]> Git Repo - linux.git/blob - fs/f2fs/file.c
drm/xe: Move and export xe_hw_engine lookup.
[linux.git] / fs / f2fs / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27 #include <linux/iomap.h>
28
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "acl.h"
34 #include "gc.h"
35 #include "iostat.h"
36 #include <trace/events/f2fs.h>
37 #include <uapi/linux/f2fs.h>
38
39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
40 {
41         struct inode *inode = file_inode(vmf->vma->vm_file);
42         vm_flags_t flags = vmf->vma->vm_flags;
43         vm_fault_t ret;
44
45         ret = filemap_fault(vmf);
46         if (ret & VM_FAULT_LOCKED)
47                 f2fs_update_iostat(F2FS_I_SB(inode), inode,
48                                         APP_MAPPED_READ_IO, F2FS_BLKSIZE);
49
50         trace_f2fs_filemap_fault(inode, vmf->pgoff, flags, ret);
51
52         return ret;
53 }
54
55 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
56 {
57         struct page *page = vmf->page;
58         struct inode *inode = file_inode(vmf->vma->vm_file);
59         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
60         struct dnode_of_data dn;
61         bool need_alloc = !f2fs_is_pinned_file(inode);
62         int err = 0;
63         vm_fault_t ret;
64
65         if (unlikely(IS_IMMUTABLE(inode)))
66                 return VM_FAULT_SIGBUS;
67
68         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
69                 err = -EIO;
70                 goto out;
71         }
72
73         if (unlikely(f2fs_cp_error(sbi))) {
74                 err = -EIO;
75                 goto out;
76         }
77
78         if (!f2fs_is_checkpoint_ready(sbi)) {
79                 err = -ENOSPC;
80                 goto out;
81         }
82
83         err = f2fs_convert_inline_inode(inode);
84         if (err)
85                 goto out;
86
87 #ifdef CONFIG_F2FS_FS_COMPRESSION
88         if (f2fs_compressed_file(inode)) {
89                 int ret = f2fs_is_compressed_cluster(inode, page->index);
90
91                 if (ret < 0) {
92                         err = ret;
93                         goto out;
94                 } else if (ret) {
95                         need_alloc = false;
96                 }
97         }
98 #endif
99         /* should do out of any locked page */
100         if (need_alloc)
101                 f2fs_balance_fs(sbi, true);
102
103         sb_start_pagefault(inode->i_sb);
104
105         f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
106
107         file_update_time(vmf->vma->vm_file);
108         filemap_invalidate_lock_shared(inode->i_mapping);
109         lock_page(page);
110         if (unlikely(page->mapping != inode->i_mapping ||
111                         page_offset(page) > i_size_read(inode) ||
112                         !PageUptodate(page))) {
113                 unlock_page(page);
114                 err = -EFAULT;
115                 goto out_sem;
116         }
117
118         set_new_dnode(&dn, inode, NULL, NULL, 0);
119         if (need_alloc) {
120                 /* block allocation */
121                 err = f2fs_get_block_locked(&dn, page->index);
122         } else {
123                 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
124                 f2fs_put_dnode(&dn);
125                 if (f2fs_is_pinned_file(inode) &&
126                     !__is_valid_data_blkaddr(dn.data_blkaddr))
127                         err = -EIO;
128         }
129
130         if (err) {
131                 unlock_page(page);
132                 goto out_sem;
133         }
134
135         f2fs_wait_on_page_writeback(page, DATA, false, true);
136
137         /* wait for GCed page writeback via META_MAPPING */
138         f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
139
140         /*
141          * check to see if the page is mapped already (no holes)
142          */
143         if (PageMappedToDisk(page))
144                 goto out_sem;
145
146         /* page is wholly or partially inside EOF */
147         if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
148                                                 i_size_read(inode)) {
149                 loff_t offset;
150
151                 offset = i_size_read(inode) & ~PAGE_MASK;
152                 zero_user_segment(page, offset, PAGE_SIZE);
153         }
154         set_page_dirty(page);
155
156         f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
157         f2fs_update_time(sbi, REQ_TIME);
158
159 out_sem:
160         filemap_invalidate_unlock_shared(inode->i_mapping);
161
162         sb_end_pagefault(inode->i_sb);
163 out:
164         ret = vmf_fs_error(err);
165
166         trace_f2fs_vm_page_mkwrite(inode, page->index, vmf->vma->vm_flags, ret);
167         return ret;
168 }
169
170 static const struct vm_operations_struct f2fs_file_vm_ops = {
171         .fault          = f2fs_filemap_fault,
172         .map_pages      = filemap_map_pages,
173         .page_mkwrite   = f2fs_vm_page_mkwrite,
174 };
175
176 static int get_parent_ino(struct inode *inode, nid_t *pino)
177 {
178         struct dentry *dentry;
179
180         /*
181          * Make sure to get the non-deleted alias.  The alias associated with
182          * the open file descriptor being fsync()'ed may be deleted already.
183          */
184         dentry = d_find_alias(inode);
185         if (!dentry)
186                 return 0;
187
188         *pino = parent_ino(dentry);
189         dput(dentry);
190         return 1;
191 }
192
193 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
194 {
195         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
196         enum cp_reason_type cp_reason = CP_NO_NEEDED;
197
198         if (!S_ISREG(inode->i_mode))
199                 cp_reason = CP_NON_REGULAR;
200         else if (f2fs_compressed_file(inode))
201                 cp_reason = CP_COMPRESSED;
202         else if (inode->i_nlink != 1)
203                 cp_reason = CP_HARDLINK;
204         else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
205                 cp_reason = CP_SB_NEED_CP;
206         else if (file_wrong_pino(inode))
207                 cp_reason = CP_WRONG_PINO;
208         else if (!f2fs_space_for_roll_forward(sbi))
209                 cp_reason = CP_NO_SPC_ROLL;
210         else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
211                 cp_reason = CP_NODE_NEED_CP;
212         else if (test_opt(sbi, FASTBOOT))
213                 cp_reason = CP_FASTBOOT_MODE;
214         else if (F2FS_OPTION(sbi).active_logs == 2)
215                 cp_reason = CP_SPEC_LOG_NUM;
216         else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
217                 f2fs_need_dentry_mark(sbi, inode->i_ino) &&
218                 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
219                                                         TRANS_DIR_INO))
220                 cp_reason = CP_RECOVER_DIR;
221
222         return cp_reason;
223 }
224
225 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
226 {
227         struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
228         bool ret = false;
229         /* But we need to avoid that there are some inode updates */
230         if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
231                 ret = true;
232         f2fs_put_page(i, 0);
233         return ret;
234 }
235
236 static void try_to_fix_pino(struct inode *inode)
237 {
238         struct f2fs_inode_info *fi = F2FS_I(inode);
239         nid_t pino;
240
241         f2fs_down_write(&fi->i_sem);
242         if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
243                         get_parent_ino(inode, &pino)) {
244                 f2fs_i_pino_write(inode, pino);
245                 file_got_pino(inode);
246         }
247         f2fs_up_write(&fi->i_sem);
248 }
249
250 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
251                                                 int datasync, bool atomic)
252 {
253         struct inode *inode = file->f_mapping->host;
254         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
255         nid_t ino = inode->i_ino;
256         int ret = 0;
257         enum cp_reason_type cp_reason = 0;
258         struct writeback_control wbc = {
259                 .sync_mode = WB_SYNC_ALL,
260                 .nr_to_write = LONG_MAX,
261                 .for_reclaim = 0,
262         };
263         unsigned int seq_id = 0;
264
265         if (unlikely(f2fs_readonly(inode->i_sb)))
266                 return 0;
267
268         trace_f2fs_sync_file_enter(inode);
269
270         if (S_ISDIR(inode->i_mode))
271                 goto go_write;
272
273         /* if fdatasync is triggered, let's do in-place-update */
274         if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
275                 set_inode_flag(inode, FI_NEED_IPU);
276         ret = file_write_and_wait_range(file, start, end);
277         clear_inode_flag(inode, FI_NEED_IPU);
278
279         if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
280                 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
281                 return ret;
282         }
283
284         /* if the inode is dirty, let's recover all the time */
285         if (!f2fs_skip_inode_update(inode, datasync)) {
286                 f2fs_write_inode(inode, NULL);
287                 goto go_write;
288         }
289
290         /*
291          * if there is no written data, don't waste time to write recovery info.
292          */
293         if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
294                         !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
295
296                 /* it may call write_inode just prior to fsync */
297                 if (need_inode_page_update(sbi, ino))
298                         goto go_write;
299
300                 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
301                                 f2fs_exist_written_data(sbi, ino, UPDATE_INO))
302                         goto flush_out;
303                 goto out;
304         } else {
305                 /*
306                  * for OPU case, during fsync(), node can be persisted before
307                  * data when lower device doesn't support write barrier, result
308                  * in data corruption after SPO.
309                  * So for strict fsync mode, force to use atomic write semantics
310                  * to keep write order in between data/node and last node to
311                  * avoid potential data corruption.
312                  */
313                 if (F2FS_OPTION(sbi).fsync_mode ==
314                                 FSYNC_MODE_STRICT && !atomic)
315                         atomic = true;
316         }
317 go_write:
318         /*
319          * Both of fdatasync() and fsync() are able to be recovered from
320          * sudden-power-off.
321          */
322         f2fs_down_read(&F2FS_I(inode)->i_sem);
323         cp_reason = need_do_checkpoint(inode);
324         f2fs_up_read(&F2FS_I(inode)->i_sem);
325
326         if (cp_reason) {
327                 /* all the dirty node pages should be flushed for POR */
328                 ret = f2fs_sync_fs(inode->i_sb, 1);
329
330                 /*
331                  * We've secured consistency through sync_fs. Following pino
332                  * will be used only for fsynced inodes after checkpoint.
333                  */
334                 try_to_fix_pino(inode);
335                 clear_inode_flag(inode, FI_APPEND_WRITE);
336                 clear_inode_flag(inode, FI_UPDATE_WRITE);
337                 goto out;
338         }
339 sync_nodes:
340         atomic_inc(&sbi->wb_sync_req[NODE]);
341         ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
342         atomic_dec(&sbi->wb_sync_req[NODE]);
343         if (ret)
344                 goto out;
345
346         /* if cp_error was enabled, we should avoid infinite loop */
347         if (unlikely(f2fs_cp_error(sbi))) {
348                 ret = -EIO;
349                 goto out;
350         }
351
352         if (f2fs_need_inode_block_update(sbi, ino)) {
353                 f2fs_mark_inode_dirty_sync(inode, true);
354                 f2fs_write_inode(inode, NULL);
355                 goto sync_nodes;
356         }
357
358         /*
359          * If it's atomic_write, it's just fine to keep write ordering. So
360          * here we don't need to wait for node write completion, since we use
361          * node chain which serializes node blocks. If one of node writes are
362          * reordered, we can see simply broken chain, resulting in stopping
363          * roll-forward recovery. It means we'll recover all or none node blocks
364          * given fsync mark.
365          */
366         if (!atomic) {
367                 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
368                 if (ret)
369                         goto out;
370         }
371
372         /* once recovery info is written, don't need to tack this */
373         f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
374         clear_inode_flag(inode, FI_APPEND_WRITE);
375 flush_out:
376         if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) ||
377             (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi)))
378                 ret = f2fs_issue_flush(sbi, inode->i_ino);
379         if (!ret) {
380                 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
381                 clear_inode_flag(inode, FI_UPDATE_WRITE);
382                 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
383         }
384         f2fs_update_time(sbi, REQ_TIME);
385 out:
386         trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
387         return ret;
388 }
389
390 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
391 {
392         if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
393                 return -EIO;
394         return f2fs_do_sync_file(file, start, end, datasync, false);
395 }
396
397 static bool __found_offset(struct address_space *mapping,
398                 struct dnode_of_data *dn, pgoff_t index, int whence)
399 {
400         block_t blkaddr = f2fs_data_blkaddr(dn);
401         struct inode *inode = mapping->host;
402         bool compressed_cluster = false;
403
404         if (f2fs_compressed_file(inode)) {
405                 block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
406                     ALIGN_DOWN(dn->ofs_in_node, F2FS_I(inode)->i_cluster_size));
407
408                 compressed_cluster = first_blkaddr == COMPRESS_ADDR;
409         }
410
411         switch (whence) {
412         case SEEK_DATA:
413                 if (__is_valid_data_blkaddr(blkaddr))
414                         return true;
415                 if (blkaddr == NEW_ADDR &&
416                     xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
417                         return true;
418                 if (compressed_cluster)
419                         return true;
420                 break;
421         case SEEK_HOLE:
422                 if (compressed_cluster)
423                         return false;
424                 if (blkaddr == NULL_ADDR)
425                         return true;
426                 break;
427         }
428         return false;
429 }
430
431 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
432 {
433         struct inode *inode = file->f_mapping->host;
434         loff_t maxbytes = inode->i_sb->s_maxbytes;
435         struct dnode_of_data dn;
436         pgoff_t pgofs, end_offset;
437         loff_t data_ofs = offset;
438         loff_t isize;
439         int err = 0;
440
441         inode_lock_shared(inode);
442
443         isize = i_size_read(inode);
444         if (offset >= isize)
445                 goto fail;
446
447         /* handle inline data case */
448         if (f2fs_has_inline_data(inode)) {
449                 if (whence == SEEK_HOLE) {
450                         data_ofs = isize;
451                         goto found;
452                 } else if (whence == SEEK_DATA) {
453                         data_ofs = offset;
454                         goto found;
455                 }
456         }
457
458         pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
459
460         for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
461                 set_new_dnode(&dn, inode, NULL, NULL, 0);
462                 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
463                 if (err && err != -ENOENT) {
464                         goto fail;
465                 } else if (err == -ENOENT) {
466                         /* direct node does not exists */
467                         if (whence == SEEK_DATA) {
468                                 pgofs = f2fs_get_next_page_offset(&dn, pgofs);
469                                 continue;
470                         } else {
471                                 goto found;
472                         }
473                 }
474
475                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
476
477                 /* find data/hole in dnode block */
478                 for (; dn.ofs_in_node < end_offset;
479                                 dn.ofs_in_node++, pgofs++,
480                                 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
481                         block_t blkaddr;
482
483                         blkaddr = f2fs_data_blkaddr(&dn);
484
485                         if (__is_valid_data_blkaddr(blkaddr) &&
486                                 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
487                                         blkaddr, DATA_GENERIC_ENHANCE)) {
488                                 f2fs_put_dnode(&dn);
489                                 goto fail;
490                         }
491
492                         if (__found_offset(file->f_mapping, &dn,
493                                                         pgofs, whence)) {
494                                 f2fs_put_dnode(&dn);
495                                 goto found;
496                         }
497                 }
498                 f2fs_put_dnode(&dn);
499         }
500
501         if (whence == SEEK_DATA)
502                 goto fail;
503 found:
504         if (whence == SEEK_HOLE && data_ofs > isize)
505                 data_ofs = isize;
506         inode_unlock_shared(inode);
507         return vfs_setpos(file, data_ofs, maxbytes);
508 fail:
509         inode_unlock_shared(inode);
510         return -ENXIO;
511 }
512
513 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
514 {
515         struct inode *inode = file->f_mapping->host;
516         loff_t maxbytes = inode->i_sb->s_maxbytes;
517
518         if (f2fs_compressed_file(inode))
519                 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
520
521         switch (whence) {
522         case SEEK_SET:
523         case SEEK_CUR:
524         case SEEK_END:
525                 return generic_file_llseek_size(file, offset, whence,
526                                                 maxbytes, i_size_read(inode));
527         case SEEK_DATA:
528         case SEEK_HOLE:
529                 if (offset < 0)
530                         return -ENXIO;
531                 return f2fs_seek_block(file, offset, whence);
532         }
533
534         return -EINVAL;
535 }
536
537 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
538 {
539         struct inode *inode = file_inode(file);
540
541         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
542                 return -EIO;
543
544         if (!f2fs_is_compress_backend_ready(inode))
545                 return -EOPNOTSUPP;
546
547         file_accessed(file);
548         vma->vm_ops = &f2fs_file_vm_ops;
549
550         f2fs_down_read(&F2FS_I(inode)->i_sem);
551         set_inode_flag(inode, FI_MMAP_FILE);
552         f2fs_up_read(&F2FS_I(inode)->i_sem);
553
554         return 0;
555 }
556
557 static int f2fs_file_open(struct inode *inode, struct file *filp)
558 {
559         int err = fscrypt_file_open(inode, filp);
560
561         if (err)
562                 return err;
563
564         if (!f2fs_is_compress_backend_ready(inode))
565                 return -EOPNOTSUPP;
566
567         err = fsverity_file_open(inode, filp);
568         if (err)
569                 return err;
570
571         filp->f_mode |= FMODE_NOWAIT;
572         filp->f_mode |= FMODE_CAN_ODIRECT;
573
574         return dquot_file_open(inode, filp);
575 }
576
577 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
578 {
579         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
580         int nr_free = 0, ofs = dn->ofs_in_node, len = count;
581         __le32 *addr;
582         bool compressed_cluster = false;
583         int cluster_index = 0, valid_blocks = 0;
584         int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
585         bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
586
587         addr = get_dnode_addr(dn->inode, dn->node_page) + ofs;
588
589         /* Assumption: truncation starts with cluster */
590         for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
591                 block_t blkaddr = le32_to_cpu(*addr);
592
593                 if (f2fs_compressed_file(dn->inode) &&
594                                         !(cluster_index & (cluster_size - 1))) {
595                         if (compressed_cluster)
596                                 f2fs_i_compr_blocks_update(dn->inode,
597                                                         valid_blocks, false);
598                         compressed_cluster = (blkaddr == COMPRESS_ADDR);
599                         valid_blocks = 0;
600                 }
601
602                 if (blkaddr == NULL_ADDR)
603                         continue;
604
605                 f2fs_set_data_blkaddr(dn, NULL_ADDR);
606
607                 if (__is_valid_data_blkaddr(blkaddr)) {
608                         if (time_to_inject(sbi, FAULT_BLKADDR_CONSISTENCE))
609                                 continue;
610                         if (!f2fs_is_valid_blkaddr_raw(sbi, blkaddr,
611                                                 DATA_GENERIC_ENHANCE))
612                                 continue;
613                         if (compressed_cluster)
614                                 valid_blocks++;
615                 }
616
617                 f2fs_invalidate_blocks(sbi, blkaddr);
618
619                 if (!released || blkaddr != COMPRESS_ADDR)
620                         nr_free++;
621         }
622
623         if (compressed_cluster)
624                 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
625
626         if (nr_free) {
627                 pgoff_t fofs;
628                 /*
629                  * once we invalidate valid blkaddr in range [ofs, ofs + count],
630                  * we will invalidate all blkaddr in the whole range.
