_port_sb_op(struct tb_port *port, enum usb4_sb_target target,
1070 u8 index, enum usb4_sb_opcode opcode, int timeout_msec)
1077 ret = usb4_port_sb_write(port, target, index, USB4_SB_OPCODE, &val,
1082 timeout = ktime_add_ms(ktime_get(), timeout_msec);
1086 ret = usb4_port_sb_read(port, target, index, USB4_SB_OPCODE,
1095 case USB4_SB_OPCODE_ERR:
1098 case USB4_SB_OPCODE_ONS:
1106 } while (ktime_before(ktime_get(), timeout));
1112 * usb4_port_enumerate_retimers() - Send RT broadcast transaction
1115 * This forces the USB4 port to send broadcast RT transaction which
1116 * makes the retimers on the link to assign index to themselves. Returns
1117 * %0 in case of success and negative errno if there was an error.
1119 int usb4_port_enumerate_retimers(struct tb_port *port)
1123 val = USB4_SB_OPCODE_ENUMERATE_RETIMERS;
1124 return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1125 USB4_SB_OPCODE, &val, sizeof(val));
1128 static inline int usb4_port_retimer_op(struct tb_port *port, u8 index,
1129 enum usb4_sb_opcode opcode,
1132 return usb4_port_sb_op(port, USB4_SB_TARGET_RETIMER, index, opcode,
1137 * usb4_port_retimer_read() - Read from retimer sideband registers
1139 * @index: Retimer index
1140 * @reg: Sideband register to read
1141 * @buf: Data from @reg is stored here
1142 * @size: Number of bytes to read
1144 * Function reads retimer sideband registers starting from @reg. The
1145 * retimer is connected to @port at @index. Returns %0 in case of
1146 * success, and read data is copied to @buf. If there is no retimer
1147 * present at given @index returns %-ENODEV. In any other failure
1148 * returns negative errno.
1150 int usb4_port_retimer_read(struct tb_port *port, u8 index, u8 reg, void *buf,
1153 return usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1158 * usb4_port_retimer_write() - Write to retimer sideband registers
1160 * @index: Retimer index
1161 * @reg: Sideband register to write
1162 * @buf: Data that is written starting from @reg
1163 * @size: Number of bytes to write
1165 * Writes retimer sideband registers starting from @reg. The retimer is
1166 * connected to @port at @index. Returns %0 in case of success. If there
1167 * is no retimer present at given @index returns %-ENODEV. In any other
1168 * failure returns negative errno.
1170 int usb4_port_retimer_write(struct tb_port *port, u8 index, u8 reg,
1171 const void *buf, u8 size)
1173 return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1178 * usb4_port_retimer_is_last() - Is the retimer last on-board retimer
1180 * @index: Retimer index
1182 * If the retimer at @index is last one (connected directly to the
1183 * Type-C port) this function returns %1. If it is not returns %0. If
1184 * the retimer is not present returns %-ENODEV. Otherwise returns
1187 int usb4_port_retimer_is_last(struct tb_port *port, u8 index)
1192 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_LAST_RETIMER,
1197 ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1199 return ret ? ret : metadata & 1;
1203 * usb4_port_retimer_nvm_sector_size() - Read retimer NVM sector size
1205 * @index: Retimer index
1207 * Reads NVM sector size (in bytes) of a retimer at @index. This
1208 * operation can be used to determine whether the retimer supports NVM
1209 * upgrade for example. Returns sector size in bytes or negative errno
1210 * in case of error. Specifically returns %-ENODEV if there is no
1211 * retimer at @index.
1213 int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index)
1218 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_GET_NVM_SECTOR_SIZE,
1223 ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1225 return ret ? ret : metadata & USB4_NVM_SECTOR_SIZE_MASK;
1228 static int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index,
1229 unsigned int address)
1231 u32 metadata, dwaddress;
1234 dwaddress = address / 4;
1235 metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
1236 USB4_NVM_SET_OFFSET_MASK;
1238 ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1243 return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_SET_OFFSET,
1247 struct retimer_info {
1248 struct tb_port *port;
1252 static int usb4_port_retimer_nvm_write_next_block(void *data, const void *buf,
1256 const struct retimer_info *info = data;
1257 struct tb_port *port = info->port;
1258 u8 index = info->index;
1261 ret = usb4_port_retimer_write(port, index, USB4_SB_DATA,
1266 return usb4_port_retimer_op(port, index,
1267 USB4_SB_OPCODE_NVM_BLOCK_WRITE, 1000);
1271 * usb4_port_retimer_nvm_write() - Write to retimer NVM
1273 * @index: Retimer index
1274 * @address: Byte address where to start the write
1275 * @buf: Data to write
1276 * @size: Size in bytes how much to write
1278 * Writes @size bytes from @buf to the retimer NVM. Used for NVM
1279 * upgrade. Returns %0 if the data was written successfully and negative
1280 * errno in case of failure. Specifically returns %-ENODEV if there is
1281 * no retimer at @index.
