1 // SPDX-License-Identifier: GPL-2.0
3 * DAMON Primitives for Virtual Address Spaces
8 #define pr_fmt(fmt) "damon-va: " fmt
10 #include <asm-generic/mman-common.h>
11 #include <linux/highmem.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/page_idle.h>
15 #include <linux/pagewalk.h>
16 #include <linux/sched/mm.h>
18 #include "prmtv-common.h"
20 #ifdef CONFIG_DAMON_VADDR_KUNIT_TEST
21 #undef DAMON_MIN_REGION
22 #define DAMON_MIN_REGION 1
26 * 't->id' should be the pointer to the relevant 'struct pid' having reference
27 * count. Caller must put the returned task, unless it is NULL.
29 static inline struct task_struct *damon_get_task_struct(struct damon_target *t)
31 return get_pid_task((struct pid *)t->id, PIDTYPE_PID);
35 * Get the mm_struct of the given target
37 * Caller _must_ put the mm_struct after use, unless it is NULL.
39 * Returns the mm_struct of the target on success, NULL on failure
41 static struct mm_struct *damon_get_mm(struct damon_target *t)
43 struct task_struct *task;
46 task = damon_get_task_struct(t);
50 mm = get_task_mm(task);
51 put_task_struct(task);
56 * Functions for the initial monitoring target regions construction
60 * Size-evenly split a region into 'nr_pieces' small regions
62 * Returns 0 on success, or negative error code otherwise.
64 static int damon_va_evenly_split_region(struct damon_target *t,
65 struct damon_region *r, unsigned int nr_pieces)
67 unsigned long sz_orig, sz_piece, orig_end;
68 struct damon_region *n = NULL, *next;
75 sz_orig = r->ar.end - r->ar.start;
76 sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION);
81 r->ar.end = r->ar.start + sz_piece;
82 next = damon_next_region(r);
83 for (start = r->ar.end; start + sz_piece <= orig_end;
85 n = damon_new_region(start, start + sz_piece);
88 damon_insert_region(n, r, next, t);
91 /* complement last region for possible rounding error */
98 static unsigned long sz_range(struct damon_addr_range *r)
100 return r->end - r->start;
104 * Find three regions separated by two biggest unmapped regions
106 * vma the head vma of the target address space
107 * regions an array of three address ranges that results will be saved
109 * This function receives an address space and finds three regions in it which
110 * separated by the two biggest unmapped regions in the space. Please refer to
111 * below comments of '__damon_va_init_regions()' function to know why this is
114 * Returns 0 if success, or negative error code otherwise.
116 static int __damon_va_three_regions(struct vm_area_struct *vma,
117 struct damon_addr_range regions[3])
119 struct damon_addr_range gap = {0}, first_gap = {0}, second_gap = {0};
120 struct vm_area_struct *last_vma = NULL;
121 unsigned long start = 0;
122 struct rb_root rbroot;
124 /* Find two biggest gaps so that first_gap > second_gap > others */
125 for (; vma; vma = vma->vm_next) {
127 start = vma->vm_start;
131 if (vma->rb_subtree_gap <= sz_range(&second_gap)) {
132 rbroot.rb_node = &vma->vm_rb;
133 vma = rb_entry(rb_last(&rbroot),
134 struct vm_area_struct, vm_rb);
138 gap.start = last_vma->vm_end;
139 gap.end = vma->vm_start;
140 if (sz_range(&gap) > sz_range(&second_gap)) {
141 swap(gap, second_gap);
142 if (sz_range(&second_gap) > sz_range(&first_gap))
143 swap(second_gap, first_gap);
149 if (!sz_range(&second_gap) || !sz_range(&first_gap))
152 /* Sort the two biggest gaps by address */
153 if (first_gap.start > second_gap.start)
154 swap(first_gap, second_gap);
156 /* Store the result */
157 regions[0].start = ALIGN(start, DAMON_MIN_REGION);
158 regions[0].end = ALIGN(first_gap.start, DAMON_MIN_REGION);
159 regions[1].start = ALIGN(first_gap.end, DAMON_MIN_REGION);
160 regions[1].end = ALIGN(second_gap.start, DAMON_MIN_REGION);
161 regions[2].start = ALIGN(second_gap.end, DAMON_MIN_REGION);
162 regions[2].end = ALIGN(last_vma->vm_end, DAMON_MIN_REGION);
168 * Get the three regions in the given target (task)
170 * Returns 0 on success, negative error code otherwise.
