1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/mm/page_alloc.c
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
18 #include <linux/stddef.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmstat.h>
38 #include <linux/fault-inject.h>
39 #include <linux/compaction.h>
40 #include <trace/events/kmem.h>
41 #include <trace/events/oom.h>
42 #include <linux/prefetch.h>
43 #include <linux/mm_inline.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/migrate.h>
46 #include <linux/sched/mm.h>
47 #include <linux/page_owner.h>
48 #include <linux/page_table_check.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/lockdep.h>
52 #include <linux/psi.h>
53 #include <linux/khugepaged.h>
54 #include <linux/delayacct.h>
55 #include <linux/cacheinfo.h>
56 #include <asm/div64.h>
59 #include "page_reporting.h"
61 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
62 typedef int __bitwise fpi_t;
64 /* No special request */
65 #define FPI_NONE ((__force fpi_t)0)
68 * Skip free page reporting notification for the (possibly merged) page.
69 * This does not hinder free page reporting from grabbing the page,
70 * reporting it and marking it "reported" - it only skips notifying
71 * the free page reporting infrastructure about a newly freed page. For
72 * example, used when temporarily pulling a page from a freelist and
73 * putting it back unmodified.
75 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
78 * Place the (possibly merged) page to the tail of the freelist. Will ignore
79 * page shuffling (relevant code - e.g., memory onlining - is expected to
80 * shuffle the whole zone).
82 * Note: No code should rely on this flag for correctness - it's purely
83 * to allow for optimizations when handing back either fresh pages
84 * (memory onlining) or untouched pages (page isolation, free page
87 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
89 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
90 static DEFINE_MUTEX(pcp_batch_high_lock);
91 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
93 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
95 * On SMP, spin_trylock is sufficient protection.
96 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
98 #define pcp_trylock_prepare(flags) do { } while (0)
99 #define pcp_trylock_finish(flag) do { } while (0)
102 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
103 #define pcp_trylock_prepare(flags) local_irq_save(flags)
104 #define pcp_trylock_finish(flags) local_irq_restore(flags)
108 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
109 * a migration causing the wrong PCP to be locked and remote memory being
110 * potentially allocated, pin the task to the CPU for the lookup+lock.
111 * preempt_disable is used on !RT because it is faster than migrate_disable.
112 * migrate_disable is used on RT because otherwise RT spinlock usage is
113 * interfered with and a high priority task cannot preempt the allocator.
115 #ifndef CONFIG_PREEMPT_RT
116 #define pcpu_task_pin() preempt_disable()
117 #define pcpu_task_unpin() preempt_enable()
119 #define pcpu_task_pin() migrate_disable()
120 #define pcpu_task_unpin() migrate_enable()
124 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
125 * Return value should be used with equivalent unlock helper.
127 #define pcpu_spin_lock(type, member, ptr) \
131 _ret = this_cpu_ptr(ptr); \
132 spin_lock(&_ret->member); \
136 #define pcpu_spin_trylock(type, member, ptr) \
140 _ret = this_cpu_ptr(ptr); \
141 if (!spin_trylock(&_ret->member)) { \
148 #define pcpu_spin_unlock(member, ptr) \
150 spin_unlock(&ptr->member); \
154 /* struct per_cpu_pages specific helpers. */
155 #define pcp_spin_lock(ptr) \
156 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
158 #define pcp_spin_trylock(ptr) \
159 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
161 #define pcp_spin_unlock(ptr) \
162 pcpu_spin_unlock(lock, ptr)
164 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
165 DEFINE_PER_CPU(int, numa_node);
166 EXPORT_PER_CPU_SYMBOL(numa_node);
169 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
171 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
173 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
174 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
175 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
176 * defined in <linux/topology.h>.
178 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
179 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
182 static DEFINE_MUTEX(pcpu_drain_mutex);
184 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
185 volatile unsigned long latent_entropy __latent_entropy;
186 EXPORT_SYMBOL(latent_entropy);
190 * Array of node states.
192 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
193 [N_POSSIBLE] = NODE_MASK_ALL,
194 [N_ONLINE] = { { [0] = 1UL } },
196 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
197 #ifdef CONFIG_HIGHMEM
198 [N_HIGH_MEMORY] = { { [0] = 1UL } },
200 [N_MEMORY] = { { [0] = 1UL } },
201 [N_CPU] = { { [0] = 1UL } },
204 EXPORT_SYMBOL(node_states);
206 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
209 * A cached value of the page's pageblock's migratetype, used when the page is
210 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
211 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
212 * Also the migratetype set in the page does not necessarily match the pcplist
213 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
214 * other index - this ensures that it will be put on the correct CMA freelist.
216 static inline int get_pcppage_migratetype(struct page *page)
221 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
223 page->index = migratetype;
226 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
227 unsigned int pageblock_order __read_mostly;
230 static void __free_pages_ok(struct page *page, unsigned int order,
234 * results with 256, 32 in the lowmem_reserve sysctl:
235 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
236 * 1G machine -> (16M dma, 784M normal, 224M high)
237 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
238 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
239 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
241 * TBD: should special case ZONE_DMA32 machines here - in those we normally
242 * don't need any ZONE_NORMAL reservation
244 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
245 #ifdef CONFIG_ZONE_DMA
248 #ifdef CONFIG_ZONE_DMA32
252 #ifdef CONFIG_HIGHMEM
258 char * const zone_names[MAX_NR_ZONES] = {
259 #ifdef CONFIG_ZONE_DMA
262 #ifdef CONFIG_ZONE_DMA32
266 #ifdef CONFIG_HIGHMEM
270 #ifdef CONFIG_ZONE_DEVICE
275 const char * const migratetype_names[MIGRATE_TYPES] = {
283 #ifdef CONFIG_MEMORY_ISOLATION
288 int min_free_kbytes = 1024;
289 int user_min_free_kbytes = -1;
290 static int watermark_boost_factor __read_mostly = 15000;
291 static int watermark_scale_factor = 10;
293 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
295 EXPORT_SYMBOL(movable_zone);
298 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
299 unsigned int nr_online_nodes __read_mostly = 1;
300 EXPORT_SYMBOL(nr_node_ids);
301 EXPORT_SYMBOL(nr_online_nodes);
304 static bool page_contains_unaccepted(struct page *page, unsigned int order);
305 static void accept_page(struct page *page, unsigned int order);
306 static bool try_to_accept_memory(struct zone *zone, unsigned int order);
307 static inline bool has_unaccepted_memory(void);
308 static bool __free_unaccepted(struct page *page);
310 int page_group_by_mobility_disabled __read_mostly;
312 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
314 * During boot we initialize deferred pages on-demand, as needed, but once
315 * page_alloc_init_late() has finished, the deferred pages are all initialized,
316 * and we can permanently disable that path.
318 DEFINE_STATIC_KEY_TRUE(deferred_pages);
320 static inline bool deferred_pages_enabled(void)
322 return static_branch_unlikely(&deferred_pages);
326 * deferred_grow_zone() is __init, but it is called from
327 * get_page_from_freelist() during early boot until deferred_pages permanently
328 * disables this call. This is why we have refdata wrapper to avoid warning,
329 * and to ensure that the function body gets unloaded.
332 _deferred_grow_zone(struct zone *zone, unsigned int order)
334 return deferred_grow_zone(zone, order);
337 static inline bool deferred_pages_enabled(void)
341 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
343 /* Return a pointer to the bitmap storing bits affecting a block of pages */
344 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
347 #ifdef CONFIG_SPARSEMEM
348 return section_to_usemap(__pfn_to_section(pfn));
350 return page_zone(page)->pageblock_flags;
351 #endif /* CONFIG_SPARSEMEM */
354 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
356 #ifdef CONFIG_SPARSEMEM
357 pfn &= (PAGES_PER_SECTION-1);
359 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
360 #endif /* CONFIG_SPARSEMEM */
361 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
365 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
366 * @page: The page within the block of interest
367 * @pfn: The target page frame number
368 * @mask: mask of bits that the caller is interested in
370 * Return: pageblock_bits flags
372 unsigned long get_pfnblock_flags_mask(const struct page *page,
373 unsigned long pfn, unsigned long mask)
375 unsigned long *bitmap;
376 unsigned long bitidx, word_bitidx;
379 bitmap = get_pageblock_bitmap(page, pfn);
380 bitidx = pfn_to_bitidx(page, pfn);
381 word_bitidx = bitidx / BITS_PER_LONG;
382 bitidx &= (BITS_PER_LONG-1);
384 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
385 * a consistent read of the memory array, so that results, even though
386 * racy, are not corrupted.
388 word = READ_ONCE(bitmap[word_bitidx]);
389 return (word >> bitidx) & mask;
392 static __always_inline int get_pfnblock_migratetype(const struct page *page,
395 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
399 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
400 * @page: The page within the block of interest
401 * @flags: The flags to set
402 * @pfn: The target page frame number
403 * @mask: mask of bits that the caller is interested in
405 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
409 unsigned long *bitmap;
410 unsigned long bitidx, word_bitidx;
413 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
414 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
416 bitmap = get_pageblock_bitmap(page, pfn);
417 bitidx = pfn_to_bitidx(page, pfn);
418 word_bitidx = bitidx / BITS_PER_LONG;
419 bitidx &= (BITS_PER_LONG-1);
421 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
426 word = READ_ONCE(bitmap[word_bitidx]);
428 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
431 void set_pageblock_migratetype(struct page *page, int migratetype)
433 if (unlikely(page_group_by_mobility_disabled &&
434 migratetype < MIGRATE_PCPTYPES))
435 migratetype = MIGRATE_UNMOVABLE;
437 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
438 page_to_pfn(page), MIGRATETYPE_MASK);
441 #ifdef CONFIG_DEBUG_VM
442 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
446 unsigned long pfn = page_to_pfn(page);
447 unsigned long sp, start_pfn;
450 seq = zone_span_seqbegin(zone);
451 start_pfn = zone->zone_start_pfn;
452 sp = zone->spanned_pages;
453 ret = !zone_spans_pfn(zone, pfn);
454 } while (zone_span_seqretry(zone, seq));
457 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
458 pfn, zone_to_nid(zone), zone->name,
459 start_pfn, start_pfn + sp);
465 * Temporary debugging check for pages not lying within a given zone.
467 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
469 if (page_outside_zone_boundaries(zone, page))
471 if (zone != page_zone(page))
477 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
483 static void bad_page(struct page *page, const char *reason)
485 static unsigned long resume;
486 static unsigned long nr_shown;
487 static unsigned long nr_unshown;
490 * Allow a burst of 60 reports, then keep quiet for that minute;
491 * or allow a steady drip of one report per second.
493 if (nr_shown == 60) {
494 if (time_before(jiffies, resume)) {
500 "BUG: Bad page state: %lu messages suppressed\n",
507 resume = jiffies + 60 * HZ;
509 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
510 current->comm, page_to_pfn(page));
511 dump_page(page, reason);
516 /* Leave bad fields for debug, except PageBuddy could make trouble */
517 page_mapcount_reset(page); /* remove PageBuddy */
518 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
521 static inline unsigned int order_to_pindex(int migratetype, int order)
523 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
524 if (order > PAGE_ALLOC_COSTLY_ORDER) {
525 VM_BUG_ON(order != pageblock_order);
526 return NR_LOWORDER_PCP_LISTS;
529 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
532 return (MIGRATE_PCPTYPES * order) + migratetype;
535 static inline int pindex_to_order(unsigned int pindex)
537 int order = pindex / MIGRATE_PCPTYPES;
539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
540 if (pindex == NR_LOWORDER_PCP_LISTS)
541 order = pageblock_order;
543 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
549 static inline bool pcp_allowed_order(unsigned int order)
551 if (order <= PAGE_ALLOC_COSTLY_ORDER)
553 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
554 if (order == pageblock_order)
560 static inline void free_the_page(struct page *page, unsigned int order)
562 if (pcp_allowed_order(order)) /* Via pcp? */
563 free_unref_page(page, order);
565 __free_pages_ok(page, order, FPI_NONE);
569 * Higher-order pages are called "compound pages". They are structured thusly:
571 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
573 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
574 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
576 * The first tail page's ->compound_order holds the order of allocation.
577 * This usage means that zero-order pages may not be compound.
580 void prep_compound_page(struct page *page, unsigned int order)
583 int nr_pages = 1 << order;
586 for (i = 1; i < nr_pages; i++)
587 prep_compound_tail(page, i);
589 prep_compound_head(page, order);
592 void destroy_large_folio(struct folio *folio)
594 if (folio_test_hugetlb(folio)) {
595 free_huge_folio(folio);
599 if (folio_test_large_rmappable(folio))
600 folio_undo_large_rmappable(folio);
602 mem_cgroup_uncharge(folio);
603 free_the_page(&folio->page, folio_order(folio));
606 static inline void set_buddy_order(struct page *page, unsigned int order)
608 set_page_private(page, order);
609 __SetPageBuddy(page);
612 #ifdef CONFIG_COMPACTION
613 static inline struct capture_control *task_capc(struct zone *zone)
615 struct capture_control *capc = current->capture_control;
617 return unlikely(capc) &&
618 !(current->flags & PF_KTHREAD) &&
620 capc->cc->zone == zone ? capc : NULL;
624 compaction_capture(struct capture_control *capc, struct page *page,
625 int order, int migratetype)
627 if (!capc || order != capc->cc->order)
630 /* Do not accidentally pollute CMA or isolated regions*/
631 if (is_migrate_cma(migratetype) ||
632 is_migrate_isolate(migratetype))
636 * Do not let lower order allocations pollute a movable pageblock.
637 * This might let an unmovable request use a reclaimable pageblock
638 * and vice-versa but no more than normal fallback logic which can
639 * have trouble finding a high-order free page.
641 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
649 static inline struct capture_control *task_capc(struct zone *zone)
655 compaction_capture(struct capture_control *capc, struct page *page,
656 int order, int migratetype)
660 #endif /* CONFIG_COMPACTION */
662 /* Used for pages not on another list */
663 static inline void add_to_free_list(struct page *page, struct zone *zone,
664 unsigned int order, int migratetype)
666 struct free_area *area = &zone->free_area[order];
668 list_add(&page->buddy_list, &area->free_list[migratetype]);
672 /* Used for pages not on another list */
673 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
674 unsigned int order, int migratetype)
676 struct free_area *area = &zone->free_area[order];
678 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
683 * Used for pages which are on another list. Move the pages to the tail
684 * of the list - so the moved pages won't immediately be considered for
685 * allocation again (e.g., optimization for memory onlining).
687 static inline void move_to_free_list(struct page *page, struct zone *zone,
688 unsigned int order, int migratetype)
690 struct free_area *area = &zone->free_area[order];
692 list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
695 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
698 /* clear reported state and update reported page count */
699 if (page_reported(page))
700 __ClearPageReported(page);
702 list_del(&page->buddy_list);
703 __ClearPageBuddy(page);
704 set_page_private(page, 0);
705 zone->free_area[order].nr_free--;
708 static inline struct page *get_page_from_free_area(struct free_area *area,
711 return list_first_entry_or_null(&area->free_list[migratetype],
712 struct page, buddy_list);
716 * If this is not the largest possible page, check if the buddy
717 * of the next-highest order is free. If it is, it's possible
718 * that pages are being freed that will coalesce soon. In case,
719 * that is happening, add the free page to the tail of the list
720 * so it's less likely to be used soon and more likely to be merged
721 * as a higher order page
724 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
725 struct page *page, unsigned int order)
727 unsigned long higher_page_pfn;
728 struct page *higher_page;
730 if (order >= MAX_ORDER - 1)
733 higher_page_pfn = buddy_pfn & pfn;
734 higher_page = page + (higher_page_pfn - pfn);
736 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
741 * Freeing function for a buddy system allocator.
743 * The concept of a buddy system is to maintain direct-mapped table
744 * (containing bit values) for memory blocks of various "orders".
745 * The bottom level table contains the map for the smallest allocatable
746 * units of memory (here, pages), and each level above it describes
747 * pairs of units from the levels below, hence, "buddies".
748 * At a high level, all that happens here is marking the table entry
749 * at the bottom level available, and propagating the changes upward
750 * as necessary, plus some accounting needed to play nicely with other
751 * parts of the VM system.
752 * At each level, we keep a list of pages, which are heads of continuous
753 * free pages of length of (1 << order) and marked with PageBuddy.
754 * Page's order is recorded in page_private(page) field.
755 * So when we are allocating or freeing one, we can derive the state of the
756 * other. That is, if we allocate a small block, and both were
757 * free, the remainder of the region must be split into blocks.
758 * If a block is freed, and its buddy is also free, then this
759 * triggers coalescing into a block of larger size.
764 static inline void __free_one_page(struct page *page,
766 struct zone *zone, unsigned int order,
767 int migratetype, fpi_t fpi_flags)
769 struct capture_control *capc = task_capc(zone);
770 unsigned long buddy_pfn = 0;
771 unsigned long combined_pfn;
775 VM_BUG_ON(!zone_is_initialized(zone));
776 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
778 VM_BUG_ON(migratetype == -1);
779 if (likely(!is_migrate_isolate(migratetype)))
780 __mod_zone_freepage_state(zone, 1 << order, migratetype);
782 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
783 VM_BUG_ON_PAGE(bad_range(zone, page), page);
785 while (order < MAX_ORDER) {
786 if (compaction_capture(capc, page, order, migratetype)) {
787 __mod_zone_freepage_state(zone, -(1 << order),
792 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
796 if (unlikely(order >= pageblock_order)) {
798 * We want to prevent merge between freepages on pageblock
799 * without fallbacks and normal pageblock. Without this,
800 * pageblock isolation could cause incorrect freepage or CMA
801 * accounting or HIGHATOMIC accounting.
803 int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
805 if (migratetype != buddy_mt
806 && (!migratetype_is_mergeable(migratetype) ||
807 !migratetype_is_mergeable(buddy_mt)))
812 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
813 * merge with it and move up one order.
815 if (page_is_guard(buddy))
816 clear_page_guard(zone, buddy, order, migratetype);
818 del_page_from_free_list(buddy, zone, order);
819 combined_pfn = buddy_pfn & pfn;
820 page = page + (combined_pfn - pfn);
826 set_buddy_order(page, order);
828 if (fpi_flags & FPI_TO_TAIL)
830 else if (is_shuffle_order(order))
831 to_tail = shuffle_pick_tail();
833 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
836 add_to_free_list_tail(page, zone, order, migratetype);
838 add_to_free_list(page, zone, order, migratetype);
840 /* Notify page reporting subsystem of freed page */
841 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
842 page_reporting_notify_free(order);
846 * split_free_page() -- split a free page at split_pfn_offset
847 * @free_page: the original free page
848 * @order: the order of the page
849 * @split_pfn_offset: split offset within the page
851 * Return -ENOENT if the free page is changed, otherwise 0
853 * It is used when the free page crosses two pageblocks with different migratetypes
854 * at split_pfn_offset within the page. The split free page will be put into
855 * separate migratetype lists afterwards. Otherwise, the function achieves
858 int split_free_page(struct page *free_page,
859 unsigned int order, unsigned long split_pfn_offset)
861 struct zone *zone = page_zone(free_page);
862 unsigned long free_page_pfn = page_to_pfn(free_page);
869 if (split_pfn_offset == 0)
872 spin_lock_irqsave(&zone->lock, flags);
874 if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
879 mt = get_pfnblock_migratetype(free_page, free_page_pfn);
880 if (likely(!is_migrate_isolate(mt)))
881 __mod_zone_freepage_state(zone, -(1UL << order), mt);
883 del_page_from_free_list(free_page, zone, order);
884 for (pfn = free_page_pfn;
885 pfn < free_page_pfn + (1UL << order);) {
886 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
888 free_page_order = min_t(unsigned int,
889 pfn ? __ffs(pfn) : order,
890 __fls(split_pfn_offset));
891 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
893 pfn += 1UL << free_page_order;
894 split_pfn_offset -= (1UL << free_page_order);
895 /* we have done the first part, now switch to second part */
896 if (split_pfn_offset == 0)
897 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
900 spin_unlock_irqrestore(&zone->lock, flags);
904 * A bad page could be due to a number of fields. Instead of multiple branches,
905 * try and check multiple fields with one check. The caller must do a detailed
906 * check if necessary.
