1 // SPDX-License-Identifier: GPL-2.0-only
3 * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
11 * Copyright (c) 2014, Intel Corporation.
14 #include <linux/module.h>
15 #include <linux/i2c.h>
16 #include <linux/interrupt.h>
17 #include <linux/delay.h>
18 #include <linux/slab.h>
19 #include <linux/acpi.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/iio/iio.h>
23 #include <linux/iio/sysfs.h>
24 #include <linux/iio/buffer.h>
25 #include <linux/iio/events.h>
26 #include <linux/iio/trigger.h>
27 #include <linux/iio/trigger_consumer.h>
28 #include <linux/iio/triggered_buffer.h>
29 #include <linux/regmap.h>
31 #include "bmc150-accel.h"
33 #define BMC150_ACCEL_DRV_NAME "bmc150_accel"
34 #define BMC150_ACCEL_IRQ_NAME "bmc150_accel_event"
36 #define BMC150_ACCEL_REG_CHIP_ID 0x00
38 #define BMC150_ACCEL_REG_INT_STATUS_2 0x0B
39 #define BMC150_ACCEL_ANY_MOTION_MASK 0x07
40 #define BMC150_ACCEL_ANY_MOTION_BIT_X BIT(0)
41 #define BMC150_ACCEL_ANY_MOTION_BIT_Y BIT(1)
42 #define BMC150_ACCEL_ANY_MOTION_BIT_Z BIT(2)
43 #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN BIT(3)
45 #define BMC150_ACCEL_REG_PMU_LPW 0x11
46 #define BMC150_ACCEL_PMU_MODE_MASK 0xE0
47 #define BMC150_ACCEL_PMU_MODE_SHIFT 5
48 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK 0x17
49 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT 1
51 #define BMC150_ACCEL_REG_PMU_RANGE 0x0F
53 #define BMC150_ACCEL_DEF_RANGE_2G 0x03
54 #define BMC150_ACCEL_DEF_RANGE_4G 0x05
55 #define BMC150_ACCEL_DEF_RANGE_8G 0x08
56 #define BMC150_ACCEL_DEF_RANGE_16G 0x0C
58 /* Default BW: 125Hz */
59 #define BMC150_ACCEL_REG_PMU_BW 0x10
60 #define BMC150_ACCEL_DEF_BW 125
62 #define BMC150_ACCEL_REG_RESET 0x14
63 #define BMC150_ACCEL_RESET_VAL 0xB6
65 #define BMC150_ACCEL_REG_INT_MAP_0 0x19
66 #define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE BIT(2)
68 #define BMC150_ACCEL_REG_INT_MAP_1 0x1A
69 #define BMC150_ACCEL_INT_MAP_1_BIT_DATA BIT(0)
70 #define BMC150_ACCEL_INT_MAP_1_BIT_FWM BIT(1)
71 #define BMC150_ACCEL_INT_MAP_1_BIT_FFULL BIT(2)
73 #define BMC150_ACCEL_REG_INT_RST_LATCH 0x21
74 #define BMC150_ACCEL_INT_MODE_LATCH_RESET 0x80
75 #define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F
76 #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT 0x00
78 #define BMC150_ACCEL_REG_INT_EN_0 0x16
79 #define BMC150_ACCEL_INT_EN_BIT_SLP_X BIT(0)
80 #define BMC150_ACCEL_INT_EN_BIT_SLP_Y BIT(1)
81 #define BMC150_ACCEL_INT_EN_BIT_SLP_Z BIT(2)
83 #define BMC150_ACCEL_REG_INT_EN_1 0x17
84 #define BMC150_ACCEL_INT_EN_BIT_DATA_EN BIT(4)
85 #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN BIT(5)
86 #define BMC150_ACCEL_INT_EN_BIT_FWM_EN BIT(6)
88 #define BMC150_ACCEL_REG_INT_OUT_CTRL 0x20
89 #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL BIT(0)
91 #define BMC150_ACCEL_REG_INT_5 0x27
92 #define BMC150_ACCEL_SLOPE_DUR_MASK 0x03
94 #define BMC150_ACCEL_REG_INT_6 0x28
95 #define BMC150_ACCEL_SLOPE_THRES_MASK 0xFF
97 /* Slope duration in terms of number of samples */
98 #define BMC150_ACCEL_DEF_SLOPE_DURATION 1
99 /* in terms of multiples of g's/LSB, based on range */
100 #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD 1
102 #define BMC150_ACCEL_REG_XOUT_L 0x02
104 #define BMC150_ACCEL_MAX_STARTUP_TIME_MS 100
106 /* Sleep Duration values */
107 #define BMC150_ACCEL_SLEEP_500_MICRO 0x05
108 #define BMC150_ACCEL_SLEEP_1_MS 0x06
109 #define BMC150_ACCEL_SLEEP_2_MS 0x07
110 #define BMC150_ACCEL_SLEEP_4_MS 0x08
111 #define BMC150_ACCEL_SLEEP_6_MS 0x09
112 #define BMC150_ACCEL_SLEEP_10_MS 0x0A
113 #define BMC150_ACCEL_SLEEP_25_MS 0x0B
114 #define BMC150_ACCEL_SLEEP_50_MS 0x0C
115 #define BMC150_ACCEL_SLEEP_100_MS 0x0D
116 #define BMC150_ACCEL_SLEEP_500_MS 0x0E
117 #define BMC150_ACCEL_SLEEP_1_SEC 0x0F
119 #define BMC150_ACCEL_REG_TEMP 0x08
120 #define BMC150_ACCEL_TEMP_CENTER_VAL 23
122 #define BMC150_ACCEL_AXIS_TO_REG(axis) (BMC150_ACCEL_REG_XOUT_L + (axis * 2))
123 #define BMC150_AUTO_SUSPEND_DELAY_MS 2000
125 #define BMC150_ACCEL_REG_FIFO_STATUS 0x0E
126 #define BMC150_ACCEL_REG_FIFO_CONFIG0 0x30
127 #define BMC150_ACCEL_REG_FIFO_CONFIG1 0x3E
128 #define BMC150_ACCEL_REG_FIFO_DATA 0x3F
129 #define BMC150_ACCEL_FIFO_LENGTH 32
131 enum bmc150_accel_axis {
138 enum bmc150_power_modes {
139 BMC150_ACCEL_SLEEP_MODE_NORMAL,
140 BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
141 BMC150_ACCEL_SLEEP_MODE_LPM,
142 BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
145 struct bmc150_scale_info {
150 struct bmc150_accel_chip_info {
153 const struct iio_chan_spec *channels;
155 const struct bmc150_scale_info scale_table[4];
