]> Git Repo - linux.git/blob - drivers/md/dm-thin.c
Merge tag 'upstream-4.19-rc1' of git://git.infradead.org/linux-ubifs
[linux.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24
25 #define DM_MSG_PREFIX   "thin"
26
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38                 "A percentage of time allocated for copy on write");
39
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109
110 /*----------------------------------------------------------------*/
111
112 /*
113  * Key building.
114  */
115 enum lock_space {
116         VIRTUAL,
117         PHYSICAL
118 };
119
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121                       dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123         key->virtual = (ls == VIRTUAL);
124         key->dev = dm_thin_dev_id(td);
125         key->block_begin = b;
126         key->block_end = e;
127 }
128
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130                            struct dm_cell_key *key)
131 {
132         build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136                               struct dm_cell_key *key)
137 {
138         build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140
141 /*----------------------------------------------------------------*/
142
143 #define THROTTLE_THRESHOLD (1 * HZ)
144
145 struct throttle {
146         struct rw_semaphore lock;
147         unsigned long threshold;
148         bool throttle_applied;
149 };
150
151 static void throttle_init(struct throttle *t)
152 {
153         init_rwsem(&t->lock);
154         t->throttle_applied = false;
155 }
156
157 static void throttle_work_start(struct throttle *t)
158 {
159         t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161
162 static void throttle_work_update(struct throttle *t)
163 {
164         if (!t->throttle_applied && jiffies > t->threshold) {
165                 down_write(&t->lock);
166                 t->throttle_applied = true;
167         }
168 }
169
170 static void throttle_work_complete(struct throttle *t)
171 {
172         if (t->throttle_applied) {
173                 t->throttle_applied = false;
174                 up_write(&t->lock);
175         }
176 }
177
178 static void throttle_lock(struct throttle *t)
179 {
180         down_read(&t->lock);
181 }
182
183 static void throttle_unlock(struct throttle *t)
184 {
185         up_read(&t->lock);
186 }
187
188 /*----------------------------------------------------------------*/
189
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196
197 /*
198  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201         PM_WRITE,               /* metadata may be changed */
202         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
203         PM_READ_ONLY,           /* metadata may not be changed */
204         PM_FAIL,                /* all I/O fails */
205 };
206
207 struct pool_features {
208         enum pool_mode mode;
209
210         bool zero_new_blocks:1;
211         bool discard_enabled:1;
212         bool discard_passdown:1;
213         bool error_if_no_space:1;
214 };
215
216 struct thin_c;
217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
220
221 #define CELL_SORT_ARRAY_SIZE 8192
222
223 struct pool {
224         struct list_head list;
225         struct dm_target *ti;   /* Only set if a pool target is bound */
226
227         struct mapped_device *pool_md;
228         struct block_device *md_dev;
229         struct dm_pool_metadata *pmd;
230
231         dm_block_t low_water_blocks;
232         uint32_t sectors_per_block;
233         int sectors_per_block_shift;
234
235         struct pool_features pf;
236         bool low_water_triggered:1;     /* A dm event has been sent */
237         bool suspended:1;
238         bool out_of_data_space:1;
239
240         struct dm_bio_prison *prison;
241         struct dm_kcopyd_client *copier;
242
243         struct work_struct worker;
244         struct workqueue_struct *wq;
245         struct throttle throttle;
246         struct delayed_work waker;
247         struct delayed_work no_space_timeout;
248
249         unsigned long last_commit_jiffies;
250         unsigned ref_count;
251
252         spinlock_t lock;
253         struct bio_list deferred_flush_bios;
254         struct list_head prepared_mappings;
255         struct list_head prepared_discards;
256         struct list_head prepared_discards_pt2;
257         struct list_head active_thins;
258
259         struct dm_deferred_set *shared_read_ds;
260         struct dm_deferred_set *all_io_ds;
261
262         struct dm_thin_new_mapping *next_mapping;
263
264         process_bio_fn process_bio;
265         process_bio_fn process_discard;
266
267         process_cell_fn process_cell;
268         process_cell_fn process_discard_cell;
269
270         process_mapping_fn process_prepared_mapping;
271         process_mapping_fn process_prepared_discard;
272         process_mapping_fn process_prepared_discard_pt2;
273
274         struct dm_bio_prison_cell **cell_sort_array;
275
276         mempool_t mapping_pool;
277 };
278
279 static enum pool_mode get_pool_mode(struct pool *pool);
280 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
281
282 /*
283  * Target context for a pool.
284  */
285 struct pool_c {
286         struct dm_target *ti;
287         struct pool *pool;
288         struct dm_dev *data_dev;
289         struct dm_dev *metadata_dev;
290         struct dm_target_callbacks callbacks;
291
292         dm_block_t low_water_blocks;
293         struct pool_features requested_pf; /* Features requested during table load */
294         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
295 };
296
297 /*
298  * Target context for a thin.
299  */
300 struct thin_c {
301         struct list_head list;
302         struct dm_dev *pool_dev;
303         struct dm_dev *origin_dev;
304         sector_t origin_size;
305         dm_thin_id dev_id;
306
307         struct pool *pool;
308         struct dm_thin_device *td;
309         struct mapped_device *thin_md;
310
311         bool requeue_mode:1;
312         spinlock_t lock;
313         struct list_head deferred_cells;
314         struct bio_list deferred_bio_list;
315         struct bio_list retry_on_resume_list;
316         struct rb_root sort_bio_list; /* sorted list of deferred bios */
317
318         /*
319          * Ensures the thin is not destroyed until the worker has finished
320          * iterating the active_thins list.
321          */
322         atomic_t refcount;
323         struct completion can_destroy;
324 };
325
326 /*----------------------------------------------------------------*/
327
328 static bool block_size_is_power_of_two(struct pool *pool)
329 {
330         return pool->sectors_per_block_shift >= 0;
331 }
332
333 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
334 {
335         return block_size_is_power_of_two(pool) ?
336                 (b << pool->sectors_per_block_shift) :
337                 (b * pool->sectors_per_block);
338 }
339
340 /*----------------------------------------------------------------*/
341
342 struct discard_op {
343         struct thin_c *tc;
344         struct blk_plug plug;
345         struct bio *parent_bio;
346         struct bio *bio;
347 };
348
349 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
350 {
351         BUG_ON(!parent);
352
353         op->tc = tc;
354         blk_start_plug(&op->plug);
355         op->parent_bio = parent;
356         op->bio = NULL;
357 }
358
359 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
360 {
361         struct thin_c *tc = op->tc;
362         sector_t s = block_to_sectors(tc->pool, data_b);
363         sector_t len = block_to_sectors(tc->pool, data_e - data_b);
364
365         return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
366                                       GFP_NOWAIT, 0, &op->bio);
367 }
368
369 static void end_discard(struct discard_op *op, int r)
370 {
371         if (op->bio) {
372                 /*
373                  * Even if one of the calls to issue_discard failed, we
374                  * need to wait for the chain to complete.
375                  */
376                 bio_chain(op->bio, op->parent_bio);
377                 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
378                 submit_bio(op->bio);
379         }
380
381         blk_finish_plug(&op->plug);
382
383         /*
384          * Even if r is set, there could be sub discards in flight that we
385          * need to wait for.
386          */
387         if (r && !op->parent_bio->bi_status)
388                 op->parent_bio->bi_status = errno_to_blk_status(r);
389         bio_endio(op->parent_bio);
390 }
391
392 /*----------------------------------------------------------------*/
393
394 /*
395  * wake_worker() is used when new work is queued and when pool_resume is
396  * ready to continue deferred IO processing.
397  */
398 static void wake_worker(struct pool *pool)
399 {
400         queue_work(pool->wq, &pool->worker);
401 }
402
403 /*----------------------------------------------------------------*/
404
405 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
406                       struct dm_bio_prison_cell **cell_result)
407 {
408         int r;
409         struct dm_bio_prison_cell *cell_prealloc;
410
411         /*
412          * Allocate a cell from the prison's mempool.
413          * This might block but it can't fail.
414          */
415         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
416
417         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
418         if (r)
419                 /*
420                  * We reused an old cell; we can get rid of
421                  * the new one.
422                  */
423                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
424
425         return r;
426 }
427
428 static void cell_release(struct pool *pool,
429                          struct dm_bio_prison_cell *cell,
430                          struct bio_list *bios)
431 {
432         dm_cell_release(pool->prison, cell, bios);
433         dm_bio_prison_free_cell(pool->prison, cell);
434 }
435
436 static void cell_visit_release(struct pool *pool,
437                                void (*fn)(void *, struct dm_bio_prison_cell *),
438                                void *context,
439                                struct dm_bio_prison_cell *cell)
440 {
441         dm_cell_visit_release(pool->prison, fn, context, cell);
442         dm_bio_prison_free_cell(pool->prison, cell);
443 }
444
445 static void cell_release_no_holder(struct pool *pool,
446                                    struct dm_bio_prison_cell *cell,
447                                    struct bio_list *bios)
448 {
449         dm_cell_release_no_holder(pool->prison, cell, bios);
450         dm_bio_prison_free_cell(pool->prison, cell);
451 }
452
453 static void cell_error_with_code(struct pool *pool,
454                 struct dm_bio_prison_cell *cell, blk_status_t error_code)
455 {
456         dm_cell_error(pool->prison, cell, error_code);
457         dm_bio_prison_free_cell(pool->prison, cell);
458 }
459
460 static blk_status_t get_pool_io_error_code(struct pool *pool)
461 {
462         return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
463 }
464
465 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
466 {
467         cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
468 }
469
470 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
471 {
472         cell_error_with_code(pool, cell, 0);
473 }
474
475 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
476 {
477         cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
478 }
479
480 /*----------------------------------------------------------------*/
481
482 /*
483  * A global list of pools that uses a struct mapped_device as a key.
484  */
485 static struct dm_thin_pool_table {
486         struct mutex mutex;
487         struct list_head pools;
488 } dm_thin_pool_table;
489
490 static void pool_table_init(void)
491 {
492         mutex_init(&dm_thin_pool_table.mutex);
493         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
494 }
495
496 static void pool_table_exit(void)
497 {
498         mutex_destroy(&dm_thin_pool_table.mutex);
499 }
500
501 static void __pool_table_insert(struct pool *pool)
502 {
503         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
504         list_add(&pool->list, &dm_thin_pool_table.pools);
505 }
506
507 static void __pool_table_remove(struct pool *pool)
508 {
509         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
510         list_del(&pool->list);
511 }
512
513 static struct pool *__pool_table_lookup(struct mapped_device *md)
514 {
515         struct pool *pool = NULL, *tmp;
516
517         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
518
519         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
520                 if (tmp->pool_md == md) {
521                         pool = tmp;
522                         break;
523                 }
524         }
525
526         return pool;
527 }
528
529 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
530 {
531         struct pool *pool = NULL, *tmp;
532
533         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
534
535         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
536                 if (tmp->md_dev == md_dev) {
537                         pool = tmp;
538                         break;
539                 }
540         }
541
542         return pool;
543 }
544
545 /*----------------------------------------------------------------*/
546
547 struct dm_thin_endio_hook {
548         struct thin_c *tc;
549         struct dm_deferred_entry *shared_read_entry;
550         struct dm_deferred_entry *all_io_entry;
551         struct dm_thin_new_mapping *overwrite_mapping;
552         struct rb_node rb_node;
553         struct dm_bio_prison_cell *cell;
554 };
555
556 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
557 {
558         bio_list_merge(bios, master);
559         bio_list_init(master);
560 }
561
562 static void error_bio_list(struct bio_list *bios, blk_status_t error)
563 {
564         struct bio *bio;
565
566         while ((bio = bio_list_pop(bios))) {
567                 bio->bi_status = error;
568                 bio_endio(bio);
569         }
570 }
571
572 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
573                 blk_status_t error)
574 {
575         struct bio_list bios;
576         unsigned long flags;
577
578         bio_list_init(&bios);
579
580         spin_lock_irqsave(&tc->lock, flags);
581         __merge_bio_list(&bios, master);
582         spin_unlock_irqrestore(&tc->lock, flags);
583
584         error_bio_list(&bios, error);
585 }
586
587 static void requeue_deferred_cells(struct thin_c *tc)
588 {
589         struct pool *pool = tc->pool;
590         unsigned long flags;
591         struct list_head cells;
592         struct dm_bio_prison_cell *cell, *tmp;
593
594         INIT_LIST_HEAD(&cells);
595
596         spin_lock_irqsave(&tc->lock, flags);
597         list_splice_init(&tc->deferred_cells, &cells);
598         spin_unlock_irqrestore(&tc->lock, flags);
599
600         list_for_each_entry_safe(cell, tmp, &cells, user_list)
601                 cell_requeue(pool, cell);
602 }
603
604 static void requeue_io(struct thin_c *tc)
605 {
606         struct bio_list bios;
607         unsigned long flags;
608
609         bio_list_init(&bios);
610
611         spin_lock_irqsave(&tc->lock, flags);
612         __merge_bio_list(&bios, &tc->deferred_bio_list);
613         __merge_bio_list(&bios, &tc->retry_on_resume_list);
614         spin_unlock_irqrestore(&tc->lock, flags);
615
616         error_bio_list(&bios, BLK_STS_DM_REQUEUE);
617         requeue_deferred_cells(tc);
618 }
619
620 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
621 {
622         struct thin_c *tc;
623
624         rcu_read_lock();
625         list_for_each_entry_rcu(tc, &pool->active_thins, list)
626                 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
627         rcu_read_unlock();
628 }
629
630 static void error_retry_list(struct pool *pool)
631 {
632         error_retry_list_with_code(pool, get_pool_io_error_code(pool));
633 }
634
635 /*
636  * This section of code contains the logic for processing a thin device's IO.
637  * Much of the code depends on pool object resources (lists, workqueues, etc)
638  * but most is exclusively called from the thin target rather than the thin-pool
639  * target.
640  */
641
642 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
643 {
644         struct pool *pool = tc->pool;
645         sector_t block_nr = bio->bi_iter.bi_sector;
646
647         if (block_size_is_power_of_two(pool))
648                 block_nr >>= pool->sectors_per_block_shift;
649         else
650                 (void) sector_div(block_nr, pool->sectors_per_block);
651
652         return block_nr;
653 }
654
655 /*
656  * Returns the _complete_ blocks that this bio covers.
657  */
658 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
659                                 dm_block_t *begin, dm_block_t *end)
660 {
661         struct pool *pool = tc->pool;
662         sector_t b = bio->bi_iter.bi_sector;
663         sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
664
665         b += pool->sectors_per_block - 1ull; /* so we round up */
666
667         if (block_size_is_power_of_two(pool)) {
668                 b >>= pool->sectors_per_block_shift;
669                 e >>= pool->sectors_per_block_shift;
670         } else {
671                 (void) sector_div(b, pool->sectors_per_block);
672                 (void) sector_div(e, pool->sectors_per_block);
673         }
674
675         if (e < b)
676                 /* Can happen if the bio is within a single block. */
677                 e = b;
678
679         *begin = b;
680         *end = e;
681 }
682
683 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
684 {
685         struct pool *pool = tc->pool;
686         sector_t bi_sector = bio->bi_iter.bi_sector;
687
688         bio_set_dev(bio, tc->pool_dev->bdev);
689         if (block_size_is_power_of_two(pool))
690                 bio->bi_iter.bi_sector =
691                         (block << pool->sectors_per_block_shift) |
692                         (bi_sector & (pool->sectors_per_block - 1));
693         else
694                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
695                                  sector_div(bi_sector, pool->sectors_per_block);
696 }
697
698 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
699 {
700         bio_set_dev(bio, tc->origin_dev->bdev);
701 }
702
703 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
704 {
705         return op_is_flush(bio->bi_opf) &&
706                 dm_thin_changed_this_transaction(tc->td);
707 }
708
709 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
710 {
711         struct dm_thin_endio_hook *h;
712
713         if (bio_op(bio) == REQ_OP_DISCARD)
714                 return;
715
716         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
717         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
718 }
719
720 static void issue(struct thin_c *tc, struct bio *bio)
721 {
722         struct pool *pool = tc->pool;
723         unsigned long flags;
724
725         if (!bio_triggers_commit(tc, bio)) {
726                 generic_make_request(bio);
727                 return;
728         }
729
730         /*
731          * Complete bio with an error if earlier I/O caused changes to
732          * the metadata that can't be committed e.g, due to I/O errors
733          * on the metadata device.
