]> Git Repo - linux.git/blob - drivers/tee/optee/call.c
bpf, sockmap: Avoid returning unneeded EAGAIN when redirecting to self
[linux.git] / drivers / tee / optee / call.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015, Linaro Limited
4  */
5 #include <linux/arm-smccc.h>
6 #include <linux/device.h>
7 #include <linux/err.h>
8 #include <linux/errno.h>
9 #include <linux/mm.h>
10 #include <linux/slab.h>
11 #include <linux/tee_drv.h>
12 #include <linux/types.h>
13 #include <linux/uaccess.h>
14 #include "optee_private.h"
15 #include "optee_smc.h"
16
17 struct optee_call_waiter {
18         struct list_head list_node;
19         struct completion c;
20 };
21
22 static void optee_cq_wait_init(struct optee_call_queue *cq,
23                                struct optee_call_waiter *w)
24 {
25         /*
26          * We're preparing to make a call to secure world. In case we can't
27          * allocate a thread in secure world we'll end up waiting in
28          * optee_cq_wait_for_completion().
29          *
30          * Normally if there's no contention in secure world the call will
31          * complete and we can cleanup directly with optee_cq_wait_final().
32          */
33         mutex_lock(&cq->mutex);
34
35         /*
36          * We add ourselves to the queue, but we don't wait. This
37          * guarantees that we don't lose a completion if secure world
38          * returns busy and another thread just exited and try to complete
39          * someone.
40          */
41         init_completion(&w->c);
42         list_add_tail(&w->list_node, &cq->waiters);
43
44         mutex_unlock(&cq->mutex);
45 }
46
47 static void optee_cq_wait_for_completion(struct optee_call_queue *cq,
48                                          struct optee_call_waiter *w)
49 {
50         wait_for_completion(&w->c);
51
52         mutex_lock(&cq->mutex);
53
54         /* Move to end of list to get out of the way for other waiters */
55         list_del(&w->list_node);
56         reinit_completion(&w->c);
57         list_add_tail(&w->list_node, &cq->waiters);
58
59         mutex_unlock(&cq->mutex);
60 }
61
62 static void optee_cq_complete_one(struct optee_call_queue *cq)
63 {
64         struct optee_call_waiter *w;
65
66         list_for_each_entry(w, &cq->waiters, list_node) {
67                 if (!completion_done(&w->c)) {
68                         complete(&w->c);
69                         break;
70                 }
71         }
72 }
73
74 static void optee_cq_wait_final(struct optee_call_queue *cq,
75                                 struct optee_call_waiter *w)
76 {
77         /*
78          * We're done with the call to secure world. The thread in secure
79          * world that was used for this call is now available for some
80          * other task to use.
81          */
82         mutex_lock(&cq->mutex);
83
84         /* Get out of the list */
85         list_del(&w->list_node);
86
87         /* Wake up one eventual waiting task */
88         optee_cq_complete_one(cq);
89
90         /*
91          * If we're completed we've got a completion from another task that
92          * was just done with its call to secure world. Since yet another
93          * thread now is available in secure world wake up another eventual
94          * waiting task.
95          */
96         if (completion_done(&w->c))
97                 optee_cq_complete_one(cq);
98
99         mutex_unlock(&cq->mutex);
100 }
101
102 /* Requires the filpstate mutex to be held */
103 static struct optee_session *find_session(struct optee_context_data *ctxdata,
104                                           u32 session_id)
105 {
106         struct optee_session *sess;
107
108         list_for_each_entry(sess, &ctxdata->sess_list, list_node)
109                 if (sess->session_id == session_id)
110                         return sess;
111
112         return NULL;
113 }
114
115 /**
116  * optee_do_call_with_arg() - Do an SMC to OP-TEE in secure world
117  * @ctx:        calling context
118  * @parg:       physical address of message to pass to secure world
119  *
120  * Does and SMC to OP-TEE in secure world and handles eventual resulting
121  * Remote Procedure Calls (RPC) from OP-TEE.