158 struct bmc150_accel_interrupt {
159 const struct bmc150_accel_interrupt_info *info;
163 struct bmc150_accel_trigger {
164 struct bmc150_accel_data *data;
165 struct iio_trigger *indio_trig;
166 int (*setup)(struct bmc150_accel_trigger *t, bool state);
171 enum bmc150_accel_interrupt_id {
172 BMC150_ACCEL_INT_DATA_READY,
173 BMC150_ACCEL_INT_ANY_MOTION,
174 BMC150_ACCEL_INT_WATERMARK,
175 BMC150_ACCEL_INTERRUPTS,
178 enum bmc150_accel_trigger_id {
179 BMC150_ACCEL_TRIGGER_DATA_READY,
180 BMC150_ACCEL_TRIGGER_ANY_MOTION,
181 BMC150_ACCEL_TRIGGERS,
184 struct bmc150_accel_data {
185 struct regmap *regmap;
187 struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
188 struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
190 u8 fifo_mode, watermark;
193 * Ensure there is sufficient space and correct alignment for
194 * the timestamp if enabled
205 int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
206 const struct bmc150_accel_chip_info *chip_info;
207 struct iio_mount_matrix orientation;
210 static const struct {
214 } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
223 static const struct {
226 } bmc150_accel_sample_upd_time[] = { {0x08, 64},
235 static const struct {
238 } bmc150_accel_sleep_value_table[] = { {0, 0},
239 {500, BMC150_ACCEL_SLEEP_500_MICRO},
240 {1000, BMC150_ACCEL_SLEEP_1_MS},
241 {2000, BMC150_ACCEL_SLEEP_2_MS},
242 {4000, BMC150_ACCEL_SLEEP_4_MS},
243 {6000, BMC150_ACCEL_SLEEP_6_MS},
244 {10000, BMC150_ACCEL_SLEEP_10_MS},
245 {25000, BMC150_ACCEL_SLEEP_25_MS},
246 {50000, BMC150_ACCEL_SLEEP_50_MS},
247 {100000, BMC150_ACCEL_SLEEP_100_MS},
248 {500000, BMC150_ACCEL_SLEEP_500_MS},
249 {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
251 const struct regmap_config bmc150_regmap_conf = {
254 .max_register = 0x3f,
256 EXPORT_SYMBOL_GPL(bmc150_regmap_conf);
258 static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
259 enum bmc150_power_modes mode,
262 struct device *dev = regmap_get_device(data->regmap);
269 for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
271 if (bmc150_accel_sleep_value_table[i].sleep_dur ==
274 bmc150_accel_sleep_value_table[i].reg_value;
283 lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
284 lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
286 dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
288 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
290 dev_err(dev, "Error writing reg_pmu_lpw\n");
297 static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
303 for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
304 if (bmc150_accel_samp_freq_table[i].val == val &&
305 bmc150_accel_samp_freq_table[i].val2 == val2) {
306 ret = regmap_write(data->regmap,
307 BMC150_ACCEL_REG_PMU_BW,
308 bmc150_accel_samp_freq_table[i].bw_bits);
313 bmc150_accel_samp_freq_table[i].bw_bits;
321 static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
323 struct device *dev = regmap_get_device(data->regmap);
326 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
329 dev_err(dev, "Error writing reg_int_6\n");
333 ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
334 BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
336 dev_err(dev, "Error updating reg_int_5\n");
340 dev_dbg(dev, "%x %x\n", data->slope_thres, data->slope_dur);
345 static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
349 return bmc150_accel_update_slope(t->data);
354 static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
359 for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
360 if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
361 *val = bmc150_accel_samp_freq_table[i].val;
362 *val2 = bmc150_accel_samp_freq_table[i].val2;
363 return IIO_VAL_INT_PLUS_MICRO;
371 static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
375 for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
376 if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
377 return bmc150_accel_sample_upd_time[i].msec;
380 return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
383 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
385 struct device *dev = regmap_get_device(data->regmap);
389 ret = pm_runtime_get_sync(dev);
391 pm_runtime_mark_last_busy(dev);
392 ret = pm_runtime_put_autosuspend(dev);
397 "Failed: %s for %d\n", __func__, on);
399 pm_runtime_put_noidle(dev);
407 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
413 static const struct bmc150_accel_interrupt_info {
418 } bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
419 { /* data ready interrupt */
420 .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
