2 * Copyright (C) 2011-2012 Red Hat UK.
4 * This file is released under the GPL.
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
25 #define DM_MSG_PREFIX "thin"
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 "A percentage of time allocated for copy on write");
41 * The block size of the device holding pool data must be
42 * between 64KB and 1GB.
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
48 * Device id is restricted to 24 bits.
50 #define MAX_DEV_ID ((1 << 24) - 1)
53 * How do we handle breaking sharing of data blocks?
54 * =================================================
56 * We use a standard copy-on-write btree to store the mappings for the
57 * devices (note I'm talking about copy-on-write of the metadata here, not
58 * the data). When you take an internal snapshot you clone the root node
59 * of the origin btree. After this there is no concept of an origin or a
60 * snapshot. They are just two device trees that happen to point to the
63 * When we get a write in we decide if it's to a shared data block using
64 * some timestamp magic. If it is, we have to break sharing.
66 * Let's say we write to a shared block in what was the origin. The
69 * i) plug io further to this physical block. (see bio_prison code).
71 * ii) quiesce any read io to that shared data block. Obviously
72 * including all devices that share this block. (see dm_deferred_set code)
74 * iii) copy the data block to a newly allocate block. This step can be
75 * missed out if the io covers the block. (schedule_copy).
77 * iv) insert the new mapping into the origin's btree
78 * (process_prepared_mapping). This act of inserting breaks some
79 * sharing of btree nodes between the two devices. Breaking sharing only
80 * effects the btree of that specific device. Btrees for the other
81 * devices that share the block never change. The btree for the origin
82 * device as it was after the last commit is untouched, ie. we're using
83 * persistent data structures in the functional programming sense.
85 * v) unplug io to this physical block, including the io that triggered
86 * the breaking of sharing.
88 * Steps (ii) and (iii) occur in parallel.
90 * The metadata _doesn't_ need to be committed before the io continues. We
91 * get away with this because the io is always written to a _new_ block.
92 * If there's a crash, then:
94 * - The origin mapping will point to the old origin block (the shared
95 * one). This will contain the data as it was before the io that triggered
96 * the breaking of sharing came in.
98 * - The snap mapping still points to the old block. As it would after
101 * The downside of this scheme is the timestamp magic isn't perfect, and
102 * will continue to think that data block in the snapshot device is shared
103 * even after the write to the origin has broken sharing. I suspect data
104 * blocks will typically be shared by many different devices, so we're
105 * breaking sharing n + 1 times, rather than n, where n is the number of
106 * devices that reference this data block. At the moment I think the
107 * benefits far, far outweigh the disadvantages.
110 /*----------------------------------------------------------------*/
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121 dm_block_t b, dm_block_t e, struct dm_cell_key *key)
123 key->virtual = (ls == VIRTUAL);
124 key->dev = dm_thin_dev_id(td);
125 key->block_begin = b;
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130 struct dm_cell_key *key)
132 build_key(td, PHYSICAL, b, b + 1llu, key);
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136 struct dm_cell_key *key)
138 build_key(td, VIRTUAL, b, b + 1llu, key);
141 /*----------------------------------------------------------------*/
143 #define THROTTLE_THRESHOLD (1 * HZ)
146 struct rw_semaphore lock;
147 unsigned long threshold;
148 bool throttle_applied;
151 static void throttle_init(struct throttle *t)
153 init_rwsem(&t->lock);
154 t->throttle_applied = false;
157 static void throttle_work_start(struct throttle *t)
159 t->threshold = jiffies + THROTTLE_THRESHOLD;
162 static void throttle_work_update(struct throttle *t)
164 if (!t->throttle_applied && jiffies > t->threshold) {
165 down_write(&t->lock);
166 t->throttle_applied = true;
170 static void throttle_work_complete(struct throttle *t)
172 if (t->throttle_applied) {
173 t->throttle_applied = false;
178 static void throttle_lock(struct throttle *t)
183 static void throttle_unlock(struct throttle *t)
188 /*----------------------------------------------------------------*/
191 * A pool device ties together a metadata device and a data device. It
192 * also provides the interface for creating and destroying internal
195 struct dm_thin_new_mapping;
198 * The pool runs in 4 modes. Ordered in degraded order for comparisons.
201 PM_WRITE, /* metadata may be changed */
202 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */
203 PM_READ_ONLY, /* metadata may not be changed */
204 PM_FAIL, /* all I/O fails */
207 struct pool_features {
210 bool zero_new_blocks:1;
211 bool discard_enabled:1;
212 bool discard_passdown:1;
213 bool error_if_no_space:1;
217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
221 #define CELL_SORT_ARRAY_SIZE 8192
224 struct list_head list;
225 struct dm_target *ti; /* Only set if a pool target is bound */
227 struct mapped_device *pool_md;
228 struct block_device *md_dev;
229 struct dm_pool_metadata *pmd;
231 dm_block_t low_water_blocks;
232 uint32_t sectors_per_block;
233 int sectors_per_block_shift;
235 struct pool_features pf;
236 bool low_water_triggered:1; /* A dm event has been sent */
238 bool out_of_data_space:1;
240 struct dm_bio_prison *prison;
241 struct dm_kcopyd_client *copier;
243 struct work_struct worker;
244 struct workqueue_struct *wq;
245 struct throttle throttle;
246 struct delayed_work waker;
247 struct delayed_work no_space_timeout;
249 unsigned long last_commit_jiffies;
253 struct bio_list deferred_flush_bios;
254 struct list_head prepared_mappings;
255 struct list_head prepared_discards;
256 struct list_head prepared_discards_pt2;
257 struct list_head active_thins;
259 struct dm_deferred_set *shared_read_ds;
260 struct dm_deferred_set *all_io_ds;
262 struct dm_thin_new_mapping *next_mapping;
264 process_bio_fn process_bio;
265 process_bio_fn process_discard;
267 process_cell_fn process_cell;
268 process_cell_fn process_discard_cell;
270 process_mapping_fn process_prepared_mapping;
271 process_mapping_fn process_prepared_discard;
272 process_mapping_fn process_prepared_discard_pt2;
274 struct dm_bio_prison_cell **cell_sort_array;
276 mempool_t mapping_pool;
279 static enum pool_mode get_pool_mode(struct pool *pool);
280 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
283 * Target context for a pool.
286 struct dm_target *ti;
288 struct dm_dev *data_dev;
289 struct dm_dev *metadata_dev;
290 struct dm_target_callbacks callbacks;
292 dm_block_t low_water_blocks;
293 struct pool_features requested_pf; /* Features requested during table load */
294 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
298 * Target context for a thin.
301 struct list_head list;
302 struct dm_dev *pool_dev;
303 struct dm_dev *origin_dev;
304 sector_t origin_size;
308 struct dm_thin_device *td;
309 struct mapped_device *thin_md;
313 struct list_head deferred_cells;
314 struct bio_list deferred_bio_list;
315 struct bio_list retry_on_resume_list;
316 struct rb_root sort_bio_list; /* sorted list of deferred bios */
319 * Ensures the thin is not destroyed until the worker has finished
320 * iterating the active_thins list.
323 struct completion can_destroy;
326 /*----------------------------------------------------------------*/
328 static bool block_size_is_power_of_two(struct pool *pool)
330 return pool->sectors_per_block_shift >= 0;
333 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
335 return block_size_is_power_of_two(pool) ?
336 (b << pool->sectors_per_block_shift) :
337 (b * pool->sectors_per_block);
340 /*----------------------------------------------------------------*/
344 struct blk_plug plug;
345 struct bio *parent_bio;
349 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
354 blk_start_plug(&op->plug);
355 op->parent_bio = parent;
359 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
361 struct thin_c *tc = op->tc;
362 sector_t s = block_to_sectors(tc->pool, data_b);
363 sector_t len = block_to_sectors(tc->pool, data_e - data_b);
365 return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
366 GFP_NOWAIT, 0, &op->bio);
369 static void end_discard(struct discard_op *op, int r)
373 * Even if one of the calls to issue_discard failed, we
374 * need to wait for the chain to complete.
376 bio_chain(op->bio, op->parent_bio);
377 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
381 blk_finish_plug(&op->plug);
384 * Even if r is set, there could be sub discards in flight that we
387 if (r && !op->parent_bio->bi_status)
388 op->parent_bio->bi_status = errno_to_blk_status(r);
389 bio_endio(op->parent_bio);
392 /*----------------------------------------------------------------*/
395 * wake_worker() is used when new work is queued and when pool_resume is
396 * ready to continue deferred IO processing.
398 static void wake_worker(struct pool *pool)
400 queue_work(pool->wq, &pool->worker);
403 /*----------------------------------------------------------------*/
405 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
406 struct dm_bio_prison_cell **cell_result)
409 struct dm_bio_prison_cell *cell_prealloc;
412 * Allocate a cell from the prison's mempool.
413 * This might block but it can't fail.
415 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
417 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
420 * We reused an old cell; we can get rid of
423 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
428 static void cell_release(struct pool *pool,
429 struct dm_bio_prison_cell *cell,
430 struct bio_list *bios)
432 dm_cell_release(pool->prison, cell, bios);
433 dm_bio_prison_free_cell(pool->prison, cell);
436 static void cell_visit_release(struct pool *pool,
437 void (*fn)(void *, struct dm_bio_prison_cell *),
439 struct dm_bio_prison_cell *cell)
441 dm_cell_visit_release(pool->prison, fn, context, cell);
442 dm_bio_prison_free_cell(pool->prison, cell);
445 static void cell_release_no_holder(struct pool *pool,
446 struct dm_bio_prison_cell *cell,
447 struct bio_list *bios)
449 dm_cell_release_no_holder(pool->prison, cell, bios);
450 dm_bio_prison_free_cell(pool->prison, cell);
453 static void cell_error_with_code(struct pool *pool,
454 struct dm_bio_prison_cell *cell, blk_status_t error_code)
456 dm_cell_error(pool->prison, cell, error_code);
457 dm_bio_prison_free_cell(pool->prison, cell);
460 static blk_status_t get_pool_io_error_code(struct pool *pool)
462 return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
465 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
467 cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
470 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
472 cell_error_with_code(pool, cell, 0);
475 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
477 cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
480 /*----------------------------------------------------------------*/
483 * A global list of pools that uses a struct mapped_device as a key.
485 static struct dm_thin_pool_table {
487 struct list_head pools;
488 } dm_thin_pool_table;
490 static void pool_table_init(void)
492 mutex_init(&dm_thin_pool_table.mutex);
493 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
496 static void pool_table_exit(void)
498 mutex_destroy(&dm_thin_pool_table.mutex);
501 static void __pool_table_insert(struct pool *pool)
503 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
504 list_add(&pool->list, &dm_thin_pool_table.pools);
507 static void __pool_table_remove(struct pool *pool)
509 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
510 list_del(&pool->list);
513 static struct pool *__pool_table_lookup(struct mapped_device *md)
515 struct pool *pool = NULL, *tmp;
517 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
519 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
520 if (tmp->pool_md == md) {
529 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
531 struct pool *pool = NULL, *tmp;
533 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
535 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
536 if (tmp->md_dev == md_dev) {
545 /*----------------------------------------------------------------*/
547 struct dm_thin_endio_hook {
549 struct dm_deferred_entry *shared_read_entry;
550 struct dm_deferred_entry *all_io_entry;
551 struct dm_thin_new_mapping *overwrite_mapping;
552 struct rb_node rb_node;
553 struct dm_bio_prison_cell *cell;
556 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
558 bio_list_merge(bios, master);
559 bio_list_init(master);
562 static void error_bio_list(struct bio_list *bios, blk_status_t error)
566 while ((bio = bio_list_pop(bios))) {
567 bio->bi_status = error;
572 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
575 struct bio_list bios;
578 bio_list_init(&bios);
580 spin_lock_irqsave(&tc->lock, flags);
581 __merge_bio_list(&bios, master);
582 spin_unlock_irqrestore(&tc->lock, flags);
584 error_bio_list(&bios, error);
587 static void requeue_deferred_cells(struct thin_c *tc)
589 struct pool *pool = tc->pool;
591 struct list_head cells;
592 struct dm_bio_prison_cell *cell, *tmp;
594 INIT_LIST_HEAD(&cells);
596 spin_lock_irqsave(&tc->lock, flags);
597 list_splice_init(&tc->deferred_cells, &cells);
598 spin_unlock_irqrestore(&tc->lock, flags);
600 list_for_each_entry_safe(cell, tmp, &cells, user_list)
601 cell_requeue(pool, cell);
604 static void requeue_io(struct thin_c *tc)
606 struct bio_list bios;
609 bio_list_init(&bios);
611 spin_lock_irqsave(&tc->lock, flags);
612 __merge_bio_list(&bios, &tc->deferred_bio_list);
613 __merge_bio_list(&bios, &tc->retry_on_resume_list);
614 spin_unlock_irqrestore(&tc->lock, flags);
616 error_bio_list(&bios, BLK_STS_DM_REQUEUE);
617 requeue_deferred_cells(tc);
620 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
625 list_for_each_entry_rcu(tc, &pool->active_thins, list)
626 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
630 static void error_retry_list(struct pool *pool)
632 error_retry_list_with_code(pool, get_pool_io_error_code(pool));
636 * This section of code contains the logic for processing a thin device's IO.
