]> Git Repo - linux.git/blob - fs/dax.c
ext4: warn when page is dirtied without buffers
[linux.git] / fs / dax.c
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <[email protected]>
5  * Author: Ross Zwisler <[email protected]>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/pmem.h>
29 #include <linux/sched.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/iomap.h>
35 #include "internal.h"
36
37 /* We choose 4096 entries - same as per-zone page wait tables */
38 #define DAX_WAIT_TABLE_BITS 12
39 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
40
41 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
42
43 static int __init init_dax_wait_table(void)
44 {
45         int i;
46
47         for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
48                 init_waitqueue_head(wait_table + i);
49         return 0;
50 }
51 fs_initcall(init_dax_wait_table);
52
53 static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
54 {
55         struct request_queue *q = bdev->bd_queue;
56         long rc = -EIO;
57
58         dax->addr = ERR_PTR(-EIO);
59         if (blk_queue_enter(q, true) != 0)
60                 return rc;
61
62         rc = bdev_direct_access(bdev, dax);
63         if (rc < 0) {
64                 dax->addr = ERR_PTR(rc);
65                 blk_queue_exit(q);
66                 return rc;
67         }
68         return rc;
69 }
70
71 static void dax_unmap_atomic(struct block_device *bdev,
72                 const struct blk_dax_ctl *dax)
73 {
74         if (IS_ERR(dax->addr))
75                 return;
76         blk_queue_exit(bdev->bd_queue);
77 }
78
79 static int dax_is_pmd_entry(void *entry)
80 {
81         return (unsigned long)entry & RADIX_DAX_PMD;
82 }
83
84 static int dax_is_pte_entry(void *entry)
85 {
86         return !((unsigned long)entry & RADIX_DAX_PMD);
87 }
88
89 static int dax_is_zero_entry(void *entry)
90 {
91         return (unsigned long)entry & RADIX_DAX_HZP;
92 }
93
94 static int dax_is_empty_entry(void *entry)
95 {
96         return (unsigned long)entry & RADIX_DAX_EMPTY;
97 }
98
99 struct page *read_dax_sector(struct block_device *bdev, sector_t n)
100 {
101         struct page *page = alloc_pages(GFP_KERNEL, 0);
102         struct blk_dax_ctl dax = {
103                 .size = PAGE_SIZE,
104                 .sector = n & ~((((int) PAGE_SIZE) / 512) - 1),
105         };
106         long rc;
107
108         if (!page)
109                 return ERR_PTR(-ENOMEM);
110
111         rc = dax_map_atomic(bdev, &dax);
112         if (rc < 0)
113                 return ERR_PTR(rc);
114         memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE);
115         dax_unmap_atomic(bdev, &dax);
116         return page;
117 }
118
119 /*
120  * DAX radix tree locking
121  */
122 struct exceptional_entry_key {
123         struct address_space *mapping;
124         pgoff_t entry_start;
125 };
126
127 struct wait_exceptional_entry_queue {
128         wait_queue_t wait;
129         struct exceptional_entry_key key;
130 };
131
132 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
133                 pgoff_t index, void *entry, struct exceptional_entry_key *key)
134 {
135         unsigned long hash;
136
137         /*
138          * If 'entry' is a PMD, align the 'index' that we use for the wait
139          * queue to the start of that PMD.  This ensures that all offsets in
140          * the range covered by the PMD map to the same bit lock.
141          */
142         if (dax_is_pmd_entry(entry))
143                 index &= ~((1UL << (PMD_SHIFT - PAGE_SHIFT)) - 1);
144
145         key->mapping = mapping;
146         key->entry_start = index;
147
148         hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
149         return wait_table + hash;
150 }
151
152 static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode,
153                                        int sync, void *keyp)
154 {
155         struct exceptional_entry_key *key = keyp;
156         struct wait_exceptional_entry_queue *ewait =
157                 container_of(wait, struct wait_exceptional_entry_queue, wait);
158
159         if (key->mapping != ewait->key.mapping ||
160             key->entry_start != ewait->key.entry_start)
161                 return 0;
162         return autoremove_wake_function(wait, mode, sync, NULL);
163 }
164
165 /*
166  * Check whether the given slot is locked. The function must be called with
167  * mapping->tree_lock held
168  */
169 static inline int slot_locked(struct address_space *mapping, void **slot)
170 {
171         unsigned long entry = (unsigned long)
172                 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
173         return entry & RADIX_DAX_ENTRY_LOCK;
174 }
175
176 /*
177  * Mark the given slot is locked. The function must be called with
178  * mapping->tree_lock held
179  */
180 static inline void *lock_slot(struct address_space *mapping, void **slot)
181 {
182         unsigned long entry = (unsigned long)
183                 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
184
185         entry |= RADIX_DAX_ENTRY_LOCK;
186         radix_tree_replace_slot(slot, (void *)entry);
187         return (void *)entry;
188 }
189
190 /*
191  * Mark the given slot is unlocked. The function must be called with
192  * mapping->tree_lock held
193  */
194 static inline void *unlock_slot(struct address_space *mapping, void **slot)
195 {
196         unsigned long entry = (unsigned long)
197                 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
198
199         entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
200         radix_tree_replace_slot(slot, (void *)entry);
201         return (void *)entry;
202 }
203
204 /*
205  * Lookup entry in radix tree, wait for it to become unlocked if it is
206  * exceptional entry and return it. The caller must call
207  * put_unlocked_mapping_entry() when he decided not to lock the entry or
208  * put_locked_mapping_entry() when he locked the entry and now wants to
209  * unlock it.