631                  */
632                 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
633                                                         dn->inode) + ofs;
634                 f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
635                 f2fs_update_age_extent_cache_range(dn, fofs, len);
636                 dec_valid_block_count(sbi, dn->inode, nr_free);
637         }
638         dn->ofs_in_node = ofs;
639
640         f2fs_update_time(sbi, REQ_TIME);
641         trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
642                                          dn->ofs_in_node, nr_free);
643 }
644
645 static int truncate_partial_data_page(struct inode *inode, u64 from,
646                                                                 bool cache_only)
647 {
648         loff_t offset = from & (PAGE_SIZE - 1);
649         pgoff_t index = from >> PAGE_SHIFT;
650         struct address_space *mapping = inode->i_mapping;
651         struct page *page;
652
653         if (!offset && !cache_only)
654                 return 0;
655
656         if (cache_only) {
657                 page = find_lock_page(mapping, index);
658                 if (page && PageUptodate(page))
659                         goto truncate_out;
660                 f2fs_put_page(page, 1);
661                 return 0;
662         }
663
664         page = f2fs_get_lock_data_page(inode, index, true);
665         if (IS_ERR(page))
666                 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
667 truncate_out:
668         f2fs_wait_on_page_writeback(page, DATA, true, true);
669         zero_user(page, offset, PAGE_SIZE - offset);
670
671         /* An encrypted inode should have a key and truncate the last page. */
672         f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
673         if (!cache_only)
674                 set_page_dirty(page);
675         f2fs_put_page(page, 1);
676         return 0;
677 }
678
679 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
680 {
681         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
682         struct dnode_of_data dn;
683         pgoff_t free_from;
684         int count = 0, err = 0;
685         struct page *ipage;
686         bool truncate_page = false;
687
688         trace_f2fs_truncate_blocks_enter(inode, from);
689
690         free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
691
692         if (free_from >= max_file_blocks(inode))
693                 goto free_partial;
694
695         if (lock)
696                 f2fs_lock_op(sbi);
697
698         ipage = f2fs_get_node_page(sbi, inode->i_ino);
699         if (IS_ERR(ipage)) {
700                 err = PTR_ERR(ipage);
701                 goto out;
702         }
703
704         if (f2fs_has_inline_data(inode)) {
705                 f2fs_truncate_inline_inode(inode, ipage, from);
706                 f2fs_put_page(ipage, 1);
707                 truncate_page = true;
708                 goto out;
709         }
710
711         set_new_dnode(&dn, inode, ipage, NULL, 0);
712         err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
713         if (err) {
714                 if (err == -ENOENT)
715                         goto free_next;
716                 goto out;
717         }
718
719         count = ADDRS_PER_PAGE(dn.node_page, inode);
720
721         count -= dn.ofs_in_node;
722         f2fs_bug_on(sbi, count < 0);
723
724         if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
725                 f2fs_truncate_data_blocks_range(&dn, count);
726                 free_from += count;
727         }
728
729         f2fs_put_dnode(&dn);
730 free_next:
731         err = f2fs_truncate_inode_blocks(inode, free_from);
732 out:
733         if (lock)
734                 f2fs_unlock_op(sbi);
735 free_partial:
736         /* lastly zero out the first data page */
737         if (!err)
738                 err = truncate_partial_data_page(inode, from, truncate_page);
739
740         trace_f2fs_truncate_blocks_exit(inode, err);
741         return err;
742 }
743
744 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
745 {
746         u64 free_from = from;
747         int err;
748
749 #ifdef CONFIG_F2FS_FS_COMPRESSION
750         /*
751          * for compressed file, only support cluster size
752          * aligned truncation.
753          */
754         if (f2fs_compressed_file(inode))
755                 free_from = round_up(from,
756                                 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
757 #endif
758
759         err = f2fs_do_truncate_blocks(inode, free_from, lock);
760         if (err)
761                 return err;
762
763 #ifdef CONFIG_F2FS_FS_COMPRESSION
764         /*
765          * For compressed file, after release compress blocks, don't allow write
766          * direct, but we should allow write direct after truncate to zero.
767          */
768         if (f2fs_compressed_file(inode) && !free_from
769                         && is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
770                 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
771
772         if (from != free_from) {
773                 err = f2fs_truncate_partial_cluster(inode, from, lock);
774                 if (err)
775                         return err;
776         }
777 #endif
778
779         return 0;
780 }
781
782 int f2fs_truncate(struct inode *inode)
783 {
784         int err;
785
786         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
787                 return -EIO;
788
789         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
790                                 S_ISLNK(inode->i_mode)))
791                 return 0;
792
793         trace_f2fs_truncate(inode);
794
795         if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE))
796                 return -EIO;
797
798         err = f2fs_dquot_initialize(inode);
799         if (err)
800                 return err;
801
802         /* we should check inline_data size */
803         if (!f2fs_may_inline_data(inode)) {
804                 err = f2fs_convert_inline_inode(inode);
805                 if (err)
806                         return err;
807         }
808
809         err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
810         if (err)
811                 return err;
812
813         inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
814         f2fs_mark_inode_dirty_sync(inode, false);
815         return 0;
816 }
817
818 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
819 {
820         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
821
822         if (!fscrypt_dio_supported(inode))
823                 return true;
824         if (fsverity_active(inode))
825                 return true;
826         if (f2fs_compressed_file(inode))
827                 return true;
828
829         /* disallow direct IO if any of devices has unaligned blksize */
830         if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
831                 return true;
832         /*
833          * for blkzoned device, fallback direct IO to buffered IO, so
834          * all IOs can be serialized by log-structured write.
835          */
836         if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE) &&
837             !f2fs_is_pinned_file(inode))
838                 return true;
839         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
840                 return true;
841
842         return false;
843 }
844
845 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
846                  struct kstat *stat, u32 request_mask, unsigned int query_flags)
847 {
848         struct inode *inode = d_inode(path->dentry);
849         struct f2fs_inode_info *fi = F2FS_I(inode);
850         struct f2fs_inode *ri = NULL;
851         unsigned int flags;
852
853         if (f2fs_has_extra_attr(inode) &&
854                         f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
855                         F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
856                 stat->result_mask |= STATX_BTIME;
857                 stat->btime.tv_sec = fi->i_crtime.tv_sec;
858                 stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
859         }
860
861         /*
862          * Return the DIO alignment restrictions if requested.  We only return
863          * this information when requested, since on encrypted files it might
864          * take a fair bit of work to get if the file wasn't opened recently.
865          *
866          * f2fs sometimes supports DIO reads but not DIO writes.  STATX_DIOALIGN
867          * cannot represent that, so in that case we report no DIO support.
868          */
869         if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
870                 unsigned int bsize = i_blocksize(inode);
871
872                 stat->result_mask |= STATX_DIOALIGN;
873                 if (!f2fs_force_buffered_io(inode, WRITE)) {
874                         stat->dio_mem_align = bsize;
875                         stat->dio_offset_align = bsize;
876                 }
877         }
878
879         flags = fi->i_flags;
880         if (flags & F2FS_COMPR_FL)
881                 stat->attributes |= STATX_ATTR_COMPRESSED;
882         if (flags & F2FS_APPEND_FL)
883                 stat->attributes |= STATX_ATTR_APPEND;
884         if (IS_ENCRYPTED(inode))
885                 stat->attributes |= STATX_ATTR_ENCRYPTED;
886         if (flags & F2FS_IMMUTABLE_FL)
887                 stat->attributes |= STATX_ATTR_IMMUTABLE;
888         if (flags & F2FS_NODUMP_FL)
889                 stat->attributes |= STATX_ATTR_NODUMP;
890         if (IS_VERITY(inode))
891                 stat->attributes |= STATX_ATTR_VERITY;
892
893         stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
894                                   STATX_ATTR_APPEND |
895                                   STATX_ATTR_ENCRYPTED |
896                                   STATX_ATTR_IMMUTABLE |
897                                   STATX_ATTR_NODUMP |
898                                   STATX_ATTR_VERITY);
899
900         generic_fillattr(idmap, request_mask, inode, stat);
901
902         /* we need to show initial sectors used for inline_data/dentries */
903         if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
904                                         f2fs_has_inline_dentry(inode))
905                 stat->blocks += (stat->size + 511) >> 9;
906
907         return 0;
908 }
909
910 #ifdef CONFIG_F2FS_FS_POSIX_ACL
911 static void __setattr_copy(struct mnt_idmap *idmap,
912                            struct inode *inode, const struct iattr *attr)
913 {
914         unsigned int ia_valid = attr->ia_valid;
915
916         i_uid_update(idmap, attr, inode);
917         i_gid_update(idmap, attr, inode);
918         if (ia_valid & ATTR_ATIME)
919                 inode_set_atime_to_ts(inode, attr->ia_atime);
920         if (ia_valid & ATTR_MTIME)
921                 inode_set_mtime_to_ts(inode, attr->ia_mtime);
922         if (ia_valid & ATTR_CTIME)
923                 inode_set_ctime_to_ts(inode, attr->ia_ctime);
924         if (ia_valid & ATTR_MODE) {
925                 umode_t mode = attr->ia_mode;
926                 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
927
928                 if (!vfsgid_in_group_p(vfsgid) &&
929                     !capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
930                         mode &= ~S_ISGID;
931                 set_acl_inode(inode, mode);
932         }
933 }
934 #else
935 #define __setattr_copy setattr_copy
936 #endif
937
938 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
939                  struct iattr *attr)
940 {
941         struct inode *inode = d_inode(dentry);
942         int err;
943
944         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
945                 return -EIO;
946
947         if (unlikely(IS_IMMUTABLE(inode)))
948                 return -EPERM;
949
950         if (unlikely(IS_APPEND(inode) &&
951                         (attr->ia_valid & (ATTR_MODE | ATTR_UID |
952                                   ATTR_GID | ATTR_TIMES_SET))))
953                 return -EPERM;
954
955         if ((attr->ia_valid & ATTR_SIZE)) {
956                 if (!f2fs_is_compress_backend_ready(inode))
957                         return -EOPNOTSUPP;
958                 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) &&
959                         !IS_ALIGNED(attr->ia_size,
960                         F2FS_BLK_TO_BYTES(F2FS_I(inode)->i_cluster_size)))
961                         return -EINVAL;
962         }
963
964         err = setattr_prepare(idmap, dentry, attr);
965         if (err)
966                 return err;
967
968         err = fscrypt_prepare_setattr(dentry, attr);
969         if (err)
970                 return err;
971
972         err = fsverity_prepare_setattr(dentry, attr);
973         if (err)
974                 return err;
975
976         if (is_quota_modification(idmap, inode, attr)) {
977                 err = f2fs_dquot_initialize(inode);
978                 if (err)
979                         return err;
980         }
981         if (i_uid_needs_update(idmap, attr, inode) ||
982             i_gid_needs_update(idmap, attr, inode)) {
983                 f2fs_lock_op(F2FS_I_SB(inode));
984                 err = dquot_transfer(idmap, inode, attr);
985                 if (err) {
986                         set_sbi_flag(F2FS_I_SB(inode),
987                                         SBI_QUOTA_NEED_REPAIR);
988                         f2fs_unlock_op(F2FS_I_SB(inode));
989                         return err;
990                 }
991                 /*
992                  * update uid/gid under lock_op(), so that dquot and inode can
993                  * be updated atomically.
994                  */
995                 i_uid_update(idmap, attr, inode);
996                 i_gid_update(idmap, attr, inode);
997                 f2fs_mark_inode_dirty_sync(inode, true);
998                 f2fs_unlock_op(F2FS_I_SB(inode));
999         }
1000
1001         if (attr->ia_valid & ATTR_SIZE) {
1002                 loff_t old_size = i_size_read(inode);
1003
1004                 if (attr->ia_size > MAX_INLINE_DATA(inode)) {
1005                         /*
1006                          * should convert inline inode before i_size_write to
1007                          * keep smaller than inline_data size with inline flag.
1008                          */
1009                         err = f2fs_convert_inline_inode(inode);
1010                         if (err)
1011                                 return err;
1012                 }
1013
1014                 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1015                 filemap_invalidate_lock(inode->i_mapping);
1016
1017                 truncate_setsize(inode, attr->ia_size);
1018
1019                 if (attr->ia_size <= old_size)
1020                         err = f2fs_truncate(inode);
1021                 /*
1022                  * do not trim all blocks after i_size if target size is
1023                  * larger than i_size.
1024                  */
1025                 filemap_invalidate_unlock(inode->i_mapping);
1026                 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1027                 if (err)
1028                         return err;
1029
1030                 spin_lock(&F2FS_I(inode)->i_size_lock);
1031                 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1032                 F2FS_I(inode)->last_disk_size = i_size_read(inode);
1033                 spin_unlock(&F2FS_I(inode)->i_size_lock);
1034         }
1035
1036         __setattr_copy(idmap, inode, attr);
1037
1038         if (attr->ia_valid & ATTR_MODE) {
1039                 err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode));
1040
1041                 if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1042                         if (!err)
1043                                 inode->i_mode = F2FS_I(inode)->i_acl_mode;
1044                         clear_inode_flag(inode, FI_ACL_MODE);
1045                 }
1046         }
1047
1048         /* file size may changed here */
1049         f2fs_mark_inode_dirty_sync(inode, true);
1050
1051         /* inode change will produce dirty node pages flushed by checkpoint */
1052         f2fs_balance_fs(F2FS_I_SB(inode), true);
1053
1054         return err;
1055 }
1056
1057 const struct inode_operations f2fs_file_inode_operations = {
1058         .getattr        = f2fs_getattr,
1059         .setattr        = f2fs_setattr,
1060         .get_inode_acl  = f2fs_get_acl,
1061         .set_acl        = f2fs_set_acl,
1062         .listxattr      = f2fs_listxattr,
1063         .fiemap         = f2fs_fiemap,
1064         .fileattr_get   = f2fs_fileattr_get,
1065         .fileattr_set   = f2fs_fileattr_set,
1066 };
1067
1068 static int fill_zero(struct inode *inode, pgoff_t index,
1069                                         loff_t start, loff_t len)
1070 {
1071         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1072         struct page *page;
1073
1074         if (!len)
1075                 return 0;
1076
1077         f2fs_balance_fs(sbi, true);
1078
1079         f2fs_lock_op(sbi);
1080         page = f2fs_get_new_data_page(inode, NULL, index, false);
1081         f2fs_unlock_op(sbi);
1082
1083         if (IS_ERR(page))
1084                 return PTR_ERR(page);
1085
1086         f2fs_wait_on_page_writeback(page, DATA, true, true);
1087         zero_user(page, start, len);
1088         set_page_dirty(page);
1089         f2fs_put_page(page, 1);
1090         return 0;
1091 }
1092
1093 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1094 {
1095         int err;
1096
1097         while (pg_start < pg_end) {
1098                 struct dnode_of_data dn;
1099                 pgoff_t end_offset, count;
1100
1101                 set_new_dnode(&dn, inode, NULL, NULL, 0);
1102                 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1103                 if (err) {
1104                         if (err == -ENOENT) {
1105                                 pg_start = f2fs_get_next_page_offset(&dn,
1106                                                                 pg_start);
1107                                 continue;
1108                         }
1109                         return err;
1110                 }
1111
1112                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1113                 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1114
1115                 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1116
1117                 f2fs_truncate_data_blocks_range(&dn, count);
1118                 f2fs_put_dnode(&dn);
1119
1120                 pg_start += count;
1121         }
1122         return 0;
1123 }
1124
1125 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1126 {
1127         pgoff_t pg_start, pg_end;
1128         loff_t off_start, off_end;
1129         int ret;
1130
1131         ret = f2fs_convert_inline_inode(inode);
1132         if (ret)
1133                 return ret;
1134
1135         pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1136         pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1137
1138         off_start = offset & (PAGE_SIZE - 1);
1139         off_end = (offset + len) & (PAGE_SIZE - 1);
1140
1141         if (pg_start == pg_end) {
1142                 ret = fill_zero(inode, pg_start, off_start,
1143                                                 off_end - off_start);
1144                 if (ret)
1145                         return ret;
1146         } else {
1147                 if (off_start) {
1148                         ret = fill_zero(inode, pg_start++, off_start,
1149                                                 PAGE_SIZE - off_start);
1150                         if (ret)
1151                                 return ret;
1152                 }
1153                 if (off_end) {
1154                         ret = fill_zero(inode, pg_end, 0, off_end);
1155                         if (ret)
1156                                 return ret;
1157                 }
1158
1159                 if (pg_start < pg_end) {
1160                         loff_t blk_start, blk_end;
1161                         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1162
1163                         f2fs_balance_fs(sbi, true);
1164
1165                         blk_start = (loff_t)pg_start << PAGE_SHIFT;
1166                         blk_end = (loff_t)pg_end << PAGE_SHIFT;
1167
1168                         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1169                         filemap_invalidate_lock(inode->i_mapping);
1170
1171                         truncate_pagecache_range(inode, blk_start, blk_end - 1);
1172
1173                         f2fs_lock_op(sbi);
1174                         ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1175                         f2fs_unlock_op(sbi);
1176
1177                         filemap_invalidate_unlock(inode->i_mapping);
1178                         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1179                 }
1180         }
1181
1182         return ret;
1183 }
1184
1185 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1186                                 int *do_replace, pgoff_t off, pgoff_t len)
1187 {
1188         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1189         struct dnode_of_data dn;
1190         int ret, done, i;
1191
1192 next_dnode:
1193         set_new_dnode(&dn, inode, NULL, NULL, 0);
1194         ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1195         if (ret && ret != -ENOENT) {
1196                 return ret;
1197         } else if (ret == -ENOENT) {
1198                 if (dn.max_level == 0)
1199                         return -ENOENT;
1200                 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1201                                                 dn.ofs_in_node, len);
1202                 blkaddr += done;
1203                 do_replace += done;
1204                 goto next;
1205         }
1206
1207         done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1208                                                         dn.ofs_in_node, len);
1209         for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1210                 *blkaddr = f2fs_data_blkaddr(&dn);
1211
1212                 if (__is_valid_data_blkaddr(*blkaddr) &&
1213                         !f2fs_is_valid_blkaddr(sbi, *blkaddr,
1214                                         DATA_GENERIC_ENHANCE)) {
1215                         f2fs_put_dnode(&dn);
1216                         return -EFSCORRUPTED;
1217                 }
1218
1219                 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1220
1221                         if (f2fs_lfs_mode(sbi)) {
1222                                 f2fs_put_dnode(&dn);
1223                                 return -EOPNOTSUPP;
1224                         }
1225
1226                         /* do not invalidate this block address */
1227                         f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1228                         *do_replace = 1;
1229                 }
1230         }
1231         f2fs_put_dnode(&dn);
1232 next:
1233         len -= done;
1234         off += done;
1235         if (len)
1236                 goto next_dnode;
1237         return 0;
1238 }
1239
1240 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1241                                 int *do_replace, pgoff_t off, int len)
1242 {
1243         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1244         struct dnode_of_data dn;
1245         int ret, i;
1246
1247         for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1248                 if (*do_replace == 0)
1249                         continue;
1250
1251                 set_new_dnode(&dn, inode, NULL, NULL, 0);
1252                 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1253                 if (ret) {
1254                         dec_valid_block_count(sbi, inode, 1);
1255                         f2fs_invalidate_blocks(sbi, *blkaddr);
1256                 } else {
1257                         f2fs_update_data_blkaddr(&dn, *blkaddr);
1258                 }
1259                 f2fs_put_dnode(&dn);
1260         }
1261         return 0;
1262 }
1263
1264 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1265                         block_t *blkaddr, int *do_replace,
1266                         pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1267 {
1268         struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1269         pgoff_t i = 0;
1270         int ret;
1271
1272         while (i < len) {
1273                 if (blkaddr[i] == NULL_ADDR && !full) {
1274                         i++;
1275                         continue;
1276                 }
1277
1278                 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1279                         struct dnode_of_data dn;
1280                         struct node_info ni;
1281                         size_t new_size;
1282                         pgoff_t ilen;
1283
1284                         set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1285                         ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1286                         if (ret)
1287                                 return ret;
1288
1289                         ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1290                         if (ret) {
1291                                 f2fs_put_dnode(&dn);
1292                                 return ret;
1293                         }
1294
1295                         ilen = min((pgoff_t)
1296                                 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1297                                                 dn.ofs_in_node, len - i);
1298                         do {
1299                                 dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1300                                 f2fs_truncate_data_blocks_range(&dn, 1);
1301
1302                                 if (do_replace[i]) {
1303                                         f2fs_i_blocks_write(src_inode,
1304                                                         1, false, false);
1305                                         f2fs_i_blocks_write(dst_inode,
1306                                                         1, true, false);
1307                                         f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1308                                         blkaddr[i], ni.version, true, false);
1309
1310                                         do_replace[i] = 0;
1311                                 }
1312                                 dn.ofs_in_node++;
1313                                 i++;
1314                                 new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1315                                 if (dst_inode->i_size < new_size)
1316                                         f2fs_i_size_write(dst_inode, new_size);
1317                         } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1318
1319                         f2fs_put_dnode(&dn);
1320                 } else {
1321                         struct page *psrc, *pdst;
1322
1323                         psrc = f2fs_get_lock_data_page(src_inode,
1324                                                         src + i, true);
1325                         if (IS_ERR(psrc))
1326                                 return PTR_ERR(psrc);
1327                         pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1328                                                                 true);
1329                         if (IS_ERR(pdst)) {
1330                                 f2fs_put_page(psrc, 1);
1331                                 return PTR_ERR(pdst);
1332                         }
1333
1334                         f2fs_wait_on_page_writeback(pdst, DATA, true, true);
1335
1336                         memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
1337                         set_page_dirty(pdst);
1338                         set_page_private_gcing(pdst);
1339                         f2fs_put_page(pdst, 1);
1340                         f2fs_put_page(psrc, 1);
1341
1342                         ret = f2fs_truncate_hole(src_inode,
1343                                                 src + i, src + i + 1);
1344                         if (ret)
1345                                 return ret;
1346                         i++;
1347                 }
1348         }
1349         return 0;
1350 }
1351
1352 static int __exchange_data_block(struct inode *src_inode,
1353                         struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1354                         pgoff_t len, bool full)
1355 {
1356         block_t *src_blkaddr;
1357         int *do_replace;
1358         pgoff_t olen;
1359         int ret;
1360
1361         while (len) {
1362                 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1363
1364                 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1365                                         array_size(olen, sizeof(block_t)),
1366                                         GFP_NOFS);
1367                 if (!src_blkaddr)
1368                         return -ENOMEM;
1369
1370                 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1371                                         array_size(olen, sizeof(int)),
1372                                         GFP_NOFS);
1373                 if (!do_replace) {
1374                         kvfree(src_blkaddr);
1375                         return -ENOMEM;
1376                 }
1377
1378                 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1379                                         do_replace, src, olen);
1380                 if (ret)
1381                         goto roll_back;
1382
1383                 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1384                                         do_replace, src, dst, olen, full);
1385                 if (ret)
1386                         goto roll_back;
1387
1388                 src += olen;
1389                 dst += olen;
1390                 len -= olen;
1391
1392                 kvfree(src_blkaddr);
1393                 kvfree(do_replace);
1394         }
1395         return 0;
1396
1397 roll_back:
1398         __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1399         kvfree(src_blkaddr);
1400         kvfree(do_replace);
1401         return ret;
1402 }
1403
1404 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1405 {
1406         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1407         pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1408         pgoff_t start = offset >> PAGE_SHIFT;
1409         pgoff_t end = (offset + len) >> PAGE_SHIFT;
1410         int ret;
1411
1412         f2fs_balance_fs(sbi, true);
1413
1414         /* avoid gc operation during block exchange */
1415         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1416         filemap_invalidate_lock(inode->i_mapping);
1417
1418         f2fs_lock_op(sbi);
1419         f2fs_drop_extent_tree(inode);
1420         truncate_pagecache(inode, offset);
1421         ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1422         f2fs_unlock_op(sbi);
1423
1424         filemap_invalidate_unlock(inode->i_mapping);
1425         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1426         return ret;
1427 }
1428
1429 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1430 {
1431         loff_t new_size;
1432         int ret;
1433
1434         if (offset + len >= i_size_read(inode))
1435                 return -EINVAL;
1436
1437         /* collapse range should be aligned to block size of f2fs. */
1438         if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1439                 return -EINVAL;
1440
1441         ret = f2fs_convert_inline_inode(inode);
1442         if (ret)
1443                 return ret;
1444
1445         /* write out all dirty pages from offset */
1446         ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1447         if (ret)
1448                 return ret;
1449
1450         ret = f2fs_do_collapse(inode, offset, len);
1451         if (ret)
1452                 return ret;
1453
1454         /* write out all moved pages, if possible */
1455         filemap_invalidate_lock(inode->i_mapping);
1456         filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1457         truncate_pagecache(inode, offset);
1458
1459         new_size = i_size_read(inode) - len;
1460         ret = f2fs_truncate_blocks(inode, new_size, true);
1461         filemap_invalidate_unlock(inode->i_mapping);
1462         if (!ret)
1463                 f2fs_i_size_write(inode, new_size);
1464         return ret;
1465 }
1466
1467 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1468                                                                 pgoff_t end)
1469 {
1470         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1471         pgoff_t index = start;
1472         unsigned int ofs_in_node = dn->ofs_in_node;
1473         blkcnt_t count = 0;
1474         int ret;
1475
1476         for (; index < end; index++, dn->ofs_in_node++) {
1477                 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1478                         count++;
1479         }
1480
1481         dn->ofs_in_node = ofs_in_node;
1482         ret = f2fs_reserve_new_blocks(dn, count);
1483         if (ret)
1484                 return ret;
1485
1486         dn->ofs_in_node = ofs_in_node;
1487         for (index = start; index < end; index++, dn->ofs_in_node++) {
1488                 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1489                 /*
1490                  * f2fs_reserve_new_blocks will not guarantee entire block
1491                  * allocation.