637 * Much of the code depends on pool object resources (lists, workqueues, etc)
638 * but most is exclusively called from the thin target rather than the thin-pool
642 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
644 struct pool *pool = tc->pool;
645 sector_t block_nr = bio->bi_iter.bi_sector;
647 if (block_size_is_power_of_two(pool))
648 block_nr >>= pool->sectors_per_block_shift;
650 (void) sector_div(block_nr, pool->sectors_per_block);
656 * Returns the _complete_ blocks that this bio covers.
658 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
659 dm_block_t *begin, dm_block_t *end)
661 struct pool *pool = tc->pool;
662 sector_t b = bio->bi_iter.bi_sector;
663 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
665 b += pool->sectors_per_block - 1ull; /* so we round up */
667 if (block_size_is_power_of_two(pool)) {
668 b >>= pool->sectors_per_block_shift;
669 e >>= pool->sectors_per_block_shift;
671 (void) sector_div(b, pool->sectors_per_block);
672 (void) sector_div(e, pool->sectors_per_block);
676 /* Can happen if the bio is within a single block. */
683 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
685 struct pool *pool = tc->pool;
686 sector_t bi_sector = bio->bi_iter.bi_sector;
688 bio_set_dev(bio, tc->pool_dev->bdev);
689 if (block_size_is_power_of_two(pool))
690 bio->bi_iter.bi_sector =
691 (block << pool->sectors_per_block_shift) |
692 (bi_sector & (pool->sectors_per_block - 1));
694 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
695 sector_div(bi_sector, pool->sectors_per_block);
698 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
700 bio_set_dev(bio, tc->origin_dev->bdev);
703 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
705 return op_is_flush(bio->bi_opf) &&
706 dm_thin_changed_this_transaction(tc->td);
709 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
711 struct dm_thin_endio_hook *h;
713 if (bio_op(bio) == REQ_OP_DISCARD)
716 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
717 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
720 static void issue(struct thin_c *tc, struct bio *bio)
722 struct pool *pool = tc->pool;
725 if (!bio_triggers_commit(tc, bio)) {
726 generic_make_request(bio);
731 * Complete bio with an error if earlier I/O caused changes to
732 * the metadata that can't be committed e.g, due to I/O errors
733 * on the metadata device.
735 if (dm_thin_aborted_changes(tc->td)) {
741 * Batch together any bios that trigger commits and then issue a
742 * single commit for them in process_deferred_bios().
744 spin_lock_irqsave(&pool->lock, flags);
745 bio_list_add(&pool->deferred_flush_bios, bio);
746 spin_unlock_irqrestore(&pool->lock, flags);
749 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
751 remap_to_origin(tc, bio);
755 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
758 remap(tc, bio, block);
762 /*----------------------------------------------------------------*/
765 * Bio endio functions.
767 struct dm_thin_new_mapping {
768 struct list_head list;
774 * Track quiescing, copying and zeroing preparation actions. When this
775 * counter hits zero the block is prepared and can be inserted into the
778 atomic_t prepare_actions;
782 dm_block_t virt_begin, virt_end;
783 dm_block_t data_block;
784 struct dm_bio_prison_cell *cell;
787 * If the bio covers the whole area of a block then we can avoid
788 * zeroing or copying. Instead this bio is hooked. The bio will
789 * still be in the cell, so care has to be taken to avoid issuing
793 bio_end_io_t *saved_bi_end_io;
796 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
798 struct pool *pool = m->tc->pool;
800 if (atomic_dec_and_test(&m->prepare_actions)) {
801 list_add_tail(&m->list, &pool->prepared_mappings);
806 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
809 struct pool *pool = m->tc->pool;
811 spin_lock_irqsave(&pool->lock, flags);
812 __complete_mapping_preparation(m);
813 spin_unlock_irqrestore(&pool->lock, flags);
816 static void copy_complete(int read_err, unsigned long write_err, void *context)
818 struct dm_thin_new_mapping *m = context;
820 m->status = read_err || write_err ? BLK_STS_IOERR : 0;
821 complete_mapping_preparation(m);
824 static void overwrite_endio(struct bio *bio)
826 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
827 struct dm_thin_new_mapping *m = h->overwrite_mapping;
829 bio->bi_end_io = m->saved_bi_end_io;
831 m->status = bio->bi_status;
832 complete_mapping_preparation(m);
835 /*----------------------------------------------------------------*/
842 * Prepared mapping jobs.
846 * This sends the bios in the cell, except the original holder, back
847 * to the deferred_bios list.
849 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
851 struct pool *pool = tc->pool;
854 spin_lock_irqsave(&tc->lock, flags);
855 cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
856 spin_unlock_irqrestore(&tc->lock, flags);
861 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
865 struct bio_list defer_bios;
866 struct bio_list issue_bios;
869 static void __inc_remap_and_issue_cell(void *context,
870 struct dm_bio_prison_cell *cell)
872 struct remap_info *info = context;
875 while ((bio = bio_list_pop(&cell->bios))) {
876 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
877 bio_list_add(&info->defer_bios, bio);
879 inc_all_io_entry(info->tc->pool, bio);
882 * We can't issue the bios with the bio prison lock
883 * held, so we add them to a list to issue on
884 * return from this function.
886 bio_list_add(&info->issue_bios, bio);
891 static void inc_remap_and_issue_cell(struct thin_c *tc,
892 struct dm_bio_prison_cell *cell,
896 struct remap_info info;
899 bio_list_init(&info.defer_bios);
900 bio_list_init(&info.issue_bios);
903 * We have to be careful to inc any bios we're about to issue
904 * before the cell is released, and avoid a race with new bios
905 * being added to the cell.
907 cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
910 while ((bio = bio_list_pop(&info.defer_bios)))
911 thin_defer_bio(tc, bio);
913 while ((bio = bio_list_pop(&info.issue_bios)))
914 remap_and_issue(info.tc, bio, block);
917 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
919 cell_error(m->tc->pool, m->cell);
921 mempool_free(m, &m->tc->pool->mapping_pool);
924 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
926 struct thin_c *tc = m->tc;
927 struct pool *pool = tc->pool;
928 struct bio *bio = m->bio;
932 cell_error(pool, m->cell);
937 * Commit the prepared block into the mapping btree.
938 * Any I/O for this block arriving after this point will get
939 * remapped to it directly.
941 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
943 metadata_operation_failed(pool, "dm_thin_insert_block", r);
944 cell_error(pool, m->cell);
949 * Release any bios held while the block was being provisioned.
950 * If we are processing a write bio that completely covers the block,
951 * we already processed it so can ignore it now when processing
952 * the bios in the cell.
955 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
958 inc_all_io_entry(tc->pool, m->cell->holder);
959 remap_and_issue(tc, m->cell->holder, m->data_block);
960 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
965 mempool_free(m, &pool->mapping_pool);
968 /*----------------------------------------------------------------*/
970 static void free_discard_mapping(struct dm_thin_new_mapping *m)
972 struct thin_c *tc = m->tc;
974 cell_defer_no_holder(tc, m->cell);
975 mempool_free(m, &tc->pool->mapping_pool);
978 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
980 bio_io_error(m->bio);
981 free_discard_mapping(m);
984 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
987 free_discard_mapping(m);
990 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
993 struct thin_c *tc = m->tc;
995 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
997 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
998 bio_io_error(m->bio);
1002 cell_defer_no_holder(tc, m->cell);
1003 mempool_free(m, &tc->pool->mapping_pool);
1006 /*----------------------------------------------------------------*/
1008 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1009 struct bio *discard_parent)
1012 * We've already unmapped this range of blocks, but before we
1013 * passdown we have to check that these blocks are now unused.
1017 struct thin_c *tc = m->tc;
1018 struct pool *pool = tc->pool;
1019 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1020 struct discard_op op;
1022 begin_discard(&op, tc, discard_parent);
1024 /* find start of unmapped run */
1025 for (; b < end; b++) {
1026 r = dm_pool_block_is_used(pool->pmd, b, &used);
1037 /* find end of run */
1038 for (e = b + 1; e != end; e++) {
1039 r = dm_pool_block_is_used(pool->pmd, e, &used);
1047 r = issue_discard(&op, b, e);
1054 end_discard(&op, r);
1057 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1059 unsigned long flags;
1060 struct pool *pool = m->tc->pool;
1062 spin_lock_irqsave(&pool->lock, flags);
1063 list_add_tail(&m->list, &pool->prepared_discards_pt2);
1064 spin_unlock_irqrestore(&pool->lock, flags);
1068 static void passdown_endio(struct bio *bio)
1071 * It doesn't matter if the passdown discard failed, we still want
1072 * to unmap (we ignore err).
1074 queue_passdown_pt2(bio->bi_private);
1078 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1081 struct thin_c *tc = m->tc;
1082 struct pool *pool = tc->pool;
1083 struct bio *discard_parent;
1084 dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1087 * Only this thread allocates blocks, so we can be sure that the
1088 * newly unmapped blocks will not be allocated before the end of
1091 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1093 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1094 bio_io_error(m->bio);
1095 cell_defer_no_holder(tc, m->cell);
1096 mempool_free(m, &pool->mapping_pool);
1101 * Increment the unmapped blocks. This prevents a race between the
1102 * passdown io and reallocation of freed blocks.
1104 r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1106 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1107 bio_io_error(m->bio);
1108 cell_defer_no_holder(tc, m->cell);
1109 mempool_free(m, &pool->mapping_pool);
1113 discard_parent = bio_alloc(GFP_NOIO, 1);
1114 if (!discard_parent) {
1115 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1116 dm_device_name(tc->pool->pool_md));
1117 queue_passdown_pt2(m);
1120 discard_parent->bi_end_io = passdown_endio;
1121 discard_parent->bi_private = m;
1123 if (m->maybe_shared)
1124 passdown_double_checking_shared_status(m, discard_parent);
1126 struct discard_op op;
1128 begin_discard(&op, tc, discard_parent);
1129 r = issue_discard(&op, m->data_block, data_end);
1130 end_discard(&op, r);
1135 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1138 struct thin_c *tc = m->tc;
1139 struct pool *pool = tc->pool;
1142 * The passdown has completed, so now we can decrement all those
1145 r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1146 m->data_block + (m->virt_end - m->virt_begin));
1148 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1149 bio_io_error(m->bio);
1153 cell_defer_no_holder(tc, m->cell);
1154 mempool_free(m, &pool->mapping_pool);
1157 static void process_prepared(struct pool *pool, struct list_head *head,
1158 process_mapping_fn *fn)
1160 unsigned long flags;
1161 struct list_head maps;
1162 struct dm_thin_new_mapping *m, *tmp;
1164 INIT_LIST_HEAD(&maps);
1165 spin_lock_irqsave(&pool->lock, flags);
1166 list_splice_init(head, &maps);
1167 spin_unlock_irqrestore(&pool->lock, flags);
1169 list_for_each_entry_safe(m, tmp, &maps, list)
1174 * Deferred bio jobs.