421 .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
422 .en_reg = BMC150_ACCEL_REG_INT_EN_1,
423 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
425 { /* motion interrupt */
426 .map_reg = BMC150_ACCEL_REG_INT_MAP_0,
427 .map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
428 .en_reg = BMC150_ACCEL_REG_INT_EN_0,
429 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_SLP_X |
430 BMC150_ACCEL_INT_EN_BIT_SLP_Y |
431 BMC150_ACCEL_INT_EN_BIT_SLP_Z
433 { /* fifo watermark interrupt */
434 .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
435 .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
436 .en_reg = BMC150_ACCEL_REG_INT_EN_1,
437 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
441 static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
442 struct bmc150_accel_data *data)
446 for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
447 data->interrupts[i].info = &bmc150_accel_interrupts[i];
450 static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
453 struct device *dev = regmap_get_device(data->regmap);
454 struct bmc150_accel_interrupt *intr = &data->interrupts[i];
455 const struct bmc150_accel_interrupt_info *info = intr->info;
459 if (atomic_inc_return(&intr->users) > 1)
462 if (atomic_dec_return(&intr->users) > 0)
467 * We will expect the enable and disable to do operation in reverse
468 * order. This will happen here anyway, as our resume operation uses
469 * sync mode runtime pm calls. The suspend operation will be delayed
470 * by autosuspend delay.
471 * So the disable operation will still happen in reverse order of
472 * enable operation. When runtime pm is disabled the mode is always on,
473 * so sequence doesn't matter.
475 ret = bmc150_accel_set_power_state(data, state);
479 /* map the interrupt to the appropriate pins */
480 ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
481 (state ? info->map_bitmask : 0));
483 dev_err(dev, "Error updating reg_int_map\n");
484 goto out_fix_power_state;
487 /* enable/disable the interrupt */
488 ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
489 (state ? info->en_bitmask : 0));
491 dev_err(dev, "Error updating reg_int_en\n");
492 goto out_fix_power_state;
498 bmc150_accel_set_power_state(data, false);
502 static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
504 struct device *dev = regmap_get_device(data->regmap);
507 for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
508 if (data->chip_info->scale_table[i].scale == val) {
509 ret = regmap_write(data->regmap,
510 BMC150_ACCEL_REG_PMU_RANGE,
511 data->chip_info->scale_table[i].reg_range);
513 dev_err(dev, "Error writing pmu_range\n");
517 data->range = data->chip_info->scale_table[i].reg_range;
525 static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
527 struct device *dev = regmap_get_device(data->regmap);
531 mutex_lock(&data->mutex);
533 ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
535 dev_err(dev, "Error reading reg_temp\n");
536 mutex_unlock(&data->mutex);
539 *val = sign_extend32(value, 7);
541 mutex_unlock(&data->mutex);
546 static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
547 struct iio_chan_spec const *chan,
550 struct device *dev = regmap_get_device(data->regmap);
552 int axis = chan->scan_index;
555 mutex_lock(&data->mutex);
556 ret = bmc150_accel_set_power_state(data, true);
558 mutex_unlock(&data->mutex);
562 ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
563 &raw_val, sizeof(raw_val));
565 dev_err(dev, "Error reading axis %d\n", axis);
566 bmc150_accel_set_power_state(data, false);
567 mutex_unlock(&data->mutex);
570 *val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
571 chan->scan_type.realbits - 1);
572 ret = bmc150_accel_set_power_state(data, false);
573 mutex_unlock(&data->mutex);
580 static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
581 struct iio_chan_spec const *chan,
582 int *val, int *val2, long mask)
584 struct bmc150_accel_data *data = iio_priv(indio_dev);
588 case IIO_CHAN_INFO_RAW:
589 switch (chan->type) {
591 return bmc150_accel_get_temp(data, val);
593 if (iio_buffer_enabled(indio_dev))
596 return bmc150_accel_get_axis(data, chan, val);
600 case IIO_CHAN_INFO_OFFSET:
601 if (chan->type == IIO_TEMP) {
602 *val = BMC150_ACCEL_TEMP_CENTER_VAL;
607 case IIO_CHAN_INFO_SCALE:
609 switch (chan->type) {
612 return IIO_VAL_INT_PLUS_MICRO;
616 const struct bmc150_scale_info *si;
617 int st_size = ARRAY_SIZE(data->chip_info->scale_table);
619 for (i = 0; i < st_size; ++i) {
620 si = &data->chip_info->scale_table[i];
621 if (si->reg_range == data->range) {
623 return IIO_VAL_INT_PLUS_MICRO;
