1 /* SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (C) 2005 David Brownell
9 #include <linux/device.h>
10 #include <linux/mod_devicetable.h>
11 #include <linux/slab.h>
12 #include <linux/kthread.h>
13 #include <linux/completion.h>
14 #include <linux/scatterlist.h>
15 #include <linux/gpio/consumer.h>
18 struct property_entry;
19 struct spi_controller;
21 struct spi_controller_mem_ops;
24 * INTERFACES between SPI master-side drivers and SPI slave protocol handlers,
25 * and SPI infrastructure.
27 extern struct bus_type spi_bus_type;
30 * struct spi_statistics - statistics for spi transfers
31 * @lock: lock protecting this structure
33 * @messages: number of spi-messages handled
34 * @transfers: number of spi_transfers handled
35 * @errors: number of errors during spi_transfer
36 * @timedout: number of timeouts during spi_transfer
38 * @spi_sync: number of times spi_sync is used
39 * @spi_sync_immediate:
40 * number of times spi_sync is executed immediately
41 * in calling context without queuing and scheduling
42 * @spi_async: number of times spi_async is used
44 * @bytes: number of bytes transferred to/from device
45 * @bytes_tx: number of bytes sent to device
46 * @bytes_rx: number of bytes received from device
48 * @transfer_bytes_histo:
49 * transfer bytes histogramm
51 * @transfers_split_maxsize:
52 * number of transfers that have been split because of
55 struct spi_statistics {
56 spinlock_t lock; /* lock for the whole structure */
58 unsigned long messages;
59 unsigned long transfers;
61 unsigned long timedout;
63 unsigned long spi_sync;
64 unsigned long spi_sync_immediate;
65 unsigned long spi_async;
67 unsigned long long bytes;
68 unsigned long long bytes_rx;
69 unsigned long long bytes_tx;
71 #define SPI_STATISTICS_HISTO_SIZE 17
72 unsigned long transfer_bytes_histo[SPI_STATISTICS_HISTO_SIZE];
74 unsigned long transfers_split_maxsize;
77 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
78 struct spi_transfer *xfer,
79 struct spi_controller *ctlr);
81 #define SPI_STATISTICS_ADD_TO_FIELD(stats, field, count) \
83 unsigned long flags; \
84 spin_lock_irqsave(&(stats)->lock, flags); \
85 (stats)->field += count; \
86 spin_unlock_irqrestore(&(stats)->lock, flags); \
89 #define SPI_STATISTICS_INCREMENT_FIELD(stats, field) \
90 SPI_STATISTICS_ADD_TO_FIELD(stats, field, 1)
93 * struct spi_device - Controller side proxy for an SPI slave device
94 * @dev: Driver model representation of the device.
95 * @controller: SPI controller used with the device.
96 * @master: Copy of controller, for backwards compatibility.
97 * @max_speed_hz: Maximum clock rate to be used with this chip
98 * (on this board); may be changed by the device's driver.
99 * The spi_transfer.speed_hz can override this for each transfer.
100 * @chip_select: Chipselect, distinguishing chips handled by @controller.
101 * @mode: The spi mode defines how data is clocked out and in.
102 * This may be changed by the device's driver.
103 * The "active low" default for chipselect mode can be overridden
104 * (by specifying SPI_CS_HIGH) as can the "MSB first" default for
105 * each word in a transfer (by specifying SPI_LSB_FIRST).
106 * @bits_per_word: Data transfers involve one or more words; word sizes
107 * like eight or 12 bits are common. In-memory wordsizes are
108 * powers of two bytes (e.g. 20 bit samples use 32 bits).
109 * This may be changed by the device's driver, or left at the
110 * default (0) indicating protocol words are eight bit bytes.
111 * The spi_transfer.bits_per_word can override this for each transfer.
112 * @irq: Negative, or the number passed to request_irq() to receive
113 * interrupts from this device.
