]> Git Repo - linux.git/blob - drivers/net/dsa/lantiq_gswip.c
bpf, sockmap: Avoid returning unneeded EAGAIN when redirecting to self
[linux.git] / drivers / net / dsa / lantiq_gswip.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Lantiq / Intel GSWIP switch driver for VRX200 SoCs
4  *
5  * Copyright (C) 2010 Lantiq Deutschland
6  * Copyright (C) 2012 John Crispin <[email protected]>
7  * Copyright (C) 2017 - 2019 Hauke Mehrtens <[email protected]>
8  *
9  * The VLAN and bridge model the GSWIP hardware uses does not directly
10  * matches the model DSA uses.
11  *
12  * The hardware has 64 possible table entries for bridges with one VLAN
13  * ID, one flow id and a list of ports for each bridge. All entries which
14  * match the same flow ID are combined in the mac learning table, they
15  * act as one global bridge.
16  * The hardware does not support VLAN filter on the port, but on the
17  * bridge, this driver converts the DSA model to the hardware.
18  *
19  * The CPU gets all the exception frames which do not match any forwarding
20  * rule and the CPU port is also added to all bridges. This makes it possible
21  * to handle all the special cases easily in software.
22  * At the initialization the driver allocates one bridge table entry for
23  * each switch port which is used when the port is used without an
24  * explicit bridge. This prevents the frames from being forwarded
25  * between all LAN ports by default.
26  */
27
28 #include <linux/clk.h>
29 #include <linux/etherdevice.h>
30 #include <linux/firmware.h>
31 #include <linux/if_bridge.h>
32 #include <linux/if_vlan.h>
33 #include <linux/iopoll.h>
34 #include <linux/mfd/syscon.h>
35 #include <linux/module.h>
36 #include <linux/of_mdio.h>
37 #include <linux/of_net.h>
38 #include <linux/of_platform.h>
39 #include <linux/phy.h>
40 #include <linux/phylink.h>
41 #include <linux/platform_device.h>
42 #include <linux/regmap.h>
43 #include <linux/reset.h>
44 #include <net/dsa.h>
45 #include <dt-bindings/mips/lantiq_rcu_gphy.h>
46
47 #include "lantiq_pce.h"
48
49 /* GSWIP MDIO Registers */
50 #define GSWIP_MDIO_GLOB                 0x00
51 #define  GSWIP_MDIO_GLOB_ENABLE         BIT(15)
52 #define GSWIP_MDIO_CTRL                 0x08
53 #define  GSWIP_MDIO_CTRL_BUSY           BIT(12)
54 #define  GSWIP_MDIO_CTRL_RD             BIT(11)
55 #define  GSWIP_MDIO_CTRL_WR             BIT(10)
56 #define  GSWIP_MDIO_CTRL_PHYAD_MASK     0x1f
57 #define  GSWIP_MDIO_CTRL_PHYAD_SHIFT    5
58 #define  GSWIP_MDIO_CTRL_REGAD_MASK     0x1f
59 #define GSWIP_MDIO_READ                 0x09
60 #define GSWIP_MDIO_WRITE                0x0A
61 #define GSWIP_MDIO_MDC_CFG0             0x0B
62 #define GSWIP_MDIO_MDC_CFG1             0x0C
63 #define GSWIP_MDIO_PHYp(p)              (0x15 - (p))
64 #define  GSWIP_MDIO_PHY_LINK_MASK       0x6000
65 #define  GSWIP_MDIO_PHY_LINK_AUTO       0x0000
66 #define  GSWIP_MDIO_PHY_LINK_DOWN       0x4000
67 #define  GSWIP_MDIO_PHY_LINK_UP         0x2000
68 #define  GSWIP_MDIO_PHY_SPEED_MASK      0x1800
69 #define  GSWIP_MDIO_PHY_SPEED_AUTO      0x1800
70 #define  GSWIP_MDIO_PHY_SPEED_M10       0x0000
71 #define  GSWIP_MDIO_PHY_SPEED_M100      0x0800
72 #define  GSWIP_MDIO_PHY_SPEED_G1        0x1000
73 #define  GSWIP_MDIO_PHY_FDUP_MASK       0x0600
74 #define  GSWIP_MDIO_PHY_FDUP_AUTO       0x0000
75 #define  GSWIP_MDIO_PHY_FDUP_EN         0x0200
76 #define  GSWIP_MDIO_PHY_FDUP_DIS        0x0600
77 #define  GSWIP_MDIO_PHY_FCONTX_MASK     0x0180
78 #define  GSWIP_MDIO_PHY_FCONTX_AUTO     0x0000
79 #define  GSWIP_MDIO_PHY_FCONTX_EN       0x0100
80 #define  GSWIP_MDIO_PHY_FCONTX_DIS      0x0180
81 #define  GSWIP_MDIO_PHY_FCONRX_MASK     0x0060
82 #define  GSWIP_MDIO_PHY_FCONRX_AUTO     0x0000
83 #define  GSWIP_MDIO_PHY_FCONRX_EN       0x0020
84 #define  GSWIP_MDIO_PHY_FCONRX_DIS      0x0060
85 #define  GSWIP_MDIO_PHY_ADDR_MASK       0x001f
86 #define  GSWIP_MDIO_PHY_MASK            (GSWIP_MDIO_PHY_ADDR_MASK | \
87                                          GSWIP_MDIO_PHY_FCONRX_MASK | \
88                                          GSWIP_MDIO_PHY_FCONTX_MASK | \
89                                          GSWIP_MDIO_PHY_LINK_MASK | \
90                                          GSWIP_MDIO_PHY_SPEED_MASK | \
91                                          GSWIP_MDIO_PHY_FDUP_MASK)
92
93 /* GSWIP MII Registers */
94 #define GSWIP_MII_CFG0                  0x00
95 #define GSWIP_MII_CFG1                  0x02
96 #define GSWIP_MII_CFG5                  0x04
97 #define  GSWIP_MII_CFG_EN               BIT(14)
98 #define  GSWIP_MII_CFG_LDCLKDIS         BIT(12)
99 #define  GSWIP_MII_CFG_MODE_MIIP        0x0
100 #define  GSWIP_MII_CFG_MODE_MIIM        0x1
101 #define  GSWIP_MII_CFG_MODE_RMIIP       0x2
102 #define  GSWIP_MII_CFG_MODE_RMIIM       0x3
103 #define  GSWIP_MII_CFG_MODE_RGMII       0x4
104 #define  GSWIP_MII_CFG_MODE_MASK        0xf
105 #define  GSWIP_MII_CFG_RATE_M2P5        0x00
106 #define  GSWIP_MII_CFG_RATE_M25 0x10
107 #define  GSWIP_MII_CFG_RATE_M125        0x20
108 #define  GSWIP_MII_CFG_RATE_M50 0x30
109 #define  GSWIP_MII_CFG_RATE_AUTO        0x40
110 #define  GSWIP_MII_CFG_RATE_MASK        0x70
111 #define GSWIP_MII_PCDU0                 0x01
112 #define GSWIP_MII_PCDU1                 0x03
113 #define GSWIP_MII_PCDU5                 0x05
114 #define  GSWIP_MII_PCDU_TXDLY_MASK      GENMASK(2, 0)
115 #define  GSWIP_MII_PCDU_RXDLY_MASK      GENMASK(9, 7)
116
117 /* GSWIP Core Registers */
118 #define GSWIP_SWRES                     0x000
119 #define  GSWIP_SWRES_R1                 BIT(1)  /* GSWIP Software reset */
120 #define  GSWIP_SWRES_R0                 BIT(0)  /* GSWIP Hardware reset */
121 #define GSWIP_VERSION                   0x013
122 #define  GSWIP_VERSION_REV_SHIFT        0
123 #define  GSWIP_VERSION_REV_MASK         GENMASK(7, 0)
124 #define  GSWIP_VERSION_MOD_SHIFT        8
125 #define  GSWIP_VERSION_MOD_MASK         GENMASK(15, 8)
126 #define   GSWIP_VERSION_2_0             0x100
127 #define   GSWIP_VERSION_2_1             0x021
128 #define   GSWIP_VERSION_2_2             0x122
129 #define   GSWIP_VERSION_2_2_ETC         0x022
130
131 #define GSWIP_BM_RAM_VAL(x)             (0x043 - (x))
132 #define GSWIP_BM_RAM_ADDR               0x044
133 #define GSWIP_BM_RAM_CTRL               0x045
134 #define  GSWIP_BM_RAM_CTRL_BAS          BIT(15)
135 #define  GSWIP_BM_RAM_CTRL_OPMOD        BIT(5)
136 #define  GSWIP_BM_RAM_CTRL_ADDR_MASK    GENMASK(4, 0)
137 #define GSWIP_BM_QUEUE_GCTRL            0x04A
138 #define  GSWIP_BM_QUEUE_GCTRL_GL_MOD    BIT(10)
139 /* buffer management Port Configuration Register */
140 #define GSWIP_BM_PCFGp(p)               (0x080 + ((p) * 2))
141 #define  GSWIP_BM_PCFG_CNTEN            BIT(0)  /* RMON Counter Enable */
142 #define  GSWIP_BM_PCFG_IGCNT            BIT(1)  /* Ingres Special Tag RMON count */
143 /* buffer management Port Control Register */
144 #define GSWIP_BM_RMON_CTRLp(p)          (0x81 + ((p) * 2))
145 #define  GSWIP_BM_CTRL_RMON_RAM1_RES    BIT(0)  /* Software Reset for RMON RAM 1 */
146 #define  GSWIP_BM_CTRL_RMON_RAM2_RES    BIT(1)  /* Software Reset for RMON RAM 2 */
147
148 /* PCE */
149 #define GSWIP_PCE_TBL_KEY(x)            (0x447 - (x))
150 #define GSWIP_PCE_TBL_MASK              0x448
151 #define GSWIP_PCE_TBL_VAL(x)            (0x44D - (x))
152 #define GSWIP_PCE_TBL_ADDR              0x44E
153 #define GSWIP_PCE_TBL_CTRL              0x44F
154 #define  GSWIP_PCE_TBL_CTRL_BAS         BIT(15)
155 #define  GSWIP_PCE_TBL_CTRL_TYPE        BIT(13)
156 #define  GSWIP_PCE_TBL_CTRL_VLD         BIT(12)
157 #define  GSWIP_PCE_TBL_CTRL_KEYFORM     BIT(11)
158 #define  GSWIP_PCE_TBL_CTRL_GMAP_MASK   GENMASK(10, 7)
159 #define  GSWIP_PCE_TBL_CTRL_OPMOD_MASK  GENMASK(6, 5)
160 #define  GSWIP_PCE_TBL_CTRL_OPMOD_ADRD  0x00
161 #define  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR  0x20
162 #define  GSWIP_PCE_TBL_CTRL_OPMOD_KSRD  0x40
163 #define  GSWIP_PCE_TBL_CTRL_OPMOD_KSWR  0x60
164 #define  GSWIP_PCE_TBL_CTRL_ADDR_MASK   GENMASK(4, 0)
165 #define GSWIP_PCE_PMAP1                 0x453   /* Monitoring port map */
166 #define GSWIP_PCE_PMAP2                 0x454   /* Default Multicast port map */
167 #define GSWIP_PCE_PMAP3                 0x455   /* Default Unknown Unicast port map */
168 #define GSWIP_PCE_GCTRL_0               0x456
169 #define  GSWIP_PCE_GCTRL_0_MTFL         BIT(0)  /* MAC Table Flushing */
170 #define  GSWIP_PCE_GCTRL_0_MC_VALID     BIT(3)
171 #define  GSWIP_PCE_GCTRL_0_VLAN         BIT(14) /* VLAN aware Switching */