908 static inline bool page_expected_state(struct page *page,
909 unsigned long check_flags)
911 if (unlikely(atomic_read(&page->_mapcount) != -1))
914 if (unlikely((unsigned long)page->mapping |
915 page_ref_count(page) |
919 #ifdef CONFIG_PAGE_POOL
920 ((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
922 (page->flags & check_flags)))
928 static const char *page_bad_reason(struct page *page, unsigned long flags)
930 const char *bad_reason = NULL;
932 if (unlikely(atomic_read(&page->_mapcount) != -1))
933 bad_reason = "nonzero mapcount";
934 if (unlikely(page->mapping != NULL))
935 bad_reason = "non-NULL mapping";
936 if (unlikely(page_ref_count(page) != 0))
937 bad_reason = "nonzero _refcount";
938 if (unlikely(page->flags & flags)) {
939 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
940 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
942 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
945 if (unlikely(page->memcg_data))
946 bad_reason = "page still charged to cgroup";
948 #ifdef CONFIG_PAGE_POOL
949 if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
950 bad_reason = "page_pool leak";
955 static void free_page_is_bad_report(struct page *page)
958 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
961 static inline bool free_page_is_bad(struct page *page)
963 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
966 /* Something has gone sideways, find it */
967 free_page_is_bad_report(page);
971 static inline bool is_check_pages_enabled(void)
973 return static_branch_unlikely(&check_pages_enabled);
976 static int free_tail_page_prepare(struct page *head_page, struct page *page)
978 struct folio *folio = (struct folio *)head_page;
982 * We rely page->lru.next never has bit 0 set, unless the page
983 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
985 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
987 if (!is_check_pages_enabled()) {
991 switch (page - head_page) {
993 /* the first tail page: these may be in place of ->mapping */
994 if (unlikely(folio_entire_mapcount(folio))) {
995 bad_page(page, "nonzero entire_mapcount");
998 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
999 bad_page(page, "nonzero nr_pages_mapped");
1002 if (unlikely(atomic_read(&folio->_pincount))) {
1003 bad_page(page, "nonzero pincount");
1009 * the second tail page: ->mapping is
1010 * deferred_list.next -- ignore value.
1014 if (page->mapping != TAIL_MAPPING) {
1015 bad_page(page, "corrupted mapping in tail page");
1020 if (unlikely(!PageTail(page))) {
1021 bad_page(page, "PageTail not set");
1024 if (unlikely(compound_head(page) != head_page)) {
1025 bad_page(page, "compound_head not consistent");
1030 page->mapping = NULL;
1031 clear_compound_head(page);
1036 * Skip KASAN memory poisoning when either:
1038 * 1. For generic KASAN: deferred memory initialization has not yet completed.
1039 * Tag-based KASAN modes skip pages freed via deferred memory initialization
1040 * using page tags instead (see below).
1041 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1042 * that error detection is disabled for accesses via the page address.
1044 * Pages will have match-all tags in the following circumstances:
1046 * 1. Pages are being initialized for the first time, including during deferred
1047 * memory init; see the call to page_kasan_tag_reset in __init_single_page.
1048 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1049 * exception of pages unpoisoned by kasan_unpoison_vmalloc.
1050 * 3. The allocation was excluded from being checked due to sampling,
1051 * see the call to kasan_unpoison_pages.
1053 * Poisoning pages during deferred memory init will greatly lengthen the
1054 * process and cause problem in large memory systems as the deferred pages
1055 * initialization is done with interrupt disabled.
1057 * Assuming that there will be no reference to those newly initialized
1058 * pages before they are ever allocated, this should have no effect on
1059 * KASAN memory tracking as the poison will be properly inserted at page
1060 * allocation time. The only corner case is when pages are allocated by
1061 * on-demand allocation and then freed again before the deferred pages
1062 * initialization is done, but this is not likely to happen.
1064 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1066 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1067 return deferred_pages_enabled();
1069 return page_kasan_tag(page) == 0xff;
1072 static void kernel_init_pages(struct page *page, int numpages)
1076 /* s390's use of memset() could override KASAN redzones. */
1077 kasan_disable_current();
1078 for (i = 0; i < numpages; i++)
1079 clear_highpage_kasan_tagged(page + i);
1080 kasan_enable_current();
1083 static __always_inline bool free_pages_prepare(struct page *page,
1084 unsigned int order, fpi_t fpi_flags)
1087 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1088 bool init = want_init_on_free();
1089 bool compound = PageCompound(page);
1091 VM_BUG_ON_PAGE(PageTail(page), page);
1093 trace_mm_page_free(page, order);
1094 kmsan_free_page(page, order);
1096 if (unlikely(PageHWPoison(page)) && !order) {
1098 * Do not let hwpoison pages hit pcplists/buddy
1099 * Untie memcg state and reset page's owner
1101 if (memcg_kmem_online() && PageMemcgKmem(page))
1102 __memcg_kmem_uncharge_page(page, order);
1103 reset_page_owner(page, order);
1104 page_table_check_free(page, order);
1108 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1111 * Check tail pages before head page information is cleared to
1112 * avoid checking PageCompound for order-0 pages.
1114 if (unlikely(order)) {
1118 page[1].flags &= ~PAGE_FLAGS_SECOND;
1119 for (i = 1; i < (1 << order); i++) {
1121 bad += free_tail_page_prepare(page, page + i);
1122 if (is_check_pages_enabled()) {
1123 if (free_page_is_bad(page + i)) {
1128 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1131 if (PageMappingFlags(page))
1132 page->mapping = NULL;
1133 if (memcg_kmem_online() && PageMemcgKmem(page))
1134 __memcg_kmem_uncharge_page(page, order);
1135 if (is_check_pages_enabled()) {
1136 if (free_page_is_bad(page))
1142 page_cpupid_reset_last(page);
1143 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1144 reset_page_owner(page, order);
1145 page_table_check_free(page, order);
1147 if (!PageHighMem(page)) {
1148 debug_check_no_locks_freed(page_address(page),
1149 PAGE_SIZE << order);
1150 debug_check_no_obj_freed(page_address(page),
1151 PAGE_SIZE << order);
1154 kernel_poison_pages(page, 1 << order);
1157 * As memory initialization might be integrated into KASAN,
1158 * KASAN poisoning and memory initialization code must be
1159 * kept together to avoid discrepancies in behavior.
1161 * With hardware tag-based KASAN, memory tags must be set before the
1162 * page becomes unavailable via debug_pagealloc or arch_free_page.
1164 if (!skip_kasan_poison) {
1165 kasan_poison_pages(page, order, init);
1167 /* Memory is already initialized if KASAN did it internally. */
1168 if (kasan_has_integrated_init())
1172 kernel_init_pages(page, 1 << order);
1175 * arch_free_page() can make the page's contents inaccessible. s390
1176 * does this. So nothing which can access the page's contents should
1177 * happen after this.
1179 arch_free_page(page, order);
1181 debug_pagealloc_unmap_pages(page, 1 << order);
1187 * Frees a number of pages from the PCP lists
1188 * Assumes all pages on list are in same zone.
1189 * count is the number of pages to free.
1191 static void free_pcppages_bulk(struct zone *zone, int count,
1192 struct per_cpu_pages *pcp,
1195 unsigned long flags;
1197 bool isolated_pageblocks;
1201 * Ensure proper count is passed which otherwise would stuck in the
1202 * below while (list_empty(list)) loop.
1204 count = min(pcp->count, count);
1206 /* Ensure requested pindex is drained first. */
1207 pindex = pindex - 1;
1209 spin_lock_irqsave(&zone->lock, flags);
1210 isolated_pageblocks = has_isolate_pageblock(zone);
1213 struct list_head *list;
1216 /* Remove pages from lists in a round-robin fashion. */
1218 if (++pindex > NR_PCP_LISTS - 1)
1220 list = &pcp->lists[pindex];
1221 } while (list_empty(list));
1223 order = pindex_to_order(pindex);
1224 nr_pages = 1 << order;
1228 page = list_last_entry(list, struct page, pcp_list);
1229 mt = get_pcppage_migratetype(page);
1231 /* must delete to avoid corrupting pcp list */
1232 list_del(&page->pcp_list);
1234 pcp->count -= nr_pages;
1236 /* MIGRATE_ISOLATE page should not go to pcplists */
1237 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1238 /* Pageblock could have been isolated meanwhile */
1239 if (unlikely(isolated_pageblocks))
1240 mt = get_pageblock_migratetype(page);
1242 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1243 trace_mm_page_pcpu_drain(page, order, mt);
1244 } while (count > 0 && !list_empty(list));
1247 spin_unlock_irqrestore(&zone->lock, flags);
1250 static void free_one_page(struct zone *zone,
1251 struct page *page, unsigned long pfn,
1253 int migratetype, fpi_t fpi_flags)
1255 unsigned long flags;
1257 spin_lock_irqsave(&zone->lock, flags);
1258 if (unlikely(has_isolate_pageblock(zone) ||
1259 is_migrate_isolate(migratetype))) {
1260 migratetype = get_pfnblock_migratetype(page, pfn);
1262 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1263 spin_unlock_irqrestore(&zone->lock, flags);
1266 static void __free_pages_ok(struct page *page, unsigned int order,
1269 unsigned long flags;
1271 unsigned long pfn = page_to_pfn(page);
1272 struct zone *zone = page_zone(page);
1274 if (!free_pages_prepare(page, order, fpi_flags))
1278 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1279 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1280 * This will reduce the lock holding time.
1282 migratetype = get_pfnblock_migratetype(page, pfn);
1284 spin_lock_irqsave(&zone->lock, flags);
1285 if (unlikely(has_isolate_pageblock(zone) ||
1286 is_migrate_isolate(migratetype))) {
1287 migratetype = get_pfnblock_migratetype(page, pfn);
1289 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1290 spin_unlock_irqrestore(&zone->lock, flags);
1292 __count_vm_events(PGFREE, 1 << order);
1295 void __free_pages_core(struct page *page, unsigned int order)
1297 unsigned int nr_pages = 1 << order;
1298 struct page *p = page;
1302 * When initializing the memmap, __init_single_page() sets the refcount
1303 * of all pages to 1 ("allocated"/"not free"). We have to set the
1304 * refcount of all involved pages to 0.
1307 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1309 __ClearPageReserved(p);
1310 set_page_count(p, 0);
1312 __ClearPageReserved(p);
1313 set_page_count(p, 0);
1315 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1317 if (page_contains_unaccepted(page, order)) {
1318 if (order == MAX_ORDER && __free_unaccepted(page))
1321 accept_page(page, order);
1325 * Bypass PCP and place fresh pages right to the tail, primarily
1326 * relevant for memory onlining.
1328 __free_pages_ok(page, order, FPI_TO_TAIL);
1332 * Check that the whole (or subset of) a pageblock given by the interval of
1333 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1334 * with the migration of free compaction scanner.
1336 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1338 * It's possible on some configurations to have a setup like node0 node1 node0
1339 * i.e. it's possible that all pages within a zones range of pages do not
1340 * belong to a single zone. We assume that a border between node0 and node1
1341 * can occur within a single pageblock, but not a node0 node1 node0
1342 * interleaving within a single pageblock. It is therefore sufficient to check
1343 * the first and last page of a pageblock and avoid checking each individual
1344 * page in a pageblock.
1346 * Note: the function may return non-NULL struct page even for a page block
1347 * which contains a memory hole (i.e. there is no physical memory for a subset
1348 * of the pfn range). For example, if the pageblock order is MAX_ORDER, which
1349 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1350 * even though the start pfn is online and valid. This should be safe most of
1351 * the time because struct pages are still initialized via init_unavailable_range()
1352 * and pfn walkers shouldn't touch any physical memory range for which they do
1353 * not recognize any specific metadata in struct pages.
1355 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1356 unsigned long end_pfn, struct zone *zone)
1358 struct page *start_page;
1359 struct page *end_page;
1361 /* end_pfn is one past the range we are checking */
1364 if (!pfn_valid(end_pfn))
1367 start_page = pfn_to_online_page(start_pfn);
1371 if (page_zone(start_page) != zone)
1374 end_page = pfn_to_page(end_pfn);
1376 /* This gives a shorter code than deriving page_zone(end_page) */
1377 if (page_zone_id(start_page) != page_zone_id(end_page))
1384 * The order of subdivision here is critical for the IO subsystem.
1385 * Please do not alter this order without good reasons and regression
1386 * testing. Specifically, as large blocks of memory are subdivided,
1387 * the order in which smaller blocks are delivered depends on the order
1388 * they're subdivided in this function. This is the primary factor
1389 * influencing the order in which pages are delivered to the IO
1390 * subsystem according to empirical testing, and this is also justified
1391 * by considering the behavior of a buddy system containing a single
1392 * large block of memory acted on by a series of small allocations.
1393 * This behavior is a critical factor in sglist merging's success.
1397 static inline void expand(struct zone *zone, struct page *page,
1398 int low, int high, int migratetype)
1400 unsigned long size = 1 << high;
1402 while (high > low) {
1405 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1408 * Mark as guard pages (or page), that will allow to
1409 * merge back to allocator when buddy will be freed.
1410 * Corresponding page table entries will not be touched,
1411 * pages will stay not present in virtual address space
1413 if (set_page_guard(zone, &page[size], high, migratetype))
1416 add_to_free_list(&page[size], zone, high, migratetype);
1417 set_buddy_order(&page[size], high);
1421 static void check_new_page_bad(struct page *page)
1423 if (unlikely(page->flags & __PG_HWPOISON)) {
1424 /* Don't complain about hwpoisoned pages */
1425 page_mapcount_reset(page); /* remove PageBuddy */
1430 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1434 * This page is about to be returned from the page allocator
1436 static int check_new_page(struct page *page)
1438 if (likely(page_expected_state(page,
1439 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1442 check_new_page_bad(page);
1446 static inline bool check_new_pages(struct page *page, unsigned int order)
1448 if (is_check_pages_enabled()) {
1449 for (int i = 0; i < (1 << order); i++) {
1450 struct page *p = page + i;
1452 if (check_new_page(p))
1460 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1462 /* Don't skip if a software KASAN mode is enabled. */
1463 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1464 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1467 /* Skip, if hardware tag-based KASAN is not enabled. */
1468 if (!kasan_hw_tags_enabled())
1472 * With hardware tag-based KASAN enabled, skip if this has been
1473 * requested via __GFP_SKIP_KASAN.
1475 return flags & __GFP_SKIP_KASAN;
1478 static inline bool should_skip_init(gfp_t flags)
1480 /* Don't skip, if hardware tag-based KASAN is not enabled. */
1481 if (!kasan_hw_tags_enabled())
1484 /* For hardware tag-based KASAN, skip if requested. */
1485 return (flags & __GFP_SKIP_ZERO);
1488 inline void post_alloc_hook(struct page *page, unsigned int order,
1491 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1492 !should_skip_init(gfp_flags);
1493 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1496 set_page_private(page, 0);
1497 set_page_refcounted(page);
1499 arch_alloc_page(page, order);
1500 debug_pagealloc_map_pages(page, 1 << order);
1503 * Page unpoisoning must happen before memory initialization.
1504 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1505 * allocations and the page unpoisoning code will complain.
1507 kernel_unpoison_pages(page, 1 << order);
1510 * As memory initialization might be integrated into KASAN,
1511 * KASAN unpoisoning and memory initializion code must be
1512 * kept together to avoid discrepancies in behavior.
1516 * If memory tags should be zeroed
1517 * (which happens only when memory should be initialized as well).
1520 /* Initialize both memory and memory tags. */
1521 for (i = 0; i != 1 << order; ++i)
1522 tag_clear_highpage(page + i);
1524 /* Take note that memory was initialized by the loop above. */
1527 if (!should_skip_kasan_unpoison(gfp_flags) &&
1528 kasan_unpoison_pages(page, order, init)) {
1529 /* Take note that memory was initialized by KASAN. */
1530 if (kasan_has_integrated_init())
1534 * If memory tags have not been set by KASAN, reset the page
1535 * tags to ensure page_address() dereferencing does not fault.
1537 for (i = 0; i != 1 << order; ++i)
1538 page_kasan_tag_reset(page + i);
1540 /* If memory is still not initialized, initialize it now. */
1542 kernel_init_pages(page, 1 << order);
1544 set_page_owner(page, order, gfp_flags);
1545 page_table_check_alloc(page, order);
1548 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1549 unsigned int alloc_flags)
1551 post_alloc_hook(page, order, gfp_flags);
1553 if (order && (gfp_flags & __GFP_COMP))
1554 prep_compound_page(page, order);
1557 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1558 * allocate the page. The expectation is that the caller is taking
1559 * steps that will free more memory. The caller should avoid the page
1560 * being used for !PFMEMALLOC purposes.
1562 if (alloc_flags & ALLOC_NO_WATERMARKS)
1563 set_page_pfmemalloc(page);
1565 clear_page_pfmemalloc(page);
1569 * Go through the free lists for the given migratetype and remove
1570 * the smallest available page from the freelists
1572 static __always_inline
1573 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1576 unsigned int current_order;
1577 struct free_area *area;
1580 /* Find a page of the appropriate size in the preferred list */
1581 for (current_order = order; current_order <= MAX_ORDER; ++current_order) {
1582 area = &(zone->free_area[current_order]);
1583 page = get_page_from_free_area(area, migratetype);
1586 del_page_from_free_list(page, zone, current_order);
1587 expand(zone, page, order, current_order, migratetype);
1588 set_pcppage_migratetype(page, migratetype);
1589 trace_mm_page_alloc_zone_locked(page, order, migratetype,
1590 pcp_allowed_order(order) &&
1591 migratetype < MIGRATE_PCPTYPES);
1600 * This array describes the order lists are fallen back to when
1601 * the free lists for the desirable migrate type are depleted
1603 * The other migratetypes do not have fallbacks.
1605 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1606 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE },
1607 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1608 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE },
1612 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1615 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1618 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1619 unsigned int order) { return NULL; }
1623 * Move the free pages in a range to the freelist tail of the requested type.
1624 * Note that start_page and end_pages are not aligned on a pageblock
1625 * boundary. If alignment is required, use move_freepages_block()
1627 static int move_freepages(struct zone *zone,
1628 unsigned long start_pfn, unsigned long end_pfn,
1629 int migratetype, int *num_movable)
1634 int pages_moved = 0;
1636 for (pfn = start_pfn; pfn <= end_pfn;) {
1637 page = pfn_to_page(pfn);
1638 if (!PageBuddy(page)) {
1640 * We assume that pages that could be isolated for
1641 * migration are movable. But we don't actually try
1642 * isolating, as that would be expensive.
1645 (PageLRU(page) || __PageMovable(page)))
1651 /* Make sure we are not inadvertently changing nodes */
1652 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1653 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1655 order = buddy_order(page);
1656 move_to_free_list(page, zone, order, migratetype);
1658 pages_moved += 1 << order;
1664 int move_freepages_block(struct zone *zone, struct page *page,
1665 int migratetype, int *num_movable)
1667 unsigned long start_pfn, end_pfn, pfn;
1672 pfn = page_to_pfn(page);
1673 start_pfn = pageblock_start_pfn(pfn);
1674 end_pfn = pageblock_end_pfn(pfn) - 1;
1676 /* Do not cross zone boundaries */
1677 if (!zone_spans_pfn(zone, start_pfn))
1679 if (!zone_spans_pfn(zone, end_pfn))
1682 return move_freepages(zone, start_pfn, end_pfn, migratetype,
1686 static void change_pageblock_range(struct page *pageblock_page,
1687 int start_order, int migratetype)
1689 int nr_pageblocks = 1 << (start_order - pageblock_order);
1691 while (nr_pageblocks--) {
1692 set_pageblock_migratetype(pageblock_page, migratetype);
1693 pageblock_page += pageblock_nr_pages;
1698 * When we are falling back to another migratetype during allocation, try to
1699 * steal extra free pages from the same pageblocks to satisfy further
1700 * allocations, instead of polluting multiple pageblocks.