122  *
123  * Returns return code from secure world, 0 is OK
124  */
125 u32 optee_do_call_with_arg(struct tee_context *ctx, phys_addr_t parg)
126 {
127         struct optee *optee = tee_get_drvdata(ctx->teedev);
128         struct optee_call_waiter w;
129         struct optee_rpc_param param = { };
130         struct optee_call_ctx call_ctx = { };
131         u32 ret;
132
133         param.a0 = OPTEE_SMC_CALL_WITH_ARG;
134         reg_pair_from_64(&param.a1, &param.a2, parg);
135         /* Initialize waiter */
136         optee_cq_wait_init(&optee->call_queue, &w);
137         while (true) {
138                 struct arm_smccc_res res;
139
140                 optee->invoke_fn(param.a0, param.a1, param.a2, param.a3,
141                                  param.a4, param.a5, param.a6, param.a7,
142                                  &res);
143
144                 if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) {
145                         /*
146                          * Out of threads in secure world, wait for a thread
147                          * become available.
148                          */
149                         optee_cq_wait_for_completion(&optee->call_queue, &w);
150                 } else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) {
151                         might_sleep();
152                         param.a0 = res.a0;
153                         param.a1 = res.a1;
154                         param.a2 = res.a2;
155                         param.a3 = res.a3;
156                         optee_handle_rpc(ctx, &param, &call_ctx);
157                 } else {
158                         ret = res.a0;
159                         break;
160                 }
161         }
162
163         optee_rpc_finalize_call(&call_ctx);
164         /*
165          * We're done with our thread in secure world, if there's any
166          * thread waiters wake up one.
167          */
168         optee_cq_wait_final(&optee->call_queue, &w);
169
170         return ret;
171 }
172
173 static struct tee_shm *get_msg_arg(struct tee_context *ctx, size_t num_params,
174                                    struct optee_msg_arg **msg_arg,
175                                    phys_addr_t *msg_parg)
176 {
177         int rc;
178         struct tee_shm *shm;
179         struct optee_msg_arg *ma;
180
181         shm = tee_shm_alloc(ctx, OPTEE_MSG_GET_ARG_SIZE(num_params),
182                             TEE_SHM_MAPPED);
183         if (IS_ERR(shm))
184                 return shm;
185
186         ma = tee_shm_get_va(shm, 0);
187         if (IS_ERR(ma)) {
188                 rc = PTR_ERR(ma);
189                 goto out;
190         }
191
192         rc = tee_shm_get_pa(shm, 0, msg_parg);
193         if (rc)
194                 goto out;
195
196         memset(ma, 0, OPTEE_MSG_GET_ARG_SIZE(num_params));
197         ma->num_params = num_params;
198         *msg_arg = ma;
199 out:
200         if (rc) {
201                 tee_shm_free(shm);
202                 return ERR_PTR(rc);
203         }
204
205         return shm;
206 }
207
208 int optee_open_session(struct tee_context *ctx,
209                        struct tee_ioctl_open_session_arg *arg,
210                        struct tee_param *param)
211 {
212         struct optee_context_data *ctxdata = ctx->data;
213         int rc;
214         struct tee_shm *shm;
215         struct optee_msg_arg *msg_arg;
216         phys_addr_t msg_parg;
217         struct optee_session *sess = NULL;
218
219         /* +2 for the meta parameters added below */
220         shm = get_msg_arg(ctx, arg->num_params + 2, &msg_arg, &msg_parg);
221         if (IS_ERR(shm))
222                 return PTR_ERR(shm);
223
224         msg_arg->cmd = OPTEE_MSG_CMD_OPEN_SESSION;
225         msg_arg->cancel_id = arg->cancel_id;
226
227         /*
228          * Initialize and add the meta parameters needed when opening a
229          * session.