210  *
211  * The function must be called with mapping->tree_lock held.
212  */
213 static void *get_unlocked_mapping_entry(struct address_space *mapping,
214                                         pgoff_t index, void ***slotp)
215 {
216         void *entry, **slot;
217         struct wait_exceptional_entry_queue ewait;
218         wait_queue_head_t *wq;
219
220         init_wait(&ewait.wait);
221         ewait.wait.func = wake_exceptional_entry_func;
222
223         for (;;) {
224                 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
225                                           &slot);
226                 if (!entry || !radix_tree_exceptional_entry(entry) ||
227                     !slot_locked(mapping, slot)) {
228                         if (slotp)
229                                 *slotp = slot;
230                         return entry;
231                 }
232
233                 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
234                 prepare_to_wait_exclusive(wq, &ewait.wait,
235                                           TASK_UNINTERRUPTIBLE);
236                 spin_unlock_irq(&mapping->tree_lock);
237                 schedule();
238                 finish_wait(wq, &ewait.wait);
239                 spin_lock_irq(&mapping->tree_lock);
240         }
241 }
242
243 static void put_locked_mapping_entry(struct address_space *mapping,
244                                      pgoff_t index, void *entry)
245 {
246         if (!radix_tree_exceptional_entry(entry)) {
247                 unlock_page(entry);
248                 put_page(entry);
249         } else {
250                 dax_unlock_mapping_entry(mapping, index);
251         }
252 }
253
254 /*
255  * Called when we are done with radix tree entry we looked up via
256  * get_unlocked_mapping_entry() and which we didn't lock in the end.
257  */
258 static void put_unlocked_mapping_entry(struct address_space *mapping,
259                                        pgoff_t index, void *entry)
260 {
261         if (!radix_tree_exceptional_entry(entry))
262                 return;
263
264         /* We have to wake up next waiter for the radix tree entry lock */
265         dax_wake_mapping_entry_waiter(mapping, index, entry, false);
266 }
267
268 /*
269  * Find radix tree entry at given index. If it points to a page, return with
270  * the page locked. If it points to the exceptional entry, return with the
271  * radix tree entry locked. If the radix tree doesn't contain given index,
272  * create empty exceptional entry for the index and return with it locked.
273  *
274  * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
275  * either return that locked entry or will return an error.  This error will
276  * happen if there are any 4k entries (either zero pages or DAX entries)
277  * within the 2MiB range that we are requesting.
278  *
279  * We always favor 4k entries over 2MiB entries. There isn't a flow where we
280  * evict 4k entries in order to 'upgrade' them to a 2MiB entry.  A 2MiB
281  * insertion will fail if it finds any 4k entries already in the tree, and a
282  * 4k insertion will cause an existing 2MiB entry to be unmapped and
283  * downgraded to 4k entries.  This happens for both 2MiB huge zero pages as
284  * well as 2MiB empty entries.
285  *
286  * The exception to this downgrade path is for 2MiB DAX PMD entries that have
287  * real storage backing them.  We will leave these real 2MiB DAX entries in
288  * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
289  *
290  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
291  * persistent memory the benefit is doubtful. We can add that later if we can
292  * show it helps.
293  */
294 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
295                 unsigned long size_flag)
296 {
297         bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
298         void *entry, **slot;
299
300 restart:
301         spin_lock_irq(&mapping->tree_lock);
302         entry = get_unlocked_mapping_entry(mapping, index, &slot);
303
304         if (entry) {
305                 if (size_flag & RADIX_DAX_PMD) {
306                         if (!radix_tree_exceptional_entry(entry) ||
307                             dax_is_pte_entry(entry)) {
308                                 put_unlocked_mapping_entry(mapping, index,
309                                                 entry);
310                                 entry = ERR_PTR(-EEXIST);
311                                 goto out_unlock;
312                         }
313                 } else { /* trying to grab a PTE entry */
314                         if (radix_tree_exceptional_entry(entry) &&
315                             dax_is_pmd_entry(entry) &&
316                             (dax_is_zero_entry(entry) ||
317                              dax_is_empty_entry(entry))) {
318                                 pmd_downgrade = true;
319                         }
320                 }
321         }
322
323         /* No entry for given index? Make sure radix tree is big enough. */
324         if (!entry || pmd_downgrade) {
325                 int err;
326
327                 if (pmd_downgrade) {
328                         /*
329                          * Make sure 'entry' remains valid while we drop
330                          * mapping->tree_lock.
331                          */
332                         entry = lock_slot(mapping, slot);
333                 }
334
335                 spin_unlock_irq(&mapping->tree_lock);
336                 err = radix_tree_preload(
337                                 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
338                 if (err) {
339                         if (pmd_downgrade)
340                                 put_locked_mapping_entry(mapping, index, entry);
341                         return ERR_PTR(err);
342                 }
343
344                 /*
345                  * Besides huge zero pages the only other thing that gets
346                  * downgraded are empty entries which don't need to be
347                  * unmapped.
