1 // SPDX-License-Identifier: GPL-2.0-only
3 * Core IIO driver for Bosch BMA400 triaxial acceleration sensor.
8 * - Support for power management
9 * - Support events and interrupts
10 * - Create channel for step count
11 * - Create channel for sensor time
14 #include <linux/bitops.h>
15 #include <linux/device.h>
16 #include <linux/iio/iio.h>
17 #include <linux/iio/sysfs.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/regmap.h>
22 #include <linux/regulator/consumer.h>
27 * The G-range selection may be one of 2g, 4g, 8, or 16g. The scale may
28 * be selected with the acc_range bits of the ACC_CONFIG1 register.
29 * NB: This buffer is populated in the device init.
31 static int bma400_scales[8];
34 * See the ACC_CONFIG1 section of the datasheet.
35 * NB: This buffer is populated in the device init.
37 static int bma400_sample_freqs[14];
39 static const int bma400_osr_range[] = { 0, 1, 3 };
41 /* See the ACC_CONFIG0 section of the datasheet */
42 enum bma400_power_mode {
43 POWER_MODE_SLEEP = 0x00,
44 POWER_MODE_LOW = 0x01,
45 POWER_MODE_NORMAL = 0x02,
46 POWER_MODE_INVALID = 0x03,
49 struct bma400_sample_freq {
56 struct regmap *regmap;
57 struct regulator_bulk_data regulators[BMA400_NUM_REGULATORS];
58 struct mutex mutex; /* data register lock */
59 struct iio_mount_matrix orientation;
60 enum bma400_power_mode power_mode;
61 struct bma400_sample_freq sample_freq;
62 int oversampling_ratio;
66 static bool bma400_is_writable_reg(struct device *dev, unsigned int reg)
69 case BMA400_CHIP_ID_REG:
71 case BMA400_STATUS_REG:
72 case BMA400_X_AXIS_LSB_REG:
73 case BMA400_X_AXIS_MSB_REG:
74 case BMA400_Y_AXIS_LSB_REG:
75 case BMA400_Y_AXIS_MSB_REG:
76 case BMA400_Z_AXIS_LSB_REG:
77 case BMA400_Z_AXIS_MSB_REG:
78 case BMA400_SENSOR_TIME0:
79 case BMA400_SENSOR_TIME1:
80 case BMA400_SENSOR_TIME2:
81 case BMA400_EVENT_REG:
82 case BMA400_INT_STAT0_REG:
83 case BMA400_INT_STAT1_REG:
84 case BMA400_INT_STAT2_REG:
85 case BMA400_TEMP_DATA_REG:
86 case BMA400_FIFO_LENGTH0_REG:
87 case BMA400_FIFO_LENGTH1_REG:
88 case BMA400_FIFO_DATA_REG:
89 case BMA400_STEP_CNT0_REG:
90 case BMA400_STEP_CNT1_REG:
91 case BMA400_STEP_CNT3_REG:
92 case BMA400_STEP_STAT_REG:
99 static bool bma400_is_volatile_reg(struct device *dev, unsigned int reg)
103 case BMA400_STATUS_REG:
104 case BMA400_X_AXIS_LSB_REG:
105 case BMA400_X_AXIS_MSB_REG:
106 case BMA400_Y_AXIS_LSB_REG:
107 case BMA400_Y_AXIS_MSB_REG:
108 case BMA400_Z_AXIS_LSB_REG:
109 case BMA400_Z_AXIS_MSB_REG:
110 case BMA400_SENSOR_TIME0:
111 case BMA400_SENSOR_TIME1:
112 case BMA400_SENSOR_TIME2:
113 case BMA400_EVENT_REG:
114 case BMA400_INT_STAT0_REG:
115 case BMA400_INT_STAT1_REG:
116 case BMA400_INT_STAT2_REG:
117 case BMA400_TEMP_DATA_REG:
118 case BMA400_FIFO_LENGTH0_REG:
119 case BMA400_FIFO_LENGTH1_REG:
120 case BMA400_FIFO_DATA_REG:
121 case BMA400_STEP_CNT0_REG:
122 case BMA400_STEP_CNT1_REG:
123 case BMA400_STEP_CNT3_REG:
124 case BMA400_STEP_STAT_REG:
131 const struct regmap_config bma400_regmap_config = {
134 .max_register = BMA400_CMD_REG,
135 .cache_type = REGCACHE_RBTREE,
136 .writeable_reg = bma400_is_writable_reg,
137 .volatile_reg = bma400_is_volatile_reg,
139 EXPORT_SYMBOL(bma400_regmap_config);
141 static const struct iio_mount_matrix *
142 bma400_accel_get_mount_matrix(const struct iio_dev *indio_dev,
143 const struct iio_chan_spec *chan)
145 struct bma400_data *data = iio_priv(indio_dev);