230          */
231         msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
232                                   OPTEE_MSG_ATTR_META;
233         msg_arg->params[1].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
234                                   OPTEE_MSG_ATTR_META;
235         memcpy(&msg_arg->params[0].u.value, arg->uuid, sizeof(arg->uuid));
236         msg_arg->params[1].u.value.c = arg->clnt_login;
237
238         rc = tee_session_calc_client_uuid((uuid_t *)&msg_arg->params[1].u.value,
239                                           arg->clnt_login, arg->clnt_uuid);
240         if (rc)
241                 goto out;
242
243         rc = optee_to_msg_param(msg_arg->params + 2, arg->num_params, param);
244         if (rc)
245                 goto out;
246
247         sess = kzalloc(sizeof(*sess), GFP_KERNEL);
248         if (!sess) {
249                 rc = -ENOMEM;
250                 goto out;
251         }
252
253         if (optee_do_call_with_arg(ctx, msg_parg)) {
254                 msg_arg->ret = TEEC_ERROR_COMMUNICATION;
255                 msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
256         }
257
258         if (msg_arg->ret == TEEC_SUCCESS) {
259                 /* A new session has been created, add it to the list. */
260                 sess->session_id = msg_arg->session;
261                 mutex_lock(&ctxdata->mutex);
262                 list_add(&sess->list_node, &ctxdata->sess_list);
263                 mutex_unlock(&ctxdata->mutex);
264         } else {
265                 kfree(sess);
266         }
267
268         if (optee_from_msg_param(param, arg->num_params, msg_arg->params + 2)) {
269                 arg->ret = TEEC_ERROR_COMMUNICATION;
270                 arg->ret_origin = TEEC_ORIGIN_COMMS;
271                 /* Close session again to avoid leakage */
272                 optee_close_session(ctx, msg_arg->session);
273         } else {
274                 arg->session = msg_arg->session;
275                 arg->ret = msg_arg->ret;
276                 arg->ret_origin = msg_arg->ret_origin;
277         }
278 out:
279         tee_shm_free(shm);
280
281         return rc;
282 }
283
284 int optee_close_session(struct tee_context *ctx, u32 session)
285 {
286         struct optee_context_data *ctxdata = ctx->data;
287         struct tee_shm *shm;
288         struct optee_msg_arg *msg_arg;
289         phys_addr_t msg_parg;
290         struct optee_session *sess;
291
292         /* Check that the session is valid and remove it from the list */
293         mutex_lock(&ctxdata->mutex);
294         sess = find_session(ctxdata, session);
295         if (sess)
296                 list_del(&sess->list_node);
297         mutex_unlock(&ctxdata->mutex);
298         if (!sess)
299                 return -EINVAL;
300         kfree(sess);
301
302         shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
303         if (IS_ERR(shm))
304                 return PTR_ERR(shm);
305
306         msg_arg->cmd = OPTEE_MSG_CMD_CLOSE_SESSION;
307         msg_arg->session = session;
308         optee_do_call_with_arg(ctx, msg_parg);
309
310         tee_shm_free(shm);
311         return 0;
312 }
313
314 int optee_invoke_func(struct tee_context *ctx, struct tee_ioctl_invoke_arg *arg,
315                       struct tee_param *param)
316 {
317         struct optee_context_data *ctxdata = ctx->data;
318         struct tee_shm *shm;
319         struct optee_msg_arg *msg_arg;
320         phys_addr_t msg_parg;
321         struct optee_session *sess;
322         int rc;
323
324         /* Check that the session is valid */
325         mutex_lock(&ctxdata->mutex);
326         sess = find_session(ctxdata, arg->session);
327         mutex_unlock(&ctxdata->mutex);
328         if (!sess)
329                 return -EINVAL;
330
331         shm = get_msg_arg(ctx, arg->num_params, &msg_arg, &msg_parg);
332         if (IS_ERR(shm))
333                 return PTR_ERR(shm);
334         msg_arg->cmd = OPTEE_MSG_CMD_INVOKE_COMMAND;
335         msg_arg->func = arg->func;
336         msg_arg->session = arg->session;
337         msg_arg->cancel_id = arg->cancel_id;
338
339         rc = optee_to_msg_param(msg_arg->params, arg->num_params, param);
340         if (rc)
341                 goto out;
342
343         if (optee_do_call_with_arg(ctx, msg_parg)) {
344                 msg_arg->ret = TEEC_ERROR_COMMUNICATION;
345                 msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
346         }
347
348         if (optee_from_msg_param(param, arg->num_params, msg_arg->params)) {
349                 msg_arg->ret = TEEC_ERROR_COMMUNICATION;
350                 msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
351         }
352
353         arg->ret = msg_arg->ret;
354         arg->ret_origin = msg_arg->ret_origin;
355 out:
356         tee_shm_free(shm);
357         return rc;
358 }
359
360 int optee_cancel_req(struct tee_context *ctx, u32 cancel_id, u32 session)
361 {
362         struct optee_context_data *ctxdata = ctx->data;
363         struct tee_shm *shm;
364         struct optee_msg_arg *msg_arg;
365         phys_addr_t msg_parg;
366         struct optee_session *sess;
367
368         /* Check that the session is valid */
369         mutex_lock(&ctxdata->mutex);
370         sess = find_session(ctxdata, session);
371         mutex_unlock(&ctxdata->mutex);
372         if (!sess)
373                 return -EINVAL;
374
375         shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