114 * @controller_state: Controller's runtime state
115 * @controller_data: Board-specific definitions for controller, such as
116 * FIFO initialization parameters; from board_info.controller_data
117 * @modalias: Name of the driver to use with this device, or an alias
118 * for that name. This appears in the sysfs "modalias" attribute
119 * for driver coldplugging, and in uevents used for hotplugging
120 * @cs_gpio: LEGACY: gpio number of the chipselect line (optional, -ENOENT when
121 * not using a GPIO line) use cs_gpiod in new drivers by opting in on
123 * @cs_gpiod: gpio descriptor of the chipselect line (optional, NULL when
124 * not using a GPIO line)
125 * @word_delay_usecs: microsecond delay to be inserted between consecutive
126 * words of a transfer
128 * @statistics: statistics for the spi_device
130 * A @spi_device is used to interchange data between an SPI slave
131 * (usually a discrete chip) and CPU memory.
133 * In @dev, the platform_data is used to hold information about this
134 * device that's meaningful to the device's protocol driver, but not
135 * to its controller. One example might be an identifier for a chip
136 * variant with slightly different functionality; another might be
137 * information about how this particular board wires the chip's pins.
141 struct spi_controller *controller;
142 struct spi_controller *master; /* compatibility layer */
147 #define SPI_CPHA 0x01 /* clock phase */
148 #define SPI_CPOL 0x02 /* clock polarity */
149 #define SPI_MODE_0 (0|0) /* (original MicroWire) */
150 #define SPI_MODE_1 (0|SPI_CPHA)
151 #define SPI_MODE_2 (SPI_CPOL|0)
152 #define SPI_MODE_3 (SPI_CPOL|SPI_CPHA)
153 #define SPI_CS_HIGH 0x04 /* chipselect active high? */
154 #define SPI_LSB_FIRST 0x08 /* per-word bits-on-wire */
155 #define SPI_3WIRE 0x10 /* SI/SO signals shared */
156 #define SPI_LOOP 0x20 /* loopback mode */
157 #define SPI_NO_CS 0x40 /* 1 dev/bus, no chipselect */
158 #define SPI_READY 0x80 /* slave pulls low to pause */
159 #define SPI_TX_DUAL 0x100 /* transmit with 2 wires */
160 #define SPI_TX_QUAD 0x200 /* transmit with 4 wires */
161 #define SPI_RX_DUAL 0x400 /* receive with 2 wires */
162 #define SPI_RX_QUAD 0x800 /* receive with 4 wires */
163 #define SPI_CS_WORD 0x1000 /* toggle cs after each word */
164 #define SPI_TX_OCTAL 0x2000 /* transmit with 8 wires */
165 #define SPI_RX_OCTAL 0x4000 /* receive with 8 wires */
166 #define SPI_3WIRE_HIZ 0x8000 /* high impedance turnaround */
168 void *controller_state;
169 void *controller_data;
170 char modalias[SPI_NAME_SIZE];
171 const char *driver_override;
172 int cs_gpio; /* LEGACY: chip select gpio */
173 struct gpio_desc *cs_gpiod; /* chip select gpio desc */
174 uint8_t word_delay_usecs; /* inter-word delay */
177 struct spi_statistics statistics;
180 * likely need more hooks for more protocol options affecting how
181 * the controller talks to each chip, like:
182 * - memory packing (12 bit samples into low bits, others zeroed)
184 * - chipselect delays
189 static inline struct spi_device *to_spi_device(struct device *dev)
191 return dev ? container_of(dev, struct spi_device, dev) : NULL;
194 /* most drivers won't need to care about device refcounting */
195 static inline struct spi_device *spi_dev_get(struct spi_device *spi)
197 return (spi && get_device(&spi->dev)) ? spi : NULL;
200 static inline void spi_dev_put(struct spi_device *spi)
203 put_device(&spi->dev);
206 /* ctldata is for the bus_controller driver's runtime state */
207 static inline void *spi_get_ctldata(struct spi_device *spi)
209 return spi->controller_state;
212 static inline void spi_set_ctldata(struct spi_device *spi, void *state)
214 spi->controller_state = state;
217 /* device driver data */
219 static inline void spi_set_drvdata(struct spi_device *spi, void *data)
221 dev_set_drvdata(&spi->dev, data);
224 static inline void *spi_get_drvdata(struct spi_device *spi)
226 return dev_get_drvdata(&spi->dev);
233 * struct spi_driver - Host side "protocol" driver
234 * @id_table: List of SPI devices supported by this driver
235 * @probe: Binds this driver to the spi device. Drivers can verify
236 * that the device is actually present, and may need to configure
237 * characteristics (such as bits_per_word) which weren't needed for
238 * the initial configuration done during system setup.