147 return &data->orientation;
150 static const struct iio_chan_spec_ext_info bma400_ext_info[] = {
151 IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bma400_accel_get_mount_matrix),
155 #define BMA400_ACC_CHANNEL(_axis) { \
158 .channel2 = IIO_MOD_##_axis, \
159 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
160 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
161 BIT(IIO_CHAN_INFO_SCALE) | \
162 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
163 .info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
164 BIT(IIO_CHAN_INFO_SCALE) | \
165 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
166 .ext_info = bma400_ext_info, \
169 static const struct iio_chan_spec bma400_channels[] = {
170 BMA400_ACC_CHANNEL(X),
171 BMA400_ACC_CHANNEL(Y),
172 BMA400_ACC_CHANNEL(Z),
175 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
176 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ),
180 static int bma400_get_temp_reg(struct bma400_data *data, int *val, int *val2)
182 unsigned int raw_temp;
186 if (data->power_mode == POWER_MODE_SLEEP)
189 ret = regmap_read(data->regmap, BMA400_TEMP_DATA_REG, &raw_temp);
193 host_temp = sign_extend32(raw_temp, 7);
195 * The formula for the TEMP_DATA register in the datasheet
198 *val = (host_temp >> 1) + 23;
199 *val2 = (host_temp & 0x1) * 500000;
200 return IIO_VAL_INT_PLUS_MICRO;
203 static int bma400_get_accel_reg(struct bma400_data *data,
204 const struct iio_chan_spec *chan,
211 if (data->power_mode == POWER_MODE_SLEEP)
214 switch (chan->channel2) {
216 lsb_reg = BMA400_X_AXIS_LSB_REG;
219 lsb_reg = BMA400_Y_AXIS_LSB_REG;
222 lsb_reg = BMA400_Z_AXIS_LSB_REG;
225 dev_err(data->dev, "invalid axis channel modifier\n");
229 /* bulk read two registers, with the base being the LSB register */
230 ret = regmap_bulk_read(data->regmap, lsb_reg, &raw_accel,
235 *val = sign_extend32(le16_to_cpu(raw_accel), 11);
239 static void bma400_output_data_rate_from_raw(int raw, unsigned int *val,
242 *val = BMA400_ACC_ODR_MAX_HZ >> (BMA400_ACC_ODR_MAX_RAW - raw);
243 if (raw > BMA400_ACC_ODR_MIN_RAW)
249 static int bma400_get_accel_output_data_rate(struct bma400_data *data)
255 switch (data->power_mode) {
258 * Runs at a fixed rate in low-power mode. See section 4.3
261 bma400_output_data_rate_from_raw(BMA400_ACC_ODR_LP_RAW,
262 &data->sample_freq.hz,
263 &data->sample_freq.uhz);
265 case POWER_MODE_NORMAL:
267 * In normal mode the ODR can be found in the ACC_CONFIG1
270 ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val);
274 odr = val & BMA400_ACC_ODR_MASK;
275 if (odr < BMA400_ACC_ODR_MIN_RAW ||
276 odr > BMA400_ACC_ODR_MAX_RAW) {
281 bma400_output_data_rate_from_raw(odr, &data->sample_freq.hz,
282 &data->sample_freq.uhz);
284 case POWER_MODE_SLEEP:
285 data->sample_freq.hz = 0;
286 data->sample_freq.uhz = 0;
293 data->sample_freq.hz = -1;
294 data->sample_freq.uhz = -1;
298 static int bma400_set_accel_output_data_rate(struct bma400_data *data,
306 if (hz >= BMA400_ACC_ODR_MIN_WHOLE_HZ) {
307 if (uhz || hz > BMA400_ACC_ODR_MAX_HZ)
310 /* Note this works because MIN_WHOLE_HZ is odd */
313 if (hz >> idx != BMA400_ACC_ODR_MIN_WHOLE_HZ)
316 idx += BMA400_ACC_ODR_MIN_RAW + 1;
317 } else if (hz == BMA400_ACC_ODR_MIN_HZ && uhz == 500000) {
318 idx = BMA400_ACC_ODR_MIN_RAW;
323 ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val);
