2 * Slab allocator functions that are independent of the allocator strategy
6 #include <linux/slab.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
21 #include <linux/memcontrol.h>
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/kmem.h>
28 enum slab_state slab_state;
29 LIST_HEAD(slab_caches);
30 DEFINE_MUTEX(slab_mutex);
31 struct kmem_cache *kmem_cache;
34 * Set of flags that will prevent slab merging
36 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
37 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
38 SLAB_FAILSLAB | SLAB_KASAN)
40 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
41 SLAB_NOTRACK | SLAB_ACCOUNT)
44 * Merge control. If this is set then no merging of slab caches will occur.
45 * (Could be removed. This was introduced to pacify the merge skeptics.)
47 static int slab_nomerge;
49 static int __init setup_slab_nomerge(char *str)
56 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
59 __setup("slab_nomerge", setup_slab_nomerge);
62 * Determine the size of a slab object
64 unsigned int kmem_cache_size(struct kmem_cache *s)
66 return s->object_size;
68 EXPORT_SYMBOL(kmem_cache_size);
70 #ifdef CONFIG_DEBUG_VM
71 static int kmem_cache_sanity_check(const char *name, size_t size)
73 struct kmem_cache *s = NULL;
75 if (!name || in_interrupt() || size < sizeof(void *) ||
76 size > KMALLOC_MAX_SIZE) {
77 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
81 list_for_each_entry(s, &slab_caches, list) {
86 * This happens when the module gets unloaded and doesn't
87 * destroy its slab cache and no-one else reuses the vmalloc
88 * area of the module. Print a warning.
90 res = probe_kernel_address(s->name, tmp);
92 pr_err("Slab cache with size %d has lost its name\n",
98 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
102 static inline int kmem_cache_sanity_check(const char *name, size_t size)
108 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
112 for (i = 0; i < nr; i++) {
114 kmem_cache_free(s, p[i]);
120 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
125 for (i = 0; i < nr; i++) {
126 void *x = p[i] = kmem_cache_alloc(s, flags);
128 __kmem_cache_free_bulk(s, i, p);
135 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
136 void slab_init_memcg_params(struct kmem_cache *s)
138 s->memcg_params.is_root_cache = true;
139 INIT_LIST_HEAD(&s->memcg_params.list);
140 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
143 static int init_memcg_params(struct kmem_cache *s,
144 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
146 struct memcg_cache_array *arr;
149 s->memcg_params.is_root_cache = false;
150 s->memcg_params.memcg = memcg;
151 s->memcg_params.root_cache = root_cache;
155 slab_init_memcg_params(s);
157 if (!memcg_nr_cache_ids)
160 arr = kzalloc(sizeof(struct memcg_cache_array) +
161 memcg_nr_cache_ids * sizeof(void *),
166 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
170 static void destroy_memcg_params(struct kmem_cache *s)
172 if (is_root_cache(s))
173 kfree(rcu_access_pointer(s->memcg_params.memcg_caches));
176 static int update_memcg_params(struct kmem_cache *s, int new_array_size)
178 struct memcg_cache_array *old, *new;
180 if (!is_root_cache(s))
183 new = kzalloc(sizeof(struct memcg_cache_array) +
184 new_array_size * sizeof(void *), GFP_KERNEL);
188 old = rcu_dereference_protected(s->memcg_params.memcg_caches,
189 lockdep_is_held(&slab_mutex));
191 memcpy(new->entries, old->entries,
192 memcg_nr_cache_ids * sizeof(void *));
194 rcu_assign_pointer(s->memcg_params.memcg_caches, new);
200 int memcg_update_all_caches(int num_memcgs)
202 struct kmem_cache *s;
205 mutex_lock(&slab_mutex);
206 list_for_each_entry(s, &slab_caches, list) {
207 ret = update_memcg_params(s, num_memcgs);
209 * Instead of freeing the memory, we'll just leave the caches
210 * up to this point in an updated state.
215 mutex_unlock(&slab_mutex);
219 static inline int init_memcg_params(struct kmem_cache *s,
220 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
225 static inline void destroy_memcg_params(struct kmem_cache *s)
228 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
231 * Find a mergeable slab cache
233 int slab_unmergeable(struct kmem_cache *s)
235 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
238 if (!is_root_cache(s))
245 * We may have set a slab to be unmergeable during bootstrap.