734          */
735         if (dm_thin_aborted_changes(tc->td)) {
736                 bio_io_error(bio);
737                 return;
738         }
739
740         /*
741          * Batch together any bios that trigger commits and then issue a
742          * single commit for them in process_deferred_bios().
743          */
744         spin_lock_irqsave(&pool->lock, flags);
745         bio_list_add(&pool->deferred_flush_bios, bio);
746         spin_unlock_irqrestore(&pool->lock, flags);
747 }
748
749 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
750 {
751         remap_to_origin(tc, bio);
752         issue(tc, bio);
753 }
754
755 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
756                             dm_block_t block)
757 {
758         remap(tc, bio, block);
759         issue(tc, bio);
760 }
761
762 /*----------------------------------------------------------------*/
763
764 /*
765  * Bio endio functions.
766  */
767 struct dm_thin_new_mapping {
768         struct list_head list;
769
770         bool pass_discard:1;
771         bool maybe_shared:1;
772
773         /*
774          * Track quiescing, copying and zeroing preparation actions.  When this
775          * counter hits zero the block is prepared and can be inserted into the
776          * btree.
777          */
778         atomic_t prepare_actions;
779
780         blk_status_t status;
781         struct thin_c *tc;
782         dm_block_t virt_begin, virt_end;
783         dm_block_t data_block;
784         struct dm_bio_prison_cell *cell;
785
786         /*
787          * If the bio covers the whole area of a block then we can avoid
788          * zeroing or copying.  Instead this bio is hooked.  The bio will
789          * still be in the cell, so care has to be taken to avoid issuing
790          * the bio twice.
791          */
792         struct bio *bio;
793         bio_end_io_t *saved_bi_end_io;
794 };
795
796 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
797 {
798         struct pool *pool = m->tc->pool;
799
800         if (atomic_dec_and_test(&m->prepare_actions)) {
801                 list_add_tail(&m->list, &pool->prepared_mappings);
802                 wake_worker(pool);
803         }
804 }
805
806 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
807 {
808         unsigned long flags;
809         struct pool *pool = m->tc->pool;
810
811         spin_lock_irqsave(&pool->lock, flags);
812         __complete_mapping_preparation(m);
813         spin_unlock_irqrestore(&pool->lock, flags);
814 }
815
816 static void copy_complete(int read_err, unsigned long write_err, void *context)
817 {
818         struct dm_thin_new_mapping *m = context;
819
820         m->status = read_err || write_err ? BLK_STS_IOERR : 0;
821         complete_mapping_preparation(m);
822 }
823
824 static void overwrite_endio(struct bio *bio)
825 {
826         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
827         struct dm_thin_new_mapping *m = h->overwrite_mapping;
828
829         bio->bi_end_io = m->saved_bi_end_io;
830
831         m->status = bio->bi_status;
832         complete_mapping_preparation(m);
833 }
834
835 /*----------------------------------------------------------------*/
836
837 /*
838  * Workqueue.
839  */
840
841 /*
842  * Prepared mapping jobs.
843  */
844
845 /*
846  * This sends the bios in the cell, except the original holder, back
847  * to the deferred_bios list.
848  */
849 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
850 {
851         struct pool *pool = tc->pool;
852         unsigned long flags;
853
854         spin_lock_irqsave(&tc->lock, flags);
855         cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
856         spin_unlock_irqrestore(&tc->lock, flags);
857
858         wake_worker(pool);
859 }
860
861 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
862
863 struct remap_info {
864         struct thin_c *tc;
865         struct bio_list defer_bios;
866         struct bio_list issue_bios;
867 };
868
869 static void __inc_remap_and_issue_cell(void *context,
870                                        struct dm_bio_prison_cell *cell)
871 {
872         struct remap_info *info = context;
873         struct bio *bio;
874
875         while ((bio = bio_list_pop(&cell->bios))) {
876                 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
877                         bio_list_add(&info->defer_bios, bio);
878                 else {
879                         inc_all_io_entry(info->tc->pool, bio);
880
881                         /*
882                          * We can't issue the bios with the bio prison lock
883                          * held, so we add them to a list to issue on
884                          * return from this function.
885                          */
886                         bio_list_add(&info->issue_bios, bio);
887                 }
888         }
889 }
890
891 static void inc_remap_and_issue_cell(struct thin_c *tc,
892                                      struct dm_bio_prison_cell *cell,
893                                      dm_block_t block)
894 {
895         struct bio *bio;
896         struct remap_info info;
897
898         info.tc = tc;
899         bio_list_init(&info.defer_bios);
900         bio_list_init(&info.issue_bios);
901
902         /*
903          * We have to be careful to inc any bios we're about to issue
904          * before the cell is released, and avoid a race with new bios
905          * being added to the cell.
906          */
907         cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
908                            &info, cell);
909
910         while ((bio = bio_list_pop(&info.defer_bios)))
911                 thin_defer_bio(tc, bio);
912
913         while ((bio = bio_list_pop(&info.issue_bios)))
914                 remap_and_issue(info.tc, bio, block);
915 }
916
917 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
918 {
919         cell_error(m->tc->pool, m->cell);
920         list_del(&m->list);
921         mempool_free(m, &m->tc->pool->mapping_pool);
922 }
923
924 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
925 {
926         struct thin_c *tc = m->tc;
927         struct pool *pool = tc->pool;
928         struct bio *bio = m->bio;
929         int r;
930
931         if (m->status) {
932                 cell_error(pool, m->cell);
933                 goto out;
934         }
935
936         /*
937          * Commit the prepared block into the mapping btree.
938          * Any I/O for this block arriving after this point will get
939          * remapped to it directly.
940          */
941         r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
942         if (r) {
943                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
944                 cell_error(pool, m->cell);
945                 goto out;
946         }
947
948         /*
949          * Release any bios held while the block was being provisioned.
950          * If we are processing a write bio that completely covers the block,
951          * we already processed it so can ignore it now when processing
952          * the bios in the cell.
953          */
954         if (bio) {
955                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
956                 bio_endio(bio);
957         } else {
958                 inc_all_io_entry(tc->pool, m->cell->holder);
959                 remap_and_issue(tc, m->cell->holder, m->data_block);
960                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
961         }
962
963 out:
964         list_del(&m->list);
965         mempool_free(m, &pool->mapping_pool);
966 }
967
968 /*----------------------------------------------------------------*/
969
970 static void free_discard_mapping(struct dm_thin_new_mapping *m)
971 {
972         struct thin_c *tc = m->tc;
973         if (m->cell)
974                 cell_defer_no_holder(tc, m->cell);
975         mempool_free(m, &tc->pool->mapping_pool);
976 }
977
978 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
979 {
980         bio_io_error(m->bio);
981         free_discard_mapping(m);
982 }
983
984 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
985 {
986         bio_endio(m->bio);
987         free_discard_mapping(m);
988 }
989
990 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
991 {
992         int r;
993         struct thin_c *tc = m->tc;
994
995         r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
996         if (r) {
997                 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
998                 bio_io_error(m->bio);
999         } else
1000                 bio_endio(m->bio);
1001
1002         cell_defer_no_holder(tc, m->cell);
1003         mempool_free(m, &tc->pool->mapping_pool);
1004 }
1005
1006 /*----------------------------------------------------------------*/
1007
1008 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1009                                                    struct bio *discard_parent)
1010 {
1011         /*
1012          * We've already unmapped this range of blocks, but before we
1013          * passdown we have to check that these blocks are now unused.
1014          */
1015         int r = 0;
1016         bool used = true;
1017         struct thin_c *tc = m->tc;
1018         struct pool *pool = tc->pool;
1019         dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1020         struct discard_op op;
1021
1022         begin_discard(&op, tc, discard_parent);
1023         while (b != end) {
1024                 /* find start of unmapped run */
1025                 for (; b < end; b++) {
1026                         r = dm_pool_block_is_used(pool->pmd, b, &used);
1027                         if (r)
1028                                 goto out;
1029
1030                         if (!used)
1031                                 break;
1032                 }
1033
1034                 if (b == end)
1035                         break;
1036
1037                 /* find end of run */
1038                 for (e = b + 1; e != end; e++) {
1039                         r = dm_pool_block_is_used(pool->pmd, e, &used);
1040                         if (r)
1041                                 goto out;
1042
1043                         if (used)
1044                                 break;
1045                 }
1046
1047                 r = issue_discard(&op, b, e);
1048                 if (r)
1049                         goto out;
1050
1051                 b = e;
1052         }
1053 out:
1054         end_discard(&op, r);
1055 }
1056
1057 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1058 {
1059         unsigned long flags;
1060         struct pool *pool = m->tc->pool;
1061
1062         spin_lock_irqsave(&pool->lock, flags);
1063         list_add_tail(&m->list, &pool->prepared_discards_pt2);
1064         spin_unlock_irqrestore(&pool->lock, flags);
1065         wake_worker(pool);
1066 }
1067
1068 static void passdown_endio(struct bio *bio)
1069 {
1070         /*
1071          * It doesn't matter if the passdown discard failed, we still want
1072          * to unmap (we ignore err).
1073          */
1074         queue_passdown_pt2(bio->bi_private);
1075         bio_put(bio);
1076 }
1077
1078 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1079 {
1080         int r;
1081         struct thin_c *tc = m->tc;
1082         struct pool *pool = tc->pool;
1083         struct bio *discard_parent;
1084         dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1085
1086         /*
1087          * Only this thread allocates blocks, so we can be sure that the
1088          * newly unmapped blocks will not be allocated before the end of
1089          * the function.
1090          */
1091         r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1092         if (r) {
1093                 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1094                 bio_io_error(m->bio);
1095                 cell_defer_no_holder(tc, m->cell);
1096                 mempool_free(m, &pool->mapping_pool);
1097                 return;
1098         }
1099
1100         /*
1101          * Increment the unmapped blocks.  This prevents a race between the
1102          * passdown io and reallocation of freed blocks.
1103          */
1104         r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1105         if (r) {
1106                 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1107                 bio_io_error(m->bio);
1108                 cell_defer_no_holder(tc, m->cell);
1109                 mempool_free(m, &pool->mapping_pool);
1110                 return;
1111         }
1112
1113         discard_parent = bio_alloc(GFP_NOIO, 1);
1114         if (!discard_parent) {
1115                 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1116                        dm_device_name(tc->pool->pool_md));
1117                 queue_passdown_pt2(m);
1118
1119         } else {
1120                 discard_parent->bi_end_io = passdown_endio;
1121                 discard_parent->bi_private = m;
1122
1123                 if (m->maybe_shared)
1124                         passdown_double_checking_shared_status(m, discard_parent);
1125                 else {
1126                         struct discard_op op;
1127
1128                         begin_discard(&op, tc, discard_parent);
1129                         r = issue_discard(&op, m->data_block, data_end);
1130                         end_discard(&op, r);
1131                 }
1132         }
1133 }
1134
1135 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1136 {
1137         int r;
1138         struct thin_c *tc = m->tc;
1139         struct pool *pool = tc->pool;
1140
1141         /*
1142          * The passdown has completed, so now we can decrement all those
1143          * unmapped blocks.
1144          */
1145         r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1146                                    m->data_block + (m->virt_end - m->virt_begin));
1147         if (r) {
1148                 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1149                 bio_io_error(m->bio);
1150         } else
1151                 bio_endio(m->bio);
1152
1153         cell_defer_no_holder(tc, m->cell);
1154         mempool_free(m, &pool->mapping_pool);
1155 }
1156
1157 static void process_prepared(struct pool *pool, struct list_head *head,
1158                              process_mapping_fn *fn)
1159 {
1160         unsigned long flags;
1161         struct list_head maps;
1162         struct dm_thin_new_mapping *m, *tmp;
1163
1164         INIT_LIST_HEAD(&maps);
1165         spin_lock_irqsave(&pool->lock, flags);
1166         list_splice_init(head, &maps);
1167         spin_unlock_irqrestore(&pool->lock, flags);
1168
1169         list_for_each_entry_safe(m, tmp, &maps, list)
1170                 (*fn)(m);
1171 }
1172
1173 /*
1174  * Deferred bio jobs.
1175  */
1176 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1177 {
1178         return bio->bi_iter.bi_size ==
1179                 (pool->sectors_per_block << SECTOR_SHIFT);
1180 }
1181
1182 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1183 {
1184         return (bio_data_dir(bio) == WRITE) &&
1185                 io_overlaps_block(pool, bio);
1186 }
1187
1188 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1189                                bio_end_io_t *fn)
1190 {
1191         *save = bio->bi_end_io;
1192         bio->bi_end_io = fn;
1193 }
1194
1195 static int ensure_next_mapping(struct pool *pool)
1196 {
1197         if (pool->next_mapping)
1198                 return 0;
1199
1200         pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1201
1202         return pool->next_mapping ? 0 : -ENOMEM;
1203 }
1204
1205 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1206 {
1207         struct dm_thin_new_mapping *m = pool->next_mapping;
1208
1209         BUG_ON(!pool->next_mapping);
1210
1211         memset(m, 0, sizeof(struct dm_thin_new_mapping));
1212         INIT_LIST_HEAD(&m->list);
1213         m->bio = NULL;
1214
1215         pool->next_mapping = NULL;
1216
1217         return m;
1218 }
1219
1220 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1221                     sector_t begin, sector_t end)
1222 {
1223         struct dm_io_region to;
1224
1225         to.bdev = tc->pool_dev->bdev;
1226         to.sector = begin;
1227         to.count = end - begin;
1228
1229         dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1230 }
1231
1232 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1233                                       dm_block_t data_begin,
1234                                       struct dm_thin_new_mapping *m)
1235 {
1236         struct pool *pool = tc->pool;
1237         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1238
1239         h->overwrite_mapping = m;
1240         m->bio = bio;
1241         save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1242         inc_all_io_entry(pool, bio);
1243         remap_and_issue(tc, bio, data_begin);
1244 }
1245
1246 /*
1247  * A partial copy also needs to zero the uncopied region.
1248  */
1249 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1250                           struct dm_dev *origin, dm_block_t data_origin,
1251                           dm_block_t data_dest,
1252                           struct dm_bio_prison_cell *cell, struct bio *bio,
1253                           sector_t len)
1254 {
1255         struct pool *pool = tc->pool;
1256         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1257
1258         m->tc = tc;
1259         m->virt_begin = virt_block;
1260         m->virt_end = virt_block + 1u;
1261         m->data_block = data_dest;
1262         m->cell = cell;
1263
1264         /*
1265          * quiesce action + copy action + an extra reference held for the
1266          * duration of this function (we may need to inc later for a
1267          * partial zero).
1268          */
1269         atomic_set(&m->prepare_actions, 3);
1270
1271         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1272                 complete_mapping_preparation(m); /* already quiesced */
1273
1274         /*
1275          * IO to pool_dev remaps to the pool target's data_dev.