327 /* preserve the range and normal mode osr */
328 odr = (~BMA400_ACC_ODR_MASK & val) | idx;
330 ret = regmap_write(data->regmap, BMA400_ACC_CONFIG1_REG, odr);
334 bma400_output_data_rate_from_raw(idx, &data->sample_freq.hz,
335 &data->sample_freq.uhz);
339 static int bma400_get_accel_oversampling_ratio(struct bma400_data *data)
346 * The oversampling ratio is stored in a different register
347 * based on the power-mode. In normal mode the OSR is stored
348 * in ACC_CONFIG1. In low-power mode it is stored in
351 switch (data->power_mode) {
353 ret = regmap_read(data->regmap, BMA400_ACC_CONFIG0_REG, &val);
355 data->oversampling_ratio = -1;
359 osr = (val & BMA400_LP_OSR_MASK) >> BMA400_LP_OSR_SHIFT;
361 data->oversampling_ratio = osr;
363 case POWER_MODE_NORMAL:
364 ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val);
366 data->oversampling_ratio = -1;
370 osr = (val & BMA400_NP_OSR_MASK) >> BMA400_NP_OSR_SHIFT;
372 data->oversampling_ratio = osr;
374 case POWER_MODE_SLEEP:
375 data->oversampling_ratio = 0;
378 data->oversampling_ratio = -1;
383 static int bma400_set_accel_oversampling_ratio(struct bma400_data *data,
386 unsigned int acc_config;
389 if (val & ~BMA400_TWO_BITS_MASK)
393 * The oversampling ratio is stored in a different register
394 * based on the power-mode.
396 switch (data->power_mode) {
398 ret = regmap_read(data->regmap, BMA400_ACC_CONFIG0_REG,
403 ret = regmap_write(data->regmap, BMA400_ACC_CONFIG0_REG,
404 (acc_config & ~BMA400_LP_OSR_MASK) |
405 (val << BMA400_LP_OSR_SHIFT));
407 dev_err(data->dev, "Failed to write out OSR\n");
411 data->oversampling_ratio = val;
413 case POWER_MODE_NORMAL:
414 ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG,
419 ret = regmap_write(data->regmap, BMA400_ACC_CONFIG1_REG,
420 (acc_config & ~BMA400_NP_OSR_MASK) |
421 (val << BMA400_NP_OSR_SHIFT));
423 dev_err(data->dev, "Failed to write out OSR\n");
427 data->oversampling_ratio = val;
435 static int bma400_accel_scale_to_raw(struct bma400_data *data,
443 /* Note this works because BMA400_SCALE_MIN is odd */
446 if (val >> raw != BMA400_SCALE_MIN)
452 static int bma400_get_accel_scale(struct bma400_data *data)
454 unsigned int raw_scale;
458 ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val);
462 raw_scale = (val & BMA400_ACC_SCALE_MASK) >> BMA400_SCALE_SHIFT;
463 if (raw_scale > BMA400_TWO_BITS_MASK)
466 data->scale = BMA400_SCALE_MIN << raw_scale;
471 static int bma400_set_accel_scale(struct bma400_data *data, unsigned int val)
473 unsigned int acc_config;
477 ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &acc_config);
481 raw = bma400_accel_scale_to_raw(data, val);
485 ret = regmap_write(data->regmap, BMA400_ACC_CONFIG1_REG,
486 (acc_config & ~BMA400_ACC_SCALE_MASK) |
487 (raw << BMA400_SCALE_SHIFT));
495 static int bma400_get_power_mode(struct bma400_data *data)
500 ret = regmap_read(data->regmap, BMA400_STATUS_REG, &val);
502 dev_err(data->dev, "Failed to read status register\n");
506 data->power_mode = (val >> 1) & BMA400_TWO_BITS_MASK;
510 static int bma400_set_power_mode(struct bma400_data *data,
511 enum bma400_power_mode mode)
516 ret = regmap_read(data->regmap, BMA400_ACC_CONFIG0_REG, &val);
520 if (data->power_mode == mode)
523 if (mode == POWER_MODE_INVALID)
526 /* Preserve the low-power oversample ratio etc */
527 ret = regmap_write(data->regmap, BMA400_ACC_CONFIG0_REG,