348                  */
349                 if (pmd_downgrade && dax_is_zero_entry(entry))
350                         unmap_mapping_range(mapping,
351                                 (index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
352
353                 spin_lock_irq(&mapping->tree_lock);
354
355                 if (pmd_downgrade) {
356                         radix_tree_delete(&mapping->page_tree, index);
357                         mapping->nrexceptional--;
358                         dax_wake_mapping_entry_waiter(mapping, index, entry,
359                                         true);
360                 }
361
362                 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
363
364                 err = __radix_tree_insert(&mapping->page_tree, index,
365                                 dax_radix_order(entry), entry);
366                 radix_tree_preload_end();
367                 if (err) {
368                         spin_unlock_irq(&mapping->tree_lock);
369                         /*
370                          * Someone already created the entry?  This is a
371                          * normal failure when inserting PMDs in a range
372                          * that already contains PTEs.  In that case we want
373                          * to return -EEXIST immediately.
374                          */
375                         if (err == -EEXIST && !(size_flag & RADIX_DAX_PMD))
376                                 goto restart;
377                         /*
378                          * Our insertion of a DAX PMD entry failed, most
379                          * likely because it collided with a PTE sized entry
380                          * at a different index in the PMD range.  We haven't
381                          * inserted anything into the radix tree and have no
382                          * waiters to wake.
383                          */
384                         return ERR_PTR(err);
385                 }
386                 /* Good, we have inserted empty locked entry into the tree. */
387                 mapping->nrexceptional++;
388                 spin_unlock_irq(&mapping->tree_lock);
389                 return entry;
390         }
391         /* Normal page in radix tree? */
392         if (!radix_tree_exceptional_entry(entry)) {
393                 struct page *page = entry;
394
395                 get_page(page);
396                 spin_unlock_irq(&mapping->tree_lock);
397                 lock_page(page);
398                 /* Page got truncated? Retry... */
399                 if (unlikely(page->mapping != mapping)) {
400                         unlock_page(page);
401                         put_page(page);
402                         goto restart;
403                 }
404                 return page;
405         }
406         entry = lock_slot(mapping, slot);
407  out_unlock:
408         spin_unlock_irq(&mapping->tree_lock);
409         return entry;
410 }
411
412 /*
413  * We do not necessarily hold the mapping->tree_lock when we call this
414  * function so it is possible that 'entry' is no longer a valid item in the
415  * radix tree.  This is okay because all we really need to do is to find the
416  * correct waitqueue where tasks might be waiting for that old 'entry' and
417  * wake them.
418  */
419 void dax_wake_mapping_entry_waiter(struct address_space *mapping,
420                 pgoff_t index, void *entry, bool wake_all)
421 {
422         struct exceptional_entry_key key;
423         wait_queue_head_t *wq;
424
425         wq = dax_entry_waitqueue(mapping, index, entry, &key);
426
427         /*
428          * Checking for locked entry and prepare_to_wait_exclusive() happens
429          * under mapping->tree_lock, ditto for entry handling in our callers.
430          * So at this point all tasks that could have seen our entry locked
431          * must be in the waitqueue and the following check will see them.
432          */
433         if (waitqueue_active(wq))
434                 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
435 }
436
437 void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index)
438 {
439         void *entry, **slot;
440
441         spin_lock_irq(&mapping->tree_lock);
442         entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
443         if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
444                          !slot_locked(mapping, slot))) {
445                 spin_unlock_irq(&mapping->tree_lock);
446                 return;
447         }
448         unlock_slot(mapping, slot);
449         spin_unlock_irq(&mapping->tree_lock);
450         dax_wake_mapping_entry_waiter(mapping, index, entry, false);
451 }
452
453 /*
454  * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
455  * entry to get unlocked before deleting it.
456  */
457 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
458 {
459         void *entry;
460
461         spin_lock_irq(&mapping->tree_lock);
462         entry = get_unlocked_mapping_entry(mapping, index, NULL);
463         /*
464          * This gets called from truncate / punch_hole path. As such, the caller
465          * must hold locks protecting against concurrent modifications of the
466          * radix tree (usually fs-private i_mmap_sem for writing). Since the
467          * caller has seen exceptional entry for this index, we better find it
468          * at that index as well...
469          */
470         if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry))) {
471                 spin_unlock_irq(&mapping->tree_lock);
472                 return 0;
473         }
474         radix_tree_delete(&mapping->page_tree, index);
475         mapping->nrexceptional--;
476         spin_unlock_irq(&mapping->tree_lock);
477         dax_wake_mapping_entry_waiter(mapping, index, entry, true);
478
479         return 1;
480 }
481
482 /*
483  * The user has performed a load from a hole in the file.  Allocating
484  * a new page in the file would cause excessive storage usage for
485  * workloads with sparse files.  We allocate a page cache page instead.
486  * We'll kick it out of the page cache if it's ever written to,
487  * otherwise it will simply fall out of the page cache under memory
488  * pressure without ever having been dirtied.
