1 // SPDX-License-Identifier: GPL-2.0
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
18 #include <linux/pci.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
33 #include <linux/aer.h>
34 #include <linux/bitfield.h>
37 DEFINE_MUTEX(pci_slot_mutex);
39 const char *pci_power_names[] = {
40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
42 EXPORT_SYMBOL_GPL(pci_power_names);
45 int isa_dma_bridge_buggy;
46 EXPORT_SYMBOL(isa_dma_bridge_buggy);
50 EXPORT_SYMBOL(pci_pci_problems);
52 unsigned int pci_pm_d3hot_delay;
54 static void pci_pme_list_scan(struct work_struct *work);
56 static LIST_HEAD(pci_pme_list);
57 static DEFINE_MUTEX(pci_pme_list_mutex);
58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
60 struct pci_pme_device {
61 struct list_head list;
65 #define PME_TIMEOUT 1000 /* How long between PME checks */
68 * Following exit from Conventional Reset, devices must be ready within 1 sec
69 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional
70 * Reset (PCIe r6.0 sec 5.8).
72 #define PCI_RESET_WAIT 1000 /* msec */
75 * Devices may extend the 1 sec period through Request Retry Status
76 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper
77 * limit, but 60 sec ought to be enough for any device to become
80 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */
82 static void pci_dev_d3_sleep(struct pci_dev *dev)
84 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
88 /* Use a 20% upper bound, 1ms minimum */
89 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
90 usleep_range(delay_ms * USEC_PER_MSEC,
91 (delay_ms + upper) * USEC_PER_MSEC);
95 bool pci_reset_supported(struct pci_dev *dev)
97 return dev->reset_methods[0] != 0;
100 #ifdef CONFIG_PCI_DOMAINS
101 int pci_domains_supported = 1;
104 #define DEFAULT_CARDBUS_IO_SIZE (256)
105 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
106 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
107 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
108 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
110 #define DEFAULT_HOTPLUG_IO_SIZE (256)
111 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
112 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
113 /* hpiosize=nn can override this */
114 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
116 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
117 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
118 * pci=hpmemsize=nnM overrides both
120 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
121 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
123 #define DEFAULT_HOTPLUG_BUS_SIZE 1
124 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
127 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
128 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
129 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
130 #elif defined CONFIG_PCIE_BUS_SAFE
131 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
132 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
133 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
134 #elif defined CONFIG_PCIE_BUS_PEER2PEER
135 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
137 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
141 * The default CLS is used if arch didn't set CLS explicitly and not
142 * all pci devices agree on the same value. Arch can override either
143 * the dfl or actual value as it sees fit. Don't forget this is
144 * measured in 32-bit words, not bytes.
146 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
147 u8 pci_cache_line_size;
150 * If we set up a device for bus mastering, we need to check the latency
151 * timer as certain BIOSes forget to set it properly.
153 unsigned int pcibios_max_latency = 255;
155 /* If set, the PCIe ARI capability will not be used. */
156 static bool pcie_ari_disabled;
158 /* If set, the PCIe ATS capability will not be used. */
159 static bool pcie_ats_disabled;
161 /* If set, the PCI config space of each device is printed during boot. */
164 bool pci_ats_disabled(void)
166 return pcie_ats_disabled;
168 EXPORT_SYMBOL_GPL(pci_ats_disabled);
170 /* Disable bridge_d3 for all PCIe ports */
171 static bool pci_bridge_d3_disable;
172 /* Force bridge_d3 for all PCIe ports */
173 static bool pci_bridge_d3_force;
175 static int __init pcie_port_pm_setup(char *str)
177 if (!strcmp(str, "off"))
178 pci_bridge_d3_disable = true;
179 else if (!strcmp(str, "force"))
180 pci_bridge_d3_force = true;
183 __setup("pcie_port_pm=", pcie_port_pm_setup);
186 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
187 * @bus: pointer to PCI bus structure to search
189 * Given a PCI bus, returns the highest PCI bus number present in the set
190 * including the given PCI bus and its list of child PCI buses.
192 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
195 unsigned char max, n;
197 max = bus->busn_res.end;
198 list_for_each_entry(tmp, &bus->children, node) {
199 n = pci_bus_max_busnr(tmp);
205 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
208 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
209 * @pdev: the PCI device
211 * Returns error bits set in PCI_STATUS and clears them.
213 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
218 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
219 if (ret != PCIBIOS_SUCCESSFUL)
222 status &= PCI_STATUS_ERROR_BITS;
224 pci_write_config_word(pdev, PCI_STATUS, status);
228 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
230 #ifdef CONFIG_HAS_IOMEM
231 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
234 struct resource *res = &pdev->resource[bar];
235 resource_size_t start = res->start;
236 resource_size_t size = resource_size(res);
239 * Make sure the BAR is actually a memory resource, not an IO resource
241 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
242 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
247 return ioremap_wc(start, size);
249 return ioremap(start, size);
252 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
254 return __pci_ioremap_resource(pdev, bar, false);
256 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
258 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
260 return __pci_ioremap_resource(pdev, bar, true);
262 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
266 * pci_dev_str_match_path - test if a path string matches a device
267 * @dev: the PCI device to test
268 * @path: string to match the device against
269 * @endptr: pointer to the string after the match
271 * Test if a string (typically from a kernel parameter) formatted as a
272 * path of device/function addresses matches a PCI device. The string must
275 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
277 * A path for a device can be obtained using 'lspci -t'. Using a path
278 * is more robust against bus renumbering than using only a single bus,
279 * device and function address.
281 * Returns 1 if the string matches the device, 0 if it does not and
282 * a negative error code if it fails to parse the string.
284 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
288 unsigned int seg, bus, slot, func;
292 *endptr = strchrnul(path, ';');
294 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
299 p = strrchr(wpath, '/');
302 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
308 if (dev->devfn != PCI_DEVFN(slot, func)) {
314 * Note: we don't need to get a reference to the upstream
315 * bridge because we hold a reference to the top level
316 * device which should hold a reference to the bridge,
319 dev = pci_upstream_bridge(dev);
328 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
332 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
339 ret = (seg == pci_domain_nr(dev->bus) &&
340 bus == dev->bus->number &&
341 dev->devfn == PCI_DEVFN(slot, func));
349 * pci_dev_str_match - test if a string matches a device
350 * @dev: the PCI device to test
351 * @p: string to match the device against
352 * @endptr: pointer to the string after the match
354 * Test if a string (typically from a kernel parameter) matches a specified
355 * PCI device. The string may be of one of the following formats:
357 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
358 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
360 * The first format specifies a PCI bus/device/function address which
361 * may change if new hardware is inserted, if motherboard firmware changes,
362 * or due to changes caused in kernel parameters. If the domain is
363 * left unspecified, it is taken to be 0. In order to be robust against
364 * bus renumbering issues, a path of PCI device/function numbers may be used
365 * to address the specific device. The path for a device can be determined
366 * through the use of 'lspci -t'.
368 * The second format matches devices using IDs in the configuration
369 * space which may match multiple devices in the system. A value of 0
370 * for any field will match all devices. (Note: this differs from
371 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
372 * legacy reasons and convenience so users don't have to specify
373 * FFFFFFFFs on the command line.)
375 * Returns 1 if the string matches the device, 0 if it does not and
376 * a negative error code if the string cannot be parsed.
378 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
383 unsigned short vendor, device, subsystem_vendor, subsystem_device;
385 if (strncmp(p, "pci:", 4) == 0) {
386 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
388 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
389 &subsystem_vendor, &subsystem_device, &count);
391 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
395 subsystem_vendor = 0;
396 subsystem_device = 0;
401 if ((!vendor || vendor == dev->vendor) &&
402 (!device || device == dev->device) &&
403 (!subsystem_vendor ||
404 subsystem_vendor == dev->subsystem_vendor) &&
405 (!subsystem_device ||
406 subsystem_device == dev->subsystem_device))
410 * PCI Bus, Device, Function IDs are specified
411 * (optionally, may include a path of devfns following it)
413 ret = pci_dev_str_match_path(dev, p, &p);
428 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
429 u8 pos, int cap, int *ttl)
434 pci_bus_read_config_byte(bus, devfn, pos, &pos);
440 pci_bus_read_config_word(bus, devfn, pos, &ent);
452 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
455 int ttl = PCI_FIND_CAP_TTL;
457 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
460 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
462 return __pci_find_next_cap(dev->bus, dev->devfn,
463 pos + PCI_CAP_LIST_NEXT, cap);
465 EXPORT_SYMBOL_GPL(pci_find_next_capability);
467 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
468 unsigned int devfn, u8 hdr_type)
472 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
473 if (!(status & PCI_STATUS_CAP_LIST))
477 case PCI_HEADER_TYPE_NORMAL:
478 case PCI_HEADER_TYPE_BRIDGE:
479 return PCI_CAPABILITY_LIST;
480 case PCI_HEADER_TYPE_CARDBUS:
481 return PCI_CB_CAPABILITY_LIST;
488 * pci_find_capability - query for devices' capabilities
489 * @dev: PCI device to query
490 * @cap: capability code
492 * Tell if a device supports a given PCI capability.
493 * Returns the address of the requested capability structure within the
494 * device's PCI configuration space or 0 in case the device does not
495 * support it. Possible values for @cap include:
497 * %PCI_CAP_ID_PM Power Management
498 * %PCI_CAP_ID_AGP Accelerated Graphics Port
499 * %PCI_CAP_ID_VPD Vital Product Data
500 * %PCI_CAP_ID_SLOTID Slot Identification
501 * %PCI_CAP_ID_MSI Message Signalled Interrupts
502 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
503 * %PCI_CAP_ID_PCIX PCI-X
504 * %PCI_CAP_ID_EXP PCI Express
506 u8 pci_find_capability(struct pci_dev *dev, int cap)
510 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
512 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
516 EXPORT_SYMBOL(pci_find_capability);
519 * pci_bus_find_capability - query for devices' capabilities
520 * @bus: the PCI bus to query
521 * @devfn: PCI device to query
522 * @cap: capability code
524 * Like pci_find_capability() but works for PCI devices that do not have a
525 * pci_dev structure set up yet.
527 * Returns the address of the requested capability structure within the
528 * device's PCI configuration space or 0 in case the device does not
531 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
535 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
537 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK);
539 pos = __pci_find_next_cap(bus, devfn, pos, cap);
543 EXPORT_SYMBOL(pci_bus_find_capability);
546 * pci_find_next_ext_capability - Find an extended capability
547 * @dev: PCI device to query
548 * @start: address at which to start looking (0 to start at beginning of list)
549 * @cap: capability code
551 * Returns the address of the next matching extended capability structure
552 * within the device's PCI configuration space or 0 if the device does
553 * not support it. Some capabilities can occur several times, e.g., the
554 * vendor-specific capability, and this provides a way to find them all.
556 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
560 u16 pos = PCI_CFG_SPACE_SIZE;
562 /* minimum 8 bytes per capability */
563 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
565 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
571 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
575 * If we have no capabilities, this is indicated by cap ID,
576 * cap version and next pointer all being 0.
582 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
585 pos = PCI_EXT_CAP_NEXT(header);
586 if (pos < PCI_CFG_SPACE_SIZE)
589 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
595 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
598 * pci_find_ext_capability - Find an extended capability
599 * @dev: PCI device to query
600 * @cap: capability code
602 * Returns the address of the requested extended capability structure
603 * within the device's PCI configuration space or 0 if the device does
604 * not support it. Possible values for @cap include:
606 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
607 * %PCI_EXT_CAP_ID_VC Virtual Channel
608 * %PCI_EXT_CAP_ID_DSN Device Serial Number
609 * %PCI_EXT_CAP_ID_PWR Power Budgeting
611 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
613 return pci_find_next_ext_capability(dev, 0, cap);
615 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
618 * pci_get_dsn - Read and return the 8-byte Device Serial Number
619 * @dev: PCI device to query
621 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
624 * Returns the DSN, or zero if the capability does not exist.
626 u64 pci_get_dsn(struct pci_dev *dev)
632 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
637 * The Device Serial Number is two dwords offset 4 bytes from the
638 * capability position. The specification says that the first dword is
639 * the lower half, and the second dword is the upper half.
642 pci_read_config_dword(dev, pos, &dword);
644 pci_read_config_dword(dev, pos + 4, &dword);
645 dsn |= ((u64)dword) << 32;
649 EXPORT_SYMBOL_GPL(pci_get_dsn);
651 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
653 int rc, ttl = PCI_FIND_CAP_TTL;
656 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
657 mask = HT_3BIT_CAP_MASK;
659 mask = HT_5BIT_CAP_MASK;
661 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
662 PCI_CAP_ID_HT, &ttl);
664 rc = pci_read_config_byte(dev, pos + 3, &cap);
665 if (rc != PCIBIOS_SUCCESSFUL)
668 if ((cap & mask) == ht_cap)
671 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
672 pos + PCI_CAP_LIST_NEXT,
673 PCI_CAP_ID_HT, &ttl);
680 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
681 * @dev: PCI device to query
682 * @pos: Position from which to continue searching
683 * @ht_cap: HyperTransport capability code
685 * To be used in conjunction with pci_find_ht_capability() to search for
686 * all capabilities matching @ht_cap. @pos should always be a value returned
687 * from pci_find_ht_capability().
689 * NB. To be 100% safe against broken PCI devices, the caller should take
690 * steps to avoid an infinite loop.
692 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
694 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
696 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
699 * pci_find_ht_capability - query a device's HyperTransport capabilities
700 * @dev: PCI device to query
701 * @ht_cap: HyperTransport capability code
703 * Tell if a device supports a given HyperTransport capability.
704 * Returns an address within the device's PCI configuration space
705 * or 0 in case the device does not support the request capability.
706 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
707 * which has a HyperTransport capability matching @ht_cap.
709 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
713 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
715 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
719 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
722 * pci_find_vsec_capability - Find a vendor-specific extended capability
723 * @dev: PCI device to query
724 * @vendor: Vendor ID for which capability is defined
725 * @cap: Vendor-specific capability ID
727 * If @dev has Vendor ID @vendor, search for a VSEC capability with
728 * VSEC ID @cap. If found, return the capability offset in
729 * config space; otherwise return 0.
731 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
737 if (vendor != dev->vendor)
740 while ((vsec = pci_find_next_ext_capability(dev, vsec,
741 PCI_EXT_CAP_ID_VNDR))) {
742 ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
743 if (ret != PCIBIOS_SUCCESSFUL)
746 if (PCI_VNDR_HEADER_ID(header) == cap)
752 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
755 * pci_find_dvsec_capability - Find DVSEC for vendor
756 * @dev: PCI device to query
757 * @vendor: Vendor ID to match for the DVSEC
758 * @dvsec: Designated Vendor-specific capability ID
760 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
761 * offset in config space; otherwise return 0.
763 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
767 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
774 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
775 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
776 if (vendor == v && dvsec == id)
779 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
784 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
787 * pci_find_parent_resource - return resource region of parent bus of given
789 * @dev: PCI device structure contains resources to be searched
790 * @res: child resource record for which parent is sought
792 * For given resource region of given device, return the resource region of
793 * parent bus the given region is contained in.
795 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
796 struct resource *res)
798 const struct pci_bus *bus = dev->bus;
801 pci_bus_for_each_resource(bus, r) {
804 if (resource_contains(r, res)) {
807 * If the window is prefetchable but the BAR is
808 * not, the allocator made a mistake.
810 if (r->flags & IORESOURCE_PREFETCH &&
811 !(res->flags & IORESOURCE_PREFETCH))
815 * If we're below a transparent bridge, there may
816 * be both a positively-decoded aperture and a
817 * subtractively-decoded region that contain the BAR.
818 * We want the positively-decoded one, so this depends
819 * on pci_bus_for_each_resource() giving us those
827 EXPORT_SYMBOL(pci_find_parent_resource);
830 * pci_find_resource - Return matching PCI device resource
831 * @dev: PCI device to query
832 * @res: Resource to look for
834 * Goes over standard PCI resources (BARs) and checks if the given resource
835 * is partially or fully contained in any of them. In that case the
836 * matching resource is returned, %NULL otherwise.
838 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
842 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
843 struct resource *r = &dev->resource[i];
845 if (r->start && resource_contains(r, res))
851 EXPORT_SYMBOL(pci_find_resource);
854 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
855 * @dev: the PCI device to operate on
856 * @pos: config space offset of status word
857 * @mask: mask of bit(s) to care about in status word
859 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
861 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
865 /* Wait for Transaction Pending bit clean */
866 for (i = 0; i < 4; i++) {
869 msleep((1 << (i - 1)) * 100);
871 pci_read_config_word(dev, pos, &status);
872 if (!(status & mask))
879 static int pci_acs_enable;
882 * pci_request_acs - ask for ACS to be enabled if supported
884 void pci_request_acs(void)
889 static const char *disable_acs_redir_param;
892 * pci_disable_acs_redir - disable ACS redirect capabilities
893 * @dev: the PCI device
895 * For only devices specified in the disable_acs_redir parameter.
897 static void pci_disable_acs_redir(struct pci_dev *dev)
904 if (!disable_acs_redir_param)
907 p = disable_acs_redir_param;
909 ret = pci_dev_str_match(dev, p, &p);
911 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
912 disable_acs_redir_param);
915 } else if (ret == 1) {
920 if (*p != ';' && *p != ',') {
921 /* End of param or invalid format */
930 if (!pci_dev_specific_disable_acs_redir(dev))
935 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
939 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
941 /* P2P Request & Completion Redirect */
942 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
944 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
946 pci_info(dev, "disabled ACS redirect\n");
950 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
951 * @dev: the PCI device
953 static void pci_std_enable_acs(struct pci_dev *dev)
963 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
964 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
966 /* Source Validation */
967 ctrl |= (cap & PCI_ACS_SV);
969 /* P2P Request Redirect */
970 ctrl |= (cap & PCI_ACS_RR);
972 /* P2P Completion Redirect */
973 ctrl |= (cap & PCI_ACS_CR);
975 /* Upstream Forwarding */
976 ctrl |= (cap & PCI_ACS_UF);
978 /* Enable Translation Blocking for external devices and noats */
979 if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
980 ctrl |= (cap & PCI_ACS_TB);
982 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
986 * pci_enable_acs - enable ACS if hardware support it
987 * @dev: the PCI device
989 static void pci_enable_acs(struct pci_dev *dev)
992 goto disable_acs_redir;
994 if (!pci_dev_specific_enable_acs(dev))
995 goto disable_acs_redir;
997 pci_std_enable_acs(dev);
1001 * Note: pci_disable_acs_redir() must be called even if ACS was not
1002 * enabled by the kernel because it may have been enabled by
1003 * platform firmware. So if we are told to disable it, we should
1004 * always disable it after setting the kernel's default
1007 pci_disable_acs_redir(dev);
1011 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1012 * @dev: PCI device to have its BARs restored
1014 * Restore the BAR values for a given device, so as to make it
1015 * accessible by its driver.