239 * @remove: Unbinds this driver from the spi device
240 * @shutdown: Standard shutdown callback used during system state
241 * transitions such as powerdown/halt and kexec
242 * @driver: SPI device drivers should initialize the name and owner
243 * field of this structure.
245 * This represents the kind of device driver that uses SPI messages to
246 * interact with the hardware at the other end of a SPI link. It's called
247 * a "protocol" driver because it works through messages rather than talking
248 * directly to SPI hardware (which is what the underlying SPI controller
249 * driver does to pass those messages). These protocols are defined in the
250 * specification for the device(s) supported by the driver.
252 * As a rule, those device protocols represent the lowest level interface
253 * supported by a driver, and it will support upper level interfaces too.
254 * Examples of such upper levels include frameworks like MTD, networking,
255 * MMC, RTC, filesystem character device nodes, and hardware monitoring.
258 const struct spi_device_id *id_table;
259 int (*probe)(struct spi_device *spi);
260 int (*remove)(struct spi_device *spi);
261 void (*shutdown)(struct spi_device *spi);
262 struct device_driver driver;
265 static inline struct spi_driver *to_spi_driver(struct device_driver *drv)
267 return drv ? container_of(drv, struct spi_driver, driver) : NULL;
270 extern int __spi_register_driver(struct module *owner, struct spi_driver *sdrv);
273 * spi_unregister_driver - reverse effect of spi_register_driver
274 * @sdrv: the driver to unregister
277 static inline void spi_unregister_driver(struct spi_driver *sdrv)
280 driver_unregister(&sdrv->driver);
283 /* use a define to avoid include chaining to get THIS_MODULE */
284 #define spi_register_driver(driver) \
285 __spi_register_driver(THIS_MODULE, driver)
288 * module_spi_driver() - Helper macro for registering a SPI driver
289 * @__spi_driver: spi_driver struct
291 * Helper macro for SPI drivers which do not do anything special in module
292 * init/exit. This eliminates a lot of boilerplate. Each module may only
293 * use this macro once, and calling it replaces module_init() and module_exit()
295 #define module_spi_driver(__spi_driver) \
296 module_driver(__spi_driver, spi_register_driver, \
297 spi_unregister_driver)
300 * struct spi_controller - interface to SPI master or slave controller
301 * @dev: device interface to this driver
302 * @list: link with the global spi_controller list
303 * @bus_num: board-specific (and often SOC-specific) identifier for a
304 * given SPI controller.
305 * @num_chipselect: chipselects are used to distinguish individual
306 * SPI slaves, and are numbered from zero to num_chipselects.
307 * each slave has a chipselect signal, but it's common that not
308 * every chipselect is connected to a slave.
309 * @dma_alignment: SPI controller constraint on DMA buffers alignment.
310 * @mode_bits: flags understood by this controller driver
311 * @bits_per_word_mask: A mask indicating which values of bits_per_word are
312 * supported by the driver. Bit n indicates that a bits_per_word n+1 is
313 * supported. If set, the SPI core will reject any transfer with an
314 * unsupported bits_per_word. If not set, this value is simply ignored,
315 * and it's up to the individual driver to perform any validation.