1283 int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index, unsigned int address,
1284 const void *buf, size_t size)
1286 struct retimer_info info = { .port = port, .index = index };
1289 ret = usb4_port_retimer_nvm_set_offset(port, index, address);
1293 return usb4_do_write_data(address, buf, size,
1294 usb4_port_retimer_nvm_write_next_block, &info);
1298 * usb4_port_retimer_nvm_authenticate() - Start retimer NVM upgrade
1300 * @index: Retimer index
1302 * After the new NVM image has been written via usb4_port_retimer_nvm_write()
1303 * this function can be used to trigger the NVM upgrade process. If
1304 * successful the retimer restarts with the new NVM and may not have the
1305 * index set so one needs to call usb4_port_enumerate_retimers() to
1306 * force index to be assigned.
1308 int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index)
1313 * We need to use the raw operation here because once the
1314 * authentication completes the retimer index is not set anymore
1315 * so we do not get back the status now.
1317 val = USB4_SB_OPCODE_NVM_AUTH_WRITE;
1318 return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
1319 USB4_SB_OPCODE, &val, sizeof(val));
1323 * usb4_port_retimer_nvm_authenticate_status() - Read status of NVM upgrade
1325 * @index: Retimer index
1326 * @status: Raw status code read from metadata
1328 * This can be called after usb4_port_retimer_nvm_authenticate() and
1329 * usb4_port_enumerate_retimers() to fetch status of the NVM upgrade.
1331 * Returns %0 if the authentication status was successfully read. The
1332 * completion metadata (the result) is then stored into @status. If
1333 * reading the status fails, returns negative errno.
1335 int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index,
1341 ret = usb4_port_retimer_read(port, index, USB4_SB_OPCODE, &val,
1351 case USB4_SB_OPCODE_ERR:
1352 ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA,
1353 &metadata, sizeof(metadata));
1357 *status = metadata & USB4_SB_METADATA_NVM_AUTH_WRITE_MASK;
1360 case USB4_SB_OPCODE_ONS:
1368 static int usb4_port_retimer_nvm_read_block(void *data, unsigned int dwaddress,
1369 void *buf, size_t dwords)
1371 const struct retimer_info *info = data;
1372 struct tb_port *port = info->port;
1373 u8 index = info->index;
1377 metadata = dwaddress << USB4_NVM_READ_OFFSET_SHIFT;
1378 if (dwords < USB4_DATA_DWORDS)
1379 metadata |= dwords << USB4_NVM_READ_LENGTH_SHIFT;
1381 ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1386 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_READ, 500);
1390 return usb4_port_retimer_read(port, index, USB4_SB_DATA, buf,
1395 * usb4_port_retimer_nvm_read() - Read contents of retimer NVM
1397 * @index: Retimer index
1398 * @address: NVM address (in bytes) to start reading
1399 * @buf: Data read from NVM is stored here
1400 * @size: Number of bytes to read
1402 * Reads retimer NVM and copies the contents to @buf. Returns %0 if the
1403 * read was successful and negative errno in case of failure.
1404 * Specifically returns %-ENODEV if there is no retimer at @index.
1406 int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index,
1407 unsigned int address, void *buf, size_t size)
1409 struct retimer_info info = { .port = port, .index = index };
1411 return usb4_do_read_data(address, buf, size,
1412 usb4_port_retimer_nvm_read_block, &info);
1416 * usb4_usb3_port_max_link_rate() - Maximum support USB3 link rate
1417 * @port: USB3 adapter port
1419 * Return maximum supported link rate of a USB3 adapter in Mb/s.
1420 * Negative errno in case of error.