172 #define GSWIP_PCE_GCTRL_1               0x457
173 #define  GSWIP_PCE_GCTRL_1_MAC_GLOCK    BIT(2)  /* MAC Address table lock */
174 #define  GSWIP_PCE_GCTRL_1_MAC_GLOCK_MOD        BIT(3) /* Mac address table lock forwarding mode */
175 #define GSWIP_PCE_PCTRL_0p(p)           (0x480 + ((p) * 0xA))
176 #define  GSWIP_PCE_PCTRL_0_TVM          BIT(5)  /* Transparent VLAN mode */
177 #define  GSWIP_PCE_PCTRL_0_VREP         BIT(6)  /* VLAN Replace Mode */
178 #define  GSWIP_PCE_PCTRL_0_INGRESS      BIT(11) /* Accept special tag in ingress */
179 #define  GSWIP_PCE_PCTRL_0_PSTATE_LISTEN        0x0
180 #define  GSWIP_PCE_PCTRL_0_PSTATE_RX            0x1
181 #define  GSWIP_PCE_PCTRL_0_PSTATE_TX            0x2
182 #define  GSWIP_PCE_PCTRL_0_PSTATE_LEARNING      0x3
183 #define  GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING    0x7
184 #define  GSWIP_PCE_PCTRL_0_PSTATE_MASK  GENMASK(2, 0)
185 #define GSWIP_PCE_VCTRL(p)              (0x485 + ((p) * 0xA))
186 #define  GSWIP_PCE_VCTRL_UVR            BIT(0)  /* Unknown VLAN Rule */
187 #define  GSWIP_PCE_VCTRL_VIMR           BIT(3)  /* VLAN Ingress Member violation rule */
188 #define  GSWIP_PCE_VCTRL_VEMR           BIT(4)  /* VLAN Egress Member violation rule */
189 #define  GSWIP_PCE_VCTRL_VSR            BIT(5)  /* VLAN Security */
190 #define  GSWIP_PCE_VCTRL_VID0           BIT(6)  /* Priority Tagged Rule */
191 #define GSWIP_PCE_DEFPVID(p)            (0x486 + ((p) * 0xA))
192
193 #define GSWIP_MAC_FLEN                  0x8C5
194 #define GSWIP_MAC_CTRL_2p(p)            (0x905 + ((p) * 0xC))
195 #define GSWIP_MAC_CTRL_2_MLEN           BIT(3) /* Maximum Untagged Frame Lnegth */
196
197 /* Ethernet Switch Fetch DMA Port Control Register */
198 #define GSWIP_FDMA_PCTRLp(p)            (0xA80 + ((p) * 0x6))
199 #define  GSWIP_FDMA_PCTRL_EN            BIT(0)  /* FDMA Port Enable */
200 #define  GSWIP_FDMA_PCTRL_STEN          BIT(1)  /* Special Tag Insertion Enable */
201 #define  GSWIP_FDMA_PCTRL_VLANMOD_MASK  GENMASK(4, 3)   /* VLAN Modification Control */
202 #define  GSWIP_FDMA_PCTRL_VLANMOD_SHIFT 3       /* VLAN Modification Control */
203 #define  GSWIP_FDMA_PCTRL_VLANMOD_DIS   (0x0 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
204 #define  GSWIP_FDMA_PCTRL_VLANMOD_PRIO  (0x1 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
205 #define  GSWIP_FDMA_PCTRL_VLANMOD_ID    (0x2 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
206 #define  GSWIP_FDMA_PCTRL_VLANMOD_BOTH  (0x3 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
207
208 /* Ethernet Switch Store DMA Port Control Register */
209 #define GSWIP_SDMA_PCTRLp(p)            (0xBC0 + ((p) * 0x6))
210 #define  GSWIP_SDMA_PCTRL_EN            BIT(0)  /* SDMA Port Enable */
211 #define  GSWIP_SDMA_PCTRL_FCEN          BIT(1)  /* Flow Control Enable */
212 #define  GSWIP_SDMA_PCTRL_PAUFWD        BIT(1)  /* Pause Frame Forwarding */
213
214 #define GSWIP_TABLE_ACTIVE_VLAN         0x01
215 #define GSWIP_TABLE_VLAN_MAPPING        0x02
216 #define GSWIP_TABLE_MAC_BRIDGE          0x0b
217 #define  GSWIP_TABLE_MAC_BRIDGE_STATIC  0x01    /* Static not, aging entry */
218
219 #define XRX200_GPHY_FW_ALIGN    (16 * 1024)
220
221 struct gswip_hw_info {
222         int max_ports;
223         int cpu_port;
224 };
225
226 struct xway_gphy_match_data {
227         char *fe_firmware_name;
228         char *ge_firmware_name;
229 };
230
231 struct gswip_gphy_fw {
232         struct clk *clk_gate;
233         struct reset_control *reset;
234         u32 fw_addr_offset;
235         char *fw_name;
236 };
237
238 struct gswip_vlan {
239         struct net_device *bridge;
240         u16 vid;
241         u8 fid;
242 };
243
244 struct gswip_priv {
245         __iomem void *gswip;
246         __iomem void *mdio;
247         __iomem void *mii;
248         const struct gswip_hw_info *hw_info;
249         const struct xway_gphy_match_data *gphy_fw_name_cfg;
250         struct dsa_switch *ds;
251         struct device *dev;
252         struct regmap *rcu_regmap;
253         struct gswip_vlan vlans[64];
254         int num_gphy_fw;
255         struct gswip_gphy_fw *gphy_fw;
256         u32 port_vlan_filter;
257 };
258
259 struct gswip_pce_table_entry {
260         u16 index;      // PCE_TBL_ADDR.ADDR = pData->table_index
261         u16 table;      // PCE_TBL_CTRL.ADDR = pData->table
262         u16 key[8];
263         u16 val[5];
264         u16 mask;
265         u8 gmap;
266         bool type;
267         bool valid;
268         bool key_mode;
269 };
270
271 struct gswip_rmon_cnt_desc {
272         unsigned int size;
273         unsigned int offset;
274         const char *name;
275 };
276
277 #define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name}
278
279 static const struct gswip_rmon_cnt_desc gswip_rmon_cnt[] = {
280         /** Receive Packet Count (only packets that are accepted and not discarded). */
281         MIB_DESC(1, 0x1F, "RxGoodPkts"),
282         MIB_DESC(1, 0x23, "RxUnicastPkts"),
283         MIB_DESC(1, 0x22, "RxMulticastPkts"),
284         MIB_DESC(1, 0x21, "RxFCSErrorPkts"),
285         MIB_DESC(1, 0x1D, "RxUnderSizeGoodPkts"),
286         MIB_DESC(1, 0x1E, "RxUnderSizeErrorPkts"),
287         MIB_DESC(1, 0x1B, "RxOversizeGoodPkts"),
288         MIB_DESC(1, 0x1C, "RxOversizeErrorPkts"),
289         MIB_DESC(1, 0x20, "RxGoodPausePkts"),
290         MIB_DESC(1, 0x1A, "RxAlignErrorPkts"),
291         MIB_DESC(1, 0x12, "Rx64BytePkts"),
292         MIB_DESC(1, 0x13, "Rx127BytePkts"),
293         MIB_DESC(1, 0x14, "Rx255BytePkts"),
294         MIB_DESC(1, 0x15, "Rx511BytePkts"),
295         MIB_DESC(1, 0x16, "Rx1023BytePkts"),
296         /** Receive Size 1024-1522 (or more, if configured) Packet Count. */
297         MIB_DESC(1, 0x17, "RxMaxBytePkts"),
298         MIB_DESC(1, 0x18, "RxDroppedPkts"),
299         MIB_DESC(1, 0x19, "RxFilteredPkts"),
300         MIB_DESC(2, 0x24, "RxGoodBytes"),
301         MIB_DESC(2, 0x26, "RxBadBytes"),
302         MIB_DESC(1, 0x11, "TxAcmDroppedPkts"),
303         MIB_DESC(1, 0x0C, "TxGoodPkts"),
304         MIB_DESC(1, 0x06, "TxUnicastPkts"),
305         MIB_DESC(1, 0x07, "TxMulticastPkts"),
306         MIB_DESC(1, 0x00, "Tx64BytePkts"),
307         MIB_DESC(1, 0x01, "Tx127BytePkts"),
308         MIB_DESC(1, 0x02, "Tx255BytePkts"),
309         MIB_DESC(1, 0x03, "Tx511BytePkts"),
310         MIB_DESC(1, 0x04, "Tx1023BytePkts"),
311         /** Transmit Size 1024-1522 (or more, if configured) Packet Count. */
312         MIB_DESC(1, 0x05, "TxMaxBytePkts"),
313         MIB_DESC(1, 0x08, "TxSingleCollCount"),
314         MIB_DESC(1, 0x09, "TxMultCollCount"),
315         MIB_DESC(1, 0x0A, "TxLateCollCount"),
316         MIB_DESC(1, 0x0B, "TxExcessCollCount"),
317         MIB_DESC(1, 0x0D, "TxPauseCount"),
318         MIB_DESC(1, 0x10, "TxDroppedPkts"),
319         MIB_DESC(2, 0x0E, "TxGoodBytes"),
320 };
321
322 static u32 gswip_switch_r(struct gswip_priv *priv, u32 offset)
323 {
324         return __raw_readl(priv->gswip + (offset * 4));
325 }
326
327 static void gswip_switch_w(struct gswip_priv *priv, u32 val, u32 offset)
328 {
329         __raw_writel(val, priv->gswip + (offset * 4));
330 }
331
332 static void gswip_switch_mask(struct gswip_priv *priv, u32 clear, u32 set,
333                               u32 offset)
334 {
335         u32 val = gswip_switch_r(priv, offset);
336
337         val &= ~(clear);
338         val |= set;
339         gswip_switch_w(priv, val, offset);
340 }
341
342 static u32 gswip_switch_r_timeout(struct gswip_priv *priv, u32 offset,
343                                   u32 cleared)
344 {
345         u32 val;
346
347         return readx_poll_timeout(__raw_readl, priv->gswip + (offset * 4), val,
348                                   (val & cleared) == 0, 20, 50000);
349 }
350
351 static u32 gswip_mdio_r(struct gswip_priv *priv, u32 offset)
352 {
353         return __raw_readl(priv->mdio + (offset * 4));
354 }
355
356 static void gswip_mdio_w(struct gswip_priv *priv, u32 val, u32 offset)
357 {
358         __raw_writel(val, priv->mdio + (offset * 4));
359 }
360
361 static void gswip_mdio_mask(struct gswip_priv *priv, u32 clear, u32 set,
362                             u32 offset)
363 {
364         u32 val = gswip_mdio_r(priv, offset);
365
366         val &= ~(clear);
367         val |= set;
368         gswip_mdio_w(priv, val, offset);
369 }
370
371 static u32 gswip_mii_r(struct gswip_priv *priv, u32 offset)
372 {