489  */
490 static int dax_load_hole(struct address_space *mapping, void *entry,
491                          struct vm_fault *vmf)
492 {
493         struct page *page;
494
495         /* Hole page already exists? Return it...  */
496         if (!radix_tree_exceptional_entry(entry)) {
497                 vmf->page = entry;
498                 return VM_FAULT_LOCKED;
499         }
500
501         /* This will replace locked radix tree entry with a hole page */
502         page = find_or_create_page(mapping, vmf->pgoff,
503                                    vmf->gfp_mask | __GFP_ZERO);
504         if (!page) {
505                 put_locked_mapping_entry(mapping, vmf->pgoff, entry);
506                 return VM_FAULT_OOM;
507         }
508         vmf->page = page;
509         return VM_FAULT_LOCKED;
510 }
511
512 static int copy_user_dax(struct block_device *bdev, sector_t sector, size_t size,
513                 struct page *to, unsigned long vaddr)
514 {
515         struct blk_dax_ctl dax = {
516                 .sector = sector,
517                 .size = size,
518         };
519         void *vto;
520
521         if (dax_map_atomic(bdev, &dax) < 0)
522                 return PTR_ERR(dax.addr);
523         vto = kmap_atomic(to);
524         copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
525         kunmap_atomic(vto);
526         dax_unmap_atomic(bdev, &dax);
527         return 0;
528 }
529
530 /*
531  * By this point grab_mapping_entry() has ensured that we have a locked entry
532  * of the appropriate size so we don't have to worry about downgrading PMDs to
533  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
534  * already in the tree, we will skip the insertion and just dirty the PMD as
535  * appropriate.
536  */
537 static void *dax_insert_mapping_entry(struct address_space *mapping,
538                                       struct vm_fault *vmf,
539                                       void *entry, sector_t sector,
540                                       unsigned long flags)
541 {
542         struct radix_tree_root *page_tree = &mapping->page_tree;
543         int error = 0;
544         bool hole_fill = false;
545         void *new_entry;
546         pgoff_t index = vmf->pgoff;
547
548         if (vmf->flags & FAULT_FLAG_WRITE)
549                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
550
551         /* Replacing hole page with block mapping? */
552         if (!radix_tree_exceptional_entry(entry)) {
553                 hole_fill = true;
554                 /*
555                  * Unmap the page now before we remove it from page cache below.
556                  * The page is locked so it cannot be faulted in again.
557                  */
558                 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
559                                     PAGE_SIZE, 0);
560                 error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM);
561                 if (error)
562                         return ERR_PTR(error);
563         } else if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_HZP)) {
564                 /* replacing huge zero page with PMD block mapping */
565                 unmap_mapping_range(mapping,
566                         (vmf->pgoff << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
567         }
568
569         spin_lock_irq(&mapping->tree_lock);
570         new_entry = dax_radix_locked_entry(sector, flags);
571
572         if (hole_fill) {
573                 __delete_from_page_cache(entry, NULL);
574                 /* Drop pagecache reference */
575                 put_page(entry);
576                 error = __radix_tree_insert(page_tree, index,
577                                 dax_radix_order(new_entry), new_entry);
578                 if (error) {
579                         new_entry = ERR_PTR(error);
580                         goto unlock;
581                 }
582                 mapping->nrexceptional++;
583         } else if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
584                 /*
585                  * Only swap our new entry into the radix tree if the current
586                  * entry is a zero page or an empty entry.  If a normal PTE or
587                  * PMD entry is already in the tree, we leave it alone.  This
588                  * means that if we are trying to insert a PTE and the
589                  * existing entry is a PMD, we will just leave the PMD in the
590                  * tree and dirty it if necessary.
591                  */
592                 void **slot;
593                 void *ret;
594
595                 ret = __radix_tree_lookup(page_tree, index, NULL, &slot);
596                 WARN_ON_ONCE(ret != entry);
597                 radix_tree_replace_slot(slot, new_entry);
598         }
599         if (vmf->flags & FAULT_FLAG_WRITE)
600                 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
601  unlock:
602         spin_unlock_irq(&mapping->tree_lock);
603         if (hole_fill) {
604                 radix_tree_preload_end();
605                 /*
606                  * We don't need hole page anymore, it has been replaced with
607                  * locked radix tree entry now.
608                  */
609                 if (mapping->a_ops->freepage)
610                         mapping->a_ops->freepage(entry);
611                 unlock_page(entry);
612                 put_page(entry);
613         }
614         return new_entry;
615 }
616
617 static int dax_writeback_one(struct block_device *bdev,
618                 struct address_space *mapping, pgoff_t index, void *entry)
619 {
620         struct radix_tree_root *page_tree = &mapping->page_tree;
621         struct radix_tree_node *node;
622         struct blk_dax_ctl dax;
623         void **slot;
624         int ret = 0;
625
626         spin_lock_irq(&mapping->tree_lock);
627         /*
628          * Regular page slots are stabilized by the page lock even
629          * without the tree itself locked.  These unlocked entries
630          * need verification under the tree lock.
631          */
632         if (!__radix_tree_lookup(page_tree, index, &node, &slot))
633                 goto unlock;
634         if (*slot != entry)
635                 goto unlock;
636
637         /* another fsync thread may have already written back this entry */
638         if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
639                 goto unlock;
640
641         if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
642                                 dax_is_zero_entry(entry))) {
643                 ret = -EIO;
644                 goto unlock;
645         }
646
647         /*
648          * Even if dax_writeback_mapping_range() was given a wbc->range_start
649          * in the middle of a PMD, the 'index' we are given will be aligned to
650          * the start index of the PMD, as will the sector we pull from
651          * 'entry'.  This allows us to flush for PMD_SIZE and not have to
652          * worry about partial PMD writebacks.
653          */
654         dax.sector = dax_radix_sector(entry);
655         dax.size = PAGE_SIZE << dax_radix_order(entry);
656         spin_unlock_irq(&mapping->tree_lock);
657
658         /*
659          * We cannot hold tree_lock while calling dax_map_atomic() because it
660          * eventually calls cond_resched().
