1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27 #include <linux/iomap.h>
36 #include <trace/events/f2fs.h>
37 #include <uapi/linux/f2fs.h>
39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
41 struct inode *inode = file_inode(vmf->vma->vm_file);
42 vm_flags_t flags = vmf->vma->vm_flags;
45 ret = filemap_fault(vmf);
46 if (ret & VM_FAULT_LOCKED)
47 f2fs_update_iostat(F2FS_I_SB(inode), inode,
48 APP_MAPPED_READ_IO, F2FS_BLKSIZE);
50 trace_f2fs_filemap_fault(inode, vmf->pgoff, flags, ret);
55 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
57 struct page *page = vmf->page;
58 struct inode *inode = file_inode(vmf->vma->vm_file);
59 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
60 struct dnode_of_data dn;
61 bool need_alloc = !f2fs_is_pinned_file(inode);
65 if (unlikely(IS_IMMUTABLE(inode)))
66 return VM_FAULT_SIGBUS;
68 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
73 if (unlikely(f2fs_cp_error(sbi))) {
78 if (!f2fs_is_checkpoint_ready(sbi)) {
83 err = f2fs_convert_inline_inode(inode);
87 #ifdef CONFIG_F2FS_FS_COMPRESSION
88 if (f2fs_compressed_file(inode)) {
89 int ret = f2fs_is_compressed_cluster(inode, page->index);
99 /* should do out of any locked page */
101 f2fs_balance_fs(sbi, true);
103 sb_start_pagefault(inode->i_sb);
105 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
107 file_update_time(vmf->vma->vm_file);
108 filemap_invalidate_lock_shared(inode->i_mapping);
110 if (unlikely(page->mapping != inode->i_mapping ||
111 page_offset(page) > i_size_read(inode) ||
112 !PageUptodate(page))) {
118 set_new_dnode(&dn, inode, NULL, NULL, 0);
120 /* block allocation */
121 err = f2fs_get_block_locked(&dn, page->index);
123 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
125 if (f2fs_is_pinned_file(inode) &&
126 !__is_valid_data_blkaddr(dn.data_blkaddr))
135 f2fs_wait_on_page_writeback(page, DATA, false, true);
137 /* wait for GCed page writeback via META_MAPPING */
138 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
141 * check to see if the page is mapped already (no holes)
143 if (PageMappedToDisk(page))
146 /* page is wholly or partially inside EOF */
147 if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
148 i_size_read(inode)) {
151 offset = i_size_read(inode) & ~PAGE_MASK;
152 zero_user_segment(page, offset, PAGE_SIZE);
154 set_page_dirty(page);
156 f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
157 f2fs_update_time(sbi, REQ_TIME);
160 filemap_invalidate_unlock_shared(inode->i_mapping);
162 sb_end_pagefault(inode->i_sb);
164 ret = vmf_fs_error(err);
166 trace_f2fs_vm_page_mkwrite(inode, page->index, vmf->vma->vm_flags, ret);
170 static const struct vm_operations_struct f2fs_file_vm_ops = {
171 .fault = f2fs_filemap_fault,
172 .map_pages = filemap_map_pages,
173 .page_mkwrite = f2fs_vm_page_mkwrite,
176 static int get_parent_ino(struct inode *inode, nid_t *pino)
178 struct dentry *dentry;
181 * Make sure to get the non-deleted alias. The alias associated with
182 * the open file descriptor being fsync()'ed may be deleted already.
184 dentry = d_find_alias(inode);
188 *pino = parent_ino(dentry);
193 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
195 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
196 enum cp_reason_type cp_reason = CP_NO_NEEDED;
198 if (!S_ISREG(inode->i_mode))
199 cp_reason = CP_NON_REGULAR;
200 else if (f2fs_compressed_file(inode))
201 cp_reason = CP_COMPRESSED;
202 else if (inode->i_nlink != 1)
203 cp_reason = CP_HARDLINK;
204 else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
205 cp_reason = CP_SB_NEED_CP;
206 else if (file_wrong_pino(inode))
207 cp_reason = CP_WRONG_PINO;
208 else if (!f2fs_space_for_roll_forward(sbi))
209 cp_reason = CP_NO_SPC_ROLL;
210 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
211 cp_reason = CP_NODE_NEED_CP;
212 else if (test_opt(sbi, FASTBOOT))
213 cp_reason = CP_FASTBOOT_MODE;
214 else if (F2FS_OPTION(sbi).active_logs == 2)
215 cp_reason = CP_SPEC_LOG_NUM;
216 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
217 f2fs_need_dentry_mark(sbi, inode->i_ino) &&
218 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
220 cp_reason = CP_RECOVER_DIR;
225 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
227 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
229 /* But we need to avoid that there are some inode updates */
230 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
236 static void try_to_fix_pino(struct inode *inode)
238 struct f2fs_inode_info *fi = F2FS_I(inode);
241 f2fs_down_write(&fi->i_sem);
242 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
243 get_parent_ino(inode, &pino)) {
244 f2fs_i_pino_write(inode, pino);
245 file_got_pino(inode);
247 f2fs_up_write(&fi->i_sem);
250 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
251 int datasync, bool atomic)
253 struct inode *inode = file->f_mapping->host;
254 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
255 nid_t ino = inode->i_ino;
257 enum cp_reason_type cp_reason = 0;
258 struct writeback_control wbc = {
259 .sync_mode = WB_SYNC_ALL,
260 .nr_to_write = LONG_MAX,
263 unsigned int seq_id = 0;
265 if (unlikely(f2fs_readonly(inode->i_sb)))
268 trace_f2fs_sync_file_enter(inode);
270 if (S_ISDIR(inode->i_mode))
273 /* if fdatasync is triggered, let's do in-place-update */
274 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
275 set_inode_flag(inode, FI_NEED_IPU);
276 ret = file_write_and_wait_range(file, start, end);
277 clear_inode_flag(inode, FI_NEED_IPU);
279 if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
280 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
284 /* if the inode is dirty, let's recover all the time */
285 if (!f2fs_skip_inode_update(inode, datasync)) {
286 f2fs_write_inode(inode, NULL);
291 * if there is no written data, don't waste time to write recovery info.
293 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
294 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
296 /* it may call write_inode just prior to fsync */
297 if (need_inode_page_update(sbi, ino))
300 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
301 f2fs_exist_written_data(sbi, ino, UPDATE_INO))
306 * for OPU case, during fsync(), node can be persisted before
307 * data when lower device doesn't support write barrier, result
308 * in data corruption after SPO.
309 * So for strict fsync mode, force to use atomic write semantics
310 * to keep write order in between data/node and last node to
311 * avoid potential data corruption.
313 if (F2FS_OPTION(sbi).fsync_mode ==
314 FSYNC_MODE_STRICT && !atomic)
319 * Both of fdatasync() and fsync() are able to be recovered from
322 f2fs_down_read(&F2FS_I(inode)->i_sem);
323 cp_reason = need_do_checkpoint(inode);
324 f2fs_up_read(&F2FS_I(inode)->i_sem);
327 /* all the dirty node pages should be flushed for POR */
328 ret = f2fs_sync_fs(inode->i_sb, 1);
331 * We've secured consistency through sync_fs. Following pino
332 * will be used only for fsynced inodes after checkpoint.
334 try_to_fix_pino(inode);
335 clear_inode_flag(inode, FI_APPEND_WRITE);
336 clear_inode_flag(inode, FI_UPDATE_WRITE);
340 atomic_inc(&sbi->wb_sync_req[NODE]);
341 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
342 atomic_dec(&sbi->wb_sync_req[NODE]);
346 /* if cp_error was enabled, we should avoid infinite loop */
347 if (unlikely(f2fs_cp_error(sbi))) {
352 if (f2fs_need_inode_block_update(sbi, ino)) {
353 f2fs_mark_inode_dirty_sync(inode, true);
354 f2fs_write_inode(inode, NULL);
359 * If it's atomic_write, it's just fine to keep write ordering. So
360 * here we don't need to wait for node write completion, since we use
361 * node chain which serializes node blocks. If one of node writes are
362 * reordered, we can see simply broken chain, resulting in stopping
363 * roll-forward recovery. It means we'll recover all or none node blocks
367 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
372 /* once recovery info is written, don't need to tack this */
373 f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
374 clear_inode_flag(inode, FI_APPEND_WRITE);
376 if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) ||
377 (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi)))
378 ret = f2fs_issue_flush(sbi, inode->i_ino);
380 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
381 clear_inode_flag(inode, FI_UPDATE_WRITE);
382 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
384 f2fs_update_time(sbi, REQ_TIME);
386 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
390 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
392 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
394 return f2fs_do_sync_file(file, start, end, datasync, false);
397 static bool __found_offset(struct address_space *mapping,
398 struct dnode_of_data *dn, pgoff_t index, int whence)
400 block_t blkaddr = f2fs_data_blkaddr(dn);
401 struct inode *inode = mapping->host;
402 bool compressed_cluster = false;
404 if (f2fs_compressed_file(inode)) {
405 block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
406 ALIGN_DOWN(dn->ofs_in_node, F2FS_I(inode)->i_cluster_size));
408 compressed_cluster = first_blkaddr == COMPRESS_ADDR;
413 if (__is_valid_data_blkaddr(blkaddr))
415 if (blkaddr == NEW_ADDR &&
416 xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
418 if (compressed_cluster)
422 if (compressed_cluster)
424 if (blkaddr == NULL_ADDR)
431 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
433 struct inode *inode = file->f_mapping->host;
434 loff_t maxbytes = inode->i_sb->s_maxbytes;
435 struct dnode_of_data dn;
436 pgoff_t pgofs, end_offset;
437 loff_t data_ofs = offset;
441 inode_lock_shared(inode);
443 isize = i_size_read(inode);
447 /* handle inline data case */
448 if (f2fs_has_inline_data(inode)) {
449 if (whence == SEEK_HOLE) {
452 } else if (whence == SEEK_DATA) {
458 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
460 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
461 set_new_dnode(&dn, inode, NULL, NULL, 0);
462 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
463 if (err && err != -ENOENT) {
465 } else if (err == -ENOENT) {
466 /* direct node does not exists */
467 if (whence == SEEK_DATA) {
468 pgofs = f2fs_get_next_page_offset(&dn, pgofs);
475 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
477 /* find data/hole in dnode block */
478 for (; dn.ofs_in_node < end_offset;
479 dn.ofs_in_node++, pgofs++,
480 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
483 blkaddr = f2fs_data_blkaddr(&dn);
485 if (__is_valid_data_blkaddr(blkaddr) &&
486 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
487 blkaddr, DATA_GENERIC_ENHANCE)) {
492 if (__found_offset(file->f_mapping, &dn,
501 if (whence == SEEK_DATA)
504 if (whence == SEEK_HOLE && data_ofs > isize)
506 inode_unlock_shared(inode);
507 return vfs_setpos(file, data_ofs, maxbytes);
509 inode_unlock_shared(inode);
513 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
515 struct inode *inode = file->f_mapping->host;
516 loff_t maxbytes = inode->i_sb->s_maxbytes;
518 if (f2fs_compressed_file(inode))
519 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
525 return generic_file_llseek_size(file, offset, whence,
526 maxbytes, i_size_read(inode));
531 return f2fs_seek_block(file, offset, whence);
537 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
539 struct inode *inode = file_inode(file);
541 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
544 if (!f2fs_is_compress_backend_ready(inode))
548 vma->vm_ops = &f2fs_file_vm_ops;
550 f2fs_down_read(&F2FS_I(inode)->i_sem);
551 set_inode_flag(inode, FI_MMAP_FILE);
552 f2fs_up_read(&F2FS_I(inode)->i_sem);
557 static int f2fs_file_open(struct inode *inode, struct file *filp)
559 int err = fscrypt_file_open(inode, filp);
564 if (!f2fs_is_compress_backend_ready(inode))
567 err = fsverity_file_open(inode, filp);
571 filp->f_mode |= FMODE_NOWAIT;
572 filp->f_mode |= FMODE_CAN_ODIRECT;
574 return dquot_file_open(inode, filp);
577 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
579 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
580 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
582 bool compressed_cluster = false;
583 int cluster_index = 0, valid_blocks = 0;
584 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
585 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
587 addr = get_dnode_addr(dn->inode, dn->node_page) + ofs;
589 /* Assumption: truncation starts with cluster */
590 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
591 block_t blkaddr = le32_to_cpu(*addr);
593 if (f2fs_compressed_file(dn->inode) &&
594 !(cluster_index & (cluster_size - 1))) {
595 if (compressed_cluster)
596 f2fs_i_compr_blocks_update(dn->inode,
597 valid_blocks, false);
598 compressed_cluster = (blkaddr == COMPRESS_ADDR);
602 if (blkaddr == NULL_ADDR)
605 f2fs_set_data_blkaddr(dn, NULL_ADDR);
607 if (__is_valid_data_blkaddr(blkaddr)) {
608 if (time_to_inject(sbi, FAULT_BLKADDR_CONSISTENCE))
610 if (!f2fs_is_valid_blkaddr_raw(sbi, blkaddr,
611 DATA_GENERIC_ENHANCE))
613 if (compressed_cluster)
617 f2fs_invalidate_blocks(sbi, blkaddr);
619 if (!released || blkaddr != COMPRESS_ADDR)
623 if (compressed_cluster)
624 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
629 * once we invalidate valid blkaddr in range [ofs, ofs + count],
630 * we will invalidate all blkaddr in the whole range.