1492                  */
1493                 if (dn->data_blkaddr == NULL_ADDR) {
1494                         ret = -ENOSPC;
1495                         break;
1496                 }
1497
1498                 if (dn->data_blkaddr == NEW_ADDR)
1499                         continue;
1500
1501                 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1502                                         DATA_GENERIC_ENHANCE)) {
1503                         ret = -EFSCORRUPTED;
1504                         break;
1505                 }
1506
1507                 f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1508                 f2fs_set_data_blkaddr(dn, NEW_ADDR);
1509         }
1510
1511         f2fs_update_read_extent_cache_range(dn, start, 0, index - start);
1512         f2fs_update_age_extent_cache_range(dn, start, index - start);
1513
1514         return ret;
1515 }
1516
1517 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1518                                                                 int mode)
1519 {
1520         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1521         struct address_space *mapping = inode->i_mapping;
1522         pgoff_t index, pg_start, pg_end;
1523         loff_t new_size = i_size_read(inode);
1524         loff_t off_start, off_end;
1525         int ret = 0;
1526
1527         ret = inode_newsize_ok(inode, (len + offset));
1528         if (ret)
1529                 return ret;
1530
1531         ret = f2fs_convert_inline_inode(inode);
1532         if (ret)
1533                 return ret;
1534
1535         ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1536         if (ret)
1537                 return ret;
1538
1539         pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1540         pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1541
1542         off_start = offset & (PAGE_SIZE - 1);
1543         off_end = (offset + len) & (PAGE_SIZE - 1);
1544
1545         if (pg_start == pg_end) {
1546                 ret = fill_zero(inode, pg_start, off_start,
1547                                                 off_end - off_start);
1548                 if (ret)
1549                         return ret;
1550
1551                 new_size = max_t(loff_t, new_size, offset + len);
1552         } else {
1553                 if (off_start) {
1554                         ret = fill_zero(inode, pg_start++, off_start,
1555                                                 PAGE_SIZE - off_start);
1556                         if (ret)
1557                                 return ret;
1558
1559                         new_size = max_t(loff_t, new_size,
1560                                         (loff_t)pg_start << PAGE_SHIFT);
1561                 }
1562
1563                 for (index = pg_start; index < pg_end;) {
1564                         struct dnode_of_data dn;
1565                         unsigned int end_offset;
1566                         pgoff_t end;
1567
1568                         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1569                         filemap_invalidate_lock(mapping);
1570
1571                         truncate_pagecache_range(inode,
1572                                 (loff_t)index << PAGE_SHIFT,
1573                                 ((loff_t)pg_end << PAGE_SHIFT) - 1);
1574
1575                         f2fs_lock_op(sbi);
1576
1577                         set_new_dnode(&dn, inode, NULL, NULL, 0);
1578                         ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1579                         if (ret) {
1580                                 f2fs_unlock_op(sbi);
1581                                 filemap_invalidate_unlock(mapping);
1582                                 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1583                                 goto out;
1584                         }
1585
1586                         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1587                         end = min(pg_end, end_offset - dn.ofs_in_node + index);
1588
1589                         ret = f2fs_do_zero_range(&dn, index, end);
1590                         f2fs_put_dnode(&dn);
1591
1592                         f2fs_unlock_op(sbi);
1593                         filemap_invalidate_unlock(mapping);
1594                         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1595
1596                         f2fs_balance_fs(sbi, dn.node_changed);
1597
1598                         if (ret)
1599                                 goto out;
1600
1601                         index = end;
1602                         new_size = max_t(loff_t, new_size,
1603                                         (loff_t)index << PAGE_SHIFT);
1604                 }
1605
1606                 if (off_end) {
1607                         ret = fill_zero(inode, pg_end, 0, off_end);
1608                         if (ret)
1609                                 goto out;
1610
1611                         new_size = max_t(loff_t, new_size, offset + len);
1612                 }
1613         }
1614
1615 out:
1616         if (new_size > i_size_read(inode)) {
1617                 if (mode & FALLOC_FL_KEEP_SIZE)
1618                         file_set_keep_isize(inode);
1619                 else
1620                         f2fs_i_size_write(inode, new_size);
1621         }
1622         return ret;
1623 }
1624
1625 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1626 {
1627         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1628         struct address_space *mapping = inode->i_mapping;
1629         pgoff_t nr, pg_start, pg_end, delta, idx;
1630         loff_t new_size;
1631         int ret = 0;
1632
1633         new_size = i_size_read(inode) + len;
1634         ret = inode_newsize_ok(inode, new_size);
1635         if (ret)
1636                 return ret;
1637
1638         if (offset >= i_size_read(inode))
1639                 return -EINVAL;
1640
1641         /* insert range should be aligned to block size of f2fs. */
1642         if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1643                 return -EINVAL;
1644
1645         ret = f2fs_convert_inline_inode(inode);
1646         if (ret)
1647                 return ret;
1648
1649         f2fs_balance_fs(sbi, true);
1650
1651         filemap_invalidate_lock(mapping);
1652         ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1653         filemap_invalidate_unlock(mapping);
1654         if (ret)
1655                 return ret;
1656
1657         /* write out all dirty pages from offset */
1658         ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1659         if (ret)
1660                 return ret;
1661
1662         pg_start = offset >> PAGE_SHIFT;
1663         pg_end = (offset + len) >> PAGE_SHIFT;
1664         delta = pg_end - pg_start;
1665         idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1666
1667         /* avoid gc operation during block exchange */
1668         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1669         filemap_invalidate_lock(mapping);
1670         truncate_pagecache(inode, offset);
1671
1672         while (!ret && idx > pg_start) {
1673                 nr = idx - pg_start;
1674                 if (nr > delta)
1675                         nr = delta;
1676                 idx -= nr;
1677
1678                 f2fs_lock_op(sbi);
1679                 f2fs_drop_extent_tree(inode);
1680
1681                 ret = __exchange_data_block(inode, inode, idx,
1682                                         idx + delta, nr, false);
1683                 f2fs_unlock_op(sbi);
1684         }
1685         filemap_invalidate_unlock(mapping);
1686         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1687         if (ret)
1688                 return ret;
1689
1690         /* write out all moved pages, if possible */
1691         filemap_invalidate_lock(mapping);
1692         ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1693         truncate_pagecache(inode, offset);
1694         filemap_invalidate_unlock(mapping);
1695
1696         if (!ret)
1697                 f2fs_i_size_write(inode, new_size);
1698         return ret;
1699 }
1700
1701 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset,
1702                                         loff_t len, int mode)
1703 {
1704         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1705         struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1706                         .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1707                         .m_may_create = true };
1708         struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1709                         .init_gc_type = FG_GC,
1710                         .should_migrate_blocks = false,
1711                         .err_gc_skipped = true,
1712                         .nr_free_secs = 0 };
1713         pgoff_t pg_start, pg_end;
1714         loff_t new_size;
1715         loff_t off_end;
1716         block_t expanded = 0;
1717         int err;
1718
1719         err = inode_newsize_ok(inode, (len + offset));
1720         if (err)
1721                 return err;
1722
1723         err = f2fs_convert_inline_inode(inode);
1724         if (err)
1725                 return err;
1726
1727         f2fs_balance_fs(sbi, true);
1728
1729         pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1730         pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1731         off_end = (offset + len) & (PAGE_SIZE - 1);
1732
1733         map.m_lblk = pg_start;
1734         map.m_len = pg_end - pg_start;
1735         if (off_end)
1736                 map.m_len++;
1737
1738         if (!map.m_len)
1739                 return 0;
1740
1741         if (f2fs_is_pinned_file(inode)) {
1742                 block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1743                 block_t sec_len = roundup(map.m_len, sec_blks);
1744
1745                 map.m_len = sec_blks;
1746 next_alloc:
1747                 if (has_not_enough_free_secs(sbi, 0,
1748                         GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1749                         f2fs_down_write(&sbi->gc_lock);
1750                         stat_inc_gc_call_count(sbi, FOREGROUND);
1751                         err = f2fs_gc(sbi, &gc_control);
1752                         if (err && err != -ENODATA)
1753                                 goto out_err;
1754                 }
1755
1756                 f2fs_down_write(&sbi->pin_sem);
1757
1758                 err = f2fs_allocate_pinning_section(sbi);
1759                 if (err) {
1760                         f2fs_up_write(&sbi->pin_sem);
1761                         goto out_err;
1762                 }
1763
1764                 map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1765                 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO);
1766                 file_dont_truncate(inode);
1767
1768                 f2fs_up_write(&sbi->pin_sem);
1769
1770                 expanded += map.m_len;
1771                 sec_len -= map.m_len;
1772                 map.m_lblk += map.m_len;
1773                 if (!err && sec_len)
1774                         goto next_alloc;
1775
1776                 map.m_len = expanded;
1777         } else {
1778                 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO);
1779                 expanded = map.m_len;
1780         }
1781 out_err:
1782         if (err) {
1783                 pgoff_t last_off;
1784
1785                 if (!expanded)
1786                         return err;
1787
1788                 last_off = pg_start + expanded - 1;
1789
1790                 /* update new size to the failed position */
1791                 new_size = (last_off == pg_end) ? offset + len :
1792                                         (loff_t)(last_off + 1) << PAGE_SHIFT;
1793         } else {
1794                 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1795         }
1796
1797         if (new_size > i_size_read(inode)) {
1798                 if (mode & FALLOC_FL_KEEP_SIZE)
1799                         file_set_keep_isize(inode);
1800                 else
1801                         f2fs_i_size_write(inode, new_size);
1802         }
1803
1804         return err;
1805 }
1806
1807 static long f2fs_fallocate(struct file *file, int mode,
1808                                 loff_t offset, loff_t len)
1809 {
1810         struct inode *inode = file_inode(file);
1811         long ret = 0;
1812
1813         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1814                 return -EIO;
1815         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1816                 return -ENOSPC;
1817         if (!f2fs_is_compress_backend_ready(inode))
1818                 return -EOPNOTSUPP;
1819
1820         /* f2fs only support ->fallocate for regular file */
1821         if (!S_ISREG(inode->i_mode))
1822                 return -EINVAL;
1823
1824         if (IS_ENCRYPTED(inode) &&
1825                 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1826                 return -EOPNOTSUPP;
1827
1828         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1829                         FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1830                         FALLOC_FL_INSERT_RANGE))
1831                 return -EOPNOTSUPP;
1832
1833         inode_lock(inode);
1834
1835         /*
1836          * Pinned file should not support partial truncation since the block
1837          * can be used by applications.
1838          */
1839         if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1840                 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1841                         FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) {
1842                 ret = -EOPNOTSUPP;
1843                 goto out;
1844         }
1845
1846         ret = file_modified(file);
1847         if (ret)
1848                 goto out;
1849
1850         if (mode & FALLOC_FL_PUNCH_HOLE) {
1851                 if (offset >= inode->i_size)
1852                         goto out;
1853
1854                 ret = f2fs_punch_hole(inode, offset, len);
1855         } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1856                 ret = f2fs_collapse_range(inode, offset, len);
1857         } else if (mode & FALLOC_FL_ZERO_RANGE) {
1858                 ret = f2fs_zero_range(inode, offset, len, mode);
1859         } else if (mode & FALLOC_FL_INSERT_RANGE) {
1860                 ret = f2fs_insert_range(inode, offset, len);
1861         } else {
1862                 ret = f2fs_expand_inode_data(inode, offset, len, mode);
1863         }
1864
1865         if (!ret) {
1866                 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1867                 f2fs_mark_inode_dirty_sync(inode, false);
1868                 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1869         }
1870
1871 out:
1872         inode_unlock(inode);
1873
1874         trace_f2fs_fallocate(inode, mode, offset, len, ret);
1875         return ret;
1876 }
1877
1878 static int f2fs_release_file(struct inode *inode, struct file *filp)
1879 {
1880         /*
1881          * f2fs_release_file is called at every close calls. So we should
1882          * not drop any inmemory pages by close called by other process.
1883          */
1884         if (!(filp->f_mode & FMODE_WRITE) ||
1885                         atomic_read(&inode->i_writecount) != 1)
1886                 return 0;
1887
1888         inode_lock(inode);
1889         f2fs_abort_atomic_write(inode, true);
1890         inode_unlock(inode);
1891
1892         return 0;
1893 }
1894
1895 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1896 {
1897         struct inode *inode = file_inode(file);
1898
1899         /*
1900          * If the process doing a transaction is crashed, we should do
1901          * roll-back. Otherwise, other reader/write can see corrupted database
1902          * until all the writers close its file. Since this should be done
1903          * before dropping file lock, it needs to do in ->flush.
1904          */
1905         if (F2FS_I(inode)->atomic_write_task == current &&
1906                                 (current->flags & PF_EXITING)) {
1907                 inode_lock(inode);
1908                 f2fs_abort_atomic_write(inode, true);
1909                 inode_unlock(inode);
1910         }
1911
1912         return 0;
1913 }
1914
1915 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1916 {
1917         struct f2fs_inode_info *fi = F2FS_I(inode);
1918         u32 masked_flags = fi->i_flags & mask;
1919
1920         /* mask can be shrunk by flags_valid selector */
1921         iflags &= mask;
1922
1923         /* Is it quota file? Do not allow user to mess with it */
1924         if (IS_NOQUOTA(inode))
1925                 return -EPERM;
1926
1927         if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1928                 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1929                         return -EOPNOTSUPP;
1930                 if (!f2fs_empty_dir(inode))
1931                         return -ENOTEMPTY;
1932         }
1933
1934         if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1935                 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1936                         return -EOPNOTSUPP;
1937                 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1938                         return -EINVAL;
1939         }
1940
1941         if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1942                 if (masked_flags & F2FS_COMPR_FL) {
1943                         if (!f2fs_disable_compressed_file(inode))
1944                                 return -EINVAL;
1945                 } else {
1946                         /* try to convert inline_data to support compression */
1947                         int err = f2fs_convert_inline_inode(inode);
1948                         if (err)
1949                                 return err;
1950
1951                         f2fs_down_write(&F2FS_I(inode)->i_sem);
1952                         if (!f2fs_may_compress(inode) ||
1953                                         (S_ISREG(inode->i_mode) &&
1954                                         F2FS_HAS_BLOCKS(inode))) {
1955                                 f2fs_up_write(&F2FS_I(inode)->i_sem);
1956                                 return -EINVAL;
1957                         }
1958                         err = set_compress_context(inode);
1959                         f2fs_up_write(&F2FS_I(inode)->i_sem);
1960
1961                         if (err)
1962                                 return err;
1963                 }
1964         }
1965
1966         fi->i_flags = iflags | (fi->i_flags & ~mask);
1967         f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1968                                         (fi->i_flags & F2FS_NOCOMP_FL));
1969
1970         if (fi->i_flags & F2FS_PROJINHERIT_FL)
1971                 set_inode_flag(inode, FI_PROJ_INHERIT);
1972         else
1973                 clear_inode_flag(inode, FI_PROJ_INHERIT);
1974
1975         inode_set_ctime_current(inode);
1976         f2fs_set_inode_flags(inode);
1977         f2fs_mark_inode_dirty_sync(inode, true);
1978         return 0;
1979 }
1980
1981 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
1982
1983 /*
1984  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1985  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1986  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
1987  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1988  *
1989  * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
1990  * FS_IOC_FSSETXATTR is done by the VFS.