1176 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1178 return bio->bi_iter.bi_size ==
1179 (pool->sectors_per_block << SECTOR_SHIFT);
1182 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1184 return (bio_data_dir(bio) == WRITE) &&
1185 io_overlaps_block(pool, bio);
1188 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1191 *save = bio->bi_end_io;
1192 bio->bi_end_io = fn;
1195 static int ensure_next_mapping(struct pool *pool)
1197 if (pool->next_mapping)
1200 pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1202 return pool->next_mapping ? 0 : -ENOMEM;
1205 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1207 struct dm_thin_new_mapping *m = pool->next_mapping;
1209 BUG_ON(!pool->next_mapping);
1211 memset(m, 0, sizeof(struct dm_thin_new_mapping));
1212 INIT_LIST_HEAD(&m->list);
1215 pool->next_mapping = NULL;
1220 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1221 sector_t begin, sector_t end)
1223 struct dm_io_region to;
1225 to.bdev = tc->pool_dev->bdev;
1227 to.count = end - begin;
1229 dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1232 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1233 dm_block_t data_begin,
1234 struct dm_thin_new_mapping *m)
1236 struct pool *pool = tc->pool;
1237 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1239 h->overwrite_mapping = m;
1241 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1242 inc_all_io_entry(pool, bio);
1243 remap_and_issue(tc, bio, data_begin);
1247 * A partial copy also needs to zero the uncopied region.
1249 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1250 struct dm_dev *origin, dm_block_t data_origin,
1251 dm_block_t data_dest,
1252 struct dm_bio_prison_cell *cell, struct bio *bio,
1255 struct pool *pool = tc->pool;
1256 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1259 m->virt_begin = virt_block;
1260 m->virt_end = virt_block + 1u;
1261 m->data_block = data_dest;
1265 * quiesce action + copy action + an extra reference held for the
1266 * duration of this function (we may need to inc later for a
1269 atomic_set(&m->prepare_actions, 3);
1271 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1272 complete_mapping_preparation(m); /* already quiesced */
1275 * IO to pool_dev remaps to the pool target's data_dev.
1277 * If the whole block of data is being overwritten, we can issue the
1278 * bio immediately. Otherwise we use kcopyd to clone the data first.
1280 if (io_overwrites_block(pool, bio))
1281 remap_and_issue_overwrite(tc, bio, data_dest, m);
1283 struct dm_io_region from, to;
1285 from.bdev = origin->bdev;
1286 from.sector = data_origin * pool->sectors_per_block;
1289 to.bdev = tc->pool_dev->bdev;
1290 to.sector = data_dest * pool->sectors_per_block;
1293 dm_kcopyd_copy(pool->copier, &from, 1, &to,
1294 0, copy_complete, m);
1297 * Do we need to zero a tail region?
1299 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1300 atomic_inc(&m->prepare_actions);
1302 data_dest * pool->sectors_per_block + len,
1303 (data_dest + 1) * pool->sectors_per_block);
1307 complete_mapping_preparation(m); /* drop our ref */
1310 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1311 dm_block_t data_origin, dm_block_t data_dest,
1312 struct dm_bio_prison_cell *cell, struct bio *bio)
1314 schedule_copy(tc, virt_block, tc->pool_dev,
1315 data_origin, data_dest, cell, bio,
1316 tc->pool->sectors_per_block);
1319 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1320 dm_block_t data_block, struct dm_bio_prison_cell *cell,
1323 struct pool *pool = tc->pool;
1324 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1326 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1328 m->virt_begin = virt_block;
1329 m->virt_end = virt_block + 1u;
1330 m->data_block = data_block;
1334 * If the whole block of data is being overwritten or we are not
1335 * zeroing pre-existing data, we can issue the bio immediately.
1336 * Otherwise we use kcopyd to zero the data first.
1338 if (pool->pf.zero_new_blocks) {
1339 if (io_overwrites_block(pool, bio))
1340 remap_and_issue_overwrite(tc, bio, data_block, m);
1342 ll_zero(tc, m, data_block * pool->sectors_per_block,
1343 (data_block + 1) * pool->sectors_per_block);
1345 process_prepared_mapping(m);
1348 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1349 dm_block_t data_dest,
1350 struct dm_bio_prison_cell *cell, struct bio *bio)
1352 struct pool *pool = tc->pool;
1353 sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1354 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1356 if (virt_block_end <= tc->origin_size)
1357 schedule_copy(tc, virt_block, tc->origin_dev,
1358 virt_block, data_dest, cell, bio,
1359 pool->sectors_per_block);
1361 else if (virt_block_begin < tc->origin_size)
1362 schedule_copy(tc, virt_block, tc->origin_dev,
1363 virt_block, data_dest, cell, bio,
1364 tc->origin_size - virt_block_begin);
1367 schedule_zero(tc, virt_block, data_dest, cell, bio);
1370 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1372 static void requeue_bios(struct pool *pool);
1374 static void check_for_space(struct pool *pool)
1379 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1382 r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1387 set_pool_mode(pool, PM_WRITE);
1393 * A non-zero return indicates read_only or fail_io mode.
1394 * Many callers don't care about the return value.
1396 static int commit(struct pool *pool)
1400 if (get_pool_mode(pool) >= PM_READ_ONLY)
1403 r = dm_pool_commit_metadata(pool->pmd);
1405 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1407 check_for_space(pool);
1412 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1414 unsigned long flags;
1416 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1417 DMWARN("%s: reached low water mark for data device: sending event.",
1418 dm_device_name(pool->pool_md));
1419 spin_lock_irqsave(&pool->lock, flags);
1420 pool->low_water_triggered = true;
1421 spin_unlock_irqrestore(&pool->lock, flags);
1422 dm_table_event(pool->ti->table);
1426 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1429 dm_block_t free_blocks;
1430 struct pool *pool = tc->pool;
1432 if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1435 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1437 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1441 check_low_water_mark(pool, free_blocks);
1445 * Try to commit to see if that will free up some
1452 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1454 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1459 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1464 r = dm_pool_alloc_data_block(pool->pmd, result);
1467 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1469 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1477 * If we have run out of space, queue bios until the device is
1478 * resumed, presumably after having been reloaded with more space.
1480 static void retry_on_resume(struct bio *bio)
1482 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1483 struct thin_c *tc = h->tc;
1484 unsigned long flags;
1486 spin_lock_irqsave(&tc->lock, flags);
1487 bio_list_add(&tc->retry_on_resume_list, bio);
1488 spin_unlock_irqrestore(&tc->lock, flags);
1491 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1493 enum pool_mode m = get_pool_mode(pool);
1497 /* Shouldn't get here */
1498 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1499 return BLK_STS_IOERR;
1501 case PM_OUT_OF_DATA_SPACE:
1502 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1506 return BLK_STS_IOERR;
1508 /* Shouldn't get here */
1509 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1510 return BLK_STS_IOERR;
1514 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1516 blk_status_t error = should_error_unserviceable_bio(pool);
1519 bio->bi_status = error;
1522 retry_on_resume(bio);
1525 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1528 struct bio_list bios;
1531 error = should_error_unserviceable_bio(pool);
1533 cell_error_with_code(pool, cell, error);
1537 bio_list_init(&bios);
1538 cell_release(pool, cell, &bios);
1540 while ((bio = bio_list_pop(&bios)))
1541 retry_on_resume(bio);
1544 static void process_discard_cell_no_passdown(struct thin_c *tc,
1545 struct dm_bio_prison_cell *virt_cell)
1547 struct pool *pool = tc->pool;
1548 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1551 * We don't need to lock the data blocks, since there's no
1552 * passdown. We only lock data blocks for allocation and breaking sharing.
1555 m->virt_begin = virt_cell->key.block_begin;
1556 m->virt_end = virt_cell->key.block_end;
1557 m->cell = virt_cell;
1558 m->bio = virt_cell->holder;
1560 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1561 pool->process_prepared_discard(m);
1564 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1567 struct pool *pool = tc->pool;
1571 struct dm_cell_key data_key;
1572 struct dm_bio_prison_cell *data_cell;
1573 struct dm_thin_new_mapping *m;
1574 dm_block_t virt_begin, virt_end, data_begin;
1576 while (begin != end) {
1577 r = ensure_next_mapping(pool);
1579 /* we did our best */
1582 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1583 &data_begin, &maybe_shared);
1586 * Silently fail, letting any mappings we've
1591 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1592 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1593 /* contention, we'll give up with this range */
1599 * IO may still be going to the destination block. We must
1600 * quiesce before we can do the removal.
1602 m = get_next_mapping(pool);
1604 m->maybe_shared = maybe_shared;
1605 m->virt_begin = virt_begin;
1606 m->virt_end = virt_end;
1607 m->data_block = data_begin;
1608 m->cell = data_cell;
1612 * The parent bio must not complete before sub discard bios are
1613 * chained to it (see end_discard's bio_chain)!
1615 * This per-mapping bi_remaining increment is paired with
1616 * the implicit decrement that occurs via bio_endio() in
1619 bio_inc_remaining(bio);
1620 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1621 pool->process_prepared_discard(m);
1627 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1629 struct bio *bio = virt_cell->holder;
1630 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1633 * The virt_cell will only get freed once the origin bio completes.
1634 * This means it will remain locked while all the individual
1635 * passdown bios are in flight.
1637 h->cell = virt_cell;
1638 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1641 * We complete the bio now, knowing that the bi_remaining field
1642 * will prevent completion until the sub range discards have
1648 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1650 dm_block_t begin, end;
1651 struct dm_cell_key virt_key;
1652 struct dm_bio_prison_cell *virt_cell;
1654 get_bio_block_range(tc, bio, &begin, &end);
1657 * The discard covers less than a block.
1663 build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1664 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1666 * Potential starvation issue: We're relying on the
1667 * fs/application being well behaved, and not trying to
1668 * send IO to a region at the same time as discarding it.
1669 * If they do this persistently then it's possible this
1670 * cell will never be granted.
1674 tc->pool->process_discard_cell(tc, virt_cell);
1677 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1678 struct dm_cell_key *key,
1679 struct dm_thin_lookup_result *lookup_result,
1680 struct dm_bio_prison_cell *cell)
1683 dm_block_t data_block;
1684 struct pool *pool = tc->pool;
1686 r = alloc_data_block(tc, &data_block);
1689 schedule_internal_copy(tc, block, lookup_result->block,
1690 data_block, cell, bio);
1694 retry_bios_on_resume(pool, cell);
1698 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1700 cell_error(pool, cell);
1705 static void __remap_and_issue_shared_cell(void *context,
1706 struct dm_bio_prison_cell *cell)
1708 struct remap_info *info = context;
1711 while ((bio = bio_list_pop(&cell->bios))) {
1712 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1713 bio_op(bio) == REQ_OP_DISCARD)
1714 bio_list_add(&info->defer_bios, bio);
1716 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1718 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1719 inc_all_io_entry(info->tc->pool, bio);
1720 bio_list_add(&info->issue_bios, bio);
1725 static void remap_and_issue_shared_cell(struct thin_c *tc,
1726 struct dm_bio_prison_cell *cell,
1730 struct remap_info info;
1733 bio_list_init(&info.defer_bios);
1734 bio_list_init(&info.issue_bios);
1736 cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1739 while ((bio = bio_list_pop(&info.defer_bios)))
1740 thin_defer_bio(tc, bio);
1742 while ((bio = bio_list_pop(&info.issue_bios)))
1743 remap_and_issue(tc, bio, block);
1746 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1748 struct dm_thin_lookup_result *lookup_result,
1749 struct dm_bio_prison_cell *virt_cell)
1751 struct dm_bio_prison_cell *data_cell;
1752 struct pool *pool = tc->pool;
1753 struct dm_cell_key key;
1756 * If cell is already occupied, then sharing is already in the process
1757 * of being broken so we have nothing further to do here.