1422 int usb4_usb3_port_max_link_rate(struct tb_port *port)
1427 if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
1430 ret = tb_port_read(port, &val, TB_CFG_PORT,
1431 port->cap_adap + ADP_USB3_CS_4, 1);
1435 lr = (val & ADP_USB3_CS_4_MSLR_MASK) >> ADP_USB3_CS_4_MSLR_SHIFT;
1436 return lr == ADP_USB3_CS_4_MSLR_20G ? 20000 : 10000;
1440 * usb4_usb3_port_actual_link_rate() - Established USB3 link rate
1441 * @port: USB3 adapter port
1443 * Return actual established link rate of a USB3 adapter in Mb/s. If the
1444 * link is not up returns %0 and negative errno in case of failure.
1446 int usb4_usb3_port_actual_link_rate(struct tb_port *port)
1451 if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
1454 ret = tb_port_read(port, &val, TB_CFG_PORT,
1455 port->cap_adap + ADP_USB3_CS_4, 1);
1459 if (!(val & ADP_USB3_CS_4_ULV))
1462 lr = val & ADP_USB3_CS_4_ALR_MASK;
1463 return lr == ADP_USB3_CS_4_ALR_20G ? 20000 : 10000;
1466 static int usb4_usb3_port_cm_request(struct tb_port *port, bool request)
1471 if (!tb_port_is_usb3_down(port))
1473 if (tb_route(port->sw))
1476 ret = tb_port_read(port, &val, TB_CFG_PORT,
1477 port->cap_adap + ADP_USB3_CS_2, 1);
1482 val |= ADP_USB3_CS_2_CMR;
1484 val &= ~ADP_USB3_CS_2_CMR;
1486 ret = tb_port_write(port, &val, TB_CFG_PORT,
1487 port->cap_adap + ADP_USB3_CS_2, 1);
1492 * We can use val here directly as the CMR bit is in the same place
1493 * as HCA. Just mask out others.
1495 val &= ADP_USB3_CS_2_CMR;
1496 return usb4_port_wait_for_bit(port, port->cap_adap + ADP_USB3_CS_1,
1497 ADP_USB3_CS_1_HCA, val, 1500);
1500 static inline int usb4_usb3_port_set_cm_request(struct tb_port *port)
1502 return usb4_usb3_port_cm_request(port, true);
1505 static inline int usb4_usb3_port_clear_cm_request(struct tb_port *port)
1507 return usb4_usb3_port_cm_request(port, false);
1510 static unsigned int usb3_bw_to_mbps(u32 bw, u8 scale)
1512 unsigned long uframes;
1514 uframes = bw * 512UL << scale;
1515 return DIV_ROUND_CLOSEST(uframes * 8000, 1000 * 1000);
1518 static u32 mbps_to_usb3_bw(unsigned int mbps, u8 scale)
1520 unsigned long uframes;
1522 /* 1 uframe is 1/8 ms (125 us) -> 1 / 8000 s */
1523 uframes = ((unsigned long)mbps * 1000 * 1000) / 8000;
1524 return DIV_ROUND_UP(uframes, 512UL << scale);
1527 static int usb4_usb3_port_read_allocated_bandwidth(struct tb_port *port,
1534 ret = tb_port_read(port, &val, TB_CFG_PORT,
1535 port->cap_adap + ADP_USB3_CS_2, 1);
1539 ret = tb_port_read(port, &scale, TB_CFG_PORT,
1540 port->cap_adap + ADP_USB3_CS_3, 1);
1544 scale &= ADP_USB3_CS_3_SCALE_MASK;
1546 bw = val & ADP_USB3_CS_2_AUBW_MASK;
1547 *upstream_bw = usb3_bw_to_mbps(bw, scale);
1549 bw = (val & ADP_USB3_CS_2_ADBW_MASK) >> ADP_USB3_CS_2_ADBW_SHIFT;
1550 *downstream_bw = usb3_bw_to_mbps(bw, scale);
1556 * usb4_usb3_port_allocated_bandwidth() - Bandwidth allocated for USB3
1557 * @port: USB3 adapter port
1558 * @upstream_bw: Allocated upstream bandwidth is stored here
1559 * @downstream_bw: Allocated downstream bandwidth is stored here
1561 * Stores currently allocated USB3 bandwidth into @upstream_bw and
1562 * @downstream_bw in Mb/s. Returns %0 in case of success and negative
1565 int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw,
1570 ret = usb4_usb3_port_set_cm_request(port);
1574 ret = usb4_usb3_port_read_allocated_bandwidth(port, upstream_bw,
1576 usb4_usb3_port_clear_cm_request(port);
1581 static int usb4_usb3_port_read_consumed_bandwidth(struct tb_port *port,