1276          *
1277          * If the whole block of data is being overwritten, we can issue the
1278          * bio immediately. Otherwise we use kcopyd to clone the data first.
1279          */
1280         if (io_overwrites_block(pool, bio))
1281                 remap_and_issue_overwrite(tc, bio, data_dest, m);
1282         else {
1283                 struct dm_io_region from, to;
1284
1285                 from.bdev = origin->bdev;
1286                 from.sector = data_origin * pool->sectors_per_block;
1287                 from.count = len;
1288
1289                 to.bdev = tc->pool_dev->bdev;
1290                 to.sector = data_dest * pool->sectors_per_block;
1291                 to.count = len;
1292
1293                 dm_kcopyd_copy(pool->copier, &from, 1, &to,
1294                                0, copy_complete, m);
1295
1296                 /*
1297                  * Do we need to zero a tail region?
1298                  */
1299                 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1300                         atomic_inc(&m->prepare_actions);
1301                         ll_zero(tc, m,
1302                                 data_dest * pool->sectors_per_block + len,
1303                                 (data_dest + 1) * pool->sectors_per_block);
1304                 }
1305         }
1306
1307         complete_mapping_preparation(m); /* drop our ref */
1308 }
1309
1310 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1311                                    dm_block_t data_origin, dm_block_t data_dest,
1312                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1313 {
1314         schedule_copy(tc, virt_block, tc->pool_dev,
1315                       data_origin, data_dest, cell, bio,
1316                       tc->pool->sectors_per_block);
1317 }
1318
1319 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1320                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1321                           struct bio *bio)
1322 {
1323         struct pool *pool = tc->pool;
1324         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1325
1326         atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1327         m->tc = tc;
1328         m->virt_begin = virt_block;
1329         m->virt_end = virt_block + 1u;
1330         m->data_block = data_block;
1331         m->cell = cell;
1332
1333         /*
1334          * If the whole block of data is being overwritten or we are not
1335          * zeroing pre-existing data, we can issue the bio immediately.
1336          * Otherwise we use kcopyd to zero the data first.
1337          */
1338         if (pool->pf.zero_new_blocks) {
1339                 if (io_overwrites_block(pool, bio))
1340                         remap_and_issue_overwrite(tc, bio, data_block, m);
1341                 else
1342                         ll_zero(tc, m, data_block * pool->sectors_per_block,
1343                                 (data_block + 1) * pool->sectors_per_block);
1344         } else
1345                 process_prepared_mapping(m);
1346 }
1347
1348 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1349                                    dm_block_t data_dest,
1350                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1351 {
1352         struct pool *pool = tc->pool;
1353         sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1354         sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1355
1356         if (virt_block_end <= tc->origin_size)
1357                 schedule_copy(tc, virt_block, tc->origin_dev,
1358                               virt_block, data_dest, cell, bio,
1359                               pool->sectors_per_block);
1360
1361         else if (virt_block_begin < tc->origin_size)
1362                 schedule_copy(tc, virt_block, tc->origin_dev,
1363                               virt_block, data_dest, cell, bio,
1364                               tc->origin_size - virt_block_begin);
1365
1366         else
1367                 schedule_zero(tc, virt_block, data_dest, cell, bio);
1368 }
1369
1370 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1371
1372 static void requeue_bios(struct pool *pool);
1373
1374 static void check_for_space(struct pool *pool)
1375 {
1376         int r;
1377         dm_block_t nr_free;
1378
1379         if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1380                 return;
1381
1382         r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1383         if (r)
1384                 return;
1385
1386         if (nr_free) {
1387                 set_pool_mode(pool, PM_WRITE);
1388                 requeue_bios(pool);
1389         }
1390 }
1391
1392 /*
1393  * A non-zero return indicates read_only or fail_io mode.
1394  * Many callers don't care about the return value.
1395  */
1396 static int commit(struct pool *pool)
1397 {
1398         int r;
1399
1400         if (get_pool_mode(pool) >= PM_READ_ONLY)
1401                 return -EINVAL;
1402
1403         r = dm_pool_commit_metadata(pool->pmd);
1404         if (r)
1405                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1406         else
1407                 check_for_space(pool);
1408
1409         return r;
1410 }
1411
1412 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1413 {
1414         unsigned long flags;
1415
1416         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1417                 DMWARN("%s: reached low water mark for data device: sending event.",
1418                        dm_device_name(pool->pool_md));
1419                 spin_lock_irqsave(&pool->lock, flags);
1420                 pool->low_water_triggered = true;
1421                 spin_unlock_irqrestore(&pool->lock, flags);
1422                 dm_table_event(pool->ti->table);
1423         }
1424 }
1425
1426 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1427 {
1428         int r;
1429         dm_block_t free_blocks;
1430         struct pool *pool = tc->pool;
1431
1432         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1433                 return -EINVAL;
1434
1435         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1436         if (r) {
1437                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1438                 return r;
1439         }
1440
1441         check_low_water_mark(pool, free_blocks);
1442
1443         if (!free_blocks) {
1444                 /*
1445                  * Try to commit to see if that will free up some
1446                  * more space.
1447                  */
1448                 r = commit(pool);
1449                 if (r)
1450                         return r;
1451
1452                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1453                 if (r) {
1454                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1455                         return r;
1456                 }
1457
1458                 if (!free_blocks) {
1459                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1460                         return -ENOSPC;
1461                 }
1462         }
1463
1464         r = dm_pool_alloc_data_block(pool->pmd, result);
1465         if (r) {
1466                 if (r == -ENOSPC)
1467                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1468                 else
1469                         metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1470                 return r;
1471         }
1472
1473         return 0;
1474 }
1475
1476 /*
1477  * If we have run out of space, queue bios until the device is
1478  * resumed, presumably after having been reloaded with more space.
1479  */
1480 static void retry_on_resume(struct bio *bio)
1481 {
1482         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1483         struct thin_c *tc = h->tc;
1484         unsigned long flags;
1485
1486         spin_lock_irqsave(&tc->lock, flags);
1487         bio_list_add(&tc->retry_on_resume_list, bio);
1488         spin_unlock_irqrestore(&tc->lock, flags);
1489 }
1490
1491 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1492 {
1493         enum pool_mode m = get_pool_mode(pool);
1494
1495         switch (m) {
1496         case PM_WRITE:
1497                 /* Shouldn't get here */
1498                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1499                 return BLK_STS_IOERR;
1500
1501         case PM_OUT_OF_DATA_SPACE:
1502                 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1503
1504         case PM_READ_ONLY:
1505         case PM_FAIL:
1506                 return BLK_STS_IOERR;
1507         default:
1508                 /* Shouldn't get here */
1509                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1510                 return BLK_STS_IOERR;
1511         }
1512 }
1513
1514 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1515 {
1516         blk_status_t error = should_error_unserviceable_bio(pool);
1517
1518         if (error) {
1519                 bio->bi_status = error;
1520                 bio_endio(bio);
1521         } else
1522                 retry_on_resume(bio);
1523 }
1524
1525 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1526 {
1527         struct bio *bio;
1528         struct bio_list bios;
1529         blk_status_t error;
1530
1531         error = should_error_unserviceable_bio(pool);
1532         if (error) {
1533                 cell_error_with_code(pool, cell, error);
1534                 return;
1535         }
1536
1537         bio_list_init(&bios);
1538         cell_release(pool, cell, &bios);
1539
1540         while ((bio = bio_list_pop(&bios)))
1541                 retry_on_resume(bio);
1542 }
1543
1544 static void process_discard_cell_no_passdown(struct thin_c *tc,
1545                                              struct dm_bio_prison_cell *virt_cell)
1546 {
1547         struct pool *pool = tc->pool;
1548         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1549
1550         /*
1551          * We don't need to lock the data blocks, since there's no
1552          * passdown.  We only lock data blocks for allocation and breaking sharing.
1553          */
1554         m->tc = tc;
1555         m->virt_begin = virt_cell->key.block_begin;
1556         m->virt_end = virt_cell->key.block_end;
1557         m->cell = virt_cell;
1558         m->bio = virt_cell->holder;
1559
1560         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1561                 pool->process_prepared_discard(m);
1562 }
1563
1564 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1565                                  struct bio *bio)
1566 {
1567         struct pool *pool = tc->pool;
1568
1569         int r;
1570         bool maybe_shared;
1571         struct dm_cell_key data_key;
1572         struct dm_bio_prison_cell *data_cell;
1573         struct dm_thin_new_mapping *m;
1574         dm_block_t virt_begin, virt_end, data_begin;
1575
1576         while (begin != end) {
1577                 r = ensure_next_mapping(pool);
1578                 if (r)
1579                         /* we did our best */
1580                         return;
1581
1582                 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1583                                               &data_begin, &maybe_shared);
1584                 if (r)
1585                         /*
1586                          * Silently fail, letting any mappings we've
1587                          * created complete.
1588                          */
1589                         break;
1590
1591                 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1592                 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1593                         /* contention, we'll give up with this range */
1594                         begin = virt_end;
1595                         continue;
1596                 }
1597
1598                 /*
1599                  * IO may still be going to the destination block.  We must
1600                  * quiesce before we can do the removal.
1601                  */
1602                 m = get_next_mapping(pool);
1603                 m->tc = tc;
1604                 m->maybe_shared = maybe_shared;
1605                 m->virt_begin = virt_begin;
1606                 m->virt_end = virt_end;
1607                 m->data_block = data_begin;
1608                 m->cell = data_cell;
1609                 m->bio = bio;
1610
1611                 /*
1612                  * The parent bio must not complete before sub discard bios are
1613                  * chained to it (see end_discard's bio_chain)!
1614                  *
1615                  * This per-mapping bi_remaining increment is paired with
1616                  * the implicit decrement that occurs via bio_endio() in
1617                  * end_discard().
1618                  */
1619                 bio_inc_remaining(bio);
1620                 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1621                         pool->process_prepared_discard(m);
1622
1623                 begin = virt_end;
1624         }
1625 }
1626
1627 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1628 {
1629         struct bio *bio = virt_cell->holder;
1630         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1631
1632         /*
1633          * The virt_cell will only get freed once the origin bio completes.
1634          * This means it will remain locked while all the individual
1635          * passdown bios are in flight.
1636          */
1637         h->cell = virt_cell;
1638         break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1639
1640         /*
1641          * We complete the bio now, knowing that the bi_remaining field
1642          * will prevent completion until the sub range discards have
1643          * completed.
1644          */
1645         bio_endio(bio);
1646 }
1647
1648 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1649 {
1650         dm_block_t begin, end;
1651         struct dm_cell_key virt_key;
1652         struct dm_bio_prison_cell *virt_cell;
1653
1654         get_bio_block_range(tc, bio, &begin, &end);
1655         if (begin == end) {
1656                 /*
1657                  * The discard covers less than a block.
1658                  */
1659                 bio_endio(bio);
1660                 return;
1661         }
1662
1663         build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1664         if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1665                 /*
1666                  * Potential starvation issue: We're relying on the
1667                  * fs/application being well behaved, and not trying to
1668                  * send IO to a region at the same time as discarding it.
1669                  * If they do this persistently then it's possible this
1670                  * cell will never be granted.
1671                  */
1672                 return;
1673
1674         tc->pool->process_discard_cell(tc, virt_cell);
1675 }
1676
1677 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1678                           struct dm_cell_key *key,
1679                           struct dm_thin_lookup_result *lookup_result,
1680                           struct dm_bio_prison_cell *cell)
1681 {
1682         int r;
1683         dm_block_t data_block;
1684         struct pool *pool = tc->pool;
1685
1686         r = alloc_data_block(tc, &data_block);
1687         switch (r) {
1688         case 0:
1689                 schedule_internal_copy(tc, block, lookup_result->block,
1690                                        data_block, cell, bio);
1691                 break;
1692
1693         case -ENOSPC:
1694                 retry_bios_on_resume(pool, cell);
1695                 break;
1696
1697         default:
1698                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1699                             __func__, r);
1700                 cell_error(pool, cell);
1701                 break;
1702         }
1703 }
1704
1705 static void __remap_and_issue_shared_cell(void *context,
1706                                           struct dm_bio_prison_cell *cell)
1707 {
1708         struct remap_info *info = context;
1709         struct bio *bio;
1710
1711         while ((bio = bio_list_pop(&cell->bios))) {
1712                 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1713                     bio_op(bio) == REQ_OP_DISCARD)
1714                         bio_list_add(&info->defer_bios, bio);
1715                 else {
1716                         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1717
1718                         h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1719                         inc_all_io_entry(info->tc->pool, bio);
1720                         bio_list_add(&info->issue_bios, bio);
1721                 }
1722         }
1723 }
1724
1725 static void remap_and_issue_shared_cell(struct thin_c *tc,
1726                                         struct dm_bio_prison_cell *cell,
1727                                         dm_block_t block)
1728 {
1729         struct bio *bio;
1730         struct remap_info info;
1731
1732         info.tc = tc;
1733         bio_list_init(&info.defer_bios);
1734         bio_list_init(&info.issue_bios);
1735
1736         cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1737                            &info, cell);
1738
1739         while ((bio = bio_list_pop(&info.defer_bios)))
1740                 thin_defer_bio(tc, bio);
1741
1742         while ((bio = bio_list_pop(&info.issue_bios)))
1743                 remap_and_issue(tc, bio, block);
1744 }
1745
1746 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1747                                dm_block_t block,
1748                                struct dm_thin_lookup_result *lookup_result,
1749                                struct dm_bio_prison_cell *virt_cell)
1750 {
1751         struct dm_bio_prison_cell *data_cell;
1752         struct pool *pool = tc->pool;
1753         struct dm_cell_key key;
1754
1755         /*
1756          * If cell is already occupied, then sharing is already in the process
1757          * of being broken so we have nothing further to do here.
1758          */
1759         build_data_key(tc->td, lookup_result->block, &key);
1760         if (bio_detain(pool, &key, bio, &data_cell)) {
1761                 cell_defer_no_holder(tc, virt_cell);
1762                 return;
1763         }
1764
1765         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1766                 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1767                 cell_defer_no_holder(tc, virt_cell);
1768         } else {
1769                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1770
1771                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1772                 inc_all_io_entry(pool, bio);
1773                 remap_and_issue(tc, bio, lookup_result->block);
1774
1775                 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1776                 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1777         }
1778 }
1779
1780 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1781                             struct dm_bio_prison_cell *cell)
1782 {
1783         int r;
1784         dm_block_t data_block;
1785         struct pool *pool = tc->pool;
1786
1787         /*
1788          * Remap empty bios (flushes) immediately, without provisioning.
1789          */
1790         if (!bio->bi_iter.bi_size) {
1791                 inc_all_io_entry(pool, bio);
1792                 cell_defer_no_holder(tc, cell);
1793
1794                 remap_and_issue(tc, bio, 0);
1795                 return;
1796         }
1797
1798         /*
1799          * Fill read bios with zeroes and complete them immediately.