1759 build_data_key(tc->td, lookup_result->block, &key);
1760 if (bio_detain(pool, &key, bio, &data_cell)) {
1761 cell_defer_no_holder(tc, virt_cell);
1765 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1766 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1767 cell_defer_no_holder(tc, virt_cell);
1769 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1771 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1772 inc_all_io_entry(pool, bio);
1773 remap_and_issue(tc, bio, lookup_result->block);
1775 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1776 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1780 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1781 struct dm_bio_prison_cell *cell)
1784 dm_block_t data_block;
1785 struct pool *pool = tc->pool;
1788 * Remap empty bios (flushes) immediately, without provisioning.
1790 if (!bio->bi_iter.bi_size) {
1791 inc_all_io_entry(pool, bio);
1792 cell_defer_no_holder(tc, cell);
1794 remap_and_issue(tc, bio, 0);
1799 * Fill read bios with zeroes and complete them immediately.
1801 if (bio_data_dir(bio) == READ) {
1803 cell_defer_no_holder(tc, cell);
1808 r = alloc_data_block(tc, &data_block);
1812 schedule_external_copy(tc, block, data_block, cell, bio);
1814 schedule_zero(tc, block, data_block, cell, bio);
1818 retry_bios_on_resume(pool, cell);
1822 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1824 cell_error(pool, cell);
1829 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1832 struct pool *pool = tc->pool;
1833 struct bio *bio = cell->holder;
1834 dm_block_t block = get_bio_block(tc, bio);
1835 struct dm_thin_lookup_result lookup_result;
1837 if (tc->requeue_mode) {
1838 cell_requeue(pool, cell);
1842 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1845 if (lookup_result.shared)
1846 process_shared_bio(tc, bio, block, &lookup_result, cell);
1848 inc_all_io_entry(pool, bio);
1849 remap_and_issue(tc, bio, lookup_result.block);
1850 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1855 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1856 inc_all_io_entry(pool, bio);
1857 cell_defer_no_holder(tc, cell);
1859 if (bio_end_sector(bio) <= tc->origin_size)
1860 remap_to_origin_and_issue(tc, bio);
1862 else if (bio->bi_iter.bi_sector < tc->origin_size) {
1864 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1865 remap_to_origin_and_issue(tc, bio);
1872 provision_block(tc, bio, block, cell);
1876 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1878 cell_defer_no_holder(tc, cell);
1884 static void process_bio(struct thin_c *tc, struct bio *bio)
1886 struct pool *pool = tc->pool;
1887 dm_block_t block = get_bio_block(tc, bio);
1888 struct dm_bio_prison_cell *cell;
1889 struct dm_cell_key key;
1892 * If cell is already occupied, then the block is already
1893 * being provisioned so we have nothing further to do here.
1895 build_virtual_key(tc->td, block, &key);
1896 if (bio_detain(pool, &key, bio, &cell))
1899 process_cell(tc, cell);
1902 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1903 struct dm_bio_prison_cell *cell)
1906 int rw = bio_data_dir(bio);
1907 dm_block_t block = get_bio_block(tc, bio);
1908 struct dm_thin_lookup_result lookup_result;
1910 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1913 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1914 handle_unserviceable_bio(tc->pool, bio);
1916 cell_defer_no_holder(tc, cell);
1918 inc_all_io_entry(tc->pool, bio);
1919 remap_and_issue(tc, bio, lookup_result.block);
1921 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1927 cell_defer_no_holder(tc, cell);
1929 handle_unserviceable_bio(tc->pool, bio);
1933 if (tc->origin_dev) {
1934 inc_all_io_entry(tc->pool, bio);
1935 remap_to_origin_and_issue(tc, bio);
1944 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1947 cell_defer_no_holder(tc, cell);
1953 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1955 __process_bio_read_only(tc, bio, NULL);
1958 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1960 __process_bio_read_only(tc, cell->holder, cell);
1963 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1968 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1973 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1975 cell_success(tc->pool, cell);
1978 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1980 cell_error(tc->pool, cell);
1984 * FIXME: should we also commit due to size of transaction, measured in
1987 static int need_commit_due_to_time(struct pool *pool)
1989 return !time_in_range(jiffies, pool->last_commit_jiffies,
1990 pool->last_commit_jiffies + COMMIT_PERIOD);
1993 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1994 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1996 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1998 struct rb_node **rbp, *parent;
1999 struct dm_thin_endio_hook *pbd;
2000 sector_t bi_sector = bio->bi_iter.bi_sector;
2002 rbp = &tc->sort_bio_list.rb_node;
2006 pbd = thin_pbd(parent);
2008 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2009 rbp = &(*rbp)->rb_left;
2011 rbp = &(*rbp)->rb_right;
2014 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2015 rb_link_node(&pbd->rb_node, parent, rbp);
2016 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2019 static void __extract_sorted_bios(struct thin_c *tc)
2021 struct rb_node *node;
2022 struct dm_thin_endio_hook *pbd;
2025 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2026 pbd = thin_pbd(node);
2027 bio = thin_bio(pbd);
2029 bio_list_add(&tc->deferred_bio_list, bio);
2030 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2033 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2036 static void __sort_thin_deferred_bios(struct thin_c *tc)
2039 struct bio_list bios;
2041 bio_list_init(&bios);
2042 bio_list_merge(&bios, &tc->deferred_bio_list);
2043 bio_list_init(&tc->deferred_bio_list);
2045 /* Sort deferred_bio_list using rb-tree */
2046 while ((bio = bio_list_pop(&bios)))
2047 __thin_bio_rb_add(tc, bio);
2050 * Transfer the sorted bios in sort_bio_list back to
2051 * deferred_bio_list to allow lockless submission of
2054 __extract_sorted_bios(tc);
2057 static void process_thin_deferred_bios(struct thin_c *tc)
2059 struct pool *pool = tc->pool;
2060 unsigned long flags;
2062 struct bio_list bios;
2063 struct blk_plug plug;
2066 if (tc->requeue_mode) {
2067 error_thin_bio_list(tc, &tc->deferred_bio_list,
2068 BLK_STS_DM_REQUEUE);
2072 bio_list_init(&bios);
2074 spin_lock_irqsave(&tc->lock, flags);
2076 if (bio_list_empty(&tc->deferred_bio_list)) {
2077 spin_unlock_irqrestore(&tc->lock, flags);
2081 __sort_thin_deferred_bios(tc);
2083 bio_list_merge(&bios, &tc->deferred_bio_list);
2084 bio_list_init(&tc->deferred_bio_list);
2086 spin_unlock_irqrestore(&tc->lock, flags);
2088 blk_start_plug(&plug);
2089 while ((bio = bio_list_pop(&bios))) {
2091 * If we've got no free new_mapping structs, and processing
2092 * this bio might require one, we pause until there are some
2093 * prepared mappings to process.
2095 if (ensure_next_mapping(pool)) {
2096 spin_lock_irqsave(&tc->lock, flags);
2097 bio_list_add(&tc->deferred_bio_list, bio);
2098 bio_list_merge(&tc->deferred_bio_list, &bios);
2099 spin_unlock_irqrestore(&tc->lock, flags);
2103 if (bio_op(bio) == REQ_OP_DISCARD)
2104 pool->process_discard(tc, bio);
2106 pool->process_bio(tc, bio);
2108 if ((count++ & 127) == 0) {
2109 throttle_work_update(&pool->throttle);
2110 dm_pool_issue_prefetches(pool->pmd);
2113 blk_finish_plug(&plug);
2116 static int cmp_cells(const void *lhs, const void *rhs)
2118 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2119 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2121 BUG_ON(!lhs_cell->holder);
2122 BUG_ON(!rhs_cell->holder);
2124 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2127 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2133 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2136 struct dm_bio_prison_cell *cell, *tmp;
2138 list_for_each_entry_safe(cell, tmp, cells, user_list) {
2139 if (count >= CELL_SORT_ARRAY_SIZE)
2142 pool->cell_sort_array[count++] = cell;
2143 list_del(&cell->user_list);
2146 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2151 static void process_thin_deferred_cells(struct thin_c *tc)
2153 struct pool *pool = tc->pool;
2154 unsigned long flags;
2155 struct list_head cells;
2156 struct dm_bio_prison_cell *cell;
2157 unsigned i, j, count;
2159 INIT_LIST_HEAD(&cells);
2161 spin_lock_irqsave(&tc->lock, flags);
2162 list_splice_init(&tc->deferred_cells, &cells);
2163 spin_unlock_irqrestore(&tc->lock, flags);
2165 if (list_empty(&cells))
2169 count = sort_cells(tc->pool, &cells);
2171 for (i = 0; i < count; i++) {
2172 cell = pool->cell_sort_array[i];
2173 BUG_ON(!cell->holder);
2176 * If we've got no free new_mapping structs, and processing
2177 * this bio might require one, we pause until there are some
2178 * prepared mappings to process.
2180 if (ensure_next_mapping(pool)) {
2181 for (j = i; j < count; j++)
2182 list_add(&pool->cell_sort_array[j]->user_list, &cells);
2184 spin_lock_irqsave(&tc->lock, flags);
2185 list_splice(&cells, &tc->deferred_cells);
2186 spin_unlock_irqrestore(&tc->lock, flags);
2190 if (bio_op(cell->holder) == REQ_OP_DISCARD)
2191 pool->process_discard_cell(tc, cell);
2193 pool->process_cell(tc, cell);
2195 } while (!list_empty(&cells));
2198 static void thin_get(struct thin_c *tc);
2199 static void thin_put(struct thin_c *tc);
2202 * We can't hold rcu_read_lock() around code that can block. So we
2203 * find a thin with the rcu lock held; bump a refcount; then drop
2206 static struct thin_c *get_first_thin(struct pool *pool)
2208 struct thin_c *tc = NULL;
2211 if (!list_empty(&pool->active_thins)) {
2212 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2220 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2222 struct thin_c *old_tc = tc;
2225 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2237 static void process_deferred_bios(struct pool *pool)
2239 unsigned long flags;
2241 struct bio_list bios;
2244 tc = get_first_thin(pool);
2246 process_thin_deferred_cells(tc);
2247 process_thin_deferred_bios(tc);
2248 tc = get_next_thin(pool, tc);
2252 * If there are any deferred flush bios, we must commit
2253 * the metadata before issuing them.
2255 bio_list_init(&bios);
2256 spin_lock_irqsave(&pool->lock, flags);
2257 bio_list_merge(&bios, &pool->deferred_flush_bios);
2258 bio_list_init(&pool->deferred_flush_bios);
2259 spin_unlock_irqrestore(&pool->lock, flags);
2261 if (bio_list_empty(&bios) &&
2262 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2266 while ((bio = bio_list_pop(&bios)))
2270 pool->last_commit_jiffies = jiffies;
2272 while ((bio = bio_list_pop(&bios)))
2273 generic_make_request(bio);
2276 static void do_worker(struct work_struct *ws)
2278 struct pool *pool = container_of(ws, struct pool, worker);
2280 throttle_work_start(&pool->throttle);
2281 dm_pool_issue_prefetches(pool->pmd);
2282 throttle_work_update(&pool->throttle);
2283 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2284 throttle_work_update(&pool->throttle);
2285 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2286 throttle_work_update(&pool->throttle);
2287 process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2288 throttle_work_update(&pool->throttle);
2289 process_deferred_bios(pool);
2290 throttle_work_complete(&pool->throttle);
2294 * We want to commit periodically so that not too much
2295 * unwritten data builds up.