1588 ret = tb_port_read(port, &val, TB_CFG_PORT,
1589 port->cap_adap + ADP_USB3_CS_1, 1);
1593 ret = tb_port_read(port, &scale, TB_CFG_PORT,
1594 port->cap_adap + ADP_USB3_CS_3, 1);
1598 scale &= ADP_USB3_CS_3_SCALE_MASK;
1600 bw = val & ADP_USB3_CS_1_CUBW_MASK;
1601 *upstream_bw = usb3_bw_to_mbps(bw, scale);
1603 bw = (val & ADP_USB3_CS_1_CDBW_MASK) >> ADP_USB3_CS_1_CDBW_SHIFT;
1604 *downstream_bw = usb3_bw_to_mbps(bw, scale);
1609 static int usb4_usb3_port_write_allocated_bandwidth(struct tb_port *port,
1613 u32 val, ubw, dbw, scale;
1616 /* Read the used scale, hardware default is 0 */
1617 ret = tb_port_read(port, &scale, TB_CFG_PORT,
1618 port->cap_adap + ADP_USB3_CS_3, 1);
1622 scale &= ADP_USB3_CS_3_SCALE_MASK;
1623 ubw = mbps_to_usb3_bw(upstream_bw, scale);
1624 dbw = mbps_to_usb3_bw(downstream_bw, scale);
1626 ret = tb_port_read(port, &val, TB_CFG_PORT,
1627 port->cap_adap + ADP_USB3_CS_2, 1);
1631 val &= ~(ADP_USB3_CS_2_AUBW_MASK | ADP_USB3_CS_2_ADBW_MASK);
1632 val |= dbw << ADP_USB3_CS_2_ADBW_SHIFT;
1635 return tb_port_write(port, &val, TB_CFG_PORT,
1636 port->cap_adap + ADP_USB3_CS_2, 1);
1640 * usb4_usb3_port_allocate_bandwidth() - Allocate bandwidth for USB3
1641 * @port: USB3 adapter port
1642 * @upstream_bw: New upstream bandwidth
1643 * @downstream_bw: New downstream bandwidth
1645 * This can be used to set how much bandwidth is allocated for the USB3
1646 * tunneled isochronous traffic. @upstream_bw and @downstream_bw are the
1647 * new values programmed to the USB3 adapter allocation registers. If
1648 * the values are lower than what is currently consumed the allocation
1649 * is set to what is currently consumed instead (consumed bandwidth
1650 * cannot be taken away by CM). The actual new values are returned in
1651 * @upstream_bw and @downstream_bw.
1653 * Returns %0 in case of success and negative errno if there was a
1656 int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw,
1659 int ret, consumed_up, consumed_down, allocate_up, allocate_down;
1661 ret = usb4_usb3_port_set_cm_request(port);
1665 ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
1670 /* Don't allow it go lower than what is consumed */
1671 allocate_up = max(*upstream_bw, consumed_up);
1672 allocate_down = max(*downstream_bw, consumed_down);
1674 ret = usb4_usb3_port_write_allocated_bandwidth(port, allocate_up,
1679 *upstream_bw = allocate_up;
1680 *downstream_bw = allocate_down;
1683 usb4_usb3_port_clear_cm_request(port);
1688 * usb4_usb3_port_release_bandwidth() - Release allocated USB3 bandwidth
1689 * @port: USB3 adapter port
1690 * @upstream_bw: New allocated upstream bandwidth
1691 * @downstream_bw: New allocated downstream bandwidth
1693 * Releases USB3 allocated bandwidth down to what is actually consumed.
1694 * The new bandwidth is returned in @upstream_bw and @downstream_bw.
1696 * Returns 0% in success and negative errno in case of failure.
1698 int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw,
1701 int ret, consumed_up, consumed_down;
1703 ret = usb4_usb3_port_set_cm_request(port);
1707 ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
1713 * Always keep 1000 Mb/s to make sure xHCI has at least some
1714 * bandwidth available for isochronous traffic.
1716 if (consumed_up < 1000)
1718 if (consumed_down < 1000)
1719 consumed_down = 1000;
1721 ret = usb4_usb3_port_write_allocated_bandwidth(port, consumed_up,
1726 *upstream_bw = consumed_up;
1727 *downstream_bw = consumed_down;
1730 usb4_usb3_port_clear_cm_request(port);