1800          */
1801         if (bio_data_dir(bio) == READ) {
1802                 zero_fill_bio(bio);
1803                 cell_defer_no_holder(tc, cell);
1804                 bio_endio(bio);
1805                 return;
1806         }
1807
1808         r = alloc_data_block(tc, &data_block);
1809         switch (r) {
1810         case 0:
1811                 if (tc->origin_dev)
1812                         schedule_external_copy(tc, block, data_block, cell, bio);
1813                 else
1814                         schedule_zero(tc, block, data_block, cell, bio);
1815                 break;
1816
1817         case -ENOSPC:
1818                 retry_bios_on_resume(pool, cell);
1819                 break;
1820
1821         default:
1822                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1823                             __func__, r);
1824                 cell_error(pool, cell);
1825                 break;
1826         }
1827 }
1828
1829 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1830 {
1831         int r;
1832         struct pool *pool = tc->pool;
1833         struct bio *bio = cell->holder;
1834         dm_block_t block = get_bio_block(tc, bio);
1835         struct dm_thin_lookup_result lookup_result;
1836
1837         if (tc->requeue_mode) {
1838                 cell_requeue(pool, cell);
1839                 return;
1840         }
1841
1842         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1843         switch (r) {
1844         case 0:
1845                 if (lookup_result.shared)
1846                         process_shared_bio(tc, bio, block, &lookup_result, cell);
1847                 else {
1848                         inc_all_io_entry(pool, bio);
1849                         remap_and_issue(tc, bio, lookup_result.block);
1850                         inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1851                 }
1852                 break;
1853
1854         case -ENODATA:
1855                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1856                         inc_all_io_entry(pool, bio);
1857                         cell_defer_no_holder(tc, cell);
1858
1859                         if (bio_end_sector(bio) <= tc->origin_size)
1860                                 remap_to_origin_and_issue(tc, bio);
1861
1862                         else if (bio->bi_iter.bi_sector < tc->origin_size) {
1863                                 zero_fill_bio(bio);
1864                                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1865                                 remap_to_origin_and_issue(tc, bio);
1866
1867                         } else {
1868                                 zero_fill_bio(bio);
1869                                 bio_endio(bio);
1870                         }
1871                 } else
1872                         provision_block(tc, bio, block, cell);
1873                 break;
1874
1875         default:
1876                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1877                             __func__, r);
1878                 cell_defer_no_holder(tc, cell);
1879                 bio_io_error(bio);
1880                 break;
1881         }
1882 }
1883
1884 static void process_bio(struct thin_c *tc, struct bio *bio)
1885 {
1886         struct pool *pool = tc->pool;
1887         dm_block_t block = get_bio_block(tc, bio);
1888         struct dm_bio_prison_cell *cell;
1889         struct dm_cell_key key;
1890
1891         /*
1892          * If cell is already occupied, then the block is already
1893          * being provisioned so we have nothing further to do here.
1894          */
1895         build_virtual_key(tc->td, block, &key);
1896         if (bio_detain(pool, &key, bio, &cell))
1897                 return;
1898
1899         process_cell(tc, cell);
1900 }
1901
1902 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1903                                     struct dm_bio_prison_cell *cell)
1904 {
1905         int r;
1906         int rw = bio_data_dir(bio);
1907         dm_block_t block = get_bio_block(tc, bio);
1908         struct dm_thin_lookup_result lookup_result;
1909
1910         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1911         switch (r) {
1912         case 0:
1913                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1914                         handle_unserviceable_bio(tc->pool, bio);
1915                         if (cell)
1916                                 cell_defer_no_holder(tc, cell);
1917                 } else {
1918                         inc_all_io_entry(tc->pool, bio);
1919                         remap_and_issue(tc, bio, lookup_result.block);
1920                         if (cell)
1921                                 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1922                 }
1923                 break;
1924
1925         case -ENODATA:
1926                 if (cell)
1927                         cell_defer_no_holder(tc, cell);
1928                 if (rw != READ) {
1929                         handle_unserviceable_bio(tc->pool, bio);
1930                         break;
1931                 }
1932
1933                 if (tc->origin_dev) {
1934                         inc_all_io_entry(tc->pool, bio);
1935                         remap_to_origin_and_issue(tc, bio);
1936                         break;
1937                 }
1938
1939                 zero_fill_bio(bio);
1940                 bio_endio(bio);
1941                 break;
1942
1943         default:
1944                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1945                             __func__, r);
1946                 if (cell)
1947                         cell_defer_no_holder(tc, cell);
1948                 bio_io_error(bio);
1949                 break;
1950         }
1951 }
1952
1953 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1954 {
1955         __process_bio_read_only(tc, bio, NULL);
1956 }
1957
1958 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1959 {
1960         __process_bio_read_only(tc, cell->holder, cell);
1961 }
1962
1963 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1964 {
1965         bio_endio(bio);
1966 }
1967
1968 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1969 {
1970         bio_io_error(bio);
1971 }
1972
1973 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1974 {
1975         cell_success(tc->pool, cell);
1976 }
1977
1978 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1979 {
1980         cell_error(tc->pool, cell);
1981 }
1982
1983 /*
1984  * FIXME: should we also commit due to size of transaction, measured in
1985  * metadata blocks?
1986  */
1987 static int need_commit_due_to_time(struct pool *pool)
1988 {
1989         return !time_in_range(jiffies, pool->last_commit_jiffies,
1990                               pool->last_commit_jiffies + COMMIT_PERIOD);
1991 }
1992
1993 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1994 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1995
1996 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1997 {
1998         struct rb_node **rbp, *parent;
1999         struct dm_thin_endio_hook *pbd;
2000         sector_t bi_sector = bio->bi_iter.bi_sector;
2001
2002         rbp = &tc->sort_bio_list.rb_node;
2003         parent = NULL;
2004         while (*rbp) {
2005                 parent = *rbp;
2006                 pbd = thin_pbd(parent);
2007
2008                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2009                         rbp = &(*rbp)->rb_left;
2010                 else
2011                         rbp = &(*rbp)->rb_right;
2012         }
2013
2014         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2015         rb_link_node(&pbd->rb_node, parent, rbp);
2016         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2017 }
2018
2019 static void __extract_sorted_bios(struct thin_c *tc)
2020 {
2021         struct rb_node *node;
2022         struct dm_thin_endio_hook *pbd;
2023         struct bio *bio;
2024
2025         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2026                 pbd = thin_pbd(node);
2027                 bio = thin_bio(pbd);
2028
2029                 bio_list_add(&tc->deferred_bio_list, bio);
2030                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2031         }
2032
2033         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2034 }
2035
2036 static void __sort_thin_deferred_bios(struct thin_c *tc)
2037 {
2038         struct bio *bio;
2039         struct bio_list bios;
2040
2041         bio_list_init(&bios);
2042         bio_list_merge(&bios, &tc->deferred_bio_list);
2043         bio_list_init(&tc->deferred_bio_list);
2044
2045         /* Sort deferred_bio_list using rb-tree */
2046         while ((bio = bio_list_pop(&bios)))
2047                 __thin_bio_rb_add(tc, bio);
2048
2049         /*
2050          * Transfer the sorted bios in sort_bio_list back to
2051          * deferred_bio_list to allow lockless submission of
2052          * all bios.
2053          */
2054         __extract_sorted_bios(tc);
2055 }
2056
2057 static void process_thin_deferred_bios(struct thin_c *tc)
2058 {
2059         struct pool *pool = tc->pool;
2060         unsigned long flags;
2061         struct bio *bio;
2062         struct bio_list bios;
2063         struct blk_plug plug;
2064         unsigned count = 0;
2065
2066         if (tc->requeue_mode) {
2067                 error_thin_bio_list(tc, &tc->deferred_bio_list,
2068                                 BLK_STS_DM_REQUEUE);
2069                 return;
2070         }
2071
2072         bio_list_init(&bios);
2073
2074         spin_lock_irqsave(&tc->lock, flags);
2075
2076         if (bio_list_empty(&tc->deferred_bio_list)) {
2077                 spin_unlock_irqrestore(&tc->lock, flags);
2078                 return;
2079         }
2080
2081         __sort_thin_deferred_bios(tc);
2082
2083         bio_list_merge(&bios, &tc->deferred_bio_list);
2084         bio_list_init(&tc->deferred_bio_list);
2085
2086         spin_unlock_irqrestore(&tc->lock, flags);
2087
2088         blk_start_plug(&plug);
2089         while ((bio = bio_list_pop(&bios))) {
2090                 /*
2091                  * If we've got no free new_mapping structs, and processing
2092                  * this bio might require one, we pause until there are some
2093                  * prepared mappings to process.
2094                  */
2095                 if (ensure_next_mapping(pool)) {
2096                         spin_lock_irqsave(&tc->lock, flags);
2097                         bio_list_add(&tc->deferred_bio_list, bio);
2098                         bio_list_merge(&tc->deferred_bio_list, &bios);
2099                         spin_unlock_irqrestore(&tc->lock, flags);
2100                         break;
2101                 }
2102
2103                 if (bio_op(bio) == REQ_OP_DISCARD)
2104                         pool->process_discard(tc, bio);
2105                 else
2106                         pool->process_bio(tc, bio);
2107
2108                 if ((count++ & 127) == 0) {
2109                         throttle_work_update(&pool->throttle);
2110                         dm_pool_issue_prefetches(pool->pmd);
2111                 }
2112         }
2113         blk_finish_plug(&plug);
2114 }
2115
2116 static int cmp_cells(const void *lhs, const void *rhs)
2117 {
2118         struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2119         struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2120
2121         BUG_ON(!lhs_cell->holder);
2122         BUG_ON(!rhs_cell->holder);
2123
2124         if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2125                 return -1;
2126
2127         if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2128                 return 1;
2129
2130         return 0;
2131 }
2132
2133 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2134 {
2135         unsigned count = 0;
2136         struct dm_bio_prison_cell *cell, *tmp;
2137
2138         list_for_each_entry_safe(cell, tmp, cells, user_list) {
2139                 if (count >= CELL_SORT_ARRAY_SIZE)
2140                         break;
2141
2142                 pool->cell_sort_array[count++] = cell;
2143                 list_del(&cell->user_list);
2144         }
2145
2146         sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2147
2148         return count;
2149 }
2150
2151 static void process_thin_deferred_cells(struct thin_c *tc)
2152 {
2153         struct pool *pool = tc->pool;
2154         unsigned long flags;
2155         struct list_head cells;
2156         struct dm_bio_prison_cell *cell;
2157         unsigned i, j, count;
2158
2159         INIT_LIST_HEAD(&cells);
2160
2161         spin_lock_irqsave(&tc->lock, flags);
2162         list_splice_init(&tc->deferred_cells, &cells);
2163         spin_unlock_irqrestore(&tc->lock, flags);
2164
2165         if (list_empty(&cells))
2166                 return;
2167
2168         do {
2169                 count = sort_cells(tc->pool, &cells);
2170
2171                 for (i = 0; i < count; i++) {
2172                         cell = pool->cell_sort_array[i];
2173                         BUG_ON(!cell->holder);
2174
2175                         /*
2176                          * If we've got no free new_mapping structs, and processing
2177                          * this bio might require one, we pause until there are some
2178                          * prepared mappings to process.
2179                          */
2180                         if (ensure_next_mapping(pool)) {
2181                                 for (j = i; j < count; j++)
2182                                         list_add(&pool->cell_sort_array[j]->user_list, &cells);
2183
2184                                 spin_lock_irqsave(&tc->lock, flags);
2185                                 list_splice(&cells, &tc->deferred_cells);
2186                                 spin_unlock_irqrestore(&tc->lock, flags);
2187                                 return;
2188                         }
2189
2190                         if (bio_op(cell->holder) == REQ_OP_DISCARD)
2191                                 pool->process_discard_cell(tc, cell);
2192                         else
2193                                 pool->process_cell(tc, cell);
2194                 }
2195         } while (!list_empty(&cells));
2196 }
2197
2198 static void thin_get(struct thin_c *tc);
2199 static void thin_put(struct thin_c *tc);
2200
2201 /*
2202  * We can't hold rcu_read_lock() around code that can block.  So we
2203  * find a thin with the rcu lock held; bump a refcount; then drop
2204  * the lock.
2205  */
2206 static struct thin_c *get_first_thin(struct pool *pool)
2207 {
2208         struct thin_c *tc = NULL;
2209
2210         rcu_read_lock();
2211         if (!list_empty(&pool->active_thins)) {
2212                 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2213                 thin_get(tc);
2214         }
2215         rcu_read_unlock();
2216
2217         return tc;
2218 }
2219
2220 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2221 {
2222         struct thin_c *old_tc = tc;
2223
2224         rcu_read_lock();
2225         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2226                 thin_get(tc);
2227                 thin_put(old_tc);
2228                 rcu_read_unlock();
2229                 return tc;
2230         }
2231         thin_put(old_tc);
2232         rcu_read_unlock();
2233
2234         return NULL;
2235 }
2236
2237 static void process_deferred_bios(struct pool *pool)
2238 {
2239         unsigned long flags;
2240         struct bio *bio;
2241         struct bio_list bios;
2242         struct thin_c *tc;
2243
2244         tc = get_first_thin(pool);
2245         while (tc) {
2246                 process_thin_deferred_cells(tc);
2247                 process_thin_deferred_bios(tc);
2248                 tc = get_next_thin(pool, tc);
2249         }
2250
2251         /*
2252          * If there are any deferred flush bios, we must commit
2253          * the metadata before issuing them.
2254          */
2255         bio_list_init(&bios);
2256         spin_lock_irqsave(&pool->lock, flags);
2257         bio_list_merge(&bios, &pool->deferred_flush_bios);
2258         bio_list_init(&pool->deferred_flush_bios);
2259         spin_unlock_irqrestore(&pool->lock, flags);
2260
2261         if (bio_list_empty(&bios) &&
2262             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2263                 return;
2264
2265         if (commit(pool)) {
2266                 while ((bio = bio_list_pop(&bios)))
2267                         bio_io_error(bio);
2268                 return;
2269         }
2270         pool->last_commit_jiffies = jiffies;
2271
2272         while ((bio = bio_list_pop(&bios)))
2273                 generic_make_request(bio);
2274 }
2275
2276 static void do_worker(struct work_struct *ws)
2277 {
2278         struct pool *pool = container_of(ws, struct pool, worker);
2279
2280         throttle_work_start(&pool->throttle);
2281         dm_pool_issue_prefetches(pool->pmd);
2282         throttle_work_update(&pool->throttle);
2283         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2284         throttle_work_update(&pool->throttle);
2285         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2286         throttle_work_update(&pool->throttle);
2287         process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2288         throttle_work_update(&pool->throttle);
2289         process_deferred_bios(pool);
2290         throttle_work_complete(&pool->throttle);
2291 }
2292
2293 /*
2294  * We want to commit periodically so that not too much
2295  * unwritten data builds up.