373         return __raw_readl(priv->mii + (offset * 4));
374 }
375
376 static void gswip_mii_w(struct gswip_priv *priv, u32 val, u32 offset)
377 {
378         __raw_writel(val, priv->mii + (offset * 4));
379 }
380
381 static void gswip_mii_mask(struct gswip_priv *priv, u32 clear, u32 set,
382                            u32 offset)
383 {
384         u32 val = gswip_mii_r(priv, offset);
385
386         val &= ~(clear);
387         val |= set;
388         gswip_mii_w(priv, val, offset);
389 }
390
391 static void gswip_mii_mask_cfg(struct gswip_priv *priv, u32 clear, u32 set,
392                                int port)
393 {
394         switch (port) {
395         case 0:
396                 gswip_mii_mask(priv, clear, set, GSWIP_MII_CFG0);
397                 break;
398         case 1:
399                 gswip_mii_mask(priv, clear, set, GSWIP_MII_CFG1);
400                 break;
401         case 5:
402                 gswip_mii_mask(priv, clear, set, GSWIP_MII_CFG5);
403                 break;
404         }
405 }
406
407 static void gswip_mii_mask_pcdu(struct gswip_priv *priv, u32 clear, u32 set,
408                                 int port)
409 {
410         switch (port) {
411         case 0:
412                 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU0);
413                 break;
414         case 1:
415                 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU1);
416                 break;
417         case 5:
418                 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU5);
419                 break;
420         }
421 }
422
423 static int gswip_mdio_poll(struct gswip_priv *priv)
424 {
425         int cnt = 100;
426
427         while (likely(cnt--)) {
428                 u32 ctrl = gswip_mdio_r(priv, GSWIP_MDIO_CTRL);
429
430                 if ((ctrl & GSWIP_MDIO_CTRL_BUSY) == 0)
431                         return 0;
432                 usleep_range(20, 40);
433         }
434
435         return -ETIMEDOUT;
436 }
437
438 static int gswip_mdio_wr(struct mii_bus *bus, int addr, int reg, u16 val)
439 {
440         struct gswip_priv *priv = bus->priv;
441         int err;
442
443         err = gswip_mdio_poll(priv);
444         if (err) {
445                 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
446                 return err;
447         }
448
449         gswip_mdio_w(priv, val, GSWIP_MDIO_WRITE);
450         gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_WR |
451                 ((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
452                 (reg & GSWIP_MDIO_CTRL_REGAD_MASK),
453                 GSWIP_MDIO_CTRL);
454
455         return 0;
456 }
457
458 static int gswip_mdio_rd(struct mii_bus *bus, int addr, int reg)
459 {
460         struct gswip_priv *priv = bus->priv;
461         int err;
462
463         err = gswip_mdio_poll(priv);
464         if (err) {
465                 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
466                 return err;
467         }
468
469         gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_RD |
470                 ((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
471                 (reg & GSWIP_MDIO_CTRL_REGAD_MASK),
472                 GSWIP_MDIO_CTRL);
473
474         err = gswip_mdio_poll(priv);
475         if (err) {
476                 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
477                 return err;
478         }
479
480         return gswip_mdio_r(priv, GSWIP_MDIO_READ);
481 }
482
483 static int gswip_mdio(struct gswip_priv *priv, struct device_node *mdio_np)
484 {
485         struct dsa_switch *ds = priv->ds;
486
487         ds->slave_mii_bus = devm_mdiobus_alloc(priv->dev);
488         if (!ds->slave_mii_bus)
489                 return -ENOMEM;
490
491         ds->slave_mii_bus->priv = priv;
492         ds->slave_mii_bus->read = gswip_mdio_rd;
493         ds->slave_mii_bus->write = gswip_mdio_wr;
494         ds->slave_mii_bus->name = "lantiq,xrx200-mdio";
495         snprintf(ds->slave_mii_bus->id, MII_BUS_ID_SIZE, "%s-mii",
496                  dev_name(priv->dev));
497         ds->slave_mii_bus->parent = priv->dev;
498         ds->slave_mii_bus->phy_mask = ~ds->phys_mii_mask;
499
500         return of_mdiobus_register(ds->slave_mii_bus, mdio_np);
501 }
502
503 static int gswip_pce_table_entry_read(struct gswip_priv *priv,
504                                       struct gswip_pce_table_entry *tbl)
505 {
506         int i;
507         int err;
508         u16 crtl;
509         u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSRD :
510                                         GSWIP_PCE_TBL_CTRL_OPMOD_ADRD;
511
512         err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
513                                      GSWIP_PCE_TBL_CTRL_BAS);
514         if (err)
515                 return err;
516
517         gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
518         gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
519                                 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
520                           tbl->table | addr_mode | GSWIP_PCE_TBL_CTRL_BAS,
521                           GSWIP_PCE_TBL_CTRL);
522
523         err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
524                                      GSWIP_PCE_TBL_CTRL_BAS);
525         if (err)
526                 return err;
527
528         for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
529                 tbl->key[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_KEY(i));
530
531         for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
532                 tbl->val[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_VAL(i));
533
534         tbl->mask = gswip_switch_r(priv, GSWIP_PCE_TBL_MASK);
535
536         crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
537
538         tbl->type = !!(crtl & GSWIP_PCE_TBL_CTRL_TYPE);
539         tbl->valid = !!(crtl & GSWIP_PCE_TBL_CTRL_VLD);
540         tbl->gmap = (crtl & GSWIP_PCE_TBL_CTRL_GMAP_MASK) >> 7;
541
542         return 0;
543 }
544
545 static int gswip_pce_table_entry_write(struct gswip_priv *priv,
546                                        struct gswip_pce_table_entry *tbl)
547 {
548         int i;
549         int err;
550         u16 crtl;
551         u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSWR :
552                                         GSWIP_PCE_TBL_CTRL_OPMOD_ADWR;
553
554         err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
555                                      GSWIP_PCE_TBL_CTRL_BAS);
556         if (err)
557                 return err;
558
559         gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
560         gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
561                                 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
562                           tbl->table | addr_mode,
563                           GSWIP_PCE_TBL_CTRL);
564
565         for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
566                 gswip_switch_w(priv, tbl->key[i], GSWIP_PCE_TBL_KEY(i));
567
568         for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
569                 gswip_switch_w(priv, tbl->val[i], GSWIP_PCE_TBL_VAL(i));
570
571         gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
572                                 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
573                           tbl->table | addr_mode,
574                           GSWIP_PCE_TBL_CTRL);
575
576         gswip_switch_w(priv, tbl->mask, GSWIP_PCE_TBL_MASK);
577
578         crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
579         crtl &= ~(GSWIP_PCE_TBL_CTRL_TYPE | GSWIP_PCE_TBL_CTRL_VLD |
580                   GSWIP_PCE_TBL_CTRL_GMAP_MASK);
581         if (tbl->type)
582                 crtl |= GSWIP_PCE_TBL_CTRL_TYPE;
583         if (tbl->valid)
584                 crtl |= GSWIP_PCE_TBL_CTRL_VLD;
585         crtl |= (tbl->gmap << 7) & GSWIP_PCE_TBL_CTRL_GMAP_MASK;
586         crtl |= GSWIP_PCE_TBL_CTRL_BAS;
587         gswip_switch_w(priv, crtl, GSWIP_PCE_TBL_CTRL);
588
589         return gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
590                                       GSWIP_PCE_TBL_CTRL_BAS);
591 }
592
593 /* Add the LAN port into a bridge with the CPU port by
594  * default. This prevents automatic forwarding of
595  * packages between the LAN ports when no explicit
596  * bridge is configured.