661          */
662         ret = dax_map_atomic(bdev, &dax);
663         if (ret < 0)
664                 return ret;
665
666         if (WARN_ON_ONCE(ret < dax.size)) {
667                 ret = -EIO;
668                 goto unmap;
669         }
670
671         wb_cache_pmem(dax.addr, dax.size);
672
673         spin_lock_irq(&mapping->tree_lock);
674         radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
675         spin_unlock_irq(&mapping->tree_lock);
676  unmap:
677         dax_unmap_atomic(bdev, &dax);
678         return ret;
679
680  unlock:
681         spin_unlock_irq(&mapping->tree_lock);
682         return ret;
683 }
684
685 /*
686  * Flush the mapping to the persistent domain within the byte range of [start,
687  * end]. This is required by data integrity operations to ensure file data is
688  * on persistent storage prior to completion of the operation.
689  */
690 int dax_writeback_mapping_range(struct address_space *mapping,
691                 struct block_device *bdev, struct writeback_control *wbc)
692 {
693         struct inode *inode = mapping->host;
694         pgoff_t start_index, end_index;
695         pgoff_t indices[PAGEVEC_SIZE];
696         struct pagevec pvec;
697         bool done = false;
698         int i, ret = 0;
699
700         if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
701                 return -EIO;
702
703         if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
704                 return 0;
705
706         start_index = wbc->range_start >> PAGE_SHIFT;
707         end_index = wbc->range_end >> PAGE_SHIFT;
708
709         tag_pages_for_writeback(mapping, start_index, end_index);
710
711         pagevec_init(&pvec, 0);
712         while (!done) {
713                 pvec.nr = find_get_entries_tag(mapping, start_index,
714                                 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
715                                 pvec.pages, indices);
716
717                 if (pvec.nr == 0)
718                         break;
719
720                 for (i = 0; i < pvec.nr; i++) {
721                         if (indices[i] > end_index) {
722                                 done = true;
723                                 break;
724                         }
725
726                         ret = dax_writeback_one(bdev, mapping, indices[i],
727                                         pvec.pages[i]);
728                         if (ret < 0)
729                                 return ret;
730                 }
731         }
732         return 0;
733 }
734 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
735
736 static int dax_insert_mapping(struct address_space *mapping,
737                 struct block_device *bdev, sector_t sector, size_t size,
738                 void **entryp, struct vm_area_struct *vma, struct vm_fault *vmf)
739 {
740         unsigned long vaddr = (unsigned long)vmf->virtual_address;
741         struct blk_dax_ctl dax = {
742                 .sector = sector,
743                 .size = size,
744         };
745         void *ret;
746         void *entry = *entryp;
747
748         if (dax_map_atomic(bdev, &dax) < 0)
749                 return PTR_ERR(dax.addr);
750         dax_unmap_atomic(bdev, &dax);
751
752         ret = dax_insert_mapping_entry(mapping, vmf, entry, dax.sector, 0);
753         if (IS_ERR(ret))
754                 return PTR_ERR(ret);
755         *entryp = ret;
756
757         return vm_insert_mixed(vma, vaddr, dax.pfn);
758 }
759
760 /**
761  * dax_pfn_mkwrite - handle first write to DAX page
762  * @vma: The virtual memory area where the fault occurred
763  * @vmf: The description of the fault
764  */
765 int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
766 {
767         struct file *file = vma->vm_file;
768         struct address_space *mapping = file->f_mapping;
769         void *entry;
770         pgoff_t index = vmf->pgoff;
771
772         spin_lock_irq(&mapping->tree_lock);
773         entry = get_unlocked_mapping_entry(mapping, index, NULL);
774         if (!entry || !radix_tree_exceptional_entry(entry))
775                 goto out;
776         radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY);
777         put_unlocked_mapping_entry(mapping, index, entry);
778 out:
779         spin_unlock_irq(&mapping->tree_lock);
780         return VM_FAULT_NOPAGE;
781 }
782 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
783
784 static bool dax_range_is_aligned(struct block_device *bdev,
785                                  unsigned int offset, unsigned int length)
786 {
787         unsigned short sector_size = bdev_logical_block_size(bdev);
788
789         if (!IS_ALIGNED(offset, sector_size))
790                 return false;
791         if (!IS_ALIGNED(length, sector_size))
792                 return false;
793
794         return true;
795 }
796
797 int __dax_zero_page_range(struct block_device *bdev, sector_t sector,
798                 unsigned int offset, unsigned int length)
799 {
800         struct blk_dax_ctl dax = {
801                 .sector         = sector,
802                 .size           = PAGE_SIZE,
803         };
804
805         if (dax_range_is_aligned(bdev, offset, length)) {
806                 sector_t start_sector = dax.sector + (offset >> 9);
807
808                 return blkdev_issue_zeroout(bdev, start_sector,
809                                 length >> 9, GFP_NOFS, true);
810         } else {
811                 if (dax_map_atomic(bdev, &dax) < 0)
812                         return PTR_ERR(dax.addr);
813                 clear_pmem(dax.addr + offset, length);
814                 dax_unmap_atomic(bdev, &dax);
815         }
816         return 0;
817 }
818 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
819
820 #ifdef CONFIG_FS_IOMAP
821 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
822 {
823         return iomap->blkno + (((pos & PAGE_MASK) - iomap->offset) >> 9);
824 }
825
826 static loff_t
827 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
828                 struct iomap *iomap)
829 {