528 mode | (val & ~BMA400_TWO_BITS_MASK));
530 dev_err(data->dev, "Failed to write to power-mode\n");
534 data->power_mode = mode;
537 * Update our cached osr and odr based on the new
540 bma400_get_accel_output_data_rate(data);
541 bma400_get_accel_oversampling_ratio(data);
545 static void bma400_init_tables(void)
550 for (i = 0; i + 1 < ARRAY_SIZE(bma400_sample_freqs); i += 2) {
552 bma400_output_data_rate_from_raw(raw, &bma400_sample_freqs[i],
553 &bma400_sample_freqs[i + 1]);
556 for (i = 0; i + 1 < ARRAY_SIZE(bma400_scales); i += 2) {
558 bma400_scales[i] = 0;
559 bma400_scales[i + 1] = BMA400_SCALE_MIN << raw;
563 static int bma400_init(struct bma400_data *data)
568 /* Try to read chip_id register. It must return 0x90. */
569 ret = regmap_read(data->regmap, BMA400_CHIP_ID_REG, &val);
571 dev_err(data->dev, "Failed to read chip id register\n");
575 if (val != BMA400_ID_REG_VAL) {
576 dev_err(data->dev, "Chip ID mismatch\n");
581 data->regulators[BMA400_VDD_REGULATOR].supply = "vdd";
582 data->regulators[BMA400_VDDIO_REGULATOR].supply = "vddio";
583 ret = devm_regulator_bulk_get(data->dev,
584 ARRAY_SIZE(data->regulators),
587 if (ret != -EPROBE_DEFER)
589 "Failed to get regulators: %d\n",
594 ret = regulator_bulk_enable(ARRAY_SIZE(data->regulators),
597 dev_err(data->dev, "Failed to enable regulators: %d\n",
602 ret = bma400_get_power_mode(data);
604 dev_err(data->dev, "Failed to get the initial power-mode\n");
605 goto err_reg_disable;
608 if (data->power_mode != POWER_MODE_NORMAL) {
609 ret = bma400_set_power_mode(data, POWER_MODE_NORMAL);
611 dev_err(data->dev, "Failed to wake up the device\n");
612 goto err_reg_disable;
615 * TODO: The datasheet waits 1500us here in the example, but
616 * lists 2/ODR as the wakeup time.
618 usleep_range(1500, 2000);
621 bma400_init_tables();
623 ret = bma400_get_accel_output_data_rate(data);
625 goto err_reg_disable;
627 ret = bma400_get_accel_oversampling_ratio(data);
629 goto err_reg_disable;
631 ret = bma400_get_accel_scale(data);
633 goto err_reg_disable;
636 * Once the interrupt engine is supported we might use the
637 * data_src_reg, but for now ensure this is set to the
638 * variable ODR filter selectable by the sample frequency
641 return regmap_write(data->regmap, BMA400_ACC_CONFIG2_REG, 0x00);
644 regulator_bulk_disable(ARRAY_SIZE(data->regulators),
650 static int bma400_read_raw(struct iio_dev *indio_dev,
651 struct iio_chan_spec const *chan, int *val,
652 int *val2, long mask)
654 struct bma400_data *data = iio_priv(indio_dev);
658 case IIO_CHAN_INFO_PROCESSED:
659 mutex_lock(&data->mutex);
660 ret = bma400_get_temp_reg(data, val, val2);
661 mutex_unlock(&data->mutex);
663 case IIO_CHAN_INFO_RAW:
664 mutex_lock(&data->mutex);
665 ret = bma400_get_accel_reg(data, chan, val);
666 mutex_unlock(&data->mutex);
668 case IIO_CHAN_INFO_SAMP_FREQ:
669 switch (chan->type) {
671 if (data->sample_freq.hz < 0)
674 *val = data->sample_freq.hz;
675 *val2 = data->sample_freq.uhz;
676 return IIO_VAL_INT_PLUS_MICRO;
679 * Runs at a fixed sampling frequency. See Section 4.4
684 return IIO_VAL_INT_PLUS_MICRO;
688 case IIO_CHAN_INFO_SCALE:
691 return IIO_VAL_INT_PLUS_MICRO;
692 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
694 * TODO: We could avoid this logic and returning -EINVAL here if
695 * we set both the low-power and normal mode OSR registers when
696 * we configure the device.