2297 static void do_waker(struct work_struct *ws)
2299 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2301 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2304 static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2307 * We're holding onto IO to allow userland time to react. After the
2308 * timeout either the pool will have been resized (and thus back in
2309 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2311 static void do_no_space_timeout(struct work_struct *ws)
2313 struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2316 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2317 pool->pf.error_if_no_space = true;
2318 notify_of_pool_mode_change_to_oods(pool);
2319 error_retry_list_with_code(pool, BLK_STS_NOSPC);
2323 /*----------------------------------------------------------------*/
2326 struct work_struct worker;
2327 struct completion complete;
2330 static struct pool_work *to_pool_work(struct work_struct *ws)
2332 return container_of(ws, struct pool_work, worker);
2335 static void pool_work_complete(struct pool_work *pw)
2337 complete(&pw->complete);
2340 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2341 void (*fn)(struct work_struct *))
2343 INIT_WORK_ONSTACK(&pw->worker, fn);
2344 init_completion(&pw->complete);
2345 queue_work(pool->wq, &pw->worker);
2346 wait_for_completion(&pw->complete);
2349 /*----------------------------------------------------------------*/
2351 struct noflush_work {
2352 struct pool_work pw;
2356 static struct noflush_work *to_noflush(struct work_struct *ws)
2358 return container_of(to_pool_work(ws), struct noflush_work, pw);
2361 static void do_noflush_start(struct work_struct *ws)
2363 struct noflush_work *w = to_noflush(ws);
2364 w->tc->requeue_mode = true;
2366 pool_work_complete(&w->pw);
2369 static void do_noflush_stop(struct work_struct *ws)
2371 struct noflush_work *w = to_noflush(ws);
2372 w->tc->requeue_mode = false;
2373 pool_work_complete(&w->pw);
2376 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2378 struct noflush_work w;
2381 pool_work_wait(&w.pw, tc->pool, fn);
2384 /*----------------------------------------------------------------*/
2386 static enum pool_mode get_pool_mode(struct pool *pool)
2388 return pool->pf.mode;
2391 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2393 dm_table_event(pool->ti->table);
2394 DMINFO("%s: switching pool to %s mode",
2395 dm_device_name(pool->pool_md), new_mode);
2398 static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2400 if (!pool->pf.error_if_no_space)
2401 notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2403 notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2406 static bool passdown_enabled(struct pool_c *pt)
2408 return pt->adjusted_pf.discard_passdown;
2411 static void set_discard_callbacks(struct pool *pool)
2413 struct pool_c *pt = pool->ti->private;
2415 if (passdown_enabled(pt)) {
2416 pool->process_discard_cell = process_discard_cell_passdown;
2417 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2418 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2420 pool->process_discard_cell = process_discard_cell_no_passdown;
2421 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2425 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2427 struct pool_c *pt = pool->ti->private;
2428 bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2429 enum pool_mode old_mode = get_pool_mode(pool);
2430 unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2433 * Never allow the pool to transition to PM_WRITE mode if user
2434 * intervention is required to verify metadata and data consistency.
2436 if (new_mode == PM_WRITE && needs_check) {
2437 DMERR("%s: unable to switch pool to write mode until repaired.",
2438 dm_device_name(pool->pool_md));
2439 if (old_mode != new_mode)
2440 new_mode = old_mode;
2442 new_mode = PM_READ_ONLY;
2445 * If we were in PM_FAIL mode, rollback of metadata failed. We're
2446 * not going to recover without a thin_repair. So we never let the
2447 * pool move out of the old mode.
2449 if (old_mode == PM_FAIL)
2450 new_mode = old_mode;
2454 if (old_mode != new_mode)
2455 notify_of_pool_mode_change(pool, "failure");
2456 dm_pool_metadata_read_only(pool->pmd);
2457 pool->process_bio = process_bio_fail;
2458 pool->process_discard = process_bio_fail;
2459 pool->process_cell = process_cell_fail;
2460 pool->process_discard_cell = process_cell_fail;
2461 pool->process_prepared_mapping = process_prepared_mapping_fail;
2462 pool->process_prepared_discard = process_prepared_discard_fail;
2464 error_retry_list(pool);
2468 if (old_mode != new_mode)
2469 notify_of_pool_mode_change(pool, "read-only");
2470 dm_pool_metadata_read_only(pool->pmd);
2471 pool->process_bio = process_bio_read_only;
2472 pool->process_discard = process_bio_success;
2473 pool->process_cell = process_cell_read_only;
2474 pool->process_discard_cell = process_cell_success;
2475 pool->process_prepared_mapping = process_prepared_mapping_fail;
2476 pool->process_prepared_discard = process_prepared_discard_success;
2478 error_retry_list(pool);
2481 case PM_OUT_OF_DATA_SPACE:
2483 * Ideally we'd never hit this state; the low water mark
2484 * would trigger userland to extend the pool before we
2485 * completely run out of data space. However, many small
2486 * IOs to unprovisioned space can consume data space at an
2487 * alarming rate. Adjust your low water mark if you're
2488 * frequently seeing this mode.
2490 if (old_mode != new_mode)
2491 notify_of_pool_mode_change_to_oods(pool);
2492 pool->out_of_data_space = true;
2493 pool->process_bio = process_bio_read_only;
2494 pool->process_discard = process_discard_bio;
2495 pool->process_cell = process_cell_read_only;
2496 pool->process_prepared_mapping = process_prepared_mapping;
2497 set_discard_callbacks(pool);
2499 if (!pool->pf.error_if_no_space && no_space_timeout)
2500 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2504 if (old_mode != new_mode)
2505 notify_of_pool_mode_change(pool, "write");
2506 if (old_mode == PM_OUT_OF_DATA_SPACE)
2507 cancel_delayed_work_sync(&pool->no_space_timeout);
2508 pool->out_of_data_space = false;
2509 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2510 dm_pool_metadata_read_write(pool->pmd);
2511 pool->process_bio = process_bio;
2512 pool->process_discard = process_discard_bio;
2513 pool->process_cell = process_cell;
2514 pool->process_prepared_mapping = process_prepared_mapping;
2515 set_discard_callbacks(pool);
2519 pool->pf.mode = new_mode;
2521 * The pool mode may have changed, sync it so bind_control_target()
2522 * doesn't cause an unexpected mode transition on resume.
2524 pt->adjusted_pf.mode = new_mode;
2527 static void abort_transaction(struct pool *pool)
2529 const char *dev_name = dm_device_name(pool->pool_md);
2531 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2532 if (dm_pool_abort_metadata(pool->pmd)) {
2533 DMERR("%s: failed to abort metadata transaction", dev_name);
2534 set_pool_mode(pool, PM_FAIL);
2537 if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2538 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2539 set_pool_mode(pool, PM_FAIL);
2543 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2545 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2546 dm_device_name(pool->pool_md), op, r);
2548 abort_transaction(pool);
2549 set_pool_mode(pool, PM_READ_ONLY);
2552 /*----------------------------------------------------------------*/
2555 * Mapping functions.
2559 * Called only while mapping a thin bio to hand it over to the workqueue.
2561 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2563 unsigned long flags;
2564 struct pool *pool = tc->pool;
2566 spin_lock_irqsave(&tc->lock, flags);
2567 bio_list_add(&tc->deferred_bio_list, bio);
2568 spin_unlock_irqrestore(&tc->lock, flags);
2573 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2575 struct pool *pool = tc->pool;
2577 throttle_lock(&pool->throttle);
2578 thin_defer_bio(tc, bio);
2579 throttle_unlock(&pool->throttle);
2582 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2584 unsigned long flags;
2585 struct pool *pool = tc->pool;
2587 throttle_lock(&pool->throttle);
2588 spin_lock_irqsave(&tc->lock, flags);
2589 list_add_tail(&cell->user_list, &tc->deferred_cells);
2590 spin_unlock_irqrestore(&tc->lock, flags);
2591 throttle_unlock(&pool->throttle);
2596 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2598 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2601 h->shared_read_entry = NULL;
2602 h->all_io_entry = NULL;
2603 h->overwrite_mapping = NULL;
2608 * Non-blocking function called from the thin target's map function.
2610 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2613 struct thin_c *tc = ti->private;
2614 dm_block_t block = get_bio_block(tc, bio);
2615 struct dm_thin_device *td = tc->td;
2616 struct dm_thin_lookup_result result;
2617 struct dm_bio_prison_cell *virt_cell, *data_cell;
2618 struct dm_cell_key key;
2620 thin_hook_bio(tc, bio);
2622 if (tc->requeue_mode) {
2623 bio->bi_status = BLK_STS_DM_REQUEUE;
2625 return DM_MAPIO_SUBMITTED;
2628 if (get_pool_mode(tc->pool) == PM_FAIL) {
2630 return DM_MAPIO_SUBMITTED;
2633 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2634 thin_defer_bio_with_throttle(tc, bio);
2635 return DM_MAPIO_SUBMITTED;
2639 * We must hold the virtual cell before doing the lookup, otherwise
2640 * there's a race with discard.
2642 build_virtual_key(tc->td, block, &key);
2643 if (bio_detain(tc->pool, &key, bio, &virt_cell))
2644 return DM_MAPIO_SUBMITTED;
2646 r = dm_thin_find_block(td, block, 0, &result);
2649 * Note that we defer readahead too.
2653 if (unlikely(result.shared)) {
2655 * We have a race condition here between the
2656 * result.shared value returned by the lookup and
2657 * snapshot creation, which may cause new
2660 * To avoid this always quiesce the origin before
2661 * taking the snap. You want to do this anyway to
2662 * ensure a consistent application view
2665 * More distant ancestors are irrelevant. The
2666 * shared flag will be set in their case.
2668 thin_defer_cell(tc, virt_cell);
2669 return DM_MAPIO_SUBMITTED;
2672 build_data_key(tc->td, result.block, &key);
2673 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2674 cell_defer_no_holder(tc, virt_cell);
2675 return DM_MAPIO_SUBMITTED;
2678 inc_all_io_entry(tc->pool, bio);
2679 cell_defer_no_holder(tc, data_cell);
2680 cell_defer_no_holder(tc, virt_cell);
2682 remap(tc, bio, result.block);
2683 return DM_MAPIO_REMAPPED;
2687 thin_defer_cell(tc, virt_cell);
2688 return DM_MAPIO_SUBMITTED;
2692 * Must always call bio_io_error on failure.
2693 * dm_thin_find_block can fail with -EINVAL if the
2694 * pool is switched to fail-io mode.
2697 cell_defer_no_holder(tc, virt_cell);
2698 return DM_MAPIO_SUBMITTED;
2702 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2704 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2705 struct request_queue *q;
2707 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2710 q = bdev_get_queue(pt->data_dev->bdev);
2711 return bdi_congested(q->backing_dev_info, bdi_bits);
2714 static void requeue_bios(struct pool *pool)
2716 unsigned long flags;
2720 list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2721 spin_lock_irqsave(&tc->lock, flags);
2722 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2723 bio_list_init(&tc->retry_on_resume_list);
2724 spin_unlock_irqrestore(&tc->lock, flags);
2729 /*----------------------------------------------------------------
2730 * Binding of control targets to a pool object
2731 *--------------------------------------------------------------*/
2732 static bool data_dev_supports_discard(struct pool_c *pt)
2734 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2736 return q && blk_queue_discard(q);
2739 static bool is_factor(sector_t block_size, uint32_t n)
2741 return !sector_div(block_size, n);
2745 * If discard_passdown was enabled verify that the data device
2746 * supports discards. Disable discard_passdown if not.