632 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
634 f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
635 f2fs_update_age_extent_cache_range(dn, fofs, len);
636 dec_valid_block_count(sbi, dn->inode, nr_free);
638 dn->ofs_in_node = ofs;
640 f2fs_update_time(sbi, REQ_TIME);
641 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
642 dn->ofs_in_node, nr_free);
645 static int truncate_partial_data_page(struct inode *inode, u64 from,
648 loff_t offset = from & (PAGE_SIZE - 1);
649 pgoff_t index = from >> PAGE_SHIFT;
650 struct address_space *mapping = inode->i_mapping;
653 if (!offset && !cache_only)
657 page = find_lock_page(mapping, index);
658 if (page && PageUptodate(page))
660 f2fs_put_page(page, 1);
664 page = f2fs_get_lock_data_page(inode, index, true);
666 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
668 f2fs_wait_on_page_writeback(page, DATA, true, true);
669 zero_user(page, offset, PAGE_SIZE - offset);
671 /* An encrypted inode should have a key and truncate the last page. */
672 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
674 set_page_dirty(page);
675 f2fs_put_page(page, 1);
679 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
681 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
682 struct dnode_of_data dn;
684 int count = 0, err = 0;
686 bool truncate_page = false;
688 trace_f2fs_truncate_blocks_enter(inode, from);
690 free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
692 if (free_from >= max_file_blocks(inode))
698 ipage = f2fs_get_node_page(sbi, inode->i_ino);
700 err = PTR_ERR(ipage);
704 if (f2fs_has_inline_data(inode)) {
705 f2fs_truncate_inline_inode(inode, ipage, from);
706 f2fs_put_page(ipage, 1);
707 truncate_page = true;
711 set_new_dnode(&dn, inode, ipage, NULL, 0);
712 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
719 count = ADDRS_PER_PAGE(dn.node_page, inode);
721 count -= dn.ofs_in_node;
722 f2fs_bug_on(sbi, count < 0);
724 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
725 f2fs_truncate_data_blocks_range(&dn, count);
731 err = f2fs_truncate_inode_blocks(inode, free_from);
736 /* lastly zero out the first data page */
738 err = truncate_partial_data_page(inode, from, truncate_page);
740 trace_f2fs_truncate_blocks_exit(inode, err);
744 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
746 u64 free_from = from;
749 #ifdef CONFIG_F2FS_FS_COMPRESSION
751 * for compressed file, only support cluster size
752 * aligned truncation.
754 if (f2fs_compressed_file(inode))
755 free_from = round_up(from,
756 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
759 err = f2fs_do_truncate_blocks(inode, free_from, lock);
763 #ifdef CONFIG_F2FS_FS_COMPRESSION
765 * For compressed file, after release compress blocks, don't allow write
766 * direct, but we should allow write direct after truncate to zero.
768 if (f2fs_compressed_file(inode) && !free_from
769 && is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
770 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
772 if (from != free_from) {
773 err = f2fs_truncate_partial_cluster(inode, from, lock);
782 int f2fs_truncate(struct inode *inode)
786 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
789 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
790 S_ISLNK(inode->i_mode)))
793 trace_f2fs_truncate(inode);
795 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE))
798 err = f2fs_dquot_initialize(inode);
802 /* we should check inline_data size */
803 if (!f2fs_may_inline_data(inode)) {
804 err = f2fs_convert_inline_inode(inode);
809 err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
813 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
814 f2fs_mark_inode_dirty_sync(inode, false);
818 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
820 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
822 if (!fscrypt_dio_supported(inode))
824 if (fsverity_active(inode))
826 if (f2fs_compressed_file(inode))
829 /* disallow direct IO if any of devices has unaligned blksize */
830 if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
833 * for blkzoned device, fallback direct IO to buffered IO, so
834 * all IOs can be serialized by log-structured write.
836 if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE) &&
837 !f2fs_is_pinned_file(inode))
839 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
845 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
846 struct kstat *stat, u32 request_mask, unsigned int query_flags)
848 struct inode *inode = d_inode(path->dentry);
849 struct f2fs_inode_info *fi = F2FS_I(inode);
850 struct f2fs_inode *ri = NULL;
853 if (f2fs_has_extra_attr(inode) &&
854 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
855 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
856 stat->result_mask |= STATX_BTIME;
857 stat->btime.tv_sec = fi->i_crtime.tv_sec;
858 stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
862 * Return the DIO alignment restrictions if requested. We only return
863 * this information when requested, since on encrypted files it might
864 * take a fair bit of work to get if the file wasn't opened recently.
866 * f2fs sometimes supports DIO reads but not DIO writes. STATX_DIOALIGN
867 * cannot represent that, so in that case we report no DIO support.
869 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
870 unsigned int bsize = i_blocksize(inode);
872 stat->result_mask |= STATX_DIOALIGN;
873 if (!f2fs_force_buffered_io(inode, WRITE)) {
874 stat->dio_mem_align = bsize;
875 stat->dio_offset_align = bsize;
880 if (flags & F2FS_COMPR_FL)
881 stat->attributes |= STATX_ATTR_COMPRESSED;
882 if (flags & F2FS_APPEND_FL)
883 stat->attributes |= STATX_ATTR_APPEND;
884 if (IS_ENCRYPTED(inode))
885 stat->attributes |= STATX_ATTR_ENCRYPTED;
886 if (flags & F2FS_IMMUTABLE_FL)
887 stat->attributes |= STATX_ATTR_IMMUTABLE;
888 if (flags & F2FS_NODUMP_FL)
889 stat->attributes |= STATX_ATTR_NODUMP;
890 if (IS_VERITY(inode))
891 stat->attributes |= STATX_ATTR_VERITY;
893 stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
895 STATX_ATTR_ENCRYPTED |
896 STATX_ATTR_IMMUTABLE |
900 generic_fillattr(idmap, request_mask, inode, stat);
902 /* we need to show initial sectors used for inline_data/dentries */
903 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
904 f2fs_has_inline_dentry(inode))
905 stat->blocks += (stat->size + 511) >> 9;
910 #ifdef CONFIG_F2FS_FS_POSIX_ACL
911 static void __setattr_copy(struct mnt_idmap *idmap,
912 struct inode *inode, const struct iattr *attr)
914 unsigned int ia_valid = attr->ia_valid;
916 i_uid_update(idmap, attr, inode);
917 i_gid_update(idmap, attr, inode);
918 if (ia_valid & ATTR_ATIME)
919 inode_set_atime_to_ts(inode, attr->ia_atime);
920 if (ia_valid & ATTR_MTIME)
921 inode_set_mtime_to_ts(inode, attr->ia_mtime);
922 if (ia_valid & ATTR_CTIME)
923 inode_set_ctime_to_ts(inode, attr->ia_ctime);
924 if (ia_valid & ATTR_MODE) {
925 umode_t mode = attr->ia_mode;
926 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
928 if (!vfsgid_in_group_p(vfsgid) &&
929 !capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
931 set_acl_inode(inode, mode);
935 #define __setattr_copy setattr_copy
938 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
941 struct inode *inode = d_inode(dentry);
944 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
947 if (unlikely(IS_IMMUTABLE(inode)))
950 if (unlikely(IS_APPEND(inode) &&
951 (attr->ia_valid & (ATTR_MODE | ATTR_UID |
952 ATTR_GID | ATTR_TIMES_SET))))
955 if ((attr->ia_valid & ATTR_SIZE)) {
956 if (!f2fs_is_compress_backend_ready(inode))
958 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) &&
959 !IS_ALIGNED(attr->ia_size,
960 F2FS_BLK_TO_BYTES(F2FS_I(inode)->i_cluster_size)))
964 err = setattr_prepare(idmap, dentry, attr);
968 err = fscrypt_prepare_setattr(dentry, attr);
972 err = fsverity_prepare_setattr(dentry, attr);
976 if (is_quota_modification(idmap, inode, attr)) {
977 err = f2fs_dquot_initialize(inode);
981 if (i_uid_needs_update(idmap, attr, inode) ||
982 i_gid_needs_update(idmap, attr, inode)) {
983 f2fs_lock_op(F2FS_I_SB(inode));
984 err = dquot_transfer(idmap, inode, attr);
986 set_sbi_flag(F2FS_I_SB(inode),
987 SBI_QUOTA_NEED_REPAIR);
988 f2fs_unlock_op(F2FS_I_SB(inode));
992 * update uid/gid under lock_op(), so that dquot and inode can
993 * be updated atomically.
995 i_uid_update(idmap, attr, inode);
996 i_gid_update(idmap, attr, inode);
997 f2fs_mark_inode_dirty_sync(inode, true);
998 f2fs_unlock_op(F2FS_I_SB(inode));
1001 if (attr->ia_valid & ATTR_SIZE) {
1002 loff_t old_size = i_size_read(inode);
1004 if (attr->ia_size > MAX_INLINE_DATA(inode)) {
1006 * should convert inline inode before i_size_write to
1007 * keep smaller than inline_data size with inline flag.
1009 err = f2fs_convert_inline_inode(inode);
1014 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1015 filemap_invalidate_lock(inode->i_mapping);
1017 truncate_setsize(inode, attr->ia_size);
1019 if (attr->ia_size <= old_size)
1020 err = f2fs_truncate(inode);
1022 * do not trim all blocks after i_size if target size is
1023 * larger than i_size.