631 case IIO_CHAN_INFO_SAMP_FREQ:
632 mutex_lock(&data->mutex);
633 ret = bmc150_accel_get_bw(data, val, val2);
634 mutex_unlock(&data->mutex);
641 static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
642 struct iio_chan_spec const *chan,
643 int val, int val2, long mask)
645 struct bmc150_accel_data *data = iio_priv(indio_dev);
649 case IIO_CHAN_INFO_SAMP_FREQ:
650 mutex_lock(&data->mutex);
651 ret = bmc150_accel_set_bw(data, val, val2);
652 mutex_unlock(&data->mutex);
654 case IIO_CHAN_INFO_SCALE:
658 mutex_lock(&data->mutex);
659 ret = bmc150_accel_set_scale(data, val2);
660 mutex_unlock(&data->mutex);
669 static int bmc150_accel_read_event(struct iio_dev *indio_dev,
670 const struct iio_chan_spec *chan,
671 enum iio_event_type type,
672 enum iio_event_direction dir,
673 enum iio_event_info info,
676 struct bmc150_accel_data *data = iio_priv(indio_dev);
680 case IIO_EV_INFO_VALUE:
681 *val = data->slope_thres;
683 case IIO_EV_INFO_PERIOD:
684 *val = data->slope_dur;
693 static int bmc150_accel_write_event(struct iio_dev *indio_dev,
694 const struct iio_chan_spec *chan,
695 enum iio_event_type type,
696 enum iio_event_direction dir,
697 enum iio_event_info info,
700 struct bmc150_accel_data *data = iio_priv(indio_dev);
702 if (data->ev_enable_state)
706 case IIO_EV_INFO_VALUE:
707 data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
709 case IIO_EV_INFO_PERIOD:
710 data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
719 static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
720 const struct iio_chan_spec *chan,
721 enum iio_event_type type,
722 enum iio_event_direction dir)
724 struct bmc150_accel_data *data = iio_priv(indio_dev);
726 return data->ev_enable_state;
729 static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
730 const struct iio_chan_spec *chan,
731 enum iio_event_type type,
732 enum iio_event_direction dir,
735 struct bmc150_accel_data *data = iio_priv(indio_dev);
738 if (state == data->ev_enable_state)
741 mutex_lock(&data->mutex);
743 ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
746 mutex_unlock(&data->mutex);
750 data->ev_enable_state = state;
751 mutex_unlock(&data->mutex);
756 static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
757 struct iio_trigger *trig)
759 struct bmc150_accel_data *data = iio_priv(indio_dev);
762 for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
763 if (data->triggers[i].indio_trig == trig)
770 static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
771 struct device_attribute *attr,
774 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
775 struct bmc150_accel_data *data = iio_priv(indio_dev);
778 mutex_lock(&data->mutex);
779 wm = data->watermark;
780 mutex_unlock(&data->mutex);
782 return sprintf(buf, "%d\n", wm);
785 static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
786 struct device_attribute *attr,
789 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
790 struct bmc150_accel_data *data = iio_priv(indio_dev);
793 mutex_lock(&data->mutex);
794 state = data->fifo_mode;
795 mutex_unlock(&data->mutex);
797 return sprintf(buf, "%d\n", state);
800 static const struct iio_mount_matrix *
801 bmc150_accel_get_mount_matrix(const struct iio_dev *indio_dev,
802 const struct iio_chan_spec *chan)
804 struct bmc150_accel_data *data = iio_priv(indio_dev);
806 return &data->orientation;
809 static const struct iio_chan_spec_ext_info bmc150_accel_ext_info[] = {
810 IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmc150_accel_get_mount_matrix),
814 static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
815 static IIO_CONST_ATTR(hwfifo_watermark_max,
816 __stringify(BMC150_ACCEL_FIFO_LENGTH));
817 static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
818 bmc150_accel_get_fifo_state, NULL, 0);
819 static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
820 bmc150_accel_get_fifo_watermark, NULL, 0);
822 static const struct attribute *bmc150_accel_fifo_attributes[] = {
823 &iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
824 &iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
825 &iio_dev_attr_hwfifo_watermark.dev_attr.attr,
826 &iio_dev_attr_hwfifo_enabled.dev_attr.attr,
830 static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
832 struct bmc150_accel_data *data = iio_priv(indio_dev);
834 if (val > BMC150_ACCEL_FIFO_LENGTH)
835 val = BMC150_ACCEL_FIFO_LENGTH;
837 mutex_lock(&data->mutex);
838 data->watermark = val;
839 mutex_unlock(&data->mutex);
845 * We must read at least one full frame in one burst, otherwise the rest of the
846 * frame data is discarded.