698 if (data->oversampling_ratio < 0)
701 *val = data->oversampling_ratio;
708 static int bma400_read_avail(struct iio_dev *indio_dev,
709 struct iio_chan_spec const *chan,
710 const int **vals, int *type, int *length,
714 case IIO_CHAN_INFO_SCALE:
715 *type = IIO_VAL_INT_PLUS_MICRO;
716 *vals = bma400_scales;
717 *length = ARRAY_SIZE(bma400_scales);
718 return IIO_AVAIL_LIST;
719 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
721 *vals = bma400_osr_range;
722 *length = ARRAY_SIZE(bma400_osr_range);
723 return IIO_AVAIL_RANGE;
724 case IIO_CHAN_INFO_SAMP_FREQ:
725 *type = IIO_VAL_INT_PLUS_MICRO;
726 *vals = bma400_sample_freqs;
727 *length = ARRAY_SIZE(bma400_sample_freqs);
728 return IIO_AVAIL_LIST;
734 static int bma400_write_raw(struct iio_dev *indio_dev,
735 struct iio_chan_spec const *chan, int val, int val2,
738 struct bma400_data *data = iio_priv(indio_dev);
742 case IIO_CHAN_INFO_SAMP_FREQ:
744 * The sample frequency is readonly for the temperature
745 * register and a fixed value in low-power mode.
747 if (chan->type != IIO_ACCEL)
750 mutex_lock(&data->mutex);
751 ret = bma400_set_accel_output_data_rate(data, val, val2);
752 mutex_unlock(&data->mutex);
754 case IIO_CHAN_INFO_SCALE:
756 val2 < BMA400_SCALE_MIN || val2 > BMA400_SCALE_MAX)
759 mutex_lock(&data->mutex);
760 ret = bma400_set_accel_scale(data, val2);
761 mutex_unlock(&data->mutex);
763 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
764 mutex_lock(&data->mutex);
765 ret = bma400_set_accel_oversampling_ratio(data, val);
766 mutex_unlock(&data->mutex);
773 static int bma400_write_raw_get_fmt(struct iio_dev *indio_dev,
774 struct iio_chan_spec const *chan,
778 case IIO_CHAN_INFO_SAMP_FREQ:
779 return IIO_VAL_INT_PLUS_MICRO;
780 case IIO_CHAN_INFO_SCALE:
781 return IIO_VAL_INT_PLUS_MICRO;
782 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
789 static const struct iio_info bma400_info = {
790 .read_raw = bma400_read_raw,
791 .read_avail = bma400_read_avail,
792 .write_raw = bma400_write_raw,
793 .write_raw_get_fmt = bma400_write_raw_get_fmt,
796 int bma400_probe(struct device *dev, struct regmap *regmap, const char *name)
798 struct iio_dev *indio_dev;
799 struct bma400_data *data;
802 indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
806 data = iio_priv(indio_dev);
807 data->regmap = regmap;
810 ret = bma400_init(data);
814 ret = iio_read_mount_matrix(dev, "mount-matrix", &data->orientation);
818 mutex_init(&data->mutex);
819 indio_dev->name = name;
820 indio_dev->info = &bma400_info;
821 indio_dev->channels = bma400_channels;
822 indio_dev->num_channels = ARRAY_SIZE(bma400_channels);
823 indio_dev->modes = INDIO_DIRECT_MODE;
825 dev_set_drvdata(dev, indio_dev);
827 return iio_device_register(indio_dev);
829 EXPORT_SYMBOL(bma400_probe);
831 int bma400_remove(struct device *dev)
833 struct iio_dev *indio_dev = dev_get_drvdata(dev);
834 struct bma400_data *data = iio_priv(indio_dev);
837 mutex_lock(&data->mutex);
838 ret = bma400_set_power_mode(data, POWER_MODE_SLEEP);
839 mutex_unlock(&data->mutex);
841 regulator_bulk_disable(ARRAY_SIZE(data->regulators),
844 iio_device_unregister(indio_dev);
848 EXPORT_SYMBOL(bma400_remove);
851 MODULE_DESCRIPTION("Bosch BMA400 triaxial acceleration sensor core");
852 MODULE_LICENSE("GPL");