2748 static void disable_passdown_if_not_supported(struct pool_c *pt)
2750 struct pool *pool = pt->pool;
2751 struct block_device *data_bdev = pt->data_dev->bdev;
2752 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2753 const char *reason = NULL;
2754 char buf[BDEVNAME_SIZE];
2756 if (!pt->adjusted_pf.discard_passdown)
2759 if (!data_dev_supports_discard(pt))
2760 reason = "discard unsupported";
2762 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2763 reason = "max discard sectors smaller than a block";
2766 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2767 pt->adjusted_pf.discard_passdown = false;
2771 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2773 struct pool_c *pt = ti->private;
2776 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2778 enum pool_mode old_mode = get_pool_mode(pool);
2779 enum pool_mode new_mode = pt->adjusted_pf.mode;
2782 * Don't change the pool's mode until set_pool_mode() below.
2783 * Otherwise the pool's process_* function pointers may
2784 * not match the desired pool mode.
2786 pt->adjusted_pf.mode = old_mode;
2789 pool->pf = pt->adjusted_pf;
2790 pool->low_water_blocks = pt->low_water_blocks;
2792 set_pool_mode(pool, new_mode);
2797 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2803 /*----------------------------------------------------------------
2805 *--------------------------------------------------------------*/
2806 /* Initialize pool features. */
2807 static void pool_features_init(struct pool_features *pf)
2809 pf->mode = PM_WRITE;
2810 pf->zero_new_blocks = true;
2811 pf->discard_enabled = true;
2812 pf->discard_passdown = true;
2813 pf->error_if_no_space = false;
2816 static void __pool_destroy(struct pool *pool)
2818 __pool_table_remove(pool);
2820 vfree(pool->cell_sort_array);
2821 if (dm_pool_metadata_close(pool->pmd) < 0)
2822 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2824 dm_bio_prison_destroy(pool->prison);
2825 dm_kcopyd_client_destroy(pool->copier);
2828 destroy_workqueue(pool->wq);
2830 if (pool->next_mapping)
2831 mempool_free(pool->next_mapping, &pool->mapping_pool);
2832 mempool_exit(&pool->mapping_pool);
2833 dm_deferred_set_destroy(pool->shared_read_ds);
2834 dm_deferred_set_destroy(pool->all_io_ds);
2838 static struct kmem_cache *_new_mapping_cache;
2840 static struct pool *pool_create(struct mapped_device *pool_md,
2841 struct block_device *metadata_dev,
2842 unsigned long block_size,
2843 int read_only, char **error)
2848 struct dm_pool_metadata *pmd;
2849 bool format_device = read_only ? false : true;
2851 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2853 *error = "Error creating metadata object";
2854 return (struct pool *)pmd;
2857 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2859 *error = "Error allocating memory for pool";
2860 err_p = ERR_PTR(-ENOMEM);
2865 pool->sectors_per_block = block_size;
2866 if (block_size & (block_size - 1))
2867 pool->sectors_per_block_shift = -1;
2869 pool->sectors_per_block_shift = __ffs(block_size);
2870 pool->low_water_blocks = 0;
2871 pool_features_init(&pool->pf);
2872 pool->prison = dm_bio_prison_create();
2873 if (!pool->prison) {
2874 *error = "Error creating pool's bio prison";
2875 err_p = ERR_PTR(-ENOMEM);
2879 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2880 if (IS_ERR(pool->copier)) {
2881 r = PTR_ERR(pool->copier);
2882 *error = "Error creating pool's kcopyd client";
2884 goto bad_kcopyd_client;
2888 * Create singlethreaded workqueue that will service all devices
2889 * that use this metadata.
2891 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2893 *error = "Error creating pool's workqueue";
2894 err_p = ERR_PTR(-ENOMEM);
2898 throttle_init(&pool->throttle);
2899 INIT_WORK(&pool->worker, do_worker);
2900 INIT_DELAYED_WORK(&pool->waker, do_waker);
2901 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2902 spin_lock_init(&pool->lock);
2903 bio_list_init(&pool->deferred_flush_bios);
2904 INIT_LIST_HEAD(&pool->prepared_mappings);
2905 INIT_LIST_HEAD(&pool->prepared_discards);
2906 INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2907 INIT_LIST_HEAD(&pool->active_thins);
2908 pool->low_water_triggered = false;
2909 pool->suspended = true;
2910 pool->out_of_data_space = false;
2912 pool->shared_read_ds = dm_deferred_set_create();
2913 if (!pool->shared_read_ds) {
2914 *error = "Error creating pool's shared read deferred set";
2915 err_p = ERR_PTR(-ENOMEM);
2916 goto bad_shared_read_ds;
2919 pool->all_io_ds = dm_deferred_set_create();
2920 if (!pool->all_io_ds) {
2921 *error = "Error creating pool's all io deferred set";
2922 err_p = ERR_PTR(-ENOMEM);
2926 pool->next_mapping = NULL;
2927 r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
2928 _new_mapping_cache);
2930 *error = "Error creating pool's mapping mempool";
2932 goto bad_mapping_pool;
2935 pool->cell_sort_array =
2936 vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
2937 sizeof(*pool->cell_sort_array)));
2938 if (!pool->cell_sort_array) {
2939 *error = "Error allocating cell sort array";
2940 err_p = ERR_PTR(-ENOMEM);
2941 goto bad_sort_array;
2944 pool->ref_count = 1;
2945 pool->last_commit_jiffies = jiffies;
2946 pool->pool_md = pool_md;
2947 pool->md_dev = metadata_dev;
2948 __pool_table_insert(pool);
2953 mempool_exit(&pool->mapping_pool);
2955 dm_deferred_set_destroy(pool->all_io_ds);
2957 dm_deferred_set_destroy(pool->shared_read_ds);
2959 destroy_workqueue(pool->wq);
2961 dm_kcopyd_client_destroy(pool->copier);
2963 dm_bio_prison_destroy(pool->prison);
2967 if (dm_pool_metadata_close(pmd))
2968 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2973 static void __pool_inc(struct pool *pool)
2975 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2979 static void __pool_dec(struct pool *pool)
2981 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2982 BUG_ON(!pool->ref_count);
2983 if (!--pool->ref_count)
2984 __pool_destroy(pool);
2987 static struct pool *__pool_find(struct mapped_device *pool_md,
2988 struct block_device *metadata_dev,
2989 unsigned long block_size, int read_only,
2990 char **error, int *created)
2992 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2995 if (pool->pool_md != pool_md) {
2996 *error = "metadata device already in use by a pool";
2997 return ERR_PTR(-EBUSY);
3002 pool = __pool_table_lookup(pool_md);
3004 if (pool->md_dev != metadata_dev) {
3005 *error = "different pool cannot replace a pool";
3006 return ERR_PTR(-EINVAL);
3011 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3019 /*----------------------------------------------------------------
3020 * Pool target methods
3021 *--------------------------------------------------------------*/
3022 static void pool_dtr(struct dm_target *ti)
3024 struct pool_c *pt = ti->private;
3026 mutex_lock(&dm_thin_pool_table.mutex);
3028 unbind_control_target(pt->pool, ti);
3029 __pool_dec(pt->pool);
3030 dm_put_device(ti, pt->metadata_dev);
3031 dm_put_device(ti, pt->data_dev);
3034 mutex_unlock(&dm_thin_pool_table.mutex);
3037 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3038 struct dm_target *ti)
3042 const char *arg_name;
3044 static const struct dm_arg _args[] = {
3045 {0, 4, "Invalid number of pool feature arguments"},
3049 * No feature arguments supplied.
3054 r = dm_read_arg_group(_args, as, &argc, &ti->error);
3058 while (argc && !r) {
3059 arg_name = dm_shift_arg(as);
3062 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3063 pf->zero_new_blocks = false;
3065 else if (!strcasecmp(arg_name, "ignore_discard"))
3066 pf->discard_enabled = false;
3068 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3069 pf->discard_passdown = false;
3071 else if (!strcasecmp(arg_name, "read_only"))
3072 pf->mode = PM_READ_ONLY;
3074 else if (!strcasecmp(arg_name, "error_if_no_space"))
3075 pf->error_if_no_space = true;
3078 ti->error = "Unrecognised pool feature requested";
3087 static void metadata_low_callback(void *context)
3089 struct pool *pool = context;
3091 DMWARN("%s: reached low water mark for metadata device: sending event.",
3092 dm_device_name(pool->pool_md));
3094 dm_table_event(pool->ti->table);
3097 static sector_t get_dev_size(struct block_device *bdev)
3099 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3102 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3104 sector_t metadata_dev_size = get_dev_size(bdev);
3105 char buffer[BDEVNAME_SIZE];
3107 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3108 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3109 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3112 static sector_t get_metadata_dev_size(struct block_device *bdev)
3114 sector_t metadata_dev_size = get_dev_size(bdev);
3116 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3117 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3119 return metadata_dev_size;
3122 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3124 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3126 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3128 return metadata_dev_size;
3132 * When a metadata threshold is crossed a dm event is triggered, and
3133 * userland should respond by growing the metadata device. We could let
3134 * userland set the threshold, like we do with the data threshold, but I'm
3135 * not sure they know enough to do this well.
3137 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3140 * 4M is ample for all ops with the possible exception of thin
3141 * device deletion which is harmless if it fails (just retry the
3142 * delete after you've grown the device).
3144 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3145 return min((dm_block_t)1024ULL /* 4M */, quarter);
3149 * thin-pool <metadata dev> <data dev>
3150 * <data block size (sectors)>
3151 * <low water mark (blocks)>
3152 * [<#feature args> [<arg>]*]
3154 * Optional feature arguments are:
3155 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3156 * ignore_discard: disable discard
3157 * no_discard_passdown: don't pass discards down to the data device
3158 * read_only: Don't allow any changes to be made to the pool metadata.
3159 * error_if_no_space: error IOs, instead of queueing, if no space.
3161 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3163 int r, pool_created = 0;
3166 struct pool_features pf;
3167 struct dm_arg_set as;
3168 struct dm_dev *data_dev;
3169 unsigned long block_size;
3170 dm_block_t low_water_blocks;
3171 struct dm_dev *metadata_dev;
3172 fmode_t metadata_mode;
3175 * FIXME Remove validation from scope of lock.
3177 mutex_lock(&dm_thin_pool_table.mutex);
3180 ti->error = "Invalid argument count";
3189 * Set default pool features.
3191 pool_features_init(&pf);
3193 dm_consume_args(&as, 4);
3194 r = parse_pool_features(&as, &pf, ti);
3198 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3199 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3201 ti->error = "Error opening metadata block device";
3204 warn_if_metadata_device_too_big(metadata_dev->bdev);
3206 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3208 ti->error = "Error getting data device";
3212 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3213 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3214 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3215 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3216 ti->error = "Invalid block size";
3221 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3222 ti->error = "Invalid low water mark";
3227 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3233 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3234 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3241 * 'pool_created' reflects whether this is the first table load.
3242 * Top level discard support is not allowed to be changed after
3243 * initial load. This would require a pool reload to trigger thin
3246 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3247 ti->error = "Discard support cannot be disabled once enabled";
3249 goto out_flags_changed;
3254 pt->metadata_dev = metadata_dev;
3255 pt->data_dev = data_dev;
3256 pt->low_water_blocks = low_water_blocks;
3257 pt->adjusted_pf = pt->requested_pf = pf;
3258 ti->num_flush_bios = 1;
3261 * Only need to enable discards if the pool should pass
3262 * them down to the data device. The thin device's discard
3263 * processing will cause mappings to be removed from the btree.
3265 if (pf.discard_enabled && pf.discard_passdown) {
3266 ti->num_discard_bios = 1;
3269 * Setting 'discards_supported' circumvents the normal
3270 * stacking of discard limits (this keeps the pool and
3271 * thin devices' discard limits consistent).