172 static int damon_va_three_regions(struct damon_target *t,
173 struct damon_addr_range regions[3])
175 struct mm_struct *mm;
178 mm = damon_get_mm(t);
183 rc = __damon_va_three_regions(mm->mmap, regions);
184 mmap_read_unlock(mm);
191 * Initialize the monitoring target regions for the given target (task)
195 * Because only a number of small portions of the entire address space
196 * is actually mapped to the memory and accessed, monitoring the unmapped
197 * regions is wasteful. That said, because we can deal with small noises,
198 * tracking every mapping is not strictly required but could even incur a high
199 * overhead if the mapping frequently changes or the number of mappings is
200 * high. The adaptive regions adjustment mechanism will further help to deal
201 * with the noise by simply identifying the unmapped areas as a region that
202 * has no access. Moreover, applying the real mappings that would have many
203 * unmapped areas inside will make the adaptive mechanism quite complex. That
204 * said, too huge unmapped areas inside the monitoring target should be removed
205 * to not take the time for the adaptive mechanism.
207 * For the reason, we convert the complex mappings to three distinct regions
208 * that cover every mapped area of the address space. Also the two gaps
209 * between the three regions are the two biggest unmapped areas in the given
210 * address space. In detail, this function first identifies the start and the
211 * end of the mappings and the two biggest unmapped areas of the address space.
212 * Then, it constructs the three regions as below:
214 * [mappings[0]->start, big_two_unmapped_areas[0]->start)
215 * [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start)
216 * [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end)
218 * As usual memory map of processes is as below, the gap between the heap and
219 * the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed
220 * region and the stack will be two biggest unmapped regions. Because these
221 * gaps are exceptionally huge areas in usual address space, excluding these
222 * two biggest unmapped regions will be sufficient to make a trade-off.
225 * <BIG UNMAPPED REGION 1>
226 * <uppermost mmap()-ed region>
227 * (other mmap()-ed regions and small unmapped regions)
228 * <lowermost mmap()-ed region>
229 * <BIG UNMAPPED REGION 2>
232 static void __damon_va_init_regions(struct damon_ctx *ctx,
233 struct damon_target *t)
235 struct damon_target *ti;
236 struct damon_region *r;
237 struct damon_addr_range regions[3];
238 unsigned long sz = 0, nr_pieces;
241 if (damon_va_three_regions(t, regions)) {
242 damon_for_each_target(ti, ctx) {
247 pr_debug("Failed to get three regions of %dth target\n", tidx);
251 for (i = 0; i < 3; i++)
252 sz += regions[i].end - regions[i].start;
253 if (ctx->min_nr_regions)
254 sz /= ctx->min_nr_regions;
255 if (sz < DAMON_MIN_REGION)
256 sz = DAMON_MIN_REGION;
258 /* Set the initial three regions of the target */
259 for (i = 0; i < 3; i++) {
260 r = damon_new_region(regions[i].start, regions[i].end);
262 pr_err("%d'th init region creation failed\n", i);
265 damon_add_region(r, t);
267 nr_pieces = (regions[i].end - regions[i].start) / sz;
268 damon_va_evenly_split_region(t, r, nr_pieces);
272 /* Initialize '->regions_list' of every target (task) */
273 static void damon_va_init(struct damon_ctx *ctx)
275 struct damon_target *t;
277 damon_for_each_target(t, ctx) {
278 /* the user may set the target regions as they want */
279 if (!damon_nr_regions(t))
280 __damon_va_init_regions(ctx, t);
285 * Functions for the dynamic monitoring target regions update
289 * Check whether a region is intersecting an address range
291 * Returns true if it is.
293 static bool damon_intersect(struct damon_region *r,
294 struct damon_addr_range *re)
296 return !(r->ar.end <= re->start || re->end <= r->ar.start);
300 * Update damon regions for the three big regions of the given target
303 * bregions the three big regions of the target
305 static void damon_va_apply_three_regions(struct damon_target *t,
306 struct damon_addr_range bregions[3])
308 struct damon_region *r, *next;
311 /* Remove regions which are not in the three big regions now */
312 damon_for_each_region_safe(r, next, t) {
313 for (i = 0; i < 3; i++) {