376         if (IS_ERR(shm))
377                 return PTR_ERR(shm);
378
379         msg_arg->cmd = OPTEE_MSG_CMD_CANCEL;
380         msg_arg->session = session;
381         msg_arg->cancel_id = cancel_id;
382         optee_do_call_with_arg(ctx, msg_parg);
383
384         tee_shm_free(shm);
385         return 0;
386 }
387
388 /**
389  * optee_enable_shm_cache() - Enables caching of some shared memory allocation
390  *                            in OP-TEE
391  * @optee:      main service struct
392  */
393 void optee_enable_shm_cache(struct optee *optee)
394 {
395         struct optee_call_waiter w;
396
397         /* We need to retry until secure world isn't busy. */
398         optee_cq_wait_init(&optee->call_queue, &w);
399         while (true) {
400                 struct arm_smccc_res res;
401
402                 optee->invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
403                                  0, &res);
404                 if (res.a0 == OPTEE_SMC_RETURN_OK)
405                         break;
406                 optee_cq_wait_for_completion(&optee->call_queue, &w);
407         }
408         optee_cq_wait_final(&optee->call_queue, &w);
409 }
410
411 /**
412  * optee_disable_shm_cache() - Disables caching of some shared memory allocation
413  *                            in OP-TEE
414  * @optee:      main service struct
415  */
416 void optee_disable_shm_cache(struct optee *optee)
417 {
418         struct optee_call_waiter w;
419
420         /* We need to retry until secure world isn't busy. */
421         optee_cq_wait_init(&optee->call_queue, &w);
422         while (true) {
423                 union {
424                         struct arm_smccc_res smccc;
425                         struct optee_smc_disable_shm_cache_result result;
426                 } res;
427
428                 optee->invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
429                                  0, &res.smccc);
430                 if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL)
431                         break; /* All shm's freed */
432                 if (res.result.status == OPTEE_SMC_RETURN_OK) {
433                         struct tee_shm *shm;
434
435                         shm = reg_pair_to_ptr(res.result.shm_upper32,
436                                               res.result.shm_lower32);
437                         tee_shm_free(shm);
438                 } else {
439                         optee_cq_wait_for_completion(&optee->call_queue, &w);
440                 }
441         }
442         optee_cq_wait_final(&optee->call_queue, &w);
443 }
444
445 #define PAGELIST_ENTRIES_PER_PAGE                               \
446         ((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1)
447
448 /**
449  * optee_fill_pages_list() - write list of user pages to given shared
450  * buffer.
451  *
452  * @dst: page-aligned buffer where list of pages will be stored
453  * @pages: array of pages that represents shared buffer
454  * @num_pages: number of entries in @pages
455  * @page_offset: offset of user buffer from page start
456  *
457  * @dst should be big enough to hold list of user page addresses and
458  *      links to the next pages of buffer
459  */
460 void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages,
461                            size_t page_offset)
462 {
463         int n = 0;
464         phys_addr_t optee_page;
465         /*
466          * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h
467          * for details.
468          */
469         struct {
470                 u64 pages_list[PAGELIST_ENTRIES_PER_PAGE];
471                 u64 next_page_data;
472         } *pages_data;
473
474         /*
475          * Currently OP-TEE uses 4k page size and it does not looks
476          * like this will change in the future.  On other hand, there are
477          * no know ARM architectures with page size < 4k.
478          * Thus the next built assert looks redundant. But the following
479          * code heavily relies on this assumption, so it is better be
480          * safe than sorry.
481          */
482         BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE);
483
484         pages_data = (void *)dst;
485         /*
486          * If linux page is bigger than 4k, and user buffer offset is
487          * larger than 4k/8k/12k/etc this will skip first 4k pages,
488          * because they bear no value data for OP-TEE.
489          */
490         optee_page = page_to_phys(*pages) +
491                 round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE);
492
493         while (true) {
494                 pages_data->pages_list[n++] = optee_page;
495
496                 if (n == PAGELIST_ENTRIES_PER_PAGE) {
497                         pages_data->next_page_data =
498                                 virt_to_phys(pages_data + 1);
499                         pages_data++;
500                         n = 0;
501                 }
502
503                 optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE;
504                 if (!(optee_page & ~PAGE_MASK)) {
505                         if (!--num_pages)
506                                 break;
507                         pages++;
508                         optee_page = page_to_phys(*pages);
509                 }
510         }
511 }
512
513 /*
514  * The final entry in each pagelist page is a pointer to the next
515  * pagelist page.