1702 * If we are stealing a relatively large buddy page, it is likely there will
1703 * be more free pages in the pageblock, so try to steal them all. For
1704 * reclaimable and unmovable allocations, we steal regardless of page size,
1705 * as fragmentation caused by those allocations polluting movable pageblocks
1706 * is worse than movable allocations stealing from unmovable and reclaimable
1709 static bool can_steal_fallback(unsigned int order, int start_mt)
1712 * Leaving this order check is intended, although there is
1713 * relaxed order check in next check. The reason is that
1714 * we can actually steal whole pageblock if this condition met,
1715 * but, below check doesn't guarantee it and that is just heuristic
1716 * so could be changed anytime.
1718 if (order >= pageblock_order)
1721 if (order >= pageblock_order / 2 ||
1722 start_mt == MIGRATE_RECLAIMABLE ||
1723 start_mt == MIGRATE_UNMOVABLE ||
1724 page_group_by_mobility_disabled)
1730 static inline bool boost_watermark(struct zone *zone)
1732 unsigned long max_boost;
1734 if (!watermark_boost_factor)
1737 * Don't bother in zones that are unlikely to produce results.
1738 * On small machines, including kdump capture kernels running
1739 * in a small area, boosting the watermark can cause an out of
1740 * memory situation immediately.
1742 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1745 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1746 watermark_boost_factor, 10000);
1749 * high watermark may be uninitialised if fragmentation occurs
1750 * very early in boot so do not boost. We do not fall
1751 * through and boost by pageblock_nr_pages as failing
1752 * allocations that early means that reclaim is not going
1753 * to help and it may even be impossible to reclaim the
1754 * boosted watermark resulting in a hang.
1759 max_boost = max(pageblock_nr_pages, max_boost);
1761 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1768 * This function implements actual steal behaviour. If order is large enough,
1769 * we can steal whole pageblock. If not, we first move freepages in this
1770 * pageblock to our migratetype and determine how many already-allocated pages
1771 * are there in the pageblock with a compatible migratetype. If at least half
1772 * of pages are free or compatible, we can change migratetype of the pageblock
1773 * itself, so pages freed in the future will be put on the correct free list.
1775 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1776 unsigned int alloc_flags, int start_type, bool whole_block)
1778 unsigned int current_order = buddy_order(page);
1779 int free_pages, movable_pages, alike_pages;
1782 old_block_type = get_pageblock_migratetype(page);
1785 * This can happen due to races and we want to prevent broken
1786 * highatomic accounting.
1788 if (is_migrate_highatomic(old_block_type))
1791 /* Take ownership for orders >= pageblock_order */
1792 if (current_order >= pageblock_order) {
1793 change_pageblock_range(page, current_order, start_type);
1798 * Boost watermarks to increase reclaim pressure to reduce the
1799 * likelihood of future fallbacks. Wake kswapd now as the node
1800 * may be balanced overall and kswapd will not wake naturally.
1802 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1803 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1805 /* We are not allowed to try stealing from the whole block */
1809 free_pages = move_freepages_block(zone, page, start_type,
1811 /* moving whole block can fail due to zone boundary conditions */
1816 * Determine how many pages are compatible with our allocation.
1817 * For movable allocation, it's the number of movable pages which
1818 * we just obtained. For other types it's a bit more tricky.
1820 if (start_type == MIGRATE_MOVABLE) {
1821 alike_pages = movable_pages;
1824 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1825 * to MOVABLE pageblock, consider all non-movable pages as
1826 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1827 * vice versa, be conservative since we can't distinguish the
1828 * exact migratetype of non-movable pages.
1830 if (old_block_type == MIGRATE_MOVABLE)
1831 alike_pages = pageblock_nr_pages
1832 - (free_pages + movable_pages);
1837 * If a sufficient number of pages in the block are either free or of
1838 * compatible migratability as our allocation, claim the whole block.
1840 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1841 page_group_by_mobility_disabled)
1842 set_pageblock_migratetype(page, start_type);
1847 move_to_free_list(page, zone, current_order, start_type);
1851 * Check whether there is a suitable fallback freepage with requested order.
1852 * If only_stealable is true, this function returns fallback_mt only if
1853 * we can steal other freepages all together. This would help to reduce
1854 * fragmentation due to mixed migratetype pages in one pageblock.
1856 int find_suitable_fallback(struct free_area *area, unsigned int order,
1857 int migratetype, bool only_stealable, bool *can_steal)
1862 if (area->nr_free == 0)
1866 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1867 fallback_mt = fallbacks[migratetype][i];
1868 if (free_area_empty(area, fallback_mt))
1871 if (can_steal_fallback(order, migratetype))
1874 if (!only_stealable)
1885 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1886 * there are no empty page blocks that contain a page with a suitable order
1888 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone)
1891 unsigned long max_managed, flags;
1894 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1895 * Check is race-prone but harmless.
1897 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
1898 if (zone->nr_reserved_highatomic >= max_managed)
1901 spin_lock_irqsave(&zone->lock, flags);
1903 /* Recheck the nr_reserved_highatomic limit under the lock */
1904 if (zone->nr_reserved_highatomic >= max_managed)
1908 mt = get_pageblock_migratetype(page);
1909 /* Only reserve normal pageblocks (i.e., they can merge with others) */
1910 if (migratetype_is_mergeable(mt)) {
1911 zone->nr_reserved_highatomic += pageblock_nr_pages;
1912 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1913 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
1917 spin_unlock_irqrestore(&zone->lock, flags);
1921 * Used when an allocation is about to fail under memory pressure. This
1922 * potentially hurts the reliability of high-order allocations when under
1923 * intense memory pressure but failed atomic allocations should be easier
1924 * to recover from than an OOM.
1926 * If @force is true, try to unreserve a pageblock even though highatomic
1927 * pageblock is exhausted.
1929 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1932 struct zonelist *zonelist = ac->zonelist;
1933 unsigned long flags;
1940 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
1943 * Preserve at least one pageblock unless memory pressure
1946 if (!force && zone->nr_reserved_highatomic <=
1950 spin_lock_irqsave(&zone->lock, flags);
1951 for (order = 0; order <= MAX_ORDER; order++) {
1952 struct free_area *area = &(zone->free_area[order]);
1954 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
1959 * In page freeing path, migratetype change is racy so
1960 * we can counter several free pages in a pageblock
1961 * in this loop although we changed the pageblock type
1962 * from highatomic to ac->migratetype. So we should
1963 * adjust the count once.
1965 if (is_migrate_highatomic_page(page)) {
1967 * It should never happen but changes to
1968 * locking could inadvertently allow a per-cpu
1969 * drain to add pages to MIGRATE_HIGHATOMIC
1970 * while unreserving so be safe and watch for
1973 zone->nr_reserved_highatomic -= min(
1975 zone->nr_reserved_highatomic);
1979 * Convert to ac->migratetype and avoid the normal
1980 * pageblock stealing heuristics. Minimally, the caller
1981 * is doing the work and needs the pages. More
1982 * importantly, if the block was always converted to
1983 * MIGRATE_UNMOVABLE or another type then the number
1984 * of pageblocks that cannot be completely freed
1987 set_pageblock_migratetype(page, ac->migratetype);
1988 ret = move_freepages_block(zone, page, ac->migratetype,
1991 spin_unlock_irqrestore(&zone->lock, flags);
1995 spin_unlock_irqrestore(&zone->lock, flags);
2002 * Try finding a free buddy page on the fallback list and put it on the free
2003 * list of requested migratetype, possibly along with other pages from the same
2004 * block, depending on fragmentation avoidance heuristics. Returns true if
2005 * fallback was found so that __rmqueue_smallest() can grab it.
2007 * The use of signed ints for order and current_order is a deliberate
2008 * deviation from the rest of this file, to make the for loop
2009 * condition simpler.
2011 static __always_inline bool
2012 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2013 unsigned int alloc_flags)
2015 struct free_area *area;
2017 int min_order = order;
2023 * Do not steal pages from freelists belonging to other pageblocks
2024 * i.e. orders < pageblock_order. If there are no local zones free,
2025 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2027 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2028 min_order = pageblock_order;
2031 * Find the largest available free page in the other list. This roughly
2032 * approximates finding the pageblock with the most free pages, which
2033 * would be too costly to do exactly.
2035 for (current_order = MAX_ORDER; current_order >= min_order;
2037 area = &(zone->free_area[current_order]);
2038 fallback_mt = find_suitable_fallback(area, current_order,
2039 start_migratetype, false, &can_steal);
2040 if (fallback_mt == -1)
2044 * We cannot steal all free pages from the pageblock and the
2045 * requested migratetype is movable. In that case it's better to
2046 * steal and split the smallest available page instead of the
2047 * largest available page, because even if the next movable
2048 * allocation falls back into a different pageblock than this
2049 * one, it won't cause permanent fragmentation.
2051 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2052 && current_order > order)
2061 for (current_order = order; current_order <= MAX_ORDER;
2063 area = &(zone->free_area[current_order]);
2064 fallback_mt = find_suitable_fallback(area, current_order,
2065 start_migratetype, false, &can_steal);
2066 if (fallback_mt != -1)
2071 * This should not happen - we already found a suitable fallback
2072 * when looking for the largest page.
2074 VM_BUG_ON(current_order > MAX_ORDER);
2077 page = get_page_from_free_area(area, fallback_mt);
2079 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2082 trace_mm_page_alloc_extfrag(page, order, current_order,
2083 start_migratetype, fallback_mt);
2090 * Do the hard work of removing an element from the buddy allocator.
2091 * Call me with the zone->lock already held.
2093 static __always_inline struct page *
2094 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2095 unsigned int alloc_flags)
2099 if (IS_ENABLED(CONFIG_CMA)) {
2101 * Balance movable allocations between regular and CMA areas by
2102 * allocating from CMA when over half of the zone's free memory
2103 * is in the CMA area.
2105 if (alloc_flags & ALLOC_CMA &&
2106 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2107 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2108 page = __rmqueue_cma_fallback(zone, order);
2114 page = __rmqueue_smallest(zone, order, migratetype);
2115 if (unlikely(!page)) {
2116 if (alloc_flags & ALLOC_CMA)
2117 page = __rmqueue_cma_fallback(zone, order);
2119 if (!page && __rmqueue_fallback(zone, order, migratetype,
2127 * Obtain a specified number of elements from the buddy allocator, all under
2128 * a single hold of the lock, for efficiency. Add them to the supplied list.
2129 * Returns the number of new pages which were placed at *list.
2131 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2132 unsigned long count, struct list_head *list,
2133 int migratetype, unsigned int alloc_flags)
2135 unsigned long flags;
2138 spin_lock_irqsave(&zone->lock, flags);
2139 for (i = 0; i < count; ++i) {
2140 struct page *page = __rmqueue(zone, order, migratetype,
2142 if (unlikely(page == NULL))
2146 * Split buddy pages returned by expand() are received here in
2147 * physical page order. The page is added to the tail of
2148 * caller's list. From the callers perspective, the linked list
2149 * is ordered by page number under some conditions. This is
2150 * useful for IO devices that can forward direction from the
2151 * head, thus also in the physical page order. This is useful
2152 * for IO devices that can merge IO requests if the physical
2153 * pages are ordered properly.
2155 list_add_tail(&page->pcp_list, list);
2156 if (is_migrate_cma(get_pcppage_migratetype(page)))
2157 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2161 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2162 spin_unlock_irqrestore(&zone->lock, flags);
2168 * Called from the vmstat counter updater to decay the PCP high.
2169 * Return whether there are addition works to do.
2171 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2173 int high_min, to_drain, batch;
2176 high_min = READ_ONCE(pcp->high_min);
2177 batch = READ_ONCE(pcp->batch);
2179 * Decrease pcp->high periodically to try to free possible
2180 * idle PCP pages. And, avoid to free too many pages to
2181 * control latency. This caps pcp->high decrement too.
2183 if (pcp->high > high_min) {
2184 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2185 pcp->high - (pcp->high >> 3), high_min);
2186 if (pcp->high > high_min)
2190 to_drain = pcp->count - pcp->high;
2192 spin_lock(&pcp->lock);
2193 free_pcppages_bulk(zone, to_drain, pcp, 0);
2194 spin_unlock(&pcp->lock);
2203 * Called from the vmstat counter updater to drain pagesets of this
2204 * currently executing processor on remote nodes after they have
2207 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2209 int to_drain, batch;
2211 batch = READ_ONCE(pcp->batch);
2212 to_drain = min(pcp->count, batch);
2214 spin_lock(&pcp->lock);
2215 free_pcppages_bulk(zone, to_drain, pcp, 0);
2216 spin_unlock(&pcp->lock);
2222 * Drain pcplists of the indicated processor and zone.
2224 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2226 struct per_cpu_pages *pcp;
2228 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2230 spin_lock(&pcp->lock);
2231 free_pcppages_bulk(zone, pcp->count, pcp, 0);
2232 spin_unlock(&pcp->lock);
2237 * Drain pcplists of all zones on the indicated processor.
2239 static void drain_pages(unsigned int cpu)
2243 for_each_populated_zone(zone) {
2244 drain_pages_zone(cpu, zone);
2249 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2251 void drain_local_pages(struct zone *zone)
2253 int cpu = smp_processor_id();
2256 drain_pages_zone(cpu, zone);
2262 * The implementation of drain_all_pages(), exposing an extra parameter to
2263 * drain on all cpus.
2265 * drain_all_pages() is optimized to only execute on cpus where pcplists are
2266 * not empty. The check for non-emptiness can however race with a free to
2267 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2268 * that need the guarantee that every CPU has drained can disable the
2269 * optimizing racy check.
2271 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2276 * Allocate in the BSS so we won't require allocation in
2277 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2279 static cpumask_t cpus_with_pcps;
2282 * Do not drain if one is already in progress unless it's specific to
2283 * a zone. Such callers are primarily CMA and memory hotplug and need
2284 * the drain to be complete when the call returns.
2286 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2289 mutex_lock(&pcpu_drain_mutex);
2293 * We don't care about racing with CPU hotplug event
2294 * as offline notification will cause the notified
2295 * cpu to drain that CPU pcps and on_each_cpu_mask
2296 * disables preemption as part of its processing
2298 for_each_online_cpu(cpu) {
2299 struct per_cpu_pages *pcp;
2301 bool has_pcps = false;
2303 if (force_all_cpus) {
2305 * The pcp.count check is racy, some callers need a
2306 * guarantee that no cpu is missed.
2310 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2314 for_each_populated_zone(z) {
2315 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2324 cpumask_set_cpu(cpu, &cpus_with_pcps);
2326 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2329 for_each_cpu(cpu, &cpus_with_pcps) {
2331 drain_pages_zone(cpu, zone);
2336 mutex_unlock(&pcpu_drain_mutex);
2340 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2342 * When zone parameter is non-NULL, spill just the single zone's pages.
2344 void drain_all_pages(struct zone *zone)
2346 __drain_all_pages(zone, false);
2349 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2354 if (!free_pages_prepare(page, order, FPI_NONE))
2357 migratetype = get_pfnblock_migratetype(page, pfn);
2358 set_pcppage_migratetype(page, migratetype);
2362 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2364 int min_nr_free, max_nr_free;
2366 /* Free as much as possible if batch freeing high-order pages. */
2367 if (unlikely(free_high))
2368 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2370 /* Check for PCP disabled or boot pageset */
2371 if (unlikely(high < batch))
2374 /* Leave at least pcp->batch pages on the list */
2375 min_nr_free = batch;
2376 max_nr_free = high - batch;
2379 * Increase the batch number to the number of the consecutive
2380 * freed pages to reduce zone lock contention.
2382 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2387 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2388 int batch, bool free_high)
2390 int high, high_min, high_max;
2392 high_min = READ_ONCE(pcp->high_min);
2393 high_max = READ_ONCE(pcp->high_max);
2394 high = pcp->high = clamp(pcp->high, high_min, high_max);
2396 if (unlikely(!high))
2399 if (unlikely(free_high)) {
2400 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2406 * If reclaim is active, limit the number of pages that can be
2407 * stored on pcp lists
2409 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2410 int free_count = max_t(int, pcp->free_count, batch);
2412 pcp->high = max(high - free_count, high_min);
2413 return min(batch << 2, pcp->high);
2416 if (high_min == high_max)
2419 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2420 int free_count = max_t(int, pcp->free_count, batch);
2422 pcp->high = max(high - free_count, high_min);
2423 high = max(pcp->count, high_min);
2424 } else if (pcp->count >= high) {
2425 int need_high = pcp->free_count + batch;
2427 /* pcp->high should be large enough to hold batch freed pages */
2428 if (pcp->high < need_high)
2429 pcp->high = clamp(need_high, high_min, high_max);
2435 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2436 struct page *page, int migratetype,
2441 bool free_high = false;
2444 * On freeing, reduce the number of pages that are batch allocated.
2445 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2448 pcp->alloc_factor >>= 1;
2449 __count_vm_events(PGFREE, 1 << order);
2450 pindex = order_to_pindex(migratetype, order);
2451 list_add(&page->pcp_list, &pcp->lists[pindex]);
2452 pcp->count += 1 << order;
2454 batch = READ_ONCE(pcp->batch);
2456 * As high-order pages other than THP's stored on PCP can contribute
2457 * to fragmentation, limit the number stored when PCP is heavily
2458 * freeing without allocation. The remainder after bulk freeing
2459 * stops will be drained from vmstat refresh context.
2461 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2462 free_high = (pcp->free_count >= batch &&
2463 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2464 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2465 pcp->count >= READ_ONCE(batch)));
2466 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2467 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2468 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2470 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2471 pcp->free_count += (1 << order);
2472 high = nr_pcp_high(pcp, zone, batch, free_high);
2473 if (pcp->count >= high) {
2474 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2476 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2477 zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2479 clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2486 void free_unref_page(struct page *page, unsigned int order)
2488 unsigned long __maybe_unused UP_flags;
2489 struct per_cpu_pages *pcp;
2491 unsigned long pfn = page_to_pfn(page);
2492 int migratetype, pcpmigratetype;
2494 if (!free_unref_page_prepare(page, pfn, order))
2498 * We only track unmovable, reclaimable and movable on pcp lists.
2499 * Place ISOLATE pages on the isolated list because they are being
2500 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2501 * get those areas back if necessary. Otherwise, we may have to free
2502 * excessively into the page allocator
2504 migratetype = pcpmigratetype = get_pcppage_migratetype(page);
2505 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2506 if (unlikely(is_migrate_isolate(migratetype))) {
2507 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2510 pcpmigratetype = MIGRATE_MOVABLE;
2513 zone = page_zone(page);
2514 pcp_trylock_prepare(UP_flags);
2515 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2517 free_unref_page_commit(zone, pcp, page, pcpmigratetype, order);
2518 pcp_spin_unlock(pcp);
2520 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2522 pcp_trylock_finish(UP_flags);
2526 * Free a list of 0-order pages
2528 void free_unref_page_list(struct list_head *list)
2530 unsigned long __maybe_unused UP_flags;
2531 struct page *page, *next;
2532 struct per_cpu_pages *pcp = NULL;
2533 struct zone *locked_zone = NULL;
2534 int batch_count = 0;
2537 /* Prepare pages for freeing */
2538 list_for_each_entry_safe(page, next, list, lru) {
2539 unsigned long pfn = page_to_pfn(page);
2540 if (!free_unref_page_prepare(page, pfn, 0)) {
2541 list_del(&page->lru);
2546 * Free isolated pages directly to the allocator, see
2547 * comment in free_unref_page.
2549 migratetype = get_pcppage_migratetype(page);
2550 if (unlikely(is_migrate_isolate(migratetype))) {
2551 list_del(&page->lru);
2552 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2557 list_for_each_entry_safe(page, next, list, lru) {
2558 struct zone *zone = page_zone(page);
2560 list_del(&page->lru);
2561 migratetype = get_pcppage_migratetype(page);
2564 * Either different zone requiring a different pcp lock or
2565 * excessive lock hold times when freeing a large list of
2568 if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
2570 pcp_spin_unlock(pcp);
2571 pcp_trylock_finish(UP_flags);
2577 * trylock is necessary as pages may be getting freed
2578 * from IRQ or SoftIRQ context after an IO completion.