848 static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
849 char *buffer, int samples)
851 struct device *dev = regmap_get_device(data->regmap);
852 int sample_length = 3 * 2;
854 int total_length = samples * sample_length;
856 ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
857 buffer, total_length);
860 "Error transferring data from fifo: %d\n", ret);
865 static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
866 unsigned samples, bool irq)
868 struct bmc150_accel_data *data = iio_priv(indio_dev);
869 struct device *dev = regmap_get_device(data->regmap);
872 u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
874 uint64_t sample_period;
877 ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
879 dev_err(dev, "Error reading reg_fifo_status\n");
889 * If we getting called from IRQ handler we know the stored timestamp is
890 * fairly accurate for the last stored sample. Otherwise, if we are
891 * called as a result of a read operation from userspace and hence
892 * before the watermark interrupt was triggered, take a timestamp
893 * now. We can fall anywhere in between two samples so the error in this
894 * case is at most one sample period.
897 data->old_timestamp = data->timestamp;
898 data->timestamp = iio_get_time_ns(indio_dev);
902 * Approximate timestamps for each of the sample based on the sampling
903 * frequency, timestamp for last sample and number of samples.
905 * Note that we can't use the current bandwidth settings to compute the
906 * sample period because the sample rate varies with the device
907 * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
908 * small variation adds when we store a large number of samples and
909 * creates significant jitter between the last and first samples in
910 * different batches (e.g. 32ms vs 21ms).
912 * To avoid this issue we compute the actual sample period ourselves
913 * based on the timestamp delta between the last two flush operations.
915 sample_period = (data->timestamp - data->old_timestamp);
916 do_div(sample_period, count);
917 tstamp = data->timestamp - (count - 1) * sample_period;
919 if (samples && count > samples)
922 ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
927 * Ideally we want the IIO core to handle the demux when running in fifo
928 * mode but not when running in triggered buffer mode. Unfortunately
929 * this does not seem to be possible, so stick with driver demux for
932 for (i = 0; i < count; i++) {
936 for_each_set_bit(bit, indio_dev->active_scan_mask,
937 indio_dev->masklength)
938 memcpy(&data->scan.channels[j++], &buffer[i * 3 + bit],
939 sizeof(data->scan.channels[0]));
941 iio_push_to_buffers_with_timestamp(indio_dev, &data->scan,
944 tstamp += sample_period;
950 static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
952 struct bmc150_accel_data *data = iio_priv(indio_dev);
955 mutex_lock(&data->mutex);
956 ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
957 mutex_unlock(&data->mutex);
962 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
963 "15.620000 31.260000 62.50000 125 250 500 1000 2000");
965 static struct attribute *bmc150_accel_attributes[] = {
966 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
970 static const struct attribute_group bmc150_accel_attrs_group = {
971 .attrs = bmc150_accel_attributes,
974 static const struct iio_event_spec bmc150_accel_event = {
975 .type = IIO_EV_TYPE_ROC,
976 .dir = IIO_EV_DIR_EITHER,
977 .mask_separate = BIT(IIO_EV_INFO_VALUE) |
978 BIT(IIO_EV_INFO_ENABLE) |
979 BIT(IIO_EV_INFO_PERIOD)
982 #define BMC150_ACCEL_CHANNEL(_axis, bits) { \
985 .channel2 = IIO_MOD_##_axis, \
986 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
987 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
988 BIT(IIO_CHAN_INFO_SAMP_FREQ), \
989 .scan_index = AXIS_##_axis, \
992 .realbits = (bits), \
994 .shift = 16 - (bits), \
995 .endianness = IIO_LE, \
997 .ext_info = bmc150_accel_ext_info, \
998 .event_spec = &bmc150_accel_event, \
999 .num_event_specs = 1 \
1002 #define BMC150_ACCEL_CHANNELS(bits) { \
1005 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1006 BIT(IIO_CHAN_INFO_SCALE) | \
1007 BIT(IIO_CHAN_INFO_OFFSET), \
1010 BMC150_ACCEL_CHANNEL(X, bits), \
1011 BMC150_ACCEL_CHANNEL(Y, bits), \
1012 BMC150_ACCEL_CHANNEL(Z, bits), \
1013 IIO_CHAN_SOFT_TIMESTAMP(3), \
1016 static const struct iio_chan_spec bma222e_accel_channels[] =
1017 BMC150_ACCEL_CHANNELS(8);
1018 static const struct iio_chan_spec bma250e_accel_channels[] =
1019 BMC150_ACCEL_CHANNELS(10);
1020 static const struct iio_chan_spec bmc150_accel_channels[] =
1021 BMC150_ACCEL_CHANNELS(12);
1022 static const struct iio_chan_spec bma280_accel_channels[] =
1023 BMC150_ACCEL_CHANNELS(14);
1025 static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
1029 .channels = bmc150_accel_channels,
1030 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1031 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1032 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1033 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1034 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1039 .channels = bmc150_accel_channels,