1025 filemap_invalidate_unlock(inode->i_mapping);
1026 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1030 spin_lock(&F2FS_I(inode)->i_size_lock);
1031 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1032 F2FS_I(inode)->last_disk_size = i_size_read(inode);
1033 spin_unlock(&F2FS_I(inode)->i_size_lock);
1036 __setattr_copy(idmap, inode, attr);
1038 if (attr->ia_valid & ATTR_MODE) {
1039 err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode));
1041 if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1043 inode->i_mode = F2FS_I(inode)->i_acl_mode;
1044 clear_inode_flag(inode, FI_ACL_MODE);
1048 /* file size may changed here */
1049 f2fs_mark_inode_dirty_sync(inode, true);
1051 /* inode change will produce dirty node pages flushed by checkpoint */
1052 f2fs_balance_fs(F2FS_I_SB(inode), true);
1057 const struct inode_operations f2fs_file_inode_operations = {
1058 .getattr = f2fs_getattr,
1059 .setattr = f2fs_setattr,
1060 .get_inode_acl = f2fs_get_acl,
1061 .set_acl = f2fs_set_acl,
1062 .listxattr = f2fs_listxattr,
1063 .fiemap = f2fs_fiemap,
1064 .fileattr_get = f2fs_fileattr_get,
1065 .fileattr_set = f2fs_fileattr_set,
1068 static int fill_zero(struct inode *inode, pgoff_t index,
1069 loff_t start, loff_t len)
1071 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1077 f2fs_balance_fs(sbi, true);
1080 page = f2fs_get_new_data_page(inode, NULL, index, false);
1081 f2fs_unlock_op(sbi);
1084 return PTR_ERR(page);
1086 f2fs_wait_on_page_writeback(page, DATA, true, true);
1087 zero_user(page, start, len);
1088 set_page_dirty(page);
1089 f2fs_put_page(page, 1);
1093 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1097 while (pg_start < pg_end) {
1098 struct dnode_of_data dn;
1099 pgoff_t end_offset, count;
1101 set_new_dnode(&dn, inode, NULL, NULL, 0);
1102 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1104 if (err == -ENOENT) {
1105 pg_start = f2fs_get_next_page_offset(&dn,
1112 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1113 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1115 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1117 f2fs_truncate_data_blocks_range(&dn, count);
1118 f2fs_put_dnode(&dn);
1125 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1127 pgoff_t pg_start, pg_end;
1128 loff_t off_start, off_end;
1131 ret = f2fs_convert_inline_inode(inode);
1135 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1136 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1138 off_start = offset & (PAGE_SIZE - 1);
1139 off_end = (offset + len) & (PAGE_SIZE - 1);
1141 if (pg_start == pg_end) {
1142 ret = fill_zero(inode, pg_start, off_start,
1143 off_end - off_start);
1148 ret = fill_zero(inode, pg_start++, off_start,
1149 PAGE_SIZE - off_start);
1154 ret = fill_zero(inode, pg_end, 0, off_end);
1159 if (pg_start < pg_end) {
1160 loff_t blk_start, blk_end;
1161 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1163 f2fs_balance_fs(sbi, true);
1165 blk_start = (loff_t)pg_start << PAGE_SHIFT;
1166 blk_end = (loff_t)pg_end << PAGE_SHIFT;
1168 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1169 filemap_invalidate_lock(inode->i_mapping);
1171 truncate_pagecache_range(inode, blk_start, blk_end - 1);
1174 ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1175 f2fs_unlock_op(sbi);
1177 filemap_invalidate_unlock(inode->i_mapping);
1178 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1185 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1186 int *do_replace, pgoff_t off, pgoff_t len)
1188 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1189 struct dnode_of_data dn;
1193 set_new_dnode(&dn, inode, NULL, NULL, 0);
1194 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1195 if (ret && ret != -ENOENT) {
1197 } else if (ret == -ENOENT) {
1198 if (dn.max_level == 0)
1200 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1201 dn.ofs_in_node, len);
1207 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1208 dn.ofs_in_node, len);
1209 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1210 *blkaddr = f2fs_data_blkaddr(&dn);
1212 if (__is_valid_data_blkaddr(*blkaddr) &&
1213 !f2fs_is_valid_blkaddr(sbi, *blkaddr,
1214 DATA_GENERIC_ENHANCE)) {
1215 f2fs_put_dnode(&dn);
1216 return -EFSCORRUPTED;
1219 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1221 if (f2fs_lfs_mode(sbi)) {
1222 f2fs_put_dnode(&dn);
1226 /* do not invalidate this block address */
1227 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1231 f2fs_put_dnode(&dn);
1240 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1241 int *do_replace, pgoff_t off, int len)
1243 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1244 struct dnode_of_data dn;
1247 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1248 if (*do_replace == 0)
1251 set_new_dnode(&dn, inode, NULL, NULL, 0);
1252 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1254 dec_valid_block_count(sbi, inode, 1);
1255 f2fs_invalidate_blocks(sbi, *blkaddr);
1257 f2fs_update_data_blkaddr(&dn, *blkaddr);
1259 f2fs_put_dnode(&dn);
1264 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1265 block_t *blkaddr, int *do_replace,
1266 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1268 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1273 if (blkaddr[i] == NULL_ADDR && !full) {
1278 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1279 struct dnode_of_data dn;
1280 struct node_info ni;
1284 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1285 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1289 ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1291 f2fs_put_dnode(&dn);
1295 ilen = min((pgoff_t)
1296 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1297 dn.ofs_in_node, len - i);
1299 dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1300 f2fs_truncate_data_blocks_range(&dn, 1);
1302 if (do_replace[i]) {
1303 f2fs_i_blocks_write(src_inode,
1305 f2fs_i_blocks_write(dst_inode,
1307 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1308 blkaddr[i], ni.version, true, false);
1314 new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1315 if (dst_inode->i_size < new_size)
1316 f2fs_i_size_write(dst_inode, new_size);
1317 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1319 f2fs_put_dnode(&dn);
1321 struct page *psrc, *pdst;
1323 psrc = f2fs_get_lock_data_page(src_inode,
1326 return PTR_ERR(psrc);
1327 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1330 f2fs_put_page(psrc, 1);
1331 return PTR_ERR(pdst);
1334 f2fs_wait_on_page_writeback(pdst, DATA, true, true);
1336 memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
1337 set_page_dirty(pdst);
1338 set_page_private_gcing(pdst);
1339 f2fs_put_page(pdst, 1);
1340 f2fs_put_page(psrc, 1);
1342 ret = f2fs_truncate_hole(src_inode,
1343 src + i, src + i + 1);
1352 static int __exchange_data_block(struct inode *src_inode,
1353 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1354 pgoff_t len, bool full)
1356 block_t *src_blkaddr;
1362 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1364 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1365 array_size(olen, sizeof(block_t)),
1370 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1371 array_size(olen, sizeof(int)),
1374 kvfree(src_blkaddr);
1378 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1379 do_replace, src, olen);
1383 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1384 do_replace, src, dst, olen, full);
1392 kvfree(src_blkaddr);
1398 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1399 kvfree(src_blkaddr);
1404 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1406 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1407 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1408 pgoff_t start = offset >> PAGE_SHIFT;
1409 pgoff_t end = (offset + len) >> PAGE_SHIFT;
1412 f2fs_balance_fs(sbi, true);
1414 /* avoid gc operation during block exchange */
1415 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1416 filemap_invalidate_lock(inode->i_mapping);
1419 f2fs_drop_extent_tree(inode);
1420 truncate_pagecache(inode, offset);
1421 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1422 f2fs_unlock_op(sbi);
1424 filemap_invalidate_unlock(inode->i_mapping);
1425 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1429 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1434 if (offset + len >= i_size_read(inode))
1437 /* collapse range should be aligned to block size of f2fs. */
1438 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1441 ret = f2fs_convert_inline_inode(inode);
1445 /* write out all dirty pages from offset */
1446 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1450 ret = f2fs_do_collapse(inode, offset, len);
1454 /* write out all moved pages, if possible */
1455 filemap_invalidate_lock(inode->i_mapping);
1456 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1457 truncate_pagecache(inode, offset);
1459 new_size = i_size_read(inode) - len;
1460 ret = f2fs_truncate_blocks(inode, new_size, true);
1461 filemap_invalidate_unlock(inode->i_mapping);
1463 f2fs_i_size_write(inode, new_size);
1467 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1470 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1471 pgoff_t index = start;
1472 unsigned int ofs_in_node = dn->ofs_in_node;
1476 for (; index < end; index++, dn->ofs_in_node++) {
1477 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1481 dn->ofs_in_node = ofs_in_node;
1482 ret = f2fs_reserve_new_blocks(dn, count);
1486 dn->ofs_in_node = ofs_in_node;
1487 for (index = start; index < end; index++, dn->ofs_in_node++) {
1488 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1490 * f2fs_reserve_new_blocks will not guarantee entire block
1493 if (dn->data_blkaddr == NULL_ADDR) {
1498 if (dn->data_blkaddr == NEW_ADDR)
1501 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1502 DATA_GENERIC_ENHANCE)) {
1503 ret = -EFSCORRUPTED;
1507 f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1508 f2fs_set_data_blkaddr(dn, NEW_ADDR);
1511 f2fs_update_read_extent_cache_range(dn, start, 0, index - start);
1512 f2fs_update_age_extent_cache_range(dn, start, index - start);
1517 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1520 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1521 struct address_space *mapping = inode->i_mapping;
1522 pgoff_t index, pg_start, pg_end;
1523 loff_t new_size = i_size_read(inode);
1524 loff_t off_start, off_end;
1527 ret = inode_newsize_ok(inode, (len + offset));
1531 ret = f2fs_convert_inline_inode(inode);
1535 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1539 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1540 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1542 off_start = offset & (PAGE_SIZE - 1);
1543 off_end = (offset + len) & (PAGE_SIZE - 1);
1545 if (pg_start == pg_end) {
1546 ret = fill_zero(inode, pg_start, off_start,
1547 off_end - off_start);
1551 new_size = max_t(loff_t, new_size, offset + len);
1554 ret = fill_zero(inode, pg_start++, off_start,
1555 PAGE_SIZE - off_start);
1559 new_size = max_t(loff_t, new_size,
1560 (loff_t)pg_start << PAGE_SHIFT);
1563 for (index = pg_start; index < pg_end;) {
1564 struct dnode_of_data dn;
1565 unsigned int end_offset;
1568 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1569 filemap_invalidate_lock(mapping);
1571 truncate_pagecache_range(inode,
1572 (loff_t)index << PAGE_SHIFT,
1573 ((loff_t)pg_end << PAGE_SHIFT) - 1);
1577 set_new_dnode(&dn, inode, NULL, NULL, 0);
1578 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1580 f2fs_unlock_op(sbi);
1581 filemap_invalidate_unlock(mapping);
1582 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1586 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1587 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1589 ret = f2fs_do_zero_range(&dn, index, end);
1590 f2fs_put_dnode(&dn);
1592 f2fs_unlock_op(sbi);
1593 filemap_invalidate_unlock(mapping);
1594 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1596 f2fs_balance_fs(sbi, dn.node_changed);
1602 new_size = max_t(loff_t, new_size,
1603 (loff_t)index << PAGE_SHIFT);
1607 ret = fill_zero(inode, pg_end, 0, off_end);
1611 new_size = max_t(loff_t, new_size, offset + len);
1616 if (new_size > i_size_read(inode)) {
1617 if (mode & FALLOC_FL_KEEP_SIZE)
1618 file_set_keep_isize(inode);
1620 f2fs_i_size_write(inode, new_size);
1625 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1627 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1628 struct address_space *mapping = inode->i_mapping;
1629 pgoff_t nr, pg_start, pg_end, delta, idx;
1633 new_size = i_size_read(inode) + len;
1634 ret = inode_newsize_ok(inode, new_size);
1638 if (offset >= i_size_read(inode))
1641 /* insert range should be aligned to block size of f2fs. */
1642 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1645 ret = f2fs_convert_inline_inode(inode);
1649 f2fs_balance_fs(sbi, true);
1651 filemap_invalidate_lock(mapping);
1652 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1653 filemap_invalidate_unlock(mapping);
1657 /* write out all dirty pages from offset */
1658 ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1662 pg_start = offset >> PAGE_SHIFT;
1663 pg_end = (offset + len) >> PAGE_SHIFT;
1664 delta = pg_end - pg_start;
1665 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1667 /* avoid gc operation during block exchange */
1668 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1669 filemap_invalidate_lock(mapping);
1670 truncate_pagecache(inode, offset);
1672 while (!ret && idx > pg_start) {
1673 nr = idx - pg_start;
1679 f2fs_drop_extent_tree(inode);
1681 ret = __exchange_data_block(inode, inode, idx,
1682 idx + delta, nr, false);
1683 f2fs_unlock_op(sbi);
1685 filemap_invalidate_unlock(mapping);
1686 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1690 /* write out all moved pages, if possible */
1691 filemap_invalidate_lock(mapping);
1692 ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1693 truncate_pagecache(inode, offset);
1694 filemap_invalidate_unlock(mapping);
1697 f2fs_i_size_write(inode, new_size);
1701 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset,
1702 loff_t len, int mode)
1704 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1705 struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1706 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1707 .m_may_create = true };
1708 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1709 .init_gc_type = FG_GC,
1710 .should_migrate_blocks = false,
1711 .err_gc_skipped = true,
1712 .nr_free_secs = 0 };
1713 pgoff_t pg_start, pg_end;
1716 block_t expanded = 0;
1719 err = inode_newsize_ok(inode, (len + offset));
1723 err = f2fs_convert_inline_inode(inode);
1727 f2fs_balance_fs(sbi, true);
1729 pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1730 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1731 off_end = (offset + len) & (PAGE_SIZE - 1);
1733 map.m_lblk = pg_start;
1734 map.m_len = pg_end - pg_start;
1741 if (f2fs_is_pinned_file(inode)) {
1742 block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1743 block_t sec_len = roundup(map.m_len, sec_blks);
1745 map.m_len = sec_blks;
1747 if (has_not_enough_free_secs(sbi, 0,
1748 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1749 f2fs_down_write(&sbi->gc_lock);
1750 stat_inc_gc_call_count(sbi, FOREGROUND);
1751 err = f2fs_gc(sbi, &gc_control);
1752 if (err && err != -ENODATA)
1756 f2fs_down_write(&sbi->pin_sem);
1758 err = f2fs_allocate_pinning_section(sbi);
1760 f2fs_up_write(&sbi->pin_sem);
1764 map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1765 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO);
1766 file_dont_truncate(inode);
1768 f2fs_up_write(&sbi->pin_sem);
1770 expanded += map.m_len;
1771 sec_len -= map.m_len;
1772 map.m_lblk += map.m_len;
1773 if (!err && sec_len)
1776 map.m_len = expanded;
1778 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO);
1779 expanded = map.m_len;
1788 last_off = pg_start + expanded - 1;
1790 /* update new size to the failed position */
1791 new_size = (last_off == pg_end) ? offset + len :
1792 (loff_t)(last_off + 1) << PAGE_SHIFT;
1794 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1797 if (new_size > i_size_read(inode)) {
1798 if (mode & FALLOC_FL_KEEP_SIZE)
1799 file_set_keep_isize(inode);
1801 f2fs_i_size_write(inode, new_size);
1807 static long f2fs_fallocate(struct file *file, int mode,
1808 loff_t offset, loff_t len)
1810 struct inode *inode = file_inode(file);
1813 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1815 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1817 if (!f2fs_is_compress_backend_ready(inode))
1820 /* f2fs only support ->fallocate for regular file */
1821 if (!S_ISREG(inode->i_mode))
1824 if (IS_ENCRYPTED(inode) &&
1825 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1828 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1829 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1830 FALLOC_FL_INSERT_RANGE))
1836 * Pinned file should not support partial truncation since the block
1837 * can be used by applications.
1839 if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1840 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1841 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) {
1846 ret = file_modified(file);
1850 if (mode & FALLOC_FL_PUNCH_HOLE) {
1851 if (offset >= inode->i_size)
1854 ret = f2fs_punch_hole(inode, offset, len);
1855 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1856 ret = f2fs_collapse_range(inode, offset, len);
1857 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1858 ret = f2fs_zero_range(inode, offset, len, mode);
1859 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1860 ret = f2fs_insert_range(inode, offset, len);
1862 ret = f2fs_expand_inode_data(inode, offset, len, mode);
1866 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1867 f2fs_mark_inode_dirty_sync(inode, false);
1868 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1872 inode_unlock(inode);
1874 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1878 static int f2fs_release_file(struct inode *inode, struct file *filp)
1881 * f2fs_release_file is called at every close calls. So we should
1882 * not drop any inmemory pages by close called by other process.
1884 if (!(filp->f_mode & FMODE_WRITE) ||
1885 atomic_read(&inode->i_writecount) != 1)
1889 f2fs_abort_atomic_write(inode, true);
1890 inode_unlock(inode);
1895 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1897 struct inode *inode = file_inode(file);
1900 * If the process doing a transaction is crashed, we should do
1901 * roll-back. Otherwise, other reader/write can see corrupted database
1902 * until all the writers close its file. Since this should be done
1903 * before dropping file lock, it needs to do in ->flush.