597  */
598 static int gswip_add_single_port_br(struct gswip_priv *priv, int port, bool add)
599 {
600         struct gswip_pce_table_entry vlan_active = {0,};
601         struct gswip_pce_table_entry vlan_mapping = {0,};
602         unsigned int cpu_port = priv->hw_info->cpu_port;
603         unsigned int max_ports = priv->hw_info->max_ports;
604         int err;
605
606         if (port >= max_ports) {
607                 dev_err(priv->dev, "single port for %i supported\n", port);
608                 return -EIO;
609         }
610
611         vlan_active.index = port + 1;
612         vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
613         vlan_active.key[0] = 0; /* vid */
614         vlan_active.val[0] = port + 1 /* fid */;
615         vlan_active.valid = add;
616         err = gswip_pce_table_entry_write(priv, &vlan_active);
617         if (err) {
618                 dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
619                 return err;
620         }
621
622         if (!add)
623                 return 0;
624
625         vlan_mapping.index = port + 1;
626         vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
627         vlan_mapping.val[0] = 0 /* vid */;
628         vlan_mapping.val[1] = BIT(port) | BIT(cpu_port);
629         vlan_mapping.val[2] = 0;
630         err = gswip_pce_table_entry_write(priv, &vlan_mapping);
631         if (err) {
632                 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
633                 return err;
634         }
635
636         return 0;
637 }
638
639 static int gswip_port_enable(struct dsa_switch *ds, int port,
640                              struct phy_device *phydev)
641 {
642         struct gswip_priv *priv = ds->priv;
643         int err;
644
645         if (!dsa_is_user_port(ds, port))
646                 return 0;
647
648         if (!dsa_is_cpu_port(ds, port)) {
649                 err = gswip_add_single_port_br(priv, port, true);
650                 if (err)
651                         return err;
652         }
653
654         /* RMON Counter Enable for port */
655         gswip_switch_w(priv, GSWIP_BM_PCFG_CNTEN, GSWIP_BM_PCFGp(port));
656
657         /* enable port fetch/store dma & VLAN Modification */
658         gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_EN |
659                                    GSWIP_FDMA_PCTRL_VLANMOD_BOTH,
660                          GSWIP_FDMA_PCTRLp(port));
661         gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
662                           GSWIP_SDMA_PCTRLp(port));
663
664         if (!dsa_is_cpu_port(ds, port)) {
665                 u32 macconf = GSWIP_MDIO_PHY_LINK_AUTO |
666                               GSWIP_MDIO_PHY_SPEED_AUTO |
667                               GSWIP_MDIO_PHY_FDUP_AUTO |
668                               GSWIP_MDIO_PHY_FCONTX_AUTO |
669                               GSWIP_MDIO_PHY_FCONRX_AUTO |
670                               (phydev->mdio.addr & GSWIP_MDIO_PHY_ADDR_MASK);
671
672                 gswip_mdio_w(priv, macconf, GSWIP_MDIO_PHYp(port));
673                 /* Activate MDIO auto polling */
674                 gswip_mdio_mask(priv, 0, BIT(port), GSWIP_MDIO_MDC_CFG0);
675         }
676
677         return 0;
678 }
679
680 static void gswip_port_disable(struct dsa_switch *ds, int port)
681 {
682         struct gswip_priv *priv = ds->priv;
683
684         if (!dsa_is_user_port(ds, port))
685                 return;
686
687         if (!dsa_is_cpu_port(ds, port)) {
688                 gswip_mdio_mask(priv, GSWIP_MDIO_PHY_LINK_DOWN,
689                                 GSWIP_MDIO_PHY_LINK_MASK,
690                                 GSWIP_MDIO_PHYp(port));
691                 /* Deactivate MDIO auto polling */
692                 gswip_mdio_mask(priv, BIT(port), 0, GSWIP_MDIO_MDC_CFG0);
693         }
694
695         gswip_switch_mask(priv, GSWIP_FDMA_PCTRL_EN, 0,
696                           GSWIP_FDMA_PCTRLp(port));
697         gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
698                           GSWIP_SDMA_PCTRLp(port));
699 }
700
701 static int gswip_pce_load_microcode(struct gswip_priv *priv)
702 {
703         int i;
704         int err;
705
706         gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
707                                 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
708                           GSWIP_PCE_TBL_CTRL_OPMOD_ADWR, GSWIP_PCE_TBL_CTRL);
709         gswip_switch_w(priv, 0, GSWIP_PCE_TBL_MASK);
710
711         for (i = 0; i < ARRAY_SIZE(gswip_pce_microcode); i++) {
712                 gswip_switch_w(priv, i, GSWIP_PCE_TBL_ADDR);
713                 gswip_switch_w(priv, gswip_pce_microcode[i].val_0,
714                                GSWIP_PCE_TBL_VAL(0));
715                 gswip_switch_w(priv, gswip_pce_microcode[i].val_1,
716                                GSWIP_PCE_TBL_VAL(1));
717                 gswip_switch_w(priv, gswip_pce_microcode[i].val_2,
718                                GSWIP_PCE_TBL_VAL(2));
719                 gswip_switch_w(priv, gswip_pce_microcode[i].val_3,
720                                GSWIP_PCE_TBL_VAL(3));
721
722                 /* start the table access: */
723                 gswip_switch_mask(priv, 0, GSWIP_PCE_TBL_CTRL_BAS,
724                                   GSWIP_PCE_TBL_CTRL);
725                 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
726                                              GSWIP_PCE_TBL_CTRL_BAS);
727                 if (err)
728                         return err;
729         }
730
731         /* tell the switch that the microcode is loaded */
732         gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MC_VALID,
733                           GSWIP_PCE_GCTRL_0);
734
735         return 0;
736 }
737
738 static int gswip_port_vlan_filtering(struct dsa_switch *ds, int port,
739                                      bool vlan_filtering,
740                                      struct switchdev_trans *trans)
741 {
742         struct gswip_priv *priv = ds->priv;
743
744         /* Do not allow changing the VLAN filtering options while in bridge */
745         if (switchdev_trans_ph_prepare(trans)) {
746                 struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
747
748                 if (!bridge)
749                         return 0;
750
751                 if (!!(priv->port_vlan_filter & BIT(port)) != vlan_filtering)
752                         return -EIO;
753
754                 return 0;
755         }
756
757         if (vlan_filtering) {
758                 /* Use port based VLAN tag */
759                 gswip_switch_mask(priv,
760                                   GSWIP_PCE_VCTRL_VSR,
761                                   GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
762                                   GSWIP_PCE_VCTRL_VEMR,
763                                   GSWIP_PCE_VCTRL(port));
764                 gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_TVM, 0,
765                                   GSWIP_PCE_PCTRL_0p(port));
766         } else {
767                 /* Use port based VLAN tag */
768                 gswip_switch_mask(priv,
769                                   GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
770                                   GSWIP_PCE_VCTRL_VEMR,
771                                   GSWIP_PCE_VCTRL_VSR,
772                                   GSWIP_PCE_VCTRL(port));
773                 gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_TVM,
774                                   GSWIP_PCE_PCTRL_0p(port));
775         }
776
777         return 0;
778 }
779
780 static int gswip_setup(struct dsa_switch *ds)
781 {
782         struct gswip_priv *priv = ds->priv;
783         unsigned int cpu_port = priv->hw_info->cpu_port;
784         int i;
785         int err;
786
787         gswip_switch_w(priv, GSWIP_SWRES_R0, GSWIP_SWRES);
788         usleep_range(5000, 10000);
789         gswip_switch_w(priv, 0, GSWIP_SWRES);
790
791         /* disable port fetch/store dma on all ports */
792         for (i = 0; i < priv->hw_info->max_ports; i++) {
793                 struct switchdev_trans trans;
794
795                 /* Skip the prepare phase, this shouldn't return an error
796                  * during setup.
797                  */
798                 trans.ph_prepare = false;
799
800                 gswip_port_disable(ds, i);
801                 gswip_port_vlan_filtering(ds, i, false, &trans);
802         }
803
804         /* enable Switch */
805         gswip_mdio_mask(priv, 0, GSWIP_MDIO_GLOB_ENABLE, GSWIP_MDIO_GLOB);
806
807         err = gswip_pce_load_microcode(priv);
808         if (err) {
809                 dev_err(priv->dev, "writing PCE microcode failed, %i", err);
810                 return err;
811         }
812
813         /* Default unknown Broadcast/Multicast/Unicast port maps */
814         gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP1);
815         gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP2);
816         gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP3);
817
818         /* disable PHY auto polling */
819         gswip_mdio_w(priv, 0x0, GSWIP_MDIO_MDC_CFG0);
820         /* Configure the MDIO Clock 2.5 MHz */
821         gswip_mdio_mask(priv, 0xff, 0x09, GSWIP_MDIO_MDC_CFG1);
822
823         /* Disable the xMII link */
824         gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, 0);
825         gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, 1);
826         gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, 5);
827
828         /* enable special tag insertion on cpu port */
829         gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_STEN,
830                           GSWIP_FDMA_PCTRLp(cpu_port));
831
832         /* accept special tag in ingress direction */
833         gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_INGRESS,
834                           GSWIP_PCE_PCTRL_0p(cpu_port));
835
836         gswip_switch_mask(priv, 0, GSWIP_MAC_CTRL_2_MLEN,
837                           GSWIP_MAC_CTRL_2p(cpu_port));
838         gswip_switch_w(priv, VLAN_ETH_FRAME_LEN + 8, GSWIP_MAC_FLEN);
839         gswip_switch_mask(priv, 0, GSWIP_BM_QUEUE_GCTRL_GL_MOD,
840                           GSWIP_BM_QUEUE_GCTRL);
841
842         /* VLAN aware Switching */
843         gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_VLAN, GSWIP_PCE_GCTRL_0);
844
845         /* Flush MAC Table */
846         gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MTFL, GSWIP_PCE_GCTRL_0);
847
848         err = gswip_switch_r_timeout(priv, GSWIP_PCE_GCTRL_0,
849                                      GSWIP_PCE_GCTRL_0_MTFL);
850         if (err) {
851                 dev_err(priv->dev, "MAC flushing didn't finish\n");
852                 return err;
853         }
854
855         gswip_port_enable(ds, cpu_port, NULL);
856         return 0;
857 }
858
859 static enum dsa_tag_protocol gswip_get_tag_protocol(struct dsa_switch *ds,
860                                                     int port,
861                                                     enum dsa_tag_protocol mp)
862 {
863         return DSA_TAG_PROTO_GSWIP;
864 }
865
866 static int gswip_vlan_active_create(struct gswip_priv *priv,
867                                     struct net_device *bridge,
868                                     int fid, u16 vid)
869 {
870         struct gswip_pce_table_entry vlan_active = {0,};
871         unsigned int max_ports = priv->hw_info->max_ports;
872         int idx = -1;
873         int err;
874         int i;
875
876         /* Look for a free slot */
877         for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
878                 if (!priv->vlans[i].bridge) {
879                         idx = i;
880                         break;
881                 }
882         }
883
884         if (idx == -1)
885                 return -ENOSPC;
886
887         if (fid == -1)
888                 fid = idx;
889
890         vlan_active.index = idx;
891         vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
892         vlan_active.key[0] = vid;
893         vlan_active.val[0] = fid;
894         vlan_active.valid = true;
895
896         err = gswip_pce_table_entry_write(priv, &vlan_active);
897         if (err) {
898                 dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
899                 return err;
900         }
901
902         priv->vlans[idx].bridge = bridge;
903         priv->vlans[idx].vid = vid;
904         priv->vlans[idx].fid = fid;
905
906         return idx;
907 }
908
909 static int gswip_vlan_active_remove(struct gswip_priv *priv, int idx)
910 {
911         struct gswip_pce_table_entry vlan_active = {0,};
912         int err;
913
914         vlan_active.index = idx;
915         vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
916         vlan_active.valid = false;
917         err = gswip_pce_table_entry_write(priv, &vlan_active);
918         if (err)
919                 dev_err(priv->dev, "failed to delete active VLAN: %d\n", err);
920         priv->vlans[idx].bridge = NULL;
921
922         return err;
923 }
924
925 static int gswip_vlan_add_unaware(struct gswip_priv *priv,
926                                   struct net_device *bridge, int port)
927 {
928         struct gswip_pce_table_entry vlan_mapping = {0,};
929         unsigned int max_ports = priv->hw_info->max_ports;
930         unsigned int cpu_port = priv->hw_info->cpu_port;
931         bool active_vlan_created = false;
932         int idx = -1;
933         int i;
934         int err;
935
936         /* Check if there is already a page for this bridge */
937         for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
938                 if (priv->vlans[i].bridge == bridge) {
939                         idx = i;
940                         break;
941                 }
942         }
943
944         /* If this bridge is not programmed yet, add a Active VLAN table
945          * entry in a free slot and prepare the VLAN mapping table entry.