316 * @min_speed_hz: Lowest supported transfer speed
317 * @max_speed_hz: Highest supported transfer speed
318 * @flags: other constraints relevant to this driver
319 * @slave: indicates that this is an SPI slave controller
320 * @max_transfer_size: function that returns the max transfer size for
321 * a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
322 * @max_message_size: function that returns the max message size for
323 * a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
324 * @io_mutex: mutex for physical bus access
325 * @bus_lock_spinlock: spinlock for SPI bus locking
326 * @bus_lock_mutex: mutex for exclusion of multiple callers
327 * @bus_lock_flag: indicates that the SPI bus is locked for exclusive use
328 * @setup: updates the device mode and clocking records used by a
329 * device's SPI controller; protocol code may call this. This
330 * must fail if an unrecognized or unsupported mode is requested.
331 * It's always safe to call this unless transfers are pending on
332 * the device whose settings are being modified.
333 * @transfer: adds a message to the controller's transfer queue.
334 * @cleanup: frees controller-specific state
335 * @can_dma: determine whether this controller supports DMA
336 * @queued: whether this controller is providing an internal message queue
337 * @kworker: thread struct for message pump
338 * @kworker_task: pointer to task for message pump kworker thread
339 * @pump_messages: work struct for scheduling work to the message pump
340 * @queue_lock: spinlock to syncronise access to message queue
341 * @queue: message queue
342 * @idling: the device is entering idle state
343 * @cur_msg: the currently in-flight message
344 * @cur_msg_prepared: spi_prepare_message was called for the currently
346 * @cur_msg_mapped: message has been mapped for DMA
347 * @xfer_completion: used by core transfer_one_message()
348 * @busy: message pump is busy
349 * @running: message pump is running
350 * @rt: whether this queue is set to run as a realtime task
351 * @auto_runtime_pm: the core should ensure a runtime PM reference is held
352 * while the hardware is prepared, using the parent
353 * device for the spidev
354 * @max_dma_len: Maximum length of a DMA transfer for the device.
355 * @prepare_transfer_hardware: a message will soon arrive from the queue
356 * so the subsystem requests the driver to prepare the transfer hardware
357 * by issuing this call
358 * @transfer_one_message: the subsystem calls the driver to transfer a single
359 * message while queuing transfers that arrive in the meantime. When the
360 * driver is finished with this message, it must call
361 * spi_finalize_current_message() so the subsystem can issue the next
363 * @unprepare_transfer_hardware: there are currently no more messages on the
364 * queue so the subsystem notifies the driver that it may relax the
365 * hardware by issuing this call
366 * @set_cs: set the logic level of the chip select line. May be called
367 * from interrupt context.
368 * @prepare_message: set up the controller to transfer a single message,
369 * for example doing DMA mapping. Called from threaded
371 * @transfer_one: transfer a single spi_transfer.
372 * - return 0 if the transfer is finished,
373 * - return 1 if the transfer is still in progress. When
374 * the driver is finished with this transfer it must
375 * call spi_finalize_current_transfer() so the subsystem
376 * can issue the next transfer. Note: transfer_one and
377 * transfer_one_message are mutually exclusive; when both
378 * are set, the generic subsystem does not call your
379 * transfer_one callback.
380 * @handle_err: the subsystem calls the driver to handle an error that occurs
381 * in the generic implementation of transfer_one_message().
382 * @mem_ops: optimized/dedicated operations for interactions with SPI memory.
383 * This field is optional and should only be implemented if the
384 * controller has native support for memory like operations.
385 * @unprepare_message: undo any work done by prepare_message().
386 * @slave_abort: abort the ongoing transfer request on an SPI slave controller
387 * @cs_gpios: LEGACY: array of GPIO descs to use as chip select lines; one per
388 * CS number. Any individual value may be -ENOENT for CS lines that
389 * are not GPIOs (driven by the SPI controller itself). Use the cs_gpiods
391 * @cs_gpiods: Array of GPIO descs to use as chip select lines; one per CS
392 * number. Any individual value may be NULL for CS lines that
393 * are not GPIOs (driven by the SPI controller itself).