1905 if (F2FS_I(inode)->atomic_write_task == current &&
1906 (current->flags & PF_EXITING)) {
1908 f2fs_abort_atomic_write(inode, true);
1909 inode_unlock(inode);
1915 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1917 struct f2fs_inode_info *fi = F2FS_I(inode);
1918 u32 masked_flags = fi->i_flags & mask;
1920 /* mask can be shrunk by flags_valid selector */
1923 /* Is it quota file? Do not allow user to mess with it */
1924 if (IS_NOQUOTA(inode))
1927 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1928 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1930 if (!f2fs_empty_dir(inode))
1934 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1935 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1937 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1941 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1942 if (masked_flags & F2FS_COMPR_FL) {
1943 if (!f2fs_disable_compressed_file(inode))
1946 /* try to convert inline_data to support compression */
1947 int err = f2fs_convert_inline_inode(inode);
1951 f2fs_down_write(&F2FS_I(inode)->i_sem);
1952 if (!f2fs_may_compress(inode) ||
1953 (S_ISREG(inode->i_mode) &&
1954 F2FS_HAS_BLOCKS(inode))) {
1955 f2fs_up_write(&F2FS_I(inode)->i_sem);
1958 err = set_compress_context(inode);
1959 f2fs_up_write(&F2FS_I(inode)->i_sem);
1966 fi->i_flags = iflags | (fi->i_flags & ~mask);
1967 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1968 (fi->i_flags & F2FS_NOCOMP_FL));
1970 if (fi->i_flags & F2FS_PROJINHERIT_FL)
1971 set_inode_flag(inode, FI_PROJ_INHERIT);
1973 clear_inode_flag(inode, FI_PROJ_INHERIT);
1975 inode_set_ctime_current(inode);
1976 f2fs_set_inode_flags(inode);
1977 f2fs_mark_inode_dirty_sync(inode, true);
1981 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
1984 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1985 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1986 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add
1987 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1989 * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
1990 * FS_IOC_FSSETXATTR is done by the VFS.
1993 static const struct {
1996 } f2fs_fsflags_map[] = {
1997 { F2FS_COMPR_FL, FS_COMPR_FL },
1998 { F2FS_SYNC_FL, FS_SYNC_FL },
1999 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL },
2000 { F2FS_APPEND_FL, FS_APPEND_FL },
2001 { F2FS_NODUMP_FL, FS_NODUMP_FL },
2002 { F2FS_NOATIME_FL, FS_NOATIME_FL },
2003 { F2FS_NOCOMP_FL, FS_NOCOMP_FL },
2004 { F2FS_INDEX_FL, FS_INDEX_FL },
2005 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL },
2006 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL },
2007 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL },
2010 #define F2FS_GETTABLE_FS_FL ( \
2020 FS_PROJINHERIT_FL | \
2022 FS_INLINE_DATA_FL | \
2027 #define F2FS_SETTABLE_FS_FL ( \
2036 FS_PROJINHERIT_FL | \
2039 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
2040 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2045 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2046 if (iflags & f2fs_fsflags_map[i].iflag)
2047 fsflags |= f2fs_fsflags_map[i].fsflag;
2052 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
2053 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2058 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2059 if (fsflags & f2fs_fsflags_map[i].fsflag)
2060 iflags |= f2fs_fsflags_map[i].iflag;
2065 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2067 struct inode *inode = file_inode(filp);
2069 return put_user(inode->i_generation, (int __user *)arg);
2072 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
2074 struct inode *inode = file_inode(filp);
2075 struct mnt_idmap *idmap = file_mnt_idmap(filp);
2076 struct f2fs_inode_info *fi = F2FS_I(inode);
2077 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2078 struct inode *pinode;
2082 if (!inode_owner_or_capable(idmap, inode))
2085 if (!S_ISREG(inode->i_mode))
2088 if (filp->f_flags & O_DIRECT)
2091 ret = mnt_want_write_file(filp);
2097 if (!f2fs_disable_compressed_file(inode) ||
2098 f2fs_is_pinned_file(inode)) {
2103 if (f2fs_is_atomic_file(inode))
2106 ret = f2fs_convert_inline_inode(inode);
2110 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2113 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2114 * f2fs_is_atomic_file.
2116 if (get_dirty_pages(inode))
2117 f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2118 inode->i_ino, get_dirty_pages(inode));
2119 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2121 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2125 /* Check if the inode already has a COW inode */
2126 if (fi->cow_inode == NULL) {
2127 /* Create a COW inode for atomic write */
2128 pinode = f2fs_iget(inode->i_sb, fi->i_pino);
2129 if (IS_ERR(pinode)) {
2130 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2131 ret = PTR_ERR(pinode);
2135 ret = f2fs_get_tmpfile(idmap, pinode, &fi->cow_inode);
2138 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2142 set_inode_flag(fi->cow_inode, FI_COW_FILE);
2143 clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2145 /* Reuse the already created COW inode */
2146 ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true);
2148 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2153 f2fs_write_inode(inode, NULL);
2155 stat_inc_atomic_inode(inode);
2157 set_inode_flag(inode, FI_ATOMIC_FILE);
2159 isize = i_size_read(inode);
2160 fi->original_i_size = isize;
2162 set_inode_flag(inode, FI_ATOMIC_REPLACE);
2163 truncate_inode_pages_final(inode->i_mapping);
2164 f2fs_i_size_write(inode, 0);
2167 f2fs_i_size_write(fi->cow_inode, isize);
2169 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2171 f2fs_update_time(sbi, REQ_TIME);
2172 fi->atomic_write_task = current;
2173 stat_update_max_atomic_write(inode);
2174 fi->atomic_write_cnt = 0;
2176 inode_unlock(inode);
2177 mnt_drop_write_file(filp);
2181 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2183 struct inode *inode = file_inode(filp);
2184 struct mnt_idmap *idmap = file_mnt_idmap(filp);
2187 if (!inode_owner_or_capable(idmap, inode))
2190 ret = mnt_want_write_file(filp);
2194 f2fs_balance_fs(F2FS_I_SB(inode), true);
2198 if (f2fs_is_atomic_file(inode)) {
2199 ret = f2fs_commit_atomic_write(inode);
2201 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2203 f2fs_abort_atomic_write(inode, ret);
2205 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2208 inode_unlock(inode);
2209 mnt_drop_write_file(filp);
2213 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2215 struct inode *inode = file_inode(filp);
2216 struct mnt_idmap *idmap = file_mnt_idmap(filp);
2219 if (!inode_owner_or_capable(idmap, inode))
2222 ret = mnt_want_write_file(filp);
2228 f2fs_abort_atomic_write(inode, true);
2230 inode_unlock(inode);
2232 mnt_drop_write_file(filp);
2233 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2237 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
2240 struct super_block *sb = sbi->sb;
2244 case F2FS_GOING_DOWN_FULLSYNC:
2245 ret = bdev_freeze(sb->s_bdev);
2248 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2249 bdev_thaw(sb->s_bdev);
2251 case F2FS_GOING_DOWN_METASYNC:
2252 /* do checkpoint only */
2253 ret = f2fs_sync_fs(sb, 1);
2259 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2261 case F2FS_GOING_DOWN_NOSYNC:
2262 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2264 case F2FS_GOING_DOWN_METAFLUSH:
2265 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2266 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2268 case F2FS_GOING_DOWN_NEED_FSCK:
2269 set_sbi_flag(sbi, SBI_NEED_FSCK);
2270 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2271 set_sbi_flag(sbi, SBI_IS_DIRTY);
2272 /* do checkpoint only */
2273 ret = f2fs_sync_fs(sb, 1);
2285 f2fs_stop_gc_thread(sbi);
2286 f2fs_stop_discard_thread(sbi);
2288 f2fs_drop_discard_cmd(sbi);
2289 clear_opt(sbi, DISCARD);
2291 f2fs_update_time(sbi, REQ_TIME);
2294 trace_f2fs_shutdown(sbi, flag, ret);
2299 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2301 struct inode *inode = file_inode(filp);
2302 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2305 bool need_drop = false, readonly = false;
2307 if (!capable(CAP_SYS_ADMIN))
2310 if (get_user(in, (__u32 __user *)arg))
2313 if (in != F2FS_GOING_DOWN_FULLSYNC) {
2314 ret = mnt_want_write_file(filp);
2319 /* fallback to nosync shutdown for readonly fs */
2320 in = F2FS_GOING_DOWN_NOSYNC;
2327 ret = f2fs_do_shutdown(sbi, in, readonly);
2330 mnt_drop_write_file(filp);
2335 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2337 struct inode *inode = file_inode(filp);
2338 struct super_block *sb = inode->i_sb;
2339 struct fstrim_range range;
2342 if (!capable(CAP_SYS_ADMIN))
2345 if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2348 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2352 ret = mnt_want_write_file(filp);
2356 range.minlen = max((unsigned int)range.minlen,
2357 bdev_discard_granularity(sb->s_bdev));
2358 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2359 mnt_drop_write_file(filp);
2363 if (copy_to_user((struct fstrim_range __user *)arg, &range,
2366 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2370 static bool uuid_is_nonzero(__u8 u[16])
2374 for (i = 0; i < 16; i++)
2380 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2382 struct inode *inode = file_inode(filp);
2385 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2388 ret = fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2389 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2393 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2395 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2397 return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2400 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2402 struct inode *inode = file_inode(filp);
2403 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2404 u8 encrypt_pw_salt[16];
2407 if (!f2fs_sb_has_encrypt(sbi))
2410 err = mnt_want_write_file(filp);
2414 f2fs_down_write(&sbi->sb_lock);
2416 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2419 /* update superblock with uuid */
2420 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2422 err = f2fs_commit_super(sbi, false);
2425 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2429 memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16);
2431 f2fs_up_write(&sbi->sb_lock);
2432 mnt_drop_write_file(filp);
2434 if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16))
2440 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2443 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2446 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2449 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2451 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2454 return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2457 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2459 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2462 return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2465 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2468 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2471 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2474 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2477 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2480 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2483 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2485 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2488 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2491 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2493 struct inode *inode = file_inode(filp);
2494 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2495 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2497 .should_migrate_blocks = false,
2498 .nr_free_secs = 0 };
2502 if (!capable(CAP_SYS_ADMIN))
2505 if (get_user(sync, (__u32 __user *)arg))
2508 if (f2fs_readonly(sbi->sb))
2511 ret = mnt_want_write_file(filp);
2516 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2521 f2fs_down_write(&sbi->gc_lock);
2524 gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2525 gc_control.err_gc_skipped = sync;
2526 stat_inc_gc_call_count(sbi, FOREGROUND);
2527 ret = f2fs_gc(sbi, &gc_control);
2529 mnt_drop_write_file(filp);
2533 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2535 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2536 struct f2fs_gc_control gc_control = {
2537 .init_gc_type = range->sync ? FG_GC : BG_GC,
2539 .should_migrate_blocks = false,
2540 .err_gc_skipped = range->sync,
2541 .nr_free_secs = 0 };
2545 if (!capable(CAP_SYS_ADMIN))
2547 if (f2fs_readonly(sbi->sb))
2550 end = range->start + range->len;
2551 if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2552 end >= MAX_BLKADDR(sbi))
2555 ret = mnt_want_write_file(filp);
2561 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2566 f2fs_down_write(&sbi->gc_lock);
2569 gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2570 stat_inc_gc_call_count(sbi, FOREGROUND);
2571 ret = f2fs_gc(sbi, &gc_control);
2577 range->start += CAP_BLKS_PER_SEC(sbi);
2578 if (range->start <= end)
2581 mnt_drop_write_file(filp);
2585 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2587 struct f2fs_gc_range range;
2589 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2592 return __f2fs_ioc_gc_range(filp, &range);
2595 static int f2fs_ioc_write_checkpoint(struct file *filp)
2597 struct inode *inode = file_inode(filp);
2598 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2601 if (!capable(CAP_SYS_ADMIN))
2604 if (f2fs_readonly(sbi->sb))
2607 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2608 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2612 ret = mnt_want_write_file(filp);
2616 ret = f2fs_sync_fs(sbi->sb, 1);
2618 mnt_drop_write_file(filp);
2622 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2624 struct f2fs_defragment *range)
2626 struct inode *inode = file_inode(filp);
2627 struct f2fs_map_blocks map = { .m_next_extent = NULL,
2628 .m_seg_type = NO_CHECK_TYPE,
2629 .m_may_create = false };
2630 struct extent_info ei = {};
2631 pgoff_t pg_start, pg_end, next_pgofs;
2632 unsigned int total = 0, sec_num;
2633 block_t blk_end = 0;
2634 bool fragmented = false;
2637 f2fs_balance_fs(sbi, true);
2640 pg_start = range->start >> PAGE_SHIFT;
2641 pg_end = min_t(pgoff_t,
2642 (range->start + range->len) >> PAGE_SHIFT,
2643 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
2645 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
2650 /* if in-place-update policy is enabled, don't waste time here */
2651 set_inode_flag(inode, FI_OPU_WRITE);
2652 if (f2fs_should_update_inplace(inode, NULL)) {
2657 /* writeback all dirty pages in the range */
2658 err = filemap_write_and_wait_range(inode->i_mapping,
2659 pg_start << PAGE_SHIFT,
2660 (pg_end << PAGE_SHIFT) - 1);
2665 * lookup mapping info in extent cache, skip defragmenting if physical
2666 * block addresses are continuous.