253 struct kmem_cache *find_mergeable(size_t size, size_t align,
254 unsigned long flags, const char *name, void (*ctor)(void *))
256 struct kmem_cache *s;
258 if (slab_nomerge || (flags & SLAB_NEVER_MERGE))
264 size = ALIGN(size, sizeof(void *));
265 align = calculate_alignment(flags, align, size);
266 size = ALIGN(size, align);
267 flags = kmem_cache_flags(size, flags, name, NULL);
269 list_for_each_entry_reverse(s, &slab_caches, list) {
270 if (slab_unmergeable(s))
276 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
279 * Check if alignment is compatible.
280 * Courtesy of Adrian Drzewiecki
282 if ((s->size & ~(align - 1)) != s->size)
285 if (s->size - size >= sizeof(void *))
288 if (IS_ENABLED(CONFIG_SLAB) && align &&
289 (align > s->align || s->align % align))
298 * Figure out what the alignment of the objects will be given a set of
299 * flags, a user specified alignment and the size of the objects.
301 unsigned long calculate_alignment(unsigned long flags,
302 unsigned long align, unsigned long size)
305 * If the user wants hardware cache aligned objects then follow that
306 * suggestion if the object is sufficiently large.
308 * The hardware cache alignment cannot override the specified
309 * alignment though. If that is greater then use it.
311 if (flags & SLAB_HWCACHE_ALIGN) {
312 unsigned long ralign = cache_line_size();
313 while (size <= ralign / 2)
315 align = max(align, ralign);
318 if (align < ARCH_SLAB_MINALIGN)
319 align = ARCH_SLAB_MINALIGN;
321 return ALIGN(align, sizeof(void *));
324 static struct kmem_cache *create_cache(const char *name,
325 size_t object_size, size_t size, size_t align,
326 unsigned long flags, void (*ctor)(void *),
327 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
329 struct kmem_cache *s;
333 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
338 s->object_size = object_size;
343 err = init_memcg_params(s, memcg, root_cache);
347 err = __kmem_cache_create(s, flags);
352 list_add(&s->list, &slab_caches);
359 destroy_memcg_params(s);
360 kmem_cache_free(kmem_cache, s);
365 * kmem_cache_create - Create a cache.
366 * @name: A string which is used in /proc/slabinfo to identify this cache.
367 * @size: The size of objects to be created in this cache.
368 * @align: The required alignment for the objects.
370 * @ctor: A constructor for the objects.
372 * Returns a ptr to the cache on success, NULL on failure.
373 * Cannot be called within a interrupt, but can be interrupted.
374 * The @ctor is run when new pages are allocated by the cache.
378 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
379 * to catch references to uninitialised memory.
381 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
382 * for buffer overruns.
384 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
385 * cacheline. This can be beneficial if you're counting cycles as closely
389 kmem_cache_create(const char *name, size_t size, size_t align,
390 unsigned long flags, void (*ctor)(void *))
392 struct kmem_cache *s = NULL;
393 const char *cache_name;
398 memcg_get_cache_ids();
400 mutex_lock(&slab_mutex);
402 err = kmem_cache_sanity_check(name, size);
407 /* Refuse requests with allocator specific flags */
408 if (flags & ~SLAB_FLAGS_PERMITTED) {
414 * Some allocators will constraint the set of valid flags to a subset
415 * of all flags. We expect them to define CACHE_CREATE_MASK in this
416 * case, and we'll just provide them with a sanitized version of the
419 flags &= CACHE_CREATE_MASK;
421 s = __kmem_cache_alias(name, size, align, flags, ctor);
425 cache_name = kstrdup_const(name, GFP_KERNEL);
431 s = create_cache(cache_name, size, size,
432 calculate_alignment(flags, align, size),
433 flags, ctor, NULL, NULL);
436 kfree_const(cache_name);
440 mutex_unlock(&slab_mutex);
442 memcg_put_cache_ids();
447 if (flags & SLAB_PANIC)
448 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
451 pr_warn("kmem_cache_create(%s) failed with error %d\n",
459 EXPORT_SYMBOL(kmem_cache_create);
461 static int shutdown_cache(struct kmem_cache *s,
462 struct list_head *release, bool *need_rcu_barrier)
464 if (__kmem_cache_shutdown(s) != 0)
467 if (s->flags & SLAB_DESTROY_BY_RCU)
468 *need_rcu_barrier = true;
470 list_move(&s->list, release);
474 static void release_caches(struct list_head *release, bool need_rcu_barrier)
476 struct kmem_cache *s, *s2;
478 if (need_rcu_barrier)
481 list_for_each_entry_safe(s, s2, release, list) {
482 #ifdef SLAB_SUPPORTS_SYSFS
483 sysfs_slab_remove(s);
485 slab_kmem_cache_release(s);
490 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
492 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
493 * @memcg: The memory cgroup the new cache is for.