2580 pcp_trylock_prepare(UP_flags);
2581 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2582 if (unlikely(!pcp)) {
2583 pcp_trylock_finish(UP_flags);
2584 free_one_page(zone, page, page_to_pfn(page),
2585 0, migratetype, FPI_NONE);
2593 * Non-isolated types over MIGRATE_PCPTYPES get added
2594 * to the MIGRATE_MOVABLE pcp list.
2596 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2597 migratetype = MIGRATE_MOVABLE;
2599 trace_mm_page_free_batched(page);
2600 free_unref_page_commit(zone, pcp, page, migratetype, 0);
2605 pcp_spin_unlock(pcp);
2606 pcp_trylock_finish(UP_flags);
2611 * split_page takes a non-compound higher-order page, and splits it into
2612 * n (1<<order) sub-pages: page[0..n]
2613 * Each sub-page must be freed individually.
2615 * Note: this is probably too low level an operation for use in drivers.
2616 * Please consult with lkml before using this in your driver.
2618 void split_page(struct page *page, unsigned int order)
2622 VM_BUG_ON_PAGE(PageCompound(page), page);
2623 VM_BUG_ON_PAGE(!page_count(page), page);
2625 for (i = 1; i < (1 << order); i++)
2626 set_page_refcounted(page + i);
2627 split_page_owner(page, 1 << order);
2628 split_page_memcg(page, 1 << order);
2630 EXPORT_SYMBOL_GPL(split_page);
2632 int __isolate_free_page(struct page *page, unsigned int order)
2634 struct zone *zone = page_zone(page);
2635 int mt = get_pageblock_migratetype(page);
2637 if (!is_migrate_isolate(mt)) {
2638 unsigned long watermark;
2640 * Obey watermarks as if the page was being allocated. We can
2641 * emulate a high-order watermark check with a raised order-0
2642 * watermark, because we already know our high-order page
2645 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2646 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2649 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2652 del_page_from_free_list(page, zone, order);
2655 * Set the pageblock if the isolated page is at least half of a
2658 if (order >= pageblock_order - 1) {
2659 struct page *endpage = page + (1 << order) - 1;
2660 for (; page < endpage; page += pageblock_nr_pages) {
2661 int mt = get_pageblock_migratetype(page);
2663 * Only change normal pageblocks (i.e., they can merge
2666 if (migratetype_is_mergeable(mt))
2667 set_pageblock_migratetype(page,
2672 return 1UL << order;
2676 * __putback_isolated_page - Return a now-isolated page back where we got it
2677 * @page: Page that was isolated
2678 * @order: Order of the isolated page
2679 * @mt: The page's pageblock's migratetype
2681 * This function is meant to return a page pulled from the free lists via
2682 * __isolate_free_page back to the free lists they were pulled from.
2684 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2686 struct zone *zone = page_zone(page);
2688 /* zone lock should be held when this function is called */
2689 lockdep_assert_held(&zone->lock);
2691 /* Return isolated page to tail of freelist. */
2692 __free_one_page(page, page_to_pfn(page), zone, order, mt,
2693 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2697 * Update NUMA hit/miss statistics
2699 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2703 enum numa_stat_item local_stat = NUMA_LOCAL;
2705 /* skip numa counters update if numa stats is disabled */
2706 if (!static_branch_likely(&vm_numa_stat_key))
2709 if (zone_to_nid(z) != numa_node_id())
2710 local_stat = NUMA_OTHER;
2712 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2713 __count_numa_events(z, NUMA_HIT, nr_account);
2715 __count_numa_events(z, NUMA_MISS, nr_account);
2716 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2718 __count_numa_events(z, local_stat, nr_account);
2722 static __always_inline
2723 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2724 unsigned int order, unsigned int alloc_flags,
2728 unsigned long flags;
2732 spin_lock_irqsave(&zone->lock, flags);
2733 if (alloc_flags & ALLOC_HIGHATOMIC)
2734 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2736 page = __rmqueue(zone, order, migratetype, alloc_flags);
2739 * If the allocation fails, allow OOM handling access
2740 * to HIGHATOMIC reserves as failing now is worse than
2741 * failing a high-order atomic allocation in the
2744 if (!page && (alloc_flags & ALLOC_OOM))
2745 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2748 spin_unlock_irqrestore(&zone->lock, flags);
2752 __mod_zone_freepage_state(zone, -(1 << order),
2753 get_pcppage_migratetype(page));
2754 spin_unlock_irqrestore(&zone->lock, flags);
2755 } while (check_new_pages(page, order));
2757 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2758 zone_statistics(preferred_zone, zone, 1);
2763 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2765 int high, base_batch, batch, max_nr_alloc;
2766 int high_max, high_min;
2768 base_batch = READ_ONCE(pcp->batch);
2769 high_min = READ_ONCE(pcp->high_min);
2770 high_max = READ_ONCE(pcp->high_max);
2771 high = pcp->high = clamp(pcp->high, high_min, high_max);
2773 /* Check for PCP disabled or boot pageset */
2774 if (unlikely(high < base_batch))
2780 batch = (base_batch << pcp->alloc_factor);
2783 * If we had larger pcp->high, we could avoid to allocate from
2786 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2787 high = pcp->high = min(high + batch, high_max);
2790 max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2792 * Double the number of pages allocated each time there is
2793 * subsequent allocation of order-0 pages without any freeing.
2795 if (batch <= max_nr_alloc &&
2796 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2797 pcp->alloc_factor++;
2798 batch = min(batch, max_nr_alloc);
2802 * Scale batch relative to order if batch implies free pages
2803 * can be stored on the PCP. Batch can be 1 for small zones or
2804 * for boot pagesets which should never store free pages as
2805 * the pages may belong to arbitrary zones.
2808 batch = max(batch >> order, 2);
2813 /* Remove page from the per-cpu list, caller must protect the list */
2815 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2817 unsigned int alloc_flags,
2818 struct per_cpu_pages *pcp,
2819 struct list_head *list)
2824 if (list_empty(list)) {
2825 int batch = nr_pcp_alloc(pcp, zone, order);
2828 alloced = rmqueue_bulk(zone, order,
2830 migratetype, alloc_flags);
2832 pcp->count += alloced << order;
2833 if (unlikely(list_empty(list)))
2837 page = list_first_entry(list, struct page, pcp_list);
2838 list_del(&page->pcp_list);
2839 pcp->count -= 1 << order;
2840 } while (check_new_pages(page, order));
2845 /* Lock and remove page from the per-cpu list */
2846 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2847 struct zone *zone, unsigned int order,
2848 int migratetype, unsigned int alloc_flags)
2850 struct per_cpu_pages *pcp;
2851 struct list_head *list;
2853 unsigned long __maybe_unused UP_flags;
2855 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2856 pcp_trylock_prepare(UP_flags);
2857 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2859 pcp_trylock_finish(UP_flags);
2864 * On allocation, reduce the number of pages that are batch freed.
2865 * See nr_pcp_free() where free_factor is increased for subsequent
2868 pcp->free_count >>= 1;
2869 list = &pcp->lists[order_to_pindex(migratetype, order)];
2870 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2871 pcp_spin_unlock(pcp);
2872 pcp_trylock_finish(UP_flags);
2874 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2875 zone_statistics(preferred_zone, zone, 1);
2881 * Allocate a page from the given zone.
2882 * Use pcplists for THP or "cheap" high-order allocations.
2886 * Do not instrument rmqueue() with KMSAN. This function may call
2887 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2888 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2889 * may call rmqueue() again, which will result in a deadlock.
2891 __no_sanitize_memory
2893 struct page *rmqueue(struct zone *preferred_zone,
2894 struct zone *zone, unsigned int order,
2895 gfp_t gfp_flags, unsigned int alloc_flags,
2901 * We most definitely don't want callers attempting to
2902 * allocate greater than order-1 page units with __GFP_NOFAIL.
2904 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2906 if (likely(pcp_allowed_order(order))) {
2907 page = rmqueue_pcplist(preferred_zone, zone, order,
2908 migratetype, alloc_flags);
2913 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2917 /* Separate test+clear to avoid unnecessary atomics */
2918 if ((alloc_flags & ALLOC_KSWAPD) &&
2919 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
2920 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2921 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2924 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2928 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2930 return __should_fail_alloc_page(gfp_mask, order);
2932 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2934 static inline long __zone_watermark_unusable_free(struct zone *z,
2935 unsigned int order, unsigned int alloc_flags)
2937 long unusable_free = (1 << order) - 1;
2940 * If the caller does not have rights to reserves below the min
2941 * watermark then subtract the high-atomic reserves. This will
2942 * over-estimate the size of the atomic reserve but it avoids a search.
2944 if (likely(!(alloc_flags & ALLOC_RESERVES)))
2945 unusable_free += z->nr_reserved_highatomic;
2948 /* If allocation can't use CMA areas don't use free CMA pages */
2949 if (!(alloc_flags & ALLOC_CMA))
2950 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2952 #ifdef CONFIG_UNACCEPTED_MEMORY
2953 unusable_free += zone_page_state(z, NR_UNACCEPTED);
2956 return unusable_free;
2960 * Return true if free base pages are above 'mark'. For high-order checks it
2961 * will return true of the order-0 watermark is reached and there is at least
2962 * one free page of a suitable size. Checking now avoids taking the zone lock
2963 * to check in the allocation paths if no pages are free.
2965 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2966 int highest_zoneidx, unsigned int alloc_flags,
2972 /* free_pages may go negative - that's OK */
2973 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
2975 if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2977 * __GFP_HIGH allows access to 50% of the min reserve as well
2980 if (alloc_flags & ALLOC_MIN_RESERVE) {
2984 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2985 * access more reserves than just __GFP_HIGH. Other
2986 * non-blocking allocations requests such as GFP_NOWAIT
2987 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2988 * access to the min reserve.
2990 if (alloc_flags & ALLOC_NON_BLOCK)
2995 * OOM victims can try even harder than the normal reserve
2996 * users on the grounds that it's definitely going to be in
2997 * the exit path shortly and free memory. Any allocation it
2998 * makes during the free path will be small and short-lived.
3000 if (alloc_flags & ALLOC_OOM)
3005 * Check watermarks for an order-0 allocation request. If these
3006 * are not met, then a high-order request also cannot go ahead
3007 * even if a suitable page happened to be free.
3009 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3012 /* If this is an order-0 request then the watermark is fine */
3016 /* For a high-order request, check at least one suitable page is free */
3017 for (o = order; o <= MAX_ORDER; o++) {
3018 struct free_area *area = &z->free_area[o];
3024 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3025 if (!free_area_empty(area, mt))
3030 if ((alloc_flags & ALLOC_CMA) &&
3031 !free_area_empty(area, MIGRATE_CMA)) {
3035 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3036 !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3043 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3044 int highest_zoneidx, unsigned int alloc_flags)
3046 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3047 zone_page_state(z, NR_FREE_PAGES));
3050 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3051 unsigned long mark, int highest_zoneidx,
3052 unsigned int alloc_flags, gfp_t gfp_mask)
3056 free_pages = zone_page_state(z, NR_FREE_PAGES);
3059 * Fast check for order-0 only. If this fails then the reserves
3060 * need to be calculated.
3066 usable_free = free_pages;
3067 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3069 /* reserved may over estimate high-atomic reserves. */
3070 usable_free -= min(usable_free, reserved);
3071 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3075 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3080 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3081 * when checking the min watermark. The min watermark is the
3082 * point where boosting is ignored so that kswapd is woken up
3083 * when below the low watermark.
3085 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3086 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3087 mark = z->_watermark[WMARK_MIN];
3088 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3089 alloc_flags, free_pages);
3095 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3096 unsigned long mark, int highest_zoneidx)
3098 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3100 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3101 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3103 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3108 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3110 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3112 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3113 node_reclaim_distance;
3115 #else /* CONFIG_NUMA */
3116 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3120 #endif /* CONFIG_NUMA */
3123 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3124 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3125 * premature use of a lower zone may cause lowmem pressure problems that
3126 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3127 * probably too small. It only makes sense to spread allocations to avoid
3128 * fragmentation between the Normal and DMA32 zones.
3130 static inline unsigned int
3131 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3133 unsigned int alloc_flags;
3136 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3139 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3141 #ifdef CONFIG_ZONE_DMA32
3145 if (zone_idx(zone) != ZONE_NORMAL)
3149 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3150 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3151 * on UMA that if Normal is populated then so is DMA32.
3153 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3154 if (nr_online_nodes > 1 && !populated_zone(--zone))
3157 alloc_flags |= ALLOC_NOFRAGMENT;
3158 #endif /* CONFIG_ZONE_DMA32 */
3162 /* Must be called after current_gfp_context() which can change gfp_mask */
3163 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3164 unsigned int alloc_flags)
3167 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3168 alloc_flags |= ALLOC_CMA;
3174 * get_page_from_freelist goes through the zonelist trying to allocate
3177 static struct page *
3178 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3179 const struct alloc_context *ac)
3183 struct pglist_data *last_pgdat = NULL;
3184 bool last_pgdat_dirty_ok = false;
3189 * Scan zonelist, looking for a zone with enough free.
3190 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3192 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3193 z = ac->preferred_zoneref;
3194 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3199 if (cpusets_enabled() &&
3200 (alloc_flags & ALLOC_CPUSET) &&
3201 !__cpuset_zone_allowed(zone, gfp_mask))
3204 * When allocating a page cache page for writing, we
3205 * want to get it from a node that is within its dirty
3206 * limit, such that no single node holds more than its
3207 * proportional share of globally allowed dirty pages.
3208 * The dirty limits take into account the node's
3209 * lowmem reserves and high watermark so that kswapd
3210 * should be able to balance it without having to
3211 * write pages from its LRU list.
3213 * XXX: For now, allow allocations to potentially
3214 * exceed the per-node dirty limit in the slowpath
3215 * (spread_dirty_pages unset) before going into reclaim,
3216 * which is important when on a NUMA setup the allowed
3217 * nodes are together not big enough to reach the
3218 * global limit. The proper fix for these situations
3219 * will require awareness of nodes in the
3220 * dirty-throttling and the flusher threads.
3222 if (ac->spread_dirty_pages) {
3223 if (last_pgdat != zone->zone_pgdat) {
3224 last_pgdat = zone->zone_pgdat;
3225 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3228 if (!last_pgdat_dirty_ok)
3232 if (no_fallback && nr_online_nodes > 1 &&
3233 zone != ac->preferred_zoneref->zone) {
3237 * If moving to a remote node, retry but allow
3238 * fragmenting fallbacks. Locality is more important
3239 * than fragmentation avoidance.
3241 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3242 if (zone_to_nid(zone) != local_nid) {
3243 alloc_flags &= ~ALLOC_NOFRAGMENT;
3249 * Detect whether the number of free pages is below high
3250 * watermark. If so, we will decrease pcp->high and free
3251 * PCP pages in free path to reduce the possibility of
3252 * premature page reclaiming. Detection is done here to
3253 * avoid to do that in hotter free path.
3255 if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3256 goto check_alloc_wmark;
3258 mark = high_wmark_pages(zone);
3259 if (zone_watermark_fast(zone, order, mark,
3260 ac->highest_zoneidx, alloc_flags,
3264 set_bit(ZONE_BELOW_HIGH, &zone->flags);
3267 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3268 if (!zone_watermark_fast(zone, order, mark,
3269 ac->highest_zoneidx, alloc_flags,
3273 if (has_unaccepted_memory()) {
3274 if (try_to_accept_memory(zone, order))
3278 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3280 * Watermark failed for this zone, but see if we can
3281 * grow this zone if it contains deferred pages.
3283 if (deferred_pages_enabled()) {
3284 if (_deferred_grow_zone(zone, order))
3288 /* Checked here to keep the fast path fast */
3289 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3290 if (alloc_flags & ALLOC_NO_WATERMARKS)
3293 if (!node_reclaim_enabled() ||
3294 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3297 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3299 case NODE_RECLAIM_NOSCAN:
3302 case NODE_RECLAIM_FULL:
3303 /* scanned but unreclaimable */
3306 /* did we reclaim enough */
3307 if (zone_watermark_ok(zone, order, mark,
3308 ac->highest_zoneidx, alloc_flags))
3316 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3317 gfp_mask, alloc_flags, ac->migratetype);
3319 prep_new_page(page, order, gfp_mask, alloc_flags);
3322 * If this is a high-order atomic allocation then check
3323 * if the pageblock should be reserved for the future
3325 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3326 reserve_highatomic_pageblock(page, zone);
3330 if (has_unaccepted_memory()) {
3331 if (try_to_accept_memory(zone, order))
3335 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3336 /* Try again if zone has deferred pages */
3337 if (deferred_pages_enabled()) {
3338 if (_deferred_grow_zone(zone, order))
3346 * It's possible on a UMA machine to get through all zones that are
3347 * fragmented. If avoiding fragmentation, reset and try again.
3350 alloc_flags &= ~ALLOC_NOFRAGMENT;
3357 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3359 unsigned int filter = SHOW_MEM_FILTER_NODES;
3362 * This documents exceptions given to allocations in certain
3363 * contexts that are allowed to allocate outside current's set
3366 if (!(gfp_mask & __GFP_NOMEMALLOC))
3367 if (tsk_is_oom_victim(current) ||
3368 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3369 filter &= ~SHOW_MEM_FILTER_NODES;
3370 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3371 filter &= ~SHOW_MEM_FILTER_NODES;
3373 __show_mem(filter, nodemask, gfp_zone(gfp_mask));
3376 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3378 struct va_format vaf;
3380 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3382 if ((gfp_mask & __GFP_NOWARN) ||
3383 !__ratelimit(&nopage_rs) ||
3384 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3387 va_start(args, fmt);
3390 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3391 current->comm, &vaf, gfp_mask, &gfp_mask,
3392 nodemask_pr_args(nodemask));
3395 cpuset_print_current_mems_allowed();
3398 warn_alloc_show_mem(gfp_mask, nodemask);
3401 static inline struct page *
3402 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3403 unsigned int alloc_flags,
3404 const struct alloc_context *ac)
3408 page = get_page_from_freelist(gfp_mask, order,
3409 alloc_flags|ALLOC_CPUSET, ac);
3411 * fallback to ignore cpuset restriction if our nodes
3415 page = get_page_from_freelist(gfp_mask, order,
3421 static inline struct page *
3422 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3423 const struct alloc_context *ac, unsigned long *did_some_progress)
3425 struct oom_control oc = {
3426 .zonelist = ac->zonelist,
3427 .nodemask = ac->nodemask,
3429 .gfp_mask = gfp_mask,
3434 *did_some_progress = 0;
3437 * Acquire the oom lock. If that fails, somebody else is
3438 * making progress for us.
3440 if (!mutex_trylock(&oom_lock)) {
3441 *did_some_progress = 1;
3442 schedule_timeout_uninterruptible(1);
3447 * Go through the zonelist yet one more time, keep very high watermark
3448 * here, this is only to catch a parallel oom killing, we must fail if
3449 * we're still under heavy pressure. But make sure that this reclaim
3450 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3451 * allocation which will never fail due to oom_lock already held.
3453 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3454 ~__GFP_DIRECT_RECLAIM, order,
3455 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3459 /* Coredumps can quickly deplete all memory reserves */
3460 if (current->flags & PF_DUMPCORE)
3462 /* The OOM killer will not help higher order allocs */
3463 if (order > PAGE_ALLOC_COSTLY_ORDER)
3466 * We have already exhausted all our reclaim opportunities without any
3467 * success so it is time to admit defeat. We will skip the OOM killer
3468 * because it is very likely that the caller has a more reasonable
3469 * fallback than shooting a random task.
3471 * The OOM killer may not free memory on a specific node.
3473 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3475 /* The OOM killer does not needlessly kill tasks for lowmem */
3476 if (ac->highest_zoneidx < ZONE_NORMAL)
3478 if (pm_suspended_storage())
3481 * XXX: GFP_NOFS allocations should rather fail than rely on
3482 * other request to make a forward progress.
3483 * We are in an unfortunate situation where out_of_memory cannot
3484 * do much for this context but let's try it to at least get
3485 * access to memory reserved if the current task is killed (see
3486 * out_of_memory). Once filesystems are ready to handle allocation
3487 * failures more gracefully we should just bail out here.