1991  */
1992
1993 static const struct {
1994         u32 iflag;
1995         u32 fsflag;
1996 } f2fs_fsflags_map[] = {
1997         { F2FS_COMPR_FL,        FS_COMPR_FL },
1998         { F2FS_SYNC_FL,         FS_SYNC_FL },
1999         { F2FS_IMMUTABLE_FL,    FS_IMMUTABLE_FL },
2000         { F2FS_APPEND_FL,       FS_APPEND_FL },
2001         { F2FS_NODUMP_FL,       FS_NODUMP_FL },
2002         { F2FS_NOATIME_FL,      FS_NOATIME_FL },
2003         { F2FS_NOCOMP_FL,       FS_NOCOMP_FL },
2004         { F2FS_INDEX_FL,        FS_INDEX_FL },
2005         { F2FS_DIRSYNC_FL,      FS_DIRSYNC_FL },
2006         { F2FS_PROJINHERIT_FL,  FS_PROJINHERIT_FL },
2007         { F2FS_CASEFOLD_FL,     FS_CASEFOLD_FL },
2008 };
2009
2010 #define F2FS_GETTABLE_FS_FL (           \
2011                 FS_COMPR_FL |           \
2012                 FS_SYNC_FL |            \
2013                 FS_IMMUTABLE_FL |       \
2014                 FS_APPEND_FL |          \
2015                 FS_NODUMP_FL |          \
2016                 FS_NOATIME_FL |         \
2017                 FS_NOCOMP_FL |          \
2018                 FS_INDEX_FL |           \
2019                 FS_DIRSYNC_FL |         \
2020                 FS_PROJINHERIT_FL |     \
2021                 FS_ENCRYPT_FL |         \
2022                 FS_INLINE_DATA_FL |     \
2023                 FS_NOCOW_FL |           \
2024                 FS_VERITY_FL |          \
2025                 FS_CASEFOLD_FL)
2026
2027 #define F2FS_SETTABLE_FS_FL (           \
2028                 FS_COMPR_FL |           \
2029                 FS_SYNC_FL |            \
2030                 FS_IMMUTABLE_FL |       \
2031                 FS_APPEND_FL |          \
2032                 FS_NODUMP_FL |          \
2033                 FS_NOATIME_FL |         \
2034                 FS_NOCOMP_FL |          \
2035                 FS_DIRSYNC_FL |         \
2036                 FS_PROJINHERIT_FL |     \
2037                 FS_CASEFOLD_FL)
2038
2039 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
2040 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2041 {
2042         u32 fsflags = 0;
2043         int i;
2044
2045         for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2046                 if (iflags & f2fs_fsflags_map[i].iflag)
2047                         fsflags |= f2fs_fsflags_map[i].fsflag;
2048
2049         return fsflags;
2050 }
2051
2052 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
2053 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2054 {
2055         u32 iflags = 0;
2056         int i;
2057
2058         for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2059                 if (fsflags & f2fs_fsflags_map[i].fsflag)
2060                         iflags |= f2fs_fsflags_map[i].iflag;
2061
2062         return iflags;
2063 }
2064
2065 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2066 {
2067         struct inode *inode = file_inode(filp);
2068
2069         return put_user(inode->i_generation, (int __user *)arg);
2070 }
2071
2072 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
2073 {
2074         struct inode *inode = file_inode(filp);
2075         struct mnt_idmap *idmap = file_mnt_idmap(filp);
2076         struct f2fs_inode_info *fi = F2FS_I(inode);
2077         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2078         struct inode *pinode;
2079         loff_t isize;
2080         int ret;
2081
2082         if (!inode_owner_or_capable(idmap, inode))
2083                 return -EACCES;
2084
2085         if (!S_ISREG(inode->i_mode))
2086                 return -EINVAL;
2087
2088         if (filp->f_flags & O_DIRECT)
2089                 return -EINVAL;
2090
2091         ret = mnt_want_write_file(filp);
2092         if (ret)
2093                 return ret;
2094
2095         inode_lock(inode);
2096
2097         if (!f2fs_disable_compressed_file(inode) ||
2098                         f2fs_is_pinned_file(inode)) {
2099                 ret = -EINVAL;
2100                 goto out;
2101         }
2102
2103         if (f2fs_is_atomic_file(inode))
2104                 goto out;
2105
2106         ret = f2fs_convert_inline_inode(inode);
2107         if (ret)
2108                 goto out;
2109
2110         f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2111
2112         /*
2113          * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2114          * f2fs_is_atomic_file.
2115          */
2116         if (get_dirty_pages(inode))
2117                 f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2118                           inode->i_ino, get_dirty_pages(inode));
2119         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2120         if (ret) {
2121                 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2122                 goto out;
2123         }
2124
2125         /* Check if the inode already has a COW inode */
2126         if (fi->cow_inode == NULL) {
2127                 /* Create a COW inode for atomic write */
2128                 pinode = f2fs_iget(inode->i_sb, fi->i_pino);
2129                 if (IS_ERR(pinode)) {
2130                         f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2131                         ret = PTR_ERR(pinode);
2132                         goto out;
2133                 }
2134
2135                 ret = f2fs_get_tmpfile(idmap, pinode, &fi->cow_inode);
2136                 iput(pinode);
2137                 if (ret) {
2138                         f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2139                         goto out;
2140                 }
2141
2142                 set_inode_flag(fi->cow_inode, FI_COW_FILE);
2143                 clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2144         } else {
2145                 /* Reuse the already created COW inode */
2146                 ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true);
2147                 if (ret) {
2148                         f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2149                         goto out;
2150                 }
2151         }
2152
2153         f2fs_write_inode(inode, NULL);
2154
2155         stat_inc_atomic_inode(inode);
2156
2157         set_inode_flag(inode, FI_ATOMIC_FILE);
2158
2159         isize = i_size_read(inode);
2160         fi->original_i_size = isize;
2161         if (truncate) {
2162                 set_inode_flag(inode, FI_ATOMIC_REPLACE);
2163                 truncate_inode_pages_final(inode->i_mapping);
2164                 f2fs_i_size_write(inode, 0);
2165                 isize = 0;
2166         }
2167         f2fs_i_size_write(fi->cow_inode, isize);
2168
2169         f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2170
2171         f2fs_update_time(sbi, REQ_TIME);
2172         fi->atomic_write_task = current;
2173         stat_update_max_atomic_write(inode);
2174         fi->atomic_write_cnt = 0;
2175 out:
2176         inode_unlock(inode);
2177         mnt_drop_write_file(filp);
2178         return ret;
2179 }
2180
2181 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2182 {
2183         struct inode *inode = file_inode(filp);
2184         struct mnt_idmap *idmap = file_mnt_idmap(filp);
2185         int ret;
2186
2187         if (!inode_owner_or_capable(idmap, inode))
2188                 return -EACCES;
2189
2190         ret = mnt_want_write_file(filp);
2191         if (ret)
2192                 return ret;
2193
2194         f2fs_balance_fs(F2FS_I_SB(inode), true);
2195
2196         inode_lock(inode);
2197
2198         if (f2fs_is_atomic_file(inode)) {
2199                 ret = f2fs_commit_atomic_write(inode);
2200                 if (!ret)
2201                         ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2202
2203                 f2fs_abort_atomic_write(inode, ret);
2204         } else {
2205                 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2206         }
2207
2208         inode_unlock(inode);
2209         mnt_drop_write_file(filp);
2210         return ret;
2211 }
2212
2213 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2214 {
2215         struct inode *inode = file_inode(filp);
2216         struct mnt_idmap *idmap = file_mnt_idmap(filp);
2217         int ret;
2218
2219         if (!inode_owner_or_capable(idmap, inode))
2220                 return -EACCES;
2221
2222         ret = mnt_want_write_file(filp);
2223         if (ret)
2224                 return ret;
2225
2226         inode_lock(inode);
2227
2228         f2fs_abort_atomic_write(inode, true);
2229
2230         inode_unlock(inode);
2231
2232         mnt_drop_write_file(filp);
2233         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2234         return ret;
2235 }
2236
2237 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
2238                                                         bool readonly)
2239 {
2240         struct super_block *sb = sbi->sb;
2241         int ret = 0;
2242
2243         switch (flag) {
2244         case F2FS_GOING_DOWN_FULLSYNC:
2245                 ret = bdev_freeze(sb->s_bdev);
2246                 if (ret)
2247                         goto out;
2248                 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2249                 bdev_thaw(sb->s_bdev);
2250                 break;
2251         case F2FS_GOING_DOWN_METASYNC:
2252                 /* do checkpoint only */
2253                 ret = f2fs_sync_fs(sb, 1);
2254                 if (ret) {
2255                         if (ret == -EIO)
2256                                 ret = 0;
2257                         goto out;
2258                 }
2259                 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2260                 break;
2261         case F2FS_GOING_DOWN_NOSYNC:
2262                 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2263                 break;
2264         case F2FS_GOING_DOWN_METAFLUSH:
2265                 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2266                 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2267                 break;
2268         case F2FS_GOING_DOWN_NEED_FSCK:
2269                 set_sbi_flag(sbi, SBI_NEED_FSCK);
2270                 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2271                 set_sbi_flag(sbi, SBI_IS_DIRTY);
2272                 /* do checkpoint only */
2273                 ret = f2fs_sync_fs(sb, 1);
2274                 if (ret == -EIO)
2275                         ret = 0;
2276                 goto out;
2277         default:
2278                 ret = -EINVAL;
2279                 goto out;
2280         }
2281
2282         if (readonly)
2283                 goto out;
2284
2285         f2fs_stop_gc_thread(sbi);
2286         f2fs_stop_discard_thread(sbi);
2287
2288         f2fs_drop_discard_cmd(sbi);
2289         clear_opt(sbi, DISCARD);
2290
2291         f2fs_update_time(sbi, REQ_TIME);
2292 out:
2293
2294         trace_f2fs_shutdown(sbi, flag, ret);
2295
2296         return ret;
2297 }
2298
2299 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2300 {
2301         struct inode *inode = file_inode(filp);
2302         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2303         __u32 in;
2304         int ret;
2305         bool need_drop = false, readonly = false;
2306
2307         if (!capable(CAP_SYS_ADMIN))
2308                 return -EPERM;
2309
2310         if (get_user(in, (__u32 __user *)arg))
2311                 return -EFAULT;
2312
2313         if (in != F2FS_GOING_DOWN_FULLSYNC) {
2314                 ret = mnt_want_write_file(filp);
2315                 if (ret) {
2316                         if (ret != -EROFS)
2317                                 return ret;
2318
2319                         /* fallback to nosync shutdown for readonly fs */
2320                         in = F2FS_GOING_DOWN_NOSYNC;
2321                         readonly = true;
2322                 } else {
2323                         need_drop = true;
2324                 }
2325         }
2326
2327         ret = f2fs_do_shutdown(sbi, in, readonly);
2328
2329         if (need_drop)
2330                 mnt_drop_write_file(filp);
2331
2332         return ret;
2333 }
2334
2335 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2336 {
2337         struct inode *inode = file_inode(filp);
2338         struct super_block *sb = inode->i_sb;
2339         struct fstrim_range range;
2340         int ret;
2341
2342         if (!capable(CAP_SYS_ADMIN))
2343                 return -EPERM;
2344
2345         if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2346                 return -EOPNOTSUPP;
2347
2348         if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2349                                 sizeof(range)))
2350                 return -EFAULT;
2351
2352         ret = mnt_want_write_file(filp);
2353         if (ret)
2354                 return ret;
2355
2356         range.minlen = max((unsigned int)range.minlen,
2357                            bdev_discard_granularity(sb->s_bdev));
2358         ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2359         mnt_drop_write_file(filp);
2360         if (ret < 0)
2361                 return ret;
2362
2363         if (copy_to_user((struct fstrim_range __user *)arg, &range,
2364                                 sizeof(range)))
2365                 return -EFAULT;
2366         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2367         return 0;
2368 }
2369
2370 static bool uuid_is_nonzero(__u8 u[16])
2371 {
2372         int i;
2373
2374         for (i = 0; i < 16; i++)
2375                 if (u[i])
2376                         return true;
2377         return false;
2378 }
2379
2380 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2381 {
2382         struct inode *inode = file_inode(filp);
2383         int ret;
2384
2385         if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2386                 return -EOPNOTSUPP;
2387
2388         ret = fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2389         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2390         return ret;
2391 }
2392
2393 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2394 {
2395         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2396                 return -EOPNOTSUPP;
2397         return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2398 }
2399
2400 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2401 {
2402         struct inode *inode = file_inode(filp);
2403         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2404         u8 encrypt_pw_salt[16];
2405         int err;
2406
2407         if (!f2fs_sb_has_encrypt(sbi))
2408                 return -EOPNOTSUPP;
2409
2410         err = mnt_want_write_file(filp);
2411         if (err)
2412                 return err;
2413
2414         f2fs_down_write(&sbi->sb_lock);
2415
2416         if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2417                 goto got_it;
2418
2419         /* update superblock with uuid */
2420         generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2421
2422         err = f2fs_commit_super(sbi, false);
2423         if (err) {
2424                 /* undo new data */
2425                 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2426                 goto out_err;
2427         }
2428 got_it:
2429         memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16);
2430 out_err:
2431         f2fs_up_write(&sbi->sb_lock);
2432         mnt_drop_write_file(filp);
2433
2434         if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16))
2435                 err = -EFAULT;
2436
2437         return err;
2438 }
2439
2440 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2441                                              unsigned long arg)
2442 {
2443         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2444                 return -EOPNOTSUPP;
2445
2446         return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2447 }
2448
2449 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2450 {
2451         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2452                 return -EOPNOTSUPP;
2453
2454         return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2455 }
2456
2457 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2458 {
2459         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2460                 return -EOPNOTSUPP;
2461
2462         return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2463 }
2464
2465 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2466                                                     unsigned long arg)
2467 {
2468         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2469                 return -EOPNOTSUPP;
2470
2471         return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2472 }
2473
2474 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2475                                               unsigned long arg)
2476 {
2477         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2478                 return -EOPNOTSUPP;
2479
2480         return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2481 }
2482
2483 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2484 {
2485         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2486                 return -EOPNOTSUPP;
2487
2488         return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2489 }
2490
2491 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2492 {
2493         struct inode *inode = file_inode(filp);
2494         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2495         struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2496                         .no_bg_gc = false,
2497                         .should_migrate_blocks = false,
2498                         .nr_free_secs = 0 };
2499         __u32 sync;
2500         int ret;
2501
2502         if (!capable(CAP_SYS_ADMIN))
2503                 return -EPERM;
2504
2505         if (get_user(sync, (__u32 __user *)arg))
2506                 return -EFAULT;
2507
2508         if (f2fs_readonly(sbi->sb))
2509                 return -EROFS;
2510
2511         ret = mnt_want_write_file(filp);
2512         if (ret)
2513                 return ret;
2514
2515         if (!sync) {
2516                 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2517                         ret = -EBUSY;
2518                         goto out;
2519                 }
2520         } else {
2521                 f2fs_down_write(&sbi->gc_lock);
2522         }
2523
2524         gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2525         gc_control.err_gc_skipped = sync;
2526         stat_inc_gc_call_count(sbi, FOREGROUND);
2527         ret = f2fs_gc(sbi, &gc_control);
2528 out:
2529         mnt_drop_write_file(filp);
2530         return ret;
2531 }
2532
2533 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2534 {
2535         struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2536         struct f2fs_gc_control gc_control = {
2537                         .init_gc_type = range->sync ? FG_GC : BG_GC,
2538                         .no_bg_gc = false,
2539                         .should_migrate_blocks = false,
2540                         .err_gc_skipped = range->sync,
2541                         .nr_free_secs = 0 };
2542         u64 end;
2543         int ret;
2544
2545         if (!capable(CAP_SYS_ADMIN))
2546                 return -EPERM;
2547         if (f2fs_readonly(sbi->sb))
2548                 return -EROFS;
2549
2550         end = range->start + range->len;
2551         if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2552                                         end >= MAX_BLKADDR(sbi))
2553                 return -EINVAL;
2554
2555         ret = mnt_want_write_file(filp);
2556         if (ret)
2557                 return ret;
2558
2559 do_more:
2560         if (!range->sync) {
2561                 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2562                         ret = -EBUSY;
2563                         goto out;
2564                 }
2565         } else {
2566                 f2fs_down_write(&sbi->gc_lock);
2567         }
2568
2569         gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2570         stat_inc_gc_call_count(sbi, FOREGROUND);
2571         ret = f2fs_gc(sbi, &gc_control);
2572         if (ret) {
2573                 if (ret == -EBUSY)
2574                         ret = -EAGAIN;
2575                 goto out;
2576         }
2577         range->start += CAP_BLKS_PER_SEC(sbi);
2578         if (range->start <= end)
2579                 goto do_more;
2580 out:
2581         mnt_drop_write_file(filp);
2582         return ret;
2583 }
2584
2585 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2586 {
2587         struct f2fs_gc_range range;
2588
2589         if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2590                                                         sizeof(range)))
2591                 return -EFAULT;
2592         return __f2fs_ioc_gc_range(filp, &range);
2593 }
2594
2595 static int f2fs_ioc_write_checkpoint(struct file *filp)
2596 {
2597         struct inode *inode = file_inode(filp);
2598         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2599         int ret;
2600
2601         if (!capable(CAP_SYS_ADMIN))
2602                 return -EPERM;
2603
2604         if (f2fs_readonly(sbi->sb))
2605                 return -EROFS;
2606
2607         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2608                 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2609                 return -EINVAL;
2610         }
2611
2612         ret = mnt_want_write_file(filp);
2613         if (ret)
2614                 return ret;
2615
2616         ret = f2fs_sync_fs(sbi->sb, 1);
2617
2618         mnt_drop_write_file(filp);
2619         return ret;
2620 }
2621
2622 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2623                                         struct file *filp,
2624                                         struct f2fs_defragment *range)
2625 {
2626         struct inode *inode = file_inode(filp);
2627         struct f2fs_map_blocks map = { .m_next_extent = NULL,
2628                                         .m_seg_type = NO_CHECK_TYPE,
2629                                         .m_may_create = false };
2630         struct extent_info ei = {};
2631         pgoff_t pg_start, pg_end, next_pgofs;
2632         unsigned int total = 0, sec_num;
2633         block_t blk_end = 0;
2634         bool fragmented = false;
2635         int err;
2636
2637         f2fs_balance_fs(sbi, true);
2638
2639         inode_lock(inode);
2640         pg_start = range->start >> PAGE_SHIFT;
2641         pg_end = min_t(pgoff_t,
2642                                 (range->start + range->len) >> PAGE_SHIFT,
2643                                 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
2644
2645         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
2646                 err = -EINVAL;
2647                 goto unlock_out;
2648         }
2649
2650         /* if in-place-update policy is enabled, don't waste time here */
2651         set_inode_flag(inode, FI_OPU_WRITE);
2652         if (f2fs_should_update_inplace(inode, NULL)) {
2653                 err = -EINVAL;
2654                 goto out;
2655         }
2656
2657         /* writeback all dirty pages in the range */
2658         err = filemap_write_and_wait_range(inode->i_mapping,
2659                                                 pg_start << PAGE_SHIFT,
2660                                                 (pg_end << PAGE_SHIFT) - 1);
2661         if (err)
2662                 goto out;
2663
2664         /*
2665          * lookup mapping info in extent cache, skip defragmenting if physical
2666          * block addresses are continuous.