314 if (damon_intersect(r, &bregions[i]))
318 damon_destroy_region(r, t);
321 /* Adjust intersecting regions to fit with the three big regions */
322 for (i = 0; i < 3; i++) {
323 struct damon_region *first = NULL, *last;
324 struct damon_region *newr;
325 struct damon_addr_range *br;
328 /* Get the first and last regions which intersects with br */
329 damon_for_each_region(r, t) {
330 if (damon_intersect(r, br)) {
335 if (r->ar.start >= br->end)
339 /* no damon_region intersects with this big region */
340 newr = damon_new_region(
341 ALIGN_DOWN(br->start,
343 ALIGN(br->end, DAMON_MIN_REGION));
346 damon_insert_region(newr, damon_prev_region(r), r, t);
348 first->ar.start = ALIGN_DOWN(br->start,
350 last->ar.end = ALIGN(br->end, DAMON_MIN_REGION);
356 * Update regions for current memory mappings
358 static void damon_va_update(struct damon_ctx *ctx)
360 struct damon_addr_range three_regions[3];
361 struct damon_target *t;
363 damon_for_each_target(t, ctx) {
364 if (damon_va_three_regions(t, three_regions))
366 damon_va_apply_three_regions(t, three_regions);
370 static int damon_mkold_pmd_entry(pmd_t *pmd, unsigned long addr,
371 unsigned long next, struct mm_walk *walk)
376 if (pmd_huge(*pmd)) {
377 ptl = pmd_lock(walk->mm, pmd);
378 if (pmd_huge(*pmd)) {
379 damon_pmdp_mkold(pmd, walk->mm, addr);
386 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
388 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
389 if (!pte_present(*pte))
391 damon_ptep_mkold(pte, walk->mm, addr);
393 pte_unmap_unlock(pte, ptl);
397 #ifdef CONFIG_HUGETLB_PAGE
398 static void damon_hugetlb_mkold(pte_t *pte, struct mm_struct *mm,
399 struct vm_area_struct *vma, unsigned long addr)
401 bool referenced = false;
402 pte_t entry = huge_ptep_get(pte);
403 struct page *page = pte_page(entry);
410 if (pte_young(entry)) {
412 entry = pte_mkold(entry);
413 huge_ptep_set_access_flags(vma, addr, pte, entry,
414 vma->vm_flags & VM_WRITE);
417 #ifdef CONFIG_MMU_NOTIFIER
418 if (mmu_notifier_clear_young(mm, addr,
419 addr + huge_page_size(hstate_vma(vma))))
421 #endif /* CONFIG_MMU_NOTIFIER */
424 set_page_young(page);
430 static int damon_mkold_hugetlb_entry(pte_t *pte, unsigned long hmask,
431 unsigned long addr, unsigned long end,
432 struct mm_walk *walk)
434 struct hstate *h = hstate_vma(walk->vma);
438 ptl = huge_pte_lock(h, walk->mm, pte);
439 entry = huge_ptep_get(pte);
440 if (!pte_present(entry))
443 damon_hugetlb_mkold(pte, walk->mm, walk->vma, addr);
450 #define damon_mkold_hugetlb_entry NULL
451 #endif /* CONFIG_HUGETLB_PAGE */
453 static const struct mm_walk_ops damon_mkold_ops = {
454 .pmd_entry = damon_mkold_pmd_entry,
455 .hugetlb_entry = damon_mkold_hugetlb_entry,
458 static void damon_va_mkold(struct mm_struct *mm, unsigned long addr)
461 walk_page_range(mm, addr, addr + 1, &damon_mkold_ops, NULL);
462 mmap_read_unlock(mm);
466 * Functions for the access checking of the regions
469 static void __damon_va_prepare_access_check(struct damon_ctx *ctx,
470 struct mm_struct *mm, struct damon_region *r)
472 r->sampling_addr = damon_rand(r->ar.start, r->ar.end);
474 damon_va_mkold(mm, r->sampling_addr);
477 static void damon_va_prepare_access_checks(struct damon_ctx *ctx)
479 struct damon_target *t;
480 struct mm_struct *mm;
481 struct damon_region *r;
483 damon_for_each_target(t, ctx) {
484 mm = damon_get_mm(t);
487 damon_for_each_region(r, t)
488 __damon_va_prepare_access_check(ctx, mm, r);
493 struct damon_young_walk_private {
494 unsigned long *page_sz;
498 static int damon_young_pmd_entry(pmd_t *pmd, unsigned long addr,
499 unsigned long next, struct mm_walk *walk)
504 struct damon_young_walk_private *priv = walk->private;
506 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
507 if (pmd_huge(*pmd)) {
508 ptl = pmd_lock(walk->mm, pmd);
509 if (!pmd_huge(*pmd)) {
513 page = damon_get_page(pmd_pfn(*pmd));
516 if (pmd_young(*pmd) || !page_is_idle(page) ||
517 mmu_notifier_test_young(walk->mm,
519 *priv->page_sz = ((1UL) << HPAGE_PMD_SHIFT);
529 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
531 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
533 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
534 if (!pte_present(*pte))
536 page = damon_get_page(pte_pfn(*pte));
539 if (pte_young(*pte) || !page_is_idle(page) ||