516  */
517 static size_t get_pages_list_size(size_t num_entries)
518 {
519         int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE);
520
521         return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE;
522 }
523
524 u64 *optee_allocate_pages_list(size_t num_entries)
525 {
526         return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL);
527 }
528
529 void optee_free_pages_list(void *list, size_t num_entries)
530 {
531         free_pages_exact(list, get_pages_list_size(num_entries));
532 }
533
534 static bool is_normal_memory(pgprot_t p)
535 {
536 #if defined(CONFIG_ARM)
537         return (pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEALLOC;
538 #elif defined(CONFIG_ARM64)
539         return (pgprot_val(p) & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL);
540 #else
541 #error "Unuspported architecture"
542 #endif
543 }
544
545 static int __check_mem_type(struct vm_area_struct *vma, unsigned long end)
546 {
547         while (vma && is_normal_memory(vma->vm_page_prot)) {
548                 if (vma->vm_end >= end)
549                         return 0;
550                 vma = vma->vm_next;
551         }
552
553         return -EINVAL;
554 }
555
556 static int check_mem_type(unsigned long start, size_t num_pages)
557 {
558         struct mm_struct *mm = current->mm;
559         int rc;
560
561         /*
562          * Allow kernel address to register with OP-TEE as kernel
563          * pages are configured as normal memory only.
564          */
565         if (virt_addr_valid(start))
566                 return 0;
567
568         mmap_read_lock(mm);
569         rc = __check_mem_type(find_vma(mm, start),
570                               start + num_pages * PAGE_SIZE);
571         mmap_read_unlock(mm);
572
573         return rc;
574 }
575
576 int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm,
577                        struct page **pages, size_t num_pages,
578                        unsigned long start)
579 {
580         struct tee_shm *shm_arg = NULL;
581         struct optee_msg_arg *msg_arg;
582         u64 *pages_list;
583         phys_addr_t msg_parg;
584         int rc;
585
586         if (!num_pages)
587                 return -EINVAL;
588
589         rc = check_mem_type(start, num_pages);
590         if (rc)
591                 return rc;
592
593         pages_list = optee_allocate_pages_list(num_pages);
594         if (!pages_list)
595                 return -ENOMEM;
596
597         shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
598         if (IS_ERR(shm_arg)) {
599                 rc = PTR_ERR(shm_arg);
600                 goto out;
601         }
602
603         optee_fill_pages_list(pages_list, pages, num_pages,
604                               tee_shm_get_page_offset(shm));
605
606         msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM;
607         msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
608                                 OPTEE_MSG_ATTR_NONCONTIG;
609         msg_arg->params->u.tmem.shm_ref = (unsigned long)shm;
610         msg_arg->params->u.tmem.size = tee_shm_get_size(shm);
611         /*
612          * In the least bits of msg_arg->params->u.tmem.buf_ptr we
613          * store buffer offset from 4k page, as described in OP-TEE ABI.
614          */
615         msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) |
616           (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
617
618         if (optee_do_call_with_arg(ctx, msg_parg) ||
619             msg_arg->ret != TEEC_SUCCESS)
620                 rc = -EINVAL;
621
622         tee_shm_free(shm_arg);
623 out:
624         optee_free_pages_list(pages_list, num_pages);
625         return rc;
626 }
627
628 int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm)
629 {
630         struct tee_shm *shm_arg;
631         struct optee_msg_arg *msg_arg;
632         phys_addr_t msg_parg;
633         int rc = 0;
634
635         shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
636         if (IS_ERR(shm_arg))
637                 return PTR_ERR(shm_arg);
638
639         msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM;
640
641         msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
642         msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm;
643
644         if (optee_do_call_with_arg(ctx, msg_parg) ||
645             msg_arg->ret != TEEC_SUCCESS)
646                 rc = -EINVAL;
647         tee_shm_free(shm_arg);
648         return rc;
649 }
650
651 int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm,
652                             struct page **pages, size_t num_pages,
653                             unsigned long start)
654 {
655         /*
656          * We don't want to register supplicant memory in OP-TEE.
657          * Instead information about it will be passed in RPC code.
658          */
659         return check_mem_type(start, num_pages);
660 }
661
662 int optee_shm_unregister_supp(struct tee_context *ctx, struct tee_shm *shm)
663 {
664         return 0;
665 }
This page took 0.075256 seconds and 4 git commands to generate.