494 * @root_cache: The parent of the new cache.
496 * This function attempts to create a kmem cache that will serve allocation
497 * requests going from @memcg to @root_cache. The new cache inherits properties
500 void memcg_create_kmem_cache(struct mem_cgroup *memcg,
501 struct kmem_cache *root_cache)
503 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
504 struct cgroup_subsys_state *css = &memcg->css;
505 struct memcg_cache_array *arr;
506 struct kmem_cache *s = NULL;
513 mutex_lock(&slab_mutex);
516 * The memory cgroup could have been offlined while the cache
517 * creation work was pending.
519 if (memcg->kmem_state != KMEM_ONLINE)
522 idx = memcg_cache_id(memcg);
523 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
524 lockdep_is_held(&slab_mutex));
527 * Since per-memcg caches are created asynchronously on first
528 * allocation (see memcg_kmem_get_cache()), several threads can try to
529 * create the same cache, but only one of them may succeed.
531 if (arr->entries[idx])
534 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
535 cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
536 css->serial_nr, memcg_name_buf);
540 s = create_cache(cache_name, root_cache->object_size,
541 root_cache->size, root_cache->align,
542 root_cache->flags & CACHE_CREATE_MASK,
543 root_cache->ctor, memcg, root_cache);
545 * If we could not create a memcg cache, do not complain, because
546 * that's not critical at all as we can always proceed with the root
554 list_add(&s->memcg_params.list, &root_cache->memcg_params.list);
557 * Since readers won't lock (see cache_from_memcg_idx()), we need a
558 * barrier here to ensure nobody will see the kmem_cache partially
562 arr->entries[idx] = s;
565 mutex_unlock(&slab_mutex);
571 void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
574 struct memcg_cache_array *arr;
575 struct kmem_cache *s, *c;
577 idx = memcg_cache_id(memcg);
584 * In case of SLUB, we need to disable empty slab caching to
585 * avoid pinning the offline memory cgroup by freeable kmem
586 * pages charged to it. SLAB doesn't need this, as it
587 * periodically purges unused slabs.
589 mutex_lock(&slab_mutex);
590 list_for_each_entry(s, &slab_caches, list) {
591 c = is_root_cache(s) ? cache_from_memcg_idx(s, idx) : NULL;
597 mutex_unlock(&slab_mutex);
599 * kmem_cache->cpu_partial is checked locklessly (see
600 * put_cpu_partial()). Make sure the change is visible.
605 mutex_lock(&slab_mutex);
606 list_for_each_entry(s, &slab_caches, list) {
607 if (!is_root_cache(s))
610 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
611 lockdep_is_held(&slab_mutex));
612 c = arr->entries[idx];
616 __kmem_cache_shrink(c);
617 arr->entries[idx] = NULL;
619 mutex_unlock(&slab_mutex);
625 static int __shutdown_memcg_cache(struct kmem_cache *s,
626 struct list_head *release, bool *need_rcu_barrier)
628 BUG_ON(is_root_cache(s));
630 if (shutdown_cache(s, release, need_rcu_barrier))
633 list_del(&s->memcg_params.list);
637 void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
640 bool need_rcu_barrier = false;
641 struct kmem_cache *s, *s2;
646 mutex_lock(&slab_mutex);
647 list_for_each_entry_safe(s, s2, &slab_caches, list) {
648 if (is_root_cache(s) || s->memcg_params.memcg != memcg)
651 * The cgroup is about to be freed and therefore has no charges
652 * left. Hence, all its caches must be empty by now.
654 BUG_ON(__shutdown_memcg_cache(s, &release, &need_rcu_barrier));
656 mutex_unlock(&slab_mutex);
661 release_caches(&release, need_rcu_barrier);
664 static int shutdown_memcg_caches(struct kmem_cache *s,
665 struct list_head *release, bool *need_rcu_barrier)
667 struct memcg_cache_array *arr;
668 struct kmem_cache *c, *c2;
672 BUG_ON(!is_root_cache(s));
675 * First, shutdown active caches, i.e. caches that belong to online
678 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
679 lockdep_is_held(&slab_mutex));
680 for_each_memcg_cache_index(i) {
684 if (__shutdown_memcg_cache(c, release, need_rcu_barrier))
686 * The cache still has objects. Move it to a temporary
687 * list so as not to try to destroy it for a second
688 * time while iterating over inactive caches below.