1017 static void pci_restore_bars(struct pci_dev *dev)
1021 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1022 pci_update_resource(dev, i);
1025 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1027 if (pci_use_mid_pm())
1030 return acpi_pci_power_manageable(dev);
1033 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1036 if (pci_use_mid_pm())
1037 return mid_pci_set_power_state(dev, t);
1039 return acpi_pci_set_power_state(dev, t);
1042 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1044 if (pci_use_mid_pm())
1045 return mid_pci_get_power_state(dev);
1047 return acpi_pci_get_power_state(dev);
1050 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1052 if (!pci_use_mid_pm())
1053 acpi_pci_refresh_power_state(dev);
1056 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1058 if (pci_use_mid_pm())
1059 return PCI_POWER_ERROR;
1061 return acpi_pci_choose_state(dev);
1064 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1066 if (pci_use_mid_pm())
1067 return PCI_POWER_ERROR;
1069 return acpi_pci_wakeup(dev, enable);
1072 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1074 if (pci_use_mid_pm())
1077 return acpi_pci_need_resume(dev);
1080 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1082 if (pci_use_mid_pm())
1085 return acpi_pci_bridge_d3(dev);
1089 * pci_update_current_state - Read power state of given device and cache it
1090 * @dev: PCI device to handle.
1091 * @state: State to cache in case the device doesn't have the PM capability
1093 * The power state is read from the PMCSR register, which however is
1094 * inaccessible in D3cold. The platform firmware is therefore queried first
1095 * to detect accessibility of the register. In case the platform firmware
1096 * reports an incorrect state or the device isn't power manageable by the
1097 * platform at all, we try to detect D3cold by testing accessibility of the
1098 * vendor ID in config space.
1100 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1102 if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1103 dev->current_state = PCI_D3cold;
1104 } else if (dev->pm_cap) {
1107 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1108 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1109 dev->current_state = PCI_D3cold;
1112 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1114 dev->current_state = state;
1119 * pci_refresh_power_state - Refresh the given device's power state data
1120 * @dev: Target PCI device.
1122 * Ask the platform to refresh the devices power state information and invoke
1123 * pci_update_current_state() to update its current PCI power state.
1125 void pci_refresh_power_state(struct pci_dev *dev)
1127 platform_pci_refresh_power_state(dev);
1128 pci_update_current_state(dev, dev->current_state);
1132 * pci_platform_power_transition - Use platform to change device power state
1133 * @dev: PCI device to handle.
1134 * @state: State to put the device into.
1136 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1140 error = platform_pci_set_power_state(dev, state);
1142 pci_update_current_state(dev, state);
1143 else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1144 dev->current_state = PCI_D0;
1148 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1150 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1152 pm_request_resume(&pci_dev->dev);
1157 * pci_resume_bus - Walk given bus and runtime resume devices on it
1158 * @bus: Top bus of the subtree to walk.
1160 void pci_resume_bus(struct pci_bus *bus)
1163 pci_walk_bus(bus, pci_resume_one, NULL);
1166 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1169 bool retrain = false;
1170 struct pci_dev *bridge;
1172 if (pci_is_pcie(dev)) {
1173 bridge = pci_upstream_bridge(dev);
1179 * After reset, the device should not silently discard config
1180 * requests, but it may still indicate that it needs more time by
1181 * responding to them with CRS completions. The Root Port will
1182 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1183 * the read (except when CRS SV is enabled and the read was for the
1184 * Vendor ID; in that case it synthesizes 0x0001 data).
1186 * Wait for the device to return a non-CRS completion. Read the
1187 * Command register instead of Vendor ID so we don't have to
1188 * contend with the CRS SV value.
1193 pci_read_config_dword(dev, PCI_COMMAND, &id);
1194 if (!PCI_POSSIBLE_ERROR(id))
1197 if (delay > timeout) {
1198 pci_warn(dev, "not ready %dms after %s; giving up\n",
1199 delay - 1, reset_type);
1203 if (delay > PCI_RESET_WAIT) {
1206 if (pcie_failed_link_retrain(bridge)) {
1211 pci_info(dev, "not ready %dms after %s; waiting\n",
1212 delay - 1, reset_type);
1219 if (delay > PCI_RESET_WAIT)
1220 pci_info(dev, "ready %dms after %s\n", delay - 1,
1223 pci_dbg(dev, "ready %dms after %s\n", delay - 1,
1230 * pci_power_up - Put the given device into D0
1231 * @dev: PCI device to power up
1233 * On success, return 0 or 1, depending on whether or not it is necessary to
1234 * restore the device's BARs subsequently (1 is returned in that case).
1236 * On failure, return a negative error code. Always return failure if @dev
1237 * lacks a Power Management Capability, even if the platform was able to
1238 * put the device in D0 via non-PCI means.
1240 int pci_power_up(struct pci_dev *dev)
1246 platform_pci_set_power_state(dev, PCI_D0);
1249 state = platform_pci_get_power_state(dev);
1250 if (state == PCI_UNKNOWN)
1251 dev->current_state = PCI_D0;
1253 dev->current_state = state;
1258 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1259 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1260 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1261 pci_power_name(dev->current_state));
1262 dev->current_state = PCI_D3cold;
1266 state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1268 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1269 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1271 if (state == PCI_D0)
1275 * Force the entire word to 0. This doesn't affect PME_Status, disables
1276 * PME_En, and sets PowerState to 0.
1278 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1280 /* Mandatory transition delays; see PCI PM 1.2. */
1281 if (state == PCI_D3hot)
1282 pci_dev_d3_sleep(dev);
1283 else if (state == PCI_D2)
1284 udelay(PCI_PM_D2_DELAY);
1287 dev->current_state = PCI_D0;
1295 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1296 * @dev: PCI device to power up
1298 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1299 * to confirm the state change, restore its BARs if they might be lost and
1300 * reconfigure ASPM in accordance with the new power state.
1302 * If pci_restore_state() is going to be called right after a power state change
1303 * to D0, it is more efficient to use pci_power_up() directly instead of this
1306 static int pci_set_full_power_state(struct pci_dev *dev)
1311 ret = pci_power_up(dev);
1313 if (dev->current_state == PCI_D0)
1319 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1320 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1321 if (dev->current_state != PCI_D0) {
1322 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1323 pci_power_name(dev->current_state));
1324 } else if (ret > 0) {
1326 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1327 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1328 * from D3hot to D0 _may_ perform an internal reset, thereby
1329 * going to "D0 Uninitialized" rather than "D0 Initialized".
1330 * For example, at least some versions of the 3c905B and the
1331 * 3c556B exhibit this behaviour.
1333 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1334 * devices in a D3hot state at boot. Consequently, we need to
1335 * restore at least the BARs so that the device will be
1336 * accessible to its driver.
1338 pci_restore_bars(dev);
1345 * __pci_dev_set_current_state - Set current state of a PCI device
1346 * @dev: Device to handle
1347 * @data: pointer to state to be set
1349 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1351 pci_power_t state = *(pci_power_t *)data;
1353 dev->current_state = state;
1358 * pci_bus_set_current_state - Walk given bus and set current state of devices
1359 * @bus: Top bus of the subtree to walk.
1360 * @state: state to be set
1362 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1365 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1369 * pci_set_low_power_state - Put a PCI device into a low-power state.
1370 * @dev: PCI device to handle.
1371 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1373 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1376 * -EINVAL if the requested state is invalid.
1377 * -EIO if device does not support PCI PM or its PM capabilities register has a
1378 * wrong version, or device doesn't support the requested state.
1379 * 0 if device already is in the requested state.
1380 * 0 if device's power state has been successfully changed.
1382 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state)
1390 * Validate transition: We can enter D0 from any state, but if
1391 * we're already in a low-power state, we can only go deeper. E.g.,
1392 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1393 * we'd have to go from D3 to D0, then to D1.
1395 if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1396 pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1397 pci_power_name(dev->current_state),
1398 pci_power_name(state));
1402 /* Check if this device supports the desired state */
1403 if ((state == PCI_D1 && !dev->d1_support)
1404 || (state == PCI_D2 && !dev->d2_support))
1407 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1408 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1409 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1410 pci_power_name(dev->current_state),
1411 pci_power_name(state));
1412 dev->current_state = PCI_D3cold;
1416 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1419 /* Enter specified state */
1420 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1422 /* Mandatory power management transition delays; see PCI PM 1.2. */
1423 if (state == PCI_D3hot)
1424 pci_dev_d3_sleep(dev);
1425 else if (state == PCI_D2)
1426 udelay(PCI_PM_D2_DELAY);
1428 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1429 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1430 if (dev->current_state != state)
1431 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1432 pci_power_name(dev->current_state),
1433 pci_power_name(state));
1439 * pci_set_power_state - Set the power state of a PCI device
1440 * @dev: PCI device to handle.
1441 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1443 * Transition a device to a new power state, using the platform firmware and/or
1444 * the device's PCI PM registers.
1447 * -EINVAL if the requested state is invalid.
1448 * -EIO if device does not support PCI PM or its PM capabilities register has a
1449 * wrong version, or device doesn't support the requested state.
1450 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1451 * 0 if device already is in the requested state.
1452 * 0 if the transition is to D3 but D3 is not supported.
1453 * 0 if device's power state has been successfully changed.
1455 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1459 /* Bound the state we're entering */
1460 if (state > PCI_D3cold)
1462 else if (state < PCI_D0)
1464 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1467 * If the device or the parent bridge do not support PCI
1468 * PM, ignore the request if we're doing anything other
1469 * than putting it into D0 (which would only happen on
1474 /* Check if we're already there */
1475 if (dev->current_state == state)
1478 if (state == PCI_D0)
1479 return pci_set_full_power_state(dev);
1482 * This device is quirked not to be put into D3, so don't put it in
1485 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1488 if (state == PCI_D3cold) {
1490 * To put the device in D3cold, put it into D3hot in the native
1491 * way, then put it into D3cold using platform ops.
1493 error = pci_set_low_power_state(dev, PCI_D3hot);
1495 if (pci_platform_power_transition(dev, PCI_D3cold))
1498 /* Powering off a bridge may power off the whole hierarchy */
1499 if (dev->current_state == PCI_D3cold)
1500 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1502 error = pci_set_low_power_state(dev, state);
1504 if (pci_platform_power_transition(dev, state))
1510 EXPORT_SYMBOL(pci_set_power_state);
1512 #define PCI_EXP_SAVE_REGS 7
1514 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1515 u16 cap, bool extended)
1517 struct pci_cap_saved_state *tmp;
1519 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1520 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1526 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1528 return _pci_find_saved_cap(dev, cap, false);
1531 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1533 return _pci_find_saved_cap(dev, cap, true);
1536 static int pci_save_pcie_state(struct pci_dev *dev)
1539 struct pci_cap_saved_state *save_state;
1542 if (!pci_is_pcie(dev))
1545 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1547 pci_err(dev, "buffer not found in %s\n", __func__);
1551 cap = (u16 *)&save_state->cap.data[0];
1552 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1553 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1554 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1555 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1556 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1557 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1558 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1563 void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1565 #ifdef CONFIG_PCIEASPM
1566 struct pci_dev *bridge;
1569 bridge = pci_upstream_bridge(dev);
1570 if (bridge && bridge->ltr_path) {
1571 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1572 if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1573 pci_dbg(bridge, "re-enabling LTR\n");
1574 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1575 PCI_EXP_DEVCTL2_LTR_EN);
1581 static void pci_restore_pcie_state(struct pci_dev *dev)
1584 struct pci_cap_saved_state *save_state;
1587 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1592 * Downstream ports reset the LTR enable bit when link goes down.
1593 * Check and re-configure the bit here before restoring device.
1594 * PCIe r5.0, sec 7.5.3.16.
1596 pci_bridge_reconfigure_ltr(dev);
1598 cap = (u16 *)&save_state->cap.data[0];
1599 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1600 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1601 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1602 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1603 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1604 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1605 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1608 static int pci_save_pcix_state(struct pci_dev *dev)
1611 struct pci_cap_saved_state *save_state;
1613 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1617 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1619 pci_err(dev, "buffer not found in %s\n", __func__);
1623 pci_read_config_word(dev, pos + PCI_X_CMD,
1624 (u16 *)save_state->cap.data);
1629 static void pci_restore_pcix_state(struct pci_dev *dev)
1632 struct pci_cap_saved_state *save_state;
1635 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1636 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1637 if (!save_state || !pos)
1639 cap = (u16 *)&save_state->cap.data[0];
1641 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1644 static void pci_save_ltr_state(struct pci_dev *dev)
1647 struct pci_cap_saved_state *save_state;
1650 if (!pci_is_pcie(dev))
1653 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1657 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1659 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1663 /* Some broken devices only support dword access to LTR */
1664 cap = &save_state->cap.data[0];
1665 pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1668 static void pci_restore_ltr_state(struct pci_dev *dev)
1670 struct pci_cap_saved_state *save_state;
1674 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1675 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1676 if (!save_state || !ltr)
1679 /* Some broken devices only support dword access to LTR */
1680 cap = &save_state->cap.data[0];
1681 pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1685 * pci_save_state - save the PCI configuration space of a device before
1687 * @dev: PCI device that we're dealing with
1689 int pci_save_state(struct pci_dev *dev)
1692 /* XXX: 100% dword access ok here? */
1693 for (i = 0; i < 16; i++) {
1694 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1695 pci_dbg(dev, "save config %#04x: %#010x\n",
1696 i * 4, dev->saved_config_space[i]);
1698 dev->state_saved = true;
1700 i = pci_save_pcie_state(dev);
1704 i = pci_save_pcix_state(dev);
1708 pci_save_ltr_state(dev);
1709 pci_save_dpc_state(dev);
1710 pci_save_aer_state(dev);
1711 pci_save_ptm_state(dev);
1712 return pci_save_vc_state(dev);
1714 EXPORT_SYMBOL(pci_save_state);
1716 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1717 u32 saved_val, int retry, bool force)
1721 pci_read_config_dword(pdev, offset, &val);
1722 if (!force && val == saved_val)
1726 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1727 offset, val, saved_val);
1728 pci_write_config_dword(pdev, offset, saved_val);
1732 pci_read_config_dword(pdev, offset, &val);
1733 if (val == saved_val)
1740 static void pci_restore_config_space_range(struct pci_dev *pdev,
1741 int start, int end, int retry,
1746 for (index = end; index >= start; index--)
1747 pci_restore_config_dword(pdev, 4 * index,
1748 pdev->saved_config_space[index],
1752 static void pci_restore_config_space(struct pci_dev *pdev)
1754 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1755 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1756 /* Restore BARs before the command register. */
1757 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1758 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1759 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1760 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1763 * Force rewriting of prefetch registers to avoid S3 resume
1764 * issues on Intel PCI bridges that occur when these
1765 * registers are not explicitly written.
1767 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1768 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1770 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1774 static void pci_restore_rebar_state(struct pci_dev *pdev)
1776 unsigned int pos, nbars, i;
1779 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1783 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1784 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
1786 for (i = 0; i < nbars; i++, pos += 8) {
1787 struct resource *res;
1790 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1791 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1792 res = pdev->resource + bar_idx;
1793 size = pci_rebar_bytes_to_size(resource_size(res));
1794 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1795 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
1796 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1801 * pci_restore_state - Restore the saved state of a PCI device
1802 * @dev: PCI device that we're dealing with
1804 void pci_restore_state(struct pci_dev *dev)
1806 if (!dev->state_saved)
1810 * Restore max latencies (in the LTR capability) before enabling
1811 * LTR itself (in the PCIe capability).
1813 pci_restore_ltr_state(dev);
1815 pci_restore_pcie_state(dev);
1816 pci_restore_pasid_state(dev);
1817 pci_restore_pri_state(dev);
1818 pci_restore_ats_state(dev);
1819 pci_restore_vc_state(dev);
1820 pci_restore_rebar_state(dev);
1821 pci_restore_dpc_state(dev);
1822 pci_restore_ptm_state(dev);
1824 pci_aer_clear_status(dev);
1825 pci_restore_aer_state(dev);
1827 pci_restore_config_space(dev);
1829 pci_restore_pcix_state(dev);
1830 pci_restore_msi_state(dev);
1832 /* Restore ACS and IOV configuration state */
1833 pci_enable_acs(dev);
1834 pci_restore_iov_state(dev);
1836 dev->state_saved = false;
1838 EXPORT_SYMBOL(pci_restore_state);
1840 struct pci_saved_state {
1841 u32 config_space[16];
1842 struct pci_cap_saved_data cap[];
1846 * pci_store_saved_state - Allocate and return an opaque struct containing
1847 * the device saved state.
1848 * @dev: PCI device that we're dealing with
1850 * Return NULL if no state or error.
1852 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1854 struct pci_saved_state *state;
1855 struct pci_cap_saved_state *tmp;
1856 struct pci_cap_saved_data *cap;
1859 if (!dev->state_saved)
1862 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1864 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1865 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1867 state = kzalloc(size, GFP_KERNEL);
1871 memcpy(state->config_space, dev->saved_config_space,
1872 sizeof(state->config_space));
1875 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1876 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1877 memcpy(cap, &tmp->cap, len);
1878 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1880 /* Empty cap_save terminates list */
1884 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1887 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1888 * @dev: PCI device that we're dealing with
1889 * @state: Saved state returned from pci_store_saved_state()
1891 int pci_load_saved_state(struct pci_dev *dev,
1892 struct pci_saved_state *state)
1894 struct pci_cap_saved_data *cap;
1896 dev->state_saved = false;
1901 memcpy(dev->saved_config_space, state->config_space,
1902 sizeof(state->config_space));
1906 struct pci_cap_saved_state *tmp;
1908 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1909 if (!tmp || tmp->cap.size != cap->size)
1912 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1913 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1914 sizeof(struct pci_cap_saved_data) + cap->size);
1917 dev->state_saved = true;
1920 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1923 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1924 * and free the memory allocated for it.