2668 if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2669 if (ei.fofs + ei.len >= pg_end)
2673 map.m_lblk = pg_start;
2674 map.m_next_pgofs = &next_pgofs;
2677 * lookup mapping info in dnode page cache, skip defragmenting if all
2678 * physical block addresses are continuous even if there are hole(s)
2679 * in logical blocks.
2681 while (map.m_lblk < pg_end) {
2682 map.m_len = pg_end - map.m_lblk;
2683 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2687 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2688 map.m_lblk = next_pgofs;
2692 if (blk_end && blk_end != map.m_pblk)
2695 /* record total count of block that we're going to move */
2698 blk_end = map.m_pblk + map.m_len;
2700 map.m_lblk += map.m_len;
2708 sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2711 * make sure there are enough free section for LFS allocation, this can
2712 * avoid defragment running in SSR mode when free section are allocated
2715 if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2720 map.m_lblk = pg_start;
2721 map.m_len = pg_end - pg_start;
2724 while (map.m_lblk < pg_end) {
2729 map.m_len = pg_end - map.m_lblk;
2730 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2734 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2735 map.m_lblk = next_pgofs;
2739 set_inode_flag(inode, FI_SKIP_WRITES);
2742 while (idx < map.m_lblk + map.m_len &&
2743 cnt < BLKS_PER_SEG(sbi)) {
2746 page = f2fs_get_lock_data_page(inode, idx, true);
2748 err = PTR_ERR(page);
2752 set_page_dirty(page);
2753 set_page_private_gcing(page);
2754 f2fs_put_page(page, 1);
2763 if (map.m_lblk < pg_end && cnt < BLKS_PER_SEG(sbi))
2766 clear_inode_flag(inode, FI_SKIP_WRITES);
2768 err = filemap_fdatawrite(inode->i_mapping);
2773 clear_inode_flag(inode, FI_SKIP_WRITES);
2775 clear_inode_flag(inode, FI_OPU_WRITE);
2777 inode_unlock(inode);
2779 range->len = (u64)total << PAGE_SHIFT;
2783 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2785 struct inode *inode = file_inode(filp);
2786 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2787 struct f2fs_defragment range;
2790 if (!capable(CAP_SYS_ADMIN))
2793 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2796 if (f2fs_readonly(sbi->sb))
2799 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2803 /* verify alignment of offset & size */
2804 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2807 if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2808 max_file_blocks(inode)))
2811 err = mnt_want_write_file(filp);
2815 err = f2fs_defragment_range(sbi, filp, &range);
2816 mnt_drop_write_file(filp);
2819 f2fs_update_time(sbi, REQ_TIME);
2823 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2830 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2831 struct file *file_out, loff_t pos_out, size_t len)
2833 struct inode *src = file_inode(file_in);
2834 struct inode *dst = file_inode(file_out);
2835 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2836 size_t olen = len, dst_max_i_size = 0;
2840 if (file_in->f_path.mnt != file_out->f_path.mnt ||
2841 src->i_sb != dst->i_sb)
2844 if (unlikely(f2fs_readonly(src->i_sb)))
2847 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2850 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2853 if (pos_out < 0 || pos_in < 0)
2857 if (pos_in == pos_out)
2859 if (pos_out > pos_in && pos_out < pos_in + len)
2866 if (!inode_trylock(dst))
2870 if (f2fs_compressed_file(src) || f2fs_compressed_file(dst) ||
2871 f2fs_is_pinned_file(src) || f2fs_is_pinned_file(dst)) {
2877 if (pos_in + len > src->i_size || pos_in + len < pos_in)
2880 olen = len = src->i_size - pos_in;
2881 if (pos_in + len == src->i_size)
2882 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2888 dst_osize = dst->i_size;
2889 if (pos_out + olen > dst->i_size)
2890 dst_max_i_size = pos_out + olen;
2892 /* verify the end result is block aligned */
2893 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2894 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2895 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2898 ret = f2fs_convert_inline_inode(src);
2902 ret = f2fs_convert_inline_inode(dst);
2906 /* write out all dirty pages from offset */
2907 ret = filemap_write_and_wait_range(src->i_mapping,
2908 pos_in, pos_in + len);
2912 ret = filemap_write_and_wait_range(dst->i_mapping,
2913 pos_out, pos_out + len);
2917 f2fs_balance_fs(sbi, true);
2919 f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2922 if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2927 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2928 pos_out >> F2FS_BLKSIZE_BITS,
2929 len >> F2FS_BLKSIZE_BITS, false);
2933 f2fs_i_size_write(dst, dst_max_i_size);
2934 else if (dst_osize != dst->i_size)
2935 f2fs_i_size_write(dst, dst_osize);
2937 f2fs_unlock_op(sbi);
2940 f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2942 f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2946 inode_set_mtime_to_ts(src, inode_set_ctime_current(src));
2947 f2fs_mark_inode_dirty_sync(src, false);
2949 inode_set_mtime_to_ts(dst, inode_set_ctime_current(dst));
2950 f2fs_mark_inode_dirty_sync(dst, false);
2952 f2fs_update_time(sbi, REQ_TIME);
2962 static int __f2fs_ioc_move_range(struct file *filp,
2963 struct f2fs_move_range *range)
2968 if (!(filp->f_mode & FMODE_READ) ||
2969 !(filp->f_mode & FMODE_WRITE))
2972 dst = fdget(range->dst_fd);
2976 if (!(dst.file->f_mode & FMODE_WRITE)) {
2981 err = mnt_want_write_file(filp);
2985 err = f2fs_move_file_range(filp, range->pos_in, dst.file,
2986 range->pos_out, range->len);
2988 mnt_drop_write_file(filp);
2994 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2996 struct f2fs_move_range range;
2998 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
3001 return __f2fs_ioc_move_range(filp, &range);
3004 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
3006 struct inode *inode = file_inode(filp);
3007 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3008 struct sit_info *sm = SIT_I(sbi);
3009 unsigned int start_segno = 0, end_segno = 0;
3010 unsigned int dev_start_segno = 0, dev_end_segno = 0;
3011 struct f2fs_flush_device range;
3012 struct f2fs_gc_control gc_control = {
3013 .init_gc_type = FG_GC,
3014 .should_migrate_blocks = true,
3015 .err_gc_skipped = true,
3016 .nr_free_secs = 0 };
3019 if (!capable(CAP_SYS_ADMIN))
3022 if (f2fs_readonly(sbi->sb))
3025 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3028 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
3032 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
3033 __is_large_section(sbi)) {
3034 f2fs_warn(sbi, "Can't flush %u in %d for SEGS_PER_SEC %u != 1",
3035 range.dev_num, sbi->s_ndevs, SEGS_PER_SEC(sbi));
3039 ret = mnt_want_write_file(filp);
3043 if (range.dev_num != 0)
3044 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
3045 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
3047 start_segno = sm->last_victim[FLUSH_DEVICE];
3048 if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
3049 start_segno = dev_start_segno;
3050 end_segno = min(start_segno + range.segments, dev_end_segno);
3052 while (start_segno < end_segno) {
3053 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
3057 sm->last_victim[GC_CB] = end_segno + 1;
3058 sm->last_victim[GC_GREEDY] = end_segno + 1;
3059 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
3061 gc_control.victim_segno = start_segno;
3062 stat_inc_gc_call_count(sbi, FOREGROUND);
3063 ret = f2fs_gc(sbi, &gc_control);
3071 mnt_drop_write_file(filp);
3075 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
3077 struct inode *inode = file_inode(filp);
3078 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3080 /* Must validate to set it with SQLite behavior in Android. */
3081 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3083 return put_user(sb_feature, (u32 __user *)arg);
3087 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3089 struct dquot *transfer_to[MAXQUOTAS] = {};
3090 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3091 struct super_block *sb = sbi->sb;
3094 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3095 if (IS_ERR(transfer_to[PRJQUOTA]))
3096 return PTR_ERR(transfer_to[PRJQUOTA]);
3098 err = __dquot_transfer(inode, transfer_to);
3100 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3101 dqput(transfer_to[PRJQUOTA]);
3105 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3107 struct f2fs_inode_info *fi = F2FS_I(inode);
3108 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3109 struct f2fs_inode *ri = NULL;
3113 if (!f2fs_sb_has_project_quota(sbi)) {
3114 if (projid != F2FS_DEF_PROJID)
3120 if (!f2fs_has_extra_attr(inode))
3123 kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3125 if (projid_eq(kprojid, fi->i_projid))
3129 /* Is it quota file? Do not allow user to mess with it */
3130 if (IS_NOQUOTA(inode))
3133 if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3136 err = f2fs_dquot_initialize(inode);
3141 err = f2fs_transfer_project_quota(inode, kprojid);
3145 fi->i_projid = kprojid;
3146 inode_set_ctime_current(inode);
3147 f2fs_mark_inode_dirty_sync(inode, true);
3149 f2fs_unlock_op(sbi);
3153 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3158 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3160 if (projid != F2FS_DEF_PROJID)
3166 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3168 struct inode *inode = d_inode(dentry);
3169 struct f2fs_inode_info *fi = F2FS_I(inode);
3170 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3172 if (IS_ENCRYPTED(inode))
3173 fsflags |= FS_ENCRYPT_FL;
3174 if (IS_VERITY(inode))
3175 fsflags |= FS_VERITY_FL;
3176 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3177 fsflags |= FS_INLINE_DATA_FL;
3178 if (is_inode_flag_set(inode, FI_PIN_FILE))
3179 fsflags |= FS_NOCOW_FL;
3181 fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3183 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3184 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3189 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3190 struct dentry *dentry, struct fileattr *fa)
3192 struct inode *inode = d_inode(dentry);
3193 u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3197 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3199 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3201 if (fsflags & ~F2FS_GETTABLE_FS_FL)
3203 fsflags &= F2FS_SETTABLE_FS_FL;
3204 if (!fa->flags_valid)
3205 mask &= FS_COMMON_FL;
3207 iflags = f2fs_fsflags_to_iflags(fsflags);
3208 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3211 err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3213 err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3218 int f2fs_pin_file_control(struct inode *inode, bool inc)
3220 struct f2fs_inode_info *fi = F2FS_I(inode);
3221 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3223 if (fi->i_gc_failures >= sbi->gc_pin_file_threshold) {
3224 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3225 __func__, inode->i_ino, fi->i_gc_failures);
3226 clear_inode_flag(inode, FI_PIN_FILE);
3230 /* Use i_gc_failures for normal file as a risk signal. */
3232 f2fs_i_gc_failures_write(inode, fi->i_gc_failures + 1);
3237 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3239 struct inode *inode = file_inode(filp);
3240 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3244 if (get_user(pin, (__u32 __user *)arg))
3247 if (!S_ISREG(inode->i_mode))
3250 if (f2fs_readonly(sbi->sb))
3253 ret = mnt_want_write_file(filp);
3260 clear_inode_flag(inode, FI_PIN_FILE);
3261 f2fs_i_gc_failures_write(inode, 0);
3263 } else if (f2fs_is_pinned_file(inode)) {
3267 if (F2FS_HAS_BLOCKS(inode)) {
3272 /* Let's allow file pinning on zoned device. */
3273 if (!f2fs_sb_has_blkzoned(sbi) &&
3274 f2fs_should_update_outplace(inode, NULL)) {
3279 if (f2fs_pin_file_control(inode, false)) {
3284 ret = f2fs_convert_inline_inode(inode);
3288 if (!f2fs_disable_compressed_file(inode)) {
3293 set_inode_flag(inode, FI_PIN_FILE);
3294 ret = F2FS_I(inode)->i_gc_failures;
3296 f2fs_update_time(sbi, REQ_TIME);
3298 inode_unlock(inode);
3299 mnt_drop_write_file(filp);
3303 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3305 struct inode *inode = file_inode(filp);
3308 if (is_inode_flag_set(inode, FI_PIN_FILE))
3309 pin = F2FS_I(inode)->i_gc_failures;