2667          */
2668         if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2669                 if (ei.fofs + ei.len >= pg_end)
2670                         goto out;
2671         }
2672
2673         map.m_lblk = pg_start;
2674         map.m_next_pgofs = &next_pgofs;
2675
2676         /*
2677          * lookup mapping info in dnode page cache, skip defragmenting if all
2678          * physical block addresses are continuous even if there are hole(s)
2679          * in logical blocks.
2680          */
2681         while (map.m_lblk < pg_end) {
2682                 map.m_len = pg_end - map.m_lblk;
2683                 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2684                 if (err)
2685                         goto out;
2686
2687                 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2688                         map.m_lblk = next_pgofs;
2689                         continue;
2690                 }
2691
2692                 if (blk_end && blk_end != map.m_pblk)
2693                         fragmented = true;
2694
2695                 /* record total count of block that we're going to move */
2696                 total += map.m_len;
2697
2698                 blk_end = map.m_pblk + map.m_len;
2699
2700                 map.m_lblk += map.m_len;
2701         }
2702
2703         if (!fragmented) {
2704                 total = 0;
2705                 goto out;
2706         }
2707
2708         sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2709
2710         /*
2711          * make sure there are enough free section for LFS allocation, this can
2712          * avoid defragment running in SSR mode when free section are allocated
2713          * intensively
2714          */
2715         if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2716                 err = -EAGAIN;
2717                 goto out;
2718         }
2719
2720         map.m_lblk = pg_start;
2721         map.m_len = pg_end - pg_start;
2722         total = 0;
2723
2724         while (map.m_lblk < pg_end) {
2725                 pgoff_t idx;
2726                 int cnt = 0;
2727
2728 do_map:
2729                 map.m_len = pg_end - map.m_lblk;
2730                 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2731                 if (err)
2732                         goto clear_out;
2733
2734                 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2735                         map.m_lblk = next_pgofs;
2736                         goto check;
2737                 }
2738
2739                 set_inode_flag(inode, FI_SKIP_WRITES);
2740
2741                 idx = map.m_lblk;
2742                 while (idx < map.m_lblk + map.m_len &&
2743                                                 cnt < BLKS_PER_SEG(sbi)) {
2744                         struct page *page;
2745
2746                         page = f2fs_get_lock_data_page(inode, idx, true);
2747                         if (IS_ERR(page)) {
2748                                 err = PTR_ERR(page);
2749                                 goto clear_out;
2750                         }
2751
2752                         set_page_dirty(page);
2753                         set_page_private_gcing(page);
2754                         f2fs_put_page(page, 1);
2755
2756                         idx++;
2757                         cnt++;
2758                         total++;
2759                 }
2760
2761                 map.m_lblk = idx;
2762 check:
2763                 if (map.m_lblk < pg_end && cnt < BLKS_PER_SEG(sbi))
2764                         goto do_map;
2765
2766                 clear_inode_flag(inode, FI_SKIP_WRITES);
2767
2768                 err = filemap_fdatawrite(inode->i_mapping);
2769                 if (err)
2770                         goto out;
2771         }
2772 clear_out:
2773         clear_inode_flag(inode, FI_SKIP_WRITES);
2774 out:
2775         clear_inode_flag(inode, FI_OPU_WRITE);
2776 unlock_out:
2777         inode_unlock(inode);
2778         if (!err)
2779                 range->len = (u64)total << PAGE_SHIFT;
2780         return err;
2781 }
2782
2783 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2784 {
2785         struct inode *inode = file_inode(filp);
2786         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2787         struct f2fs_defragment range;
2788         int err;
2789
2790         if (!capable(CAP_SYS_ADMIN))
2791                 return -EPERM;
2792
2793         if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2794                 return -EINVAL;
2795
2796         if (f2fs_readonly(sbi->sb))
2797                 return -EROFS;
2798
2799         if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2800                                                         sizeof(range)))
2801                 return -EFAULT;
2802
2803         /* verify alignment of offset & size */
2804         if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2805                 return -EINVAL;
2806
2807         if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2808                                         max_file_blocks(inode)))
2809                 return -EINVAL;
2810
2811         err = mnt_want_write_file(filp);
2812         if (err)
2813                 return err;
2814
2815         err = f2fs_defragment_range(sbi, filp, &range);
2816         mnt_drop_write_file(filp);
2817
2818         if (range.len)
2819                 f2fs_update_time(sbi, REQ_TIME);
2820         if (err < 0)
2821                 return err;
2822
2823         if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2824                                                         sizeof(range)))
2825                 return -EFAULT;
2826
2827         return 0;
2828 }
2829
2830 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2831                         struct file *file_out, loff_t pos_out, size_t len)
2832 {
2833         struct inode *src = file_inode(file_in);
2834         struct inode *dst = file_inode(file_out);
2835         struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2836         size_t olen = len, dst_max_i_size = 0;
2837         size_t dst_osize;
2838         int ret;
2839
2840         if (file_in->f_path.mnt != file_out->f_path.mnt ||
2841                                 src->i_sb != dst->i_sb)
2842                 return -EXDEV;
2843
2844         if (unlikely(f2fs_readonly(src->i_sb)))
2845                 return -EROFS;
2846
2847         if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2848                 return -EINVAL;
2849
2850         if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2851                 return -EOPNOTSUPP;
2852
2853         if (pos_out < 0 || pos_in < 0)
2854                 return -EINVAL;
2855
2856         if (src == dst) {
2857                 if (pos_in == pos_out)
2858                         return 0;
2859                 if (pos_out > pos_in && pos_out < pos_in + len)
2860                         return -EINVAL;
2861         }
2862
2863         inode_lock(src);
2864         if (src != dst) {
2865                 ret = -EBUSY;
2866                 if (!inode_trylock(dst))
2867                         goto out;
2868         }
2869
2870         if (f2fs_compressed_file(src) || f2fs_compressed_file(dst) ||
2871                 f2fs_is_pinned_file(src) || f2fs_is_pinned_file(dst)) {
2872                 ret = -EOPNOTSUPP;
2873                 goto out_unlock;
2874         }
2875
2876         ret = -EINVAL;
2877         if (pos_in + len > src->i_size || pos_in + len < pos_in)
2878                 goto out_unlock;
2879         if (len == 0)
2880                 olen = len = src->i_size - pos_in;
2881         if (pos_in + len == src->i_size)
2882                 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2883         if (len == 0) {
2884                 ret = 0;
2885                 goto out_unlock;
2886         }
2887
2888         dst_osize = dst->i_size;
2889         if (pos_out + olen > dst->i_size)
2890                 dst_max_i_size = pos_out + olen;
2891
2892         /* verify the end result is block aligned */
2893         if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2894                         !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2895                         !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2896                 goto out_unlock;
2897
2898         ret = f2fs_convert_inline_inode(src);
2899         if (ret)
2900                 goto out_unlock;
2901
2902         ret = f2fs_convert_inline_inode(dst);
2903         if (ret)
2904                 goto out_unlock;
2905
2906         /* write out all dirty pages from offset */
2907         ret = filemap_write_and_wait_range(src->i_mapping,
2908                                         pos_in, pos_in + len);
2909         if (ret)
2910                 goto out_unlock;
2911
2912         ret = filemap_write_and_wait_range(dst->i_mapping,
2913                                         pos_out, pos_out + len);
2914         if (ret)
2915                 goto out_unlock;
2916
2917         f2fs_balance_fs(sbi, true);
2918
2919         f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2920         if (src != dst) {
2921                 ret = -EBUSY;
2922                 if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2923                         goto out_src;
2924         }
2925
2926         f2fs_lock_op(sbi);
2927         ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2928                                 pos_out >> F2FS_BLKSIZE_BITS,
2929                                 len >> F2FS_BLKSIZE_BITS, false);
2930
2931         if (!ret) {
2932                 if (dst_max_i_size)
2933                         f2fs_i_size_write(dst, dst_max_i_size);
2934                 else if (dst_osize != dst->i_size)
2935                         f2fs_i_size_write(dst, dst_osize);
2936         }
2937         f2fs_unlock_op(sbi);
2938
2939         if (src != dst)
2940                 f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2941 out_src:
2942         f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2943         if (ret)
2944                 goto out_unlock;
2945
2946         inode_set_mtime_to_ts(src, inode_set_ctime_current(src));
2947         f2fs_mark_inode_dirty_sync(src, false);
2948         if (src != dst) {
2949                 inode_set_mtime_to_ts(dst, inode_set_ctime_current(dst));
2950                 f2fs_mark_inode_dirty_sync(dst, false);
2951         }
2952         f2fs_update_time(sbi, REQ_TIME);
2953
2954 out_unlock:
2955         if (src != dst)
2956                 inode_unlock(dst);
2957 out:
2958         inode_unlock(src);
2959         return ret;
2960 }
2961
2962 static int __f2fs_ioc_move_range(struct file *filp,
2963                                 struct f2fs_move_range *range)
2964 {
2965         struct fd dst;
2966         int err;
2967
2968         if (!(filp->f_mode & FMODE_READ) ||
2969                         !(filp->f_mode & FMODE_WRITE))
2970                 return -EBADF;
2971
2972         dst = fdget(range->dst_fd);
2973         if (!dst.file)
2974                 return -EBADF;
2975
2976         if (!(dst.file->f_mode & FMODE_WRITE)) {
2977                 err = -EBADF;
2978                 goto err_out;
2979         }
2980
2981         err = mnt_want_write_file(filp);
2982         if (err)
2983                 goto err_out;
2984
2985         err = f2fs_move_file_range(filp, range->pos_in, dst.file,
2986                                         range->pos_out, range->len);
2987
2988         mnt_drop_write_file(filp);
2989 err_out:
2990         fdput(dst);
2991         return err;
2992 }
2993
2994 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2995 {
2996         struct f2fs_move_range range;
2997
2998         if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2999                                                         sizeof(range)))
3000                 return -EFAULT;
3001         return __f2fs_ioc_move_range(filp, &range);
3002 }
3003
3004 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
3005 {
3006         struct inode *inode = file_inode(filp);
3007         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3008         struct sit_info *sm = SIT_I(sbi);
3009         unsigned int start_segno = 0, end_segno = 0;
3010         unsigned int dev_start_segno = 0, dev_end_segno = 0;
3011         struct f2fs_flush_device range;
3012         struct f2fs_gc_control gc_control = {
3013                         .init_gc_type = FG_GC,
3014                         .should_migrate_blocks = true,
3015                         .err_gc_skipped = true,
3016                         .nr_free_secs = 0 };
3017         int ret;
3018
3019         if (!capable(CAP_SYS_ADMIN))
3020                 return -EPERM;
3021
3022         if (f2fs_readonly(sbi->sb))
3023                 return -EROFS;
3024
3025         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3026                 return -EINVAL;
3027
3028         if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
3029                                                         sizeof(range)))
3030                 return -EFAULT;
3031
3032         if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
3033                         __is_large_section(sbi)) {
3034                 f2fs_warn(sbi, "Can't flush %u in %d for SEGS_PER_SEC %u != 1",
3035                           range.dev_num, sbi->s_ndevs, SEGS_PER_SEC(sbi));
3036                 return -EINVAL;
3037         }
3038
3039         ret = mnt_want_write_file(filp);
3040         if (ret)
3041                 return ret;
3042
3043         if (range.dev_num != 0)
3044                 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
3045         dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
3046
3047         start_segno = sm->last_victim[FLUSH_DEVICE];
3048         if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
3049                 start_segno = dev_start_segno;
3050         end_segno = min(start_segno + range.segments, dev_end_segno);
3051
3052         while (start_segno < end_segno) {
3053                 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
3054                         ret = -EBUSY;
3055                         goto out;
3056                 }
3057                 sm->last_victim[GC_CB] = end_segno + 1;
3058                 sm->last_victim[GC_GREEDY] = end_segno + 1;
3059                 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
3060
3061                 gc_control.victim_segno = start_segno;
3062                 stat_inc_gc_call_count(sbi, FOREGROUND);
3063                 ret = f2fs_gc(sbi, &gc_control);
3064                 if (ret == -EAGAIN)
3065                         ret = 0;
3066                 else if (ret < 0)
3067                         break;
3068                 start_segno++;
3069         }
3070 out:
3071         mnt_drop_write_file(filp);
3072         return ret;
3073 }
3074
3075 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
3076 {
3077         struct inode *inode = file_inode(filp);
3078         u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3079
3080         /* Must validate to set it with SQLite behavior in Android. */
3081         sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3082
3083         return put_user(sb_feature, (u32 __user *)arg);
3084 }
3085
3086 #ifdef CONFIG_QUOTA
3087 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3088 {
3089         struct dquot *transfer_to[MAXQUOTAS] = {};
3090         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3091         struct super_block *sb = sbi->sb;
3092         int err;
3093
3094         transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3095         if (IS_ERR(transfer_to[PRJQUOTA]))
3096                 return PTR_ERR(transfer_to[PRJQUOTA]);
3097
3098         err = __dquot_transfer(inode, transfer_to);
3099         if (err)
3100                 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3101         dqput(transfer_to[PRJQUOTA]);
3102         return err;
3103 }
3104
3105 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3106 {
3107         struct f2fs_inode_info *fi = F2FS_I(inode);
3108         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3109         struct f2fs_inode *ri = NULL;
3110         kprojid_t kprojid;
3111         int err;
3112
3113         if (!f2fs_sb_has_project_quota(sbi)) {
3114                 if (projid != F2FS_DEF_PROJID)
3115                         return -EOPNOTSUPP;
3116                 else
3117                         return 0;
3118         }
3119
3120         if (!f2fs_has_extra_attr(inode))
3121                 return -EOPNOTSUPP;
3122
3123         kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3124
3125         if (projid_eq(kprojid, fi->i_projid))
3126                 return 0;
3127
3128         err = -EPERM;
3129         /* Is it quota file? Do not allow user to mess with it */
3130         if (IS_NOQUOTA(inode))
3131                 return err;
3132
3133         if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3134                 return -EOVERFLOW;
3135
3136         err = f2fs_dquot_initialize(inode);
3137         if (err)
3138                 return err;
3139
3140         f2fs_lock_op(sbi);
3141         err = f2fs_transfer_project_quota(inode, kprojid);
3142         if (err)
3143                 goto out_unlock;
3144
3145         fi->i_projid = kprojid;
3146         inode_set_ctime_current(inode);
3147         f2fs_mark_inode_dirty_sync(inode, true);
3148 out_unlock:
3149         f2fs_unlock_op(sbi);
3150         return err;
3151 }
3152 #else
3153 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3154 {
3155         return 0;
3156 }
3157
3158 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3159 {
3160         if (projid != F2FS_DEF_PROJID)
3161                 return -EOPNOTSUPP;
3162         return 0;
3163 }
3164 #endif
3165
3166 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3167 {
3168         struct inode *inode = d_inode(dentry);
3169         struct f2fs_inode_info *fi = F2FS_I(inode);
3170         u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3171
3172         if (IS_ENCRYPTED(inode))
3173                 fsflags |= FS_ENCRYPT_FL;
3174         if (IS_VERITY(inode))
3175                 fsflags |= FS_VERITY_FL;
3176         if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3177                 fsflags |= FS_INLINE_DATA_FL;
3178         if (is_inode_flag_set(inode, FI_PIN_FILE))
3179                 fsflags |= FS_NOCOW_FL;
3180
3181         fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3182
3183         if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3184                 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3185
3186         return 0;
3187 }
3188
3189 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3190                       struct dentry *dentry, struct fileattr *fa)
3191 {
3192         struct inode *inode = d_inode(dentry);
3193         u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3194         u32 iflags;
3195         int err;
3196
3197         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3198                 return -EIO;
3199         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3200                 return -ENOSPC;
3201         if (fsflags & ~F2FS_GETTABLE_FS_FL)
3202                 return -EOPNOTSUPP;
3203         fsflags &= F2FS_SETTABLE_FS_FL;
3204         if (!fa->flags_valid)
3205                 mask &= FS_COMMON_FL;
3206
3207         iflags = f2fs_fsflags_to_iflags(fsflags);
3208         if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3209                 return -EOPNOTSUPP;
3210
3211         err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3212         if (!err)
3213                 err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3214
3215         return err;
3216 }
3217
3218 int f2fs_pin_file_control(struct inode *inode, bool inc)
3219 {
3220         struct f2fs_inode_info *fi = F2FS_I(inode);
3221         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3222
3223         if (fi->i_gc_failures >= sbi->gc_pin_file_threshold) {
3224                 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3225                           __func__, inode->i_ino, fi->i_gc_failures);
3226                 clear_inode_flag(inode, FI_PIN_FILE);
3227                 return -EAGAIN;
3228         }
3229
3230         /* Use i_gc_failures for normal file as a risk signal. */
3231         if (inc)
3232                 f2fs_i_gc_failures_write(inode, fi->i_gc_failures + 1);
3233
3234         return 0;
3235 }
3236
3237 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3238 {
3239         struct inode *inode = file_inode(filp);
3240         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3241         __u32 pin;
3242         int ret = 0;
3243
3244         if (get_user(pin, (__u32 __user *)arg))
3245                 return -EFAULT;
3246
3247         if (!S_ISREG(inode->i_mode))
3248                 return -EINVAL;
3249
3250         if (f2fs_readonly(sbi->sb))
3251                 return -EROFS;
3252
3253         ret = mnt_want_write_file(filp);
3254         if (ret)
3255                 return ret;
3256
3257         inode_lock(inode);
3258
3259         if (!pin) {
3260                 clear_inode_flag(inode, FI_PIN_FILE);
3261                 f2fs_i_gc_failures_write(inode, 0);
3262                 goto done;
3263         } else if (f2fs_is_pinned_file(inode)) {
3264                 goto done;
3265         }
3266
3267         if (F2FS_HAS_BLOCKS(inode)) {
3268                 ret = -EFBIG;
3269                 goto out;
3270         }
3271
3272         /* Let's allow file pinning on zoned device. */
3273         if (!f2fs_sb_has_blkzoned(sbi) &&
3274             f2fs_should_update_outplace(inode, NULL)) {
3275                 ret = -EINVAL;
3276                 goto out;
3277         }
3278
3279         if (f2fs_pin_file_control(inode, false)) {
3280                 ret = -EAGAIN;
3281                 goto out;
3282         }
3283
3284         ret = f2fs_convert_inline_inode(inode);
3285         if (ret)
3286                 goto out;
3287
3288         if (!f2fs_disable_compressed_file(inode)) {
3289                 ret = -EOPNOTSUPP;
3290                 goto out;
3291         }
3292
3293         set_inode_flag(inode, FI_PIN_FILE);
3294         ret = F2FS_I(inode)->i_gc_failures;
3295 done:
3296         f2fs_update_time(sbi, REQ_TIME);
3297 out:
3298         inode_unlock(inode);
3299         mnt_drop_write_file(filp);
3300         return ret;
3301 }
3302