1925 * @dev: PCI device that we're dealing with
1926 * @state: Pointer to saved state returned from pci_store_saved_state()
1928 int pci_load_and_free_saved_state(struct pci_dev *dev,
1929 struct pci_saved_state **state)
1931 int ret = pci_load_saved_state(dev, *state);
1936 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1938 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1940 return pci_enable_resources(dev, bars);
1943 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1946 struct pci_dev *bridge;
1950 err = pci_set_power_state(dev, PCI_D0);
1951 if (err < 0 && err != -EIO)
1954 bridge = pci_upstream_bridge(dev);
1956 pcie_aspm_powersave_config_link(bridge);
1958 err = pcibios_enable_device(dev, bars);
1961 pci_fixup_device(pci_fixup_enable, dev);
1963 if (dev->msi_enabled || dev->msix_enabled)
1966 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1968 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1969 if (cmd & PCI_COMMAND_INTX_DISABLE)
1970 pci_write_config_word(dev, PCI_COMMAND,
1971 cmd & ~PCI_COMMAND_INTX_DISABLE);
1978 * pci_reenable_device - Resume abandoned device
1979 * @dev: PCI device to be resumed
1981 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1982 * to be called by normal code, write proper resume handler and use it instead.
1984 int pci_reenable_device(struct pci_dev *dev)
1986 if (pci_is_enabled(dev))
1987 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1990 EXPORT_SYMBOL(pci_reenable_device);
1992 static void pci_enable_bridge(struct pci_dev *dev)
1994 struct pci_dev *bridge;
1997 bridge = pci_upstream_bridge(dev);
1999 pci_enable_bridge(bridge);
2001 if (pci_is_enabled(dev)) {
2002 if (!dev->is_busmaster)
2003 pci_set_master(dev);
2007 retval = pci_enable_device(dev);
2009 pci_err(dev, "Error enabling bridge (%d), continuing\n",
2011 pci_set_master(dev);
2014 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2016 struct pci_dev *bridge;
2021 * Power state could be unknown at this point, either due to a fresh
2022 * boot or a device removal call. So get the current power state
2023 * so that things like MSI message writing will behave as expected
2024 * (e.g. if the device really is in D0 at enable time).
2026 pci_update_current_state(dev, dev->current_state);
2028 if (atomic_inc_return(&dev->enable_cnt) > 1)
2029 return 0; /* already enabled */
2031 bridge = pci_upstream_bridge(dev);
2033 pci_enable_bridge(bridge);
2035 /* only skip sriov related */
2036 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2037 if (dev->resource[i].flags & flags)
2039 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2040 if (dev->resource[i].flags & flags)
2043 err = do_pci_enable_device(dev, bars);
2045 atomic_dec(&dev->enable_cnt);
2050 * pci_enable_device_io - Initialize a device for use with IO space
2051 * @dev: PCI device to be initialized
2053 * Initialize device before it's used by a driver. Ask low-level code
2054 * to enable I/O resources. Wake up the device if it was suspended.
2055 * Beware, this function can fail.
2057 int pci_enable_device_io(struct pci_dev *dev)
2059 return pci_enable_device_flags(dev, IORESOURCE_IO);
2061 EXPORT_SYMBOL(pci_enable_device_io);
2064 * pci_enable_device_mem - Initialize a device for use with Memory space
2065 * @dev: PCI device to be initialized
2067 * Initialize device before it's used by a driver. Ask low-level code
2068 * to enable Memory resources. Wake up the device if it was suspended.
2069 * Beware, this function can fail.
2071 int pci_enable_device_mem(struct pci_dev *dev)
2073 return pci_enable_device_flags(dev, IORESOURCE_MEM);
2075 EXPORT_SYMBOL(pci_enable_device_mem);
2078 * pci_enable_device - Initialize device before it's used by a driver.
2079 * @dev: PCI device to be initialized
2081 * Initialize device before it's used by a driver. Ask low-level code
2082 * to enable I/O and memory. Wake up the device if it was suspended.
2083 * Beware, this function can fail.
2085 * Note we don't actually enable the device many times if we call
2086 * this function repeatedly (we just increment the count).
2088 int pci_enable_device(struct pci_dev *dev)
2090 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2092 EXPORT_SYMBOL(pci_enable_device);
2095 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
2096 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
2097 * there's no need to track it separately. pci_devres is initialized
2098 * when a device is enabled using managed PCI device enable interface.
2101 unsigned int enabled:1;
2102 unsigned int pinned:1;
2103 unsigned int orig_intx:1;
2104 unsigned int restore_intx:1;
2109 static void pcim_release(struct device *gendev, void *res)
2111 struct pci_dev *dev = to_pci_dev(gendev);
2112 struct pci_devres *this = res;
2115 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2116 if (this->region_mask & (1 << i))
2117 pci_release_region(dev, i);
2122 if (this->restore_intx)
2123 pci_intx(dev, this->orig_intx);
2125 if (this->enabled && !this->pinned)
2126 pci_disable_device(dev);
2129 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2131 struct pci_devres *dr, *new_dr;
2133 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2137 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2140 return devres_get(&pdev->dev, new_dr, NULL, NULL);
2143 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2145 if (pci_is_managed(pdev))
2146 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2151 * pcim_enable_device - Managed pci_enable_device()
2152 * @pdev: PCI device to be initialized
2154 * Managed pci_enable_device().
2156 int pcim_enable_device(struct pci_dev *pdev)
2158 struct pci_devres *dr;
2161 dr = get_pci_dr(pdev);
2167 rc = pci_enable_device(pdev);
2169 pdev->is_managed = 1;
2174 EXPORT_SYMBOL(pcim_enable_device);
2177 * pcim_pin_device - Pin managed PCI device
2178 * @pdev: PCI device to pin
2180 * Pin managed PCI device @pdev. Pinned device won't be disabled on
2181 * driver detach. @pdev must have been enabled with
2182 * pcim_enable_device().
2184 void pcim_pin_device(struct pci_dev *pdev)
2186 struct pci_devres *dr;
2188 dr = find_pci_dr(pdev);
2189 WARN_ON(!dr || !dr->enabled);
2193 EXPORT_SYMBOL(pcim_pin_device);
2196 * pcibios_device_add - provide arch specific hooks when adding device dev
2197 * @dev: the PCI device being added
2199 * Permits the platform to provide architecture specific functionality when
2200 * devices are added. This is the default implementation. Architecture
2201 * implementations can override this.
2203 int __weak pcibios_device_add(struct pci_dev *dev)
2209 * pcibios_release_device - provide arch specific hooks when releasing
2211 * @dev: the PCI device being released
2213 * Permits the platform to provide architecture specific functionality when
2214 * devices are released. This is the default implementation. Architecture
2215 * implementations can override this.
2217 void __weak pcibios_release_device(struct pci_dev *dev) {}
2220 * pcibios_disable_device - disable arch specific PCI resources for device dev
2221 * @dev: the PCI device to disable
2223 * Disables architecture specific PCI resources for the device. This
2224 * is the default implementation. Architecture implementations can
2227 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2230 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2231 * @irq: ISA IRQ to penalize
2232 * @active: IRQ active or not
2234 * Permits the platform to provide architecture-specific functionality when
2235 * penalizing ISA IRQs. This is the default implementation. Architecture
2236 * implementations can override this.
2238 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2240 static void do_pci_disable_device(struct pci_dev *dev)
2244 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2245 if (pci_command & PCI_COMMAND_MASTER) {
2246 pci_command &= ~PCI_COMMAND_MASTER;
2247 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2250 pcibios_disable_device(dev);
2254 * pci_disable_enabled_device - Disable device without updating enable_cnt
2255 * @dev: PCI device to disable
2257 * NOTE: This function is a backend of PCI power management routines and is
2258 * not supposed to be called drivers.
2260 void pci_disable_enabled_device(struct pci_dev *dev)
2262 if (pci_is_enabled(dev))
2263 do_pci_disable_device(dev);
2267 * pci_disable_device - Disable PCI device after use
2268 * @dev: PCI device to be disabled
2270 * Signal to the system that the PCI device is not in use by the system
2271 * anymore. This only involves disabling PCI bus-mastering, if active.
2273 * Note we don't actually disable the device until all callers of
2274 * pci_enable_device() have called pci_disable_device().
2276 void pci_disable_device(struct pci_dev *dev)
2278 struct pci_devres *dr;
2280 dr = find_pci_dr(dev);
2284 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2285 "disabling already-disabled device");
2287 if (atomic_dec_return(&dev->enable_cnt) != 0)
2290 do_pci_disable_device(dev);
2292 dev->is_busmaster = 0;
2294 EXPORT_SYMBOL(pci_disable_device);
2297 * pcibios_set_pcie_reset_state - set reset state for device dev
2298 * @dev: the PCIe device reset
2299 * @state: Reset state to enter into
2301 * Set the PCIe reset state for the device. This is the default
2302 * implementation. Architecture implementations can override this.
2304 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2305 enum pcie_reset_state state)
2311 * pci_set_pcie_reset_state - set reset state for device dev
2312 * @dev: the PCIe device reset
2313 * @state: Reset state to enter into
2315 * Sets the PCI reset state for the device.
2317 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2319 return pcibios_set_pcie_reset_state(dev, state);
2321 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2323 #ifdef CONFIG_PCIEAER
2324 void pcie_clear_device_status(struct pci_dev *dev)
2328 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2329 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2334 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2335 * @dev: PCIe root port or event collector.
2337 void pcie_clear_root_pme_status(struct pci_dev *dev)
2339 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2343 * pci_check_pme_status - Check if given device has generated PME.
2344 * @dev: Device to check.
2346 * Check the PME status of the device and if set, clear it and clear PME enable
2347 * (if set). Return 'true' if PME status and PME enable were both set or
2348 * 'false' otherwise.
2350 bool pci_check_pme_status(struct pci_dev *dev)
2359 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2360 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2361 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2364 /* Clear PME status. */
2365 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2366 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2367 /* Disable PME to avoid interrupt flood. */
2368 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2372 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2378 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2379 * @dev: Device to handle.
2380 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2382 * Check if @dev has generated PME and queue a resume request for it in that
2385 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2387 if (pme_poll_reset && dev->pme_poll)
2388 dev->pme_poll = false;
2390 if (pci_check_pme_status(dev)) {
2391 pci_wakeup_event(dev);
2392 pm_request_resume(&dev->dev);
2398 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2399 * @bus: Top bus of the subtree to walk.
2401 void pci_pme_wakeup_bus(struct pci_bus *bus)
2404 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2409 * pci_pme_capable - check the capability of PCI device to generate PME#
2410 * @dev: PCI device to handle.
2411 * @state: PCI state from which device will issue PME#.
2413 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2418 return !!(dev->pme_support & (1 << state));
2420 EXPORT_SYMBOL(pci_pme_capable);
2422 static void pci_pme_list_scan(struct work_struct *work)
2424 struct pci_pme_device *pme_dev, *n;
2426 mutex_lock(&pci_pme_list_mutex);
2427 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2428 struct pci_dev *pdev = pme_dev->dev;
2430 if (pdev->pme_poll) {
2431 struct pci_dev *bridge = pdev->bus->self;
2432 struct device *dev = &pdev->dev;
2436 * If bridge is in low power state, the
2437 * configuration space of subordinate devices
2438 * may be not accessible
2440 if (bridge && bridge->current_state != PCI_D0)
2444 * If the device is in a low power state it
2445 * should not be polled either.
2447 pm_status = pm_runtime_get_if_active(dev, true);
2451 if (pdev->current_state != PCI_D3cold)
2452 pci_pme_wakeup(pdev, NULL);
2455 pm_runtime_put(dev);
2457 list_del(&pme_dev->list);
2461 if (!list_empty(&pci_pme_list))
2462 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2463 msecs_to_jiffies(PME_TIMEOUT));
2464 mutex_unlock(&pci_pme_list_mutex);
2467 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2471 if (!dev->pme_support)
2474 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2475 /* Clear PME_Status by writing 1 to it and enable PME# */
2476 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2478 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2480 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2484 * pci_pme_restore - Restore PME configuration after config space restore.
2485 * @dev: PCI device to update.
2487 void pci_pme_restore(struct pci_dev *dev)
2491 if (!dev->pme_support)
2494 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2495 if (dev->wakeup_prepared) {
2496 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2497 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2499 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2500 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2502 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2506 * pci_pme_active - enable or disable PCI device's PME# function
2507 * @dev: PCI device to handle.
2508 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2510 * The caller must verify that the device is capable of generating PME# before
2511 * calling this function with @enable equal to 'true'.
2513 void pci_pme_active(struct pci_dev *dev, bool enable)
2515 __pci_pme_active(dev, enable);
2518 * PCI (as opposed to PCIe) PME requires that the device have
2519 * its PME# line hooked up correctly. Not all hardware vendors
2520 * do this, so the PME never gets delivered and the device
2521 * remains asleep. The easiest way around this is to
2522 * periodically walk the list of suspended devices and check
2523 * whether any have their PME flag set. The assumption is that
2524 * we'll wake up often enough anyway that this won't be a huge
2525 * hit, and the power savings from the devices will still be a
2528 * Although PCIe uses in-band PME message instead of PME# line
2529 * to report PME, PME does not work for some PCIe devices in
2530 * reality. For example, there are devices that set their PME
2531 * status bits, but don't really bother to send a PME message;
2532 * there are PCI Express Root Ports that don't bother to
2533 * trigger interrupts when they receive PME messages from the
2534 * devices below. So PME poll is used for PCIe devices too.
2537 if (dev->pme_poll) {
2538 struct pci_pme_device *pme_dev;
2540 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2543 pci_warn(dev, "can't enable PME#\n");
2547 mutex_lock(&pci_pme_list_mutex);
2548 list_add(&pme_dev->list, &pci_pme_list);
2549 if (list_is_singular(&pci_pme_list))
2550 queue_delayed_work(system_freezable_wq,
2552 msecs_to_jiffies(PME_TIMEOUT));
2553 mutex_unlock(&pci_pme_list_mutex);
2555 mutex_lock(&pci_pme_list_mutex);
2556 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2557 if (pme_dev->dev == dev) {
2558 list_del(&pme_dev->list);
2563 mutex_unlock(&pci_pme_list_mutex);
2567 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2569 EXPORT_SYMBOL(pci_pme_active);
2572 * __pci_enable_wake - enable PCI device as wakeup event source
2573 * @dev: PCI device affected
2574 * @state: PCI state from which device will issue wakeup events
2575 * @enable: True to enable event generation; false to disable
2577 * This enables the device as a wakeup event source, or disables it.
2578 * When such events involves platform-specific hooks, those hooks are
2579 * called automatically by this routine.
2581 * Devices with legacy power management (no standard PCI PM capabilities)
2582 * always require such platform hooks.
2585 * 0 is returned on success
2586 * -EINVAL is returned if device is not supposed to wake up the system
2587 * Error code depending on the platform is returned if both the platform and
2588 * the native mechanism fail to enable the generation of wake-up events
2590 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2595 * Bridges that are not power-manageable directly only signal
2596 * wakeup on behalf of subordinate devices which is set up
2597 * elsewhere, so skip them. However, bridges that are
2598 * power-manageable may signal wakeup for themselves (for example,
2599 * on a hotplug event) and they need to be covered here.
2601 if (!pci_power_manageable(dev))
2604 /* Don't do the same thing twice in a row for one device. */
2605 if (!!enable == !!dev->wakeup_prepared)
2609 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2610 * Anderson we should be doing PME# wake enable followed by ACPI wake
2611 * enable. To disable wake-up we call the platform first, for symmetry.
2618 * Enable PME signaling if the device can signal PME from
2619 * D3cold regardless of whether or not it can signal PME from
2620 * the current target state, because that will allow it to
2621 * signal PME when the hierarchy above it goes into D3cold and
2622 * the device itself ends up in D3cold as a result of that.
2624 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2625 pci_pme_active(dev, true);
2628 error = platform_pci_set_wakeup(dev, true);
2632 dev->wakeup_prepared = true;
2634 platform_pci_set_wakeup(dev, false);
2635 pci_pme_active(dev, false);
2636 dev->wakeup_prepared = false;
2643 * pci_enable_wake - change wakeup settings for a PCI device
2644 * @pci_dev: Target device
2645 * @state: PCI state from which device will issue wakeup events
2646 * @enable: Whether or not to enable event generation
2648 * If @enable is set, check device_may_wakeup() for the device before calling
2649 * __pci_enable_wake() for it.
2651 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2653 if (enable && !device_may_wakeup(&pci_dev->dev))
2656 return __pci_enable_wake(pci_dev, state, enable);
2658 EXPORT_SYMBOL(pci_enable_wake);
2661 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2662 * @dev: PCI device to prepare
2663 * @enable: True to enable wake-up event generation; false to disable
2665 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2666 * and this function allows them to set that up cleanly - pci_enable_wake()
2667 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2668 * ordering constraints.
2670 * This function only returns error code if the device is not allowed to wake
2671 * up the system from sleep or it is not capable of generating PME# from both
2672 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2674 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2676 return pci_pme_capable(dev, PCI_D3cold) ?
2677 pci_enable_wake(dev, PCI_D3cold, enable) :
2678 pci_enable_wake(dev, PCI_D3hot, enable);
2680 EXPORT_SYMBOL(pci_wake_from_d3);
2683 * pci_target_state - find an appropriate low power state for a given PCI dev
2685 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2687 * Use underlying platform code to find a supported low power state for @dev.
2688 * If the platform can't manage @dev, return the deepest state from which it
2689 * can generate wake events, based on any available PME info.
2691 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2693 if (platform_pci_power_manageable(dev)) {
2695 * Call the platform to find the target state for the device.
2697 pci_power_t state = platform_pci_choose_state(dev);
2700 case PCI_POWER_ERROR:
2706 if (pci_no_d1d2(dev))
2714 * If the device is in D3cold even though it's not power-manageable by
2715 * the platform, it may have been powered down by non-standard means.
2716 * Best to let it slumber.