3490 /* Exhausted what can be done so it's blame time */
3491 if (out_of_memory(&oc) ||
3492 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3493 *did_some_progress = 1;
3496 * Help non-failing allocations by giving them access to memory
3499 if (gfp_mask & __GFP_NOFAIL)
3500 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3501 ALLOC_NO_WATERMARKS, ac);
3504 mutex_unlock(&oom_lock);
3509 * Maximum number of compaction retries with a progress before OOM
3510 * killer is consider as the only way to move forward.
3512 #define MAX_COMPACT_RETRIES 16
3514 #ifdef CONFIG_COMPACTION
3515 /* Try memory compaction for high-order allocations before reclaim */
3516 static struct page *
3517 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3518 unsigned int alloc_flags, const struct alloc_context *ac,
3519 enum compact_priority prio, enum compact_result *compact_result)
3521 struct page *page = NULL;
3522 unsigned long pflags;
3523 unsigned int noreclaim_flag;
3528 psi_memstall_enter(&pflags);
3529 delayacct_compact_start();
3530 noreclaim_flag = memalloc_noreclaim_save();
3532 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3535 memalloc_noreclaim_restore(noreclaim_flag);
3536 psi_memstall_leave(&pflags);
3537 delayacct_compact_end();
3539 if (*compact_result == COMPACT_SKIPPED)
3542 * At least in one zone compaction wasn't deferred or skipped, so let's
3543 * count a compaction stall
3545 count_vm_event(COMPACTSTALL);
3547 /* Prep a captured page if available */
3549 prep_new_page(page, order, gfp_mask, alloc_flags);
3551 /* Try get a page from the freelist if available */
3553 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3556 struct zone *zone = page_zone(page);
3558 zone->compact_blockskip_flush = false;
3559 compaction_defer_reset(zone, order, true);
3560 count_vm_event(COMPACTSUCCESS);
3565 * It's bad if compaction run occurs and fails. The most likely reason
3566 * is that pages exist, but not enough to satisfy watermarks.
3568 count_vm_event(COMPACTFAIL);
3576 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3577 enum compact_result compact_result,
3578 enum compact_priority *compact_priority,
3579 int *compaction_retries)
3581 int max_retries = MAX_COMPACT_RETRIES;
3584 int retries = *compaction_retries;
3585 enum compact_priority priority = *compact_priority;
3590 if (fatal_signal_pending(current))
3594 * Compaction was skipped due to a lack of free order-0
3595 * migration targets. Continue if reclaim can help.
3597 if (compact_result == COMPACT_SKIPPED) {
3598 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3603 * Compaction managed to coalesce some page blocks, but the
3604 * allocation failed presumably due to a race. Retry some.
3606 if (compact_result == COMPACT_SUCCESS) {
3608 * !costly requests are much more important than
3609 * __GFP_RETRY_MAYFAIL costly ones because they are de
3610 * facto nofail and invoke OOM killer to move on while
3611 * costly can fail and users are ready to cope with
3612 * that. 1/4 retries is rather arbitrary but we would
3613 * need much more detailed feedback from compaction to
3614 * make a better decision.
3616 if (order > PAGE_ALLOC_COSTLY_ORDER)
3619 if (++(*compaction_retries) <= max_retries) {
3626 * Compaction failed. Retry with increasing priority.
3628 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3629 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3631 if (*compact_priority > min_priority) {
3632 (*compact_priority)--;
3633 *compaction_retries = 0;
3637 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3641 static inline struct page *
3642 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3643 unsigned int alloc_flags, const struct alloc_context *ac,
3644 enum compact_priority prio, enum compact_result *compact_result)
3646 *compact_result = COMPACT_SKIPPED;
3651 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3652 enum compact_result compact_result,
3653 enum compact_priority *compact_priority,
3654 int *compaction_retries)
3659 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3663 * There are setups with compaction disabled which would prefer to loop
3664 * inside the allocator rather than hit the oom killer prematurely.
3665 * Let's give them a good hope and keep retrying while the order-0
3666 * watermarks are OK.
3668 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3669 ac->highest_zoneidx, ac->nodemask) {
3670 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3671 ac->highest_zoneidx, alloc_flags))
3676 #endif /* CONFIG_COMPACTION */
3678 #ifdef CONFIG_LOCKDEP
3679 static struct lockdep_map __fs_reclaim_map =
3680 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3682 static bool __need_reclaim(gfp_t gfp_mask)
3684 /* no reclaim without waiting on it */
3685 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3688 /* this guy won't enter reclaim */
3689 if (current->flags & PF_MEMALLOC)
3692 if (gfp_mask & __GFP_NOLOCKDEP)
3698 void __fs_reclaim_acquire(unsigned long ip)
3700 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3703 void __fs_reclaim_release(unsigned long ip)
3705 lock_release(&__fs_reclaim_map, ip);
3708 void fs_reclaim_acquire(gfp_t gfp_mask)
3710 gfp_mask = current_gfp_context(gfp_mask);
3712 if (__need_reclaim(gfp_mask)) {
3713 if (gfp_mask & __GFP_FS)
3714 __fs_reclaim_acquire(_RET_IP_);
3716 #ifdef CONFIG_MMU_NOTIFIER
3717 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3718 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3723 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3725 void fs_reclaim_release(gfp_t gfp_mask)
3727 gfp_mask = current_gfp_context(gfp_mask);
3729 if (__need_reclaim(gfp_mask)) {
3730 if (gfp_mask & __GFP_FS)
3731 __fs_reclaim_release(_RET_IP_);
3734 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3738 * Zonelists may change due to hotplug during allocation. Detect when zonelists
3739 * have been rebuilt so allocation retries. Reader side does not lock and
3740 * retries the allocation if zonelist changes. Writer side is protected by the
3741 * embedded spin_lock.
3743 static DEFINE_SEQLOCK(zonelist_update_seq);
3745 static unsigned int zonelist_iter_begin(void)
3747 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3748 return read_seqbegin(&zonelist_update_seq);
3753 static unsigned int check_retry_zonelist(unsigned int seq)
3755 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3756 return read_seqretry(&zonelist_update_seq, seq);
3761 /* Perform direct synchronous page reclaim */
3762 static unsigned long
3763 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3764 const struct alloc_context *ac)
3766 unsigned int noreclaim_flag;
3767 unsigned long progress;
3771 /* We now go into synchronous reclaim */
3772 cpuset_memory_pressure_bump();
3773 fs_reclaim_acquire(gfp_mask);
3774 noreclaim_flag = memalloc_noreclaim_save();
3776 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3779 memalloc_noreclaim_restore(noreclaim_flag);
3780 fs_reclaim_release(gfp_mask);
3787 /* The really slow allocator path where we enter direct reclaim */
3788 static inline struct page *
3789 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3790 unsigned int alloc_flags, const struct alloc_context *ac,
3791 unsigned long *did_some_progress)
3793 struct page *page = NULL;
3794 unsigned long pflags;
3795 bool drained = false;
3797 psi_memstall_enter(&pflags);
3798 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3799 if (unlikely(!(*did_some_progress)))
3803 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3806 * If an allocation failed after direct reclaim, it could be because
3807 * pages are pinned on the per-cpu lists or in high alloc reserves.
3808 * Shrink them and try again
3810 if (!page && !drained) {
3811 unreserve_highatomic_pageblock(ac, false);
3812 drain_all_pages(NULL);
3817 psi_memstall_leave(&pflags);
3822 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3823 const struct alloc_context *ac)
3827 pg_data_t *last_pgdat = NULL;
3828 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3830 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3832 if (!managed_zone(zone))
3834 if (last_pgdat != zone->zone_pgdat) {
3835 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3836 last_pgdat = zone->zone_pgdat;
3841 static inline unsigned int
3842 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3844 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3847 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3848 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3849 * to save two branches.
3851 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3852 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3855 * The caller may dip into page reserves a bit more if the caller
3856 * cannot run direct reclaim, or if the caller has realtime scheduling
3857 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3858 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3860 alloc_flags |= (__force int)
3861 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3863 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3865 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3866 * if it can't schedule.
3868 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3869 alloc_flags |= ALLOC_NON_BLOCK;
3872 alloc_flags |= ALLOC_HIGHATOMIC;
3876 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3877 * GFP_ATOMIC) rather than fail, see the comment for
3878 * cpuset_node_allowed().
3880 if (alloc_flags & ALLOC_MIN_RESERVE)
3881 alloc_flags &= ~ALLOC_CPUSET;
3882 } else if (unlikely(rt_task(current)) && in_task())
3883 alloc_flags |= ALLOC_MIN_RESERVE;
3885 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3890 static bool oom_reserves_allowed(struct task_struct *tsk)
3892 if (!tsk_is_oom_victim(tsk))
3896 * !MMU doesn't have oom reaper so give access to memory reserves
3897 * only to the thread with TIF_MEMDIE set
3899 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3906 * Distinguish requests which really need access to full memory
3907 * reserves from oom victims which can live with a portion of it
3909 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3911 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3913 if (gfp_mask & __GFP_MEMALLOC)
3914 return ALLOC_NO_WATERMARKS;
3915 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3916 return ALLOC_NO_WATERMARKS;
3917 if (!in_interrupt()) {
3918 if (current->flags & PF_MEMALLOC)
3919 return ALLOC_NO_WATERMARKS;
3920 else if (oom_reserves_allowed(current))
3927 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3929 return !!__gfp_pfmemalloc_flags(gfp_mask);
3933 * Checks whether it makes sense to retry the reclaim to make a forward progress
3934 * for the given allocation request.
3936 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3937 * without success, or when we couldn't even meet the watermark if we
3938 * reclaimed all remaining pages on the LRU lists.
3940 * Returns true if a retry is viable or false to enter the oom path.
3943 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3944 struct alloc_context *ac, int alloc_flags,
3945 bool did_some_progress, int *no_progress_loops)
3952 * Costly allocations might have made a progress but this doesn't mean
3953 * their order will become available due to high fragmentation so
3954 * always increment the no progress counter for them
3956 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3957 *no_progress_loops = 0;
3959 (*no_progress_loops)++;
3962 * Make sure we converge to OOM if we cannot make any progress
3963 * several times in the row.
3965 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3966 /* Before OOM, exhaust highatomic_reserve */
3967 return unreserve_highatomic_pageblock(ac, true);
3971 * Keep reclaiming pages while there is a chance this will lead
3972 * somewhere. If none of the target zones can satisfy our allocation
3973 * request even if all reclaimable pages are considered then we are
3974 * screwed and have to go OOM.
3976 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3977 ac->highest_zoneidx, ac->nodemask) {
3978 unsigned long available;
3979 unsigned long reclaimable;
3980 unsigned long min_wmark = min_wmark_pages(zone);
3983 available = reclaimable = zone_reclaimable_pages(zone);
3984 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3987 * Would the allocation succeed if we reclaimed all
3988 * reclaimable pages?
3990 wmark = __zone_watermark_ok(zone, order, min_wmark,
3991 ac->highest_zoneidx, alloc_flags, available);
3992 trace_reclaim_retry_zone(z, order, reclaimable,
3993 available, min_wmark, *no_progress_loops, wmark);
4001 * Memory allocation/reclaim might be called from a WQ context and the
4002 * current implementation of the WQ concurrency control doesn't
4003 * recognize that a particular WQ is congested if the worker thread is
4004 * looping without ever sleeping. Therefore we have to do a short sleep
4005 * here rather than calling cond_resched().
4007 if (current->flags & PF_WQ_WORKER)
4008 schedule_timeout_uninterruptible(1);
4015 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4018 * It's possible that cpuset's mems_allowed and the nodemask from
4019 * mempolicy don't intersect. This should be normally dealt with by
4020 * policy_nodemask(), but it's possible to race with cpuset update in
4021 * such a way the check therein was true, and then it became false
4022 * before we got our cpuset_mems_cookie here.
4023 * This assumes that for all allocations, ac->nodemask can come only
4024 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4025 * when it does not intersect with the cpuset restrictions) or the
4026 * caller can deal with a violated nodemask.
4028 if (cpusets_enabled() && ac->nodemask &&
4029 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4030 ac->nodemask = NULL;
4035 * When updating a task's mems_allowed or mempolicy nodemask, it is
4036 * possible to race with parallel threads in such a way that our
4037 * allocation can fail while the mask is being updated. If we are about
4038 * to fail, check if the cpuset changed during allocation and if so,
4041 if (read_mems_allowed_retry(cpuset_mems_cookie))
4047 static inline struct page *
4048 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4049 struct alloc_context *ac)
4051 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4052 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4053 struct page *page = NULL;
4054 unsigned int alloc_flags;
4055 unsigned long did_some_progress;
4056 enum compact_priority compact_priority;
4057 enum compact_result compact_result;
4058 int compaction_retries;
4059 int no_progress_loops;
4060 unsigned int cpuset_mems_cookie;
4061 unsigned int zonelist_iter_cookie;
4065 compaction_retries = 0;
4066 no_progress_loops = 0;
4067 compact_priority = DEF_COMPACT_PRIORITY;
4068 cpuset_mems_cookie = read_mems_allowed_begin();
4069 zonelist_iter_cookie = zonelist_iter_begin();
4072 * The fast path uses conservative alloc_flags to succeed only until
4073 * kswapd needs to be woken up, and to avoid the cost of setting up
4074 * alloc_flags precisely. So we do that now.
4076 alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4079 * We need to recalculate the starting point for the zonelist iterator
4080 * because we might have used different nodemask in the fast path, or
4081 * there was a cpuset modification and we are retrying - otherwise we
4082 * could end up iterating over non-eligible zones endlessly.
4084 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4085 ac->highest_zoneidx, ac->nodemask);
4086 if (!ac->preferred_zoneref->zone)
4090 * Check for insane configurations where the cpuset doesn't contain
4091 * any suitable zone to satisfy the request - e.g. non-movable
4092 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4094 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4095 struct zoneref *z = first_zones_zonelist(ac->zonelist,
4096 ac->highest_zoneidx,
4097 &cpuset_current_mems_allowed);
4102 if (alloc_flags & ALLOC_KSWAPD)
4103 wake_all_kswapds(order, gfp_mask, ac);
4106 * The adjusted alloc_flags might result in immediate success, so try
4109 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4114 * For costly allocations, try direct compaction first, as it's likely
4115 * that we have enough base pages and don't need to reclaim. For non-
4116 * movable high-order allocations, do that as well, as compaction will
4117 * try prevent permanent fragmentation by migrating from blocks of the
4119 * Don't try this for allocations that are allowed to ignore
4120 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4122 if (can_direct_reclaim &&
4124 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4125 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4126 page = __alloc_pages_direct_compact(gfp_mask, order,
4128 INIT_COMPACT_PRIORITY,
4134 * Checks for costly allocations with __GFP_NORETRY, which
4135 * includes some THP page fault allocations
4137 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4139 * If allocating entire pageblock(s) and compaction
4140 * failed because all zones are below low watermarks
4141 * or is prohibited because it recently failed at this
4142 * order, fail immediately unless the allocator has
4143 * requested compaction and reclaim retry.
4146 * - potentially very expensive because zones are far
4147 * below their low watermarks or this is part of very
4148 * bursty high order allocations,
4149 * - not guaranteed to help because isolate_freepages()
4150 * may not iterate over freed pages as part of its
4152 * - unlikely to make entire pageblocks free on its
4155 if (compact_result == COMPACT_SKIPPED ||
4156 compact_result == COMPACT_DEFERRED)
4160 * Looks like reclaim/compaction is worth trying, but
4161 * sync compaction could be very expensive, so keep
4162 * using async compaction.
4164 compact_priority = INIT_COMPACT_PRIORITY;
4169 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4170 if (alloc_flags & ALLOC_KSWAPD)
4171 wake_all_kswapds(order, gfp_mask, ac);
4173 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4175 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4176 (alloc_flags & ALLOC_KSWAPD);
4179 * Reset the nodemask and zonelist iterators if memory policies can be
4180 * ignored. These allocations are high priority and system rather than
4183 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4184 ac->nodemask = NULL;
4185 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4186 ac->highest_zoneidx, ac->nodemask);
4189 /* Attempt with potentially adjusted zonelist and alloc_flags */
4190 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4194 /* Caller is not willing to reclaim, we can't balance anything */
4195 if (!can_direct_reclaim)
4198 /* Avoid recursion of direct reclaim */
4199 if (current->flags & PF_MEMALLOC)
4202 /* Try direct reclaim and then allocating */
4203 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4204 &did_some_progress);
4208 /* Try direct compaction and then allocating */
4209 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4210 compact_priority, &compact_result);
4214 /* Do not loop if specifically requested */
4215 if (gfp_mask & __GFP_NORETRY)
4219 * Do not retry costly high order allocations unless they are
4220 * __GFP_RETRY_MAYFAIL
4222 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4225 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4226 did_some_progress > 0, &no_progress_loops))
4230 * It doesn't make any sense to retry for the compaction if the order-0
4231 * reclaim is not able to make any progress because the current
4232 * implementation of the compaction depends on the sufficient amount
4233 * of free memory (see __compaction_suitable)
4235 if (did_some_progress > 0 &&
4236 should_compact_retry(ac, order, alloc_flags,
4237 compact_result, &compact_priority,
4238 &compaction_retries))
4243 * Deal with possible cpuset update races or zonelist updates to avoid
4244 * a unnecessary OOM kill.
4246 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4247 check_retry_zonelist(zonelist_iter_cookie))
4250 /* Reclaim has failed us, start killing things */
4251 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4255 /* Avoid allocations with no watermarks from looping endlessly */
4256 if (tsk_is_oom_victim(current) &&
4257 (alloc_flags & ALLOC_OOM ||
4258 (gfp_mask & __GFP_NOMEMALLOC)))
4261 /* Retry as long as the OOM killer is making progress */
4262 if (did_some_progress) {
4263 no_progress_loops = 0;
4269 * Deal with possible cpuset update races or zonelist updates to avoid
4270 * a unnecessary OOM kill.
4272 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4273 check_retry_zonelist(zonelist_iter_cookie))
4277 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4280 if (gfp_mask & __GFP_NOFAIL) {
4282 * All existing users of the __GFP_NOFAIL are blockable, so warn
4283 * of any new users that actually require GFP_NOWAIT
4285 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4289 * PF_MEMALLOC request from this context is rather bizarre
4290 * because we cannot reclaim anything and only can loop waiting
4291 * for somebody to do a work for us
4293 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4296 * non failing costly orders are a hard requirement which we
4297 * are not prepared for much so let's warn about these users
4298 * so that we can identify them and convert them to something
4301 WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4304 * Help non-failing allocations by giving some access to memory
4305 * reserves normally used for high priority non-blocking
4306 * allocations but do not use ALLOC_NO_WATERMARKS because this
4307 * could deplete whole memory reserves which would just make
4308 * the situation worse.
4310 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4318 warn_alloc(gfp_mask, ac->nodemask,
4319 "page allocation failure: order:%u", order);
4324 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4325 int preferred_nid, nodemask_t *nodemask,
4326 struct alloc_context *ac, gfp_t *alloc_gfp,
4327 unsigned int *alloc_flags)
4329 ac->highest_zoneidx = gfp_zone(gfp_mask);
4330 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4331 ac->nodemask = nodemask;
4332 ac->migratetype = gfp_migratetype(gfp_mask);
4334 if (cpusets_enabled()) {
4335 *alloc_gfp |= __GFP_HARDWALL;
4337 * When we are in the interrupt context, it is irrelevant
4338 * to the current task context. It means that any node ok.
4340 if (in_task() && !ac->nodemask)
4341 ac->nodemask = &cpuset_current_mems_allowed;
4343 *alloc_flags |= ALLOC_CPUSET;
4346 might_alloc(gfp_mask);
4348 if (should_fail_alloc_page(gfp_mask, order))
4351 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4353 /* Dirty zone balancing only done in the fast path */
4354 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4357 * The preferred zone is used for statistics but crucially it is
4358 * also used as the starting point for the zonelist iterator. It
4359 * may get reset for allocations that ignore memory policies.