830         struct iov_iter *iter = data;
831         loff_t end = pos + length, done = 0;
832         ssize_t ret = 0;
833
834         if (iov_iter_rw(iter) == READ) {
835                 end = min(end, i_size_read(inode));
836                 if (pos >= end)
837                         return 0;
838
839                 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
840                         return iov_iter_zero(min(length, end - pos), iter);
841         }
842
843         if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
844                 return -EIO;
845
846         while (pos < end) {
847                 unsigned offset = pos & (PAGE_SIZE - 1);
848                 struct blk_dax_ctl dax = { 0 };
849                 ssize_t map_len;
850
851                 dax.sector = dax_iomap_sector(iomap, pos);
852                 dax.size = (length + offset + PAGE_SIZE - 1) & PAGE_MASK;
853                 map_len = dax_map_atomic(iomap->bdev, &dax);
854                 if (map_len < 0) {
855                         ret = map_len;
856                         break;
857                 }
858
859                 dax.addr += offset;
860                 map_len -= offset;
861                 if (map_len > end - pos)
862                         map_len = end - pos;
863
864                 if (iov_iter_rw(iter) == WRITE)
865                         map_len = copy_from_iter_pmem(dax.addr, map_len, iter);
866                 else
867                         map_len = copy_to_iter(dax.addr, map_len, iter);
868                 dax_unmap_atomic(iomap->bdev, &dax);
869                 if (map_len <= 0) {
870                         ret = map_len ? map_len : -EFAULT;
871                         break;
872                 }
873
874                 pos += map_len;
875                 length -= map_len;
876                 done += map_len;
877         }
878
879         return done ? done : ret;
880 }
881
882 /**
883  * dax_iomap_rw - Perform I/O to a DAX file
884  * @iocb:       The control block for this I/O
885  * @iter:       The addresses to do I/O from or to
886  * @ops:        iomap ops passed from the file system
887  *
888  * This function performs read and write operations to directly mapped
889  * persistent memory.  The callers needs to take care of read/write exclusion
890  * and evicting any page cache pages in the region under I/O.
891  */
892 ssize_t
893 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
894                 struct iomap_ops *ops)
895 {
896         struct address_space *mapping = iocb->ki_filp->f_mapping;
897         struct inode *inode = mapping->host;
898         loff_t pos = iocb->ki_pos, ret = 0, done = 0;
899         unsigned flags = 0;
900
901         if (iov_iter_rw(iter) == WRITE)
902                 flags |= IOMAP_WRITE;
903
904         /*
905          * Yes, even DAX files can have page cache attached to them:  A zeroed
906          * page is inserted into the pagecache when we have to serve a write
907          * fault on a hole.  It should never be dirtied and can simply be
908          * dropped from the pagecache once we get real data for the page.
909          *
910          * XXX: This is racy against mmap, and there's nothing we can do about
911          * it. We'll eventually need to shift this down even further so that
912          * we can check if we allocated blocks over a hole first.
913          */
914         if (mapping->nrpages) {
915                 ret = invalidate_inode_pages2_range(mapping,
916                                 pos >> PAGE_SHIFT,
917                                 (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT);
918                 WARN_ON_ONCE(ret);
919         }
920
921         while (iov_iter_count(iter)) {
922                 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
923                                 iter, dax_iomap_actor);
924                 if (ret <= 0)
925                         break;
926                 pos += ret;
927                 done += ret;
928         }
929
930         iocb->ki_pos += done;
931         return done ? done : ret;
932 }
933 EXPORT_SYMBOL_GPL(dax_iomap_rw);
934
935 /**
936  * dax_iomap_fault - handle a page fault on a DAX file
937  * @vma: The virtual memory area where the fault occurred
938  * @vmf: The description of the fault
939  * @ops: iomap ops passed from the file system
940  *
941  * When a page fault occurs, filesystems may call this helper in their fault
942  * or mkwrite handler for DAX files. Assumes the caller has done all the
943  * necessary locking for the page fault to proceed successfully.
944  */
945 int dax_iomap_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
946                         struct iomap_ops *ops)
947 {
948         struct address_space *mapping = vma->vm_file->f_mapping;
949         struct inode *inode = mapping->host;
950         unsigned long vaddr = (unsigned long)vmf->virtual_address;
951         loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
952         sector_t sector;
953         struct iomap iomap = { 0 };
954         unsigned flags = IOMAP_FAULT;
955         int error, major = 0;
956         int locked_status = 0;
957         void *entry;
958
959         /*
960          * Check whether offset isn't beyond end of file now. Caller is supposed
961          * to hold locks serializing us with truncate / punch hole so this is
962          * a reliable test.
963          */
964         if (pos >= i_size_read(inode))
965                 return VM_FAULT_SIGBUS;
966
967         entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
968         if (IS_ERR(entry)) {
969                 error = PTR_ERR(entry);
970                 goto out;
971         }
972
973         if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
974                 flags |= IOMAP_WRITE;
975
976         /*
977          * Note that we don't bother to use iomap_apply here: DAX required
978          * the file system block size to be equal the page size, which means
979          * that we never have to deal with more than a single extent here.