2718 if (dev->current_state == PCI_D3cold)
2720 else if (!dev->pm_cap)
2723 if (wakeup && dev->pme_support) {
2724 pci_power_t state = PCI_D3hot;
2727 * Find the deepest state from which the device can generate
2730 while (state && !(dev->pme_support & (1 << state)))
2735 else if (dev->pme_support & 1)
2743 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2744 * into a sleep state
2745 * @dev: Device to handle.
2747 * Choose the power state appropriate for the device depending on whether
2748 * it can wake up the system and/or is power manageable by the platform
2749 * (PCI_D3hot is the default) and put the device into that state.
2751 int pci_prepare_to_sleep(struct pci_dev *dev)
2753 bool wakeup = device_may_wakeup(&dev->dev);
2754 pci_power_t target_state = pci_target_state(dev, wakeup);
2757 if (target_state == PCI_POWER_ERROR)
2760 pci_enable_wake(dev, target_state, wakeup);
2762 error = pci_set_power_state(dev, target_state);
2765 pci_enable_wake(dev, target_state, false);
2769 EXPORT_SYMBOL(pci_prepare_to_sleep);
2772 * pci_back_from_sleep - turn PCI device on during system-wide transition
2773 * into working state
2774 * @dev: Device to handle.
2776 * Disable device's system wake-up capability and put it into D0.
2778 int pci_back_from_sleep(struct pci_dev *dev)
2780 int ret = pci_set_power_state(dev, PCI_D0);
2785 pci_enable_wake(dev, PCI_D0, false);
2788 EXPORT_SYMBOL(pci_back_from_sleep);
2791 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2792 * @dev: PCI device being suspended.
2794 * Prepare @dev to generate wake-up events at run time and put it into a low
2797 int pci_finish_runtime_suspend(struct pci_dev *dev)
2799 pci_power_t target_state;
2802 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2803 if (target_state == PCI_POWER_ERROR)
2806 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2808 error = pci_set_power_state(dev, target_state);
2811 pci_enable_wake(dev, target_state, false);
2817 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2818 * @dev: Device to check.
2820 * Return true if the device itself is capable of generating wake-up events
2821 * (through the platform or using the native PCIe PME) or if the device supports
2822 * PME and one of its upstream bridges can generate wake-up events.
2824 bool pci_dev_run_wake(struct pci_dev *dev)
2826 struct pci_bus *bus = dev->bus;
2828 if (!dev->pme_support)
2831 /* PME-capable in principle, but not from the target power state */
2832 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2835 if (device_can_wakeup(&dev->dev))
2838 while (bus->parent) {
2839 struct pci_dev *bridge = bus->self;
2841 if (device_can_wakeup(&bridge->dev))
2847 /* We have reached the root bus. */
2849 return device_can_wakeup(bus->bridge);
2853 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2856 * pci_dev_need_resume - Check if it is necessary to resume the device.
2857 * @pci_dev: Device to check.
2859 * Return 'true' if the device is not runtime-suspended or it has to be
2860 * reconfigured due to wakeup settings difference between system and runtime
2861 * suspend, or the current power state of it is not suitable for the upcoming
2862 * (system-wide) transition.
2864 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2866 struct device *dev = &pci_dev->dev;
2867 pci_power_t target_state;
2869 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2872 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2875 * If the earlier platform check has not triggered, D3cold is just power
2876 * removal on top of D3hot, so no need to resume the device in that
2879 return target_state != pci_dev->current_state &&
2880 target_state != PCI_D3cold &&
2881 pci_dev->current_state != PCI_D3hot;
2885 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2886 * @pci_dev: Device to check.
2888 * If the device is suspended and it is not configured for system wakeup,
2889 * disable PME for it to prevent it from waking up the system unnecessarily.
2891 * Note that if the device's power state is D3cold and the platform check in
2892 * pci_dev_need_resume() has not triggered, the device's configuration need not
2895 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2897 struct device *dev = &pci_dev->dev;
2899 spin_lock_irq(&dev->power.lock);
2901 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2902 pci_dev->current_state < PCI_D3cold)
2903 __pci_pme_active(pci_dev, false);
2905 spin_unlock_irq(&dev->power.lock);
2909 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2910 * @pci_dev: Device to handle.
2912 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2913 * it might have been disabled during the prepare phase of system suspend if
2914 * the device was not configured for system wakeup.
2916 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2918 struct device *dev = &pci_dev->dev;
2920 if (!pci_dev_run_wake(pci_dev))
2923 spin_lock_irq(&dev->power.lock);
2925 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2926 __pci_pme_active(pci_dev, true);
2928 spin_unlock_irq(&dev->power.lock);
2932 * pci_choose_state - Choose the power state of a PCI device.
2933 * @dev: Target PCI device.
2934 * @state: Target state for the whole system.
2936 * Returns PCI power state suitable for @dev and @state.
2938 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2940 if (state.event == PM_EVENT_ON)
2943 return pci_target_state(dev, false);
2945 EXPORT_SYMBOL(pci_choose_state);
2947 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2949 struct device *dev = &pdev->dev;
2950 struct device *parent = dev->parent;
2953 pm_runtime_get_sync(parent);
2954 pm_runtime_get_noresume(dev);
2956 * pdev->current_state is set to PCI_D3cold during suspending,
2957 * so wait until suspending completes
2959 pm_runtime_barrier(dev);
2961 * Only need to resume devices in D3cold, because config
2962 * registers are still accessible for devices suspended but
2965 if (pdev->current_state == PCI_D3cold)
2966 pm_runtime_resume(dev);
2969 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2971 struct device *dev = &pdev->dev;
2972 struct device *parent = dev->parent;
2974 pm_runtime_put(dev);
2976 pm_runtime_put_sync(parent);
2979 static const struct dmi_system_id bridge_d3_blacklist[] = {
2983 * Gigabyte X299 root port is not marked as hotplug capable
2984 * which allows Linux to power manage it. However, this
2985 * confuses the BIOS SMI handler so don't power manage root
2986 * ports on that system.
2988 .ident = "X299 DESIGNARE EX-CF",
2990 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2991 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2996 * Downstream device is not accessible after putting a root port
2997 * into D3cold and back into D0 on Elo Continental Z2 board
2999 .ident = "Elo Continental Z2",
3001 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
3002 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
3003 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
3011 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
3012 * @bridge: Bridge to check
3014 * This function checks if it is possible to move the bridge to D3.
3015 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
3017 bool pci_bridge_d3_possible(struct pci_dev *bridge)
3019 if (!pci_is_pcie(bridge))
3022 switch (pci_pcie_type(bridge)) {
3023 case PCI_EXP_TYPE_ROOT_PORT:
3024 case PCI_EXP_TYPE_UPSTREAM:
3025 case PCI_EXP_TYPE_DOWNSTREAM:
3026 if (pci_bridge_d3_disable)
3030 * Hotplug ports handled by firmware in System Management Mode
3031 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3033 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3036 if (pci_bridge_d3_force)
3039 /* Even the oldest 2010 Thunderbolt controller supports D3. */
3040 if (bridge->is_thunderbolt)
3043 /* Platform might know better if the bridge supports D3 */
3044 if (platform_pci_bridge_d3(bridge))
3048 * Hotplug ports handled natively by the OS were not validated
3049 * by vendors for runtime D3 at least until 2018 because there
3050 * was no OS support.
3052 if (bridge->is_hotplug_bridge)
3055 if (dmi_check_system(bridge_d3_blacklist))
3059 * It should be safe to put PCIe ports from 2015 or newer
3062 if (dmi_get_bios_year() >= 2015)
3070 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3072 bool *d3cold_ok = data;
3074 if (/* The device needs to be allowed to go D3cold ... */
3075 dev->no_d3cold || !dev->d3cold_allowed ||
3077 /* ... and if it is wakeup capable to do so from D3cold. */
3078 (device_may_wakeup(&dev->dev) &&
3079 !pci_pme_capable(dev, PCI_D3cold)) ||
3081 /* If it is a bridge it must be allowed to go to D3. */
3082 !pci_power_manageable(dev))
3090 * pci_bridge_d3_update - Update bridge D3 capabilities
3091 * @dev: PCI device which is changed
3093 * Update upstream bridge PM capabilities accordingly depending on if the
3094 * device PM configuration was changed or the device is being removed. The
3095 * change is also propagated upstream.
3097 void pci_bridge_d3_update(struct pci_dev *dev)
3099 bool remove = !device_is_registered(&dev->dev);
3100 struct pci_dev *bridge;
3101 bool d3cold_ok = true;
3103 bridge = pci_upstream_bridge(dev);
3104 if (!bridge || !pci_bridge_d3_possible(bridge))
3108 * If D3 is currently allowed for the bridge, removing one of its
3109 * children won't change that.
3111 if (remove && bridge->bridge_d3)
3115 * If D3 is currently allowed for the bridge and a child is added or
3116 * changed, disallowance of D3 can only be caused by that child, so
3117 * we only need to check that single device, not any of its siblings.
3119 * If D3 is currently not allowed for the bridge, checking the device
3120 * first may allow us to skip checking its siblings.
3123 pci_dev_check_d3cold(dev, &d3cold_ok);
3126 * If D3 is currently not allowed for the bridge, this may be caused
3127 * either by the device being changed/removed or any of its siblings,
3128 * so we need to go through all children to find out if one of them
3129 * continues to block D3.
3131 if (d3cold_ok && !bridge->bridge_d3)
3132 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3135 if (bridge->bridge_d3 != d3cold_ok) {
3136 bridge->bridge_d3 = d3cold_ok;
3137 /* Propagate change to upstream bridges */
3138 pci_bridge_d3_update(bridge);
3143 * pci_d3cold_enable - Enable D3cold for device
3144 * @dev: PCI device to handle
3146 * This function can be used in drivers to enable D3cold from the device
3147 * they handle. It also updates upstream PCI bridge PM capabilities
3150 void pci_d3cold_enable(struct pci_dev *dev)
3152 if (dev->no_d3cold) {
3153 dev->no_d3cold = false;
3154 pci_bridge_d3_update(dev);
3157 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3160 * pci_d3cold_disable - Disable D3cold for device
3161 * @dev: PCI device to handle
3163 * This function can be used in drivers to disable D3cold from the device
3164 * they handle. It also updates upstream PCI bridge PM capabilities
3167 void pci_d3cold_disable(struct pci_dev *dev)
3169 if (!dev->no_d3cold) {
3170 dev->no_d3cold = true;
3171 pci_bridge_d3_update(dev);
3174 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3177 * pci_pm_init - Initialize PM functions of given PCI device
3178 * @dev: PCI device to handle.
3180 void pci_pm_init(struct pci_dev *dev)
3186 pm_runtime_forbid(&dev->dev);
3187 pm_runtime_set_active(&dev->dev);
3188 pm_runtime_enable(&dev->dev);
3189 device_enable_async_suspend(&dev->dev);
3190 dev->wakeup_prepared = false;
3193 dev->pme_support = 0;
3195 /* find PCI PM capability in list */
3196 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3199 /* Check device's ability to generate PME# */
3200 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3202 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3203 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3204 pmc & PCI_PM_CAP_VER_MASK);
3209 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3210 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3211 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3212 dev->d3cold_allowed = true;
3214 dev->d1_support = false;
3215 dev->d2_support = false;
3216 if (!pci_no_d1d2(dev)) {
3217 if (pmc & PCI_PM_CAP_D1)
3218 dev->d1_support = true;
3219 if (pmc & PCI_PM_CAP_D2)
3220 dev->d2_support = true;
3222 if (dev->d1_support || dev->d2_support)
3223 pci_info(dev, "supports%s%s\n",
3224 dev->d1_support ? " D1" : "",
3225 dev->d2_support ? " D2" : "");
3228 pmc &= PCI_PM_CAP_PME_MASK;
3230 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3231 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3232 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3233 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3234 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3235 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3236 dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc);
3237 dev->pme_poll = true;
3239 * Make device's PM flags reflect the wake-up capability, but
3240 * let the user space enable it to wake up the system as needed.
3242 device_set_wakeup_capable(&dev->dev, true);
3243 /* Disable the PME# generation functionality */
3244 pci_pme_active(dev, false);
3247 pci_read_config_word(dev, PCI_STATUS, &status);
3248 if (status & PCI_STATUS_IMM_READY)
3252 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3254 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3258 case PCI_EA_P_VF_MEM:
3259 flags |= IORESOURCE_MEM;
3261 case PCI_EA_P_MEM_PREFETCH:
3262 case PCI_EA_P_VF_MEM_PREFETCH:
3263 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3266 flags |= IORESOURCE_IO;
3275 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3278 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3279 return &dev->resource[bei];
3280 #ifdef CONFIG_PCI_IOV
3281 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3282 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3283 return &dev->resource[PCI_IOV_RESOURCES +
3284 bei - PCI_EA_BEI_VF_BAR0];
3286 else if (bei == PCI_EA_BEI_ROM)
3287 return &dev->resource[PCI_ROM_RESOURCE];
3292 /* Read an Enhanced Allocation (EA) entry */
3293 static int pci_ea_read(struct pci_dev *dev, int offset)
3295 struct resource *res;
3296 int ent_size, ent_offset = offset;
3297 resource_size_t start, end;
3298 unsigned long flags;
3299 u32 dw0, bei, base, max_offset;
3301 bool support_64 = (sizeof(resource_size_t) >= 8);
3303 pci_read_config_dword(dev, ent_offset, &dw0);
3306 /* Entry size field indicates DWORDs after 1st */
3307 ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2;
3309 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3312 bei = FIELD_GET(PCI_EA_BEI, dw0);
3313 prop = FIELD_GET(PCI_EA_PP, dw0);
3316 * If the Property is in the reserved range, try the Secondary
3319 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3320 prop = FIELD_GET(PCI_EA_SP, dw0);
3321 if (prop > PCI_EA_P_BRIDGE_IO)
3324 res = pci_ea_get_resource(dev, bei, prop);
3326 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3330 flags = pci_ea_flags(dev, prop);
3332 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3337 pci_read_config_dword(dev, ent_offset, &base);
3338 start = (base & PCI_EA_FIELD_MASK);
3341 /* Read MaxOffset */
3342 pci_read_config_dword(dev, ent_offset, &max_offset);
3345 /* Read Base MSBs (if 64-bit entry) */
3346 if (base & PCI_EA_IS_64) {
3349 pci_read_config_dword(dev, ent_offset, &base_upper);
3352 flags |= IORESOURCE_MEM_64;
3354 /* entry starts above 32-bit boundary, can't use */
3355 if (!support_64 && base_upper)
3359 start |= ((u64)base_upper << 32);
3362 end = start + (max_offset | 0x03);
3364 /* Read MaxOffset MSBs (if 64-bit entry) */
3365 if (max_offset & PCI_EA_IS_64) {
3366 u32 max_offset_upper;
3368 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3371 flags |= IORESOURCE_MEM_64;
3373 /* entry too big, can't use */
3374 if (!support_64 && max_offset_upper)
3378 end += ((u64)max_offset_upper << 32);
3382 pci_err(dev, "EA Entry crosses address boundary\n");
3386 if (ent_size != ent_offset - offset) {
3387 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3388 ent_size, ent_offset - offset);
3392 res->name = pci_name(dev);
3397 if (bei <= PCI_EA_BEI_BAR5)
3398 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3400 else if (bei == PCI_EA_BEI_ROM)
3401 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3403 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3404 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3405 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3407 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3411 return offset + ent_size;
3414 /* Enhanced Allocation Initialization */
3415 void pci_ea_init(struct pci_dev *dev)
3422 /* find PCI EA capability in list */
3423 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3427 /* determine the number of entries */
3428 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3430 num_ent &= PCI_EA_NUM_ENT_MASK;
3432 offset = ea + PCI_EA_FIRST_ENT;
3434 /* Skip DWORD 2 for type 1 functions */
3435 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3438 /* parse each EA entry */
3439 for (i = 0; i < num_ent; ++i)
3440 offset = pci_ea_read(dev, offset);
3443 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3444 struct pci_cap_saved_state *new_cap)
3446 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3450 * _pci_add_cap_save_buffer - allocate buffer for saving given
3451 * capability registers
3452 * @dev: the PCI device
3453 * @cap: the capability to allocate the buffer for
3454 * @extended: Standard or Extended capability ID
3455 * @size: requested size of the buffer
3457 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3458 bool extended, unsigned int size)
3461 struct pci_cap_saved_state *save_state;
3464 pos = pci_find_ext_capability(dev, cap);
3466 pos = pci_find_capability(dev, cap);
3471 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3475 save_state->cap.cap_nr = cap;
3476 save_state->cap.cap_extended = extended;
3477 save_state->cap.size = size;
3478 pci_add_saved_cap(dev, save_state);
3483 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3485 return _pci_add_cap_save_buffer(dev, cap, false, size);
3488 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3490 return _pci_add_cap_save_buffer(dev, cap, true, size);
3494 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3495 * @dev: the PCI device
3497 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3501 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3502 PCI_EXP_SAVE_REGS * sizeof(u16));
3504 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3506 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3508 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3510 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3513 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3515 pci_allocate_vc_save_buffers(dev);
3518 void pci_free_cap_save_buffers(struct pci_dev *dev)
3520 struct pci_cap_saved_state *tmp;
3521 struct hlist_node *n;
3523 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3528 * pci_configure_ari - enable or disable ARI forwarding
3529 * @dev: the PCI device
3531 * If @dev and its upstream bridge both support ARI, enable ARI in the
3532 * bridge. Otherwise, disable ARI in the bridge.
3534 void pci_configure_ari(struct pci_dev *dev)
3537 struct pci_dev *bridge;
3539 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3542 bridge = dev->bus->self;
3546 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3547 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3550 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3551 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3552 PCI_EXP_DEVCTL2_ARI);
3553 bridge->ari_enabled = 1;
3555 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3556 PCI_EXP_DEVCTL2_ARI);
3557 bridge->ari_enabled = 0;
3561 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3566 pos = pdev->acs_cap;
3571 * Except for egress control, capabilities are either required
3572 * or only required if controllable. Features missing from the
3573 * capability field can therefore be assumed as hard-wired enabled.
3575 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3576 acs_flags &= (cap | PCI_ACS_EC);
3578 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3579 return (ctrl & acs_flags) == acs_flags;
3583 * pci_acs_enabled - test ACS against required flags for a given device
3584 * @pdev: device to test
3585 * @acs_flags: required PCI ACS flags
3587 * Return true if the device supports the provided flags. Automatically
3588 * filters out flags that are not implemented on multifunction devices.