4361 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4362 ac->highest_zoneidx, ac->nodemask);
4368 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4369 * @gfp: GFP flags for the allocation
4370 * @preferred_nid: The preferred NUMA node ID to allocate from
4371 * @nodemask: Set of nodes to allocate from, may be NULL
4372 * @nr_pages: The number of pages desired on the list or array
4373 * @page_list: Optional list to store the allocated pages
4374 * @page_array: Optional array to store the pages
4376 * This is a batched version of the page allocator that attempts to
4377 * allocate nr_pages quickly. Pages are added to page_list if page_list
4378 * is not NULL, otherwise it is assumed that the page_array is valid.
4380 * For lists, nr_pages is the number of pages that should be allocated.
4382 * For arrays, only NULL elements are populated with pages and nr_pages
4383 * is the maximum number of pages that will be stored in the array.
4385 * Returns the number of pages on the list or array.
4387 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4388 nodemask_t *nodemask, int nr_pages,
4389 struct list_head *page_list,
4390 struct page **page_array)
4393 unsigned long __maybe_unused UP_flags;
4396 struct per_cpu_pages *pcp;
4397 struct list_head *pcp_list;
4398 struct alloc_context ac;
4400 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4401 int nr_populated = 0, nr_account = 0;
4404 * Skip populated array elements to determine if any pages need
4405 * to be allocated before disabling IRQs.
4407 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4410 /* No pages requested? */
4411 if (unlikely(nr_pages <= 0))
4414 /* Already populated array? */
4415 if (unlikely(page_array && nr_pages - nr_populated == 0))
4418 /* Bulk allocator does not support memcg accounting. */
4419 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4422 /* Use the single page allocator for one page. */
4423 if (nr_pages - nr_populated == 1)
4426 #ifdef CONFIG_PAGE_OWNER
4428 * PAGE_OWNER may recurse into the allocator to allocate space to
4429 * save the stack with pagesets.lock held. Releasing/reacquiring
4430 * removes much of the performance benefit of bulk allocation so
4431 * force the caller to allocate one page at a time as it'll have
4432 * similar performance to added complexity to the bulk allocator.
4434 if (static_branch_unlikely(&page_owner_inited))
4438 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4439 gfp &= gfp_allowed_mask;
4441 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4445 /* Find an allowed local zone that meets the low watermark. */
4446 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4449 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4450 !__cpuset_zone_allowed(zone, gfp)) {
4454 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4455 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4459 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4460 if (zone_watermark_fast(zone, 0, mark,
4461 zonelist_zone_idx(ac.preferred_zoneref),
4462 alloc_flags, gfp)) {
4468 * If there are no allowed local zones that meets the watermarks then
4469 * try to allocate a single page and reclaim if necessary.
4471 if (unlikely(!zone))
4474 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4475 pcp_trylock_prepare(UP_flags);
4476 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4480 /* Attempt the batch allocation */
4481 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4482 while (nr_populated < nr_pages) {
4484 /* Skip existing pages */
4485 if (page_array && page_array[nr_populated]) {
4490 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4492 if (unlikely(!page)) {
4493 /* Try and allocate at least one page */
4495 pcp_spin_unlock(pcp);
4502 prep_new_page(page, 0, gfp, 0);
4504 list_add(&page->lru, page_list);
4506 page_array[nr_populated] = page;
4510 pcp_spin_unlock(pcp);
4511 pcp_trylock_finish(UP_flags);
4513 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4514 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4517 return nr_populated;
4520 pcp_trylock_finish(UP_flags);
4523 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4526 list_add(&page->lru, page_list);
4528 page_array[nr_populated] = page;
4534 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4537 * This is the 'heart' of the zoned buddy allocator.
4539 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4540 nodemask_t *nodemask)
4543 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4544 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4545 struct alloc_context ac = { };
4548 * There are several places where we assume that the order value is sane
4549 * so bail out early if the request is out of bound.
4551 if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp))
4554 gfp &= gfp_allowed_mask;
4556 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4557 * resp. GFP_NOIO which has to be inherited for all allocation requests
4558 * from a particular context which has been marked by
4559 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4560 * movable zones are not used during allocation.
4562 gfp = current_gfp_context(gfp);
4564 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4565 &alloc_gfp, &alloc_flags))
4569 * Forbid the first pass from falling back to types that fragment
4570 * memory until all local zones are considered.
4572 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4574 /* First allocation attempt */
4575 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4580 ac.spread_dirty_pages = false;
4583 * Restore the original nodemask if it was potentially replaced with
4584 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4586 ac.nodemask = nodemask;
4588 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4591 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4592 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4593 __free_pages(page, order);
4597 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4598 kmsan_alloc_page(page, order, alloc_gfp);
4602 EXPORT_SYMBOL(__alloc_pages);
4604 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4605 nodemask_t *nodemask)
4607 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4608 preferred_nid, nodemask);
4609 return page_rmappable_folio(page);
4611 EXPORT_SYMBOL(__folio_alloc);
4614 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4615 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4616 * you need to access high mem.
4618 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4622 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4625 return (unsigned long) page_address(page);
4627 EXPORT_SYMBOL(__get_free_pages);
4629 unsigned long get_zeroed_page(gfp_t gfp_mask)
4631 return __get_free_page(gfp_mask | __GFP_ZERO);
4633 EXPORT_SYMBOL(get_zeroed_page);
4636 * __free_pages - Free pages allocated with alloc_pages().
4637 * @page: The page pointer returned from alloc_pages().
4638 * @order: The order of the allocation.
4640 * This function can free multi-page allocations that are not compound
4641 * pages. It does not check that the @order passed in matches that of
4642 * the allocation, so it is easy to leak memory. Freeing more memory
4643 * than was allocated will probably emit a warning.
4645 * If the last reference to this page is speculative, it will be released
4646 * by put_page() which only frees the first page of a non-compound
4647 * allocation. To prevent the remaining pages from being leaked, we free
4648 * the subsequent pages here. If you want to use the page's reference
4649 * count to decide when to free the allocation, you should allocate a
4650 * compound page, and use put_page() instead of __free_pages().
4652 * Context: May be called in interrupt context or while holding a normal
4653 * spinlock, but not in NMI context or while holding a raw spinlock.
4655 void __free_pages(struct page *page, unsigned int order)
4657 /* get PageHead before we drop reference */
4658 int head = PageHead(page);
4660 if (put_page_testzero(page))
4661 free_the_page(page, order);
4664 free_the_page(page + (1 << order), order);
4666 EXPORT_SYMBOL(__free_pages);
4668 void free_pages(unsigned long addr, unsigned int order)
4671 VM_BUG_ON(!virt_addr_valid((void *)addr));
4672 __free_pages(virt_to_page((void *)addr), order);
4676 EXPORT_SYMBOL(free_pages);
4680 * An arbitrary-length arbitrary-offset area of memory which resides
4681 * within a 0 or higher order page. Multiple fragments within that page
4682 * are individually refcounted, in the page's reference counter.
4684 * The page_frag functions below provide a simple allocation framework for
4685 * page fragments. This is used by the network stack and network device
4686 * drivers to provide a backing region of memory for use as either an
4687 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4689 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4692 struct page *page = NULL;
4693 gfp_t gfp = gfp_mask;
4695 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4696 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4698 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4699 PAGE_FRAG_CACHE_MAX_ORDER);
4700 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4702 if (unlikely(!page))
4703 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4705 nc->va = page ? page_address(page) : NULL;
4710 void __page_frag_cache_drain(struct page *page, unsigned int count)
4712 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4714 if (page_ref_sub_and_test(page, count))
4715 free_the_page(page, compound_order(page));
4717 EXPORT_SYMBOL(__page_frag_cache_drain);
4719 void *page_frag_alloc_align(struct page_frag_cache *nc,
4720 unsigned int fragsz, gfp_t gfp_mask,
4721 unsigned int align_mask)
4723 unsigned int size = PAGE_SIZE;
4727 if (unlikely(!nc->va)) {
4729 page = __page_frag_cache_refill(nc, gfp_mask);
4733 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4734 /* if size can vary use size else just use PAGE_SIZE */
4737 /* Even if we own the page, we do not use atomic_set().
4738 * This would break get_page_unless_zero() users.
4740 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4742 /* reset page count bias and offset to start of new frag */
4743 nc->pfmemalloc = page_is_pfmemalloc(page);
4744 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4748 offset = nc->offset - fragsz;
4749 if (unlikely(offset < 0)) {
4750 page = virt_to_page(nc->va);
4752 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4755 if (unlikely(nc->pfmemalloc)) {
4756 free_the_page(page, compound_order(page));
4760 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4761 /* if size can vary use size else just use PAGE_SIZE */
4764 /* OK, page count is 0, we can safely set it */
4765 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4767 /* reset page count bias and offset to start of new frag */
4768 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4769 offset = size - fragsz;
4770 if (unlikely(offset < 0)) {
4772 * The caller is trying to allocate a fragment
4773 * with fragsz > PAGE_SIZE but the cache isn't big
4774 * enough to satisfy the request, this may
4775 * happen in low memory conditions.
4776 * We don't release the cache page because
4777 * it could make memory pressure worse
4778 * so we simply return NULL here.
4785 offset &= align_mask;
4786 nc->offset = offset;
4788 return nc->va + offset;
4790 EXPORT_SYMBOL(page_frag_alloc_align);
4793 * Frees a page fragment allocated out of either a compound or order 0 page.
4795 void page_frag_free(void *addr)
4797 struct page *page = virt_to_head_page(addr);
4799 if (unlikely(put_page_testzero(page)))
4800 free_the_page(page, compound_order(page));
4802 EXPORT_SYMBOL(page_frag_free);
4804 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4808 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4809 struct page *page = virt_to_page((void *)addr);
4810 struct page *last = page + nr;
4812 split_page_owner(page, 1 << order);
4813 split_page_memcg(page, 1 << order);
4814 while (page < --last)
4815 set_page_refcounted(last);
4817 last = page + (1UL << order);
4818 for (page += nr; page < last; page++)
4819 __free_pages_ok(page, 0, FPI_TO_TAIL);
4821 return (void *)addr;
4825 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4826 * @size: the number of bytes to allocate
4827 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4829 * This function is similar to alloc_pages(), except that it allocates the
4830 * minimum number of pages to satisfy the request. alloc_pages() can only
4831 * allocate memory in power-of-two pages.
4833 * This function is also limited by MAX_ORDER.
4835 * Memory allocated by this function must be released by free_pages_exact().
4837 * Return: pointer to the allocated area or %NULL in case of error.
4839 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4841 unsigned int order = get_order(size);
4844 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4845 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4847 addr = __get_free_pages(gfp_mask, order);
4848 return make_alloc_exact(addr, order, size);
4850 EXPORT_SYMBOL(alloc_pages_exact);
4853 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4855 * @nid: the preferred node ID where memory should be allocated
4856 * @size: the number of bytes to allocate
4857 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4859 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4862 * Return: pointer to the allocated area or %NULL in case of error.
4864 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4866 unsigned int order = get_order(size);
4869 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4870 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4872 p = alloc_pages_node(nid, gfp_mask, order);
4875 return make_alloc_exact((unsigned long)page_address(p), order, size);
4879 * free_pages_exact - release memory allocated via alloc_pages_exact()
4880 * @virt: the value returned by alloc_pages_exact.
4881 * @size: size of allocation, same value as passed to alloc_pages_exact().
4883 * Release the memory allocated by a previous call to alloc_pages_exact.
4885 void free_pages_exact(void *virt, size_t size)
4887 unsigned long addr = (unsigned long)virt;
4888 unsigned long end = addr + PAGE_ALIGN(size);
4890 while (addr < end) {
4895 EXPORT_SYMBOL(free_pages_exact);
4898 * nr_free_zone_pages - count number of pages beyond high watermark
4899 * @offset: The zone index of the highest zone
4901 * nr_free_zone_pages() counts the number of pages which are beyond the
4902 * high watermark within all zones at or below a given zone index. For each
4903 * zone, the number of pages is calculated as:
4905 * nr_free_zone_pages = managed_pages - high_pages
4907 * Return: number of pages beyond high watermark.
4909 static unsigned long nr_free_zone_pages(int offset)
4914 /* Just pick one node, since fallback list is circular */
4915 unsigned long sum = 0;
4917 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4919 for_each_zone_zonelist(zone, z, zonelist, offset) {
4920 unsigned long size = zone_managed_pages(zone);
4921 unsigned long high = high_wmark_pages(zone);
4930 * nr_free_buffer_pages - count number of pages beyond high watermark
4932 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4933 * watermark within ZONE_DMA and ZONE_NORMAL.
4935 * Return: number of pages beyond high watermark within ZONE_DMA and
4938 unsigned long nr_free_buffer_pages(void)
4940 return nr_free_zone_pages(gfp_zone(GFP_USER));
4942 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4944 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4946 zoneref->zone = zone;
4947 zoneref->zone_idx = zone_idx(zone);
4951 * Builds allocation fallback zone lists.
4953 * Add all populated zones of a node to the zonelist.
4955 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4958 enum zone_type zone_type = MAX_NR_ZONES;
4963 zone = pgdat->node_zones + zone_type;
4964 if (populated_zone(zone)) {
4965 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4966 check_highest_zone(zone_type);
4968 } while (zone_type);
4975 static int __parse_numa_zonelist_order(char *s)
4978 * We used to support different zonelists modes but they turned
4979 * out to be just not useful. Let's keep the warning in place
4980 * if somebody still use the cmd line parameter so that we do
4981 * not fail it silently
4983 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4984 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
4990 static char numa_zonelist_order[] = "Node";
4991 #define NUMA_ZONELIST_ORDER_LEN 16
4993 * sysctl handler for numa_zonelist_order
4995 static int numa_zonelist_order_handler(struct ctl_table *table, int write,
4996 void *buffer, size_t *length, loff_t *ppos)
4999 return __parse_numa_zonelist_order(buffer);
5000 return proc_dostring(table, write, buffer, length, ppos);
5003 static int node_load[MAX_NUMNODES];
5006 * find_next_best_node - find the next node that should appear in a given node's fallback list
5007 * @node: node whose fallback list we're appending
5008 * @used_node_mask: nodemask_t of already used nodes
5010 * We use a number of factors to determine which is the next node that should
5011 * appear on a given node's fallback list. The node should not have appeared
5012 * already in @node's fallback list, and it should be the next closest node
5013 * according to the distance array (which contains arbitrary distance values
5014 * from each node to each node in the system), and should also prefer nodes
5015 * with no CPUs, since presumably they'll have very little allocation pressure
5016 * on them otherwise.
5018 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5020 int find_next_best_node(int node, nodemask_t *used_node_mask)
5023 int min_val = INT_MAX;
5024 int best_node = NUMA_NO_NODE;
5027 * Use the local node if we haven't already, but for memoryless local
5028 * node, we should skip it and fall back to other nodes.
5030 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5031 node_set(node, *used_node_mask);
5035 for_each_node_state(n, N_MEMORY) {
5037 /* Don't want a node to appear more than once */
5038 if (node_isset(n, *used_node_mask))
5041 /* Use the distance array to find the distance */
5042 val = node_distance(node, n);
5044 /* Penalize nodes under us ("prefer the next node") */
5047 /* Give preference to headless and unused nodes */
5048 if (!cpumask_empty(cpumask_of_node(n)))
5049 val += PENALTY_FOR_NODE_WITH_CPUS;
5051 /* Slight preference for less loaded node */
5052 val *= MAX_NUMNODES;
5053 val += node_load[n];
5055 if (val < min_val) {
5062 node_set(best_node, *used_node_mask);
5069 * Build zonelists ordered by node and zones within node.
5070 * This results in maximum locality--normal zone overflows into local
5071 * DMA zone, if any--but risks exhausting DMA zone.
5073 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5076 struct zoneref *zonerefs;
5079 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5081 for (i = 0; i < nr_nodes; i++) {
5084 pg_data_t *node = NODE_DATA(node_order[i]);
5086 nr_zones = build_zonerefs_node(node, zonerefs);
5087 zonerefs += nr_zones;
5089 zonerefs->zone = NULL;
5090 zonerefs->zone_idx = 0;
5094 * Build gfp_thisnode zonelists
5096 static void build_thisnode_zonelists(pg_data_t *pgdat)
5098 struct zoneref *zonerefs;
5101 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5102 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5103 zonerefs += nr_zones;
5104 zonerefs->zone = NULL;
5105 zonerefs->zone_idx = 0;
5109 * Build zonelists ordered by zone and nodes within zones.
5110 * This results in conserving DMA zone[s] until all Normal memory is
5111 * exhausted, but results in overflowing to remote node while memory
5112 * may still exist in local DMA zone.
5115 static void build_zonelists(pg_data_t *pgdat)
5117 static int node_order[MAX_NUMNODES];
5118 int node, nr_nodes = 0;
5119 nodemask_t used_mask = NODE_MASK_NONE;
5120 int local_node, prev_node;
5122 /* NUMA-aware ordering of nodes */
5123 local_node = pgdat->node_id;
5124 prev_node = local_node;
5126 memset(node_order, 0, sizeof(node_order));
5127 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5129 * We don't want to pressure a particular node.
5130 * So adding penalty to the first node in same
5131 * distance group to make it round-robin.
5133 if (node_distance(local_node, node) !=
5134 node_distance(local_node, prev_node))
5135 node_load[node] += 1;
5137 node_order[nr_nodes++] = node;
5141 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5142 build_thisnode_zonelists(pgdat);
5143 pr_info("Fallback order for Node %d: ", local_node);
5144 for (node = 0; node < nr_nodes; node++)
5145 pr_cont("%d ", node_order[node]);
5149 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5151 * Return node id of node used for "local" allocations.
5152 * I.e., first node id of first zone in arg node's generic zonelist.
5153 * Used for initializing percpu 'numa_mem', which is used primarily
5154 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5156 int local_memory_node(int node)
5160 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5161 gfp_zone(GFP_KERNEL),
5163 return zone_to_nid(z->zone);
5167 static void setup_min_unmapped_ratio(void);
5168 static void setup_min_slab_ratio(void);
5169 #else /* CONFIG_NUMA */
5171 static void build_zonelists(pg_data_t *pgdat)
5173 int node, local_node;
5174 struct zoneref *zonerefs;
5177 local_node = pgdat->node_id;
5179 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5180 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5181 zonerefs += nr_zones;
5184 * Now we build the zonelist so that it contains the zones
5185 * of all the other nodes.
5186 * We don't want to pressure a particular node, so when
5187 * building the zones for node N, we make sure that the
5188 * zones coming right after the local ones are those from
5189 * node N+1 (modulo N)
5191 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5192 if (!node_online(node))
5194 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5195 zonerefs += nr_zones;
5197 for (node = 0; node < local_node; node++) {
5198 if (!node_online(node))
5200 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5201 zonerefs += nr_zones;
5204 zonerefs->zone = NULL;
5205 zonerefs->zone_idx = 0;
5208 #endif /* CONFIG_NUMA */
5211 * Boot pageset table. One per cpu which is going to be used for all
5212 * zones and all nodes. The parameters will be set in such a way
5213 * that an item put on a list will immediately be handed over to
5214 * the buddy list. This is safe since pageset manipulation is done
5215 * with interrupts disabled.
5217 * The boot_pagesets must be kept even after bootup is complete for
5218 * unused processors and/or zones. They do play a role for bootstrapping
5219 * hotplugged processors.
5221 * zoneinfo_show() and maybe other functions do
5222 * not check if the processor is online before following the pageset pointer.
5223 * Other parts of the kernel may not check if the zone is available.
5225 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5226 /* These effectively disable the pcplists in the boot pageset completely */
5227 #define BOOT_PAGESET_HIGH 0
5228 #define BOOT_PAGESET_BATCH 1
5229 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5230 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5232 static void __build_all_zonelists(void *data)
5235 int __maybe_unused cpu;
5236 pg_data_t *self = data;
5237 unsigned long flags;
5240 * The zonelist_update_seq must be acquired with irqsave because the
5241 * reader can be invoked from IRQ with GFP_ATOMIC.
5243 write_seqlock_irqsave(&zonelist_update_seq, flags);
5245 * Also disable synchronous printk() to prevent any printk() from
5246 * trying to hold port->lock, for
5247 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5248 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5250 printk_deferred_enter();
5253 memset(node_load, 0, sizeof(node_load));
5257 * This node is hotadded and no memory is yet present. So just
5258 * building zonelists is fine - no need to touch other nodes.