980          */
981         error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
982         if (error)
983                 goto unlock_entry;
984         if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
985                 error = -EIO;           /* fs corruption? */
986                 goto finish_iomap;
987         }
988
989         sector = dax_iomap_sector(&iomap, pos);
990
991         if (vmf->cow_page) {
992                 switch (iomap.type) {
993                 case IOMAP_HOLE:
994                 case IOMAP_UNWRITTEN:
995                         clear_user_highpage(vmf->cow_page, vaddr);
996                         break;
997                 case IOMAP_MAPPED:
998                         error = copy_user_dax(iomap.bdev, sector, PAGE_SIZE,
999                                         vmf->cow_page, vaddr);
1000                         break;
1001                 default:
1002                         WARN_ON_ONCE(1);
1003                         error = -EIO;
1004                         break;
1005                 }
1006
1007                 if (error)
1008                         goto finish_iomap;
1009                 if (!radix_tree_exceptional_entry(entry)) {
1010                         vmf->page = entry;
1011                         locked_status = VM_FAULT_LOCKED;
1012                 } else {
1013                         vmf->entry = entry;
1014                         locked_status = VM_FAULT_DAX_LOCKED;
1015                 }
1016                 goto finish_iomap;
1017         }
1018
1019         switch (iomap.type) {
1020         case IOMAP_MAPPED:
1021                 if (iomap.flags & IOMAP_F_NEW) {
1022                         count_vm_event(PGMAJFAULT);
1023                         mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1024                         major = VM_FAULT_MAJOR;
1025                 }
1026                 error = dax_insert_mapping(mapping, iomap.bdev, sector,
1027                                 PAGE_SIZE, &entry, vma, vmf);
1028                 break;
1029         case IOMAP_UNWRITTEN:
1030         case IOMAP_HOLE:
1031                 if (!(vmf->flags & FAULT_FLAG_WRITE)) {
1032                         locked_status = dax_load_hole(mapping, entry, vmf);
1033                         break;
1034                 }
1035                 /*FALLTHRU*/
1036         default:
1037                 WARN_ON_ONCE(1);
1038                 error = -EIO;
1039                 break;
1040         }
1041
1042  finish_iomap:
1043         if (ops->iomap_end) {
1044                 if (error) {
1045                         /* keep previous error */
1046                         ops->iomap_end(inode, pos, PAGE_SIZE, 0, flags,
1047                                         &iomap);
1048                 } else {
1049                         error = ops->iomap_end(inode, pos, PAGE_SIZE,
1050                                         PAGE_SIZE, flags, &iomap);
1051                 }
1052         }
1053  unlock_entry:
1054         if (!locked_status || error)
1055                 put_locked_mapping_entry(mapping, vmf->pgoff, entry);
1056  out:
1057         if (error == -ENOMEM)
1058                 return VM_FAULT_OOM | major;
1059         /* -EBUSY is fine, somebody else faulted on the same PTE */
1060         if (error < 0 && error != -EBUSY)
1061                 return VM_FAULT_SIGBUS | major;
1062         if (locked_status) {
1063                 WARN_ON_ONCE(error); /* -EBUSY from ops->iomap_end? */
1064                 return locked_status;
1065         }
1066         return VM_FAULT_NOPAGE | major;
1067 }
1068 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1069
1070 #ifdef CONFIG_FS_DAX_PMD
1071 /*
1072  * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
1073  * more often than one might expect in the below functions.
1074  */
1075 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
1076
1077 static int dax_pmd_insert_mapping(struct vm_area_struct *vma, pmd_t *pmd,
1078                 struct vm_fault *vmf, unsigned long address,
1079                 struct iomap *iomap, loff_t pos, bool write, void **entryp)
1080 {
1081         struct address_space *mapping = vma->vm_file->f_mapping;
1082         struct block_device *bdev = iomap->bdev;
1083         struct blk_dax_ctl dax = {
1084                 .sector = dax_iomap_sector(iomap, pos),
1085                 .size = PMD_SIZE,
1086         };
1087         long length = dax_map_atomic(bdev, &dax);
1088         void *ret;
1089
1090         if (length < 0) /* dax_map_atomic() failed */
1091                 return VM_FAULT_FALLBACK;
1092         if (length < PMD_SIZE)
1093                 goto unmap_fallback;
1094         if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR)
1095                 goto unmap_fallback;
1096         if (!pfn_t_devmap(dax.pfn))
1097                 goto unmap_fallback;
1098
1099         dax_unmap_atomic(bdev, &dax);
1100
1101         ret = dax_insert_mapping_entry(mapping, vmf, *entryp, dax.sector,
1102                         RADIX_DAX_PMD);
1103         if (IS_ERR(ret))
1104                 return VM_FAULT_FALLBACK;
1105         *entryp = ret;
1106
1107         return vmf_insert_pfn_pmd(vma, address, pmd, dax.pfn, write);
1108
1109  unmap_fallback:
1110         dax_unmap_atomic(bdev, &dax);
1111         return VM_FAULT_FALLBACK;
1112 }
1113
1114 static int dax_pmd_load_hole(struct vm_area_struct *vma, pmd_t *pmd,
1115                 struct vm_fault *vmf, unsigned long address,
1116                 struct iomap *iomap, void **entryp)
1117 {