946          */
947         if (idx == -1) {
948                 idx = gswip_vlan_active_create(priv, bridge, -1, 0);
949                 if (idx < 0)
950                         return idx;
951                 active_vlan_created = true;
952
953                 vlan_mapping.index = idx;
954                 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
955                 /* VLAN ID byte, maps to the VLAN ID of vlan active table */
956                 vlan_mapping.val[0] = 0;
957         } else {
958                 /* Read the existing VLAN mapping entry from the switch */
959                 vlan_mapping.index = idx;
960                 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
961                 err = gswip_pce_table_entry_read(priv, &vlan_mapping);
962                 if (err) {
963                         dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
964                                 err);
965                         return err;
966                 }
967         }
968
969         /* Update the VLAN mapping entry and write it to the switch */
970         vlan_mapping.val[1] |= BIT(cpu_port);
971         vlan_mapping.val[1] |= BIT(port);
972         err = gswip_pce_table_entry_write(priv, &vlan_mapping);
973         if (err) {
974                 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
975                 /* In case an Active VLAN was creaetd delete it again */
976                 if (active_vlan_created)
977                         gswip_vlan_active_remove(priv, idx);
978                 return err;
979         }
980
981         gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
982         return 0;
983 }
984
985 static int gswip_vlan_add_aware(struct gswip_priv *priv,
986                                 struct net_device *bridge, int port,
987                                 u16 vid, bool untagged,
988                                 bool pvid)
989 {
990         struct gswip_pce_table_entry vlan_mapping = {0,};
991         unsigned int max_ports = priv->hw_info->max_ports;
992         unsigned int cpu_port = priv->hw_info->cpu_port;
993         bool active_vlan_created = false;
994         int idx = -1;
995         int fid = -1;
996         int i;
997         int err;
998
999         /* Check if there is already a page for this bridge */
1000         for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1001                 if (priv->vlans[i].bridge == bridge) {
1002                         if (fid != -1 && fid != priv->vlans[i].fid)
1003                                 dev_err(priv->dev, "one bridge with multiple flow ids\n");
1004                         fid = priv->vlans[i].fid;
1005                         if (priv->vlans[i].vid == vid) {
1006                                 idx = i;
1007                                 break;
1008                         }
1009                 }
1010         }
1011
1012         /* If this bridge is not programmed yet, add a Active VLAN table
1013          * entry in a free slot and prepare the VLAN mapping table entry.
1014          */
1015         if (idx == -1) {
1016                 idx = gswip_vlan_active_create(priv, bridge, fid, vid);
1017                 if (idx < 0)
1018                         return idx;
1019                 active_vlan_created = true;
1020
1021                 vlan_mapping.index = idx;
1022                 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1023                 /* VLAN ID byte, maps to the VLAN ID of vlan active table */
1024                 vlan_mapping.val[0] = vid;
1025         } else {
1026                 /* Read the existing VLAN mapping entry from the switch */
1027                 vlan_mapping.index = idx;
1028                 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1029                 err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1030                 if (err) {
1031                         dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
1032                                 err);
1033                         return err;
1034                 }
1035         }
1036
1037         vlan_mapping.val[0] = vid;
1038         /* Update the VLAN mapping entry and write it to the switch */
1039         vlan_mapping.val[1] |= BIT(cpu_port);
1040         vlan_mapping.val[2] |= BIT(cpu_port);
1041         vlan_mapping.val[1] |= BIT(port);
1042         if (untagged)
1043                 vlan_mapping.val[2] &= ~BIT(port);
1044         else
1045                 vlan_mapping.val[2] |= BIT(port);
1046         err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1047         if (err) {
1048                 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1049                 /* In case an Active VLAN was creaetd delete it again */
1050                 if (active_vlan_created)
1051                         gswip_vlan_active_remove(priv, idx);
1052                 return err;
1053         }
1054
1055         if (pvid)
1056                 gswip_switch_w(priv, idx, GSWIP_PCE_DEFPVID(port));
1057
1058         return 0;
1059 }
1060
1061 static int gswip_vlan_remove(struct gswip_priv *priv,
1062                              struct net_device *bridge, int port,
1063                              u16 vid, bool pvid, bool vlan_aware)
1064 {
1065         struct gswip_pce_table_entry vlan_mapping = {0,};
1066         unsigned int max_ports = priv->hw_info->max_ports;
1067         unsigned int cpu_port = priv->hw_info->cpu_port;
1068         int idx = -1;
1069         int i;
1070         int err;
1071
1072         /* Check if there is already a page for this bridge */
1073         for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1074                 if (priv->vlans[i].bridge == bridge &&
1075                     (!vlan_aware || priv->vlans[i].vid == vid)) {
1076                         idx = i;
1077                         break;
1078                 }
1079         }
1080
1081         if (idx == -1) {
1082                 dev_err(priv->dev, "bridge to leave does not exists\n");
1083                 return -ENOENT;
1084         }
1085
1086         vlan_mapping.index = idx;
1087         vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1088         err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1089         if (err) {
1090                 dev_err(priv->dev, "failed to read VLAN mapping: %d\n", err);
1091                 return err;
1092         }
1093
1094         vlan_mapping.val[1] &= ~BIT(port);
1095         vlan_mapping.val[2] &= ~BIT(port);
1096         err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1097         if (err) {
1098                 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1099                 return err;
1100         }
1101
1102         /* In case all ports are removed from the bridge, remove the VLAN */
1103         if ((vlan_mapping.val[1] & ~BIT(cpu_port)) == 0) {
1104                 err = gswip_vlan_active_remove(priv, idx);
1105                 if (err) {
1106                         dev_err(priv->dev, "failed to write active VLAN: %d\n",
1107                                 err);
1108                         return err;
1109                 }
1110         }
1111
1112         /* GSWIP 2.2 (GRX300) and later program here the VID directly. */
1113         if (pvid)
1114                 gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1115
1116         return 0;
1117 }
1118
1119 static int gswip_port_bridge_join(struct dsa_switch *ds, int port,
1120                                   struct net_device *bridge)
1121 {
1122         struct gswip_priv *priv = ds->priv;
1123         int err;
1124
1125         /* When the bridge uses VLAN filtering we have to configure VLAN
1126          * specific bridges. No bridge is configured here.
1127          */
1128         if (!br_vlan_enabled(bridge)) {
1129                 err = gswip_vlan_add_unaware(priv, bridge, port);
1130                 if (err)
1131                         return err;
1132                 priv->port_vlan_filter &= ~BIT(port);
1133         } else {
1134                 priv->port_vlan_filter |= BIT(port);
1135         }
1136         return gswip_add_single_port_br(priv, port, false);
1137 }
1138
1139 static void gswip_port_bridge_leave(struct dsa_switch *ds, int port,
1140                                     struct net_device *bridge)
1141 {
1142         struct gswip_priv *priv = ds->priv;
1143
1144         gswip_add_single_port_br(priv, port, true);
1145
1146         /* When the bridge uses VLAN filtering we have to configure VLAN
1147          * specific bridges. No bridge is configured here.
1148          */
1149         if (!br_vlan_enabled(bridge))
1150                 gswip_vlan_remove(priv, bridge, port, 0, true, false);
1151 }
1152
1153 static int gswip_port_vlan_prepare(struct dsa_switch *ds, int port,
1154                                    const struct switchdev_obj_port_vlan *vlan)
1155 {
1156         struct gswip_priv *priv = ds->priv;
1157         struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1158         unsigned int max_ports = priv->hw_info->max_ports;
1159         u16 vid;
1160         int i;
1161         int pos = max_ports;
1162
1163         /* We only support VLAN filtering on bridges */
1164         if (!dsa_is_cpu_port(ds, port) && !bridge)
1165                 return -EOPNOTSUPP;
1166
1167         for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1168                 int idx = -1;
1169
1170                 /* Check if there is already a page for this VLAN */
1171                 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1172                         if (priv->vlans[i].bridge == bridge &&
1173                             priv->vlans[i].vid == vid) {
1174                                 idx = i;
1175                                 break;
1176                         }
1177                 }
1178
1179                 /* If this VLAN is not programmed yet, we have to reserve
1180                  * one entry in the VLAN table. Make sure we start at the
1181                  * next position round.
1182                  */
1183                 if (idx == -1) {
1184                         /* Look for a free slot */
1185                         for (; pos < ARRAY_SIZE(priv->vlans); pos++) {
1186                                 if (!priv->vlans[pos].bridge) {
1187                                         idx = pos;
1188                                         pos++;
1189                                         break;
1190                                 }
1191                         }
1192
1193                         if (idx == -1)
1194                                 return -ENOSPC;
1195                 }
1196         }
1197
1198         return 0;
1199 }
1200
1201 static void gswip_port_vlan_add(struct dsa_switch *ds, int port,
1202                                 const struct switchdev_obj_port_vlan *vlan)
1203 {
1204         struct gswip_priv *priv = ds->priv;
1205         struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1206         bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1207         bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1208         u16 vid;
1209
1210         /* We have to receive all packets on the CPU port and should not
1211          * do any VLAN filtering here. This is also called with bridge
1212          * NULL and then we do not know for which bridge to configure
1213          * this.