3310 return put_user(pin, (u32 __user *)arg);
3313 int f2fs_precache_extents(struct inode *inode)
3315 struct f2fs_inode_info *fi = F2FS_I(inode);
3316 struct f2fs_map_blocks map;
3317 pgoff_t m_next_extent;
3321 if (is_inode_flag_set(inode, FI_NO_EXTENT))
3326 map.m_next_pgofs = NULL;
3327 map.m_next_extent = &m_next_extent;
3328 map.m_seg_type = NO_CHECK_TYPE;
3329 map.m_may_create = false;
3330 end = F2FS_BLK_ALIGN(i_size_read(inode));
3332 while (map.m_lblk < end) {
3333 map.m_len = end - map.m_lblk;
3335 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3336 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE);
3337 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3338 if (err || !map.m_len)
3341 map.m_lblk = m_next_extent;
3347 static int f2fs_ioc_precache_extents(struct file *filp)
3349 return f2fs_precache_extents(file_inode(filp));
3352 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3354 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3357 if (!capable(CAP_SYS_ADMIN))
3360 if (f2fs_readonly(sbi->sb))
3363 if (copy_from_user(&block_count, (void __user *)arg,
3364 sizeof(block_count)))
3367 return f2fs_resize_fs(filp, block_count);
3370 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3372 struct inode *inode = file_inode(filp);
3374 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3376 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3377 f2fs_warn(F2FS_I_SB(inode),
3378 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3383 return fsverity_ioctl_enable(filp, (const void __user *)arg);
3386 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3388 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3391 return fsverity_ioctl_measure(filp, (void __user *)arg);
3394 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3396 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3399 return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3402 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3404 struct inode *inode = file_inode(filp);
3405 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3410 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3414 f2fs_down_read(&sbi->sb_lock);
3415 count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3416 ARRAY_SIZE(sbi->raw_super->volume_name),
3417 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3418 f2fs_up_read(&sbi->sb_lock);
3420 if (copy_to_user((char __user *)arg, vbuf,
3421 min(FSLABEL_MAX, count)))
3428 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3430 struct inode *inode = file_inode(filp);
3431 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3435 if (!capable(CAP_SYS_ADMIN))
3438 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3440 return PTR_ERR(vbuf);
3442 err = mnt_want_write_file(filp);
3446 f2fs_down_write(&sbi->sb_lock);
3448 memset(sbi->raw_super->volume_name, 0,
3449 sizeof(sbi->raw_super->volume_name));
3450 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3451 sbi->raw_super->volume_name,
3452 ARRAY_SIZE(sbi->raw_super->volume_name));
3454 err = f2fs_commit_super(sbi, false);
3456 f2fs_up_write(&sbi->sb_lock);
3458 mnt_drop_write_file(filp);
3464 static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks)
3466 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3469 if (!f2fs_compressed_file(inode))
3472 *blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3477 static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg)
3479 struct inode *inode = file_inode(filp);
3483 ret = f2fs_get_compress_blocks(inode, &blocks);
3487 return put_user(blocks, (u64 __user *)arg);
3490 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3492 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3493 unsigned int released_blocks = 0;
3494 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3498 for (i = 0; i < count; i++) {
3499 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3500 dn->ofs_in_node + i);
3502 if (!__is_valid_data_blkaddr(blkaddr))
3504 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3505 DATA_GENERIC_ENHANCE)))
3506 return -EFSCORRUPTED;
3510 int compr_blocks = 0;
3512 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3513 blkaddr = f2fs_data_blkaddr(dn);
3516 if (blkaddr == COMPRESS_ADDR)
3518 dn->ofs_in_node += cluster_size;
3522 if (__is_valid_data_blkaddr(blkaddr))
3525 if (blkaddr != NEW_ADDR)
3528 f2fs_set_data_blkaddr(dn, NULL_ADDR);
3531 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3532 dec_valid_block_count(sbi, dn->inode,
3533 cluster_size - compr_blocks);
3535 released_blocks += cluster_size - compr_blocks;
3537 count -= cluster_size;
3540 return released_blocks;
3543 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3545 struct inode *inode = file_inode(filp);
3546 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3547 pgoff_t page_idx = 0, last_idx;
3548 unsigned int released_blocks = 0;
3552 if (!f2fs_sb_has_compression(sbi))
3555 if (f2fs_readonly(sbi->sb))
3558 ret = mnt_want_write_file(filp);
3562 f2fs_balance_fs(sbi, true);
3566 writecount = atomic_read(&inode->i_writecount);
3567 if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3568 (!(filp->f_mode & FMODE_WRITE) && writecount)) {
3573 if (!f2fs_compressed_file(inode) ||
3574 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3579 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3583 if (!atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3588 set_inode_flag(inode, FI_COMPRESS_RELEASED);
3589 inode_set_ctime_current(inode);
3590 f2fs_mark_inode_dirty_sync(inode, true);
3592 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3593 filemap_invalidate_lock(inode->i_mapping);
3595 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3597 while (page_idx < last_idx) {
3598 struct dnode_of_data dn;
3599 pgoff_t end_offset, count;
3603 set_new_dnode(&dn, inode, NULL, NULL, 0);
3604 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3606 f2fs_unlock_op(sbi);
3607 if (ret == -ENOENT) {
3608 page_idx = f2fs_get_next_page_offset(&dn,
3616 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3617 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3618 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3620 ret = release_compress_blocks(&dn, count);
3622 f2fs_put_dnode(&dn);
3624 f2fs_unlock_op(sbi);
3630 released_blocks += ret;
3633 filemap_invalidate_unlock(inode->i_mapping);
3634 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3636 if (released_blocks)
3637 f2fs_update_time(sbi, REQ_TIME);
3638 inode_unlock(inode);
3640 mnt_drop_write_file(filp);
3643 ret = put_user(released_blocks, (u64 __user *)arg);
3644 } else if (released_blocks &&
3645 atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3646 set_sbi_flag(sbi, SBI_NEED_FSCK);
3647 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3648 "iblocks=%llu, released=%u, compr_blocks=%u, "
3650 __func__, inode->i_ino, inode->i_blocks,
3652 atomic_read(&F2FS_I(inode)->i_compr_blocks));
3658 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count,
3659 unsigned int *reserved_blocks)
3661 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3662 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3666 for (i = 0; i < count; i++) {
3667 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3668 dn->ofs_in_node + i);
3670 if (!__is_valid_data_blkaddr(blkaddr))
3672 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3673 DATA_GENERIC_ENHANCE)))
3674 return -EFSCORRUPTED;
3678 int compr_blocks = 0;
3679 blkcnt_t reserved = 0;
3680 blkcnt_t to_reserved;
3683 for (i = 0; i < cluster_size; i++) {
3684 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3685 dn->ofs_in_node + i);
3688 if (blkaddr != COMPRESS_ADDR) {
3689 dn->ofs_in_node += cluster_size;
3696 * compressed cluster was not released due to it
3697 * fails in release_compress_blocks(), so NEW_ADDR
3698 * is a possible case.
3700 if (blkaddr == NEW_ADDR) {
3704 if (__is_valid_data_blkaddr(blkaddr)) {
3710 to_reserved = cluster_size - compr_blocks - reserved;
3712 /* for the case all blocks in cluster were reserved */
3713 if (to_reserved == 1) {
3714 dn->ofs_in_node += cluster_size;
3718 ret = inc_valid_block_count(sbi, dn->inode,
3719 &to_reserved, false);
3723 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3724 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
3725 f2fs_set_data_blkaddr(dn, NEW_ADDR);
3728 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3730 *reserved_blocks += to_reserved;
3732 count -= cluster_size;
3738 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3740 struct inode *inode = file_inode(filp);
3741 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3742 pgoff_t page_idx = 0, last_idx;
3743 unsigned int reserved_blocks = 0;
3746 if (!f2fs_sb_has_compression(sbi))
3749 if (f2fs_readonly(sbi->sb))
3752 ret = mnt_want_write_file(filp);
3756 f2fs_balance_fs(sbi, true);
3760 if (!f2fs_compressed_file(inode) ||
3761 !is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3766 if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3769 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3770 filemap_invalidate_lock(inode->i_mapping);
3772 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3774 while (page_idx < last_idx) {
3775 struct dnode_of_data dn;
3776 pgoff_t end_offset, count;
3780 set_new_dnode(&dn, inode, NULL, NULL, 0);
3781 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3783 f2fs_unlock_op(sbi);
3784 if (ret == -ENOENT) {
3785 page_idx = f2fs_get_next_page_offset(&dn,
3793 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3794 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3795 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3797 ret = reserve_compress_blocks(&dn, count, &reserved_blocks);
3799 f2fs_put_dnode(&dn);
3801 f2fs_unlock_op(sbi);
3809 filemap_invalidate_unlock(inode->i_mapping);
3810 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3813 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3814 inode_set_ctime_current(inode);
3815 f2fs_mark_inode_dirty_sync(inode, true);
3818 if (reserved_blocks)
3819 f2fs_update_time(sbi, REQ_TIME);
3820 inode_unlock(inode);
3821 mnt_drop_write_file(filp);
3824 ret = put_user(reserved_blocks, (u64 __user *)arg);
3825 } else if (reserved_blocks &&
3826 atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3827 set_sbi_flag(sbi, SBI_NEED_FSCK);
3828 f2fs_warn(sbi, "%s: partial blocks were reserved i_ino=%lx "
3829 "iblocks=%llu, reserved=%u, compr_blocks=%u, "
3831 __func__, inode->i_ino, inode->i_blocks,
3833 atomic_read(&F2FS_I(inode)->i_compr_blocks));
3839 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3840 pgoff_t off, block_t block, block_t len, u32 flags)
3842 sector_t sector = SECTOR_FROM_BLOCK(block);
3843 sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3846 if (flags & F2FS_TRIM_FILE_DISCARD) {
3847 if (bdev_max_secure_erase_sectors(bdev))
3848 ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
3851 ret = blkdev_issue_discard(bdev, sector, nr_sects,
3855 if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3856 if (IS_ENCRYPTED(inode))
3857 ret = fscrypt_zeroout_range(inode, off, block, len);
3859 ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3866 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3868 struct inode *inode = file_inode(filp);
3869 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3870 struct address_space *mapping = inode->i_mapping;
3871 struct block_device *prev_bdev = NULL;
3872 struct f2fs_sectrim_range range;
3873 pgoff_t index, pg_end, prev_index = 0;
3874 block_t prev_block = 0, len = 0;
3876 bool to_end = false;
3879 if (!(filp->f_mode & FMODE_WRITE))
3882 if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3886 if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3887 !S_ISREG(inode->i_mode))
3890 if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3891 !f2fs_hw_support_discard(sbi)) ||
3892 ((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3893 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3896 file_start_write(filp);
3899 if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3900 range.start >= inode->i_size) {
3908 if (inode->i_size - range.start > range.len) {
3909 end_addr = range.start + range.len;
3911 end_addr = range.len == (u64)-1 ?