1040 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1041 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1042 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1043 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1044 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1049 .channels = bmc150_accel_channels,
1050 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1051 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1052 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1053 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1054 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1059 .channels = bma250e_accel_channels,
1060 .num_channels = ARRAY_SIZE(bma250e_accel_channels),
1061 .scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
1062 {76590, BMC150_ACCEL_DEF_RANGE_4G},
1063 {153277, BMC150_ACCEL_DEF_RANGE_8G},
1064 {306457, BMC150_ACCEL_DEF_RANGE_16G} },
1069 .channels = bma222e_accel_channels,
1070 .num_channels = ARRAY_SIZE(bma222e_accel_channels),
1071 .scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
1072 {306457, BMC150_ACCEL_DEF_RANGE_4G},
1073 {612915, BMC150_ACCEL_DEF_RANGE_8G},
1074 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
1079 .channels = bma280_accel_channels,
1080 .num_channels = ARRAY_SIZE(bma280_accel_channels),
1081 .scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
1082 {4785, BMC150_ACCEL_DEF_RANGE_4G},
1083 {9581, BMC150_ACCEL_DEF_RANGE_8G},
1084 {19152, BMC150_ACCEL_DEF_RANGE_16G} },
1088 static const struct iio_info bmc150_accel_info = {
1089 .attrs = &bmc150_accel_attrs_group,
1090 .read_raw = bmc150_accel_read_raw,
1091 .write_raw = bmc150_accel_write_raw,
1092 .read_event_value = bmc150_accel_read_event,
1093 .write_event_value = bmc150_accel_write_event,
1094 .write_event_config = bmc150_accel_write_event_config,
1095 .read_event_config = bmc150_accel_read_event_config,
1098 static const struct iio_info bmc150_accel_info_fifo = {
1099 .attrs = &bmc150_accel_attrs_group,
1100 .read_raw = bmc150_accel_read_raw,
1101 .write_raw = bmc150_accel_write_raw,
1102 .read_event_value = bmc150_accel_read_event,
1103 .write_event_value = bmc150_accel_write_event,
1104 .write_event_config = bmc150_accel_write_event_config,
1105 .read_event_config = bmc150_accel_read_event_config,
1106 .validate_trigger = bmc150_accel_validate_trigger,
1107 .hwfifo_set_watermark = bmc150_accel_set_watermark,
1108 .hwfifo_flush_to_buffer = bmc150_accel_fifo_flush,
1111 static const unsigned long bmc150_accel_scan_masks[] = {
1112 BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
1115 static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
1117 struct iio_poll_func *pf = p;
1118 struct iio_dev *indio_dev = pf->indio_dev;
1119 struct bmc150_accel_data *data = iio_priv(indio_dev);
1122 mutex_lock(&data->mutex);
1123 ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
1124 data->buffer, AXIS_MAX * 2);
1125 mutex_unlock(&data->mutex);
1129 iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1132 iio_trigger_notify_done(indio_dev->trig);
1137 static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
1139 struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1140 struct bmc150_accel_data *data = t->data;
1141 struct device *dev = regmap_get_device(data->regmap);
1144 /* new data interrupts don't need ack */
1145 if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1148 mutex_lock(&data->mutex);
1149 /* clear any latched interrupt */
1150 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1151 BMC150_ACCEL_INT_MODE_LATCH_INT |
1152 BMC150_ACCEL_INT_MODE_LATCH_RESET);
1153 mutex_unlock(&data->mutex);
1155 dev_err(dev, "Error writing reg_int_rst_latch\n");
1162 static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1165 struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1166 struct bmc150_accel_data *data = t->data;
1169 mutex_lock(&data->mutex);
1171 if (t->enabled == state) {
1172 mutex_unlock(&data->mutex);
1177 ret = t->setup(t, state);
1179 mutex_unlock(&data->mutex);
1184 ret = bmc150_accel_set_interrupt(data, t->intr, state);
1186 mutex_unlock(&data->mutex);
1192 mutex_unlock(&data->mutex);
1197 static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1198 .set_trigger_state = bmc150_accel_trigger_set_state,
1199 .try_reenable = bmc150_accel_trig_try_reen,
1202 static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1204 struct bmc150_accel_data *data = iio_priv(indio_dev);
1205 struct device *dev = regmap_get_device(data->regmap);
1210 ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
1212 dev_err(dev, "Error reading reg_int_status_2\n");
1216 if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1217 dir = IIO_EV_DIR_FALLING;
1219 dir = IIO_EV_DIR_RISING;
1221 if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
1222 iio_push_event(indio_dev,
1223 IIO_MOD_EVENT_CODE(IIO_ACCEL,
1230 if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1231 iio_push_event(indio_dev,