2296  */
2297 static void do_waker(struct work_struct *ws)
2298 {
2299         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2300         wake_worker(pool);
2301         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2302 }
2303
2304 static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2305
2306 /*
2307  * We're holding onto IO to allow userland time to react.  After the
2308  * timeout either the pool will have been resized (and thus back in
2309  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2310  */
2311 static void do_no_space_timeout(struct work_struct *ws)
2312 {
2313         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2314                                          no_space_timeout);
2315
2316         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2317                 pool->pf.error_if_no_space = true;
2318                 notify_of_pool_mode_change_to_oods(pool);
2319                 error_retry_list_with_code(pool, BLK_STS_NOSPC);
2320         }
2321 }
2322
2323 /*----------------------------------------------------------------*/
2324
2325 struct pool_work {
2326         struct work_struct worker;
2327         struct completion complete;
2328 };
2329
2330 static struct pool_work *to_pool_work(struct work_struct *ws)
2331 {
2332         return container_of(ws, struct pool_work, worker);
2333 }
2334
2335 static void pool_work_complete(struct pool_work *pw)
2336 {
2337         complete(&pw->complete);
2338 }
2339
2340 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2341                            void (*fn)(struct work_struct *))
2342 {
2343         INIT_WORK_ONSTACK(&pw->worker, fn);
2344         init_completion(&pw->complete);
2345         queue_work(pool->wq, &pw->worker);
2346         wait_for_completion(&pw->complete);
2347 }
2348
2349 /*----------------------------------------------------------------*/
2350
2351 struct noflush_work {
2352         struct pool_work pw;
2353         struct thin_c *tc;
2354 };
2355
2356 static struct noflush_work *to_noflush(struct work_struct *ws)
2357 {
2358         return container_of(to_pool_work(ws), struct noflush_work, pw);
2359 }
2360
2361 static void do_noflush_start(struct work_struct *ws)
2362 {
2363         struct noflush_work *w = to_noflush(ws);
2364         w->tc->requeue_mode = true;
2365         requeue_io(w->tc);
2366         pool_work_complete(&w->pw);
2367 }
2368
2369 static void do_noflush_stop(struct work_struct *ws)
2370 {
2371         struct noflush_work *w = to_noflush(ws);
2372         w->tc->requeue_mode = false;
2373         pool_work_complete(&w->pw);
2374 }
2375
2376 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2377 {
2378         struct noflush_work w;
2379
2380         w.tc = tc;
2381         pool_work_wait(&w.pw, tc->pool, fn);
2382 }
2383
2384 /*----------------------------------------------------------------*/
2385
2386 static enum pool_mode get_pool_mode(struct pool *pool)
2387 {
2388         return pool->pf.mode;
2389 }
2390
2391 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2392 {
2393         dm_table_event(pool->ti->table);
2394         DMINFO("%s: switching pool to %s mode",
2395                dm_device_name(pool->pool_md), new_mode);
2396 }
2397
2398 static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2399 {
2400         if (!pool->pf.error_if_no_space)
2401                 notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2402         else
2403                 notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2404 }
2405
2406 static bool passdown_enabled(struct pool_c *pt)
2407 {
2408         return pt->adjusted_pf.discard_passdown;
2409 }
2410
2411 static void set_discard_callbacks(struct pool *pool)
2412 {
2413         struct pool_c *pt = pool->ti->private;
2414
2415         if (passdown_enabled(pt)) {
2416                 pool->process_discard_cell = process_discard_cell_passdown;
2417                 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2418                 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2419         } else {
2420                 pool->process_discard_cell = process_discard_cell_no_passdown;
2421                 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2422         }
2423 }
2424
2425 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2426 {
2427         struct pool_c *pt = pool->ti->private;
2428         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2429         enum pool_mode old_mode = get_pool_mode(pool);
2430         unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2431
2432         /*
2433          * Never allow the pool to transition to PM_WRITE mode if user
2434          * intervention is required to verify metadata and data consistency.
2435          */
2436         if (new_mode == PM_WRITE && needs_check) {
2437                 DMERR("%s: unable to switch pool to write mode until repaired.",
2438                       dm_device_name(pool->pool_md));
2439                 if (old_mode != new_mode)
2440                         new_mode = old_mode;
2441                 else
2442                         new_mode = PM_READ_ONLY;
2443         }
2444         /*
2445          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2446          * not going to recover without a thin_repair.  So we never let the
2447          * pool move out of the old mode.
2448          */
2449         if (old_mode == PM_FAIL)
2450                 new_mode = old_mode;
2451
2452         switch (new_mode) {
2453         case PM_FAIL:
2454                 if (old_mode != new_mode)
2455                         notify_of_pool_mode_change(pool, "failure");
2456                 dm_pool_metadata_read_only(pool->pmd);
2457                 pool->process_bio = process_bio_fail;
2458                 pool->process_discard = process_bio_fail;
2459                 pool->process_cell = process_cell_fail;
2460                 pool->process_discard_cell = process_cell_fail;
2461                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2462                 pool->process_prepared_discard = process_prepared_discard_fail;
2463
2464                 error_retry_list(pool);
2465                 break;
2466
2467         case PM_READ_ONLY:
2468                 if (old_mode != new_mode)
2469                         notify_of_pool_mode_change(pool, "read-only");
2470                 dm_pool_metadata_read_only(pool->pmd);
2471                 pool->process_bio = process_bio_read_only;
2472                 pool->process_discard = process_bio_success;
2473                 pool->process_cell = process_cell_read_only;
2474                 pool->process_discard_cell = process_cell_success;
2475                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2476                 pool->process_prepared_discard = process_prepared_discard_success;
2477
2478                 error_retry_list(pool);
2479                 break;
2480
2481         case PM_OUT_OF_DATA_SPACE:
2482                 /*
2483                  * Ideally we'd never hit this state; the low water mark
2484                  * would trigger userland to extend the pool before we
2485                  * completely run out of data space.  However, many small
2486                  * IOs to unprovisioned space can consume data space at an
2487                  * alarming rate.  Adjust your low water mark if you're
2488                  * frequently seeing this mode.
2489                  */
2490                 if (old_mode != new_mode)
2491                         notify_of_pool_mode_change_to_oods(pool);
2492                 pool->out_of_data_space = true;
2493                 pool->process_bio = process_bio_read_only;
2494                 pool->process_discard = process_discard_bio;
2495                 pool->process_cell = process_cell_read_only;
2496                 pool->process_prepared_mapping = process_prepared_mapping;
2497                 set_discard_callbacks(pool);
2498
2499                 if (!pool->pf.error_if_no_space && no_space_timeout)
2500                         queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2501                 break;
2502
2503         case PM_WRITE:
2504                 if (old_mode != new_mode)
2505                         notify_of_pool_mode_change(pool, "write");
2506                 if (old_mode == PM_OUT_OF_DATA_SPACE)
2507                         cancel_delayed_work_sync(&pool->no_space_timeout);
2508                 pool->out_of_data_space = false;
2509                 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2510                 dm_pool_metadata_read_write(pool->pmd);
2511                 pool->process_bio = process_bio;
2512                 pool->process_discard = process_discard_bio;
2513                 pool->process_cell = process_cell;
2514                 pool->process_prepared_mapping = process_prepared_mapping;
2515                 set_discard_callbacks(pool);
2516                 break;
2517         }
2518
2519         pool->pf.mode = new_mode;
2520         /*
2521          * The pool mode may have changed, sync it so bind_control_target()
2522          * doesn't cause an unexpected mode transition on resume.
2523          */
2524         pt->adjusted_pf.mode = new_mode;
2525 }
2526
2527 static void abort_transaction(struct pool *pool)
2528 {
2529         const char *dev_name = dm_device_name(pool->pool_md);
2530
2531         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2532         if (dm_pool_abort_metadata(pool->pmd)) {
2533                 DMERR("%s: failed to abort metadata transaction", dev_name);
2534                 set_pool_mode(pool, PM_FAIL);
2535         }
2536
2537         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2538                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2539                 set_pool_mode(pool, PM_FAIL);
2540         }
2541 }
2542
2543 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2544 {
2545         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2546                     dm_device_name(pool->pool_md), op, r);
2547
2548         abort_transaction(pool);
2549         set_pool_mode(pool, PM_READ_ONLY);
2550 }
2551
2552 /*----------------------------------------------------------------*/
2553
2554 /*
2555  * Mapping functions.
2556  */
2557
2558 /*
2559  * Called only while mapping a thin bio to hand it over to the workqueue.
2560  */
2561 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2562 {
2563         unsigned long flags;
2564         struct pool *pool = tc->pool;
2565
2566         spin_lock_irqsave(&tc->lock, flags);
2567         bio_list_add(&tc->deferred_bio_list, bio);
2568         spin_unlock_irqrestore(&tc->lock, flags);
2569
2570         wake_worker(pool);
2571 }
2572
2573 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2574 {
2575         struct pool *pool = tc->pool;
2576
2577         throttle_lock(&pool->throttle);
2578         thin_defer_bio(tc, bio);
2579         throttle_unlock(&pool->throttle);
2580 }
2581
2582 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2583 {
2584         unsigned long flags;
2585         struct pool *pool = tc->pool;
2586
2587         throttle_lock(&pool->throttle);
2588         spin_lock_irqsave(&tc->lock, flags);
2589         list_add_tail(&cell->user_list, &tc->deferred_cells);
2590         spin_unlock_irqrestore(&tc->lock, flags);
2591         throttle_unlock(&pool->throttle);
2592
2593         wake_worker(pool);
2594 }
2595
2596 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2597 {
2598         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2599
2600         h->tc = tc;
2601         h->shared_read_entry = NULL;
2602         h->all_io_entry = NULL;
2603         h->overwrite_mapping = NULL;
2604         h->cell = NULL;
2605 }
2606
2607 /*
2608  * Non-blocking function called from the thin target's map function.
2609  */
2610 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2611 {
2612         int r;
2613         struct thin_c *tc = ti->private;
2614         dm_block_t block = get_bio_block(tc, bio);
2615         struct dm_thin_device *td = tc->td;
2616         struct dm_thin_lookup_result result;
2617         struct dm_bio_prison_cell *virt_cell, *data_cell;
2618         struct dm_cell_key key;
2619
2620         thin_hook_bio(tc, bio);
2621
2622         if (tc->requeue_mode) {
2623                 bio->bi_status = BLK_STS_DM_REQUEUE;
2624                 bio_endio(bio);
2625                 return DM_MAPIO_SUBMITTED;
2626         }
2627
2628         if (get_pool_mode(tc->pool) == PM_FAIL) {
2629                 bio_io_error(bio);
2630                 return DM_MAPIO_SUBMITTED;
2631         }
2632
2633         if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2634                 thin_defer_bio_with_throttle(tc, bio);
2635                 return DM_MAPIO_SUBMITTED;
2636         }
2637
2638         /*
2639          * We must hold the virtual cell before doing the lookup, otherwise
2640          * there's a race with discard.
2641          */
2642         build_virtual_key(tc->td, block, &key);
2643         if (bio_detain(tc->pool, &key, bio, &virt_cell))
2644                 return DM_MAPIO_SUBMITTED;
2645
2646         r = dm_thin_find_block(td, block, 0, &result);
2647
2648         /*
2649          * Note that we defer readahead too.
2650          */
2651         switch (r) {
2652         case 0:
2653                 if (unlikely(result.shared)) {
2654                         /*
2655                          * We have a race condition here between the
2656                          * result.shared value returned by the lookup and
2657                          * snapshot creation, which may cause new
2658                          * sharing.
2659                          *
2660                          * To avoid this always quiesce the origin before
2661                          * taking the snap.  You want to do this anyway to
2662                          * ensure a consistent application view
2663                          * (i.e. lockfs).
2664                          *
2665                          * More distant ancestors are irrelevant. The
2666                          * shared flag will be set in their case.
2667                          */
2668                         thin_defer_cell(tc, virt_cell);
2669                         return DM_MAPIO_SUBMITTED;
2670                 }
2671
2672                 build_data_key(tc->td, result.block, &key);
2673                 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2674                         cell_defer_no_holder(tc, virt_cell);
2675                         return DM_MAPIO_SUBMITTED;
2676                 }
2677
2678                 inc_all_io_entry(tc->pool, bio);
2679                 cell_defer_no_holder(tc, data_cell);
2680                 cell_defer_no_holder(tc, virt_cell);
2681
2682                 remap(tc, bio, result.block);
2683                 return DM_MAPIO_REMAPPED;
2684
2685         case -ENODATA:
2686         case -EWOULDBLOCK:
2687                 thin_defer_cell(tc, virt_cell);
2688                 return DM_MAPIO_SUBMITTED;
2689
2690         default:
2691                 /*
2692                  * Must always call bio_io_error on failure.
2693                  * dm_thin_find_block can fail with -EINVAL if the
2694                  * pool is switched to fail-io mode.
2695                  */
2696                 bio_io_error(bio);
2697                 cell_defer_no_holder(tc, virt_cell);
2698                 return DM_MAPIO_SUBMITTED;
2699         }
2700 }
2701
2702 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2703 {
2704         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2705         struct request_queue *q;
2706
2707         if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2708                 return 1;
2709
2710         q = bdev_get_queue(pt->data_dev->bdev);
2711         return bdi_congested(q->backing_dev_info, bdi_bits);
2712 }
2713
2714 static void requeue_bios(struct pool *pool)
2715 {
2716         unsigned long flags;
2717         struct thin_c *tc;
2718
2719         rcu_read_lock();
2720         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2721                 spin_lock_irqsave(&tc->lock, flags);
2722                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2723                 bio_list_init(&tc->retry_on_resume_list);
2724                 spin_unlock_irqrestore(&tc->lock, flags);
2725         }
2726         rcu_read_unlock();
2727 }
2728
2729 /*----------------------------------------------------------------
2730  * Binding of control targets to a pool object
2731  *--------------------------------------------------------------*/
2732 static bool data_dev_supports_discard(struct pool_c *pt)
2733 {
2734         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2735
2736         return q && blk_queue_discard(q);
2737 }
2738
2739 static bool is_factor(sector_t block_size, uint32_t n)
2740 {
2741         return !sector_div(block_size, n);
2742 }
2743
2744 /*
2745  * If discard_passdown was enabled verify that the data device
2746  * supports discards.  Disable discard_passdown if not.
2747  */
2748 static void disable_passdown_if_not_supported(struct pool_c *pt)
2749 {
2750         struct pool *pool = pt->pool;
2751         struct block_device *data_bdev = pt->data_dev->bdev;
2752         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2753         const char *reason = NULL;
2754         char buf[BDEVNAME_SIZE];
2755
2756         if (!pt->adjusted_pf.discard_passdown)
2757                 return;
2758
2759         if (!data_dev_supports_discard(pt))
2760                 reason = "discard unsupported";
2761
2762         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2763                 reason = "max discard sectors smaller than a block";
2764
2765         if (reason) {
2766                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2767                 pt->adjusted_pf.discard_passdown = false;
2768         }
2769 }
2770
2771 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2772 {
2773         struct pool_c *pt = ti->private;
2774
2775         /*
2776          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2777          */
2778         enum pool_mode old_mode = get_pool_mode(pool);
2779         enum pool_mode new_mode = pt->adjusted_pf.mode;
2780
2781         /*
2782          * Don't change the pool's mode until set_pool_mode() below.
2783          * Otherwise the pool's process_* function pointers may
2784          * not match the desired pool mode.