394 * @use_gpio_descriptors: Turns on the code in the SPI core to parse and grab
395 * GPIO descriptors rather than using global GPIO numbers grabbed by the
396 * driver. This will fill in @cs_gpiods and @cs_gpios should not be used,
397 * and SPI devices will have the cs_gpiod assigned rather than cs_gpio.
398 * @statistics: statistics for the spi_controller
399 * @dma_tx: DMA transmit channel
400 * @dma_rx: DMA receive channel
401 * @dummy_rx: dummy receive buffer for full-duplex devices
402 * @dummy_tx: dummy transmit buffer for full-duplex devices
403 * @fw_translate_cs: If the boot firmware uses different numbering scheme
404 * what Linux expects, this optional hook can be used to translate
407 * Each SPI controller can communicate with one or more @spi_device
408 * children. These make a small bus, sharing MOSI, MISO and SCK signals
409 * but not chip select signals. Each device may be configured to use a
410 * different clock rate, since those shared signals are ignored unless
411 * the chip is selected.
413 * The driver for an SPI controller manages access to those devices through
414 * a queue of spi_message transactions, copying data between CPU memory and
415 * an SPI slave device. For each such message it queues, it calls the
416 * message's completion function when the transaction completes.
418 struct spi_controller {
421 struct list_head list;
423 /* other than negative (== assign one dynamically), bus_num is fully
424 * board-specific. usually that simplifies to being SOC-specific.
425 * example: one SOC has three SPI controllers, numbered 0..2,
426 * and one board's schematics might show it using SPI-2. software
427 * would normally use bus_num=2 for that controller.
431 /* chipselects will be integral to many controllers; some others
432 * might use board-specific GPIOs.
436 /* some SPI controllers pose alignment requirements on DMAable
437 * buffers; let protocol drivers know about these requirements.
441 /* spi_device.mode flags understood by this controller driver */
444 /* bitmask of supported bits_per_word for transfers */
445 u32 bits_per_word_mask;
446 #define SPI_BPW_MASK(bits) BIT((bits) - 1)
447 #define SPI_BPW_RANGE_MASK(min, max) GENMASK((max) - 1, (min) - 1)
449 /* limits on transfer speed */
453 /* other constraints relevant to this driver */
455 #define SPI_CONTROLLER_HALF_DUPLEX BIT(0) /* can't do full duplex */
456 #define SPI_CONTROLLER_NO_RX BIT(1) /* can't do buffer read */
457 #define SPI_CONTROLLER_NO_TX BIT(2) /* can't do buffer write */
458 #define SPI_CONTROLLER_MUST_RX BIT(3) /* requires rx */
459 #define SPI_CONTROLLER_MUST_TX BIT(4) /* requires tx */
461 #define SPI_MASTER_GPIO_SS BIT(5) /* GPIO CS must select slave */
463 /* flag indicating this is an SPI slave controller */
467 * on some hardware transfer / message size may be constrained
468 * the limit may depend on device transfer settings
470 size_t (*max_transfer_size)(struct spi_device *spi);
471 size_t (*max_message_size)(struct spi_device *spi);
474 struct mutex io_mutex;
476 /* lock and mutex for SPI bus locking */
477 spinlock_t bus_lock_spinlock;
478 struct mutex bus_lock_mutex;
480 /* flag indicating that the SPI bus is locked for exclusive use */
483 /* Setup mode and clock, etc (spi driver may call many times).
485 * IMPORTANT: this may be called when transfers to another
486 * device are active. DO NOT UPDATE SHARED REGISTERS in ways
487 * which could break those transfers.
489 int (*setup)(struct spi_device *spi);
491 /* bidirectional bulk transfers
493 * + The transfer() method may not sleep; its main role is
494 * just to add the message to the queue.