3303 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3304 {
3305         struct inode *inode = file_inode(filp);
3306         __u32 pin = 0;
3307
3308         if (is_inode_flag_set(inode, FI_PIN_FILE))
3309                 pin = F2FS_I(inode)->i_gc_failures;
3310         return put_user(pin, (u32 __user *)arg);
3311 }
3312
3313 int f2fs_precache_extents(struct inode *inode)
3314 {
3315         struct f2fs_inode_info *fi = F2FS_I(inode);
3316         struct f2fs_map_blocks map;
3317         pgoff_t m_next_extent;
3318         loff_t end;
3319         int err;
3320
3321         if (is_inode_flag_set(inode, FI_NO_EXTENT))
3322                 return -EOPNOTSUPP;
3323
3324         map.m_lblk = 0;
3325         map.m_pblk = 0;
3326         map.m_next_pgofs = NULL;
3327         map.m_next_extent = &m_next_extent;
3328         map.m_seg_type = NO_CHECK_TYPE;
3329         map.m_may_create = false;
3330         end = F2FS_BLK_ALIGN(i_size_read(inode));
3331
3332         while (map.m_lblk < end) {
3333                 map.m_len = end - map.m_lblk;
3334
3335                 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3336                 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE);
3337                 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3338                 if (err || !map.m_len)
3339                         return err;
3340
3341                 map.m_lblk = m_next_extent;
3342         }
3343
3344         return 0;
3345 }
3346
3347 static int f2fs_ioc_precache_extents(struct file *filp)
3348 {
3349         return f2fs_precache_extents(file_inode(filp));
3350 }
3351
3352 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3353 {
3354         struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3355         __u64 block_count;
3356
3357         if (!capable(CAP_SYS_ADMIN))
3358                 return -EPERM;
3359
3360         if (f2fs_readonly(sbi->sb))
3361                 return -EROFS;
3362
3363         if (copy_from_user(&block_count, (void __user *)arg,
3364                            sizeof(block_count)))
3365                 return -EFAULT;
3366
3367         return f2fs_resize_fs(filp, block_count);
3368 }
3369
3370 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3371 {
3372         struct inode *inode = file_inode(filp);
3373
3374         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3375
3376         if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3377                 f2fs_warn(F2FS_I_SB(inode),
3378                           "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3379                           inode->i_ino);
3380                 return -EOPNOTSUPP;
3381         }
3382
3383         return fsverity_ioctl_enable(filp, (const void __user *)arg);
3384 }
3385
3386 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3387 {
3388         if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3389                 return -EOPNOTSUPP;
3390
3391         return fsverity_ioctl_measure(filp, (void __user *)arg);
3392 }
3393
3394 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3395 {
3396         if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3397                 return -EOPNOTSUPP;
3398
3399         return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3400 }
3401
3402 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3403 {
3404         struct inode *inode = file_inode(filp);
3405         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3406         char *vbuf;
3407         int count;
3408         int err = 0;
3409
3410         vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3411         if (!vbuf)
3412                 return -ENOMEM;
3413
3414         f2fs_down_read(&sbi->sb_lock);
3415         count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3416                         ARRAY_SIZE(sbi->raw_super->volume_name),
3417                         UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3418         f2fs_up_read(&sbi->sb_lock);
3419
3420         if (copy_to_user((char __user *)arg, vbuf,
3421                                 min(FSLABEL_MAX, count)))
3422                 err = -EFAULT;
3423
3424         kfree(vbuf);
3425         return err;
3426 }
3427
3428 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3429 {
3430         struct inode *inode = file_inode(filp);
3431         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3432         char *vbuf;
3433         int err = 0;
3434
3435         if (!capable(CAP_SYS_ADMIN))
3436                 return -EPERM;
3437
3438         vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3439         if (IS_ERR(vbuf))
3440                 return PTR_ERR(vbuf);
3441
3442         err = mnt_want_write_file(filp);
3443         if (err)
3444                 goto out;
3445
3446         f2fs_down_write(&sbi->sb_lock);
3447
3448         memset(sbi->raw_super->volume_name, 0,
3449                         sizeof(sbi->raw_super->volume_name));
3450         utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3451                         sbi->raw_super->volume_name,
3452                         ARRAY_SIZE(sbi->raw_super->volume_name));
3453
3454         err = f2fs_commit_super(sbi, false);
3455
3456         f2fs_up_write(&sbi->sb_lock);
3457
3458         mnt_drop_write_file(filp);
3459 out:
3460         kfree(vbuf);
3461         return err;
3462 }
3463
3464 static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks)
3465 {
3466         if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3467                 return -EOPNOTSUPP;
3468
3469         if (!f2fs_compressed_file(inode))
3470                 return -EINVAL;
3471
3472         *blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3473
3474         return 0;
3475 }
3476
3477 static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg)
3478 {
3479         struct inode *inode = file_inode(filp);
3480         __u64 blocks;
3481         int ret;
3482
3483         ret = f2fs_get_compress_blocks(inode, &blocks);
3484         if (ret < 0)
3485                 return ret;
3486
3487         return put_user(blocks, (u64 __user *)arg);
3488 }
3489
3490 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3491 {
3492         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3493         unsigned int released_blocks = 0;
3494         int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3495         block_t blkaddr;
3496         int i;
3497
3498         for (i = 0; i < count; i++) {
3499                 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3500                                                 dn->ofs_in_node + i);
3501
3502                 if (!__is_valid_data_blkaddr(blkaddr))
3503                         continue;
3504                 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3505                                         DATA_GENERIC_ENHANCE)))
3506                         return -EFSCORRUPTED;
3507         }
3508
3509         while (count) {
3510                 int compr_blocks = 0;
3511
3512                 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3513                         blkaddr = f2fs_data_blkaddr(dn);
3514
3515                         if (i == 0) {
3516                                 if (blkaddr == COMPRESS_ADDR)
3517                                         continue;
3518                                 dn->ofs_in_node += cluster_size;
3519                                 goto next;
3520                         }
3521
3522                         if (__is_valid_data_blkaddr(blkaddr))
3523                                 compr_blocks++;
3524
3525                         if (blkaddr != NEW_ADDR)
3526                                 continue;
3527
3528                         f2fs_set_data_blkaddr(dn, NULL_ADDR);
3529                 }
3530
3531                 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3532                 dec_valid_block_count(sbi, dn->inode,
3533                                         cluster_size - compr_blocks);
3534
3535                 released_blocks += cluster_size - compr_blocks;
3536 next:
3537                 count -= cluster_size;
3538         }
3539
3540         return released_blocks;
3541 }
3542
3543 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3544 {
3545         struct inode *inode = file_inode(filp);
3546         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3547         pgoff_t page_idx = 0, last_idx;
3548         unsigned int released_blocks = 0;
3549         int ret;
3550         int writecount;
3551
3552         if (!f2fs_sb_has_compression(sbi))
3553                 return -EOPNOTSUPP;
3554
3555         if (f2fs_readonly(sbi->sb))
3556                 return -EROFS;
3557
3558         ret = mnt_want_write_file(filp);
3559         if (ret)
3560                 return ret;
3561
3562         f2fs_balance_fs(sbi, true);
3563
3564         inode_lock(inode);
3565
3566         writecount = atomic_read(&inode->i_writecount);
3567         if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3568                         (!(filp->f_mode & FMODE_WRITE) && writecount)) {
3569                 ret = -EBUSY;
3570                 goto out;
3571         }
3572
3573         if (!f2fs_compressed_file(inode) ||
3574                 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3575                 ret = -EINVAL;
3576                 goto out;
3577         }
3578
3579         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3580         if (ret)
3581                 goto out;
3582
3583         if (!atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3584                 ret = -EPERM;
3585                 goto out;
3586         }
3587
3588         set_inode_flag(inode, FI_COMPRESS_RELEASED);
3589         inode_set_ctime_current(inode);
3590         f2fs_mark_inode_dirty_sync(inode, true);
3591
3592         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3593         filemap_invalidate_lock(inode->i_mapping);
3594
3595         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3596
3597         while (page_idx < last_idx) {
3598                 struct dnode_of_data dn;
3599                 pgoff_t end_offset, count;
3600
3601                 f2fs_lock_op(sbi);
3602
3603                 set_new_dnode(&dn, inode, NULL, NULL, 0);
3604                 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3605                 if (ret) {
3606                         f2fs_unlock_op(sbi);
3607                         if (ret == -ENOENT) {
3608                                 page_idx = f2fs_get_next_page_offset(&dn,
3609                                                                 page_idx);
3610                                 ret = 0;
3611                                 continue;
3612                         }
3613                         break;
3614                 }
3615
3616                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3617                 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3618                 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3619
3620                 ret = release_compress_blocks(&dn, count);
3621
3622                 f2fs_put_dnode(&dn);
3623
3624                 f2fs_unlock_op(sbi);
3625
3626                 if (ret < 0)
3627                         break;
3628
3629                 page_idx += count;
3630                 released_blocks += ret;
3631         }
3632
3633         filemap_invalidate_unlock(inode->i_mapping);
3634         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3635 out:
3636         if (released_blocks)
3637                 f2fs_update_time(sbi, REQ_TIME);
3638         inode_unlock(inode);
3639
3640         mnt_drop_write_file(filp);
3641
3642         if (ret >= 0) {
3643                 ret = put_user(released_blocks, (u64 __user *)arg);
3644         } else if (released_blocks &&
3645                         atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3646                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3647                 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3648                         "iblocks=%llu, released=%u, compr_blocks=%u, "
3649                         "run fsck to fix.",
3650                         __func__, inode->i_ino, inode->i_blocks,
3651                         released_blocks,
3652                         atomic_read(&F2FS_I(inode)->i_compr_blocks));
3653         }
3654
3655         return ret;
3656 }
3657
3658 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count,
3659                 unsigned int *reserved_blocks)
3660 {
3661         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3662         int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3663         block_t blkaddr;
3664         int i;
3665
3666         for (i = 0; i < count; i++) {
3667                 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3668                                                 dn->ofs_in_node + i);
3669
3670                 if (!__is_valid_data_blkaddr(blkaddr))
3671                         continue;
3672                 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3673                                         DATA_GENERIC_ENHANCE)))
3674                         return -EFSCORRUPTED;
3675         }
3676
3677         while (count) {
3678                 int compr_blocks = 0;
3679                 blkcnt_t reserved = 0;
3680                 blkcnt_t to_reserved;
3681                 int ret;
3682
3683                 for (i = 0; i < cluster_size; i++) {
3684                         blkaddr = data_blkaddr(dn->inode, dn->node_page,
3685                                                 dn->ofs_in_node + i);
3686
3687                         if (i == 0) {
3688                                 if (blkaddr != COMPRESS_ADDR) {
3689                                         dn->ofs_in_node += cluster_size;
3690                                         goto next;
3691                                 }
3692                                 continue;
3693                         }
3694
3695                         /*
3696                          * compressed cluster was not released due to it
3697                          * fails in release_compress_blocks(), so NEW_ADDR
3698                          * is a possible case.
3699                          */
3700                         if (blkaddr == NEW_ADDR) {
3701                                 reserved++;
3702                                 continue;
3703                         }
3704                         if (__is_valid_data_blkaddr(blkaddr)) {
3705                                 compr_blocks++;
3706                                 continue;
3707                         }
3708                 }
3709
3710                 to_reserved = cluster_size - compr_blocks - reserved;
3711
3712                 /* for the case all blocks in cluster were reserved */
3713                 if (to_reserved == 1) {
3714                         dn->ofs_in_node += cluster_size;
3715                         goto next;
3716                 }
3717
3718                 ret = inc_valid_block_count(sbi, dn->inode,
3719                                                 &to_reserved, false);
3720                 if (unlikely(ret))
3721                         return ret;
3722
3723                 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3724                         if (f2fs_data_blkaddr(dn) == NULL_ADDR)
3725                                 f2fs_set_data_blkaddr(dn, NEW_ADDR);
3726                 }
3727
3728                 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3729
3730                 *reserved_blocks += to_reserved;
3731 next:
3732                 count -= cluster_size;
3733         }
3734
3735         return 0;
3736 }
3737
3738 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3739 {
3740         struct inode *inode = file_inode(filp);
3741         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3742         pgoff_t page_idx = 0, last_idx;
3743         unsigned int reserved_blocks = 0;
3744         int ret;
3745
3746         if (!f2fs_sb_has_compression(sbi))
3747                 return -EOPNOTSUPP;
3748
3749         if (f2fs_readonly(sbi->sb))
3750                 return -EROFS;
3751
3752         ret = mnt_want_write_file(filp);
3753         if (ret)
3754                 return ret;
3755
3756         f2fs_balance_fs(sbi, true);
3757
3758         inode_lock(inode);
3759
3760         if (!f2fs_compressed_file(inode) ||
3761                 !is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3762                 ret = -EINVAL;
3763                 goto unlock_inode;
3764         }
3765
3766         if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3767                 goto unlock_inode;
3768
3769         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3770         filemap_invalidate_lock(inode->i_mapping);
3771
3772         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3773
3774         while (page_idx < last_idx) {
3775                 struct dnode_of_data dn;
3776                 pgoff_t end_offset, count;
3777
3778                 f2fs_lock_op(sbi);
3779
3780                 set_new_dnode(&dn, inode, NULL, NULL, 0);
3781                 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3782                 if (ret) {
3783                         f2fs_unlock_op(sbi);
3784                         if (ret == -ENOENT) {
3785                                 page_idx = f2fs_get_next_page_offset(&dn,
3786                                                                 page_idx);
3787                                 ret = 0;
3788                                 continue;
3789                         }
3790                         break;
3791                 }
3792
3793                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3794                 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3795                 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3796
3797                 ret = reserve_compress_blocks(&dn, count, &reserved_blocks);
3798
3799                 f2fs_put_dnode(&dn);
3800
3801                 f2fs_unlock_op(sbi);
3802
3803                 if (ret < 0)
3804                         break;
3805
3806                 page_idx += count;
3807         }
3808
3809         filemap_invalidate_unlock(inode->i_mapping);
3810         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3811
3812         if (!ret) {
3813                 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3814                 inode_set_ctime_current(inode);
3815                 f2fs_mark_inode_dirty_sync(inode, true);
3816         }
3817 unlock_inode:
3818         if (reserved_blocks)
3819                 f2fs_update_time(sbi, REQ_TIME);
3820         inode_unlock(inode);
3821         mnt_drop_write_file(filp);
3822
3823         if (!ret) {
3824                 ret = put_user(reserved_blocks, (u64 __user *)arg);
3825         } else if (reserved_blocks &&
3826                         atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3827                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3828                 f2fs_warn(sbi, "%s: partial blocks were reserved i_ino=%lx "
3829                         "iblocks=%llu, reserved=%u, compr_blocks=%u, "
3830                         "run fsck to fix.",
3831                         __func__, inode->i_ino, inode->i_blocks,
3832                         reserved_blocks,
3833                         atomic_read(&F2FS_I(inode)->i_compr_blocks));
3834         }
3835
3836         return ret;
3837 }
3838
3839 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3840                 pgoff_t off, block_t block, block_t len, u32 flags)
3841 {
3842         sector_t sector = SECTOR_FROM_BLOCK(block);
3843         sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3844         int ret = 0;
3845
3846         if (flags & F2FS_TRIM_FILE_DISCARD) {
3847                 if (bdev_max_secure_erase_sectors(bdev))
3848                         ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
3849                                         GFP_NOFS);
3850                 else
3851                         ret = blkdev_issue_discard(bdev, sector, nr_sects,
3852                                         GFP_NOFS);
3853         }
3854
3855         if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3856                 if (IS_ENCRYPTED(inode))
3857                         ret = fscrypt_zeroout_range(inode, off, block, len);
3858                 else
3859                         ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3860                                         GFP_NOFS, 0);
3861         }
3862
3863         return ret;
3864 }
3865
3866 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3867 {
3868         struct inode *inode = file_inode(filp);
3869         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3870         struct address_space *mapping = inode->i_mapping;
3871         struct block_device *prev_bdev = NULL;
3872         struct f2fs_sectrim_range range;
3873         pgoff_t index, pg_end, prev_index = 0;
3874         block_t prev_block = 0, len = 0;
3875         loff_t end_addr;
3876         bool to_end = false;
3877         int ret = 0;
3878
3879         if (!(filp->f_mode & FMODE_WRITE))
3880                 return -EBADF;
3881
3882         if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3883                                 sizeof(range)))
3884                 return -EFAULT;
3885
3886         if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3887                         !S_ISREG(inode->i_mode))
3888                 return -EINVAL;
3889
3890         if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3891                         !f2fs_hw_support_discard(sbi)) ||
3892                         ((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3893                          IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3894                 return -EOPNOTSUPP;
3895
3896         file_start_write(filp);
3897         inode_lock(inode);
3898
3899         if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3900                         range.start >= inode->i_size) {
3901                 ret = -EINVAL;
3902                 goto err;
3903         }
3904
3905         if (range.len == 0)
3906                 goto err;
3907
3908         if (inode->i_size - range.start > range.len) {
3909                 end_addr = range.start + range.len;
3910         } else {
3911                 end_addr = range.len == (u64)-1 ?