1232 IIO_MOD_EVENT_CODE(IIO_ACCEL,
1239 if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1240 iio_push_event(indio_dev,
1241 IIO_MOD_EVENT_CODE(IIO_ACCEL,
1251 static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
1253 struct iio_dev *indio_dev = private;
1254 struct bmc150_accel_data *data = iio_priv(indio_dev);
1255 struct device *dev = regmap_get_device(data->regmap);
1259 mutex_lock(&data->mutex);
1261 if (data->fifo_mode) {
1262 ret = __bmc150_accel_fifo_flush(indio_dev,
1263 BMC150_ACCEL_FIFO_LENGTH, true);
1268 if (data->ev_enable_state) {
1269 ret = bmc150_accel_handle_roc_event(indio_dev);
1275 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1276 BMC150_ACCEL_INT_MODE_LATCH_INT |
1277 BMC150_ACCEL_INT_MODE_LATCH_RESET);
1279 dev_err(dev, "Error writing reg_int_rst_latch\n");
1286 mutex_unlock(&data->mutex);
1291 static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1293 struct iio_dev *indio_dev = private;
1294 struct bmc150_accel_data *data = iio_priv(indio_dev);
1298 data->old_timestamp = data->timestamp;
1299 data->timestamp = iio_get_time_ns(indio_dev);
1301 for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1302 if (data->triggers[i].enabled) {
1303 iio_trigger_poll(data->triggers[i].indio_trig);
1309 if (data->ev_enable_state || data->fifo_mode)
1310 return IRQ_WAKE_THREAD;
1318 static const struct {
1321 int (*setup)(struct bmc150_accel_trigger *t, bool state);
1322 } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
1329 .name = "%s-any-motion-dev%d",
1330 .setup = bmc150_accel_any_motion_setup,
1334 static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
1339 for (i = from; i >= 0; i--) {
1340 if (data->triggers[i].indio_trig) {
1341 iio_trigger_unregister(data->triggers[i].indio_trig);
1342 data->triggers[i].indio_trig = NULL;
1347 static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
1348 struct bmc150_accel_data *data)
1350 struct device *dev = regmap_get_device(data->regmap);
1353 for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1354 struct bmc150_accel_trigger *t = &data->triggers[i];
1356 t->indio_trig = devm_iio_trigger_alloc(dev,
1357 bmc150_accel_triggers[i].name,
1360 if (!t->indio_trig) {
1365 t->indio_trig->dev.parent = dev;
1366 t->indio_trig->ops = &bmc150_accel_trigger_ops;
1367 t->intr = bmc150_accel_triggers[i].intr;
1369 t->setup = bmc150_accel_triggers[i].setup;
1370 iio_trigger_set_drvdata(t->indio_trig, t);
1372 ret = iio_trigger_register(t->indio_trig);
1378 bmc150_accel_unregister_triggers(data, i - 1);
1383 #define BMC150_ACCEL_FIFO_MODE_STREAM 0x80
1384 #define BMC150_ACCEL_FIFO_MODE_FIFO 0x40
1385 #define BMC150_ACCEL_FIFO_MODE_BYPASS 0x00
1387 static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
1389 struct device *dev = regmap_get_device(data->regmap);
1390 u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
1393 ret = regmap_write(data->regmap, reg, data->fifo_mode);
1395 dev_err(dev, "Error writing reg_fifo_config1\n");
1399 if (!data->fifo_mode)
1402 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
1405 dev_err(dev, "Error writing reg_fifo_config0\n");
1410 static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
1412 struct bmc150_accel_data *data = iio_priv(indio_dev);
1414 return bmc150_accel_set_power_state(data, true);
1417 static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
1419 struct bmc150_accel_data *data = iio_priv(indio_dev);
1422 if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1425 mutex_lock(&data->mutex);
1427 if (!data->watermark)
1430 ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1435 data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
1437 ret = bmc150_accel_fifo_set_mode(data);
1439 data->fifo_mode = 0;
1440 bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1445 mutex_unlock(&data->mutex);
1450 static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
1452 struct bmc150_accel_data *data = iio_priv(indio_dev);
1454 if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1457 mutex_lock(&data->mutex);
1459 if (!data->fifo_mode)
1462 bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
1463 __bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
1464 data->fifo_mode = 0;
1465 bmc150_accel_fifo_set_mode(data);
1468 mutex_unlock(&data->mutex);
1473 static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
1475 struct bmc150_accel_data *data = iio_priv(indio_dev);
1477 return bmc150_accel_set_power_state(data, false);
1480 static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1481 .preenable = bmc150_accel_buffer_preenable,
1482 .postenable = bmc150_accel_buffer_postenable,
1483 .predisable = bmc150_accel_buffer_predisable,
1484 .postdisable = bmc150_accel_buffer_postdisable,
1487 static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
1489 struct device *dev = regmap_get_device(data->regmap);
1494 * Reset chip to get it in a known good state. A delay of 1.8ms after
1495 * reset is required according to the data sheets of supported chips.