1214          */
1215         if (dsa_is_cpu_port(ds, port))
1216                 return;
1217
1218         for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid)
1219                 gswip_vlan_add_aware(priv, bridge, port, vid, untagged, pvid);
1220 }
1221
1222 static int gswip_port_vlan_del(struct dsa_switch *ds, int port,
1223                                const struct switchdev_obj_port_vlan *vlan)
1224 {
1225         struct gswip_priv *priv = ds->priv;
1226         struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1227         bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1228         u16 vid;
1229         int err;
1230
1231         /* We have to receive all packets on the CPU port and should not
1232          * do any VLAN filtering here. This is also called with bridge
1233          * NULL and then we do not know for which bridge to configure
1234          * this.
1235          */
1236         if (dsa_is_cpu_port(ds, port))
1237                 return 0;
1238
1239         for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1240                 err = gswip_vlan_remove(priv, bridge, port, vid, pvid, true);
1241                 if (err)
1242                         return err;
1243         }
1244
1245         return 0;
1246 }
1247
1248 static void gswip_port_fast_age(struct dsa_switch *ds, int port)
1249 {
1250         struct gswip_priv *priv = ds->priv;
1251         struct gswip_pce_table_entry mac_bridge = {0,};
1252         int i;
1253         int err;
1254
1255         for (i = 0; i < 2048; i++) {
1256                 mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1257                 mac_bridge.index = i;
1258
1259                 err = gswip_pce_table_entry_read(priv, &mac_bridge);
1260                 if (err) {
1261                         dev_err(priv->dev, "failed to read mac bridge: %d\n",
1262                                 err);
1263                         return;
1264                 }
1265
1266                 if (!mac_bridge.valid)
1267                         continue;
1268
1269                 if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC)
1270                         continue;
1271
1272                 if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) != port)
1273                         continue;
1274
1275                 mac_bridge.valid = false;
1276                 err = gswip_pce_table_entry_write(priv, &mac_bridge);
1277                 if (err) {
1278                         dev_err(priv->dev, "failed to write mac bridge: %d\n",
1279                                 err);
1280                         return;
1281                 }
1282         }
1283 }
1284
1285 static void gswip_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1286 {
1287         struct gswip_priv *priv = ds->priv;
1288         u32 stp_state;
1289
1290         switch (state) {
1291         case BR_STATE_DISABLED:
1292                 gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
1293                                   GSWIP_SDMA_PCTRLp(port));
1294                 return;
1295         case BR_STATE_BLOCKING:
1296         case BR_STATE_LISTENING:
1297                 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LISTEN;
1298                 break;
1299         case BR_STATE_LEARNING:
1300                 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LEARNING;
1301                 break;
1302         case BR_STATE_FORWARDING:
1303                 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING;
1304                 break;
1305         default:
1306                 dev_err(priv->dev, "invalid STP state: %d\n", state);
1307                 return;
1308         }
1309
1310         gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
1311                           GSWIP_SDMA_PCTRLp(port));
1312         gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_PSTATE_MASK, stp_state,
1313                           GSWIP_PCE_PCTRL_0p(port));
1314 }
1315
1316 static int gswip_port_fdb(struct dsa_switch *ds, int port,
1317                           const unsigned char *addr, u16 vid, bool add)
1318 {
1319         struct gswip_priv *priv = ds->priv;
1320         struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1321         struct gswip_pce_table_entry mac_bridge = {0,};
1322         unsigned int cpu_port = priv->hw_info->cpu_port;
1323         int fid = -1;
1324         int i;
1325         int err;
1326
1327         if (!bridge)
1328                 return -EINVAL;
1329
1330         for (i = cpu_port; i < ARRAY_SIZE(priv->vlans); i++) {
1331                 if (priv->vlans[i].bridge == bridge) {
1332                         fid = priv->vlans[i].fid;
1333                         break;
1334                 }
1335         }
1336
1337         if (fid == -1) {
1338                 dev_err(priv->dev, "Port not part of a bridge\n");
1339                 return -EINVAL;
1340         }
1341
1342         mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1343         mac_bridge.key_mode = true;
1344         mac_bridge.key[0] = addr[5] | (addr[4] << 8);
1345         mac_bridge.key[1] = addr[3] | (addr[2] << 8);
1346         mac_bridge.key[2] = addr[1] | (addr[0] << 8);
1347         mac_bridge.key[3] = fid;
1348         mac_bridge.val[0] = add ? BIT(port) : 0; /* port map */
1349         mac_bridge.val[1] = GSWIP_TABLE_MAC_BRIDGE_STATIC;
1350         mac_bridge.valid = add;
1351
1352         err = gswip_pce_table_entry_write(priv, &mac_bridge);
1353         if (err)
1354                 dev_err(priv->dev, "failed to write mac bridge: %d\n", err);
1355
1356         return err;
1357 }
1358
1359 static int gswip_port_fdb_add(struct dsa_switch *ds, int port,
1360                               const unsigned char *addr, u16 vid)
1361 {
1362         return gswip_port_fdb(ds, port, addr, vid, true);
1363 }
1364
1365 static int gswip_port_fdb_del(struct dsa_switch *ds, int port,
1366                               const unsigned char *addr, u16 vid)
1367 {
1368         return gswip_port_fdb(ds, port, addr, vid, false);
1369 }
1370
1371 static int gswip_port_fdb_dump(struct dsa_switch *ds, int port,
1372                                dsa_fdb_dump_cb_t *cb, void *data)
1373 {
1374         struct gswip_priv *priv = ds->priv;
1375         struct gswip_pce_table_entry mac_bridge = {0,};
1376         unsigned char addr[6];
1377         int i;
1378         int err;
1379
1380         for (i = 0; i < 2048; i++) {
1381                 mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1382                 mac_bridge.index = i;
1383
1384                 err = gswip_pce_table_entry_read(priv, &mac_bridge);
1385                 if (err) {
1386                         dev_err(priv->dev, "failed to write mac bridge: %d\n",
1387                                 err);
1388                         return err;
1389                 }
1390
1391                 if (!mac_bridge.valid)
1392                         continue;
1393
1394                 addr[5] = mac_bridge.key[0] & 0xff;
1395                 addr[4] = (mac_bridge.key[0] >> 8) & 0xff;
1396                 addr[3] = mac_bridge.key[1] & 0xff;
1397                 addr[2] = (mac_bridge.key[1] >> 8) & 0xff;
1398                 addr[1] = mac_bridge.key[2] & 0xff;
1399                 addr[0] = (mac_bridge.key[2] >> 8) & 0xff;
1400                 if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC) {
1401                         if (mac_bridge.val[0] & BIT(port))
1402                                 cb(addr, 0, true, data);
1403                 } else {
1404                         if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) == port)
1405                                 cb(addr, 0, false, data);
1406                 }
1407         }
1408         return 0;
1409 }
1410
1411 static void gswip_phylink_validate(struct dsa_switch *ds, int port,
1412                                    unsigned long *supported,
1413                                    struct phylink_link_state *state)
1414 {
1415         __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1416
1417         switch (port) {
1418         case 0:
1419         case 1:
1420                 if (!phy_interface_mode_is_rgmii(state->interface) &&
1421                     state->interface != PHY_INTERFACE_MODE_MII &&
1422                     state->interface != PHY_INTERFACE_MODE_REVMII &&
1423                     state->interface != PHY_INTERFACE_MODE_RMII)
1424                         goto unsupported;
1425                 break;
1426         case 2:
1427         case 3:
1428         case 4:
1429                 if (state->interface != PHY_INTERFACE_MODE_INTERNAL)
1430                         goto unsupported;
1431                 break;
1432         case 5:
1433                 if (!phy_interface_mode_is_rgmii(state->interface) &&
1434                     state->interface != PHY_INTERFACE_MODE_INTERNAL)
1435                         goto unsupported;
1436                 break;
1437         default:
1438                 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1439                 dev_err(ds->dev, "Unsupported port: %i\n", port);
1440                 return;
1441         }
1442
1443         /* Allow all the expected bits */
1444         phylink_set(mask, Autoneg);
1445         phylink_set_port_modes(mask);
1446         phylink_set(mask, Pause);
1447         phylink_set(mask, Asym_Pause);
1448
1449         /* With the exclusion of MII and Reverse MII, we support Gigabit,
1450          * including Half duplex
1451          */
1452         if (state->interface != PHY_INTERFACE_MODE_MII &&
1453             state->interface != PHY_INTERFACE_MODE_REVMII) {
1454                 phylink_set(mask, 1000baseT_Full);
1455                 phylink_set(mask, 1000baseT_Half);
1456         }
1457
1458         phylink_set(mask, 10baseT_Half);