3273 ti->discards_supported = true;
3277 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3278 calc_metadata_threshold(pt),
3279 metadata_low_callback,
3282 goto out_flags_changed;
3284 pt->callbacks.congested_fn = pool_is_congested;
3285 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3287 mutex_unlock(&dm_thin_pool_table.mutex);
3296 dm_put_device(ti, data_dev);
3298 dm_put_device(ti, metadata_dev);
3300 mutex_unlock(&dm_thin_pool_table.mutex);
3305 static int pool_map(struct dm_target *ti, struct bio *bio)
3308 struct pool_c *pt = ti->private;
3309 struct pool *pool = pt->pool;
3310 unsigned long flags;
3313 * As this is a singleton target, ti->begin is always zero.
3315 spin_lock_irqsave(&pool->lock, flags);
3316 bio_set_dev(bio, pt->data_dev->bdev);
3317 r = DM_MAPIO_REMAPPED;
3318 spin_unlock_irqrestore(&pool->lock, flags);
3323 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3326 struct pool_c *pt = ti->private;
3327 struct pool *pool = pt->pool;
3328 sector_t data_size = ti->len;
3329 dm_block_t sb_data_size;
3331 *need_commit = false;
3333 (void) sector_div(data_size, pool->sectors_per_block);
3335 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3337 DMERR("%s: failed to retrieve data device size",
3338 dm_device_name(pool->pool_md));
3342 if (data_size < sb_data_size) {
3343 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3344 dm_device_name(pool->pool_md),
3345 (unsigned long long)data_size, sb_data_size);
3348 } else if (data_size > sb_data_size) {
3349 if (dm_pool_metadata_needs_check(pool->pmd)) {
3350 DMERR("%s: unable to grow the data device until repaired.",
3351 dm_device_name(pool->pool_md));
3356 DMINFO("%s: growing the data device from %llu to %llu blocks",
3357 dm_device_name(pool->pool_md),
3358 sb_data_size, (unsigned long long)data_size);
3359 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3361 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3365 *need_commit = true;
3371 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3374 struct pool_c *pt = ti->private;
3375 struct pool *pool = pt->pool;
3376 dm_block_t metadata_dev_size, sb_metadata_dev_size;
3378 *need_commit = false;
3380 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3382 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3384 DMERR("%s: failed to retrieve metadata device size",
3385 dm_device_name(pool->pool_md));
3389 if (metadata_dev_size < sb_metadata_dev_size) {
3390 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3391 dm_device_name(pool->pool_md),
3392 metadata_dev_size, sb_metadata_dev_size);
3395 } else if (metadata_dev_size > sb_metadata_dev_size) {
3396 if (dm_pool_metadata_needs_check(pool->pmd)) {
3397 DMERR("%s: unable to grow the metadata device until repaired.",
3398 dm_device_name(pool->pool_md));
3402 warn_if_metadata_device_too_big(pool->md_dev);
3403 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3404 dm_device_name(pool->pool_md),
3405 sb_metadata_dev_size, metadata_dev_size);
3406 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3408 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3412 *need_commit = true;
3419 * Retrieves the number of blocks of the data device from
3420 * the superblock and compares it to the actual device size,
3421 * thus resizing the data device in case it has grown.
3423 * This both copes with opening preallocated data devices in the ctr
3424 * being followed by a resume
3426 * calling the resume method individually after userspace has
3427 * grown the data device in reaction to a table event.
3429 static int pool_preresume(struct dm_target *ti)
3432 bool need_commit1, need_commit2;
3433 struct pool_c *pt = ti->private;
3434 struct pool *pool = pt->pool;
3437 * Take control of the pool object.
3439 r = bind_control_target(pool, ti);
3443 r = maybe_resize_data_dev(ti, &need_commit1);
3447 r = maybe_resize_metadata_dev(ti, &need_commit2);
3451 if (need_commit1 || need_commit2)
3452 (void) commit(pool);
3457 static void pool_suspend_active_thins(struct pool *pool)
3461 /* Suspend all active thin devices */
3462 tc = get_first_thin(pool);
3464 dm_internal_suspend_noflush(tc->thin_md);
3465 tc = get_next_thin(pool, tc);
3469 static void pool_resume_active_thins(struct pool *pool)
3473 /* Resume all active thin devices */
3474 tc = get_first_thin(pool);
3476 dm_internal_resume(tc->thin_md);
3477 tc = get_next_thin(pool, tc);
3481 static void pool_resume(struct dm_target *ti)
3483 struct pool_c *pt = ti->private;
3484 struct pool *pool = pt->pool;
3485 unsigned long flags;
3488 * Must requeue active_thins' bios and then resume
3489 * active_thins _before_ clearing 'suspend' flag.
3492 pool_resume_active_thins(pool);
3494 spin_lock_irqsave(&pool->lock, flags);
3495 pool->low_water_triggered = false;
3496 pool->suspended = false;
3497 spin_unlock_irqrestore(&pool->lock, flags);
3499 do_waker(&pool->waker.work);
3502 static void pool_presuspend(struct dm_target *ti)
3504 struct pool_c *pt = ti->private;
3505 struct pool *pool = pt->pool;
3506 unsigned long flags;
3508 spin_lock_irqsave(&pool->lock, flags);
3509 pool->suspended = true;
3510 spin_unlock_irqrestore(&pool->lock, flags);
3512 pool_suspend_active_thins(pool);
3515 static void pool_presuspend_undo(struct dm_target *ti)
3517 struct pool_c *pt = ti->private;
3518 struct pool *pool = pt->pool;
3519 unsigned long flags;
3521 pool_resume_active_thins(pool);
3523 spin_lock_irqsave(&pool->lock, flags);
3524 pool->suspended = false;
3525 spin_unlock_irqrestore(&pool->lock, flags);
3528 static void pool_postsuspend(struct dm_target *ti)
3530 struct pool_c *pt = ti->private;
3531 struct pool *pool = pt->pool;
3533 cancel_delayed_work_sync(&pool->waker);
3534 cancel_delayed_work_sync(&pool->no_space_timeout);
3535 flush_workqueue(pool->wq);
3536 (void) commit(pool);
3539 static int check_arg_count(unsigned argc, unsigned args_required)
3541 if (argc != args_required) {
3542 DMWARN("Message received with %u arguments instead of %u.",
3543 argc, args_required);
3550 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3552 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3553 *dev_id <= MAX_DEV_ID)
3557 DMWARN("Message received with invalid device id: %s", arg);
3562 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3567 r = check_arg_count(argc, 2);
3571 r = read_dev_id(argv[1], &dev_id, 1);
3575 r = dm_pool_create_thin(pool->pmd, dev_id);
3577 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3585 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3588 dm_thin_id origin_dev_id;
3591 r = check_arg_count(argc, 3);
3595 r = read_dev_id(argv[1], &dev_id, 1);
3599 r = read_dev_id(argv[2], &origin_dev_id, 1);
3603 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3605 DMWARN("Creation of new snapshot %s of device %s failed.",
3613 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3618 r = check_arg_count(argc, 2);
3622 r = read_dev_id(argv[1], &dev_id, 1);
3626 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3628 DMWARN("Deletion of thin device %s failed.", argv[1]);
3633 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3635 dm_thin_id old_id, new_id;
3638 r = check_arg_count(argc, 3);
3642 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3643 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3647 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3648 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3652 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3654 DMWARN("Failed to change transaction id from %s to %s.",
3662 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3666 r = check_arg_count(argc, 1);
3670 (void) commit(pool);
3672 r = dm_pool_reserve_metadata_snap(pool->pmd);
3674 DMWARN("reserve_metadata_snap message failed.");
3679 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3683 r = check_arg_count(argc, 1);
3687 r = dm_pool_release_metadata_snap(pool->pmd);
3689 DMWARN("release_metadata_snap message failed.");
3695 * Messages supported:
3696 * create_thin <dev_id>
3697 * create_snap <dev_id> <origin_id>
3699 * set_transaction_id <current_trans_id> <new_trans_id>
3700 * reserve_metadata_snap
3701 * release_metadata_snap
3703 static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3704 char *result, unsigned maxlen)
3707 struct pool_c *pt = ti->private;
3708 struct pool *pool = pt->pool;
3710 if (get_pool_mode(pool) >= PM_READ_ONLY) {
3711 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3712 dm_device_name(pool->pool_md));
3716 if (!strcasecmp(argv[0], "create_thin"))
3717 r = process_create_thin_mesg(argc, argv, pool);
3719 else if (!strcasecmp(argv[0], "create_snap"))
3720 r = process_create_snap_mesg(argc, argv, pool);
3722 else if (!strcasecmp(argv[0], "delete"))
3723 r = process_delete_mesg(argc, argv, pool);
3725 else if (!strcasecmp(argv[0], "set_transaction_id"))
3726 r = process_set_transaction_id_mesg(argc, argv, pool);
3728 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3729 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3731 else if (!strcasecmp(argv[0], "release_metadata_snap"))
3732 r = process_release_metadata_snap_mesg(argc, argv, pool);
3735 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3738 (void) commit(pool);
3743 static void emit_flags(struct pool_features *pf, char *result,
3744 unsigned sz, unsigned maxlen)
3746 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3747 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3748 pf->error_if_no_space;
3749 DMEMIT("%u ", count);
3751 if (!pf->zero_new_blocks)
3752 DMEMIT("skip_block_zeroing ");
3754 if (!pf->discard_enabled)
3755 DMEMIT("ignore_discard ");
3757 if (!pf->discard_passdown)
3758 DMEMIT("no_discard_passdown ");
3760 if (pf->mode == PM_READ_ONLY)
3761 DMEMIT("read_only ");
3763 if (pf->error_if_no_space)
3764 DMEMIT("error_if_no_space ");
3769 * <transaction id> <used metadata sectors>/<total metadata sectors>
3770 * <used data sectors>/<total data sectors> <held metadata root>
3771 * <pool mode> <discard config> <no space config> <needs_check>
3773 static void pool_status(struct dm_target *ti, status_type_t type,
3774 unsigned status_flags, char *result, unsigned maxlen)
3778 uint64_t transaction_id;
3779 dm_block_t nr_free_blocks_data;
3780 dm_block_t nr_free_blocks_metadata;
3781 dm_block_t nr_blocks_data;
3782 dm_block_t nr_blocks_metadata;
3783 dm_block_t held_root;
3784 char buf[BDEVNAME_SIZE];
3785 char buf2[BDEVNAME_SIZE];
3786 struct pool_c *pt = ti->private;
3787 struct pool *pool = pt->pool;
3790 case STATUSTYPE_INFO:
3791 if (get_pool_mode(pool) == PM_FAIL) {
3796 /* Commit to ensure statistics aren't out-of-date */
3797 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3798 (void) commit(pool);
3800 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3802 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3803 dm_device_name(pool->pool_md), r);
3807 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3809 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3810 dm_device_name(pool->pool_md), r);
3814 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3816 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3817 dm_device_name(pool->pool_md), r);
3821 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3823 DMERR("%s: dm_pool_get_free_block_count returned %d",
3824 dm_device_name(pool->pool_md), r);
3828 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3830 DMERR("%s: dm_pool_get_data_dev_size returned %d",
3831 dm_device_name(pool->pool_md), r);
3835 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3837 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3838 dm_device_name(pool->pool_md), r);
3842 DMEMIT("%llu %llu/%llu %llu/%llu ",
3843 (unsigned long long)transaction_id,
3844 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3845 (unsigned long long)nr_blocks_metadata,
3846 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3847 (unsigned long long)nr_blocks_data);
3850 DMEMIT("%llu ", held_root);
3854 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3855 DMEMIT("out_of_data_space ");
3856 else if (pool->pf.mode == PM_READ_ONLY)
3861 if (!pool->pf.discard_enabled)
3862 DMEMIT("ignore_discard ");
3863 else if (pool->pf.discard_passdown)
3864 DMEMIT("discard_passdown ");
3866 DMEMIT("no_discard_passdown ");
3868 if (pool->pf.error_if_no_space)
3869 DMEMIT("error_if_no_space ");
3871 DMEMIT("queue_if_no_space ");
3873 if (dm_pool_metadata_needs_check(pool->pmd))
3874 DMEMIT("needs_check ");
3878 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
3882 case STATUSTYPE_TABLE:
3883 DMEMIT("%s %s %lu %llu ",
3884 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3885 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3886 (unsigned long)pool->sectors_per_block,
3887 (unsigned long long)pt->low_water_blocks);
3888 emit_flags(&pt->requested_pf, result, sz, maxlen);
3897 static int pool_iterate_devices(struct dm_target *ti,
3898 iterate_devices_callout_fn fn, void *data)
3900 struct pool_c *pt = ti->private;
3902 return fn(ti, pt->data_dev, 0, ti->len, data);
3905 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3907 struct pool_c *pt = ti->private;
3908 struct pool *pool = pt->pool;
3909 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3912 * If max_sectors is smaller than pool->sectors_per_block adjust it
3913 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3914 * This is especially beneficial when the pool's data device is a RAID
3915 * device that has a full stripe width that matches pool->sectors_per_block
3916 * -- because even though partial RAID stripe-sized IOs will be issued to a
3917 * single RAID stripe; when aggregated they will end on a full RAID stripe
3918 * boundary.. which avoids additional partial RAID stripe writes cascading
3920 if (limits->max_sectors < pool->sectors_per_block) {
3921 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3922 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3923 limits->max_sectors--;
3924 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3929 * If the system-determined stacked limits are compatible with the
3930 * pool's blocksize (io_opt is a factor) do not override them.