690 list_move(&c->memcg_params.list, &busy);
693 * The cache is empty and will be destroyed soon. Clear
694 * the pointer to it in the memcg_caches array so that
695 * it will never be accessed even if the root cache
698 arr->entries[i] = NULL;
702 * Second, shutdown all caches left from memory cgroups that are now
705 list_for_each_entry_safe(c, c2, &s->memcg_params.list,
707 __shutdown_memcg_cache(c, release, need_rcu_barrier);
709 list_splice(&busy, &s->memcg_params.list);
712 * A cache being destroyed must be empty. In particular, this means
713 * that all per memcg caches attached to it must be empty too.
715 if (!list_empty(&s->memcg_params.list))
720 static inline int shutdown_memcg_caches(struct kmem_cache *s,
721 struct list_head *release, bool *need_rcu_barrier)
725 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
727 void slab_kmem_cache_release(struct kmem_cache *s)
729 __kmem_cache_release(s);
730 destroy_memcg_params(s);
731 kfree_const(s->name);
732 kmem_cache_free(kmem_cache, s);
735 void kmem_cache_destroy(struct kmem_cache *s)
738 bool need_rcu_barrier = false;
747 kasan_cache_destroy(s);
748 mutex_lock(&slab_mutex);
754 err = shutdown_memcg_caches(s, &release, &need_rcu_barrier);
756 err = shutdown_cache(s, &release, &need_rcu_barrier);
759 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
764 mutex_unlock(&slab_mutex);
769 release_caches(&release, need_rcu_barrier);
771 EXPORT_SYMBOL(kmem_cache_destroy);
774 * kmem_cache_shrink - Shrink a cache.
775 * @cachep: The cache to shrink.
777 * Releases as many slabs as possible for a cache.
778 * To help debugging, a zero exit status indicates all slabs were released.
780 int kmem_cache_shrink(struct kmem_cache *cachep)
786 kasan_cache_shrink(cachep);
787 ret = __kmem_cache_shrink(cachep);
792 EXPORT_SYMBOL(kmem_cache_shrink);
794 bool slab_is_available(void)
796 return slab_state >= UP;
800 /* Create a cache during boot when no slab services are available yet */
801 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
807 s->size = s->object_size = size;
808 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
810 slab_init_memcg_params(s);
812 err = __kmem_cache_create(s, flags);
815 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
818 s->refcount = -1; /* Exempt from merging for now */
821 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
824 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
827 panic("Out of memory when creating slab %s\n", name);
829 create_boot_cache(s, name, size, flags);
830 list_add(&s->list, &slab_caches);
835 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
836 EXPORT_SYMBOL(kmalloc_caches);
838 #ifdef CONFIG_ZONE_DMA
839 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
840 EXPORT_SYMBOL(kmalloc_dma_caches);
844 * Conversion table for small slabs sizes / 8 to the index in the
845 * kmalloc array. This is necessary for slabs < 192 since we have non power
846 * of two cache sizes there. The size of larger slabs can be determined using
849 static s8 size_index[24] = {
876 static inline int size_index_elem(size_t bytes)
878 return (bytes - 1) / 8;
882 * Find the kmem_cache structure that serves a given size of
885 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
889 if (unlikely(size > KMALLOC_MAX_SIZE)) {
890 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
896 return ZERO_SIZE_PTR;
898 index = size_index[size_index_elem(size)];
900 index = fls(size - 1);
902 #ifdef CONFIG_ZONE_DMA
903 if (unlikely((flags & GFP_DMA)))
904 return kmalloc_dma_caches[index];
907 return kmalloc_caches[index];
911 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
912 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
918 } const kmalloc_info[] __initconst = {
919 {NULL, 0}, {"kmalloc-96", 96},
920 {"kmalloc-192", 192}, {"kmalloc-8", 8},
921 {"kmalloc-16", 16}, {"kmalloc-32", 32},
922 {"kmalloc-64", 64}, {"kmalloc-128", 128},
923 {"kmalloc-256", 256}, {"kmalloc-512", 512},
924 {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048},
925 {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192},
926 {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768},
927 {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072},
928 {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288},
929 {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152},
930 {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608},
931 {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432},
932 {"kmalloc-67108864", 67108864}
936 * Patch up the size_index table if we have strange large alignment
937 * requirements for the kmalloc array. This is only the case for
938 * MIPS it seems. The standard arches will not generate any code here.
940 * Largest permitted alignment is 256 bytes due to the way we
941 * handle the index determination for the smaller caches.