540 mmu_notifier_test_young(walk->mm, addr)) {
541 *priv->page_sz = PAGE_SIZE;
546 pte_unmap_unlock(pte, ptl);
550 #ifdef CONFIG_HUGETLB_PAGE
551 static int damon_young_hugetlb_entry(pte_t *pte, unsigned long hmask,
552 unsigned long addr, unsigned long end,
553 struct mm_walk *walk)
555 struct damon_young_walk_private *priv = walk->private;
556 struct hstate *h = hstate_vma(walk->vma);
561 ptl = huge_pte_lock(h, walk->mm, pte);
562 entry = huge_ptep_get(pte);
563 if (!pte_present(entry))
566 page = pte_page(entry);
572 if (pte_young(entry) || !page_is_idle(page) ||
573 mmu_notifier_test_young(walk->mm, addr)) {
574 *priv->page_sz = huge_page_size(h);
585 #define damon_young_hugetlb_entry NULL
586 #endif /* CONFIG_HUGETLB_PAGE */
588 static const struct mm_walk_ops damon_young_ops = {
589 .pmd_entry = damon_young_pmd_entry,
590 .hugetlb_entry = damon_young_hugetlb_entry,
593 static bool damon_va_young(struct mm_struct *mm, unsigned long addr,
594 unsigned long *page_sz)
596 struct damon_young_walk_private arg = {
602 walk_page_range(mm, addr, addr + 1, &damon_young_ops, &arg);
603 mmap_read_unlock(mm);
608 * Check whether the region was accessed after the last preparation
610 * mm 'mm_struct' for the given virtual address space
611 * r the region to be checked
613 static void __damon_va_check_access(struct damon_ctx *ctx,
614 struct mm_struct *mm, struct damon_region *r)
616 static struct mm_struct *last_mm;
617 static unsigned long last_addr;
618 static unsigned long last_page_sz = PAGE_SIZE;
619 static bool last_accessed;
621 /* If the region is in the last checked page, reuse the result */
622 if (mm == last_mm && (ALIGN_DOWN(last_addr, last_page_sz) ==
623 ALIGN_DOWN(r->sampling_addr, last_page_sz))) {
629 last_accessed = damon_va_young(mm, r->sampling_addr, &last_page_sz);
634 last_addr = r->sampling_addr;
637 static unsigned int damon_va_check_accesses(struct damon_ctx *ctx)
639 struct damon_target *t;
640 struct mm_struct *mm;
641 struct damon_region *r;
642 unsigned int max_nr_accesses = 0;
644 damon_for_each_target(t, ctx) {
645 mm = damon_get_mm(t);
648 damon_for_each_region(r, t) {
649 __damon_va_check_access(ctx, mm, r);
650 max_nr_accesses = max(r->nr_accesses, max_nr_accesses);
655 return max_nr_accesses;
659 * Functions for the target validity check and cleanup
662 bool damon_va_target_valid(void *target)
664 struct damon_target *t = target;
665 struct task_struct *task;
667 task = damon_get_task_struct(t);
669 put_task_struct(task);
676 #ifndef CONFIG_ADVISE_SYSCALLS
677 static unsigned long damos_madvise(struct damon_target *target,
678 struct damon_region *r, int behavior)
683 static unsigned long damos_madvise(struct damon_target *target,
684 struct damon_region *r, int behavior)
686 struct mm_struct *mm;
687 unsigned long start = PAGE_ALIGN(r->ar.start);
688 unsigned long len = PAGE_ALIGN(r->ar.end - r->ar.start);
689 unsigned long applied;
691 mm = damon_get_mm(target);
695 applied = do_madvise(mm, start, len, behavior) ? 0 : len;
700 #endif /* CONFIG_ADVISE_SYSCALLS */
702 static unsigned long damon_va_apply_scheme(struct damon_ctx *ctx,
703 struct damon_target *t, struct damon_region *r,
704 struct damos *scheme)
708 switch (scheme->action) {
710 madv_action = MADV_WILLNEED;
713 madv_action = MADV_COLD;
716 madv_action = MADV_PAGEOUT;
719 madv_action = MADV_HUGEPAGE;
721 case DAMOS_NOHUGEPAGE:
722 madv_action = MADV_NOHUGEPAGE;
730 return damos_madvise(t, r, madv_action);
733 static int damon_va_scheme_score(struct damon_ctx *context,
734 struct damon_target *t, struct damon_region *r,
735 struct damos *scheme)
738 switch (scheme->action) {
740 return damon_pageout_score(context, r, scheme);
745 return DAMOS_MAX_SCORE;
748 void damon_va_set_primitives(struct damon_ctx *ctx)
750 ctx->primitive.init = damon_va_init;
751 ctx->primitive.update = damon_va_update;
752 ctx->primitive.prepare_access_checks = damon_va_prepare_access_checks;
753 ctx->primitive.check_accesses = damon_va_check_accesses;
754 ctx->primitive.reset_aggregated = NULL;
755 ctx->primitive.target_valid = damon_va_target_valid;
756 ctx->primitive.cleanup = NULL;
757 ctx->primitive.apply_scheme = damon_va_apply_scheme;
758 ctx->primitive.get_scheme_score = damon_va_scheme_score;
761 #include "vaddr-test.h"