3912 sbi->sb->s_maxbytes : inode->i_size;
3916 if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3917 (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3922 index = F2FS_BYTES_TO_BLK(range.start);
3923 pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3925 ret = f2fs_convert_inline_inode(inode);
3929 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3930 filemap_invalidate_lock(mapping);
3932 ret = filemap_write_and_wait_range(mapping, range.start,
3933 to_end ? LLONG_MAX : end_addr - 1);
3937 truncate_inode_pages_range(mapping, range.start,
3938 to_end ? -1 : end_addr - 1);
3940 while (index < pg_end) {
3941 struct dnode_of_data dn;
3942 pgoff_t end_offset, count;
3945 set_new_dnode(&dn, inode, NULL, NULL, 0);
3946 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3948 if (ret == -ENOENT) {
3949 index = f2fs_get_next_page_offset(&dn, index);
3955 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3956 count = min(end_offset - dn.ofs_in_node, pg_end - index);
3957 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3958 struct block_device *cur_bdev;
3959 block_t blkaddr = f2fs_data_blkaddr(&dn);
3961 if (!__is_valid_data_blkaddr(blkaddr))
3964 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3965 DATA_GENERIC_ENHANCE)) {
3966 ret = -EFSCORRUPTED;
3967 f2fs_put_dnode(&dn);
3971 cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
3972 if (f2fs_is_multi_device(sbi)) {
3973 int di = f2fs_target_device_index(sbi, blkaddr);
3975 blkaddr -= FDEV(di).start_blk;
3979 if (prev_bdev == cur_bdev &&
3980 index == prev_index + len &&
3981 blkaddr == prev_block + len) {
3984 ret = f2fs_secure_erase(prev_bdev,
3985 inode, prev_index, prev_block,
3988 f2fs_put_dnode(&dn);
3997 prev_bdev = cur_bdev;
3999 prev_block = blkaddr;
4004 f2fs_put_dnode(&dn);
4006 if (fatal_signal_pending(current)) {
4014 ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
4015 prev_block, len, range.flags);
4016 f2fs_update_time(sbi, REQ_TIME);
4018 filemap_invalidate_unlock(mapping);
4019 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4021 inode_unlock(inode);
4022 file_end_write(filp);
4027 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
4029 struct inode *inode = file_inode(filp);
4030 struct f2fs_comp_option option;
4032 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
4035 inode_lock_shared(inode);
4037 if (!f2fs_compressed_file(inode)) {
4038 inode_unlock_shared(inode);
4042 option.algorithm = F2FS_I(inode)->i_compress_algorithm;
4043 option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
4045 inode_unlock_shared(inode);
4047 if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
4054 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
4056 struct inode *inode = file_inode(filp);
4057 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4058 struct f2fs_comp_option option;
4061 if (!f2fs_sb_has_compression(sbi))
4064 if (!(filp->f_mode & FMODE_WRITE))
4067 if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
4071 if (option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
4072 option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
4073 option.algorithm >= COMPRESS_MAX)
4076 file_start_write(filp);
4079 f2fs_down_write(&F2FS_I(inode)->i_sem);
4080 if (!f2fs_compressed_file(inode)) {
4085 if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
4090 if (F2FS_HAS_BLOCKS(inode)) {
4095 F2FS_I(inode)->i_compress_algorithm = option.algorithm;
4096 F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
4097 F2FS_I(inode)->i_cluster_size = BIT(option.log_cluster_size);
4098 /* Set default level */
4099 if (F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD)
4100 F2FS_I(inode)->i_compress_level = F2FS_ZSTD_DEFAULT_CLEVEL;
4102 F2FS_I(inode)->i_compress_level = 0;
4103 /* Adjust mount option level */
4104 if (option.algorithm == F2FS_OPTION(sbi).compress_algorithm &&
4105 F2FS_OPTION(sbi).compress_level)
4106 F2FS_I(inode)->i_compress_level = F2FS_OPTION(sbi).compress_level;
4107 f2fs_mark_inode_dirty_sync(inode, true);
4109 if (!f2fs_is_compress_backend_ready(inode))
4110 f2fs_warn(sbi, "compression algorithm is successfully set, "
4111 "but current kernel doesn't support this algorithm.");
4113 f2fs_up_write(&F2FS_I(inode)->i_sem);
4114 inode_unlock(inode);
4115 file_end_write(filp);
4120 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
4122 DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
4123 struct address_space *mapping = inode->i_mapping;
4125 pgoff_t redirty_idx = page_idx;
4126 int i, page_len = 0, ret = 0;
4128 page_cache_ra_unbounded(&ractl, len, 0);
4130 for (i = 0; i < len; i++, page_idx++) {
4131 page = read_cache_page(mapping, page_idx, NULL, NULL);
4133 ret = PTR_ERR(page);
4139 for (i = 0; i < page_len; i++, redirty_idx++) {
4140 page = find_lock_page(mapping, redirty_idx);
4142 /* It will never fail, when page has pinned above */
4143 f2fs_bug_on(F2FS_I_SB(inode), !page);
4145 set_page_dirty(page);
4146 set_page_private_gcing(page);
4147 f2fs_put_page(page, 1);
4148 f2fs_put_page(page, 0);
4154 static int f2fs_ioc_decompress_file(struct file *filp)
4156 struct inode *inode = file_inode(filp);
4157 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4158 struct f2fs_inode_info *fi = F2FS_I(inode);
4159 pgoff_t page_idx = 0, last_idx;
4160 int cluster_size = fi->i_cluster_size;
4163 if (!f2fs_sb_has_compression(sbi) ||
4164 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4167 if (!(filp->f_mode & FMODE_WRITE))
4170 f2fs_balance_fs(sbi, true);
4172 file_start_write(filp);
4175 if (!f2fs_is_compress_backend_ready(inode)) {
4180 if (!f2fs_compressed_file(inode) ||
4181 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4186 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4190 if (!atomic_read(&fi->i_compr_blocks))
4193 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4195 count = last_idx - page_idx;
4196 while (count && count >= cluster_size) {
4197 ret = redirty_blocks(inode, page_idx, cluster_size);
4201 if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4202 ret = filemap_fdatawrite(inode->i_mapping);
4207 count -= cluster_size;
4208 page_idx += cluster_size;
4211 if (fatal_signal_pending(current)) {
4218 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4222 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4224 f2fs_update_time(sbi, REQ_TIME);
4226 inode_unlock(inode);
4227 file_end_write(filp);
4232 static int f2fs_ioc_compress_file(struct file *filp)
4234 struct inode *inode = file_inode(filp);
4235 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4236 pgoff_t page_idx = 0, last_idx;
4237 int cluster_size = F2FS_I(inode)->i_cluster_size;
4240 if (!f2fs_sb_has_compression(sbi) ||
4241 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4244 if (!(filp->f_mode & FMODE_WRITE))
4247 f2fs_balance_fs(sbi, true);
4249 file_start_write(filp);
4252 if (!f2fs_is_compress_backend_ready(inode)) {
4257 if (!f2fs_compressed_file(inode) ||
4258 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4263 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4267 set_inode_flag(inode, FI_ENABLE_COMPRESS);
4269 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4271 count = last_idx - page_idx;
4272 while (count && count >= cluster_size) {
4273 ret = redirty_blocks(inode, page_idx, cluster_size);
4277 if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4278 ret = filemap_fdatawrite(inode->i_mapping);
4283 count -= cluster_size;
4284 page_idx += cluster_size;
4287 if (fatal_signal_pending(current)) {
4294 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4297 clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4300 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4302 f2fs_update_time(sbi, REQ_TIME);
4304 inode_unlock(inode);
4305 file_end_write(filp);
4310 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4313 case FS_IOC_GETVERSION:
4314 return f2fs_ioc_getversion(filp, arg);
4315 case F2FS_IOC_START_ATOMIC_WRITE:
4316 return f2fs_ioc_start_atomic_write(filp, false);
4317 case F2FS_IOC_START_ATOMIC_REPLACE:
4318 return f2fs_ioc_start_atomic_write(filp, true);
4319 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4320 return f2fs_ioc_commit_atomic_write(filp);
4321 case F2FS_IOC_ABORT_ATOMIC_WRITE:
4322 return f2fs_ioc_abort_atomic_write(filp);
4323 case F2FS_IOC_START_VOLATILE_WRITE:
4324 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4326 case F2FS_IOC_SHUTDOWN:
4327 return f2fs_ioc_shutdown(filp, arg);
4329 return f2fs_ioc_fitrim(filp, arg);
4330 case FS_IOC_SET_ENCRYPTION_POLICY:
4331 return f2fs_ioc_set_encryption_policy(filp, arg);
4332 case FS_IOC_GET_ENCRYPTION_POLICY:
4333 return f2fs_ioc_get_encryption_policy(filp, arg);
4334 case FS_IOC_GET_ENCRYPTION_PWSALT:
4335 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4336 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4337 return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4338 case FS_IOC_ADD_ENCRYPTION_KEY:
4339 return f2fs_ioc_add_encryption_key(filp, arg);
4340 case FS_IOC_REMOVE_ENCRYPTION_KEY:
4341 return f2fs_ioc_remove_encryption_key(filp, arg);
4342 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4343 return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4344 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4345 return f2fs_ioc_get_encryption_key_status(filp, arg);
4346 case FS_IOC_GET_ENCRYPTION_NONCE:
4347 return f2fs_ioc_get_encryption_nonce(filp, arg);
4348 case F2FS_IOC_GARBAGE_COLLECT:
4349 return f2fs_ioc_gc(filp, arg);
4350 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4351 return f2fs_ioc_gc_range(filp, arg);
4352 case F2FS_IOC_WRITE_CHECKPOINT:
4353 return f2fs_ioc_write_checkpoint(filp);
4354 case F2FS_IOC_DEFRAGMENT:
4355 return f2fs_ioc_defragment(filp, arg);
4356 case F2FS_IOC_MOVE_RANGE:
4357 return f2fs_ioc_move_range(filp, arg);
4358 case F2FS_IOC_FLUSH_DEVICE:
4359 return f2fs_ioc_flush_device(filp, arg);
4360 case F2FS_IOC_GET_FEATURES:
4361 return f2fs_ioc_get_features(filp, arg);
4362 case F2FS_IOC_GET_PIN_FILE:
4363 return f2fs_ioc_get_pin_file(filp, arg);
4364 case F2FS_IOC_SET_PIN_FILE:
4365 return f2fs_ioc_set_pin_file(filp, arg);
4366 case F2FS_IOC_PRECACHE_EXTENTS:
4367 return f2fs_ioc_precache_extents(filp);
4368 case F2FS_IOC_RESIZE_FS:
4369 return f2fs_ioc_resize_fs(filp, arg);
4370 case FS_IOC_ENABLE_VERITY:
4371 return f2fs_ioc_enable_verity(filp, arg);
4372 case FS_IOC_MEASURE_VERITY:
4373 return f2fs_ioc_measure_verity(filp, arg);
4374 case FS_IOC_READ_VERITY_METADATA:
4375 return f2fs_ioc_read_verity_metadata(filp, arg);
4376 case FS_IOC_GETFSLABEL:
4377 return f2fs_ioc_getfslabel(filp, arg);
4378 case FS_IOC_SETFSLABEL:
4379 return f2fs_ioc_setfslabel(filp, arg);
4380 case F2FS_IOC_GET_COMPRESS_BLOCKS:
4381 return f2fs_ioc_get_compress_blocks(filp, arg);
4382 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4383 return f2fs_release_compress_blocks(filp, arg);
4384 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4385 return f2fs_reserve_compress_blocks(filp, arg);
4386 case F2FS_IOC_SEC_TRIM_FILE:
4387 return f2fs_sec_trim_file(filp, arg);
4388 case F2FS_IOC_GET_COMPRESS_OPTION:
4389 return f2fs_ioc_get_compress_option(filp, arg);
4390 case F2FS_IOC_SET_COMPRESS_OPTION:
4391 return f2fs_ioc_set_compress_option(filp, arg);
4392 case F2FS_IOC_DECOMPRESS_FILE:
4393 return f2fs_ioc_decompress_file(filp);
4394 case F2FS_IOC_COMPRESS_FILE:
4395 return f2fs_ioc_compress_file(filp);
4401 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4403 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4405 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4408 return __f2fs_ioctl(filp, cmd, arg);
4412 * Return %true if the given read or write request should use direct I/O, or
4413 * %false if it should use buffered I/O.
4415 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4416 struct iov_iter *iter)
4420 if (!(iocb->ki_flags & IOCB_DIRECT))
4423 if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4427 * Direct I/O not aligned to the disk's logical_block_size will be
4428 * attempted, but will fail with -EINVAL.
4430 * f2fs additionally requires that direct I/O be aligned to the
4431 * filesystem block size, which is often a stricter requirement.
4432 * However, f2fs traditionally falls back to buffered I/O on requests
4433 * that are logical_block_size-aligned but not fs-block aligned.
4435 * The below logic implements this behavior.
4437 align = iocb->ki_pos | iov_iter_alignment(iter);
4438 if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4439 IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4445 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4448 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4450 dec_page_count(sbi, F2FS_DIO_READ);
4453 f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4457 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4458 .end_io = f2fs_dio_read_end_io,
4461 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4463 struct file *file = iocb->ki_filp;
4464 struct inode *inode = file_inode(file);
4465 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4466 struct f2fs_inode_info *fi = F2FS_I(inode);
4467 const loff_t pos = iocb->ki_pos;
4468 const size_t count = iov_iter_count(to);
4469 struct iomap_dio *dio;
4473 return 0; /* skip atime update */
4475 trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4477 if (iocb->ki_flags & IOCB_NOWAIT) {
4478 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4483 f2fs_down_read(&fi->i_gc_rwsem[READ]);
4487 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4488 * the higher-level function iomap_dio_rw() in order to ensure that the
4489 * F2FS_DIO_READ counter will be decremented correctly in all cases.
4491 inc_page_count(sbi, F2FS_DIO_READ);
4492 dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4493 &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4494 if (IS_ERR_OR_NULL(dio)) {
4495 ret = PTR_ERR_OR_ZERO(dio);
4496 if (ret != -EIOCBQUEUED)
4497 dec_page_count(sbi, F2FS_DIO_READ);
4499 ret = iomap_dio_complete(dio);
4502 f2fs_up_read(&fi->i_gc_rwsem[READ]);
4504 file_accessed(file);
4506 trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4510 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count,
4513 struct inode *inode = file_inode(file);
4516 buf = f2fs_getname(F2FS_I_SB(inode));
4519 path = dentry_path_raw(file_dentry(file), buf, PATH_MAX);
4523 trace_f2fs_datawrite_start(inode, pos, count,
4524 current->pid, path, current->comm);
4526 trace_f2fs_dataread_start(inode, pos, count,
4527 current->pid, path, current->comm);
4532 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4534 struct inode *inode = file_inode(iocb->ki_filp);
4535 const loff_t pos = iocb->ki_pos;
4538 if (!f2fs_is_compress_backend_ready(inode))
4541 if (trace_f2fs_dataread_start_enabled())
4542 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4543 iov_iter_count(to), READ);
4545 if (f2fs_should_use_dio(inode, iocb, to)) {
4546 ret = f2fs_dio_read_iter(iocb, to);
4548 ret = filemap_read(iocb, to, 0);
4550 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4551 APP_BUFFERED_READ_IO, ret);
4553 if (trace_f2fs_dataread_end_enabled())
4554 trace_f2fs_dataread_end(inode, pos, ret);
4558 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos,
4559 struct pipe_inode_info *pipe,
4560 size_t len, unsigned int flags)
4562 struct inode *inode = file_inode(in);
4563 const loff_t pos = *ppos;
4566 if (!f2fs_is_compress_backend_ready(inode))
4569 if (trace_f2fs_dataread_start_enabled())
4570 f2fs_trace_rw_file_path(in, pos, len, READ);
4572 ret = filemap_splice_read(in, ppos, pipe, len, flags);
4574 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4575 APP_BUFFERED_READ_IO, ret);
4577 if (trace_f2fs_dataread_end_enabled())
4578 trace_f2fs_dataread_end(inode, pos, ret);
4582 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4584 struct file *file = iocb->ki_filp;
4585 struct inode *inode = file_inode(file);
4589 if (IS_IMMUTABLE(inode))
4592 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4595 count = generic_write_checks(iocb, from);
4599 err = file_modified(file);
4606 * Preallocate blocks for a write request, if it is possible and helpful to do
4607 * so. Returns a positive number if blocks may have been preallocated, 0 if no
4608 * blocks were preallocated, or a negative errno value if something went
4609 * seriously wrong. Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4610 * requested blocks (not just some of them) have been allocated.
4612 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4615 struct inode *inode = file_inode(iocb->ki_filp);
4616 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4617 const loff_t pos = iocb->ki_pos;
4618 const size_t count = iov_iter_count(iter);
4619 struct f2fs_map_blocks map = {};
4623 /* If it will be an out-of-place direct write, don't bother. */
4624 if (dio && f2fs_lfs_mode(sbi))
4627 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4628 * buffered IO, if DIO meets any holes.