3590 * Note that this interface checks the effective ACS capabilities of the
3591 * device rather than the actual capabilities. For instance, most single
3592 * function endpoints are not required to support ACS because they have no
3593 * opportunity for peer-to-peer access. We therefore return 'true'
3594 * regardless of whether the device exposes an ACS capability. This makes
3595 * it much easier for callers of this function to ignore the actual type
3596 * or topology of the device when testing ACS support.
3598 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3602 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3607 * Conventional PCI and PCI-X devices never support ACS, either
3608 * effectively or actually. The shared bus topology implies that
3609 * any device on the bus can receive or snoop DMA.
3611 if (!pci_is_pcie(pdev))
3614 switch (pci_pcie_type(pdev)) {
3616 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3617 * but since their primary interface is PCI/X, we conservatively
3618 * handle them as we would a non-PCIe device.
3620 case PCI_EXP_TYPE_PCIE_BRIDGE:
3622 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3623 * applicable... must never implement an ACS Extended Capability...".
3624 * This seems arbitrary, but we take a conservative interpretation
3625 * of this statement.
3627 case PCI_EXP_TYPE_PCI_BRIDGE:
3628 case PCI_EXP_TYPE_RC_EC:
3631 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3632 * implement ACS in order to indicate their peer-to-peer capabilities,
3633 * regardless of whether they are single- or multi-function devices.
3635 case PCI_EXP_TYPE_DOWNSTREAM:
3636 case PCI_EXP_TYPE_ROOT_PORT:
3637 return pci_acs_flags_enabled(pdev, acs_flags);
3639 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3640 * implemented by the remaining PCIe types to indicate peer-to-peer
3641 * capabilities, but only when they are part of a multifunction
3642 * device. The footnote for section 6.12 indicates the specific
3643 * PCIe types included here.
3645 case PCI_EXP_TYPE_ENDPOINT:
3646 case PCI_EXP_TYPE_UPSTREAM:
3647 case PCI_EXP_TYPE_LEG_END:
3648 case PCI_EXP_TYPE_RC_END:
3649 if (!pdev->multifunction)
3652 return pci_acs_flags_enabled(pdev, acs_flags);
3656 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3657 * to single function devices with the exception of downstream ports.
3663 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3664 * @start: starting downstream device
3665 * @end: ending upstream device or NULL to search to the root bus
3666 * @acs_flags: required flags
3668 * Walk up a device tree from start to end testing PCI ACS support. If
3669 * any step along the way does not support the required flags, return false.
3671 bool pci_acs_path_enabled(struct pci_dev *start,
3672 struct pci_dev *end, u16 acs_flags)
3674 struct pci_dev *pdev, *parent = start;
3679 if (!pci_acs_enabled(pdev, acs_flags))
3682 if (pci_is_root_bus(pdev->bus))
3683 return (end == NULL);
3685 parent = pdev->bus->self;
3686 } while (pdev != end);
3692 * pci_acs_init - Initialize ACS if hardware supports it
3693 * @dev: the PCI device
3695 void pci_acs_init(struct pci_dev *dev)
3697 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3700 * Attempt to enable ACS regardless of capability because some Root
3701 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3702 * the standard ACS capability but still support ACS via those
3705 pci_enable_acs(dev);
3709 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3713 * Helper to find the position of the ctrl register for a BAR.
3714 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3715 * Returns -ENOENT if no ctrl register for the BAR could be found.
3717 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3719 unsigned int pos, nbars, i;
3722 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3726 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3727 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
3729 for (i = 0; i < nbars; i++, pos += 8) {
3732 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3733 bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl);
3742 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3744 * @bar: BAR to query
3746 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3747 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3749 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3754 pos = pci_rebar_find_pos(pdev, bar);
3758 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3759 cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3761 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3762 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3763 bar == 0 && cap == 0x700)
3768 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3771 * pci_rebar_get_current_size - get the current size of a BAR
3773 * @bar: BAR to set size to
3775 * Read the size of a BAR from the resizable BAR config.
3776 * Returns size if found or negative error code.
3778 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3783 pos = pci_rebar_find_pos(pdev, bar);
3787 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3788 return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl);
3792 * pci_rebar_set_size - set a new size for a BAR
3794 * @bar: BAR to set size to
3795 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3797 * Set the new size of a BAR as defined in the spec.
3798 * Returns zero if resizing was successful, error code otherwise.
3800 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3805 pos = pci_rebar_find_pos(pdev, bar);
3809 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3810 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3811 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
3812 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3817 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3818 * @dev: the PCI device
3819 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3820 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3821 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3822 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3824 * Return 0 if all upstream bridges support AtomicOp routing, egress
3825 * blocking is disabled on all upstream ports, and the root port supports
3826 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3827 * AtomicOp completion), or negative otherwise.
3829 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3831 struct pci_bus *bus = dev->bus;
3832 struct pci_dev *bridge;
3836 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3837 * in Device Control 2 is reserved in VFs and the PF value applies
3838 * to all associated VFs.
3843 if (!pci_is_pcie(dev))
3847 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3848 * AtomicOp requesters. For now, we only support endpoints as
3849 * requesters and root ports as completers. No endpoints as
3850 * completers, and no peer-to-peer.
3853 switch (pci_pcie_type(dev)) {
3854 case PCI_EXP_TYPE_ENDPOINT:
3855 case PCI_EXP_TYPE_LEG_END:
3856 case PCI_EXP_TYPE_RC_END:
3862 while (bus->parent) {
3865 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3867 switch (pci_pcie_type(bridge)) {
3868 /* Ensure switch ports support AtomicOp routing */
3869 case PCI_EXP_TYPE_UPSTREAM:
3870 case PCI_EXP_TYPE_DOWNSTREAM:
3871 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3875 /* Ensure root port supports all the sizes we care about */
3876 case PCI_EXP_TYPE_ROOT_PORT:
3877 if ((cap & cap_mask) != cap_mask)
3882 /* Ensure upstream ports don't block AtomicOps on egress */
3883 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3884 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3886 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3893 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3894 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3897 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3900 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3901 * @dev: the PCI device
3902 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3904 * Perform INTx swizzling for a device behind one level of bridge. This is
3905 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3906 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3907 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3908 * the PCI Express Base Specification, Revision 2.1)
3910 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3914 if (pci_ari_enabled(dev->bus))
3917 slot = PCI_SLOT(dev->devfn);
3919 return (((pin - 1) + slot) % 4) + 1;
3922 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3930 while (!pci_is_root_bus(dev->bus)) {
3931 pin = pci_swizzle_interrupt_pin(dev, pin);
3932 dev = dev->bus->self;
3939 * pci_common_swizzle - swizzle INTx all the way to root bridge
3940 * @dev: the PCI device
3941 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3943 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3944 * bridges all the way up to a PCI root bus.
3946 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3950 while (!pci_is_root_bus(dev->bus)) {
3951 pin = pci_swizzle_interrupt_pin(dev, pin);
3952 dev = dev->bus->self;
3955 return PCI_SLOT(dev->devfn);
3957 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3960 * pci_release_region - Release a PCI bar
3961 * @pdev: PCI device whose resources were previously reserved by
3962 * pci_request_region()
3963 * @bar: BAR to release
3965 * Releases the PCI I/O and memory resources previously reserved by a
3966 * successful call to pci_request_region(). Call this function only
3967 * after all use of the PCI regions has ceased.
3969 void pci_release_region(struct pci_dev *pdev, int bar)
3971 struct pci_devres *dr;
3973 if (pci_resource_len(pdev, bar) == 0)
3975 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3976 release_region(pci_resource_start(pdev, bar),
3977 pci_resource_len(pdev, bar));
3978 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3979 release_mem_region(pci_resource_start(pdev, bar),
3980 pci_resource_len(pdev, bar));
3982 dr = find_pci_dr(pdev);
3984 dr->region_mask &= ~(1 << bar);
3986 EXPORT_SYMBOL(pci_release_region);
3989 * __pci_request_region - Reserved PCI I/O and memory resource
3990 * @pdev: PCI device whose resources are to be reserved
3991 * @bar: BAR to be reserved
3992 * @res_name: Name to be associated with resource.
3993 * @exclusive: whether the region access is exclusive or not
3995 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3996 * being reserved by owner @res_name. Do not access any
3997 * address inside the PCI regions unless this call returns
4000 * If @exclusive is set, then the region is marked so that userspace
4001 * is explicitly not allowed to map the resource via /dev/mem or
4002 * sysfs MMIO access.
4004 * Returns 0 on success, or %EBUSY on error. A warning
4005 * message is also printed on failure.
4007 static int __pci_request_region(struct pci_dev *pdev, int bar,
4008 const char *res_name, int exclusive)
4010 struct pci_devres *dr;
4012 if (pci_resource_len(pdev, bar) == 0)
4015 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
4016 if (!request_region(pci_resource_start(pdev, bar),
4017 pci_resource_len(pdev, bar), res_name))
4019 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
4020 if (!__request_mem_region(pci_resource_start(pdev, bar),
4021 pci_resource_len(pdev, bar), res_name,
4026 dr = find_pci_dr(pdev);
4028 dr->region_mask |= 1 << bar;
4033 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
4034 &pdev->resource[bar]);
4039 * pci_request_region - Reserve PCI I/O and memory resource
4040 * @pdev: PCI device whose resources are to be reserved
4041 * @bar: BAR to be reserved
4042 * @res_name: Name to be associated with resource
4044 * Mark the PCI region associated with PCI device @pdev BAR @bar as
4045 * being reserved by owner @res_name. Do not access any
4046 * address inside the PCI regions unless this call returns
4049 * Returns 0 on success, or %EBUSY on error. A warning
4050 * message is also printed on failure.
4052 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4054 return __pci_request_region(pdev, bar, res_name, 0);
4056 EXPORT_SYMBOL(pci_request_region);
4059 * pci_release_selected_regions - Release selected PCI I/O and memory resources
4060 * @pdev: PCI device whose resources were previously reserved
4061 * @bars: Bitmask of BARs to be released
4063 * Release selected PCI I/O and memory resources previously reserved.
4064 * Call this function only after all use of the PCI regions has ceased.
4066 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4070 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4071 if (bars & (1 << i))
4072 pci_release_region(pdev, i);
4074 EXPORT_SYMBOL(pci_release_selected_regions);
4076 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4077 const char *res_name, int excl)
4081 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4082 if (bars & (1 << i))
4083 if (__pci_request_region(pdev, i, res_name, excl))
4089 if (bars & (1 << i))
4090 pci_release_region(pdev, i);
4097 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4098 * @pdev: PCI device whose resources are to be reserved
4099 * @bars: Bitmask of BARs to be requested
4100 * @res_name: Name to be associated with resource
4102 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4103 const char *res_name)
4105 return __pci_request_selected_regions(pdev, bars, res_name, 0);
4107 EXPORT_SYMBOL(pci_request_selected_regions);
4109 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4110 const char *res_name)
4112 return __pci_request_selected_regions(pdev, bars, res_name,
4113 IORESOURCE_EXCLUSIVE);
4115 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4118 * pci_release_regions - Release reserved PCI I/O and memory resources
4119 * @pdev: PCI device whose resources were previously reserved by
4120 * pci_request_regions()
4122 * Releases all PCI I/O and memory resources previously reserved by a
4123 * successful call to pci_request_regions(). Call this function only
4124 * after all use of the PCI regions has ceased.
4127 void pci_release_regions(struct pci_dev *pdev)
4129 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4131 EXPORT_SYMBOL(pci_release_regions);
4134 * pci_request_regions - Reserve PCI I/O and memory resources
4135 * @pdev: PCI device whose resources are to be reserved
4136 * @res_name: Name to be associated with resource.
4138 * Mark all PCI regions associated with PCI device @pdev as
4139 * being reserved by owner @res_name. Do not access any
4140 * address inside the PCI regions unless this call returns
4143 * Returns 0 on success, or %EBUSY on error. A warning
4144 * message is also printed on failure.
4146 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4148 return pci_request_selected_regions(pdev,
4149 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4151 EXPORT_SYMBOL(pci_request_regions);
4154 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4155 * @pdev: PCI device whose resources are to be reserved
4156 * @res_name: Name to be associated with resource.
4158 * Mark all PCI regions associated with PCI device @pdev as being reserved
4159 * by owner @res_name. Do not access any address inside the PCI regions
4160 * unless this call returns successfully.
4162 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4163 * and the sysfs MMIO access will not be allowed.
4165 * Returns 0 on success, or %EBUSY on error. A warning message is also
4166 * printed on failure.
4168 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4170 return pci_request_selected_regions_exclusive(pdev,
4171 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4173 EXPORT_SYMBOL(pci_request_regions_exclusive);
4176 * Record the PCI IO range (expressed as CPU physical address + size).
4177 * Return a negative value if an error has occurred, zero otherwise
4179 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4180 resource_size_t size)
4184 struct logic_pio_hwaddr *range;
4186 if (!size || addr + size < addr)
4189 range = kzalloc(sizeof(*range), GFP_ATOMIC);
4193 range->fwnode = fwnode;
4195 range->hw_start = addr;
4196 range->flags = LOGIC_PIO_CPU_MMIO;
4198 ret = logic_pio_register_range(range);
4202 /* Ignore duplicates due to deferred probing */
4210 phys_addr_t pci_pio_to_address(unsigned long pio)
4213 if (pio < MMIO_UPPER_LIMIT)
4214 return logic_pio_to_hwaddr(pio);
4217 return (phys_addr_t) OF_BAD_ADDR;
4219 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4221 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4224 return logic_pio_trans_cpuaddr(address);
4226 if (address > IO_SPACE_LIMIT)
4227 return (unsigned long)-1;
4229 return (unsigned long) address;
4234 * pci_remap_iospace - Remap the memory mapped I/O space
4235 * @res: Resource describing the I/O space
4236 * @phys_addr: physical address of range to be mapped
4238 * Remap the memory mapped I/O space described by the @res and the CPU
4239 * physical address @phys_addr into virtual address space. Only
4240 * architectures that have memory mapped IO functions defined (and the
4241 * PCI_IOBASE value defined) should call this function.
4243 #ifndef pci_remap_iospace
4244 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4246 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4247 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4249 if (!(res->flags & IORESOURCE_IO))
4252 if (res->end > IO_SPACE_LIMIT)
4255 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4256 pgprot_device(PAGE_KERNEL));
4259 * This architecture does not have memory mapped I/O space,
4260 * so this function should never be called
4262 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4266 EXPORT_SYMBOL(pci_remap_iospace);
4270 * pci_unmap_iospace - Unmap the memory mapped I/O space
4271 * @res: resource to be unmapped
4273 * Unmap the CPU virtual address @res from virtual address space. Only
4274 * architectures that have memory mapped IO functions defined (and the
4275 * PCI_IOBASE value defined) should call this function.
4277 void pci_unmap_iospace(struct resource *res)
4279 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4280 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4282 vunmap_range(vaddr, vaddr + resource_size(res));
4285 EXPORT_SYMBOL(pci_unmap_iospace);
4287 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4289 struct resource **res = ptr;
4291 pci_unmap_iospace(*res);
4295 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4296 * @dev: Generic device to remap IO address for
4297 * @res: Resource describing the I/O space
4298 * @phys_addr: physical address of range to be mapped
4300 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4303 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4304 phys_addr_t phys_addr)
4306 const struct resource **ptr;
4309 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4313 error = pci_remap_iospace(res, phys_addr);
4318 devres_add(dev, ptr);
4323 EXPORT_SYMBOL(devm_pci_remap_iospace);
4326 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4327 * @dev: Generic device to remap IO address for
4328 * @offset: Resource address to map
4329 * @size: Size of map
4331 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4334 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4335 resource_size_t offset,
4336 resource_size_t size)
4338 void __iomem **ptr, *addr;
4340 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4344 addr = pci_remap_cfgspace(offset, size);
4347 devres_add(dev, ptr);
4353 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4356 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4357 * @dev: generic device to handle the resource for
4358 * @res: configuration space resource to be handled
4360 * Checks that a resource is a valid memory region, requests the memory
4361 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4362 * proper PCI configuration space memory attributes are guaranteed.
4364 * All operations are managed and will be undone on driver detach.
4366 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4367 * on failure. Usage example::
4369 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4370 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4372 * return PTR_ERR(base);
4374 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4375 struct resource *res)
4377 resource_size_t size;
4379 void __iomem *dest_ptr;
4383 if (!res || resource_type(res) != IORESOURCE_MEM) {
4384 dev_err(dev, "invalid resource\n");
4385 return IOMEM_ERR_PTR(-EINVAL);
4388 size = resource_size(res);
4391 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4394 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4396 return IOMEM_ERR_PTR(-ENOMEM);
4398 if (!devm_request_mem_region(dev, res->start, size, name)) {
4399 dev_err(dev, "can't request region for resource %pR\n", res);
4400 return IOMEM_ERR_PTR(-EBUSY);
4403 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4405 dev_err(dev, "ioremap failed for resource %pR\n", res);
4406 devm_release_mem_region(dev, res->start, size);
4407 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4412 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4414 static void __pci_set_master(struct pci_dev *dev, bool enable)
4418 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4420 cmd = old_cmd | PCI_COMMAND_MASTER;
4422 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4423 if (cmd != old_cmd) {
4424 pci_dbg(dev, "%s bus mastering\n",
4425 enable ? "enabling" : "disabling");
4426 pci_write_config_word(dev, PCI_COMMAND, cmd);
4428 dev->is_busmaster = enable;
4432 * pcibios_setup - process "pci=" kernel boot arguments
4433 * @str: string used to pass in "pci=" kernel boot arguments
4435 * Process kernel boot arguments. This is the default implementation.
4436 * Architecture specific implementations can override this as necessary.
4438 char * __weak __init pcibios_setup(char *str)
4444 * pcibios_set_master - enable PCI bus-mastering for device dev
4445 * @dev: the PCI device to enable
4447 * Enables PCI bus-mastering for the device. This is the default
4448 * implementation. Architecture specific implementations can override
4449 * this if necessary.