3912                         sbi->sb->s_maxbytes : inode->i_size;
3913                 to_end = true;
3914         }
3915
3916         if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3917                         (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3918                 ret = -EINVAL;
3919                 goto err;
3920         }
3921
3922         index = F2FS_BYTES_TO_BLK(range.start);
3923         pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3924
3925         ret = f2fs_convert_inline_inode(inode);
3926         if (ret)
3927                 goto err;
3928
3929         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3930         filemap_invalidate_lock(mapping);
3931
3932         ret = filemap_write_and_wait_range(mapping, range.start,
3933                         to_end ? LLONG_MAX : end_addr - 1);
3934         if (ret)
3935                 goto out;
3936
3937         truncate_inode_pages_range(mapping, range.start,
3938                         to_end ? -1 : end_addr - 1);
3939
3940         while (index < pg_end) {
3941                 struct dnode_of_data dn;
3942                 pgoff_t end_offset, count;
3943                 int i;
3944
3945                 set_new_dnode(&dn, inode, NULL, NULL, 0);
3946                 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3947                 if (ret) {
3948                         if (ret == -ENOENT) {
3949                                 index = f2fs_get_next_page_offset(&dn, index);
3950                                 continue;
3951                         }
3952                         goto out;
3953                 }
3954
3955                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3956                 count = min(end_offset - dn.ofs_in_node, pg_end - index);
3957                 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3958                         struct block_device *cur_bdev;
3959                         block_t blkaddr = f2fs_data_blkaddr(&dn);
3960
3961                         if (!__is_valid_data_blkaddr(blkaddr))
3962                                 continue;
3963
3964                         if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3965                                                 DATA_GENERIC_ENHANCE)) {
3966                                 ret = -EFSCORRUPTED;
3967                                 f2fs_put_dnode(&dn);
3968                                 goto out;
3969                         }
3970
3971                         cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
3972                         if (f2fs_is_multi_device(sbi)) {
3973                                 int di = f2fs_target_device_index(sbi, blkaddr);
3974
3975                                 blkaddr -= FDEV(di).start_blk;
3976                         }
3977
3978                         if (len) {
3979                                 if (prev_bdev == cur_bdev &&
3980                                                 index == prev_index + len &&
3981                                                 blkaddr == prev_block + len) {
3982                                         len++;
3983                                 } else {
3984                                         ret = f2fs_secure_erase(prev_bdev,
3985                                                 inode, prev_index, prev_block,
3986                                                 len, range.flags);
3987                                         if (ret) {
3988                                                 f2fs_put_dnode(&dn);
3989                                                 goto out;
3990                                         }
3991
3992                                         len = 0;
3993                                 }
3994                         }
3995
3996                         if (!len) {
3997                                 prev_bdev = cur_bdev;
3998                                 prev_index = index;
3999                                 prev_block = blkaddr;
4000                                 len = 1;
4001                         }
4002                 }
4003
4004                 f2fs_put_dnode(&dn);
4005
4006                 if (fatal_signal_pending(current)) {
4007                         ret = -EINTR;
4008                         goto out;
4009                 }
4010                 cond_resched();
4011         }
4012
4013         if (len)
4014                 ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
4015                                 prev_block, len, range.flags);
4016         f2fs_update_time(sbi, REQ_TIME);
4017 out:
4018         filemap_invalidate_unlock(mapping);
4019         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4020 err:
4021         inode_unlock(inode);
4022         file_end_write(filp);
4023
4024         return ret;
4025 }
4026
4027 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
4028 {
4029         struct inode *inode = file_inode(filp);
4030         struct f2fs_comp_option option;
4031
4032         if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
4033                 return -EOPNOTSUPP;
4034
4035         inode_lock_shared(inode);
4036
4037         if (!f2fs_compressed_file(inode)) {
4038                 inode_unlock_shared(inode);
4039                 return -ENODATA;
4040         }
4041
4042         option.algorithm = F2FS_I(inode)->i_compress_algorithm;
4043         option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
4044
4045         inode_unlock_shared(inode);
4046
4047         if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
4048                                 sizeof(option)))
4049                 return -EFAULT;
4050
4051         return 0;
4052 }
4053
4054 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
4055 {
4056         struct inode *inode = file_inode(filp);
4057         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4058         struct f2fs_comp_option option;
4059         int ret = 0;
4060
4061         if (!f2fs_sb_has_compression(sbi))
4062                 return -EOPNOTSUPP;
4063
4064         if (!(filp->f_mode & FMODE_WRITE))
4065                 return -EBADF;
4066
4067         if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
4068                                 sizeof(option)))
4069                 return -EFAULT;
4070
4071         if (option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
4072                 option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
4073                 option.algorithm >= COMPRESS_MAX)
4074                 return -EINVAL;
4075
4076         file_start_write(filp);
4077         inode_lock(inode);
4078
4079         f2fs_down_write(&F2FS_I(inode)->i_sem);
4080         if (!f2fs_compressed_file(inode)) {
4081                 ret = -EINVAL;
4082                 goto out;
4083         }
4084
4085         if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
4086                 ret = -EBUSY;
4087                 goto out;
4088         }
4089
4090         if (F2FS_HAS_BLOCKS(inode)) {
4091                 ret = -EFBIG;
4092                 goto out;
4093         }
4094
4095         F2FS_I(inode)->i_compress_algorithm = option.algorithm;
4096         F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
4097         F2FS_I(inode)->i_cluster_size = BIT(option.log_cluster_size);
4098         /* Set default level */
4099         if (F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD)
4100                 F2FS_I(inode)->i_compress_level = F2FS_ZSTD_DEFAULT_CLEVEL;
4101         else
4102                 F2FS_I(inode)->i_compress_level = 0;
4103         /* Adjust mount option level */
4104         if (option.algorithm == F2FS_OPTION(sbi).compress_algorithm &&
4105             F2FS_OPTION(sbi).compress_level)
4106                 F2FS_I(inode)->i_compress_level = F2FS_OPTION(sbi).compress_level;
4107         f2fs_mark_inode_dirty_sync(inode, true);
4108
4109         if (!f2fs_is_compress_backend_ready(inode))
4110                 f2fs_warn(sbi, "compression algorithm is successfully set, "
4111                         "but current kernel doesn't support this algorithm.");
4112 out:
4113         f2fs_up_write(&F2FS_I(inode)->i_sem);
4114         inode_unlock(inode);
4115         file_end_write(filp);
4116
4117         return ret;
4118 }
4119
4120 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
4121 {
4122         DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
4123         struct address_space *mapping = inode->i_mapping;
4124         struct page *page;
4125         pgoff_t redirty_idx = page_idx;
4126         int i, page_len = 0, ret = 0;
4127
4128         page_cache_ra_unbounded(&ractl, len, 0);
4129
4130         for (i = 0; i < len; i++, page_idx++) {
4131                 page = read_cache_page(mapping, page_idx, NULL, NULL);
4132                 if (IS_ERR(page)) {
4133                         ret = PTR_ERR(page);
4134                         break;
4135                 }
4136                 page_len++;
4137         }
4138
4139         for (i = 0; i < page_len; i++, redirty_idx++) {
4140                 page = find_lock_page(mapping, redirty_idx);
4141
4142                 /* It will never fail, when page has pinned above */
4143                 f2fs_bug_on(F2FS_I_SB(inode), !page);
4144
4145                 set_page_dirty(page);
4146                 set_page_private_gcing(page);
4147                 f2fs_put_page(page, 1);
4148                 f2fs_put_page(page, 0);
4149         }
4150
4151         return ret;
4152 }
4153
4154 static int f2fs_ioc_decompress_file(struct file *filp)
4155 {
4156         struct inode *inode = file_inode(filp);
4157         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4158         struct f2fs_inode_info *fi = F2FS_I(inode);
4159         pgoff_t page_idx = 0, last_idx;
4160         int cluster_size = fi->i_cluster_size;
4161         int count, ret;
4162
4163         if (!f2fs_sb_has_compression(sbi) ||
4164                         F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4165                 return -EOPNOTSUPP;
4166
4167         if (!(filp->f_mode & FMODE_WRITE))
4168                 return -EBADF;
4169
4170         f2fs_balance_fs(sbi, true);
4171
4172         file_start_write(filp);
4173         inode_lock(inode);
4174
4175         if (!f2fs_is_compress_backend_ready(inode)) {
4176                 ret = -EOPNOTSUPP;
4177                 goto out;
4178         }
4179
4180         if (!f2fs_compressed_file(inode) ||
4181                 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4182                 ret = -EINVAL;
4183                 goto out;
4184         }
4185
4186         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4187         if (ret)
4188                 goto out;
4189
4190         if (!atomic_read(&fi->i_compr_blocks))
4191                 goto out;
4192
4193         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4194
4195         count = last_idx - page_idx;
4196         while (count && count >= cluster_size) {
4197                 ret = redirty_blocks(inode, page_idx, cluster_size);
4198                 if (ret < 0)
4199                         break;
4200
4201                 if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4202                         ret = filemap_fdatawrite(inode->i_mapping);
4203                         if (ret < 0)
4204                                 break;
4205                 }
4206
4207                 count -= cluster_size;
4208                 page_idx += cluster_size;
4209
4210                 cond_resched();
4211                 if (fatal_signal_pending(current)) {
4212                         ret = -EINTR;
4213                         break;
4214                 }
4215         }
4216
4217         if (!ret)
4218                 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4219                                                         LLONG_MAX);
4220
4221         if (ret)
4222                 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4223                           __func__, ret);
4224         f2fs_update_time(sbi, REQ_TIME);
4225 out:
4226         inode_unlock(inode);
4227         file_end_write(filp);
4228
4229         return ret;
4230 }
4231
4232 static int f2fs_ioc_compress_file(struct file *filp)
4233 {
4234         struct inode *inode = file_inode(filp);
4235         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4236         pgoff_t page_idx = 0, last_idx;
4237         int cluster_size = F2FS_I(inode)->i_cluster_size;
4238         int count, ret;
4239
4240         if (!f2fs_sb_has_compression(sbi) ||
4241                         F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4242                 return -EOPNOTSUPP;
4243
4244         if (!(filp->f_mode & FMODE_WRITE))
4245                 return -EBADF;
4246
4247         f2fs_balance_fs(sbi, true);
4248
4249         file_start_write(filp);
4250         inode_lock(inode);
4251
4252         if (!f2fs_is_compress_backend_ready(inode)) {
4253                 ret = -EOPNOTSUPP;
4254                 goto out;
4255         }
4256
4257         if (!f2fs_compressed_file(inode) ||
4258                 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4259                 ret = -EINVAL;
4260                 goto out;
4261         }
4262
4263         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4264         if (ret)
4265                 goto out;
4266
4267         set_inode_flag(inode, FI_ENABLE_COMPRESS);
4268
4269         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4270
4271         count = last_idx - page_idx;
4272         while (count && count >= cluster_size) {
4273                 ret = redirty_blocks(inode, page_idx, cluster_size);
4274                 if (ret < 0)
4275                         break;
4276
4277                 if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4278                         ret = filemap_fdatawrite(inode->i_mapping);
4279                         if (ret < 0)
4280                                 break;
4281                 }
4282
4283                 count -= cluster_size;
4284                 page_idx += cluster_size;
4285
4286                 cond_resched();
4287                 if (fatal_signal_pending(current)) {
4288                         ret = -EINTR;
4289                         break;
4290                 }
4291         }
4292
4293         if (!ret)
4294                 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4295                                                         LLONG_MAX);
4296
4297         clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4298
4299         if (ret)
4300                 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4301                           __func__, ret);
4302         f2fs_update_time(sbi, REQ_TIME);
4303 out:
4304         inode_unlock(inode);
4305         file_end_write(filp);
4306
4307         return ret;
4308 }
4309
4310 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4311 {
4312         switch (cmd) {
4313         case FS_IOC_GETVERSION:
4314                 return f2fs_ioc_getversion(filp, arg);
4315         case F2FS_IOC_START_ATOMIC_WRITE:
4316                 return f2fs_ioc_start_atomic_write(filp, false);
4317         case F2FS_IOC_START_ATOMIC_REPLACE:
4318                 return f2fs_ioc_start_atomic_write(filp, true);
4319         case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4320                 return f2fs_ioc_commit_atomic_write(filp);
4321         case F2FS_IOC_ABORT_ATOMIC_WRITE:
4322                 return f2fs_ioc_abort_atomic_write(filp);
4323         case F2FS_IOC_START_VOLATILE_WRITE:
4324         case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4325                 return -EOPNOTSUPP;
4326         case F2FS_IOC_SHUTDOWN:
4327                 return f2fs_ioc_shutdown(filp, arg);
4328         case FITRIM:
4329                 return f2fs_ioc_fitrim(filp, arg);
4330         case FS_IOC_SET_ENCRYPTION_POLICY:
4331                 return f2fs_ioc_set_encryption_policy(filp, arg);
4332         case FS_IOC_GET_ENCRYPTION_POLICY:
4333                 return f2fs_ioc_get_encryption_policy(filp, arg);
4334         case FS_IOC_GET_ENCRYPTION_PWSALT:
4335                 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4336         case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4337                 return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4338         case FS_IOC_ADD_ENCRYPTION_KEY:
4339                 return f2fs_ioc_add_encryption_key(filp, arg);
4340         case FS_IOC_REMOVE_ENCRYPTION_KEY:
4341                 return f2fs_ioc_remove_encryption_key(filp, arg);
4342         case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4343                 return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4344         case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4345                 return f2fs_ioc_get_encryption_key_status(filp, arg);
4346         case FS_IOC_GET_ENCRYPTION_NONCE:
4347                 return f2fs_ioc_get_encryption_nonce(filp, arg);
4348         case F2FS_IOC_GARBAGE_COLLECT:
4349                 return f2fs_ioc_gc(filp, arg);
4350         case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4351                 return f2fs_ioc_gc_range(filp, arg);
4352         case F2FS_IOC_WRITE_CHECKPOINT:
4353                 return f2fs_ioc_write_checkpoint(filp);
4354         case F2FS_IOC_DEFRAGMENT:
4355                 return f2fs_ioc_defragment(filp, arg);
4356         case F2FS_IOC_MOVE_RANGE:
4357                 return f2fs_ioc_move_range(filp, arg);
4358         case F2FS_IOC_FLUSH_DEVICE:
4359                 return f2fs_ioc_flush_device(filp, arg);
4360         case F2FS_IOC_GET_FEATURES:
4361                 return f2fs_ioc_get_features(filp, arg);
4362         case F2FS_IOC_GET_PIN_FILE:
4363                 return f2fs_ioc_get_pin_file(filp, arg);
4364         case F2FS_IOC_SET_PIN_FILE:
4365                 return f2fs_ioc_set_pin_file(filp, arg);
4366         case F2FS_IOC_PRECACHE_EXTENTS:
4367                 return f2fs_ioc_precache_extents(filp);
4368         case F2FS_IOC_RESIZE_FS:
4369                 return f2fs_ioc_resize_fs(filp, arg);
4370         case FS_IOC_ENABLE_VERITY:
4371                 return f2fs_ioc_enable_verity(filp, arg);
4372         case FS_IOC_MEASURE_VERITY:
4373                 return f2fs_ioc_measure_verity(filp, arg);
4374         case FS_IOC_READ_VERITY_METADATA:
4375                 return f2fs_ioc_read_verity_metadata(filp, arg);
4376         case FS_IOC_GETFSLABEL:
4377                 return f2fs_ioc_getfslabel(filp, arg);
4378         case FS_IOC_SETFSLABEL:
4379                 return f2fs_ioc_setfslabel(filp, arg);
4380         case F2FS_IOC_GET_COMPRESS_BLOCKS:
4381                 return f2fs_ioc_get_compress_blocks(filp, arg);
4382         case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4383                 return f2fs_release_compress_blocks(filp, arg);
4384         case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4385                 return f2fs_reserve_compress_blocks(filp, arg);
4386         case F2FS_IOC_SEC_TRIM_FILE:
4387                 return f2fs_sec_trim_file(filp, arg);
4388         case F2FS_IOC_GET_COMPRESS_OPTION:
4389                 return f2fs_ioc_get_compress_option(filp, arg);
4390         case F2FS_IOC_SET_COMPRESS_OPTION:
4391                 return f2fs_ioc_set_compress_option(filp, arg);
4392         case F2FS_IOC_DECOMPRESS_FILE:
4393                 return f2fs_ioc_decompress_file(filp);
4394         case F2FS_IOC_COMPRESS_FILE:
4395                 return f2fs_ioc_compress_file(filp);
4396         default:
4397                 return -ENOTTY;
4398         }
4399 }
4400
4401 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4402 {
4403         if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4404                 return -EIO;
4405         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4406                 return -ENOSPC;
4407
4408         return __f2fs_ioctl(filp, cmd, arg);
4409 }
4410
4411 /*
4412  * Return %true if the given read or write request should use direct I/O, or
4413  * %false if it should use buffered I/O.
4414  */
4415 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4416                                 struct iov_iter *iter)
4417 {
4418         unsigned int align;
4419
4420         if (!(iocb->ki_flags & IOCB_DIRECT))
4421                 return false;
4422
4423         if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4424                 return false;
4425
4426         /*
4427          * Direct I/O not aligned to the disk's logical_block_size will be
4428          * attempted, but will fail with -EINVAL.
4429          *
4430          * f2fs additionally requires that direct I/O be aligned to the
4431          * filesystem block size, which is often a stricter requirement.
4432          * However, f2fs traditionally falls back to buffered I/O on requests
4433          * that are logical_block_size-aligned but not fs-block aligned.
4434          *
4435          * The below logic implements this behavior.
4436          */
4437         align = iocb->ki_pos | iov_iter_alignment(iter);
4438         if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4439             IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4440                 return false;
4441
4442         return true;
4443 }
4444
4445 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4446                                 unsigned int flags)
4447 {
4448         struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4449
4450         dec_page_count(sbi, F2FS_DIO_READ);
4451         if (error)
4452                 return error;
4453         f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4454         return 0;
4455 }
4456
4457 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4458         .end_io = f2fs_dio_read_end_io,
4459 };
4460
4461 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4462 {
4463         struct file *file = iocb->ki_filp;
4464         struct inode *inode = file_inode(file);
4465         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4466         struct f2fs_inode_info *fi = F2FS_I(inode);
4467         const loff_t pos = iocb->ki_pos;
4468         const size_t count = iov_iter_count(to);
4469         struct iomap_dio *dio;
4470         ssize_t ret;
4471
4472         if (count == 0)
4473                 return 0; /* skip atime update */
4474
4475         trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4476
4477         if (iocb->ki_flags & IOCB_NOWAIT) {
4478                 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4479                         ret = -EAGAIN;
4480                         goto out;
4481                 }
4482         } else {
4483                 f2fs_down_read(&fi->i_gc_rwsem[READ]);
4484         }
4485
4486         /*
4487          * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4488          * the higher-level function iomap_dio_rw() in order to ensure that the
4489          * F2FS_DIO_READ counter will be decremented correctly in all cases.
4490          */
4491         inc_page_count(sbi, F2FS_DIO_READ);
4492         dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4493                              &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4494         if (IS_ERR_OR_NULL(dio)) {
4495                 ret = PTR_ERR_OR_ZERO(dio);
4496                 if (ret != -EIOCBQUEUED)
4497                         dec_page_count(sbi, F2FS_DIO_READ);
4498         } else {
4499                 ret = iomap_dio_complete(dio);
4500         }
4501
4502         f2fs_up_read(&fi->i_gc_rwsem[READ]);
4503
4504         file_accessed(file);
4505 out:
4506         trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4507         return ret;
4508 }
4509
4510 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count,
4511                                     int rw)
4512 {
4513         struct inode *inode = file_inode(file);
4514         char *buf, *path;
4515
4516         buf = f2fs_getname(F2FS_I_SB(inode));
4517         if (!buf)
4518                 return;
4519         path = dentry_path_raw(file_dentry(file), buf, PATH_MAX);
4520         if (IS_ERR(path))
4521                 goto free_buf;
4522         if (rw == WRITE)
4523                 trace_f2fs_datawrite_start(inode, pos, count,
4524                                 current->pid, path, current->comm);
4525         else
4526                 trace_f2fs_dataread_start(inode, pos, count,
4527                                 current->pid, path, current->comm);
4528 free_buf:
4529         f2fs_putname(buf);
4530 }
4531
4532 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4533 {
4534         struct inode *inode = file_inode(iocb->ki_filp);
4535         const loff_t pos = iocb->ki_pos;
4536         ssize_t ret;
4537
4538         if (!f2fs_is_compress_backend_ready(inode))
4539                 return -EOPNOTSUPP;
4540
4541         if (trace_f2fs_dataread_start_enabled())
4542                 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4543                                         iov_iter_count(to), READ);
4544
4545         if (f2fs_should_use_dio(inode, iocb, to)) {
4546                 ret = f2fs_dio_read_iter(iocb, to);
4547         } else {
4548                 ret = filemap_read(iocb, to, 0);
4549                 if (ret > 0)
4550                         f2fs_update_iostat(F2FS_I_SB(inode), inode,
4551                                                 APP_BUFFERED_READ_IO, ret);
4552         }
4553         if (trace_f2fs_dataread_end_enabled())
4554                 trace_f2fs_dataread_end(inode, pos, ret);
4555         return ret;
4556 }
4557
4558 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos,
4559                                      struct pipe_inode_info *pipe,
4560                                      size_t len, unsigned int flags)
4561 {
4562         struct inode *inode = file_inode(in);
4563         const loff_t pos = *ppos;
4564         ssize_t ret;
4565
4566         if (!f2fs_is_compress_backend_ready(inode))
4567                 return -EOPNOTSUPP;
4568
4569         if (trace_f2fs_dataread_start_enabled())
4570                 f2fs_trace_rw_file_path(in, pos, len, READ);
4571
4572         ret = filemap_splice_read(in, ppos, pipe, len, flags);
4573         if (ret > 0)
4574                 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4575                                    APP_BUFFERED_READ_IO, ret);
4576
4577         if (trace_f2fs_dataread_end_enabled())
4578                 trace_f2fs_dataread_end(inode, pos, ret);
4579         return ret;
4580 }
4581
4582 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4583 {
4584         struct file *file = iocb->ki_filp;
4585         struct inode *inode = file_inode(file);
4586         ssize_t count;
4587         int err;
4588
4589         if (IS_IMMUTABLE(inode))
4590                 return -EPERM;
4591
4592         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4593                 return -EPERM;
4594
4595         count = generic_write_checks(iocb, from);
4596         if (count <= 0)
4597                 return count;
4598
4599         err = file_modified(file);
4600         if (err)
4601                 return err;
4602         return count;
4603 }
4604
4605 /*
4606  * Preallocate blocks for a write request, if it is possible and helpful to do
4607  * so.  Returns a positive number if blocks may have been preallocated, 0 if no
4608  * blocks were preallocated, or a negative errno value if something went
4609  * seriously wrong.  Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4610  * requested blocks (not just some of them) have been allocated.