495 * + For now there's no remove-from-queue operation, or
496 * any other request management
497 * + To a given spi_device, message queueing is pure fifo
499 * + The controller's main job is to process its message queue,
500 * selecting a chip (for masters), then transferring data
501 * + If there are multiple spi_device children, the i/o queue
502 * arbitration algorithm is unspecified (round robin, fifo,
503 * priority, reservations, preemption, etc)
505 * + Chipselect stays active during the entire message
506 * (unless modified by spi_transfer.cs_change != 0).
507 * + The message transfers use clock and SPI mode parameters
508 * previously established by setup() for this device
510 int (*transfer)(struct spi_device *spi,
511 struct spi_message *mesg);
513 /* called on release() to free memory provided by spi_controller */
514 void (*cleanup)(struct spi_device *spi);
517 * Used to enable core support for DMA handling, if can_dma()
518 * exists and returns true then the transfer will be mapped
519 * prior to transfer_one() being called. The driver should
520 * not modify or store xfer and dma_tx and dma_rx must be set
521 * while the device is prepared.
523 bool (*can_dma)(struct spi_controller *ctlr,
524 struct spi_device *spi,
525 struct spi_transfer *xfer);
528 * These hooks are for drivers that want to use the generic
529 * controller transfer queueing mechanism. If these are used, the
530 * transfer() function above must NOT be specified by the driver.
531 * Over time we expect SPI drivers to be phased over to this API.
534 struct kthread_worker kworker;
535 struct task_struct *kworker_task;
536 struct kthread_work pump_messages;
537 spinlock_t queue_lock;
538 struct list_head queue;
539 struct spi_message *cur_msg;
544 bool auto_runtime_pm;
545 bool cur_msg_prepared;
547 struct completion xfer_completion;
550 int (*prepare_transfer_hardware)(struct spi_controller *ctlr);
551 int (*transfer_one_message)(struct spi_controller *ctlr,
552 struct spi_message *mesg);
553 int (*unprepare_transfer_hardware)(struct spi_controller *ctlr);
554 int (*prepare_message)(struct spi_controller *ctlr,
555 struct spi_message *message);
556 int (*unprepare_message)(struct spi_controller *ctlr,
557 struct spi_message *message);
558 int (*slave_abort)(struct spi_controller *ctlr);
561 * These hooks are for drivers that use a generic implementation
562 * of transfer_one_message() provied by the core.
564 void (*set_cs)(struct spi_device *spi, bool enable);
565 int (*transfer_one)(struct spi_controller *ctlr, struct spi_device *spi,
566 struct spi_transfer *transfer);
567 void (*handle_err)(struct spi_controller *ctlr,
568 struct spi_message *message);
570 /* Optimized handlers for SPI memory-like operations. */
571 const struct spi_controller_mem_ops *mem_ops;
573 /* gpio chip select */
575 struct gpio_desc **cs_gpiods;
576 bool use_gpio_descriptors;
579 struct spi_statistics statistics;
581 /* DMA channels for use with core dmaengine helpers */
582 struct dma_chan *dma_tx;
583 struct dma_chan *dma_rx;
585 /* dummy data for full duplex devices */
589 int (*fw_translate_cs)(struct spi_controller *ctlr, unsigned cs);
592 static inline void *spi_controller_get_devdata(struct spi_controller *ctlr)
594 return dev_get_drvdata(&ctlr->dev);
597 static inline void spi_controller_set_devdata(struct spi_controller *ctlr,
600 dev_set_drvdata(&ctlr->dev, data);
603 static inline struct spi_controller *spi_controller_get(struct spi_controller *ctlr)
605 if (!ctlr || !get_device(&ctlr->dev))
610 static inline void spi_controller_put(struct spi_controller *ctlr)
613 put_device(&ctlr->dev);
616 static inline bool spi_controller_is_slave(struct spi_controller *ctlr)
618 return IS_ENABLED(CONFIG_SPI_SLAVE) && ctlr->slave;
621 /* PM calls that need to be issued by the driver */
622 extern int spi_controller_suspend(struct spi_controller *ctlr);
623 extern int spi_controller_resume(struct spi_controller *ctlr);