4451 void __weak pcibios_set_master(struct pci_dev *dev)
4455 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4456 if (pci_is_pcie(dev))
4459 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4461 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4462 else if (lat > pcibios_max_latency)
4463 lat = pcibios_max_latency;
4467 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4471 * pci_set_master - enables bus-mastering for device dev
4472 * @dev: the PCI device to enable
4474 * Enables bus-mastering on the device and calls pcibios_set_master()
4475 * to do the needed arch specific settings.
4477 void pci_set_master(struct pci_dev *dev)
4479 __pci_set_master(dev, true);
4480 pcibios_set_master(dev);
4482 EXPORT_SYMBOL(pci_set_master);
4485 * pci_clear_master - disables bus-mastering for device dev
4486 * @dev: the PCI device to disable
4488 void pci_clear_master(struct pci_dev *dev)
4490 __pci_set_master(dev, false);
4492 EXPORT_SYMBOL(pci_clear_master);
4495 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4496 * @dev: the PCI device for which MWI is to be enabled
4498 * Helper function for pci_set_mwi.
4499 * Originally copied from drivers/net/acenic.c.
4502 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4504 int pci_set_cacheline_size(struct pci_dev *dev)
4508 if (!pci_cache_line_size)
4511 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4512 equal to or multiple of the right value. */
4513 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4514 if (cacheline_size >= pci_cache_line_size &&
4515 (cacheline_size % pci_cache_line_size) == 0)
4518 /* Write the correct value. */
4519 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4521 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4522 if (cacheline_size == pci_cache_line_size)
4525 pci_dbg(dev, "cache line size of %d is not supported\n",
4526 pci_cache_line_size << 2);
4530 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4533 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4534 * @dev: the PCI device for which MWI is enabled
4536 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4538 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4540 int pci_set_mwi(struct pci_dev *dev)
4542 #ifdef PCI_DISABLE_MWI
4548 rc = pci_set_cacheline_size(dev);
4552 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4553 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4554 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4555 cmd |= PCI_COMMAND_INVALIDATE;
4556 pci_write_config_word(dev, PCI_COMMAND, cmd);
4561 EXPORT_SYMBOL(pci_set_mwi);
4564 * pcim_set_mwi - a device-managed pci_set_mwi()
4565 * @dev: the PCI device for which MWI is enabled
4567 * Managed pci_set_mwi().
4569 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4571 int pcim_set_mwi(struct pci_dev *dev)
4573 struct pci_devres *dr;
4575 dr = find_pci_dr(dev);
4580 return pci_set_mwi(dev);
4582 EXPORT_SYMBOL(pcim_set_mwi);
4585 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4586 * @dev: the PCI device for which MWI is enabled
4588 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4589 * Callers are not required to check the return value.
4591 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4593 int pci_try_set_mwi(struct pci_dev *dev)
4595 #ifdef PCI_DISABLE_MWI
4598 return pci_set_mwi(dev);
4601 EXPORT_SYMBOL(pci_try_set_mwi);
4604 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4605 * @dev: the PCI device to disable
4607 * Disables PCI Memory-Write-Invalidate transaction on the device
4609 void pci_clear_mwi(struct pci_dev *dev)
4611 #ifndef PCI_DISABLE_MWI
4614 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4615 if (cmd & PCI_COMMAND_INVALIDATE) {
4616 cmd &= ~PCI_COMMAND_INVALIDATE;
4617 pci_write_config_word(dev, PCI_COMMAND, cmd);
4621 EXPORT_SYMBOL(pci_clear_mwi);
4624 * pci_disable_parity - disable parity checking for device
4625 * @dev: the PCI device to operate on
4627 * Disable parity checking for device @dev
4629 void pci_disable_parity(struct pci_dev *dev)
4633 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4634 if (cmd & PCI_COMMAND_PARITY) {
4635 cmd &= ~PCI_COMMAND_PARITY;
4636 pci_write_config_word(dev, PCI_COMMAND, cmd);
4641 * pci_intx - enables/disables PCI INTx for device dev
4642 * @pdev: the PCI device to operate on
4643 * @enable: boolean: whether to enable or disable PCI INTx
4645 * Enables/disables PCI INTx for device @pdev
4647 void pci_intx(struct pci_dev *pdev, int enable)
4649 u16 pci_command, new;
4651 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4654 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4656 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4658 if (new != pci_command) {
4659 struct pci_devres *dr;
4661 pci_write_config_word(pdev, PCI_COMMAND, new);
4663 dr = find_pci_dr(pdev);
4664 if (dr && !dr->restore_intx) {
4665 dr->restore_intx = 1;
4666 dr->orig_intx = !enable;
4670 EXPORT_SYMBOL_GPL(pci_intx);
4672 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4674 struct pci_bus *bus = dev->bus;
4675 bool mask_updated = true;
4676 u32 cmd_status_dword;
4677 u16 origcmd, newcmd;
4678 unsigned long flags;
4682 * We do a single dword read to retrieve both command and status.
4683 * Document assumptions that make this possible.
4685 BUILD_BUG_ON(PCI_COMMAND % 4);
4686 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4688 raw_spin_lock_irqsave(&pci_lock, flags);
4690 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4692 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4695 * Check interrupt status register to see whether our device
4696 * triggered the interrupt (when masking) or the next IRQ is
4697 * already pending (when unmasking).
4699 if (mask != irq_pending) {
4700 mask_updated = false;
4704 origcmd = cmd_status_dword;
4705 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4707 newcmd |= PCI_COMMAND_INTX_DISABLE;
4708 if (newcmd != origcmd)
4709 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4712 raw_spin_unlock_irqrestore(&pci_lock, flags);
4714 return mask_updated;
4718 * pci_check_and_mask_intx - mask INTx on pending interrupt
4719 * @dev: the PCI device to operate on
4721 * Check if the device dev has its INTx line asserted, mask it and return
4722 * true in that case. False is returned if no interrupt was pending.
4724 bool pci_check_and_mask_intx(struct pci_dev *dev)
4726 return pci_check_and_set_intx_mask(dev, true);
4728 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4731 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4732 * @dev: the PCI device to operate on
4734 * Check if the device dev has its INTx line asserted, unmask it if not and
4735 * return true. False is returned and the mask remains active if there was
4736 * still an interrupt pending.
4738 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4740 return pci_check_and_set_intx_mask(dev, false);
4742 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4745 * pci_wait_for_pending_transaction - wait for pending transaction
4746 * @dev: the PCI device to operate on
4748 * Return 0 if transaction is pending 1 otherwise.
4750 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4752 if (!pci_is_pcie(dev))
4755 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4756 PCI_EXP_DEVSTA_TRPND);
4758 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4761 * pcie_flr - initiate a PCIe function level reset
4762 * @dev: device to reset
4764 * Initiate a function level reset unconditionally on @dev without
4765 * checking any flags and DEVCAP
4767 int pcie_flr(struct pci_dev *dev)
4769 if (!pci_wait_for_pending_transaction(dev))
4770 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4772 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4778 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4779 * 100ms, but may silently discard requests while the FLR is in
4780 * progress. Wait 100ms before trying to access the device.
4784 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4786 EXPORT_SYMBOL_GPL(pcie_flr);
4789 * pcie_reset_flr - initiate a PCIe function level reset
4790 * @dev: device to reset
4791 * @probe: if true, return 0 if device can be reset this way
4793 * Initiate a function level reset on @dev.
4795 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4797 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4800 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4806 return pcie_flr(dev);
4808 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4810 static int pci_af_flr(struct pci_dev *dev, bool probe)
4815 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4819 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4822 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4823 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4830 * Wait for Transaction Pending bit to clear. A word-aligned test
4831 * is used, so we use the control offset rather than status and shift
4832 * the test bit to match.
4834 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4835 PCI_AF_STATUS_TP << 8))
4836 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4838 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4844 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4845 * updated 27 July 2006; a device must complete an FLR within
4846 * 100ms, but may silently discard requests while the FLR is in
4847 * progress. Wait 100ms before trying to access the device.
4851 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4855 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4856 * @dev: Device to reset.
4857 * @probe: if true, return 0 if the device can be reset this way.
4859 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4860 * unset, it will be reinitialized internally when going from PCI_D3hot to
4861 * PCI_D0. If that's the case and the device is not in a low-power state
4862 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4864 * NOTE: This causes the caller to sleep for twice the device power transition
4865 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4866 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4867 * Moreover, only devices in D0 can be reset by this function.
4869 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4873 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4876 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4877 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4883 if (dev->current_state != PCI_D0)
4886 csr &= ~PCI_PM_CTRL_STATE_MASK;
4888 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4889 pci_dev_d3_sleep(dev);
4891 csr &= ~PCI_PM_CTRL_STATE_MASK;
4893 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4894 pci_dev_d3_sleep(dev);
4896 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4900 * pcie_wait_for_link_status - Wait for link status change
4901 * @pdev: Device whose link to wait for.
4902 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4903 * @active: Waiting for active or inactive?
4905 * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4906 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4908 static int pcie_wait_for_link_status(struct pci_dev *pdev,
4909 bool use_lt, bool active)
4911 u16 lnksta_mask, lnksta_match;
4912 unsigned long end_jiffies;
4915 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4916 lnksta_match = active ? lnksta_mask : 0;
4918 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4920 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4921 if ((lnksta & lnksta_mask) == lnksta_match)
4924 } while (time_before(jiffies, end_jiffies));
4930 * pcie_retrain_link - Request a link retrain and wait for it to complete
4931 * @pdev: Device whose link to retrain.
4932 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4934 * Retrain completion status is retrieved from the Link Status Register
4935 * according to @use_lt. It is not verified whether the use of the DLLLA
4938 * Return 0 if successful, or -ETIMEDOUT if training has not completed
4939 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4941 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4946 * Ensure the updated LNKCTL parameters are used during link
4947 * training by checking that there is no ongoing link training to
4948 * avoid LTSSM race as recommended in Implementation Note at the
4949 * end of PCIe r6.0.1 sec 7.5.3.7.
4951 rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4955 pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4956 if (pdev->clear_retrain_link) {
4958 * Due to an erratum in some devices the Retrain Link bit
4959 * needs to be cleared again manually to allow the link
4960 * training to succeed.
4962 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4965 return pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4969 * pcie_wait_for_link_delay - Wait until link is active or inactive
4970 * @pdev: Bridge device
4971 * @active: waiting for active or inactive?
4972 * @delay: Delay to wait after link has become active (in ms)
4974 * Use this to wait till link becomes active or inactive.
4976 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4982 * Some controllers might not implement link active reporting. In this
4983 * case, we wait for 1000 ms + any delay requested by the caller.
4985 if (!pdev->link_active_reporting) {
4986 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
4991 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4992 * after which we should expect an link active if the reset was
4993 * successful. If so, software must wait a minimum 100ms before sending
4994 * configuration requests to devices downstream this port.
4996 * If the link fails to activate, either the device was physically
4997 * removed or the link is permanently failed.
5001 rc = pcie_wait_for_link_status(pdev, false, active);
5004 rc = pcie_failed_link_retrain(pdev);
5019 * pcie_wait_for_link - Wait until link is active or inactive
5020 * @pdev: Bridge device
5021 * @active: waiting for active or inactive?
5023 * Use this to wait till link becomes active or inactive.
5025 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
5027 return pcie_wait_for_link_delay(pdev, active, 100);
5031 * Find maximum D3cold delay required by all the devices on the bus. The
5032 * spec says 100 ms, but firmware can lower it and we allow drivers to
5033 * increase it as well.
5035 * Called with @pci_bus_sem locked for reading.
5037 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
5039 const struct pci_dev *pdev;
5040 int min_delay = 100;
5043 list_for_each_entry(pdev, &bus->devices, bus_list) {
5044 if (pdev->d3cold_delay < min_delay)
5045 min_delay = pdev->d3cold_delay;
5046 if (pdev->d3cold_delay > max_delay)
5047 max_delay = pdev->d3cold_delay;
5050 return max(min_delay, max_delay);
5054 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
5056 * @reset_type: reset type in human-readable form
5058 * Handle necessary delays before access to the devices on the secondary
5059 * side of the bridge are permitted after D3cold to D0 transition
5060 * or Conventional Reset.
5062 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
5063 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
5066 * Return 0 on success or -ENOTTY if the first device on the secondary bus
5067 * failed to become accessible.
5069 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
5071 struct pci_dev *child;
5074 if (pci_dev_is_disconnected(dev))
5077 if (!pci_is_bridge(dev))
5080 down_read(&pci_bus_sem);
5083 * We only deal with devices that are present currently on the bus.
5084 * For any hot-added devices the access delay is handled in pciehp
5085 * board_added(). In case of ACPI hotplug the firmware is expected
5086 * to configure the devices before OS is notified.
5088 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
5089 up_read(&pci_bus_sem);
5093 /* Take d3cold_delay requirements into account */
5094 delay = pci_bus_max_d3cold_delay(dev->subordinate);
5096 up_read(&pci_bus_sem);
5100 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
5102 up_read(&pci_bus_sem);
5105 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
5106 * accessing the device after reset (that is 1000 ms + 100 ms).
5108 if (!pci_is_pcie(dev)) {
5109 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
5110 msleep(1000 + delay);
5115 * For PCIe downstream and root ports that do not support speeds
5116 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5117 * speeds (gen3) we need to wait first for the data link layer to
5120 * However, 100 ms is the minimum and the PCIe spec says the
5121 * software must allow at least 1s before it can determine that the
5122 * device that did not respond is a broken device. Also device can
5123 * take longer than that to respond if it indicates so through Request
5124 * Retry Status completions.
5126 * Therefore we wait for 100 ms and check for the device presence
5127 * until the timeout expires.
5129 if (!pcie_downstream_port(dev))
5132 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5135 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5138 if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
5142 * If the port supports active link reporting we now check
5143 * whether the link is active and if not bail out early with
5144 * the assumption that the device is not present anymore.
5146 if (!dev->link_active_reporting)
5149 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
5150 if (!(status & PCI_EXP_LNKSTA_DLLLA))
5153 return pci_dev_wait(child, reset_type,
5154 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
5157 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5159 if (!pcie_wait_for_link_delay(dev, true, delay)) {
5160 /* Did not train, no need to wait any further */
5161 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5165 return pci_dev_wait(child, reset_type,
5166 PCIE_RESET_READY_POLL_MS - delay);
5169 void pci_reset_secondary_bus(struct pci_dev *dev)
5173 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5174 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5175 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5178 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
5179 * this to 2ms to ensure that we meet the minimum requirement.
5183 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5184 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5187 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5189 pci_reset_secondary_bus(dev);
5193 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5194 * @dev: Bridge device
5196 * Use the bridge control register to assert reset on the secondary bus.
5197 * Devices on the secondary bus are left in power-on state.
5199 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5201 pcibios_reset_secondary_bus(dev);
5203 return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5205 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5207 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5209 struct pci_dev *pdev;
5211 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5212 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5215 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5222 return pci_bridge_secondary_bus_reset(dev->bus->self);
5225 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5229 if (!hotplug || !try_module_get(hotplug->owner))
5232 if (hotplug->ops->reset_slot)
5233 rc = hotplug->ops->reset_slot(hotplug, probe);
5235 module_put(hotplug->owner);
5240 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5242 if (dev->multifunction || dev->subordinate || !dev->slot ||
5243 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5246 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5249 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5253 rc = pci_dev_reset_slot_function(dev, probe);
5256 return pci_parent_bus_reset(dev, probe);
5259 void pci_dev_lock(struct pci_dev *dev)
5261 /* block PM suspend, driver probe, etc. */
5262 device_lock(&dev->dev);
5263 pci_cfg_access_lock(dev);
5265 EXPORT_SYMBOL_GPL(pci_dev_lock);
5267 /* Return 1 on successful lock, 0 on contention */
5268 int pci_dev_trylock(struct pci_dev *dev)
5270 if (device_trylock(&dev->dev)) {
5271 if (pci_cfg_access_trylock(dev))
5273 device_unlock(&dev->dev);
5278 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5280 void pci_dev_unlock(struct pci_dev *dev)
5282 pci_cfg_access_unlock(dev);
5283 device_unlock(&dev->dev);
5285 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5287 static void pci_dev_save_and_disable(struct pci_dev *dev)
5289 const struct pci_error_handlers *err_handler =
5290 dev->driver ? dev->driver->err_handler : NULL;
5293 * dev->driver->err_handler->reset_prepare() is protected against
5294 * races with ->remove() by the device lock, which must be held by
5297 if (err_handler && err_handler->reset_prepare)
5298 err_handler->reset_prepare(dev);
5301 * Wake-up device prior to save. PM registers default to D0 after
5302 * reset and a simple register restore doesn't reliably return
5303 * to a non-D0 state anyway.
5305 pci_set_power_state(dev, PCI_D0);
5307 pci_save_state(dev);
5309 * Disable the device by clearing the Command register, except for
5310 * INTx-disable which is set. This not only disables MMIO and I/O port
5311 * BARs, but also prevents the device from being Bus Master, preventing
5312 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5313 * compliant devices, INTx-disable prevents legacy interrupts.