2785          */
2786         pt->adjusted_pf.mode = old_mode;
2787
2788         pool->ti = ti;
2789         pool->pf = pt->adjusted_pf;
2790         pool->low_water_blocks = pt->low_water_blocks;
2791
2792         set_pool_mode(pool, new_mode);
2793
2794         return 0;
2795 }
2796
2797 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2798 {
2799         if (pool->ti == ti)
2800                 pool->ti = NULL;
2801 }
2802
2803 /*----------------------------------------------------------------
2804  * Pool creation
2805  *--------------------------------------------------------------*/
2806 /* Initialize pool features. */
2807 static void pool_features_init(struct pool_features *pf)
2808 {
2809         pf->mode = PM_WRITE;
2810         pf->zero_new_blocks = true;
2811         pf->discard_enabled = true;
2812         pf->discard_passdown = true;
2813         pf->error_if_no_space = false;
2814 }
2815
2816 static void __pool_destroy(struct pool *pool)
2817 {
2818         __pool_table_remove(pool);
2819
2820         vfree(pool->cell_sort_array);
2821         if (dm_pool_metadata_close(pool->pmd) < 0)
2822                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2823
2824         dm_bio_prison_destroy(pool->prison);
2825         dm_kcopyd_client_destroy(pool->copier);
2826
2827         if (pool->wq)
2828                 destroy_workqueue(pool->wq);
2829
2830         if (pool->next_mapping)
2831                 mempool_free(pool->next_mapping, &pool->mapping_pool);
2832         mempool_exit(&pool->mapping_pool);
2833         dm_deferred_set_destroy(pool->shared_read_ds);
2834         dm_deferred_set_destroy(pool->all_io_ds);
2835         kfree(pool);
2836 }
2837
2838 static struct kmem_cache *_new_mapping_cache;
2839
2840 static struct pool *pool_create(struct mapped_device *pool_md,
2841                                 struct block_device *metadata_dev,
2842                                 unsigned long block_size,
2843                                 int read_only, char **error)
2844 {
2845         int r;
2846         void *err_p;
2847         struct pool *pool;
2848         struct dm_pool_metadata *pmd;
2849         bool format_device = read_only ? false : true;
2850
2851         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2852         if (IS_ERR(pmd)) {
2853                 *error = "Error creating metadata object";
2854                 return (struct pool *)pmd;
2855         }
2856
2857         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2858         if (!pool) {
2859                 *error = "Error allocating memory for pool";
2860                 err_p = ERR_PTR(-ENOMEM);
2861                 goto bad_pool;
2862         }
2863
2864         pool->pmd = pmd;
2865         pool->sectors_per_block = block_size;
2866         if (block_size & (block_size - 1))
2867                 pool->sectors_per_block_shift = -1;
2868         else
2869                 pool->sectors_per_block_shift = __ffs(block_size);
2870         pool->low_water_blocks = 0;
2871         pool_features_init(&pool->pf);
2872         pool->prison = dm_bio_prison_create();
2873         if (!pool->prison) {
2874                 *error = "Error creating pool's bio prison";
2875                 err_p = ERR_PTR(-ENOMEM);
2876                 goto bad_prison;
2877         }
2878
2879         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2880         if (IS_ERR(pool->copier)) {
2881                 r = PTR_ERR(pool->copier);
2882                 *error = "Error creating pool's kcopyd client";
2883                 err_p = ERR_PTR(r);
2884                 goto bad_kcopyd_client;
2885         }
2886
2887         /*
2888          * Create singlethreaded workqueue that will service all devices
2889          * that use this metadata.
2890          */
2891         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2892         if (!pool->wq) {
2893                 *error = "Error creating pool's workqueue";
2894                 err_p = ERR_PTR(-ENOMEM);
2895                 goto bad_wq;
2896         }
2897
2898         throttle_init(&pool->throttle);
2899         INIT_WORK(&pool->worker, do_worker);
2900         INIT_DELAYED_WORK(&pool->waker, do_waker);
2901         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2902         spin_lock_init(&pool->lock);
2903         bio_list_init(&pool->deferred_flush_bios);
2904         INIT_LIST_HEAD(&pool->prepared_mappings);
2905         INIT_LIST_HEAD(&pool->prepared_discards);
2906         INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2907         INIT_LIST_HEAD(&pool->active_thins);
2908         pool->low_water_triggered = false;
2909         pool->suspended = true;
2910         pool->out_of_data_space = false;
2911
2912         pool->shared_read_ds = dm_deferred_set_create();
2913         if (!pool->shared_read_ds) {
2914                 *error = "Error creating pool's shared read deferred set";
2915                 err_p = ERR_PTR(-ENOMEM);
2916                 goto bad_shared_read_ds;
2917         }
2918
2919         pool->all_io_ds = dm_deferred_set_create();
2920         if (!pool->all_io_ds) {
2921                 *error = "Error creating pool's all io deferred set";
2922                 err_p = ERR_PTR(-ENOMEM);
2923                 goto bad_all_io_ds;
2924         }
2925
2926         pool->next_mapping = NULL;
2927         r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
2928                                    _new_mapping_cache);
2929         if (r) {
2930                 *error = "Error creating pool's mapping mempool";
2931                 err_p = ERR_PTR(r);
2932                 goto bad_mapping_pool;
2933         }
2934
2935         pool->cell_sort_array =
2936                 vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
2937                                    sizeof(*pool->cell_sort_array)));
2938         if (!pool->cell_sort_array) {
2939                 *error = "Error allocating cell sort array";
2940                 err_p = ERR_PTR(-ENOMEM);
2941                 goto bad_sort_array;
2942         }
2943
2944         pool->ref_count = 1;
2945         pool->last_commit_jiffies = jiffies;
2946         pool->pool_md = pool_md;
2947         pool->md_dev = metadata_dev;
2948         __pool_table_insert(pool);
2949
2950         return pool;
2951
2952 bad_sort_array:
2953         mempool_exit(&pool->mapping_pool);
2954 bad_mapping_pool:
2955         dm_deferred_set_destroy(pool->all_io_ds);
2956 bad_all_io_ds:
2957         dm_deferred_set_destroy(pool->shared_read_ds);
2958 bad_shared_read_ds:
2959         destroy_workqueue(pool->wq);
2960 bad_wq:
2961         dm_kcopyd_client_destroy(pool->copier);
2962 bad_kcopyd_client:
2963         dm_bio_prison_destroy(pool->prison);
2964 bad_prison:
2965         kfree(pool);
2966 bad_pool:
2967         if (dm_pool_metadata_close(pmd))
2968                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2969
2970         return err_p;
2971 }
2972
2973 static void __pool_inc(struct pool *pool)
2974 {
2975         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2976         pool->ref_count++;
2977 }
2978
2979 static void __pool_dec(struct pool *pool)
2980 {
2981         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2982         BUG_ON(!pool->ref_count);
2983         if (!--pool->ref_count)
2984                 __pool_destroy(pool);
2985 }
2986
2987 static struct pool *__pool_find(struct mapped_device *pool_md,
2988                                 struct block_device *metadata_dev,
2989                                 unsigned long block_size, int read_only,
2990                                 char **error, int *created)
2991 {
2992         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2993
2994         if (pool) {
2995                 if (pool->pool_md != pool_md) {
2996                         *error = "metadata device already in use by a pool";
2997                         return ERR_PTR(-EBUSY);
2998                 }
2999                 __pool_inc(pool);
3000
3001         } else {
3002                 pool = __pool_table_lookup(pool_md);
3003                 if (pool) {
3004                         if (pool->md_dev != metadata_dev) {
3005                                 *error = "different pool cannot replace a pool";
3006                                 return ERR_PTR(-EINVAL);
3007                         }
3008                         __pool_inc(pool);
3009
3010                 } else {
3011                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3012                         *created = 1;
3013                 }
3014         }
3015
3016         return pool;
3017 }
3018
3019 /*----------------------------------------------------------------
3020  * Pool target methods
3021  *--------------------------------------------------------------*/
3022 static void pool_dtr(struct dm_target *ti)
3023 {
3024         struct pool_c *pt = ti->private;
3025
3026         mutex_lock(&dm_thin_pool_table.mutex);
3027
3028         unbind_control_target(pt->pool, ti);
3029         __pool_dec(pt->pool);
3030         dm_put_device(ti, pt->metadata_dev);
3031         dm_put_device(ti, pt->data_dev);
3032         kfree(pt);
3033
3034         mutex_unlock(&dm_thin_pool_table.mutex);
3035 }
3036
3037 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3038                                struct dm_target *ti)
3039 {
3040         int r;
3041         unsigned argc;
3042         const char *arg_name;
3043
3044         static const struct dm_arg _args[] = {
3045                 {0, 4, "Invalid number of pool feature arguments"},
3046         };
3047
3048         /*
3049          * No feature arguments supplied.
3050          */
3051         if (!as->argc)
3052                 return 0;
3053
3054         r = dm_read_arg_group(_args, as, &argc, &ti->error);
3055         if (r)
3056                 return -EINVAL;
3057
3058         while (argc && !r) {
3059                 arg_name = dm_shift_arg(as);
3060                 argc--;
3061
3062                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3063                         pf->zero_new_blocks = false;
3064
3065                 else if (!strcasecmp(arg_name, "ignore_discard"))
3066                         pf->discard_enabled = false;
3067
3068                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3069                         pf->discard_passdown = false;
3070
3071                 else if (!strcasecmp(arg_name, "read_only"))
3072                         pf->mode = PM_READ_ONLY;
3073
3074                 else if (!strcasecmp(arg_name, "error_if_no_space"))
3075                         pf->error_if_no_space = true;
3076
3077                 else {
3078                         ti->error = "Unrecognised pool feature requested";
3079                         r = -EINVAL;
3080                         break;
3081                 }
3082         }
3083
3084         return r;
3085 }
3086
3087 static void metadata_low_callback(void *context)
3088 {
3089         struct pool *pool = context;
3090
3091         DMWARN("%s: reached low water mark for metadata device: sending event.",
3092                dm_device_name(pool->pool_md));
3093
3094         dm_table_event(pool->ti->table);
3095 }
3096
3097 static sector_t get_dev_size(struct block_device *bdev)
3098 {
3099         return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3100 }
3101
3102 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3103 {
3104         sector_t metadata_dev_size = get_dev_size(bdev);
3105         char buffer[BDEVNAME_SIZE];
3106
3107         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3108                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3109                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3110 }
3111
3112 static sector_t get_metadata_dev_size(struct block_device *bdev)
3113 {
3114         sector_t metadata_dev_size = get_dev_size(bdev);
3115
3116         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3117                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3118
3119         return metadata_dev_size;
3120 }
3121
3122 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3123 {
3124         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3125
3126         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3127
3128         return metadata_dev_size;
3129 }
3130
3131 /*
3132  * When a metadata threshold is crossed a dm event is triggered, and
3133  * userland should respond by growing the metadata device.  We could let
3134  * userland set the threshold, like we do with the data threshold, but I'm
3135  * not sure they know enough to do this well.
3136  */
3137 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3138 {
3139         /*
3140          * 4M is ample for all ops with the possible exception of thin
3141          * device deletion which is harmless if it fails (just retry the
3142          * delete after you've grown the device).
3143          */
3144         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3145         return min((dm_block_t)1024ULL /* 4M */, quarter);
3146 }
3147
3148 /*
3149  * thin-pool <metadata dev> <data dev>
3150  *           <data block size (sectors)>
3151  *           <low water mark (blocks)>
3152  *           [<#feature args> [<arg>]*]
3153  *
3154  * Optional feature arguments are:
3155  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3156  *           ignore_discard: disable discard
3157  *           no_discard_passdown: don't pass discards down to the data device
3158  *           read_only: Don't allow any changes to be made to the pool metadata.
3159  *           error_if_no_space: error IOs, instead of queueing, if no space.
3160  */
3161 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3162 {
3163         int r, pool_created = 0;
3164         struct pool_c *pt;
3165         struct pool *pool;
3166         struct pool_features pf;
3167         struct dm_arg_set as;
3168         struct dm_dev *data_dev;
3169         unsigned long block_size;
3170         dm_block_t low_water_blocks;
3171         struct dm_dev *metadata_dev;
3172         fmode_t metadata_mode;
3173
3174         /*
3175          * FIXME Remove validation from scope of lock.
3176          */
3177         mutex_lock(&dm_thin_pool_table.mutex);
3178
3179         if (argc < 4) {
3180                 ti->error = "Invalid argument count";
3181                 r = -EINVAL;
3182                 goto out_unlock;
3183         }
3184
3185         as.argc = argc;
3186         as.argv = argv;
3187
3188         /*
3189          * Set default pool features.
3190          */
3191         pool_features_init(&pf);
3192
3193         dm_consume_args(&as, 4);
3194         r = parse_pool_features(&as, &pf, ti);
3195         if (r)
3196                 goto out_unlock;
3197
3198         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3199         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3200         if (r) {
3201                 ti->error = "Error opening metadata block device";
3202                 goto out_unlock;
3203         }
3204         warn_if_metadata_device_too_big(metadata_dev->bdev);
3205
3206         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3207         if (r) {
3208                 ti->error = "Error getting data device";
3209                 goto out_metadata;
3210         }
3211
3212         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3213             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3214             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3215             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3216                 ti->error = "Invalid block size";
3217                 r = -EINVAL;
3218                 goto out;
3219         }
3220
3221         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3222                 ti->error = "Invalid low water mark";
3223                 r = -EINVAL;
3224                 goto out;
3225         }
3226
3227         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3228         if (!pt) {
3229                 r = -ENOMEM;
3230                 goto out;
3231         }
3232
3233         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3234                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3235         if (IS_ERR(pool)) {
3236                 r = PTR_ERR(pool);
3237                 goto out_free_pt;
3238         }
3239
3240         /*
3241          * 'pool_created' reflects whether this is the first table load.
3242          * Top level discard support is not allowed to be changed after
3243          * initial load.  This would require a pool reload to trigger thin
3244          * device changes.
3245          */
3246         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3247                 ti->error = "Discard support cannot be disabled once enabled";
3248                 r = -EINVAL;
3249                 goto out_flags_changed;
3250         }
3251
3252         pt->pool = pool;
3253         pt->ti = ti;
3254         pt->metadata_dev = metadata_dev;
3255         pt->data_dev = data_dev;
3256         pt->low_water_blocks = low_water_blocks;
3257         pt->adjusted_pf = pt->requested_pf = pf;
3258         ti->num_flush_bios = 1;
3259
3260         /*
3261          * Only need to enable discards if the pool should pass
3262          * them down to the data device.  The thin device's discard
3263          * processing will cause mappings to be removed from the btree.
3264          */
3265         if (pf.discard_enabled && pf.discard_passdown) {
3266                 ti->num_discard_bios = 1;
3267
3268                 /*
3269                  * Setting 'discards_supported' circumvents the normal
3270                  * stacking of discard limits (this keeps the pool and
3271                  * thin devices' discard limits consistent).
3272                  */
3273                 ti->discards_supported = true;
3274         }
3275         ti->private = pt;
3276
3277         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3278                                                 calc_metadata_threshold(pt),
3279                                                 metadata_low_callback,
3280                                                 pool);
3281         if (r)
3282                 goto out_flags_changed;
3283
3284         pt->callbacks.congested_fn = pool_is_congested;
3285         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3286
3287         mutex_unlock(&dm_thin_pool_table.mutex);
3288
3289         return 0;
3290
3291 out_flags_changed:
3292         __pool_dec(pool);
3293 out_free_pt:
3294         kfree(pt);
3295 out:
3296         dm_put_device(ti, data_dev);
3297 out_metadata:
3298         dm_put_device(ti, metadata_dev);
3299 out_unlock:
3300         mutex_unlock(&dm_thin_pool_table.mutex);
3301
3302         return r;
3303 }
3304
3305 static int pool_map(struct dm_target *ti, struct bio *bio)
3306 {
3307         int r;
3308         struct pool_c *pt = ti->private;
3309         struct pool *pool = pt->pool;
3310         unsigned long flags;
3311
3312         /*
3313          * As this is a singleton target, ti->begin is always zero.