1459         phylink_set(mask, 10baseT_Full);
1460         phylink_set(mask, 100baseT_Half);
1461         phylink_set(mask, 100baseT_Full);
1462
1463         bitmap_and(supported, supported, mask,
1464                    __ETHTOOL_LINK_MODE_MASK_NBITS);
1465         bitmap_and(state->advertising, state->advertising, mask,
1466                    __ETHTOOL_LINK_MODE_MASK_NBITS);
1467         return;
1468
1469 unsupported:
1470         bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1471         dev_err(ds->dev, "Unsupported interface '%s' for port %d\n",
1472                 phy_modes(state->interface), port);
1473         return;
1474 }
1475
1476 static void gswip_phylink_mac_config(struct dsa_switch *ds, int port,
1477                                      unsigned int mode,
1478                                      const struct phylink_link_state *state)
1479 {
1480         struct gswip_priv *priv = ds->priv;
1481         u32 miicfg = 0;
1482
1483         miicfg |= GSWIP_MII_CFG_LDCLKDIS;
1484
1485         switch (state->interface) {
1486         case PHY_INTERFACE_MODE_MII:
1487         case PHY_INTERFACE_MODE_INTERNAL:
1488                 miicfg |= GSWIP_MII_CFG_MODE_MIIM;
1489                 break;
1490         case PHY_INTERFACE_MODE_REVMII:
1491                 miicfg |= GSWIP_MII_CFG_MODE_MIIP;
1492                 break;
1493         case PHY_INTERFACE_MODE_RMII:
1494                 miicfg |= GSWIP_MII_CFG_MODE_RMIIM;
1495                 break;
1496         case PHY_INTERFACE_MODE_RGMII:
1497         case PHY_INTERFACE_MODE_RGMII_ID:
1498         case PHY_INTERFACE_MODE_RGMII_RXID:
1499         case PHY_INTERFACE_MODE_RGMII_TXID:
1500                 miicfg |= GSWIP_MII_CFG_MODE_RGMII;
1501                 break;
1502         default:
1503                 dev_err(ds->dev,
1504                         "Unsupported interface: %d\n", state->interface);
1505                 return;
1506         }
1507         gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_MODE_MASK, miicfg, port);
1508
1509         switch (state->interface) {
1510         case PHY_INTERFACE_MODE_RGMII_ID:
1511                 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK |
1512                                           GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1513                 break;
1514         case PHY_INTERFACE_MODE_RGMII_RXID:
1515                 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1516                 break;
1517         case PHY_INTERFACE_MODE_RGMII_TXID:
1518                 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK, 0, port);
1519                 break;
1520         default:
1521                 break;
1522         }
1523 }
1524
1525 static void gswip_phylink_mac_link_down(struct dsa_switch *ds, int port,
1526                                         unsigned int mode,
1527                                         phy_interface_t interface)
1528 {
1529         struct gswip_priv *priv = ds->priv;
1530
1531         gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, port);
1532 }
1533
1534 static void gswip_phylink_mac_link_up(struct dsa_switch *ds, int port,
1535                                       unsigned int mode,
1536                                       phy_interface_t interface,
1537                                       struct phy_device *phydev,
1538                                       int speed, int duplex,
1539                                       bool tx_pause, bool rx_pause)
1540 {
1541         struct gswip_priv *priv = ds->priv;
1542
1543         /* Enable the xMII interface only for the external PHY */
1544         if (interface != PHY_INTERFACE_MODE_INTERNAL)
1545                 gswip_mii_mask_cfg(priv, 0, GSWIP_MII_CFG_EN, port);
1546 }
1547
1548 static void gswip_get_strings(struct dsa_switch *ds, int port, u32 stringset,
1549                               uint8_t *data)
1550 {
1551         int i;
1552
1553         if (stringset != ETH_SS_STATS)
1554                 return;
1555
1556         for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++)
1557                 strncpy(data + i * ETH_GSTRING_LEN, gswip_rmon_cnt[i].name,
1558                         ETH_GSTRING_LEN);
1559 }
1560
1561 static u32 gswip_bcm_ram_entry_read(struct gswip_priv *priv, u32 table,
1562                                     u32 index)
1563 {
1564         u32 result;
1565         int err;
1566
1567         gswip_switch_w(priv, index, GSWIP_BM_RAM_ADDR);
1568         gswip_switch_mask(priv, GSWIP_BM_RAM_CTRL_ADDR_MASK |
1569                                 GSWIP_BM_RAM_CTRL_OPMOD,
1570                               table | GSWIP_BM_RAM_CTRL_BAS,
1571                               GSWIP_BM_RAM_CTRL);
1572
1573         err = gswip_switch_r_timeout(priv, GSWIP_BM_RAM_CTRL,
1574                                      GSWIP_BM_RAM_CTRL_BAS);
1575         if (err) {
1576                 dev_err(priv->dev, "timeout while reading table: %u, index: %u",
1577                         table, index);
1578                 return 0;
1579         }
1580
1581         result = gswip_switch_r(priv, GSWIP_BM_RAM_VAL(0));
1582         result |= gswip_switch_r(priv, GSWIP_BM_RAM_VAL(1)) << 16;
1583
1584         return result;
1585 }
1586
1587 static void gswip_get_ethtool_stats(struct dsa_switch *ds, int port,
1588                                     uint64_t *data)
1589 {
1590         struct gswip_priv *priv = ds->priv;
1591         const struct gswip_rmon_cnt_desc *rmon_cnt;
1592         int i;
1593         u64 high;
1594
1595         for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) {
1596                 rmon_cnt = &gswip_rmon_cnt[i];
1597
1598                 data[i] = gswip_bcm_ram_entry_read(priv, port,
1599                                                    rmon_cnt->offset);
1600                 if (rmon_cnt->size == 2) {
1601                         high = gswip_bcm_ram_entry_read(priv, port,
1602                                                         rmon_cnt->offset + 1);
1603                         data[i] |= high << 32;
1604                 }
1605         }
1606 }
1607
1608 static int gswip_get_sset_count(struct dsa_switch *ds, int port, int sset)
1609 {
1610         if (sset != ETH_SS_STATS)
1611                 return 0;
1612
1613         return ARRAY_SIZE(gswip_rmon_cnt);
1614 }
1615
1616 static const struct dsa_switch_ops gswip_switch_ops = {
1617         .get_tag_protocol       = gswip_get_tag_protocol,
1618         .setup                  = gswip_setup,
1619         .port_enable            = gswip_port_enable,
1620         .port_disable           = gswip_port_disable,
1621         .port_bridge_join       = gswip_port_bridge_join,
1622         .port_bridge_leave      = gswip_port_bridge_leave,
1623         .port_fast_age          = gswip_port_fast_age,
1624         .port_vlan_filtering    = gswip_port_vlan_filtering,
1625         .port_vlan_prepare      = gswip_port_vlan_prepare,
1626         .port_vlan_add          = gswip_port_vlan_add,
1627         .port_vlan_del          = gswip_port_vlan_del,
1628         .port_stp_state_set     = gswip_port_stp_state_set,
1629         .port_fdb_add           = gswip_port_fdb_add,
1630         .port_fdb_del           = gswip_port_fdb_del,
1631         .port_fdb_dump          = gswip_port_fdb_dump,
1632         .phylink_validate       = gswip_phylink_validate,
1633         .phylink_mac_config     = gswip_phylink_mac_config,
1634         .phylink_mac_link_down  = gswip_phylink_mac_link_down,
1635         .phylink_mac_link_up    = gswip_phylink_mac_link_up,
1636         .get_strings            = gswip_get_strings,
1637         .get_ethtool_stats      = gswip_get_ethtool_stats,
1638         .get_sset_count         = gswip_get_sset_count,
1639 };
1640
1641 static const struct xway_gphy_match_data xrx200a1x_gphy_data = {
1642         .fe_firmware_name = "lantiq/xrx200_phy22f_a14.bin",
1643         .ge_firmware_name = "lantiq/xrx200_phy11g_a14.bin",
1644 };
1645
1646 static const struct xway_gphy_match_data xrx200a2x_gphy_data = {
1647         .fe_firmware_name = "lantiq/xrx200_phy22f_a22.bin",
1648         .ge_firmware_name = "lantiq/xrx200_phy11g_a22.bin",
1649 };
1650
1651 static const struct xway_gphy_match_data xrx300_gphy_data = {
1652         .fe_firmware_name = "lantiq/xrx300_phy22f_a21.bin",
1653         .ge_firmware_name = "lantiq/xrx300_phy11g_a21.bin",
1654 };
1655
1656 static const struct of_device_id xway_gphy_match[] = {
1657         { .compatible = "lantiq,xrx200-gphy-fw", .data = NULL },
1658         { .compatible = "lantiq,xrx200a1x-gphy-fw", .data = &xrx200a1x_gphy_data },
1659         { .compatible = "lantiq,xrx200a2x-gphy-fw", .data = &xrx200a2x_gphy_data },
1660         { .compatible = "lantiq,xrx300-gphy-fw", .data = &xrx300_gphy_data },
1661         { .compatible = "lantiq,xrx330-gphy-fw", .data = &xrx300_gphy_data },
1662         {},
1663 };
1664
1665 static int gswip_gphy_fw_load(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw)
1666 {
1667         struct device *dev = priv->dev;
1668         const struct firmware *fw;
1669         void *fw_addr;
1670         dma_addr_t dma_addr;
1671         dma_addr_t dev_addr;
1672         size_t size;
1673         int ret;
1674
1675         ret = clk_prepare_enable(gphy_fw->clk_gate);
1676         if (ret)
1677                 return ret;
1678
1679         reset_control_assert(gphy_fw->reset);
1680
1681         ret = request_firmware(&fw, gphy_fw->fw_name, dev);
1682         if (ret) {
1683                 dev_err(dev, "failed to load firmware: %s, error: %i\n",
1684                         gphy_fw->fw_name, ret);
1685                 return ret;
1686         }
1687
1688         /* GPHY cores need the firmware code in a persistent and contiguous
1689          * memory area with a 16 kB boundary aligned start address.