5315 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5318 static void pci_dev_restore(struct pci_dev *dev)
5320 const struct pci_error_handlers *err_handler =
5321 dev->driver ? dev->driver->err_handler : NULL;
5323 pci_restore_state(dev);
5326 * dev->driver->err_handler->reset_done() is protected against
5327 * races with ->remove() by the device lock, which must be held by
5330 if (err_handler && err_handler->reset_done)
5331 err_handler->reset_done(dev);
5334 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5335 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5337 { pci_dev_specific_reset, .name = "device_specific" },
5338 { pci_dev_acpi_reset, .name = "acpi" },
5339 { pcie_reset_flr, .name = "flr" },
5340 { pci_af_flr, .name = "af_flr" },
5341 { pci_pm_reset, .name = "pm" },
5342 { pci_reset_bus_function, .name = "bus" },
5345 static ssize_t reset_method_show(struct device *dev,
5346 struct device_attribute *attr, char *buf)
5348 struct pci_dev *pdev = to_pci_dev(dev);
5352 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5353 m = pdev->reset_methods[i];
5357 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5358 pci_reset_fn_methods[m].name);
5362 len += sysfs_emit_at(buf, len, "\n");
5367 static int reset_method_lookup(const char *name)
5371 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5372 if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5376 return 0; /* not found */
5379 static ssize_t reset_method_store(struct device *dev,
5380 struct device_attribute *attr,
5381 const char *buf, size_t count)
5383 struct pci_dev *pdev = to_pci_dev(dev);
5384 char *options, *name;
5386 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5388 if (sysfs_streq(buf, "")) {
5389 pdev->reset_methods[0] = 0;
5390 pci_warn(pdev, "All device reset methods disabled by user");
5394 if (sysfs_streq(buf, "default")) {
5395 pci_init_reset_methods(pdev);
5399 options = kstrndup(buf, count, GFP_KERNEL);
5404 while ((name = strsep(&options, " ")) != NULL) {
5405 if (sysfs_streq(name, ""))
5410 m = reset_method_lookup(name);
5412 pci_err(pdev, "Invalid reset method '%s'", name);
5416 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5417 pci_err(pdev, "Unsupported reset method '%s'", name);
5421 if (n == PCI_NUM_RESET_METHODS - 1) {
5422 pci_err(pdev, "Too many reset methods\n");
5426 reset_methods[n++] = m;
5429 reset_methods[n] = 0;
5431 /* Warn if dev-specific supported but not highest priority */
5432 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5433 reset_methods[0] != 1)
5434 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5435 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5440 /* Leave previous methods unchanged */
5444 static DEVICE_ATTR_RW(reset_method);
5446 static struct attribute *pci_dev_reset_method_attrs[] = {
5447 &dev_attr_reset_method.attr,
5451 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5452 struct attribute *a, int n)
5454 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5456 if (!pci_reset_supported(pdev))
5462 const struct attribute_group pci_dev_reset_method_attr_group = {
5463 .attrs = pci_dev_reset_method_attrs,
5464 .is_visible = pci_dev_reset_method_attr_is_visible,
5468 * __pci_reset_function_locked - reset a PCI device function while holding
5469 * the @dev mutex lock.
5470 * @dev: PCI device to reset
5472 * Some devices allow an individual function to be reset without affecting
5473 * other functions in the same device. The PCI device must be responsive
5474 * to PCI config space in order to use this function.
5476 * The device function is presumed to be unused and the caller is holding
5477 * the device mutex lock when this function is called.
5479 * Resetting the device will make the contents of PCI configuration space
5480 * random, so any caller of this must be prepared to reinitialise the
5481 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5484 * Returns 0 if the device function was successfully reset or negative if the
5485 * device doesn't support resetting a single function.
5487 int __pci_reset_function_locked(struct pci_dev *dev)
5494 * A reset method returns -ENOTTY if it doesn't support this device and
5495 * we should try the next method.
5497 * If it returns 0 (success), we're finished. If it returns any other
5498 * error, we're also finished: this indicates that further reset
5499 * mechanisms might be broken on the device.
5501 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5502 m = dev->reset_methods[i];
5506 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5515 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5518 * pci_init_reset_methods - check whether device can be safely reset
5519 * and store supported reset mechanisms.
5520 * @dev: PCI device to check for reset mechanisms
5522 * Some devices allow an individual function to be reset without affecting
5523 * other functions in the same device. The PCI device must be in D0-D3hot
5526 * Stores reset mechanisms supported by device in reset_methods byte array
5527 * which is a member of struct pci_dev.
5529 void pci_init_reset_methods(struct pci_dev *dev)
5533 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5538 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5539 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5541 dev->reset_methods[i++] = m;
5542 else if (rc != -ENOTTY)
5546 dev->reset_methods[i] = 0;
5550 * pci_reset_function - quiesce and reset a PCI device function
5551 * @dev: PCI device to reset
5553 * Some devices allow an individual function to be reset without affecting
5554 * other functions in the same device. The PCI device must be responsive
5555 * to PCI config space in order to use this function.
5557 * This function does not just reset the PCI portion of a device, but
5558 * clears all the state associated with the device. This function differs
5559 * from __pci_reset_function_locked() in that it saves and restores device state
5560 * over the reset and takes the PCI device lock.
5562 * Returns 0 if the device function was successfully reset or negative if the
5563 * device doesn't support resetting a single function.
5565 int pci_reset_function(struct pci_dev *dev)
5569 if (!pci_reset_supported(dev))
5573 pci_dev_save_and_disable(dev);
5575 rc = __pci_reset_function_locked(dev);
5577 pci_dev_restore(dev);
5578 pci_dev_unlock(dev);
5582 EXPORT_SYMBOL_GPL(pci_reset_function);
5585 * pci_reset_function_locked - quiesce and reset a PCI device function
5586 * @dev: PCI device to reset
5588 * Some devices allow an individual function to be reset without affecting
5589 * other functions in the same device. The PCI device must be responsive
5590 * to PCI config space in order to use this function.
5592 * This function does not just reset the PCI portion of a device, but
5593 * clears all the state associated with the device. This function differs
5594 * from __pci_reset_function_locked() in that it saves and restores device state
5595 * over the reset. It also differs from pci_reset_function() in that it
5596 * requires the PCI device lock to be held.
5598 * Returns 0 if the device function was successfully reset or negative if the
5599 * device doesn't support resetting a single function.
5601 int pci_reset_function_locked(struct pci_dev *dev)
5605 if (!pci_reset_supported(dev))
5608 pci_dev_save_and_disable(dev);
5610 rc = __pci_reset_function_locked(dev);
5612 pci_dev_restore(dev);
5616 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5619 * pci_try_reset_function - quiesce and reset a PCI device function
5620 * @dev: PCI device to reset
5622 * Same as above, except return -EAGAIN if unable to lock device.
5624 int pci_try_reset_function(struct pci_dev *dev)
5628 if (!pci_reset_supported(dev))
5631 if (!pci_dev_trylock(dev))
5634 pci_dev_save_and_disable(dev);
5635 rc = __pci_reset_function_locked(dev);
5636 pci_dev_restore(dev);
5637 pci_dev_unlock(dev);
5641 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5643 /* Do any devices on or below this bus prevent a bus reset? */
5644 static bool pci_bus_resettable(struct pci_bus *bus)
5646 struct pci_dev *dev;
5649 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5652 list_for_each_entry(dev, &bus->devices, bus_list) {
5653 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5654 (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5661 /* Lock devices from the top of the tree down */
5662 static void pci_bus_lock(struct pci_bus *bus)
5664 struct pci_dev *dev;
5666 list_for_each_entry(dev, &bus->devices, bus_list) {
5668 if (dev->subordinate)
5669 pci_bus_lock(dev->subordinate);
5673 /* Unlock devices from the bottom of the tree up */
5674 static void pci_bus_unlock(struct pci_bus *bus)
5676 struct pci_dev *dev;
5678 list_for_each_entry(dev, &bus->devices, bus_list) {
5679 if (dev->subordinate)
5680 pci_bus_unlock(dev->subordinate);
5681 pci_dev_unlock(dev);
5685 /* Return 1 on successful lock, 0 on contention */
5686 static int pci_bus_trylock(struct pci_bus *bus)
5688 struct pci_dev *dev;
5690 list_for_each_entry(dev, &bus->devices, bus_list) {
5691 if (!pci_dev_trylock(dev))
5693 if (dev->subordinate) {
5694 if (!pci_bus_trylock(dev->subordinate)) {
5695 pci_dev_unlock(dev);
5703 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5704 if (dev->subordinate)
5705 pci_bus_unlock(dev->subordinate);
5706 pci_dev_unlock(dev);
5711 /* Do any devices on or below this slot prevent a bus reset? */
5712 static bool pci_slot_resettable(struct pci_slot *slot)
5714 struct pci_dev *dev;
5716 if (slot->bus->self &&
5717 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5720 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5721 if (!dev->slot || dev->slot != slot)
5723 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5724 (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5731 /* Lock devices from the top of the tree down */
5732 static void pci_slot_lock(struct pci_slot *slot)
5734 struct pci_dev *dev;
5736 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5737 if (!dev->slot || dev->slot != slot)
5740 if (dev->subordinate)
5741 pci_bus_lock(dev->subordinate);
5745 /* Unlock devices from the bottom of the tree up */
5746 static void pci_slot_unlock(struct pci_slot *slot)
5748 struct pci_dev *dev;
5750 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5751 if (!dev->slot || dev->slot != slot)
5753 if (dev->subordinate)
5754 pci_bus_unlock(dev->subordinate);
5755 pci_dev_unlock(dev);
5759 /* Return 1 on successful lock, 0 on contention */
5760 static int pci_slot_trylock(struct pci_slot *slot)
5762 struct pci_dev *dev;
5764 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5765 if (!dev->slot || dev->slot != slot)
5767 if (!pci_dev_trylock(dev))
5769 if (dev->subordinate) {
5770 if (!pci_bus_trylock(dev->subordinate)) {
5771 pci_dev_unlock(dev);
5779 list_for_each_entry_continue_reverse(dev,
5780 &slot->bus->devices, bus_list) {
5781 if (!dev->slot || dev->slot != slot)
5783 if (dev->subordinate)
5784 pci_bus_unlock(dev->subordinate);
5785 pci_dev_unlock(dev);
5791 * Save and disable devices from the top of the tree down while holding
5792 * the @dev mutex lock for the entire tree.
5794 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5796 struct pci_dev *dev;
5798 list_for_each_entry(dev, &bus->devices, bus_list) {
5799 pci_dev_save_and_disable(dev);
5800 if (dev->subordinate)
5801 pci_bus_save_and_disable_locked(dev->subordinate);
5806 * Restore devices from top of the tree down while holding @dev mutex lock
5807 * for the entire tree. Parent bridges need to be restored before we can
5808 * get to subordinate devices.
5810 static void pci_bus_restore_locked(struct pci_bus *bus)
5812 struct pci_dev *dev;
5814 list_for_each_entry(dev, &bus->devices, bus_list) {
5815 pci_dev_restore(dev);
5816 if (dev->subordinate)
5817 pci_bus_restore_locked(dev->subordinate);
5822 * Save and disable devices from the top of the tree down while holding
5823 * the @dev mutex lock for the entire tree.
5825 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5827 struct pci_dev *dev;
5829 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5830 if (!dev->slot || dev->slot != slot)
5832 pci_dev_save_and_disable(dev);
5833 if (dev->subordinate)
5834 pci_bus_save_and_disable_locked(dev->subordinate);
5839 * Restore devices from top of the tree down while holding @dev mutex lock
5840 * for the entire tree. Parent bridges need to be restored before we can
5841 * get to subordinate devices.
5843 static void pci_slot_restore_locked(struct pci_slot *slot)
5845 struct pci_dev *dev;
5847 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5848 if (!dev->slot || dev->slot != slot)
5850 pci_dev_restore(dev);
5851 if (dev->subordinate)
5852 pci_bus_restore_locked(dev->subordinate);
5856 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5860 if (!slot || !pci_slot_resettable(slot))
5864 pci_slot_lock(slot);
5868 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5871 pci_slot_unlock(slot);
5877 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5878 * @slot: PCI slot to probe
5880 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5882 int pci_probe_reset_slot(struct pci_slot *slot)
5884 return pci_slot_reset(slot, PCI_RESET_PROBE);
5886 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5889 * __pci_reset_slot - Try to reset a PCI slot
5890 * @slot: PCI slot to reset
5892 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5893 * independent of other slots. For instance, some slots may support slot power
5894 * control. In the case of a 1:1 bus to slot architecture, this function may
5895 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5896 * Generally a slot reset should be attempted before a bus reset. All of the
5897 * function of the slot and any subordinate buses behind the slot are reset
5898 * through this function. PCI config space of all devices in the slot and
5899 * behind the slot is saved before and restored after reset.
5901 * Same as above except return -EAGAIN if the slot cannot be locked
5903 static int __pci_reset_slot(struct pci_slot *slot)
5907 rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5911 if (pci_slot_trylock(slot)) {
5912 pci_slot_save_and_disable_locked(slot);
5914 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5915 pci_slot_restore_locked(slot);
5916 pci_slot_unlock(slot);
5923 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5927 if (!bus->self || !pci_bus_resettable(bus))
5937 ret = pci_bridge_secondary_bus_reset(bus->self);
5939 pci_bus_unlock(bus);
5945 * pci_bus_error_reset - reset the bridge's subordinate bus
5946 * @bridge: The parent device that connects to the bus to reset
5948 * This function will first try to reset the slots on this bus if the method is
5949 * available. If slot reset fails or is not available, this will fall back to a
5950 * secondary bus reset.
5952 int pci_bus_error_reset(struct pci_dev *bridge)
5954 struct pci_bus *bus = bridge->subordinate;
5955 struct pci_slot *slot;
5960 mutex_lock(&pci_slot_mutex);
5961 if (list_empty(&bus->slots))
5964 list_for_each_entry(slot, &bus->slots, list)
5965 if (pci_probe_reset_slot(slot))
5968 list_for_each_entry(slot, &bus->slots, list)
5969 if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5972 mutex_unlock(&pci_slot_mutex);
5975 mutex_unlock(&pci_slot_mutex);
5976 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5980 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5981 * @bus: PCI bus to probe
5983 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5985 int pci_probe_reset_bus(struct pci_bus *bus)
5987 return pci_bus_reset(bus, PCI_RESET_PROBE);
5989 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5992 * __pci_reset_bus - Try to reset a PCI bus
5993 * @bus: top level PCI bus to reset
5995 * Same as above except return -EAGAIN if the bus cannot be locked
5997 static int __pci_reset_bus(struct pci_bus *bus)
6001 rc = pci_bus_reset(bus, PCI_RESET_PROBE);
6005 if (pci_bus_trylock(bus)) {
6006 pci_bus_save_and_disable_locked(bus);
6008 rc = pci_bridge_secondary_bus_reset(bus->self);
6009 pci_bus_restore_locked(bus);
6010 pci_bus_unlock(bus);
6018 * pci_reset_bus - Try to reset a PCI bus
6019 * @pdev: top level PCI device to reset via slot/bus
6021 * Same as above except return -EAGAIN if the bus cannot be locked
6023 int pci_reset_bus(struct pci_dev *pdev)
6025 return (!pci_probe_reset_slot(pdev->slot)) ?
6026 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
6028 EXPORT_SYMBOL_GPL(pci_reset_bus);
6031 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
6032 * @dev: PCI device to query
6034 * Returns mmrbc: maximum designed memory read count in bytes or
6035 * appropriate error value.
6037 int pcix_get_max_mmrbc(struct pci_dev *dev)
6042 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6046 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6049 return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat);
6051 EXPORT_SYMBOL(pcix_get_max_mmrbc);
6054 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
6055 * @dev: PCI device to query
6057 * Returns mmrbc: maximum memory read count in bytes or appropriate error
6060 int pcix_get_mmrbc(struct pci_dev *dev)
6065 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6069 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6072 return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
6074 EXPORT_SYMBOL(pcix_get_mmrbc);
6077 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
6078 * @dev: PCI device to query
6079 * @mmrbc: maximum memory read count in bytes
6080 * valid values are 512, 1024, 2048, 4096
6082 * If possible sets maximum memory read byte count, some bridges have errata
6083 * that prevent this.
6085 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
6091 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
6094 v = ffs(mmrbc) - 10;
6096 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6100 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6103 if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat))
6106 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6109 o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
6111 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
6114 cmd &= ~PCI_X_CMD_MAX_READ;
6115 cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v);
6116 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6121 EXPORT_SYMBOL(pcix_set_mmrbc);
6124 * pcie_get_readrq - get PCI Express read request size
6125 * @dev: PCI device to query
6127 * Returns maximum memory read request in bytes or appropriate error value.
6129 int pcie_get_readrq(struct pci_dev *dev)
6133 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6135 return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl);
6137 EXPORT_SYMBOL(pcie_get_readrq);
6140 * pcie_set_readrq - set PCI Express maximum memory read request
6141 * @dev: PCI device to query
6142 * @rq: maximum memory read count in bytes
6143 * valid values are 128, 256, 512, 1024, 2048, 4096
6145 * If possible sets maximum memory read request in bytes
6147 int pcie_set_readrq(struct pci_dev *dev, int rq)
6151 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6153 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6157 * If using the "performance" PCIe config, we clamp the read rq
6158 * size to the max packet size to keep the host bridge from
6159 * generating requests larger than we can cope with.
6161 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6162 int mps = pcie_get_mps(dev);
6168 v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8);
6170 if (bridge->no_inc_mrrs) {
6171 int max_mrrs = pcie_get_readrq(dev);
6173 if (rq > max_mrrs) {
6174 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6179 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6180 PCI_EXP_DEVCTL_READRQ, v);
6182 return pcibios_err_to_errno(ret);
6184 EXPORT_SYMBOL(pcie_set_readrq);
6187 * pcie_get_mps - get PCI Express maximum payload size
6188 * @dev: PCI device to query
6190 * Returns maximum payload size in bytes
6192 int pcie_get_mps(struct pci_dev *dev)
6196 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6198 return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl);
6200 EXPORT_SYMBOL(pcie_get_mps);
6203 * pcie_set_mps - set PCI Express maximum payload size
6204 * @dev: PCI device to query
6205 * @mps: maximum payload size in bytes
6206 * valid values are 128, 256, 512, 1024, 2048, 4096
6208 * If possible sets maximum payload size
6210 int pcie_set_mps(struct pci_dev *dev, int mps)
6215 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6219 if (v > dev->pcie_mpss)
6221 v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v);
6223 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6224 PCI_EXP_DEVCTL_PAYLOAD, v);
6226 return pcibios_err_to_errno(ret);
6228 EXPORT_SYMBOL(pcie_set_mps);
6231 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6232 * device and its bandwidth limitation
6233 * @dev: PCI device to query
6234 * @limiting_dev: storage for device causing the bandwidth limitation
6235 * @speed: storage for speed of limiting device
6236 * @width: storage for width of limiting device
6238 * Walk up the PCI device chain and find the point where the minimum
6239 * bandwidth is available. Return the bandwidth available there and (if
6240 * limiting_dev, speed, and width pointers are supplied) information about
6241 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
6244 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6245 enum pci_bus_speed *speed,
6246 enum pcie_link_width *width)
6249 enum pci_bus_speed next_speed;
6250 enum pcie_link_width next_width;
6254 *speed = PCI_SPEED_UNKNOWN;
6256 *width = PCIE_LNK_WIDTH_UNKNOWN;
6261 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6263 next_speed = pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS,
6265 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
6267 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6269 /* Check if current device limits the total bandwidth */
6270 if (!bw || next_bw <= bw) {
6274 *limiting_dev = dev;
6276 *speed = next_speed;
6278 *width = next_width;
6281 dev = pci_upstream_bridge(dev);
6286 EXPORT_SYMBOL(pcie_bandwidth_available);
6289 * pcie_get_speed_cap - query for the PCI device's link speed capability
6290 * @dev: PCI device to query
6292 * Query the PCI device speed capability. Return the maximum link speed
6293 * supported by the device.