3314          */
3315         spin_lock_irqsave(&pool->lock, flags);
3316         bio_set_dev(bio, pt->data_dev->bdev);
3317         r = DM_MAPIO_REMAPPED;
3318         spin_unlock_irqrestore(&pool->lock, flags);
3319
3320         return r;
3321 }
3322
3323 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3324 {
3325         int r;
3326         struct pool_c *pt = ti->private;
3327         struct pool *pool = pt->pool;
3328         sector_t data_size = ti->len;
3329         dm_block_t sb_data_size;
3330
3331         *need_commit = false;
3332
3333         (void) sector_div(data_size, pool->sectors_per_block);
3334
3335         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3336         if (r) {
3337                 DMERR("%s: failed to retrieve data device size",
3338                       dm_device_name(pool->pool_md));
3339                 return r;
3340         }
3341
3342         if (data_size < sb_data_size) {
3343                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3344                       dm_device_name(pool->pool_md),
3345                       (unsigned long long)data_size, sb_data_size);
3346                 return -EINVAL;
3347
3348         } else if (data_size > sb_data_size) {
3349                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3350                         DMERR("%s: unable to grow the data device until repaired.",
3351                               dm_device_name(pool->pool_md));
3352                         return 0;
3353                 }
3354
3355                 if (sb_data_size)
3356                         DMINFO("%s: growing the data device from %llu to %llu blocks",
3357                                dm_device_name(pool->pool_md),
3358                                sb_data_size, (unsigned long long)data_size);
3359                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3360                 if (r) {
3361                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3362                         return r;
3363                 }
3364
3365                 *need_commit = true;
3366         }
3367
3368         return 0;
3369 }
3370
3371 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3372 {
3373         int r;
3374         struct pool_c *pt = ti->private;
3375         struct pool *pool = pt->pool;
3376         dm_block_t metadata_dev_size, sb_metadata_dev_size;
3377
3378         *need_commit = false;
3379
3380         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3381
3382         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3383         if (r) {
3384                 DMERR("%s: failed to retrieve metadata device size",
3385                       dm_device_name(pool->pool_md));
3386                 return r;
3387         }
3388
3389         if (metadata_dev_size < sb_metadata_dev_size) {
3390                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3391                       dm_device_name(pool->pool_md),
3392                       metadata_dev_size, sb_metadata_dev_size);
3393                 return -EINVAL;
3394
3395         } else if (metadata_dev_size > sb_metadata_dev_size) {
3396                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3397                         DMERR("%s: unable to grow the metadata device until repaired.",
3398                               dm_device_name(pool->pool_md));
3399                         return 0;
3400                 }
3401
3402                 warn_if_metadata_device_too_big(pool->md_dev);
3403                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3404                        dm_device_name(pool->pool_md),
3405                        sb_metadata_dev_size, metadata_dev_size);
3406                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3407                 if (r) {
3408                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3409                         return r;
3410                 }
3411
3412                 *need_commit = true;
3413         }
3414
3415         return 0;
3416 }
3417
3418 /*
3419  * Retrieves the number of blocks of the data device from
3420  * the superblock and compares it to the actual device size,
3421  * thus resizing the data device in case it has grown.
3422  *
3423  * This both copes with opening preallocated data devices in the ctr
3424  * being followed by a resume
3425  * -and-
3426  * calling the resume method individually after userspace has
3427  * grown the data device in reaction to a table event.
3428  */
3429 static int pool_preresume(struct dm_target *ti)
3430 {
3431         int r;
3432         bool need_commit1, need_commit2;
3433         struct pool_c *pt = ti->private;
3434         struct pool *pool = pt->pool;
3435
3436         /*
3437          * Take control of the pool object.
3438          */
3439         r = bind_control_target(pool, ti);
3440         if (r)
3441                 return r;
3442
3443         r = maybe_resize_data_dev(ti, &need_commit1);
3444         if (r)
3445                 return r;
3446
3447         r = maybe_resize_metadata_dev(ti, &need_commit2);
3448         if (r)
3449                 return r;
3450
3451         if (need_commit1 || need_commit2)
3452                 (void) commit(pool);
3453
3454         return 0;
3455 }
3456
3457 static void pool_suspend_active_thins(struct pool *pool)
3458 {
3459         struct thin_c *tc;
3460
3461         /* Suspend all active thin devices */
3462         tc = get_first_thin(pool);
3463         while (tc) {
3464                 dm_internal_suspend_noflush(tc->thin_md);
3465                 tc = get_next_thin(pool, tc);
3466         }
3467 }
3468
3469 static void pool_resume_active_thins(struct pool *pool)
3470 {
3471         struct thin_c *tc;
3472
3473         /* Resume all active thin devices */
3474         tc = get_first_thin(pool);
3475         while (tc) {
3476                 dm_internal_resume(tc->thin_md);
3477                 tc = get_next_thin(pool, tc);
3478         }
3479 }
3480
3481 static void pool_resume(struct dm_target *ti)
3482 {
3483         struct pool_c *pt = ti->private;
3484         struct pool *pool = pt->pool;
3485         unsigned long flags;
3486
3487         /*
3488          * Must requeue active_thins' bios and then resume
3489          * active_thins _before_ clearing 'suspend' flag.
3490          */
3491         requeue_bios(pool);
3492         pool_resume_active_thins(pool);
3493
3494         spin_lock_irqsave(&pool->lock, flags);
3495         pool->low_water_triggered = false;
3496         pool->suspended = false;
3497         spin_unlock_irqrestore(&pool->lock, flags);
3498
3499         do_waker(&pool->waker.work);
3500 }
3501
3502 static void pool_presuspend(struct dm_target *ti)
3503 {
3504         struct pool_c *pt = ti->private;
3505         struct pool *pool = pt->pool;
3506         unsigned long flags;
3507
3508         spin_lock_irqsave(&pool->lock, flags);
3509         pool->suspended = true;
3510         spin_unlock_irqrestore(&pool->lock, flags);
3511
3512         pool_suspend_active_thins(pool);
3513 }
3514
3515 static void pool_presuspend_undo(struct dm_target *ti)
3516 {
3517         struct pool_c *pt = ti->private;
3518         struct pool *pool = pt->pool;
3519         unsigned long flags;
3520
3521         pool_resume_active_thins(pool);
3522
3523         spin_lock_irqsave(&pool->lock, flags);
3524         pool->suspended = false;
3525         spin_unlock_irqrestore(&pool->lock, flags);
3526 }
3527
3528 static void pool_postsuspend(struct dm_target *ti)
3529 {
3530         struct pool_c *pt = ti->private;
3531         struct pool *pool = pt->pool;
3532
3533         cancel_delayed_work_sync(&pool->waker);
3534         cancel_delayed_work_sync(&pool->no_space_timeout);
3535         flush_workqueue(pool->wq);
3536         (void) commit(pool);
3537 }
3538
3539 static int check_arg_count(unsigned argc, unsigned args_required)
3540 {
3541         if (argc != args_required) {
3542                 DMWARN("Message received with %u arguments instead of %u.",
3543                        argc, args_required);
3544                 return -EINVAL;
3545         }
3546
3547         return 0;
3548 }
3549
3550 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3551 {
3552         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3553             *dev_id <= MAX_DEV_ID)
3554                 return 0;
3555
3556         if (warning)
3557                 DMWARN("Message received with invalid device id: %s", arg);
3558
3559         return -EINVAL;
3560 }
3561
3562 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3563 {
3564         dm_thin_id dev_id;
3565         int r;
3566
3567         r = check_arg_count(argc, 2);
3568         if (r)
3569                 return r;
3570
3571         r = read_dev_id(argv[1], &dev_id, 1);
3572         if (r)
3573                 return r;
3574
3575         r = dm_pool_create_thin(pool->pmd, dev_id);
3576         if (r) {
3577                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3578                        argv[1]);
3579                 return r;
3580         }
3581
3582         return 0;
3583 }
3584
3585 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3586 {
3587         dm_thin_id dev_id;
3588         dm_thin_id origin_dev_id;
3589         int r;
3590
3591         r = check_arg_count(argc, 3);
3592         if (r)
3593                 return r;
3594
3595         r = read_dev_id(argv[1], &dev_id, 1);
3596         if (r)
3597                 return r;
3598
3599         r = read_dev_id(argv[2], &origin_dev_id, 1);
3600         if (r)
3601                 return r;
3602
3603         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3604         if (r) {
3605                 DMWARN("Creation of new snapshot %s of device %s failed.",
3606                        argv[1], argv[2]);
3607                 return r;
3608         }
3609
3610         return 0;
3611 }
3612
3613 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3614 {
3615         dm_thin_id dev_id;
3616         int r;
3617
3618         r = check_arg_count(argc, 2);
3619         if (r)
3620                 return r;
3621
3622         r = read_dev_id(argv[1], &dev_id, 1);
3623         if (r)
3624                 return r;
3625
3626         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3627         if (r)
3628                 DMWARN("Deletion of thin device %s failed.", argv[1]);
3629
3630         return r;
3631 }
3632
3633 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3634 {
3635         dm_thin_id old_id, new_id;
3636         int r;
3637
3638         r = check_arg_count(argc, 3);
3639         if (r)
3640                 return r;
3641
3642         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3643                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3644                 return -EINVAL;
3645         }
3646
3647         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3648                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3649                 return -EINVAL;
3650         }
3651
3652         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3653         if (r) {
3654                 DMWARN("Failed to change transaction id from %s to %s.",
3655                        argv[1], argv[2]);
3656                 return r;
3657         }
3658
3659         return 0;
3660 }
3661
3662 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3663 {
3664         int r;
3665
3666         r = check_arg_count(argc, 1);
3667         if (r)
3668                 return r;
3669
3670         (void) commit(pool);
3671
3672         r = dm_pool_reserve_metadata_snap(pool->pmd);
3673         if (r)
3674                 DMWARN("reserve_metadata_snap message failed.");
3675
3676         return r;
3677 }
3678
3679 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3680 {
3681         int r;
3682
3683         r = check_arg_count(argc, 1);
3684         if (r)
3685                 return r;
3686
3687         r = dm_pool_release_metadata_snap(pool->pmd);
3688         if (r)
3689                 DMWARN("release_metadata_snap message failed.");
3690
3691         return r;
3692 }
3693
3694 /*
3695  * Messages supported:
3696  *   create_thin        <dev_id>
3697  *   create_snap        <dev_id> <origin_id>
3698  *   delete             <dev_id>
3699  *   set_transaction_id <current_trans_id> <new_trans_id>
3700  *   reserve_metadata_snap
3701  *   release_metadata_snap
3702  */
3703 static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3704                         char *result, unsigned maxlen)
3705 {
3706         int r = -EINVAL;
3707         struct pool_c *pt = ti->private;
3708         struct pool *pool = pt->pool;
3709
3710         if (get_pool_mode(pool) >= PM_READ_ONLY) {
3711                 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3712                       dm_device_name(pool->pool_md));
3713                 return -EOPNOTSUPP;
3714         }
3715
3716         if (!strcasecmp(argv[0], "create_thin"))
3717                 r = process_create_thin_mesg(argc, argv, pool);
3718
3719         else if (!strcasecmp(argv[0], "create_snap"))
3720                 r = process_create_snap_mesg(argc, argv, pool);
3721
3722         else if (!strcasecmp(argv[0], "delete"))
3723                 r = process_delete_mesg(argc, argv, pool);
3724
3725         else if (!strcasecmp(argv[0], "set_transaction_id"))
3726                 r = process_set_transaction_id_mesg(argc, argv, pool);
3727
3728         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3729                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3730
3731         else if (!strcasecmp(argv[0], "release_metadata_snap"))
3732                 r = process_release_metadata_snap_mesg(argc, argv, pool);
3733
3734         else
3735                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3736
3737         if (!r)
3738                 (void) commit(pool);
3739
3740         return r;
3741 }
3742
3743 static void emit_flags(struct pool_features *pf, char *result,
3744                        unsigned sz, unsigned maxlen)
3745 {
3746         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3747                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3748                 pf->error_if_no_space;
3749         DMEMIT("%u ", count);
3750
3751         if (!pf->zero_new_blocks)
3752                 DMEMIT("skip_block_zeroing ");
3753
3754         if (!pf->discard_enabled)
3755                 DMEMIT("ignore_discard ");
3756
3757         if (!pf->discard_passdown)
3758                 DMEMIT("no_discard_passdown ");
3759
3760         if (pf->mode == PM_READ_ONLY)
3761                 DMEMIT("read_only ");
3762
3763         if (pf->error_if_no_space)
3764                 DMEMIT("error_if_no_space ");
3765 }
3766
3767 /*
3768  * Status line is:
3769  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3770  *    <used data sectors>/<total data sectors> <held metadata root>
3771  *    <pool mode> <discard config> <no space config> <needs_check>
3772  */
3773 static void pool_status(struct dm_target *ti, status_type_t type,
3774                         unsigned status_flags, char *result, unsigned maxlen)
3775 {
3776         int r;
3777         unsigned sz = 0;
3778         uint64_t transaction_id;
3779         dm_block_t nr_free_blocks_data;
3780         dm_block_t nr_free_blocks_metadata;
3781         dm_block_t nr_blocks_data;
3782         dm_block_t nr_blocks_metadata;
3783         dm_block_t held_root;
3784         char buf[BDEVNAME_SIZE];
3785         char buf2[BDEVNAME_SIZE];
3786         struct pool_c *pt = ti->private;
3787         struct pool *pool = pt->pool;
3788
3789         switch (type) {
3790         case STATUSTYPE_INFO:
3791                 if (get_pool_mode(pool) == PM_FAIL) {
3792                         DMEMIT("Fail");
3793                         break;
3794                 }
3795
3796                 /* Commit to ensure statistics aren't out-of-date */
3797                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3798                         (void) commit(pool);
3799
3800                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3801                 if (r) {
3802                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3803                               dm_device_name(pool->pool_md), r);
3804                         goto err;
3805                 }
3806
3807                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3808                 if (r) {
3809                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3810                               dm_device_name(pool->pool_md), r);
3811                         goto err;
3812                 }
3813
3814                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3815                 if (r) {
3816                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3817                               dm_device_name(pool->pool_md), r);
3818                         goto err;
3819                 }
3820
3821                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3822                 if (r) {
3823                         DMERR("%s: dm_pool_get_free_block_count returned %d",
3824                               dm_device_name(pool->pool_md), r);
3825                         goto err;
3826                 }
3827
3828                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3829                 if (r) {
3830                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
3831                               dm_device_name(pool->pool_md), r);
3832                         goto err;
3833                 }
3834
3835                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3836                 if (r) {
3837                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
3838                               dm_device_name(pool->pool_md), r);
3839                         goto err;
3840                 }
3841
3842                 DMEMIT("%llu %llu/%llu %llu/%llu ",
3843                        (unsigned long long)transaction_id,
3844                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3845                        (unsigned long long)nr_blocks_metadata,
3846                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3847                        (unsigned long long)nr_blocks_data);
3848
3849                 if (held_root)
3850                         DMEMIT("%llu ", held_root);
3851                 else
3852                         DMEMIT("- ");
3853
3854                 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3855                         DMEMIT("out_of_data_space ");
3856                 else if (pool->pf.mode == PM_READ_ONLY)
3857                         DMEMIT("ro ");
3858                 else
3859                         DMEMIT("rw ");
3860
3861                 if (!pool->pf.discard_enabled)
3862                         DMEMIT("ignore_discard ");
3863                 else if (pool->pf.discard_passdown)
3864                         DMEMIT("discard_passdown ");
3865                 else
3866                         DMEMIT("no_discard_passdown ");
3867
3868                 if (pool->pf.error_if_no_space)
3869                         DMEMIT("error_if_no_space ");
3870                 else
3871                         DMEMIT("queue_if_no_space ");
3872
3873                 if (dm_pool_metadata_needs_check(pool->pmd))
3874                         DMEMIT("needs_check ");
3875                 else
3876                         DMEMIT("- ");
3877
3878                 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
3879
3880                 break;
3881
3882         case STATUSTYPE_TABLE:
3883                 DMEMIT("%s %s %lu %llu ",
3884                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3885                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3886                        (unsigned long)pool->sectors_per_block,
3887                        (unsigned long long)pt->low_water_blocks);
3888                 emit_flags(&pt->requested_pf, result, sz, maxlen);
3889                 break;
3890         }
3891         return;
3892
3893 err:
3894         DMEMIT("Error");
3895 }
3896
3897 static int pool_iterate_devices(struct dm_target *ti,
3898                                 iterate_devices_callout_fn fn, void *data)
3899 {
3900         struct pool_c *pt = ti->private;
3901
3902         return fn(ti, pt->data_dev, 0, ti->len, data);
3903 }
3904
3905 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3906 {
3907         struct pool_c *pt = ti->private;
3908         struct pool *pool = pt->pool;
3909         sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3910
3911         /*
3912          * If max_sectors is smaller than pool->sectors_per_block adjust it
3913          * to the highest possible power-of-2 factor of pool->sectors_per_block.