1497 regmap_write(data->regmap, BMC150_ACCEL_REG_RESET,
1498 BMC150_ACCEL_RESET_VAL);
1499 usleep_range(1800, 2500);
1501 ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
1503 dev_err(dev, "Error: Reading chip id\n");
1507 dev_dbg(dev, "Chip Id %x\n", val);
1508 for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
1509 if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
1510 data->chip_info = &bmc150_accel_chip_info_tbl[i];
1515 if (!data->chip_info) {
1516 dev_err(dev, "Invalid chip %x\n", val);
1520 ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1525 ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
1529 /* Set Default Range */
1530 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
1531 BMC150_ACCEL_DEF_RANGE_4G);
1533 dev_err(dev, "Error writing reg_pmu_range\n");
1537 data->range = BMC150_ACCEL_DEF_RANGE_4G;
1539 /* Set default slope duration and thresholds */
1540 data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
1541 data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
1542 ret = bmc150_accel_update_slope(data);
1546 /* Set default as latched interrupts */
1547 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1548 BMC150_ACCEL_INT_MODE_LATCH_INT |
1549 BMC150_ACCEL_INT_MODE_LATCH_RESET);
1551 dev_err(dev, "Error writing reg_int_rst_latch\n");
1558 int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
1559 const char *name, bool block_supported)
1561 struct bmc150_accel_data *data;
1562 struct iio_dev *indio_dev;
1565 indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1569 data = iio_priv(indio_dev);
1570 dev_set_drvdata(dev, indio_dev);
1573 data->regmap = regmap;
1575 ret = iio_read_mount_matrix(dev, "mount-matrix",
1576 &data->orientation);
1580 ret = bmc150_accel_chip_init(data);
1584 mutex_init(&data->mutex);
1586 indio_dev->channels = data->chip_info->channels;
1587 indio_dev->num_channels = data->chip_info->num_channels;
1588 indio_dev->name = name ? name : data->chip_info->name;
1589 indio_dev->available_scan_masks = bmc150_accel_scan_masks;
1590 indio_dev->modes = INDIO_DIRECT_MODE;
1591 indio_dev->info = &bmc150_accel_info;
1593 ret = iio_triggered_buffer_setup(indio_dev,
1594 &iio_pollfunc_store_time,
1595 bmc150_accel_trigger_handler,
1596 &bmc150_accel_buffer_ops);
1598 dev_err(dev, "Failed: iio triggered buffer setup\n");
1602 if (data->irq > 0) {
1603 ret = devm_request_threaded_irq(
1605 bmc150_accel_irq_handler,
1606 bmc150_accel_irq_thread_handler,
1607 IRQF_TRIGGER_RISING,
1608 BMC150_ACCEL_IRQ_NAME,
1611 goto err_buffer_cleanup;
1614 * Set latched mode interrupt. While certain interrupts are
1615 * non-latched regardless of this settings (e.g. new data) we
1616 * want to use latch mode when we can to prevent interrupt
1619 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1620 BMC150_ACCEL_INT_MODE_LATCH_RESET);
1622 dev_err(dev, "Error writing reg_int_rst_latch\n");
1623 goto err_buffer_cleanup;
1626 bmc150_accel_interrupts_setup(indio_dev, data);
1628 ret = bmc150_accel_triggers_setup(indio_dev, data);
1630 goto err_buffer_cleanup;
1632 if (block_supported) {
1633 indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1634 indio_dev->info = &bmc150_accel_info_fifo;
1635 iio_buffer_set_attrs(indio_dev->buffer,
1636 bmc150_accel_fifo_attributes);
1640 ret = pm_runtime_set_active(dev);
1642 goto err_trigger_unregister;
1644 pm_runtime_enable(dev);
1645 pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
1646 pm_runtime_use_autosuspend(dev);
1648 ret = iio_device_register(indio_dev);
1650 dev_err(dev, "Unable to register iio device\n");
1651 goto err_trigger_unregister;
1656 err_trigger_unregister:
1657 bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1659 iio_triggered_buffer_cleanup(indio_dev);
1663 EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
1665 int bmc150_accel_core_remove(struct device *dev)
1667 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1668 struct bmc150_accel_data *data = iio_priv(indio_dev);
1670 iio_device_unregister(indio_dev);
1672 pm_runtime_disable(dev);
1673 pm_runtime_set_suspended(dev);
1674 pm_runtime_put_noidle(dev);
1676 bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1678 iio_triggered_buffer_cleanup(indio_dev);
1680 mutex_lock(&data->mutex);
1681 bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
1682 mutex_unlock(&data->mutex);
1686 EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
1688 #ifdef CONFIG_PM_SLEEP
1689 static int bmc150_accel_suspend(struct device *dev)
1691 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1692 struct bmc150_accel_data *data = iio_priv(indio_dev);
1694 mutex_lock(&data->mutex);
1695 bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1696 mutex_unlock(&data->mutex);
1701 static int bmc150_accel_resume(struct device *dev)
1703 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1704 struct bmc150_accel_data *data = iio_priv(indio_dev);
1706 mutex_lock(&data->mutex);
1707 bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1708 bmc150_accel_fifo_set_mode(data);
1709 mutex_unlock(&data->mutex);
1716 static int bmc150_accel_runtime_suspend(struct device *dev)
1718 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1719 struct bmc150_accel_data *data = iio_priv(indio_dev);
1722 ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1729 static int bmc150_accel_runtime_resume(struct device *dev)
1731 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1732 struct bmc150_accel_data *data = iio_priv(indio_dev);
1736 ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1739 ret = bmc150_accel_fifo_set_mode(data);
1743 sleep_val = bmc150_accel_get_startup_times(data);
1745 usleep_range(sleep_val * 1000, 20000);
1747 msleep_interruptible(sleep_val);
1753 const struct dev_pm_ops bmc150_accel_pm_ops = {
1754 SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
1755 SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
1756 bmc150_accel_runtime_resume, NULL)
1758 EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
1761 MODULE_LICENSE("GPL v2");
1762 MODULE_DESCRIPTION("BMC150 accelerometer driver");