6295 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6297 u32 lnkcap2, lnkcap;
6300 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
6301 * implementation note there recommends using the Supported Link
6302 * Speeds Vector in Link Capabilities 2 when supported.
6304 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6305 * should use the Supported Link Speeds field in Link Capabilities,
6306 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6308 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6310 /* PCIe r3.0-compliant */
6312 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6314 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6315 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6316 return PCIE_SPEED_5_0GT;
6317 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6318 return PCIE_SPEED_2_5GT;
6320 return PCI_SPEED_UNKNOWN;
6322 EXPORT_SYMBOL(pcie_get_speed_cap);
6325 * pcie_get_width_cap - query for the PCI device's link width capability
6326 * @dev: PCI device to query
6328 * Query the PCI device width capability. Return the maximum link width
6329 * supported by the device.
6331 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6335 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6337 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6339 return PCIE_LNK_WIDTH_UNKNOWN;
6341 EXPORT_SYMBOL(pcie_get_width_cap);
6344 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6346 * @speed: storage for link speed
6347 * @width: storage for link width
6349 * Calculate a PCI device's link bandwidth by querying for its link speed
6350 * and width, multiplying them, and applying encoding overhead. The result
6351 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6353 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6354 enum pcie_link_width *width)
6356 *speed = pcie_get_speed_cap(dev);
6357 *width = pcie_get_width_cap(dev);
6359 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6362 return *width * PCIE_SPEED2MBS_ENC(*speed);
6366 * __pcie_print_link_status - Report the PCI device's link speed and width
6367 * @dev: PCI device to query
6368 * @verbose: Print info even when enough bandwidth is available
6370 * If the available bandwidth at the device is less than the device is
6371 * capable of, report the device's maximum possible bandwidth and the
6372 * upstream link that limits its performance. If @verbose, always print
6373 * the available bandwidth, even if the device isn't constrained.
6375 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6377 enum pcie_link_width width, width_cap;
6378 enum pci_bus_speed speed, speed_cap;
6379 struct pci_dev *limiting_dev = NULL;
6380 u32 bw_avail, bw_cap;
6382 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6383 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6385 if (bw_avail >= bw_cap && verbose)
6386 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6387 bw_cap / 1000, bw_cap % 1000,
6388 pci_speed_string(speed_cap), width_cap);
6389 else if (bw_avail < bw_cap)
6390 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6391 bw_avail / 1000, bw_avail % 1000,
6392 pci_speed_string(speed), width,
6393 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6394 bw_cap / 1000, bw_cap % 1000,
6395 pci_speed_string(speed_cap), width_cap);
6399 * pcie_print_link_status - Report the PCI device's link speed and width
6400 * @dev: PCI device to query
6402 * Report the available bandwidth at the device.
6404 void pcie_print_link_status(struct pci_dev *dev)
6406 __pcie_print_link_status(dev, true);
6408 EXPORT_SYMBOL(pcie_print_link_status);
6411 * pci_select_bars - Make BAR mask from the type of resource
6412 * @dev: the PCI device for which BAR mask is made
6413 * @flags: resource type mask to be selected
6415 * This helper routine makes bar mask from the type of resource.
6417 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6420 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6421 if (pci_resource_flags(dev, i) & flags)
6425 EXPORT_SYMBOL(pci_select_bars);
6427 /* Some architectures require additional programming to enable VGA */
6428 static arch_set_vga_state_t arch_set_vga_state;
6430 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6432 arch_set_vga_state = func; /* NULL disables */
6435 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6436 unsigned int command_bits, u32 flags)
6438 if (arch_set_vga_state)
6439 return arch_set_vga_state(dev, decode, command_bits,
6445 * pci_set_vga_state - set VGA decode state on device and parents if requested
6446 * @dev: the PCI device
6447 * @decode: true = enable decoding, false = disable decoding
6448 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6449 * @flags: traverse ancestors and change bridges
6450 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6452 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6453 unsigned int command_bits, u32 flags)
6455 struct pci_bus *bus;
6456 struct pci_dev *bridge;
6460 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6462 /* ARCH specific VGA enables */
6463 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6467 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6468 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6470 cmd |= command_bits;
6472 cmd &= ~command_bits;
6473 pci_write_config_word(dev, PCI_COMMAND, cmd);
6476 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6483 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6486 cmd |= PCI_BRIDGE_CTL_VGA;
6488 cmd &= ~PCI_BRIDGE_CTL_VGA;
6489 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6498 bool pci_pr3_present(struct pci_dev *pdev)
6500 struct acpi_device *adev;
6505 adev = ACPI_COMPANION(&pdev->dev);
6509 return adev->power.flags.power_resources &&
6510 acpi_has_method(adev->handle, "_PR3");
6512 EXPORT_SYMBOL_GPL(pci_pr3_present);
6516 * pci_add_dma_alias - Add a DMA devfn alias for a device
6517 * @dev: the PCI device for which alias is added
6518 * @devfn_from: alias slot and function
6519 * @nr_devfns: number of subsequent devfns to alias
6521 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6522 * which is used to program permissible bus-devfn source addresses for DMA
6523 * requests in an IOMMU. These aliases factor into IOMMU group creation
6524 * and are useful for devices generating DMA requests beyond or different
6525 * from their logical bus-devfn. Examples include device quirks where the
6526 * device simply uses the wrong devfn, as well as non-transparent bridges
6527 * where the alias may be a proxy for devices in another domain.
6529 * IOMMU group creation is performed during device discovery or addition,
6530 * prior to any potential DMA mapping and therefore prior to driver probing
6531 * (especially for userspace assigned devices where IOMMU group definition
6532 * cannot be left as a userspace activity). DMA aliases should therefore
6533 * be configured via quirks, such as the PCI fixup header quirk.
6535 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6536 unsigned int nr_devfns)
6540 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6541 devfn_to = devfn_from + nr_devfns - 1;
6543 if (!dev->dma_alias_mask)
6544 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6545 if (!dev->dma_alias_mask) {
6546 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6550 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6553 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6554 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6555 else if (nr_devfns > 1)
6556 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6557 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6558 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6561 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6563 return (dev1->dma_alias_mask &&
6564 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6565 (dev2->dma_alias_mask &&
6566 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6567 pci_real_dma_dev(dev1) == dev2 ||
6568 pci_real_dma_dev(dev2) == dev1;
6571 bool pci_device_is_present(struct pci_dev *pdev)
6575 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6576 pdev = pci_physfn(pdev);
6577 if (pci_dev_is_disconnected(pdev))
6579 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6581 EXPORT_SYMBOL_GPL(pci_device_is_present);
6583 void pci_ignore_hotplug(struct pci_dev *dev)
6585 struct pci_dev *bridge = dev->bus->self;
6587 dev->ignore_hotplug = 1;
6588 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6590 bridge->ignore_hotplug = 1;
6592 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6595 * pci_real_dma_dev - Get PCI DMA device for PCI device
6596 * @dev: the PCI device that may have a PCI DMA alias
6598 * Permits the platform to provide architecture-specific functionality to
6599 * devices needing to alias DMA to another PCI device on another PCI bus. If
6600 * the PCI device is on the same bus, it is recommended to use
6601 * pci_add_dma_alias(). This is the default implementation. Architecture
6602 * implementations can override this.
6604 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6609 resource_size_t __weak pcibios_default_alignment(void)
6615 * Arches that don't want to expose struct resource to userland as-is in
6616 * sysfs and /proc can implement their own pci_resource_to_user().
6618 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6619 const struct resource *rsrc,
6620 resource_size_t *start, resource_size_t *end)
6622 *start = rsrc->start;
6626 static char *resource_alignment_param;
6627 static DEFINE_SPINLOCK(resource_alignment_lock);
6630 * pci_specified_resource_alignment - get resource alignment specified by user.
6631 * @dev: the PCI device to get
6632 * @resize: whether or not to change resources' size when reassigning alignment
6634 * RETURNS: Resource alignment if it is specified.
6635 * Zero if it is not specified.
6637 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6640 int align_order, count;
6641 resource_size_t align = pcibios_default_alignment();
6645 spin_lock(&resource_alignment_lock);
6646 p = resource_alignment_param;
6649 if (pci_has_flag(PCI_PROBE_ONLY)) {
6651 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6657 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6660 if (align_order > 63) {
6661 pr_err("PCI: Invalid requested alignment (order %d)\n",
6663 align_order = PAGE_SHIFT;
6666 align_order = PAGE_SHIFT;
6669 ret = pci_dev_str_match(dev, p, &p);
6672 align = 1ULL << align_order;
6674 } else if (ret < 0) {
6675 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6680 if (*p != ';' && *p != ',') {
6681 /* End of param or invalid format */
6687 spin_unlock(&resource_alignment_lock);
6691 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6692 resource_size_t align, bool resize)
6694 struct resource *r = &dev->resource[bar];
6695 resource_size_t size;
6697 if (!(r->flags & IORESOURCE_MEM))
6700 if (r->flags & IORESOURCE_PCI_FIXED) {
6701 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6702 bar, r, (unsigned long long)align);
6706 size = resource_size(r);
6711 * Increase the alignment of the resource. There are two ways we
6714 * 1) Increase the size of the resource. BARs are aligned on their
6715 * size, so when we reallocate space for this resource, we'll
6716 * allocate it with the larger alignment. This also prevents
6717 * assignment of any other BARs inside the alignment region, so
6718 * if we're requesting page alignment, this means no other BARs
6719 * will share the page.
6721 * The disadvantage is that this makes the resource larger than
6722 * the hardware BAR, which may break drivers that compute things
6723 * based on the resource size, e.g., to find registers at a
6724 * fixed offset before the end of the BAR.
6726 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6727 * set r->start to the desired alignment. By itself this
6728 * doesn't prevent other BARs being put inside the alignment
6729 * region, but if we realign *every* resource of every device in
6730 * the system, none of them will share an alignment region.
6732 * When the user has requested alignment for only some devices via
6733 * the "pci=resource_alignment" argument, "resize" is true and we
6734 * use the first method. Otherwise we assume we're aligning all
6735 * devices and we use the second.
6738 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6739 bar, r, (unsigned long long)align);
6745 r->flags &= ~IORESOURCE_SIZEALIGN;
6746 r->flags |= IORESOURCE_STARTALIGN;
6748 r->end = r->start + size - 1;
6750 r->flags |= IORESOURCE_UNSET;
6754 * This function disables memory decoding and releases memory resources
6755 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6756 * It also rounds up size to specified alignment.
6757 * Later on, the kernel will assign page-aligned memory resource back
6760 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6764 resource_size_t align;
6766 bool resize = false;
6769 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6770 * 3.4.1.11. Their resources are allocated from the space
6771 * described by the VF BARx register in the PF's SR-IOV capability.
6772 * We can't influence their alignment here.
6777 /* check if specified PCI is target device to reassign */
6778 align = pci_specified_resource_alignment(dev, &resize);
6782 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6783 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6784 pci_warn(dev, "Can't reassign resources to host bridge\n");
6788 pci_read_config_word(dev, PCI_COMMAND, &command);
6789 command &= ~PCI_COMMAND_MEMORY;
6790 pci_write_config_word(dev, PCI_COMMAND, command);
6792 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6793 pci_request_resource_alignment(dev, i, align, resize);
6796 * Need to disable bridge's resource window,
6797 * to enable the kernel to reassign new resource
6800 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6801 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6802 r = &dev->resource[i];
6803 if (!(r->flags & IORESOURCE_MEM))
6805 r->flags |= IORESOURCE_UNSET;
6806 r->end = resource_size(r) - 1;
6809 pci_disable_bridge_window(dev);
6813 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6817 spin_lock(&resource_alignment_lock);
6818 if (resource_alignment_param)
6819 count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6820 spin_unlock(&resource_alignment_lock);
6825 static ssize_t resource_alignment_store(const struct bus_type *bus,
6826 const char *buf, size_t count)
6828 char *param, *old, *end;
6830 if (count >= (PAGE_SIZE - 1))
6833 param = kstrndup(buf, count, GFP_KERNEL);
6837 end = strchr(param, '\n');
6841 spin_lock(&resource_alignment_lock);
6842 old = resource_alignment_param;
6843 if (strlen(param)) {
6844 resource_alignment_param = param;
6847 resource_alignment_param = NULL;
6849 spin_unlock(&resource_alignment_lock);
6856 static BUS_ATTR_RW(resource_alignment);
6858 static int __init pci_resource_alignment_sysfs_init(void)
6860 return bus_create_file(&pci_bus_type,
6861 &bus_attr_resource_alignment);
6863 late_initcall(pci_resource_alignment_sysfs_init);
6865 static void pci_no_domains(void)
6867 #ifdef CONFIG_PCI_DOMAINS
6868 pci_domains_supported = 0;
6872 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6873 static DEFINE_IDA(pci_domain_nr_static_ida);
6874 static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6876 static void of_pci_reserve_static_domain_nr(void)
6878 struct device_node *np;
6881 for_each_node_by_type(np, "pci") {
6882 domain_nr = of_get_pci_domain_nr(np);
6886 * Permanently allocate domain_nr in dynamic_ida
6887 * to prevent it from dynamic allocation.
6889 ida_alloc_range(&pci_domain_nr_dynamic_ida,
6890 domain_nr, domain_nr, GFP_KERNEL);
6894 static int of_pci_bus_find_domain_nr(struct device *parent)
6896 static bool static_domains_reserved = false;
6899 /* On the first call scan device tree for static allocations. */
6900 if (!static_domains_reserved) {
6901 of_pci_reserve_static_domain_nr();
6902 static_domains_reserved = true;
6907 * If domain is in DT, allocate it in static IDA. This
6908 * prevents duplicate static allocations in case of errors
6911 domain_nr = of_get_pci_domain_nr(parent->of_node);
6913 return ida_alloc_range(&pci_domain_nr_static_ida,
6914 domain_nr, domain_nr,
6919 * If domain was not specified in DT, choose a free ID from dynamic
6920 * allocations. All domain numbers from DT are permanently in
6921 * dynamic allocations to prevent assigning them to other DT nodes
6922 * without static domain.
6924 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6927 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6929 if (bus->domain_nr < 0)
6932 /* Release domain from IDA where it was allocated. */
6933 if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
6934 ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
6936 ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
6939 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6941 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6942 acpi_pci_bus_find_domain_nr(bus);
6945 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6949 of_pci_bus_release_domain_nr(bus, parent);
6954 * pci_ext_cfg_avail - can we access extended PCI config space?
6956 * Returns 1 if we can access PCI extended config space (offsets
6957 * greater than 0xff). This is the default implementation. Architecture
6958 * implementations can override this.
6960 int __weak pci_ext_cfg_avail(void)
6965 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6968 EXPORT_SYMBOL(pci_fixup_cardbus);
6970 static int __init pci_setup(char *str)
6973 char *k = strchr(str, ',');
6976 if (*str && (str = pcibios_setup(str)) && *str) {
6977 if (!strcmp(str, "nomsi")) {
6979 } else if (!strncmp(str, "noats", 5)) {
6980 pr_info("PCIe: ATS is disabled\n");
6981 pcie_ats_disabled = true;
6982 } else if (!strcmp(str, "noaer")) {
6984 } else if (!strcmp(str, "earlydump")) {
6985 pci_early_dump = true;
6986 } else if (!strncmp(str, "realloc=", 8)) {
6987 pci_realloc_get_opt(str + 8);
6988 } else if (!strncmp(str, "realloc", 7)) {
6989 pci_realloc_get_opt("on");
6990 } else if (!strcmp(str, "nodomains")) {
6992 } else if (!strncmp(str, "noari", 5)) {
6993 pcie_ari_disabled = true;
6994 } else if (!strncmp(str, "cbiosize=", 9)) {
6995 pci_cardbus_io_size = memparse(str + 9, &str);
6996 } else if (!strncmp(str, "cbmemsize=", 10)) {
6997 pci_cardbus_mem_size = memparse(str + 10, &str);
6998 } else if (!strncmp(str, "resource_alignment=", 19)) {
6999 resource_alignment_param = str + 19;
7000 } else if (!strncmp(str, "ecrc=", 5)) {
7001 pcie_ecrc_get_policy(str + 5);
7002 } else if (!strncmp(str, "hpiosize=", 9)) {
7003 pci_hotplug_io_size = memparse(str + 9, &str);
7004 } else if (!strncmp(str, "hpmmiosize=", 11)) {
7005 pci_hotplug_mmio_size = memparse(str + 11, &str);
7006 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
7007 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
7008 } else if (!strncmp(str, "hpmemsize=", 10)) {
7009 pci_hotplug_mmio_size = memparse(str + 10, &str);
7010 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
7011 } else if (!strncmp(str, "hpbussize=", 10)) {
7012 pci_hotplug_bus_size =
7013 simple_strtoul(str + 10, &str, 0);
7014 if (pci_hotplug_bus_size > 0xff)
7015 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
7016 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
7017 pcie_bus_config = PCIE_BUS_TUNE_OFF;
7018 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
7019 pcie_bus_config = PCIE_BUS_SAFE;
7020 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
7021 pcie_bus_config = PCIE_BUS_PERFORMANCE;
7022 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
7023 pcie_bus_config = PCIE_BUS_PEER2PEER;
7024 } else if (!strncmp(str, "pcie_scan_all", 13)) {
7025 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
7026 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
7027 disable_acs_redir_param = str + 18;
7029 pr_err("PCI: Unknown option `%s'\n", str);
7036 early_param("pci", pci_setup);
7039 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
7040 * in pci_setup(), above, to point to data in the __initdata section which
7041 * will be freed after the init sequence is complete. We can't allocate memory
7042 * in pci_setup() because some architectures do not have any memory allocation
7043 * service available during an early_param() call. So we allocate memory and
7044 * copy the variable here before the init section is freed.
7047 static int __init pci_realloc_setup_params(void)
7049 resource_alignment_param = kstrdup(resource_alignment_param,
7051 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
7055 pure_initcall(pci_realloc_setup_params);