943 * Make sure that nothing crazy happens if someone starts tinkering
944 * around with ARCH_KMALLOC_MINALIGN
946 void __init setup_kmalloc_cache_index_table(void)
950 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
951 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
953 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
954 int elem = size_index_elem(i);
956 if (elem >= ARRAY_SIZE(size_index))
958 size_index[elem] = KMALLOC_SHIFT_LOW;
961 if (KMALLOC_MIN_SIZE >= 64) {
963 * The 96 byte size cache is not used if the alignment
966 for (i = 64 + 8; i <= 96; i += 8)
967 size_index[size_index_elem(i)] = 7;
971 if (KMALLOC_MIN_SIZE >= 128) {
973 * The 192 byte sized cache is not used if the alignment
974 * is 128 byte. Redirect kmalloc to use the 256 byte cache
977 for (i = 128 + 8; i <= 192; i += 8)
978 size_index[size_index_elem(i)] = 8;
982 static void __init new_kmalloc_cache(int idx, unsigned long flags)
984 kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
985 kmalloc_info[idx].size, flags);
989 * Create the kmalloc array. Some of the regular kmalloc arrays
990 * may already have been created because they were needed to
991 * enable allocations for slab creation.
993 void __init create_kmalloc_caches(unsigned long flags)
997 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
998 if (!kmalloc_caches[i])
999 new_kmalloc_cache(i, flags);
1002 * Caches that are not of the two-to-the-power-of size.
1003 * These have to be created immediately after the
1004 * earlier power of two caches
1006 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
1007 new_kmalloc_cache(1, flags);
1008 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
1009 new_kmalloc_cache(2, flags);
1012 /* Kmalloc array is now usable */
1015 #ifdef CONFIG_ZONE_DMA
1016 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1017 struct kmem_cache *s = kmalloc_caches[i];
1020 int size = kmalloc_size(i);
1021 char *n = kasprintf(GFP_NOWAIT,
1022 "dma-kmalloc-%d", size);
1025 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
1026 size, SLAB_CACHE_DMA | flags);
1031 #endif /* !CONFIG_SLOB */
1034 * To avoid unnecessary overhead, we pass through large allocation requests
1035 * directly to the page allocator. We use __GFP_COMP, because we will need to
1036 * know the allocation order to free the pages properly in kfree.
1038 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1043 flags |= __GFP_COMP;
1044 page = alloc_pages(flags, order);
1045 ret = page ? page_address(page) : NULL;
1046 kmemleak_alloc(ret, size, 1, flags);
1047 kasan_kmalloc_large(ret, size, flags);
1050 EXPORT_SYMBOL(kmalloc_order);
1052 #ifdef CONFIG_TRACING
1053 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1055 void *ret = kmalloc_order(size, flags, order);
1056 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1059 EXPORT_SYMBOL(kmalloc_order_trace);
1062 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1063 /* Randomize a generic freelist */
1064 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1070 for (i = 0; i < count; i++)
1073 /* Fisher-Yates shuffle */
1074 for (i = count - 1; i > 0; i--) {
1075 rand = prandom_u32_state(state);
1077 swap(list[i], list[rand]);
1081 /* Create a random sequence per cache */
1082 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1085 struct rnd_state state;
1087 if (count < 2 || cachep->random_seq)
1090 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1091 if (!cachep->random_seq)
1094 /* Get best entropy at this stage of boot */
1095 prandom_seed_state(&state, get_random_long());
1097 freelist_randomize(&state, cachep->random_seq, count);
1101 /* Destroy the per-cache random freelist sequence */
1102 void cache_random_seq_destroy(struct kmem_cache *cachep)
1104 kfree(cachep->random_seq);
1105 cachep->random_seq = NULL;
1107 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1109 #ifdef CONFIG_SLABINFO
1112 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1114 #define SLABINFO_RIGHTS S_IRUSR
1117 static void print_slabinfo_header(struct seq_file *m)
1120 * Output format version, so at least we can change it
1121 * without _too_ many complaints.