5260 if (self && !node_online(self->node_id)) {
5261 build_zonelists(self);
5264 * All possible nodes have pgdat preallocated
5267 for_each_node(nid) {
5268 pg_data_t *pgdat = NODE_DATA(nid);
5270 build_zonelists(pgdat);
5273 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5275 * We now know the "local memory node" for each node--
5276 * i.e., the node of the first zone in the generic zonelist.
5277 * Set up numa_mem percpu variable for on-line cpus. During
5278 * boot, only the boot cpu should be on-line; we'll init the
5279 * secondary cpus' numa_mem as they come on-line. During
5280 * node/memory hotplug, we'll fixup all on-line cpus.
5282 for_each_online_cpu(cpu)
5283 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5287 printk_deferred_exit();
5288 write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5291 static noinline void __init
5292 build_all_zonelists_init(void)
5296 __build_all_zonelists(NULL);
5299 * Initialize the boot_pagesets that are going to be used
5300 * for bootstrapping processors. The real pagesets for
5301 * each zone will be allocated later when the per cpu
5302 * allocator is available.
5304 * boot_pagesets are used also for bootstrapping offline
5305 * cpus if the system is already booted because the pagesets
5306 * are needed to initialize allocators on a specific cpu too.
5307 * F.e. the percpu allocator needs the page allocator which
5308 * needs the percpu allocator in order to allocate its pagesets
5309 * (a chicken-egg dilemma).
5311 for_each_possible_cpu(cpu)
5312 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5314 mminit_verify_zonelist();
5315 cpuset_init_current_mems_allowed();
5319 * unless system_state == SYSTEM_BOOTING.
5321 * __ref due to call of __init annotated helper build_all_zonelists_init
5322 * [protected by SYSTEM_BOOTING].
5324 void __ref build_all_zonelists(pg_data_t *pgdat)
5326 unsigned long vm_total_pages;
5328 if (system_state == SYSTEM_BOOTING) {
5329 build_all_zonelists_init();
5331 __build_all_zonelists(pgdat);
5332 /* cpuset refresh routine should be here */
5334 /* Get the number of free pages beyond high watermark in all zones. */
5335 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5337 * Disable grouping by mobility if the number of pages in the
5338 * system is too low to allow the mechanism to work. It would be
5339 * more accurate, but expensive to check per-zone. This check is
5340 * made on memory-hotadd so a system can start with mobility
5341 * disabled and enable it later
5343 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5344 page_group_by_mobility_disabled = 1;
5346 page_group_by_mobility_disabled = 0;
5348 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5350 page_group_by_mobility_disabled ? "off" : "on",
5353 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5357 static int zone_batchsize(struct zone *zone)
5363 * The number of pages to batch allocate is either ~0.1%
5364 * of the zone or 1MB, whichever is smaller. The batch
5365 * size is striking a balance between allocation latency
5366 * and zone lock contention.
5368 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5369 batch /= 4; /* We effectively *= 4 below */
5374 * Clamp the batch to a 2^n - 1 value. Having a power
5375 * of 2 value was found to be more likely to have
5376 * suboptimal cache aliasing properties in some cases.
5378 * For example if 2 tasks are alternately allocating
5379 * batches of pages, one task can end up with a lot
5380 * of pages of one half of the possible page colors
5381 * and the other with pages of the other colors.
5383 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5388 /* The deferral and batching of frees should be suppressed under NOMMU
5391 * The problem is that NOMMU needs to be able to allocate large chunks
5392 * of contiguous memory as there's no hardware page translation to
5393 * assemble apparent contiguous memory from discontiguous pages.
5395 * Queueing large contiguous runs of pages for batching, however,
5396 * causes the pages to actually be freed in smaller chunks. As there
5397 * can be a significant delay between the individual batches being
5398 * recycled, this leads to the once large chunks of space being
5399 * fragmented and becoming unavailable for high-order allocations.
5405 static int percpu_pagelist_high_fraction;
5406 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5412 unsigned long total_pages;
5414 if (!high_fraction) {
5416 * By default, the high value of the pcp is based on the zone
5417 * low watermark so that if they are full then background
5418 * reclaim will not be started prematurely.
5420 total_pages = low_wmark_pages(zone);
5423 * If percpu_pagelist_high_fraction is configured, the high
5424 * value is based on a fraction of the managed pages in the
5427 total_pages = zone_managed_pages(zone) / high_fraction;
5431 * Split the high value across all online CPUs local to the zone. Note
5432 * that early in boot that CPUs may not be online yet and that during
5433 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5434 * onlined. For memory nodes that have no CPUs, split the high value
5435 * across all online CPUs to mitigate the risk that reclaim is triggered
5436 * prematurely due to pages stored on pcp lists.
5438 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5440 nr_split_cpus = num_online_cpus();
5441 high = total_pages / nr_split_cpus;
5444 * Ensure high is at least batch*4. The multiple is based on the
5445 * historical relationship between high and batch.
5447 high = max(high, batch << 2);
5456 * pcp->high and pcp->batch values are related and generally batch is lower
5457 * than high. They are also related to pcp->count such that count is lower
5458 * than high, and as soon as it reaches high, the pcplist is flushed.
5460 * However, guaranteeing these relations at all times would require e.g. write
5461 * barriers here but also careful usage of read barriers at the read side, and
5462 * thus be prone to error and bad for performance. Thus the update only prevents
5463 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5464 * should ensure they can cope with those fields changing asynchronously, and
5465 * fully trust only the pcp->count field on the local CPU with interrupts
5468 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5469 * outside of boot time (or some other assurance that no concurrent updaters
5472 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5473 unsigned long high_max, unsigned long batch)
5475 WRITE_ONCE(pcp->batch, batch);
5476 WRITE_ONCE(pcp->high_min, high_min);
5477 WRITE_ONCE(pcp->high_max, high_max);
5480 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5484 memset(pcp, 0, sizeof(*pcp));
5485 memset(pzstats, 0, sizeof(*pzstats));
5487 spin_lock_init(&pcp->lock);
5488 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5489 INIT_LIST_HEAD(&pcp->lists[pindex]);
5492 * Set batch and high values safe for a boot pageset. A true percpu
5493 * pageset's initialization will update them subsequently. Here we don't
5494 * need to be as careful as pageset_update() as nobody can access the
5497 pcp->high_min = BOOT_PAGESET_HIGH;
5498 pcp->high_max = BOOT_PAGESET_HIGH;
5499 pcp->batch = BOOT_PAGESET_BATCH;
5500 pcp->free_count = 0;
5503 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5504 unsigned long high_max, unsigned long batch)
5506 struct per_cpu_pages *pcp;
5509 for_each_possible_cpu(cpu) {
5510 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5511 pageset_update(pcp, high_min, high_max, batch);
5516 * Calculate and set new high and batch values for all per-cpu pagesets of a
5517 * zone based on the zone's size.
5519 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5521 int new_high_min, new_high_max, new_batch;
5523 new_batch = max(1, zone_batchsize(zone));
5524 if (percpu_pagelist_high_fraction) {
5525 new_high_min = zone_highsize(zone, new_batch, cpu_online,
5526 percpu_pagelist_high_fraction);
5528 * PCP high is tuned manually, disable auto-tuning via
5529 * setting high_min and high_max to the manual value.
5531 new_high_max = new_high_min;
5533 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5534 new_high_max = zone_highsize(zone, new_batch, cpu_online,
5535 MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5538 if (zone->pageset_high_min == new_high_min &&
5539 zone->pageset_high_max == new_high_max &&
5540 zone->pageset_batch == new_batch)
5543 zone->pageset_high_min = new_high_min;
5544 zone->pageset_high_max = new_high_max;
5545 zone->pageset_batch = new_batch;
5547 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5551 void __meminit setup_zone_pageset(struct zone *zone)
5555 /* Size may be 0 on !SMP && !NUMA */
5556 if (sizeof(struct per_cpu_zonestat) > 0)
5557 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5559 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5560 for_each_possible_cpu(cpu) {
5561 struct per_cpu_pages *pcp;
5562 struct per_cpu_zonestat *pzstats;
5564 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5565 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5566 per_cpu_pages_init(pcp, pzstats);
5569 zone_set_pageset_high_and_batch(zone, 0);
5573 * The zone indicated has a new number of managed_pages; batch sizes and percpu
5574 * page high values need to be recalculated.
5576 static void zone_pcp_update(struct zone *zone, int cpu_online)
5578 mutex_lock(&pcp_batch_high_lock);
5579 zone_set_pageset_high_and_batch(zone, cpu_online);
5580 mutex_unlock(&pcp_batch_high_lock);
5583 static void zone_pcp_update_cacheinfo(struct zone *zone)
5586 struct per_cpu_pages *pcp;
5587 struct cpu_cacheinfo *cci;
5589 for_each_online_cpu(cpu) {
5590 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5591 cci = get_cpu_cacheinfo(cpu);
5593 * If data cache slice of CPU is large enough, "pcp->batch"
5594 * pages can be preserved in PCP before draining PCP for
5595 * consecutive high-order pages freeing without allocation.
5596 * This can reduce zone lock contention without hurting
5597 * cache-hot pages sharing.
5599 spin_lock(&pcp->lock);
5600 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5601 pcp->flags |= PCPF_FREE_HIGH_BATCH;
5603 pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5604 spin_unlock(&pcp->lock);
5608 void setup_pcp_cacheinfo(void)
5612 for_each_populated_zone(zone)
5613 zone_pcp_update_cacheinfo(zone);
5617 * Allocate per cpu pagesets and initialize them.
5618 * Before this call only boot pagesets were available.
5620 void __init setup_per_cpu_pageset(void)
5622 struct pglist_data *pgdat;
5624 int __maybe_unused cpu;
5626 for_each_populated_zone(zone)
5627 setup_zone_pageset(zone);
5631 * Unpopulated zones continue using the boot pagesets.
5632 * The numa stats for these pagesets need to be reset.
5633 * Otherwise, they will end up skewing the stats of
5634 * the nodes these zones are associated with.
5636 for_each_possible_cpu(cpu) {
5637 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5638 memset(pzstats->vm_numa_event, 0,
5639 sizeof(pzstats->vm_numa_event));
5643 for_each_online_pgdat(pgdat)
5644 pgdat->per_cpu_nodestats =
5645 alloc_percpu(struct per_cpu_nodestat);
5648 __meminit void zone_pcp_init(struct zone *zone)
5651 * per cpu subsystem is not up at this point. The following code
5652 * relies on the ability of the linker to provide the
5653 * offset of a (static) per cpu variable into the per cpu area.
5655 zone->per_cpu_pageset = &boot_pageset;
5656 zone->per_cpu_zonestats = &boot_zonestats;
5657 zone->pageset_high_min = BOOT_PAGESET_HIGH;
5658 zone->pageset_high_max = BOOT_PAGESET_HIGH;
5659 zone->pageset_batch = BOOT_PAGESET_BATCH;
5661 if (populated_zone(zone))
5662 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5663 zone->present_pages, zone_batchsize(zone));
5666 void adjust_managed_page_count(struct page *page, long count)
5668 atomic_long_add(count, &page_zone(page)->managed_pages);
5669 totalram_pages_add(count);
5670 #ifdef CONFIG_HIGHMEM
5671 if (PageHighMem(page))
5672 totalhigh_pages_add(count);
5675 EXPORT_SYMBOL(adjust_managed_page_count);
5677 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5680 unsigned long pages = 0;
5682 start = (void *)PAGE_ALIGN((unsigned long)start);
5683 end = (void *)((unsigned long)end & PAGE_MASK);
5684 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5685 struct page *page = virt_to_page(pos);
5686 void *direct_map_addr;
5689 * 'direct_map_addr' might be different from 'pos'
5690 * because some architectures' virt_to_page()
5691 * work with aliases. Getting the direct map
5692 * address ensures that we get a _writeable_
5693 * alias for the memset().
5695 direct_map_addr = page_address(page);
5697 * Perform a kasan-unchecked memset() since this memory
5698 * has not been initialized.
5700 direct_map_addr = kasan_reset_tag(direct_map_addr);
5701 if ((unsigned int)poison <= 0xFF)
5702 memset(direct_map_addr, poison, PAGE_SIZE);
5704 free_reserved_page(page);
5708 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5713 static int page_alloc_cpu_dead(unsigned int cpu)
5717 lru_add_drain_cpu(cpu);
5718 mlock_drain_remote(cpu);
5722 * Spill the event counters of the dead processor
5723 * into the current processors event counters.
5724 * This artificially elevates the count of the current
5727 vm_events_fold_cpu(cpu);
5730 * Zero the differential counters of the dead processor
5731 * so that the vm statistics are consistent.
5733 * This is only okay since the processor is dead and cannot
5734 * race with what we are doing.
5736 cpu_vm_stats_fold(cpu);
5738 for_each_populated_zone(zone)
5739 zone_pcp_update(zone, 0);
5744 static int page_alloc_cpu_online(unsigned int cpu)
5748 for_each_populated_zone(zone)
5749 zone_pcp_update(zone, 1);
5753 void __init page_alloc_init_cpuhp(void)
5757 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5758 "mm/page_alloc:pcp",
5759 page_alloc_cpu_online,
5760 page_alloc_cpu_dead);
5765 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5766 * or min_free_kbytes changes.
5768 static void calculate_totalreserve_pages(void)
5770 struct pglist_data *pgdat;
5771 unsigned long reserve_pages = 0;
5772 enum zone_type i, j;
5774 for_each_online_pgdat(pgdat) {
5776 pgdat->totalreserve_pages = 0;
5778 for (i = 0; i < MAX_NR_ZONES; i++) {
5779 struct zone *zone = pgdat->node_zones + i;
5781 unsigned long managed_pages = zone_managed_pages(zone);
5783 /* Find valid and maximum lowmem_reserve in the zone */
5784 for (j = i; j < MAX_NR_ZONES; j++) {
5785 if (zone->lowmem_reserve[j] > max)
5786 max = zone->lowmem_reserve[j];
5789 /* we treat the high watermark as reserved pages. */
5790 max += high_wmark_pages(zone);
5792 if (max > managed_pages)
5793 max = managed_pages;
5795 pgdat->totalreserve_pages += max;
5797 reserve_pages += max;
5800 totalreserve_pages = reserve_pages;
5804 * setup_per_zone_lowmem_reserve - called whenever
5805 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
5806 * has a correct pages reserved value, so an adequate number of
5807 * pages are left in the zone after a successful __alloc_pages().
5809 static void setup_per_zone_lowmem_reserve(void)
5811 struct pglist_data *pgdat;
5812 enum zone_type i, j;
5814 for_each_online_pgdat(pgdat) {
5815 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5816 struct zone *zone = &pgdat->node_zones[i];
5817 int ratio = sysctl_lowmem_reserve_ratio[i];
5818 bool clear = !ratio || !zone_managed_pages(zone);
5819 unsigned long managed_pages = 0;
5821 for (j = i + 1; j < MAX_NR_ZONES; j++) {
5822 struct zone *upper_zone = &pgdat->node_zones[j];
5824 managed_pages += zone_managed_pages(upper_zone);
5827 zone->lowmem_reserve[j] = 0;
5829 zone->lowmem_reserve[j] = managed_pages / ratio;
5834 /* update totalreserve_pages */
5835 calculate_totalreserve_pages();
5838 static void __setup_per_zone_wmarks(void)
5840 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5841 unsigned long lowmem_pages = 0;
5843 unsigned long flags;
5845 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5846 for_each_zone(zone) {
5847 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5848 lowmem_pages += zone_managed_pages(zone);
5851 for_each_zone(zone) {
5854 spin_lock_irqsave(&zone->lock, flags);
5855 tmp = (u64)pages_min * zone_managed_pages(zone);
5856 do_div(tmp, lowmem_pages);
5857 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5859 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5860 * need highmem and movable zones pages, so cap pages_min
5861 * to a small value here.
5863 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5864 * deltas control async page reclaim, and so should
5865 * not be capped for highmem and movable zones.
5867 unsigned long min_pages;
5869 min_pages = zone_managed_pages(zone) / 1024;
5870 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5871 zone->_watermark[WMARK_MIN] = min_pages;
5874 * If it's a lowmem zone, reserve a number of pages
5875 * proportionate to the zone's size.
5877 zone->_watermark[WMARK_MIN] = tmp;
5881 * Set the kswapd watermarks distance according to the
5882 * scale factor in proportion to available memory, but
5883 * ensure a minimum size on small systems.
5885 tmp = max_t(u64, tmp >> 2,
5886 mult_frac(zone_managed_pages(zone),
5887 watermark_scale_factor, 10000));
5889 zone->watermark_boost = 0;
5890 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
5891 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5892 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5894 spin_unlock_irqrestore(&zone->lock, flags);
5897 /* update totalreserve_pages */
5898 calculate_totalreserve_pages();
5902 * setup_per_zone_wmarks - called when min_free_kbytes changes
5903 * or when memory is hot-{added|removed}
5905 * Ensures that the watermark[min,low,high] values for each zone are set
5906 * correctly with respect to min_free_kbytes.
5908 void setup_per_zone_wmarks(void)
5911 static DEFINE_SPINLOCK(lock);
5914 __setup_per_zone_wmarks();
5918 * The watermark size have changed so update the pcpu batch
5919 * and high limits or the limits may be inappropriate.
5922 zone_pcp_update(zone, 0);
5926 * Initialise min_free_kbytes.
5928 * For small machines we want it small (128k min). For large machines
5929 * we want it large (256MB max). But it is not linear, because network
5930 * bandwidth does not increase linearly with machine size. We use
5932 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5933 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5949 void calculate_min_free_kbytes(void)
5951 unsigned long lowmem_kbytes;
5952 int new_min_free_kbytes;
5954 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5955 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5957 if (new_min_free_kbytes > user_min_free_kbytes)
5958 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5960 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5961 new_min_free_kbytes, user_min_free_kbytes);
5965 int __meminit init_per_zone_wmark_min(void)
5967 calculate_min_free_kbytes();
5968 setup_per_zone_wmarks();
5969 refresh_zone_stat_thresholds();
5970 setup_per_zone_lowmem_reserve();
5973 setup_min_unmapped_ratio();
5974 setup_min_slab_ratio();
5977 khugepaged_min_free_kbytes_update();
5981 postcore_initcall(init_per_zone_wmark_min)
5984 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5985 * that we can call two helper functions whenever min_free_kbytes
5988 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5989 void *buffer, size_t *length, loff_t *ppos)
5993 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5998 user_min_free_kbytes = min_free_kbytes;
5999 setup_per_zone_wmarks();
6004 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6005 void *buffer, size_t *length, loff_t *ppos)
6009 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6014 setup_per_zone_wmarks();
6020 static void setup_min_unmapped_ratio(void)
6025 for_each_online_pgdat(pgdat)
6026 pgdat->min_unmapped_pages = 0;
6029 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6030 sysctl_min_unmapped_ratio) / 100;
6034 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6035 void *buffer, size_t *length, loff_t *ppos)
6039 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6043 setup_min_unmapped_ratio();
6048 static void setup_min_slab_ratio(void)
6053 for_each_online_pgdat(pgdat)
6054 pgdat->min_slab_pages = 0;
6057 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6058 sysctl_min_slab_ratio) / 100;
6061 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6062 void *buffer, size_t *length, loff_t *ppos)
6066 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6070 setup_min_slab_ratio();
6077 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6078 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6079 * whenever sysctl_lowmem_reserve_ratio changes.
6081 * The reserve ratio obviously has absolutely no relation with the
6082 * minimum watermarks. The lowmem reserve ratio can only make sense
6083 * if in function of the boot time zone sizes.
6085 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
6086 int write, void *buffer, size_t *length, loff_t *ppos)
6090 proc_dointvec_minmax(table, write, buffer, length, ppos);
6092 for (i = 0; i < MAX_NR_ZONES; i++) {
6093 if (sysctl_lowmem_reserve_ratio[i] < 1)
6094 sysctl_lowmem_reserve_ratio[i] = 0;
6097 setup_per_zone_lowmem_reserve();
6102 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6103 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6104 * pagelist can have before it gets flushed back to buddy allocator.