1690          */
1691         size = fw->size + XRX200_GPHY_FW_ALIGN;
1692
1693         fw_addr = dmam_alloc_coherent(dev, size, &dma_addr, GFP_KERNEL);
1694         if (fw_addr) {
1695                 fw_addr = PTR_ALIGN(fw_addr, XRX200_GPHY_FW_ALIGN);
1696                 dev_addr = ALIGN(dma_addr, XRX200_GPHY_FW_ALIGN);
1697                 memcpy(fw_addr, fw->data, fw->size);
1698         } else {
1699                 dev_err(dev, "failed to alloc firmware memory\n");
1700                 release_firmware(fw);
1701                 return -ENOMEM;
1702         }
1703
1704         release_firmware(fw);
1705
1706         ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, dev_addr);
1707         if (ret)
1708                 return ret;
1709
1710         reset_control_deassert(gphy_fw->reset);
1711
1712         return ret;
1713 }
1714
1715 static int gswip_gphy_fw_probe(struct gswip_priv *priv,
1716                                struct gswip_gphy_fw *gphy_fw,
1717                                struct device_node *gphy_fw_np, int i)
1718 {
1719         struct device *dev = priv->dev;
1720         u32 gphy_mode;
1721         int ret;
1722         char gphyname[10];
1723
1724         snprintf(gphyname, sizeof(gphyname), "gphy%d", i);
1725
1726         gphy_fw->clk_gate = devm_clk_get(dev, gphyname);
1727         if (IS_ERR(gphy_fw->clk_gate)) {
1728                 dev_err(dev, "Failed to lookup gate clock\n");
1729                 return PTR_ERR(gphy_fw->clk_gate);
1730         }
1731
1732         ret = of_property_read_u32(gphy_fw_np, "reg", &gphy_fw->fw_addr_offset);
1733         if (ret)
1734                 return ret;
1735
1736         ret = of_property_read_u32(gphy_fw_np, "lantiq,gphy-mode", &gphy_mode);
1737         /* Default to GE mode */
1738         if (ret)
1739                 gphy_mode = GPHY_MODE_GE;
1740
1741         switch (gphy_mode) {
1742         case GPHY_MODE_FE:
1743                 gphy_fw->fw_name = priv->gphy_fw_name_cfg->fe_firmware_name;
1744                 break;
1745         case GPHY_MODE_GE:
1746                 gphy_fw->fw_name = priv->gphy_fw_name_cfg->ge_firmware_name;
1747                 break;
1748         default:
1749                 dev_err(dev, "Unknown GPHY mode %d\n", gphy_mode);
1750                 return -EINVAL;
1751         }
1752
1753         gphy_fw->reset = of_reset_control_array_get_exclusive(gphy_fw_np);
1754         if (IS_ERR(gphy_fw->reset)) {
1755                 if (PTR_ERR(gphy_fw->reset) != -EPROBE_DEFER)
1756                         dev_err(dev, "Failed to lookup gphy reset\n");
1757                 return PTR_ERR(gphy_fw->reset);
1758         }
1759
1760         return gswip_gphy_fw_load(priv, gphy_fw);
1761 }
1762
1763 static void gswip_gphy_fw_remove(struct gswip_priv *priv,
1764                                  struct gswip_gphy_fw *gphy_fw)
1765 {
1766         int ret;
1767
1768         /* check if the device was fully probed */
1769         if (!gphy_fw->fw_name)
1770                 return;
1771
1772         ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, 0);
1773         if (ret)
1774                 dev_err(priv->dev, "can not reset GPHY FW pointer");
1775
1776         clk_disable_unprepare(gphy_fw->clk_gate);
1777
1778         reset_control_put(gphy_fw->reset);
1779 }
1780
1781 static int gswip_gphy_fw_list(struct gswip_priv *priv,
1782                               struct device_node *gphy_fw_list_np, u32 version)
1783 {
1784         struct device *dev = priv->dev;
1785         struct device_node *gphy_fw_np;
1786         const struct of_device_id *match;
1787         int err;
1788         int i = 0;
1789
1790         /* The VRX200 rev 1.1 uses the GSWIP 2.0 and needs the older
1791          * GPHY firmware. The VRX200 rev 1.2 uses the GSWIP 2.1 and also
1792          * needs a different GPHY firmware.
1793          */
1794         if (of_device_is_compatible(gphy_fw_list_np, "lantiq,xrx200-gphy-fw")) {
1795                 switch (version) {
1796                 case GSWIP_VERSION_2_0:
1797                         priv->gphy_fw_name_cfg = &xrx200a1x_gphy_data;
1798                         break;
1799                 case GSWIP_VERSION_2_1:
1800                         priv->gphy_fw_name_cfg = &xrx200a2x_gphy_data;
1801                         break;
1802                 default:
1803                         dev_err(dev, "unknown GSWIP version: 0x%x", version);
1804                         return -ENOENT;
1805                 }
1806         }
1807
1808         match = of_match_node(xway_gphy_match, gphy_fw_list_np);
1809         if (match && match->data)
1810                 priv->gphy_fw_name_cfg = match->data;
1811
1812         if (!priv->gphy_fw_name_cfg) {
1813                 dev_err(dev, "GPHY compatible type not supported");
1814                 return -ENOENT;
1815         }
1816
1817         priv->num_gphy_fw = of_get_available_child_count(gphy_fw_list_np);
1818         if (!priv->num_gphy_fw)
1819                 return -ENOENT;
1820
1821         priv->rcu_regmap = syscon_regmap_lookup_by_phandle(gphy_fw_list_np,
1822                                                            "lantiq,rcu");
1823         if (IS_ERR(priv->rcu_regmap))
1824                 return PTR_ERR(priv->rcu_regmap);
1825
1826         priv->gphy_fw = devm_kmalloc_array(dev, priv->num_gphy_fw,
1827                                            sizeof(*priv->gphy_fw),
1828                                            GFP_KERNEL | __GFP_ZERO);
1829         if (!priv->gphy_fw)
1830                 return -ENOMEM;
1831
1832         for_each_available_child_of_node(gphy_fw_list_np, gphy_fw_np) {
1833                 err = gswip_gphy_fw_probe(priv, &priv->gphy_fw[i],
1834                                           gphy_fw_np, i);
1835                 if (err)
1836                         goto remove_gphy;
1837                 i++;
1838         }
1839
1840         return 0;
1841
1842 remove_gphy:
1843         for (i = 0; i < priv->num_gphy_fw; i++)
1844                 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
1845         return err;
1846 }
1847
1848 static int gswip_probe(struct platform_device *pdev)
1849 {
1850         struct gswip_priv *priv;
1851         struct device_node *mdio_np, *gphy_fw_np;
1852         struct device *dev = &pdev->dev;
1853         int err;
1854         int i;
1855         u32 version;
1856
1857         priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
1858         if (!priv)
1859                 return -ENOMEM;
1860
1861         priv->gswip = devm_platform_ioremap_resource(pdev, 0);
1862         if (IS_ERR(priv->gswip))
1863                 return PTR_ERR(priv->gswip);
1864
1865         priv->mdio = devm_platform_ioremap_resource(pdev, 1);
1866         if (IS_ERR(priv->mdio))
1867                 return PTR_ERR(priv->mdio);
1868
1869         priv->mii = devm_platform_ioremap_resource(pdev, 2);
1870         if (IS_ERR(priv->mii))
1871                 return PTR_ERR(priv->mii);
1872
1873         priv->hw_info = of_device_get_match_data(dev);
1874         if (!priv->hw_info)
1875                 return -EINVAL;
1876
1877         priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
1878         if (!priv->ds)
1879                 return -ENOMEM;
1880
1881         priv->ds->dev = dev;
1882         priv->ds->num_ports = priv->hw_info->max_ports;
1883         priv->ds->priv = priv;
1884         priv->ds->ops = &gswip_switch_ops;
1885         priv->dev = dev;
1886         version = gswip_switch_r(priv, GSWIP_VERSION);
1887
1888         /* bring up the mdio bus */
1889         gphy_fw_np = of_get_compatible_child(dev->of_node, "lantiq,gphy-fw");
1890         if (gphy_fw_np) {
1891                 err = gswip_gphy_fw_list(priv, gphy_fw_np, version);
1892                 of_node_put(gphy_fw_np);
1893                 if (err) {
1894                         dev_err(dev, "gphy fw probe failed\n");
1895                         return err;
1896                 }
1897         }
1898
1899         /* bring up the mdio bus */
1900         mdio_np = of_get_compatible_child(dev->of_node, "lantiq,xrx200-mdio");
1901         if (mdio_np) {
1902                 err = gswip_mdio(priv, mdio_np);
1903                 if (err) {
1904                         dev_err(dev, "mdio probe failed\n");
1905                         goto put_mdio_node;
1906                 }
1907         }
1908
1909         err = dsa_register_switch(priv->ds);
1910         if (err) {
1911                 dev_err(dev, "dsa switch register failed: %i\n", err);
1912                 goto mdio_bus;
1913         }
1914         if (!dsa_is_cpu_port(priv->ds, priv->hw_info->cpu_port)) {
1915                 dev_err(dev, "wrong CPU port defined, HW only supports port: %i",
1916                         priv->hw_info->cpu_port);
1917                 err = -EINVAL;
1918                 goto disable_switch;
1919         }
1920
1921         platform_set_drvdata(pdev, priv);
1922
1923         dev_info(dev, "probed GSWIP version %lx mod %lx\n",
1924                  (version & GSWIP_VERSION_REV_MASK) >> GSWIP_VERSION_REV_SHIFT,
1925                  (version & GSWIP_VERSION_MOD_MASK) >> GSWIP_VERSION_MOD_SHIFT);
1926         return 0;
1927
1928 disable_switch:
1929         gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
1930         dsa_unregister_switch(priv->ds);
1931 mdio_bus:
1932         if (mdio_np)
1933                 mdiobus_unregister(priv->ds->slave_mii_bus);
1934 put_mdio_node:
1935         of_node_put(mdio_np);
1936         for (i = 0; i < priv->num_gphy_fw; i++)
1937                 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
1938         return err;
1939 }
1940
1941 static int gswip_remove(struct platform_device *pdev)
1942 {
1943         struct gswip_priv *priv = platform_get_drvdata(pdev);
1944         int i;
1945
1946         /* disable the switch */
1947         gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
1948
1949         dsa_unregister_switch(priv->ds);
1950
1951         if (priv->ds->slave_mii_bus) {
1952                 mdiobus_unregister(priv->ds->slave_mii_bus);
1953                 of_node_put(priv->ds->slave_mii_bus->dev.of_node);
1954         }
1955
1956         for (i = 0; i < priv->num_gphy_fw; i++)
1957                 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
1958
1959         return 0;
1960 }
1961
1962 static const struct gswip_hw_info gswip_xrx200 = {
1963         .max_ports = 7,
1964         .cpu_port = 6,
1965 };
1966
1967 static const struct of_device_id gswip_of_match[] = {
1968         { .compatible = "lantiq,xrx200-gswip", .data = &gswip_xrx200 },
1969         {},
1970 };
1971 MODULE_DEVICE_TABLE(of, gswip_of_match);
1972
1973 static struct platform_driver gswip_driver = {
1974         .probe = gswip_probe,
1975         .remove = gswip_remove,
1976         .driver = {
1977                 .name = "gswip",
1978                 .of_match_table = gswip_of_match,
1979         },
1980 };
1981
1982 module_platform_driver(gswip_driver);
1983
1984 MODULE_FIRMWARE("lantiq/xrx300_phy11g_a21.bin");
1985 MODULE_FIRMWARE("lantiq/xrx300_phy22f_a21.bin");
1986 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a14.bin");
1987 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a22.bin");
1988 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a14.bin");
1989 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a22.bin");
1990 MODULE_AUTHOR("Hauke Mehrtens <[email protected]>");
1991 MODULE_DESCRIPTION("Lantiq / Intel GSWIP driver");
1992 MODULE_LICENSE("GPL v2");
This page took 0.149412 seconds and 4 git commands to generate.