4630 if (dio && i_size_read(inode) &&
4631 (F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4634 /* No-wait I/O can't allocate blocks. */
4635 if (iocb->ki_flags & IOCB_NOWAIT)
4638 /* If it will be a short write, don't bother. */
4639 if (fault_in_iov_iter_readable(iter, count))
4642 if (f2fs_has_inline_data(inode)) {
4643 /* If the data will fit inline, don't bother. */
4644 if (pos + count <= MAX_INLINE_DATA(inode))
4646 ret = f2fs_convert_inline_inode(inode);
4651 /* Do not preallocate blocks that will be written partially in 4KB. */
4652 map.m_lblk = F2FS_BLK_ALIGN(pos);
4653 map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4654 if (map.m_len > map.m_lblk)
4655 map.m_len -= map.m_lblk;
4659 map.m_may_create = true;
4661 map.m_seg_type = f2fs_rw_hint_to_seg_type(sbi,
4662 inode->i_write_hint);
4663 flag = F2FS_GET_BLOCK_PRE_DIO;
4665 map.m_seg_type = NO_CHECK_TYPE;
4666 flag = F2FS_GET_BLOCK_PRE_AIO;
4669 ret = f2fs_map_blocks(inode, &map, flag);
4670 /* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4671 if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4674 set_inode_flag(inode, FI_PREALLOCATED_ALL);
4678 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4679 struct iov_iter *from)
4681 struct file *file = iocb->ki_filp;
4682 struct inode *inode = file_inode(file);
4685 if (iocb->ki_flags & IOCB_NOWAIT)
4688 ret = generic_perform_write(iocb, from);
4691 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4692 APP_BUFFERED_IO, ret);
4697 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4700 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4702 dec_page_count(sbi, F2FS_DIO_WRITE);
4705 f2fs_update_time(sbi, REQ_TIME);
4706 f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
4710 static void f2fs_dio_write_submit_io(const struct iomap_iter *iter,
4711 struct bio *bio, loff_t file_offset)
4713 struct inode *inode = iter->inode;
4714 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4715 int seg_type = f2fs_rw_hint_to_seg_type(sbi, inode->i_write_hint);
4716 enum temp_type temp = f2fs_get_segment_temp(seg_type);
4718 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, DATA, temp);
4722 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4723 .end_io = f2fs_dio_write_end_io,
4724 .submit_io = f2fs_dio_write_submit_io,
4727 static void f2fs_flush_buffered_write(struct address_space *mapping,
4728 loff_t start_pos, loff_t end_pos)
4732 ret = filemap_write_and_wait_range(mapping, start_pos, end_pos);
4735 invalidate_mapping_pages(mapping,
4736 start_pos >> PAGE_SHIFT,
4737 end_pos >> PAGE_SHIFT);
4740 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4741 bool *may_need_sync)
4743 struct file *file = iocb->ki_filp;
4744 struct inode *inode = file_inode(file);
4745 struct f2fs_inode_info *fi = F2FS_I(inode);
4746 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4747 const bool do_opu = f2fs_lfs_mode(sbi);
4748 const loff_t pos = iocb->ki_pos;
4749 const ssize_t count = iov_iter_count(from);
4750 unsigned int dio_flags;
4751 struct iomap_dio *dio;
4754 trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
4756 if (iocb->ki_flags & IOCB_NOWAIT) {
4757 /* f2fs_convert_inline_inode() and block allocation can block */
4758 if (f2fs_has_inline_data(inode) ||
4759 !f2fs_overwrite_io(inode, pos, count)) {
4764 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4768 if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4769 f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4774 ret = f2fs_convert_inline_inode(inode);
4778 f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
4780 f2fs_down_read(&fi->i_gc_rwsem[READ]);
4784 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4785 * the higher-level function iomap_dio_rw() in order to ensure that the
4786 * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4788 inc_page_count(sbi, F2FS_DIO_WRITE);
4790 if (pos + count > inode->i_size)
4791 dio_flags |= IOMAP_DIO_FORCE_WAIT;
4792 dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4793 &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
4794 if (IS_ERR_OR_NULL(dio)) {
4795 ret = PTR_ERR_OR_ZERO(dio);
4796 if (ret == -ENOTBLK)
4798 if (ret != -EIOCBQUEUED)
4799 dec_page_count(sbi, F2FS_DIO_WRITE);
4801 ret = iomap_dio_complete(dio);
4805 f2fs_up_read(&fi->i_gc_rwsem[READ]);
4806 f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4810 if (pos + ret > inode->i_size)
4811 f2fs_i_size_write(inode, pos + ret);
4813 set_inode_flag(inode, FI_UPDATE_WRITE);
4815 if (iov_iter_count(from)) {
4817 loff_t bufio_start_pos = iocb->ki_pos;
4820 * The direct write was partial, so we need to fall back to a
4821 * buffered write for the remainder.
4824 ret2 = f2fs_buffered_write_iter(iocb, from);
4825 if (iov_iter_count(from))
4826 f2fs_write_failed(inode, iocb->ki_pos);
4831 * Ensure that the pagecache pages are written to disk and
4832 * invalidated to preserve the expected O_DIRECT semantics.
4835 loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
4839 f2fs_flush_buffered_write(file->f_mapping,
4844 /* iomap_dio_rw() already handled the generic_write_sync(). */
4845 *may_need_sync = false;
4848 trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
4852 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4854 struct inode *inode = file_inode(iocb->ki_filp);
4855 const loff_t orig_pos = iocb->ki_pos;
4856 const size_t orig_count = iov_iter_count(from);
4859 bool may_need_sync = true;
4861 const loff_t pos = iocb->ki_pos;
4862 const ssize_t count = iov_iter_count(from);
4865 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4870 if (!f2fs_is_compress_backend_ready(inode)) {
4875 if (iocb->ki_flags & IOCB_NOWAIT) {
4876 if (!inode_trylock(inode)) {
4884 if (f2fs_is_pinned_file(inode) &&
4885 !f2fs_overwrite_io(inode, pos, count)) {
4890 ret = f2fs_write_checks(iocb, from);
4894 /* Determine whether we will do a direct write or a buffered write. */
4895 dio = f2fs_should_use_dio(inode, iocb, from);
4897 /* Possibly preallocate the blocks for the write. */
4898 target_size = iocb->ki_pos + iov_iter_count(from);
4899 preallocated = f2fs_preallocate_blocks(iocb, from, dio);
4900 if (preallocated < 0) {
4903 if (trace_f2fs_datawrite_start_enabled())
4904 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4907 /* Do the actual write. */
4909 f2fs_dio_write_iter(iocb, from, &may_need_sync) :
4910 f2fs_buffered_write_iter(iocb, from);
4912 if (trace_f2fs_datawrite_end_enabled())
4913 trace_f2fs_datawrite_end(inode, orig_pos, ret);
4916 /* Don't leave any preallocated blocks around past i_size. */
4917 if (preallocated && i_size_read(inode) < target_size) {
4918 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4919 filemap_invalidate_lock(inode->i_mapping);
4920 if (!f2fs_truncate(inode))
4921 file_dont_truncate(inode);
4922 filemap_invalidate_unlock(inode->i_mapping);
4923 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4925 file_dont_truncate(inode);
4928 clear_inode_flag(inode, FI_PREALLOCATED_ALL);
4930 inode_unlock(inode);
4932 trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
4934 if (ret > 0 && may_need_sync)
4935 ret = generic_write_sync(iocb, ret);
4937 /* If buffered IO was forced, flush and drop the data from
4938 * the page cache to preserve O_DIRECT semantics
4940 if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT))
4941 f2fs_flush_buffered_write(iocb->ki_filp->f_mapping,
4943 orig_pos + ret - 1);
4948 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
4951 struct address_space *mapping;
4952 struct backing_dev_info *bdi;
4953 struct inode *inode = file_inode(filp);
4956 if (advice == POSIX_FADV_SEQUENTIAL) {
4957 if (S_ISFIFO(inode->i_mode))
4960 mapping = filp->f_mapping;
4961 if (!mapping || len < 0)
4964 bdi = inode_to_bdi(mapping->host);
4965 filp->f_ra.ra_pages = bdi->ra_pages *
4966 F2FS_I_SB(inode)->seq_file_ra_mul;
4967 spin_lock(&filp->f_lock);
4968 filp->f_mode &= ~FMODE_RANDOM;
4969 spin_unlock(&filp->f_lock);
4971 } else if (advice == POSIX_FADV_WILLNEED && offset == 0) {
4972 /* Load extent cache at the first readahead. */
4973 f2fs_precache_extents(inode);
4976 err = generic_fadvise(filp, offset, len, advice);
4977 if (!err && advice == POSIX_FADV_DONTNEED &&
4978 test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
4979 f2fs_compressed_file(inode))
4980 f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
4985 #ifdef CONFIG_COMPAT
4986 struct compat_f2fs_gc_range {
4991 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\
4992 struct compat_f2fs_gc_range)
4994 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
4996 struct compat_f2fs_gc_range __user *urange;
4997 struct f2fs_gc_range range;
5000 urange = compat_ptr(arg);
5001 err = get_user(range.sync, &urange->sync);
5002 err |= get_user(range.start, &urange->start);
5003 err |= get_user(range.len, &urange->len);
5007 return __f2fs_ioc_gc_range(file, &range);
5010 struct compat_f2fs_move_range {
5016 #define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
5017 struct compat_f2fs_move_range)
5019 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
5021 struct compat_f2fs_move_range __user *urange;
5022 struct f2fs_move_range range;
5025 urange = compat_ptr(arg);
5026 err = get_user(range.dst_fd, &urange->dst_fd);
5027 err |= get_user(range.pos_in, &urange->pos_in);
5028 err |= get_user(range.pos_out, &urange->pos_out);
5029 err |= get_user(range.len, &urange->len);
5033 return __f2fs_ioc_move_range(file, &range);
5036 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5038 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
5040 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
5044 case FS_IOC32_GETVERSION:
5045 cmd = FS_IOC_GETVERSION;
5047 case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
5048 return f2fs_compat_ioc_gc_range(file, arg);
5049 case F2FS_IOC32_MOVE_RANGE:
5050 return f2fs_compat_ioc_move_range(file, arg);
5051 case F2FS_IOC_START_ATOMIC_WRITE:
5052 case F2FS_IOC_START_ATOMIC_REPLACE:
5053 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
5054 case F2FS_IOC_START_VOLATILE_WRITE:
5055 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
5056 case F2FS_IOC_ABORT_ATOMIC_WRITE:
5057 case F2FS_IOC_SHUTDOWN:
5059 case FS_IOC_SET_ENCRYPTION_POLICY:
5060 case FS_IOC_GET_ENCRYPTION_PWSALT:
5061 case FS_IOC_GET_ENCRYPTION_POLICY:
5062 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
5063 case FS_IOC_ADD_ENCRYPTION_KEY:
5064 case FS_IOC_REMOVE_ENCRYPTION_KEY:
5065 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
5066 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
5067 case FS_IOC_GET_ENCRYPTION_NONCE:
5068 case F2FS_IOC_GARBAGE_COLLECT:
5069 case F2FS_IOC_WRITE_CHECKPOINT:
5070 case F2FS_IOC_DEFRAGMENT:
5071 case F2FS_IOC_FLUSH_DEVICE:
5072 case F2FS_IOC_GET_FEATURES:
5073 case F2FS_IOC_GET_PIN_FILE:
5074 case F2FS_IOC_SET_PIN_FILE:
5075 case F2FS_IOC_PRECACHE_EXTENTS:
5076 case F2FS_IOC_RESIZE_FS:
5077 case FS_IOC_ENABLE_VERITY:
5078 case FS_IOC_MEASURE_VERITY:
5079 case FS_IOC_READ_VERITY_METADATA:
5080 case FS_IOC_GETFSLABEL:
5081 case FS_IOC_SETFSLABEL:
5082 case F2FS_IOC_GET_COMPRESS_BLOCKS:
5083 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
5084 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
5085 case F2FS_IOC_SEC_TRIM_FILE:
5086 case F2FS_IOC_GET_COMPRESS_OPTION:
5087 case F2FS_IOC_SET_COMPRESS_OPTION:
5088 case F2FS_IOC_DECOMPRESS_FILE:
5089 case F2FS_IOC_COMPRESS_FILE:
5092 return -ENOIOCTLCMD;
5094 return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5098 const struct file_operations f2fs_file_operations = {
5099 .llseek = f2fs_llseek,
5100 .read_iter = f2fs_file_read_iter,
5101 .write_iter = f2fs_file_write_iter,
5102 .iopoll = iocb_bio_iopoll,
5103 .open = f2fs_file_open,
5104 .release = f2fs_release_file,
5105 .mmap = f2fs_file_mmap,
5106 .flush = f2fs_file_flush,
5107 .fsync = f2fs_sync_file,
5108 .fallocate = f2fs_fallocate,
5109 .unlocked_ioctl = f2fs_ioctl,
5110 #ifdef CONFIG_COMPAT
5111 .compat_ioctl = f2fs_compat_ioctl,
5113 .splice_read = f2fs_file_splice_read,
5114 .splice_write = iter_file_splice_write,
5115 .fadvise = f2fs_file_fadvise,
5116 .fop_flags = FOP_BUFFER_RASYNC,