3932 if (io_opt_sectors < pool->sectors_per_block ||
3933 !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3934 if (is_factor(pool->sectors_per_block, limits->max_sectors))
3935 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3937 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3938 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3942 * pt->adjusted_pf is a staging area for the actual features to use.
3943 * They get transferred to the live pool in bind_control_target()
3944 * called from pool_preresume().
3946 if (!pt->adjusted_pf.discard_enabled) {
3948 * Must explicitly disallow stacking discard limits otherwise the
3949 * block layer will stack them if pool's data device has support.
3950 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3951 * user to see that, so make sure to set all discard limits to 0.
3953 limits->discard_granularity = 0;
3957 disable_passdown_if_not_supported(pt);
3960 * The pool uses the same discard limits as the underlying data
3961 * device. DM core has already set this up.
3965 static struct target_type pool_target = {
3966 .name = "thin-pool",
3967 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3968 DM_TARGET_IMMUTABLE,
3969 .version = {1, 20, 0},
3970 .module = THIS_MODULE,
3974 .presuspend = pool_presuspend,
3975 .presuspend_undo = pool_presuspend_undo,
3976 .postsuspend = pool_postsuspend,
3977 .preresume = pool_preresume,
3978 .resume = pool_resume,
3979 .message = pool_message,
3980 .status = pool_status,
3981 .iterate_devices = pool_iterate_devices,
3982 .io_hints = pool_io_hints,
3985 /*----------------------------------------------------------------
3986 * Thin target methods
3987 *--------------------------------------------------------------*/
3988 static void thin_get(struct thin_c *tc)
3990 atomic_inc(&tc->refcount);
3993 static void thin_put(struct thin_c *tc)
3995 if (atomic_dec_and_test(&tc->refcount))
3996 complete(&tc->can_destroy);
3999 static void thin_dtr(struct dm_target *ti)
4001 struct thin_c *tc = ti->private;
4002 unsigned long flags;
4004 spin_lock_irqsave(&tc->pool->lock, flags);
4005 list_del_rcu(&tc->list);
4006 spin_unlock_irqrestore(&tc->pool->lock, flags);
4010 wait_for_completion(&tc->can_destroy);
4012 mutex_lock(&dm_thin_pool_table.mutex);
4014 __pool_dec(tc->pool);
4015 dm_pool_close_thin_device(tc->td);
4016 dm_put_device(ti, tc->pool_dev);
4018 dm_put_device(ti, tc->origin_dev);
4021 mutex_unlock(&dm_thin_pool_table.mutex);
4025 * Thin target parameters:
4027 * <pool_dev> <dev_id> [origin_dev]
4029 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4030 * dev_id: the internal device identifier
4031 * origin_dev: a device external to the pool that should act as the origin
4033 * If the pool device has discards disabled, they get disabled for the thin
4036 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4040 struct dm_dev *pool_dev, *origin_dev;
4041 struct mapped_device *pool_md;
4042 unsigned long flags;
4044 mutex_lock(&dm_thin_pool_table.mutex);
4046 if (argc != 2 && argc != 3) {
4047 ti->error = "Invalid argument count";
4052 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4054 ti->error = "Out of memory";
4058 tc->thin_md = dm_table_get_md(ti->table);
4059 spin_lock_init(&tc->lock);
4060 INIT_LIST_HEAD(&tc->deferred_cells);
4061 bio_list_init(&tc->deferred_bio_list);
4062 bio_list_init(&tc->retry_on_resume_list);
4063 tc->sort_bio_list = RB_ROOT;
4066 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4068 ti->error = "Error opening origin device";
4069 goto bad_origin_dev;
4071 tc->origin_dev = origin_dev;
4074 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4076 ti->error = "Error opening pool device";
4079 tc->pool_dev = pool_dev;
4081 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4082 ti->error = "Invalid device id";
4087 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4089 ti->error = "Couldn't get pool mapped device";
4094 tc->pool = __pool_table_lookup(pool_md);
4096 ti->error = "Couldn't find pool object";
4098 goto bad_pool_lookup;
4100 __pool_inc(tc->pool);
4102 if (get_pool_mode(tc->pool) == PM_FAIL) {
4103 ti->error = "Couldn't open thin device, Pool is in fail mode";
4108 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4110 ti->error = "Couldn't open thin internal device";
4114 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4118 ti->num_flush_bios = 1;
4119 ti->flush_supported = true;
4120 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4122 /* In case the pool supports discards, pass them on. */
4123 if (tc->pool->pf.discard_enabled) {
4124 ti->discards_supported = true;
4125 ti->num_discard_bios = 1;
4126 ti->split_discard_bios = false;
4129 mutex_unlock(&dm_thin_pool_table.mutex);
4131 spin_lock_irqsave(&tc->pool->lock, flags);
4132 if (tc->pool->suspended) {
4133 spin_unlock_irqrestore(&tc->pool->lock, flags);
4134 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4135 ti->error = "Unable to activate thin device while pool is suspended";
4139 atomic_set(&tc->refcount, 1);
4140 init_completion(&tc->can_destroy);
4141 list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4142 spin_unlock_irqrestore(&tc->pool->lock, flags);
4144 * This synchronize_rcu() call is needed here otherwise we risk a
4145 * wake_worker() call finding no bios to process (because the newly
4146 * added tc isn't yet visible). So this reduces latency since we
4147 * aren't then dependent on the periodic commit to wake_worker().
4156 dm_pool_close_thin_device(tc->td);
4158 __pool_dec(tc->pool);
4162 dm_put_device(ti, tc->pool_dev);
4165 dm_put_device(ti, tc->origin_dev);
4169 mutex_unlock(&dm_thin_pool_table.mutex);
4174 static int thin_map(struct dm_target *ti, struct bio *bio)
4176 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4178 return thin_bio_map(ti, bio);
4181 static int thin_endio(struct dm_target *ti, struct bio *bio,
4184 unsigned long flags;
4185 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4186 struct list_head work;
4187 struct dm_thin_new_mapping *m, *tmp;
4188 struct pool *pool = h->tc->pool;
4190 if (h->shared_read_entry) {
4191 INIT_LIST_HEAD(&work);
4192 dm_deferred_entry_dec(h->shared_read_entry, &work);
4194 spin_lock_irqsave(&pool->lock, flags);
4195 list_for_each_entry_safe(m, tmp, &work, list) {
4197 __complete_mapping_preparation(m);
4199 spin_unlock_irqrestore(&pool->lock, flags);
4202 if (h->all_io_entry) {
4203 INIT_LIST_HEAD(&work);
4204 dm_deferred_entry_dec(h->all_io_entry, &work);
4205 if (!list_empty(&work)) {
4206 spin_lock_irqsave(&pool->lock, flags);
4207 list_for_each_entry_safe(m, tmp, &work, list)
4208 list_add_tail(&m->list, &pool->prepared_discards);
4209 spin_unlock_irqrestore(&pool->lock, flags);
4215 cell_defer_no_holder(h->tc, h->cell);
4217 return DM_ENDIO_DONE;
4220 static void thin_presuspend(struct dm_target *ti)
4222 struct thin_c *tc = ti->private;
4224 if (dm_noflush_suspending(ti))
4225 noflush_work(tc, do_noflush_start);
4228 static void thin_postsuspend(struct dm_target *ti)
4230 struct thin_c *tc = ti->private;
4233 * The dm_noflush_suspending flag has been cleared by now, so
4234 * unfortunately we must always run this.
4236 noflush_work(tc, do_noflush_stop);
4239 static int thin_preresume(struct dm_target *ti)
4241 struct thin_c *tc = ti->private;
4244 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4250 * <nr mapped sectors> <highest mapped sector>
4252 static void thin_status(struct dm_target *ti, status_type_t type,
4253 unsigned status_flags, char *result, unsigned maxlen)
4257 dm_block_t mapped, highest;
4258 char buf[BDEVNAME_SIZE];
4259 struct thin_c *tc = ti->private;
4261 if (get_pool_mode(tc->pool) == PM_FAIL) {
4270 case STATUSTYPE_INFO:
4271 r = dm_thin_get_mapped_count(tc->td, &mapped);
4273 DMERR("dm_thin_get_mapped_count returned %d", r);
4277 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4279 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4283 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4285 DMEMIT("%llu", ((highest + 1) *
4286 tc->pool->sectors_per_block) - 1);
4291 case STATUSTYPE_TABLE:
4293 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4294 (unsigned long) tc->dev_id);
4296 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4307 static int thin_iterate_devices(struct dm_target *ti,
4308 iterate_devices_callout_fn fn, void *data)
4311 struct thin_c *tc = ti->private;
4312 struct pool *pool = tc->pool;
4315 * We can't call dm_pool_get_data_dev_size() since that blocks. So
4316 * we follow a more convoluted path through to the pool's target.
4319 return 0; /* nothing is bound */
4321 blocks = pool->ti->len;
4322 (void) sector_div(blocks, pool->sectors_per_block);
4324 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4329 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4331 struct thin_c *tc = ti->private;
4332 struct pool *pool = tc->pool;
4334 if (!pool->pf.discard_enabled)
4337 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4338 limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4341 static struct target_type thin_target = {
4343 .version = {1, 20, 0},
4344 .module = THIS_MODULE,
4348 .end_io = thin_endio,
4349 .preresume = thin_preresume,
4350 .presuspend = thin_presuspend,
4351 .postsuspend = thin_postsuspend,
4352 .status = thin_status,
4353 .iterate_devices = thin_iterate_devices,
4354 .io_hints = thin_io_hints,
4357 /*----------------------------------------------------------------*/
4359 static int __init dm_thin_init(void)
4365 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4366 if (!_new_mapping_cache)
4369 r = dm_register_target(&thin_target);
4371 goto bad_new_mapping_cache;
4373 r = dm_register_target(&pool_target);
4375 goto bad_thin_target;
4380 dm_unregister_target(&thin_target);
4381 bad_new_mapping_cache:
4382 kmem_cache_destroy(_new_mapping_cache);
4387 static void dm_thin_exit(void)
4389 dm_unregister_target(&thin_target);
4390 dm_unregister_target(&pool_target);
4392 kmem_cache_destroy(_new_mapping_cache);
4397 module_init(dm_thin_init);
4398 module_exit(dm_thin_exit);
4400 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4401 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4403 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4405 MODULE_LICENSE("GPL");