3914          * This is especially beneficial when the pool's data device is a RAID
3915          * device that has a full stripe width that matches pool->sectors_per_block
3916          * -- because even though partial RAID stripe-sized IOs will be issued to a
3917          *    single RAID stripe; when aggregated they will end on a full RAID stripe
3918          *    boundary.. which avoids additional partial RAID stripe writes cascading
3919          */
3920         if (limits->max_sectors < pool->sectors_per_block) {
3921                 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3922                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3923                                 limits->max_sectors--;
3924                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3925                 }
3926         }
3927
3928         /*
3929          * If the system-determined stacked limits are compatible with the
3930          * pool's blocksize (io_opt is a factor) do not override them.
3931          */
3932         if (io_opt_sectors < pool->sectors_per_block ||
3933             !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3934                 if (is_factor(pool->sectors_per_block, limits->max_sectors))
3935                         blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3936                 else
3937                         blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3938                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3939         }
3940
3941         /*
3942          * pt->adjusted_pf is a staging area for the actual features to use.
3943          * They get transferred to the live pool in bind_control_target()
3944          * called from pool_preresume().
3945          */
3946         if (!pt->adjusted_pf.discard_enabled) {
3947                 /*
3948                  * Must explicitly disallow stacking discard limits otherwise the
3949                  * block layer will stack them if pool's data device has support.
3950                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3951                  * user to see that, so make sure to set all discard limits to 0.
3952                  */
3953                 limits->discard_granularity = 0;
3954                 return;
3955         }
3956
3957         disable_passdown_if_not_supported(pt);
3958
3959         /*
3960          * The pool uses the same discard limits as the underlying data
3961          * device.  DM core has already set this up.
3962          */
3963 }
3964
3965 static struct target_type pool_target = {
3966         .name = "thin-pool",
3967         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3968                     DM_TARGET_IMMUTABLE,
3969         .version = {1, 20, 0},
3970         .module = THIS_MODULE,
3971         .ctr = pool_ctr,
3972         .dtr = pool_dtr,
3973         .map = pool_map,
3974         .presuspend = pool_presuspend,
3975         .presuspend_undo = pool_presuspend_undo,
3976         .postsuspend = pool_postsuspend,
3977         .preresume = pool_preresume,
3978         .resume = pool_resume,
3979         .message = pool_message,
3980         .status = pool_status,
3981         .iterate_devices = pool_iterate_devices,
3982         .io_hints = pool_io_hints,
3983 };
3984
3985 /*----------------------------------------------------------------
3986  * Thin target methods
3987  *--------------------------------------------------------------*/
3988 static void thin_get(struct thin_c *tc)
3989 {
3990         atomic_inc(&tc->refcount);
3991 }
3992
3993 static void thin_put(struct thin_c *tc)
3994 {
3995         if (atomic_dec_and_test(&tc->refcount))
3996                 complete(&tc->can_destroy);
3997 }
3998
3999 static void thin_dtr(struct dm_target *ti)
4000 {
4001         struct thin_c *tc = ti->private;
4002         unsigned long flags;
4003
4004         spin_lock_irqsave(&tc->pool->lock, flags);
4005         list_del_rcu(&tc->list);
4006         spin_unlock_irqrestore(&tc->pool->lock, flags);
4007         synchronize_rcu();
4008
4009         thin_put(tc);
4010         wait_for_completion(&tc->can_destroy);
4011
4012         mutex_lock(&dm_thin_pool_table.mutex);
4013
4014         __pool_dec(tc->pool);
4015         dm_pool_close_thin_device(tc->td);
4016         dm_put_device(ti, tc->pool_dev);
4017         if (tc->origin_dev)
4018                 dm_put_device(ti, tc->origin_dev);
4019         kfree(tc);
4020
4021         mutex_unlock(&dm_thin_pool_table.mutex);
4022 }
4023
4024 /*
4025  * Thin target parameters:
4026  *
4027  * <pool_dev> <dev_id> [origin_dev]
4028  *
4029  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4030  * dev_id: the internal device identifier
4031  * origin_dev: a device external to the pool that should act as the origin
4032  *
4033  * If the pool device has discards disabled, they get disabled for the thin
4034  * device as well.
4035  */
4036 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4037 {
4038         int r;
4039         struct thin_c *tc;
4040         struct dm_dev *pool_dev, *origin_dev;
4041         struct mapped_device *pool_md;
4042         unsigned long flags;
4043
4044         mutex_lock(&dm_thin_pool_table.mutex);
4045
4046         if (argc != 2 && argc != 3) {
4047                 ti->error = "Invalid argument count";
4048                 r = -EINVAL;
4049                 goto out_unlock;
4050         }
4051
4052         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4053         if (!tc) {
4054                 ti->error = "Out of memory";
4055                 r = -ENOMEM;
4056                 goto out_unlock;
4057         }
4058         tc->thin_md = dm_table_get_md(ti->table);
4059         spin_lock_init(&tc->lock);
4060         INIT_LIST_HEAD(&tc->deferred_cells);
4061         bio_list_init(&tc->deferred_bio_list);
4062         bio_list_init(&tc->retry_on_resume_list);
4063         tc->sort_bio_list = RB_ROOT;
4064
4065         if (argc == 3) {
4066                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4067                 if (r) {
4068                         ti->error = "Error opening origin device";
4069                         goto bad_origin_dev;
4070                 }
4071                 tc->origin_dev = origin_dev;
4072         }
4073
4074         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4075         if (r) {
4076                 ti->error = "Error opening pool device";
4077                 goto bad_pool_dev;
4078         }
4079         tc->pool_dev = pool_dev;
4080
4081         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4082                 ti->error = "Invalid device id";
4083                 r = -EINVAL;
4084                 goto bad_common;
4085         }
4086
4087         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4088         if (!pool_md) {
4089                 ti->error = "Couldn't get pool mapped device";
4090                 r = -EINVAL;
4091                 goto bad_common;
4092         }
4093
4094         tc->pool = __pool_table_lookup(pool_md);
4095         if (!tc->pool) {
4096                 ti->error = "Couldn't find pool object";
4097                 r = -EINVAL;
4098                 goto bad_pool_lookup;
4099         }
4100         __pool_inc(tc->pool);
4101
4102         if (get_pool_mode(tc->pool) == PM_FAIL) {
4103                 ti->error = "Couldn't open thin device, Pool is in fail mode";
4104                 r = -EINVAL;
4105                 goto bad_pool;
4106         }
4107
4108         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4109         if (r) {
4110                 ti->error = "Couldn't open thin internal device";
4111                 goto bad_pool;
4112         }
4113
4114         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4115         if (r)
4116                 goto bad;
4117
4118         ti->num_flush_bios = 1;
4119         ti->flush_supported = true;
4120         ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4121
4122         /* In case the pool supports discards, pass them on. */
4123         if (tc->pool->pf.discard_enabled) {
4124                 ti->discards_supported = true;
4125                 ti->num_discard_bios = 1;
4126                 ti->split_discard_bios = false;
4127         }
4128
4129         mutex_unlock(&dm_thin_pool_table.mutex);
4130
4131         spin_lock_irqsave(&tc->pool->lock, flags);
4132         if (tc->pool->suspended) {
4133                 spin_unlock_irqrestore(&tc->pool->lock, flags);
4134                 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4135                 ti->error = "Unable to activate thin device while pool is suspended";
4136                 r = -EINVAL;
4137                 goto bad;
4138         }
4139         atomic_set(&tc->refcount, 1);
4140         init_completion(&tc->can_destroy);
4141         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4142         spin_unlock_irqrestore(&tc->pool->lock, flags);
4143         /*
4144          * This synchronize_rcu() call is needed here otherwise we risk a
4145          * wake_worker() call finding no bios to process (because the newly
4146          * added tc isn't yet visible).  So this reduces latency since we
4147          * aren't then dependent on the periodic commit to wake_worker().
4148          */
4149         synchronize_rcu();
4150
4151         dm_put(pool_md);
4152
4153         return 0;
4154
4155 bad:
4156         dm_pool_close_thin_device(tc->td);
4157 bad_pool:
4158         __pool_dec(tc->pool);
4159 bad_pool_lookup:
4160         dm_put(pool_md);
4161 bad_common:
4162         dm_put_device(ti, tc->pool_dev);
4163 bad_pool_dev:
4164         if (tc->origin_dev)
4165                 dm_put_device(ti, tc->origin_dev);
4166 bad_origin_dev:
4167         kfree(tc);
4168 out_unlock:
4169         mutex_unlock(&dm_thin_pool_table.mutex);
4170
4171         return r;
4172 }
4173
4174 static int thin_map(struct dm_target *ti, struct bio *bio)
4175 {
4176         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4177
4178         return thin_bio_map(ti, bio);
4179 }
4180
4181 static int thin_endio(struct dm_target *ti, struct bio *bio,
4182                 blk_status_t *err)
4183 {
4184         unsigned long flags;
4185         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4186         struct list_head work;
4187         struct dm_thin_new_mapping *m, *tmp;
4188         struct pool *pool = h->tc->pool;
4189
4190         if (h->shared_read_entry) {
4191                 INIT_LIST_HEAD(&work);
4192                 dm_deferred_entry_dec(h->shared_read_entry, &work);
4193
4194                 spin_lock_irqsave(&pool->lock, flags);
4195                 list_for_each_entry_safe(m, tmp, &work, list) {
4196                         list_del(&m->list);
4197                         __complete_mapping_preparation(m);
4198                 }
4199                 spin_unlock_irqrestore(&pool->lock, flags);
4200         }
4201
4202         if (h->all_io_entry) {
4203                 INIT_LIST_HEAD(&work);
4204                 dm_deferred_entry_dec(h->all_io_entry, &work);
4205                 if (!list_empty(&work)) {
4206                         spin_lock_irqsave(&pool->lock, flags);
4207                         list_for_each_entry_safe(m, tmp, &work, list)
4208                                 list_add_tail(&m->list, &pool->prepared_discards);
4209                         spin_unlock_irqrestore(&pool->lock, flags);
4210                         wake_worker(pool);
4211                 }
4212         }
4213
4214         if (h->cell)
4215                 cell_defer_no_holder(h->tc, h->cell);
4216
4217         return DM_ENDIO_DONE;
4218 }
4219
4220 static void thin_presuspend(struct dm_target *ti)
4221 {
4222         struct thin_c *tc = ti->private;
4223
4224         if (dm_noflush_suspending(ti))
4225                 noflush_work(tc, do_noflush_start);
4226 }
4227
4228 static void thin_postsuspend(struct dm_target *ti)
4229 {
4230         struct thin_c *tc = ti->private;
4231
4232         /*
4233          * The dm_noflush_suspending flag has been cleared by now, so
4234          * unfortunately we must always run this.
4235          */
4236         noflush_work(tc, do_noflush_stop);
4237 }
4238
4239 static int thin_preresume(struct dm_target *ti)
4240 {
4241         struct thin_c *tc = ti->private;
4242
4243         if (tc->origin_dev)
4244                 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4245
4246         return 0;
4247 }
4248
4249 /*
4250  * <nr mapped sectors> <highest mapped sector>
4251  */
4252 static void thin_status(struct dm_target *ti, status_type_t type,
4253                         unsigned status_flags, char *result, unsigned maxlen)
4254 {
4255         int r;
4256         ssize_t sz = 0;
4257         dm_block_t mapped, highest;
4258         char buf[BDEVNAME_SIZE];
4259         struct thin_c *tc = ti->private;
4260
4261         if (get_pool_mode(tc->pool) == PM_FAIL) {
4262                 DMEMIT("Fail");
4263                 return;
4264         }
4265
4266         if (!tc->td)
4267                 DMEMIT("-");
4268         else {
4269                 switch (type) {
4270                 case STATUSTYPE_INFO:
4271                         r = dm_thin_get_mapped_count(tc->td, &mapped);
4272                         if (r) {
4273                                 DMERR("dm_thin_get_mapped_count returned %d", r);
4274                                 goto err;
4275                         }
4276
4277                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4278                         if (r < 0) {
4279                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4280                                 goto err;
4281                         }
4282
4283                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4284                         if (r)
4285                                 DMEMIT("%llu", ((highest + 1) *
4286                                                 tc->pool->sectors_per_block) - 1);
4287                         else
4288                                 DMEMIT("-");
4289                         break;
4290
4291                 case STATUSTYPE_TABLE:
4292                         DMEMIT("%s %lu",
4293                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4294                                (unsigned long) tc->dev_id);
4295                         if (tc->origin_dev)
4296                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4297                         break;
4298                 }
4299         }
4300
4301         return;
4302
4303 err:
4304         DMEMIT("Error");
4305 }
4306
4307 static int thin_iterate_devices(struct dm_target *ti,
4308                                 iterate_devices_callout_fn fn, void *data)
4309 {
4310         sector_t blocks;
4311         struct thin_c *tc = ti->private;
4312         struct pool *pool = tc->pool;
4313
4314         /*
4315          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4316          * we follow a more convoluted path through to the pool's target.
4317          */
4318         if (!pool->ti)
4319                 return 0;       /* nothing is bound */
4320
4321         blocks = pool->ti->len;
4322         (void) sector_div(blocks, pool->sectors_per_block);
4323         if (blocks)
4324                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4325
4326         return 0;
4327 }
4328
4329 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4330 {
4331         struct thin_c *tc = ti->private;
4332         struct pool *pool = tc->pool;
4333
4334         if (!pool->pf.discard_enabled)
4335                 return;
4336
4337         limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4338         limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4339 }
4340
4341 static struct target_type thin_target = {
4342         .name = "thin",
4343         .version = {1, 20, 0},
4344         .module = THIS_MODULE,
4345         .ctr = thin_ctr,
4346         .dtr = thin_dtr,
4347         .map = thin_map,
4348         .end_io = thin_endio,
4349         .preresume = thin_preresume,
4350         .presuspend = thin_presuspend,
4351         .postsuspend = thin_postsuspend,
4352         .status = thin_status,
4353         .iterate_devices = thin_iterate_devices,
4354         .io_hints = thin_io_hints,
4355 };
4356
4357 /*----------------------------------------------------------------*/
4358
4359 static int __init dm_thin_init(void)
4360 {
4361         int r = -ENOMEM;
4362
4363         pool_table_init();
4364
4365         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4366         if (!_new_mapping_cache)
4367                 return r;
4368
4369         r = dm_register_target(&thin_target);
4370         if (r)
4371                 goto bad_new_mapping_cache;
4372
4373         r = dm_register_target(&pool_target);
4374         if (r)
4375                 goto bad_thin_target;
4376
4377         return 0;
4378
4379 bad_thin_target:
4380         dm_unregister_target(&thin_target);
4381 bad_new_mapping_cache:
4382         kmem_cache_destroy(_new_mapping_cache);
4383
4384         return r;
4385 }
4386
4387 static void dm_thin_exit(void)
4388 {
4389         dm_unregister_target(&thin_target);
4390         dm_unregister_target(&pool_target);
4391
4392         kmem_cache_destroy(_new_mapping_cache);
4393
4394         pool_table_exit();
4395 }
4396
4397 module_init(dm_thin_init);
4398 module_exit(dm_thin_exit);
4399
4400 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4401 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4402
4403 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4404 MODULE_AUTHOR("Joe Thornber <[email protected]>");
4405 MODULE_LICENSE("GPL");
This page took 0.335662 seconds and 4 git commands to generate.