1118         struct address_space *mapping = vma->vm_file->f_mapping;
1119         unsigned long pmd_addr = address & PMD_MASK;
1120         struct page *zero_page;
1121         spinlock_t *ptl;
1122         pmd_t pmd_entry;
1123         void *ret;
1124
1125         zero_page = mm_get_huge_zero_page(vma->vm_mm);
1126
1127         if (unlikely(!zero_page))
1128                 return VM_FAULT_FALLBACK;
1129
1130         ret = dax_insert_mapping_entry(mapping, vmf, *entryp, 0,
1131                         RADIX_DAX_PMD | RADIX_DAX_HZP);
1132         if (IS_ERR(ret))
1133                 return VM_FAULT_FALLBACK;
1134         *entryp = ret;
1135
1136         ptl = pmd_lock(vma->vm_mm, pmd);
1137         if (!pmd_none(*pmd)) {
1138                 spin_unlock(ptl);
1139                 return VM_FAULT_FALLBACK;
1140         }
1141
1142         pmd_entry = mk_pmd(zero_page, vma->vm_page_prot);
1143         pmd_entry = pmd_mkhuge(pmd_entry);
1144         set_pmd_at(vma->vm_mm, pmd_addr, pmd, pmd_entry);
1145         spin_unlock(ptl);
1146         return VM_FAULT_NOPAGE;
1147 }
1148
1149 int dax_iomap_pmd_fault(struct vm_area_struct *vma, unsigned long address,
1150                 pmd_t *pmd, unsigned int flags, struct iomap_ops *ops)
1151 {
1152         struct address_space *mapping = vma->vm_file->f_mapping;
1153         unsigned long pmd_addr = address & PMD_MASK;
1154         bool write = flags & FAULT_FLAG_WRITE;
1155         unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1156         struct inode *inode = mapping->host;
1157         int result = VM_FAULT_FALLBACK;
1158         struct iomap iomap = { 0 };
1159         pgoff_t max_pgoff, pgoff;
1160         struct vm_fault vmf;
1161         void *entry;
1162         loff_t pos;
1163         int error;
1164
1165         /* Fall back to PTEs if we're going to COW */
1166         if (write && !(vma->vm_flags & VM_SHARED))
1167                 goto fallback;
1168
1169         /* If the PMD would extend outside the VMA */
1170         if (pmd_addr < vma->vm_start)
1171                 goto fallback;
1172         if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1173                 goto fallback;
1174
1175         /*
1176          * Check whether offset isn't beyond end of file now. Caller is
1177          * supposed to hold locks serializing us with truncate / punch hole so
1178          * this is a reliable test.
1179          */
1180         pgoff = linear_page_index(vma, pmd_addr);
1181         max_pgoff = (i_size_read(inode) - 1) >> PAGE_SHIFT;
1182
1183         if (pgoff > max_pgoff)
1184                 return VM_FAULT_SIGBUS;
1185
1186         /* If the PMD would extend beyond the file size */
1187         if ((pgoff | PG_PMD_COLOUR) > max_pgoff)
1188                 goto fallback;
1189
1190         /*
1191          * grab_mapping_entry() will make sure we get a 2M empty entry, a DAX
1192          * PMD or a HZP entry.  If it can't (because a 4k page is already in
1193          * the tree, for instance), it will return -EEXIST and we just fall
1194          * back to 4k entries.
1195          */
1196         entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1197         if (IS_ERR(entry))
1198                 goto fallback;
1199
1200         /*
1201          * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1202          * setting up a mapping, so really we're using iomap_begin() as a way
1203          * to look up our filesystem block.
1204          */
1205         pos = (loff_t)pgoff << PAGE_SHIFT;
1206         error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1207         if (error)
1208                 goto unlock_entry;
1209         if (iomap.offset + iomap.length < pos + PMD_SIZE)
1210                 goto finish_iomap;
1211
1212         vmf.pgoff = pgoff;
1213         vmf.flags = flags;
1214         vmf.gfp_mask = mapping_gfp_mask(mapping) | __GFP_IO;
1215
1216         switch (iomap.type) {
1217         case IOMAP_MAPPED:
1218                 result = dax_pmd_insert_mapping(vma, pmd, &vmf, address,
1219                                 &iomap, pos, write, &entry);
1220                 break;
1221         case IOMAP_UNWRITTEN:
1222         case IOMAP_HOLE:
1223                 if (WARN_ON_ONCE(write))
1224                         goto finish_iomap;
1225                 result = dax_pmd_load_hole(vma, pmd, &vmf, address, &iomap,
1226                                 &entry);
1227                 break;
1228         default:
1229                 WARN_ON_ONCE(1);
1230                 break;
1231         }
1232
1233  finish_iomap:
1234         if (ops->iomap_end) {
1235                 if (result == VM_FAULT_FALLBACK) {
1236                         ops->iomap_end(inode, pos, PMD_SIZE, 0, iomap_flags,
1237                                         &iomap);
1238                 } else {
1239                         error = ops->iomap_end(inode, pos, PMD_SIZE, PMD_SIZE,
1240                                         iomap_flags, &iomap);
1241                         if (error)
1242                                 result = VM_FAULT_FALLBACK;
1243                 }
1244         }
1245  unlock_entry:
1246         put_locked_mapping_entry(mapping, pgoff, entry);
1247  fallback:
1248         if (result == VM_FAULT_FALLBACK) {
1249                 split_huge_pmd(vma, pmd, address);
1250                 count_vm_event(THP_FAULT_FALLBACK);
1251         }
1252         return result;
1253 }
1254 EXPORT_SYMBOL_GPL(dax_iomap_pmd_fault);
1255 #endif /* CONFIG_FS_DAX_PMD */
1256 #endif /* CONFIG_FS_IOMAP */
This page took 0.099028 seconds and 4 git commands to generate.