6106 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
6107 int write, void *buffer, size_t *length, loff_t *ppos)
6110 int old_percpu_pagelist_high_fraction;
6113 mutex_lock(&pcp_batch_high_lock);
6114 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6116 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6117 if (!write || ret < 0)
6120 /* Sanity checking to avoid pcp imbalance */
6121 if (percpu_pagelist_high_fraction &&
6122 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6123 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6129 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6132 for_each_populated_zone(zone)
6133 zone_set_pageset_high_and_batch(zone, 0);
6135 mutex_unlock(&pcp_batch_high_lock);
6139 static struct ctl_table page_alloc_sysctl_table[] = {
6141 .procname = "min_free_kbytes",
6142 .data = &min_free_kbytes,
6143 .maxlen = sizeof(min_free_kbytes),
6145 .proc_handler = min_free_kbytes_sysctl_handler,
6146 .extra1 = SYSCTL_ZERO,
6149 .procname = "watermark_boost_factor",
6150 .data = &watermark_boost_factor,
6151 .maxlen = sizeof(watermark_boost_factor),
6153 .proc_handler = proc_dointvec_minmax,
6154 .extra1 = SYSCTL_ZERO,
6157 .procname = "watermark_scale_factor",
6158 .data = &watermark_scale_factor,
6159 .maxlen = sizeof(watermark_scale_factor),
6161 .proc_handler = watermark_scale_factor_sysctl_handler,
6162 .extra1 = SYSCTL_ONE,
6163 .extra2 = SYSCTL_THREE_THOUSAND,
6166 .procname = "percpu_pagelist_high_fraction",
6167 .data = &percpu_pagelist_high_fraction,
6168 .maxlen = sizeof(percpu_pagelist_high_fraction),
6170 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler,
6171 .extra1 = SYSCTL_ZERO,
6174 .procname = "lowmem_reserve_ratio",
6175 .data = &sysctl_lowmem_reserve_ratio,
6176 .maxlen = sizeof(sysctl_lowmem_reserve_ratio),
6178 .proc_handler = lowmem_reserve_ratio_sysctl_handler,
6182 .procname = "numa_zonelist_order",
6183 .data = &numa_zonelist_order,
6184 .maxlen = NUMA_ZONELIST_ORDER_LEN,
6186 .proc_handler = numa_zonelist_order_handler,
6189 .procname = "min_unmapped_ratio",
6190 .data = &sysctl_min_unmapped_ratio,
6191 .maxlen = sizeof(sysctl_min_unmapped_ratio),
6193 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler,
6194 .extra1 = SYSCTL_ZERO,
6195 .extra2 = SYSCTL_ONE_HUNDRED,
6198 .procname = "min_slab_ratio",
6199 .data = &sysctl_min_slab_ratio,
6200 .maxlen = sizeof(sysctl_min_slab_ratio),
6202 .proc_handler = sysctl_min_slab_ratio_sysctl_handler,
6203 .extra1 = SYSCTL_ZERO,
6204 .extra2 = SYSCTL_ONE_HUNDRED,
6210 void __init page_alloc_sysctl_init(void)
6212 register_sysctl_init("vm", page_alloc_sysctl_table);
6215 #ifdef CONFIG_CONTIG_ALLOC
6216 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6217 static void alloc_contig_dump_pages(struct list_head *page_list)
6219 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6221 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6225 list_for_each_entry(page, page_list, lru)
6226 dump_page(page, "migration failure");
6230 /* [start, end) must belong to a single zone. */
6231 int __alloc_contig_migrate_range(struct compact_control *cc,
6232 unsigned long start, unsigned long end)
6234 /* This function is based on compact_zone() from compaction.c. */
6235 unsigned int nr_reclaimed;
6236 unsigned long pfn = start;
6237 unsigned int tries = 0;
6239 struct migration_target_control mtc = {
6240 .nid = zone_to_nid(cc->zone),
6241 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6244 lru_cache_disable();
6246 while (pfn < end || !list_empty(&cc->migratepages)) {
6247 if (fatal_signal_pending(current)) {
6252 if (list_empty(&cc->migratepages)) {
6253 cc->nr_migratepages = 0;
6254 ret = isolate_migratepages_range(cc, pfn, end);
6255 if (ret && ret != -EAGAIN)
6257 pfn = cc->migrate_pfn;
6259 } else if (++tries == 5) {
6264 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6266 cc->nr_migratepages -= nr_reclaimed;
6268 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6269 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6272 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6273 * to retry again over this error, so do the same here.
6281 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6282 alloc_contig_dump_pages(&cc->migratepages);
6283 putback_movable_pages(&cc->migratepages);
6290 * alloc_contig_range() -- tries to allocate given range of pages
6291 * @start: start PFN to allocate
6292 * @end: one-past-the-last PFN to allocate
6293 * @migratetype: migratetype of the underlying pageblocks (either
6294 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6295 * in range must have the same migratetype and it must
6296 * be either of the two.
6297 * @gfp_mask: GFP mask to use during compaction
6299 * The PFN range does not have to be pageblock aligned. The PFN range must
6300 * belong to a single zone.
6302 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6303 * pageblocks in the range. Once isolated, the pageblocks should not
6304 * be modified by others.
6306 * Return: zero on success or negative error code. On success all
6307 * pages which PFN is in [start, end) are allocated for the caller and
6308 * need to be freed with free_contig_range().
6310 int alloc_contig_range(unsigned long start, unsigned long end,
6311 unsigned migratetype, gfp_t gfp_mask)
6313 unsigned long outer_start, outer_end;
6317 struct compact_control cc = {
6318 .nr_migratepages = 0,
6320 .zone = page_zone(pfn_to_page(start)),
6321 .mode = MIGRATE_SYNC,
6322 .ignore_skip_hint = true,
6323 .no_set_skip_hint = true,
6324 .gfp_mask = current_gfp_context(gfp_mask),
6325 .alloc_contig = true,
6327 INIT_LIST_HEAD(&cc.migratepages);
6330 * What we do here is we mark all pageblocks in range as
6331 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6332 * have different sizes, and due to the way page allocator
6333 * work, start_isolate_page_range() has special handlings for this.
6335 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6336 * migrate the pages from an unaligned range (ie. pages that
6337 * we are interested in). This will put all the pages in
6338 * range back to page allocator as MIGRATE_ISOLATE.
6340 * When this is done, we take the pages in range from page
6341 * allocator removing them from the buddy system. This way
6342 * page allocator will never consider using them.
6344 * This lets us mark the pageblocks back as
6345 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6346 * aligned range but not in the unaligned, original range are
6347 * put back to page allocator so that buddy can use them.
6350 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6354 drain_all_pages(cc.zone);
6357 * In case of -EBUSY, we'd like to know which page causes problem.
6358 * So, just fall through. test_pages_isolated() has a tracepoint
6359 * which will report the busy page.
6361 * It is possible that busy pages could become available before
6362 * the call to test_pages_isolated, and the range will actually be
6363 * allocated. So, if we fall through be sure to clear ret so that
6364 * -EBUSY is not accidentally used or returned to caller.
6366 ret = __alloc_contig_migrate_range(&cc, start, end);
6367 if (ret && ret != -EBUSY)
6372 * Pages from [start, end) are within a pageblock_nr_pages
6373 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6374 * more, all pages in [start, end) are free in page allocator.
6375 * What we are going to do is to allocate all pages from
6376 * [start, end) (that is remove them from page allocator).
6378 * The only problem is that pages at the beginning and at the
6379 * end of interesting range may be not aligned with pages that
6380 * page allocator holds, ie. they can be part of higher order
6381 * pages. Because of this, we reserve the bigger range and
6382 * once this is done free the pages we are not interested in.
6384 * We don't have to hold zone->lock here because the pages are
6385 * isolated thus they won't get removed from buddy.
6389 outer_start = start;
6390 while (!PageBuddy(pfn_to_page(outer_start))) {
6391 if (++order > MAX_ORDER) {
6392 outer_start = start;
6395 outer_start &= ~0UL << order;
6398 if (outer_start != start) {
6399 order = buddy_order(pfn_to_page(outer_start));
6402 * outer_start page could be small order buddy page and
6403 * it doesn't include start page. Adjust outer_start
6404 * in this case to report failed page properly
6405 * on tracepoint in test_pages_isolated()
6407 if (outer_start + (1UL << order) <= start)
6408 outer_start = start;
6411 /* Make sure the range is really isolated. */
6412 if (test_pages_isolated(outer_start, end, 0)) {
6417 /* Grab isolated pages from freelists. */
6418 outer_end = isolate_freepages_range(&cc, outer_start, end);
6424 /* Free head and tail (if any) */
6425 if (start != outer_start)
6426 free_contig_range(outer_start, start - outer_start);
6427 if (end != outer_end)
6428 free_contig_range(end, outer_end - end);
6431 undo_isolate_page_range(start, end, migratetype);
6434 EXPORT_SYMBOL(alloc_contig_range);
6436 static int __alloc_contig_pages(unsigned long start_pfn,
6437 unsigned long nr_pages, gfp_t gfp_mask)
6439 unsigned long end_pfn = start_pfn + nr_pages;
6441 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6445 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6446 unsigned long nr_pages)
6448 unsigned long i, end_pfn = start_pfn + nr_pages;
6451 for (i = start_pfn; i < end_pfn; i++) {
6452 page = pfn_to_online_page(i);
6456 if (page_zone(page) != z)
6459 if (PageReserved(page))
6468 static bool zone_spans_last_pfn(const struct zone *zone,
6469 unsigned long start_pfn, unsigned long nr_pages)
6471 unsigned long last_pfn = start_pfn + nr_pages - 1;
6473 return zone_spans_pfn(zone, last_pfn);
6477 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6478 * @nr_pages: Number of contiguous pages to allocate
6479 * @gfp_mask: GFP mask to limit search and used during compaction
6481 * @nodemask: Mask for other possible nodes
6483 * This routine is a wrapper around alloc_contig_range(). It scans over zones
6484 * on an applicable zonelist to find a contiguous pfn range which can then be
6485 * tried for allocation with alloc_contig_range(). This routine is intended
6486 * for allocation requests which can not be fulfilled with the buddy allocator.
6488 * The allocated memory is always aligned to a page boundary. If nr_pages is a
6489 * power of two, then allocated range is also guaranteed to be aligned to same
6490 * nr_pages (e.g. 1GB request would be aligned to 1GB).
6492 * Allocated pages can be freed with free_contig_range() or by manually calling
6493 * __free_page() on each allocated page.
6495 * Return: pointer to contiguous pages on success, or NULL if not successful.
6497 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6498 int nid, nodemask_t *nodemask)
6500 unsigned long ret, pfn, flags;
6501 struct zonelist *zonelist;
6505 zonelist = node_zonelist(nid, gfp_mask);
6506 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6507 gfp_zone(gfp_mask), nodemask) {
6508 spin_lock_irqsave(&zone->lock, flags);
6510 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6511 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6512 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6514 * We release the zone lock here because
6515 * alloc_contig_range() will also lock the zone
6516 * at some point. If there's an allocation
6517 * spinning on this lock, it may win the race
6518 * and cause alloc_contig_range() to fail...
6520 spin_unlock_irqrestore(&zone->lock, flags);
6521 ret = __alloc_contig_pages(pfn, nr_pages,
6524 return pfn_to_page(pfn);
6525 spin_lock_irqsave(&zone->lock, flags);
6529 spin_unlock_irqrestore(&zone->lock, flags);
6533 #endif /* CONFIG_CONTIG_ALLOC */
6535 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6537 unsigned long count = 0;
6539 for (; nr_pages--; pfn++) {
6540 struct page *page = pfn_to_page(pfn);
6542 count += page_count(page) != 1;
6545 WARN(count != 0, "%lu pages are still in use!\n", count);
6547 EXPORT_SYMBOL(free_contig_range);
6550 * Effectively disable pcplists for the zone by setting the high limit to 0
6551 * and draining all cpus. A concurrent page freeing on another CPU that's about
6552 * to put the page on pcplist will either finish before the drain and the page
6553 * will be drained, or observe the new high limit and skip the pcplist.
6555 * Must be paired with a call to zone_pcp_enable().
6557 void zone_pcp_disable(struct zone *zone)
6559 mutex_lock(&pcp_batch_high_lock);
6560 __zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6561 __drain_all_pages(zone, true);
6564 void zone_pcp_enable(struct zone *zone)
6566 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6567 zone->pageset_high_max, zone->pageset_batch);
6568 mutex_unlock(&pcp_batch_high_lock);
6571 void zone_pcp_reset(struct zone *zone)
6574 struct per_cpu_zonestat *pzstats;
6576 if (zone->per_cpu_pageset != &boot_pageset) {
6577 for_each_online_cpu(cpu) {
6578 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6579 drain_zonestat(zone, pzstats);
6581 free_percpu(zone->per_cpu_pageset);
6582 zone->per_cpu_pageset = &boot_pageset;
6583 if (zone->per_cpu_zonestats != &boot_zonestats) {
6584 free_percpu(zone->per_cpu_zonestats);
6585 zone->per_cpu_zonestats = &boot_zonestats;
6590 #ifdef CONFIG_MEMORY_HOTREMOVE
6592 * All pages in the range must be in a single zone, must not contain holes,
6593 * must span full sections, and must be isolated before calling this function.
6595 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6597 unsigned long pfn = start_pfn;
6601 unsigned long flags;
6603 offline_mem_sections(pfn, end_pfn);
6604 zone = page_zone(pfn_to_page(pfn));
6605 spin_lock_irqsave(&zone->lock, flags);
6606 while (pfn < end_pfn) {
6607 page = pfn_to_page(pfn);
6609 * The HWPoisoned page may be not in buddy system, and
6610 * page_count() is not 0.
6612 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6617 * At this point all remaining PageOffline() pages have a
6618 * reference count of 0 and can simply be skipped.
6620 if (PageOffline(page)) {
6621 BUG_ON(page_count(page));
6622 BUG_ON(PageBuddy(page));
6627 BUG_ON(page_count(page));
6628 BUG_ON(!PageBuddy(page));
6629 order = buddy_order(page);
6630 del_page_from_free_list(page, zone, order);
6631 pfn += (1 << order);
6633 spin_unlock_irqrestore(&zone->lock, flags);
6638 * This function returns a stable result only if called under zone lock.
6640 bool is_free_buddy_page(struct page *page)
6642 unsigned long pfn = page_to_pfn(page);
6645 for (order = 0; order <= MAX_ORDER; order++) {
6646 struct page *page_head = page - (pfn & ((1 << order) - 1));
6648 if (PageBuddy(page_head) &&
6649 buddy_order_unsafe(page_head) >= order)
6653 return order <= MAX_ORDER;
6655 EXPORT_SYMBOL(is_free_buddy_page);
6657 #ifdef CONFIG_MEMORY_FAILURE
6659 * Break down a higher-order page in sub-pages, and keep our target out of
6662 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6663 struct page *target, int low, int high,
6666 unsigned long size = 1 << high;
6667 struct page *current_buddy;
6669 while (high > low) {
6673 if (target >= &page[size]) {
6674 current_buddy = page;
6677 current_buddy = page + size;
6680 if (set_page_guard(zone, current_buddy, high, migratetype))
6683 add_to_free_list(current_buddy, zone, high, migratetype);
6684 set_buddy_order(current_buddy, high);
6689 * Take a page that will be marked as poisoned off the buddy allocator.
6691 bool take_page_off_buddy(struct page *page)
6693 struct zone *zone = page_zone(page);
6694 unsigned long pfn = page_to_pfn(page);
6695 unsigned long flags;
6699 spin_lock_irqsave(&zone->lock, flags);
6700 for (order = 0; order <= MAX_ORDER; order++) {
6701 struct page *page_head = page - (pfn & ((1 << order) - 1));
6702 int page_order = buddy_order(page_head);
6704 if (PageBuddy(page_head) && page_order >= order) {
6705 unsigned long pfn_head = page_to_pfn(page_head);
6706 int migratetype = get_pfnblock_migratetype(page_head,
6709 del_page_from_free_list(page_head, zone, page_order);
6710 break_down_buddy_pages(zone, page_head, page, 0,
6711 page_order, migratetype);
6712 SetPageHWPoisonTakenOff(page);
6713 if (!is_migrate_isolate(migratetype))
6714 __mod_zone_freepage_state(zone, -1, migratetype);
6718 if (page_count(page_head) > 0)
6721 spin_unlock_irqrestore(&zone->lock, flags);
6726 * Cancel takeoff done by take_page_off_buddy().
6728 bool put_page_back_buddy(struct page *page)
6730 struct zone *zone = page_zone(page);
6731 unsigned long pfn = page_to_pfn(page);
6732 unsigned long flags;
6733 int migratetype = get_pfnblock_migratetype(page, pfn);
6736 spin_lock_irqsave(&zone->lock, flags);
6737 if (put_page_testzero(page)) {
6738 ClearPageHWPoisonTakenOff(page);
6739 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6740 if (TestClearPageHWPoison(page)) {
6744 spin_unlock_irqrestore(&zone->lock, flags);
6750 #ifdef CONFIG_ZONE_DMA
6751 bool has_managed_dma(void)
6753 struct pglist_data *pgdat;
6755 for_each_online_pgdat(pgdat) {
6756 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6758 if (managed_zone(zone))
6763 #endif /* CONFIG_ZONE_DMA */
6765 #ifdef CONFIG_UNACCEPTED_MEMORY
6767 /* Counts number of zones with unaccepted pages. */
6768 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6770 static bool lazy_accept = true;
6772 static int __init accept_memory_parse(char *p)
6774 if (!strcmp(p, "lazy")) {
6777 } else if (!strcmp(p, "eager")) {
6778 lazy_accept = false;
6784 early_param("accept_memory", accept_memory_parse);
6786 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6788 phys_addr_t start = page_to_phys(page);
6789 phys_addr_t end = start + (PAGE_SIZE << order);
6791 return range_contains_unaccepted_memory(start, end);
6794 static void accept_page(struct page *page, unsigned int order)
6796 phys_addr_t start = page_to_phys(page);
6798 accept_memory(start, start + (PAGE_SIZE << order));
6801 static bool try_to_accept_memory_one(struct zone *zone)
6803 unsigned long flags;
6807 if (list_empty(&zone->unaccepted_pages))
6810 spin_lock_irqsave(&zone->lock, flags);
6811 page = list_first_entry_or_null(&zone->unaccepted_pages,
6814 spin_unlock_irqrestore(&zone->lock, flags);
6818 list_del(&page->lru);
6819 last = list_empty(&zone->unaccepted_pages);
6821 __mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6822 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6823 spin_unlock_irqrestore(&zone->lock, flags);
6825 accept_page(page, MAX_ORDER);
6827 __free_pages_ok(page, MAX_ORDER, FPI_TO_TAIL);
6830 static_branch_dec(&zones_with_unaccepted_pages);
6835 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6840 /* How much to accept to get to high watermark? */
6841 to_accept = high_wmark_pages(zone) -
6842 (zone_page_state(zone, NR_FREE_PAGES) -
6843 __zone_watermark_unusable_free(zone, order, 0));
6845 /* Accept at least one page */
6847 if (!try_to_accept_memory_one(zone))
6850 to_accept -= MAX_ORDER_NR_PAGES;
6851 } while (to_accept > 0);
6856 static inline bool has_unaccepted_memory(void)
6858 return static_branch_unlikely(&zones_with_unaccepted_pages);
6861 static bool __free_unaccepted(struct page *page)
6863 struct zone *zone = page_zone(page);
6864 unsigned long flags;
6870 spin_lock_irqsave(&zone->lock, flags);
6871 first = list_empty(&zone->unaccepted_pages);
6872 list_add_tail(&page->lru, &zone->unaccepted_pages);
6873 __mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6874 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6875 spin_unlock_irqrestore(&zone->lock, flags);
6878 static_branch_inc(&zones_with_unaccepted_pages);
6885 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6890 static void accept_page(struct page *page, unsigned int order)
6894 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6899 static inline bool has_unaccepted_memory(void)
6904 static bool __free_unaccepted(struct page *page)
6910 #endif /* CONFIG_UNACCEPTED_MEMORY */