1123 #ifdef CONFIG_DEBUG_SLAB
1124 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1126 seq_puts(m, "slabinfo - version: 2.1\n");
1128 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1129 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1130 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1131 #ifdef CONFIG_DEBUG_SLAB
1132 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1133 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1138 void *slab_start(struct seq_file *m, loff_t *pos)
1140 mutex_lock(&slab_mutex);
1141 return seq_list_start(&slab_caches, *pos);
1144 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1146 return seq_list_next(p, &slab_caches, pos);
1149 void slab_stop(struct seq_file *m, void *p)
1151 mutex_unlock(&slab_mutex);
1155 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1157 struct kmem_cache *c;
1158 struct slabinfo sinfo;
1160 if (!is_root_cache(s))
1163 for_each_memcg_cache(c, s) {
1164 memset(&sinfo, 0, sizeof(sinfo));
1165 get_slabinfo(c, &sinfo);
1167 info->active_slabs += sinfo.active_slabs;
1168 info->num_slabs += sinfo.num_slabs;
1169 info->shared_avail += sinfo.shared_avail;
1170 info->active_objs += sinfo.active_objs;
1171 info->num_objs += sinfo.num_objs;
1175 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1177 struct slabinfo sinfo;
1179 memset(&sinfo, 0, sizeof(sinfo));
1180 get_slabinfo(s, &sinfo);
1182 memcg_accumulate_slabinfo(s, &sinfo);
1184 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1185 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1186 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1188 seq_printf(m, " : tunables %4u %4u %4u",
1189 sinfo.limit, sinfo.batchcount, sinfo.shared);
1190 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1191 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1192 slabinfo_show_stats(m, s);
1196 static int slab_show(struct seq_file *m, void *p)
1198 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1200 if (p == slab_caches.next)
1201 print_slabinfo_header(m);
1202 if (is_root_cache(s))
1207 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
1208 int memcg_slab_show(struct seq_file *m, void *p)
1210 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1211 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1213 if (p == slab_caches.next)
1214 print_slabinfo_header(m);
1215 if (!is_root_cache(s) && s->memcg_params.memcg == memcg)
1222 * slabinfo_op - iterator that generates /proc/slabinfo
1231 * num-pages-per-slab
1232 * + further values on SMP and with statistics enabled
1234 static const struct seq_operations slabinfo_op = {
1235 .start = slab_start,
1241 static int slabinfo_open(struct inode *inode, struct file *file)
1243 return seq_open(file, &slabinfo_op);
1246 static const struct file_operations proc_slabinfo_operations = {
1247 .open = slabinfo_open,
1249 .write = slabinfo_write,
1250 .llseek = seq_lseek,
1251 .release = seq_release,
1254 static int __init slab_proc_init(void)
1256 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1257 &proc_slabinfo_operations);
1260 module_init(slab_proc_init);
1261 #endif /* CONFIG_SLABINFO */
1263 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1272 if (ks >= new_size) {
1273 kasan_krealloc((void *)p, new_size, flags);
1277 ret = kmalloc_track_caller(new_size, flags);
1285 * __krealloc - like krealloc() but don't free @p.
1286 * @p: object to reallocate memory for.
1287 * @new_size: how many bytes of memory are required.
1288 * @flags: the type of memory to allocate.
1290 * This function is like krealloc() except it never frees the originally
1291 * allocated buffer. Use this if you don't want to free the buffer immediately
1292 * like, for example, with RCU.
1294 void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1296 if (unlikely(!new_size))
1297 return ZERO_SIZE_PTR;
1299 return __do_krealloc(p, new_size, flags);
1302 EXPORT_SYMBOL(__krealloc);
1305 * krealloc - reallocate memory. The contents will remain unchanged.
1306 * @p: object to reallocate memory for.
1307 * @new_size: how many bytes of memory are required.
1308 * @flags: the type of memory to allocate.
1310 * The contents of the object pointed to are preserved up to the
1311 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1312 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1313 * %NULL pointer, the object pointed to is freed.
1315 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1319 if (unlikely(!new_size)) {
1321 return ZERO_SIZE_PTR;
1324 ret = __do_krealloc(p, new_size, flags);
1325 if (ret && p != ret)
1330 EXPORT_SYMBOL(krealloc);
1333 * kzfree - like kfree but zero memory
1334 * @p: object to free memory of
1336 * The memory of the object @p points to is zeroed before freed.
1337 * If @p is %NULL, kzfree() does nothing.
1339 * Note: this function zeroes the whole allocated buffer which can be a good
1340 * deal bigger than the requested buffer size passed to kmalloc(). So be
1341 * careful when using this function in performance sensitive code.
1343 void kzfree(const void *p)
1346 void *mem = (void *)p;
1348 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1354 EXPORT_SYMBOL(kzfree);
1356 /* Tracepoints definitions. */
1357 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1358 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1359 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1360 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1361 EXPORT_TRACEPOINT_SYMBOL(kfree);
1362 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);