4611  */
4612 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4613                                    bool dio)
4614 {
4615         struct inode *inode = file_inode(iocb->ki_filp);
4616         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4617         const loff_t pos = iocb->ki_pos;
4618         const size_t count = iov_iter_count(iter);
4619         struct f2fs_map_blocks map = {};
4620         int flag;
4621         int ret;
4622
4623         /* If it will be an out-of-place direct write, don't bother. */
4624         if (dio && f2fs_lfs_mode(sbi))
4625                 return 0;
4626         /*
4627          * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4628          * buffered IO, if DIO meets any holes.
4629          */
4630         if (dio && i_size_read(inode) &&
4631                 (F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4632                 return 0;
4633
4634         /* No-wait I/O can't allocate blocks. */
4635         if (iocb->ki_flags & IOCB_NOWAIT)
4636                 return 0;
4637
4638         /* If it will be a short write, don't bother. */
4639         if (fault_in_iov_iter_readable(iter, count))
4640                 return 0;
4641
4642         if (f2fs_has_inline_data(inode)) {
4643                 /* If the data will fit inline, don't bother. */
4644                 if (pos + count <= MAX_INLINE_DATA(inode))
4645                         return 0;
4646                 ret = f2fs_convert_inline_inode(inode);
4647                 if (ret)
4648                         return ret;
4649         }
4650
4651         /* Do not preallocate blocks that will be written partially in 4KB. */
4652         map.m_lblk = F2FS_BLK_ALIGN(pos);
4653         map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4654         if (map.m_len > map.m_lblk)
4655                 map.m_len -= map.m_lblk;
4656         else
4657                 return 0;
4658
4659         map.m_may_create = true;
4660         if (dio) {
4661                 map.m_seg_type = f2fs_rw_hint_to_seg_type(sbi,
4662                                                 inode->i_write_hint);
4663                 flag = F2FS_GET_BLOCK_PRE_DIO;
4664         } else {
4665                 map.m_seg_type = NO_CHECK_TYPE;
4666                 flag = F2FS_GET_BLOCK_PRE_AIO;
4667         }
4668
4669         ret = f2fs_map_blocks(inode, &map, flag);
4670         /* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4671         if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4672                 return ret;
4673         if (ret == 0)
4674                 set_inode_flag(inode, FI_PREALLOCATED_ALL);
4675         return map.m_len;
4676 }
4677
4678 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4679                                         struct iov_iter *from)
4680 {
4681         struct file *file = iocb->ki_filp;
4682         struct inode *inode = file_inode(file);
4683         ssize_t ret;
4684
4685         if (iocb->ki_flags & IOCB_NOWAIT)
4686                 return -EOPNOTSUPP;
4687
4688         ret = generic_perform_write(iocb, from);
4689
4690         if (ret > 0) {
4691                 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4692                                                 APP_BUFFERED_IO, ret);
4693         }
4694         return ret;
4695 }
4696
4697 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4698                                  unsigned int flags)
4699 {
4700         struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4701
4702         dec_page_count(sbi, F2FS_DIO_WRITE);
4703         if (error)
4704                 return error;
4705         f2fs_update_time(sbi, REQ_TIME);
4706         f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
4707         return 0;
4708 }
4709
4710 static void f2fs_dio_write_submit_io(const struct iomap_iter *iter,
4711                                         struct bio *bio, loff_t file_offset)
4712 {
4713         struct inode *inode = iter->inode;
4714         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4715         int seg_type = f2fs_rw_hint_to_seg_type(sbi, inode->i_write_hint);
4716         enum temp_type temp = f2fs_get_segment_temp(seg_type);
4717
4718         bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, DATA, temp);
4719         submit_bio(bio);
4720 }
4721
4722 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4723         .end_io         = f2fs_dio_write_end_io,
4724         .submit_io      = f2fs_dio_write_submit_io,
4725 };
4726
4727 static void f2fs_flush_buffered_write(struct address_space *mapping,
4728                                       loff_t start_pos, loff_t end_pos)
4729 {
4730         int ret;
4731
4732         ret = filemap_write_and_wait_range(mapping, start_pos, end_pos);
4733         if (ret < 0)
4734                 return;
4735         invalidate_mapping_pages(mapping,
4736                                  start_pos >> PAGE_SHIFT,
4737                                  end_pos >> PAGE_SHIFT);
4738 }
4739
4740 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4741                                    bool *may_need_sync)
4742 {
4743         struct file *file = iocb->ki_filp;
4744         struct inode *inode = file_inode(file);
4745         struct f2fs_inode_info *fi = F2FS_I(inode);
4746         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4747         const bool do_opu = f2fs_lfs_mode(sbi);
4748         const loff_t pos = iocb->ki_pos;
4749         const ssize_t count = iov_iter_count(from);
4750         unsigned int dio_flags;
4751         struct iomap_dio *dio;
4752         ssize_t ret;
4753
4754         trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
4755
4756         if (iocb->ki_flags & IOCB_NOWAIT) {
4757                 /* f2fs_convert_inline_inode() and block allocation can block */
4758                 if (f2fs_has_inline_data(inode) ||
4759                     !f2fs_overwrite_io(inode, pos, count)) {
4760                         ret = -EAGAIN;
4761                         goto out;
4762                 }
4763
4764                 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4765                         ret = -EAGAIN;
4766                         goto out;
4767                 }
4768                 if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4769                         f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4770                         ret = -EAGAIN;
4771                         goto out;
4772                 }
4773         } else {
4774                 ret = f2fs_convert_inline_inode(inode);
4775                 if (ret)
4776                         goto out;
4777
4778                 f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
4779                 if (do_opu)
4780                         f2fs_down_read(&fi->i_gc_rwsem[READ]);
4781         }
4782
4783         /*
4784          * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4785          * the higher-level function iomap_dio_rw() in order to ensure that the
4786          * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4787          */
4788         inc_page_count(sbi, F2FS_DIO_WRITE);
4789         dio_flags = 0;
4790         if (pos + count > inode->i_size)
4791                 dio_flags |= IOMAP_DIO_FORCE_WAIT;
4792         dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4793                              &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
4794         if (IS_ERR_OR_NULL(dio)) {
4795                 ret = PTR_ERR_OR_ZERO(dio);
4796                 if (ret == -ENOTBLK)
4797                         ret = 0;
4798                 if (ret != -EIOCBQUEUED)
4799                         dec_page_count(sbi, F2FS_DIO_WRITE);
4800         } else {
4801                 ret = iomap_dio_complete(dio);
4802         }
4803
4804         if (do_opu)
4805                 f2fs_up_read(&fi->i_gc_rwsem[READ]);
4806         f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4807
4808         if (ret < 0)
4809                 goto out;
4810         if (pos + ret > inode->i_size)
4811                 f2fs_i_size_write(inode, pos + ret);
4812         if (!do_opu)
4813                 set_inode_flag(inode, FI_UPDATE_WRITE);
4814
4815         if (iov_iter_count(from)) {
4816                 ssize_t ret2;
4817                 loff_t bufio_start_pos = iocb->ki_pos;
4818
4819                 /*
4820                  * The direct write was partial, so we need to fall back to a
4821                  * buffered write for the remainder.
4822                  */
4823
4824                 ret2 = f2fs_buffered_write_iter(iocb, from);
4825                 if (iov_iter_count(from))
4826                         f2fs_write_failed(inode, iocb->ki_pos);
4827                 if (ret2 < 0)
4828                         goto out;
4829
4830                 /*
4831                  * Ensure that the pagecache pages are written to disk and
4832                  * invalidated to preserve the expected O_DIRECT semantics.
4833                  */
4834                 if (ret2 > 0) {
4835                         loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
4836
4837                         ret += ret2;
4838
4839                         f2fs_flush_buffered_write(file->f_mapping,
4840                                                   bufio_start_pos,
4841                                                   bufio_end_pos);
4842                 }
4843         } else {
4844                 /* iomap_dio_rw() already handled the generic_write_sync(). */
4845                 *may_need_sync = false;
4846         }
4847 out:
4848         trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
4849         return ret;
4850 }
4851
4852 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4853 {
4854         struct inode *inode = file_inode(iocb->ki_filp);
4855         const loff_t orig_pos = iocb->ki_pos;
4856         const size_t orig_count = iov_iter_count(from);
4857         loff_t target_size;
4858         bool dio;
4859         bool may_need_sync = true;
4860         int preallocated;
4861         const loff_t pos = iocb->ki_pos;
4862         const ssize_t count = iov_iter_count(from);
4863         ssize_t ret;
4864
4865         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4866                 ret = -EIO;
4867                 goto out;
4868         }
4869
4870         if (!f2fs_is_compress_backend_ready(inode)) {
4871                 ret = -EOPNOTSUPP;
4872                 goto out;
4873         }
4874
4875         if (iocb->ki_flags & IOCB_NOWAIT) {
4876                 if (!inode_trylock(inode)) {
4877                         ret = -EAGAIN;
4878                         goto out;
4879                 }
4880         } else {
4881                 inode_lock(inode);
4882         }
4883
4884         if (f2fs_is_pinned_file(inode) &&
4885             !f2fs_overwrite_io(inode, pos, count)) {
4886                 ret = -EIO;
4887                 goto out_unlock;
4888         }
4889
4890         ret = f2fs_write_checks(iocb, from);
4891         if (ret <= 0)
4892                 goto out_unlock;
4893
4894         /* Determine whether we will do a direct write or a buffered write. */
4895         dio = f2fs_should_use_dio(inode, iocb, from);
4896
4897         /* Possibly preallocate the blocks for the write. */
4898         target_size = iocb->ki_pos + iov_iter_count(from);
4899         preallocated = f2fs_preallocate_blocks(iocb, from, dio);
4900         if (preallocated < 0) {
4901                 ret = preallocated;
4902         } else {
4903                 if (trace_f2fs_datawrite_start_enabled())
4904                         f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4905                                                 orig_count, WRITE);
4906
4907                 /* Do the actual write. */
4908                 ret = dio ?
4909                         f2fs_dio_write_iter(iocb, from, &may_need_sync) :
4910                         f2fs_buffered_write_iter(iocb, from);
4911
4912                 if (trace_f2fs_datawrite_end_enabled())
4913                         trace_f2fs_datawrite_end(inode, orig_pos, ret);
4914         }
4915
4916         /* Don't leave any preallocated blocks around past i_size. */
4917         if (preallocated && i_size_read(inode) < target_size) {
4918                 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4919                 filemap_invalidate_lock(inode->i_mapping);
4920                 if (!f2fs_truncate(inode))
4921                         file_dont_truncate(inode);
4922                 filemap_invalidate_unlock(inode->i_mapping);
4923                 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4924         } else {
4925                 file_dont_truncate(inode);
4926         }
4927
4928         clear_inode_flag(inode, FI_PREALLOCATED_ALL);
4929 out_unlock:
4930         inode_unlock(inode);
4931 out:
4932         trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
4933
4934         if (ret > 0 && may_need_sync)
4935                 ret = generic_write_sync(iocb, ret);
4936
4937         /* If buffered IO was forced, flush and drop the data from
4938          * the page cache to preserve O_DIRECT semantics
4939          */
4940         if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT))
4941                 f2fs_flush_buffered_write(iocb->ki_filp->f_mapping,
4942                                           orig_pos,
4943                                           orig_pos + ret - 1);
4944
4945         return ret;
4946 }
4947
4948 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
4949                 int advice)
4950 {
4951         struct address_space *mapping;
4952         struct backing_dev_info *bdi;
4953         struct inode *inode = file_inode(filp);
4954         int err;
4955
4956         if (advice == POSIX_FADV_SEQUENTIAL) {
4957                 if (S_ISFIFO(inode->i_mode))
4958                         return -ESPIPE;
4959
4960                 mapping = filp->f_mapping;
4961                 if (!mapping || len < 0)
4962                         return -EINVAL;
4963
4964                 bdi = inode_to_bdi(mapping->host);
4965                 filp->f_ra.ra_pages = bdi->ra_pages *
4966                         F2FS_I_SB(inode)->seq_file_ra_mul;
4967                 spin_lock(&filp->f_lock);
4968                 filp->f_mode &= ~FMODE_RANDOM;
4969                 spin_unlock(&filp->f_lock);
4970                 return 0;
4971         } else if (advice == POSIX_FADV_WILLNEED && offset == 0) {
4972                 /* Load extent cache at the first readahead. */
4973                 f2fs_precache_extents(inode);
4974         }
4975
4976         err = generic_fadvise(filp, offset, len, advice);
4977         if (!err && advice == POSIX_FADV_DONTNEED &&
4978                 test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
4979                 f2fs_compressed_file(inode))
4980                 f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
4981
4982         return err;
4983 }
4984
4985 #ifdef CONFIG_COMPAT
4986 struct compat_f2fs_gc_range {
4987         u32 sync;
4988         compat_u64 start;
4989         compat_u64 len;
4990 };
4991 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE        _IOW(F2FS_IOCTL_MAGIC, 11,\
4992                                                 struct compat_f2fs_gc_range)
4993
4994 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
4995 {
4996         struct compat_f2fs_gc_range __user *urange;
4997         struct f2fs_gc_range range;
4998         int err;
4999
5000         urange = compat_ptr(arg);
5001         err = get_user(range.sync, &urange->sync);
5002         err |= get_user(range.start, &urange->start);
5003         err |= get_user(range.len, &urange->len);
5004         if (err)
5005                 return -EFAULT;
5006
5007         return __f2fs_ioc_gc_range(file, &range);
5008 }
5009
5010 struct compat_f2fs_move_range {
5011         u32 dst_fd;
5012         compat_u64 pos_in;
5013         compat_u64 pos_out;
5014         compat_u64 len;
5015 };
5016 #define F2FS_IOC32_MOVE_RANGE           _IOWR(F2FS_IOCTL_MAGIC, 9,      \
5017                                         struct compat_f2fs_move_range)
5018
5019 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
5020 {
5021         struct compat_f2fs_move_range __user *urange;
5022         struct f2fs_move_range range;
5023         int err;
5024
5025         urange = compat_ptr(arg);
5026         err = get_user(range.dst_fd, &urange->dst_fd);
5027         err |= get_user(range.pos_in, &urange->pos_in);
5028         err |= get_user(range.pos_out, &urange->pos_out);
5029         err |= get_user(range.len, &urange->len);
5030         if (err)
5031                 return -EFAULT;
5032
5033         return __f2fs_ioc_move_range(file, &range);
5034 }
5035
5036 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5037 {
5038         if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
5039                 return -EIO;
5040         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
5041                 return -ENOSPC;
5042
5043         switch (cmd) {
5044         case FS_IOC32_GETVERSION:
5045                 cmd = FS_IOC_GETVERSION;
5046                 break;
5047         case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
5048                 return f2fs_compat_ioc_gc_range(file, arg);
5049         case F2FS_IOC32_MOVE_RANGE:
5050                 return f2fs_compat_ioc_move_range(file, arg);
5051         case F2FS_IOC_START_ATOMIC_WRITE:
5052         case F2FS_IOC_START_ATOMIC_REPLACE:
5053         case F2FS_IOC_COMMIT_ATOMIC_WRITE:
5054         case F2FS_IOC_START_VOLATILE_WRITE:
5055         case F2FS_IOC_RELEASE_VOLATILE_WRITE:
5056         case F2FS_IOC_ABORT_ATOMIC_WRITE:
5057         case F2FS_IOC_SHUTDOWN:
5058         case FITRIM:
5059         case FS_IOC_SET_ENCRYPTION_POLICY:
5060         case FS_IOC_GET_ENCRYPTION_PWSALT:
5061         case FS_IOC_GET_ENCRYPTION_POLICY:
5062         case FS_IOC_GET_ENCRYPTION_POLICY_EX:
5063         case FS_IOC_ADD_ENCRYPTION_KEY:
5064         case FS_IOC_REMOVE_ENCRYPTION_KEY:
5065         case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
5066         case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
5067         case FS_IOC_GET_ENCRYPTION_NONCE:
5068         case F2FS_IOC_GARBAGE_COLLECT:
5069         case F2FS_IOC_WRITE_CHECKPOINT:
5070         case F2FS_IOC_DEFRAGMENT:
5071         case F2FS_IOC_FLUSH_DEVICE:
5072         case F2FS_IOC_GET_FEATURES:
5073         case F2FS_IOC_GET_PIN_FILE:
5074         case F2FS_IOC_SET_PIN_FILE:
5075         case F2FS_IOC_PRECACHE_EXTENTS:
5076         case F2FS_IOC_RESIZE_FS:
5077         case FS_IOC_ENABLE_VERITY:
5078         case FS_IOC_MEASURE_VERITY:
5079         case FS_IOC_READ_VERITY_METADATA:
5080         case FS_IOC_GETFSLABEL:
5081         case FS_IOC_SETFSLABEL:
5082         case F2FS_IOC_GET_COMPRESS_BLOCKS:
5083         case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
5084         case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
5085         case F2FS_IOC_SEC_TRIM_FILE:
5086         case F2FS_IOC_GET_COMPRESS_OPTION:
5087         case F2FS_IOC_SET_COMPRESS_OPTION:
5088         case F2FS_IOC_DECOMPRESS_FILE:
5089         case F2FS_IOC_COMPRESS_FILE:
5090                 break;
5091         default:
5092                 return -ENOIOCTLCMD;
5093         }
5094         return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5095 }
5096 #endif
5097
5098 const struct file_operations f2fs_file_operations = {
5099         .llseek         = f2fs_llseek,
5100         .read_iter      = f2fs_file_read_iter,
5101         .write_iter     = f2fs_file_write_iter,
5102         .iopoll         = iocb_bio_iopoll,
5103         .open           = f2fs_file_open,
5104         .release        = f2fs_release_file,
5105         .mmap           = f2fs_file_mmap,
5106         .flush          = f2fs_file_flush,
5107         .fsync          = f2fs_sync_file,
5108         .fallocate      = f2fs_fallocate,
5109         .unlocked_ioctl = f2fs_ioctl,
5110 #ifdef CONFIG_COMPAT
5111         .compat_ioctl   = f2fs_compat_ioctl,
5112 #endif
5113         .splice_read    = f2fs_file_splice_read,
5114         .splice_write   = iter_file_splice_write,
5115         .fadvise        = f2fs_file_fadvise,
5116         .fop_flags      = FOP_BUFFER_RASYNC,
5117 };
This page took 0.311478 seconds and 4 git commands to generate.