625 /* Calls the driver make to interact with the message queue */
626 extern struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr);
627 extern void spi_finalize_current_message(struct spi_controller *ctlr);
628 extern void spi_finalize_current_transfer(struct spi_controller *ctlr);
630 /* the spi driver core manages memory for the spi_controller classdev */
631 extern struct spi_controller *__spi_alloc_controller(struct device *host,
632 unsigned int size, bool slave);
634 static inline struct spi_controller *spi_alloc_master(struct device *host,
637 return __spi_alloc_controller(host, size, false);
640 static inline struct spi_controller *spi_alloc_slave(struct device *host,
643 if (!IS_ENABLED(CONFIG_SPI_SLAVE))
646 return __spi_alloc_controller(host, size, true);
649 extern int spi_register_controller(struct spi_controller *ctlr);
650 extern int devm_spi_register_controller(struct device *dev,
651 struct spi_controller *ctlr);
652 extern void spi_unregister_controller(struct spi_controller *ctlr);
654 extern struct spi_controller *spi_busnum_to_master(u16 busnum);
657 * SPI resource management while processing a SPI message
660 typedef void (*spi_res_release_t)(struct spi_controller *ctlr,
661 struct spi_message *msg,
665 * struct spi_res - spi resource management structure
667 * @release: release code called prior to freeing this resource
668 * @data: extra data allocated for the specific use-case
670 * this is based on ideas from devres, but focused on life-cycle
671 * management during spi_message processing
674 struct list_head entry;
675 spi_res_release_t release;
676 unsigned long long data[]; /* guarantee ull alignment */
679 extern void *spi_res_alloc(struct spi_device *spi,
680 spi_res_release_t release,
681 size_t size, gfp_t gfp);
682 extern void spi_res_add(struct spi_message *message, void *res);
683 extern void spi_res_free(void *res);
685 extern void spi_res_release(struct spi_controller *ctlr,
686 struct spi_message *message);
688 /*---------------------------------------------------------------------------*/
691 * I/O INTERFACE between SPI controller and protocol drivers
693 * Protocol drivers use a queue of spi_messages, each transferring data
694 * between the controller and memory buffers.
696 * The spi_messages themselves consist of a series of read+write transfer
697 * segments. Those segments always read the same number of bits as they
698 * write; but one or the other is easily ignored by passing a null buffer
699 * pointer. (This is unlike most types of I/O API, because SPI hardware
702 * NOTE: Allocation of spi_transfer and spi_message memory is entirely
703 * up to the protocol driver, which guarantees the integrity of both (as
704 * well as the data buffers) for as long as the message is queued.
708 * struct spi_transfer - a read/write buffer pair
709 * @tx_buf: data to be written (dma-safe memory), or NULL
710 * @rx_buf: data to be read (dma-safe memory), or NULL
711 * @tx_dma: DMA address of tx_buf, if @spi_message.is_dma_mapped
712 * @rx_dma: DMA address of rx_buf, if @spi_message.is_dma_mapped
713 * @tx_nbits: number of bits used for writing. If 0 the default
714 * (SPI_NBITS_SINGLE) is used.
715 * @rx_nbits: number of bits used for reading. If 0 the default
716 * (SPI_NBITS_SINGLE) is used.
717 * @len: size of rx and tx buffers (in bytes)
718 * @speed_hz: Select a speed other than the device default for this
719 * transfer. If 0 the default (from @spi_device) is used.
720 * @bits_per_word: select a bits_per_word other than the device default
721 * for this transfer. If 0 the default (from @spi_device) is used.
722 * @cs_change: affects chipselect after this transfer completes
723 * @delay_usecs: microseconds to delay after this transfer before
724 * (optionally) changing the chipselect status, then starting
725 * the next transfer or completing this @spi_message.
726 * @word_delay_usecs: microseconds to inter word delay after each word size
727 * (set by bits_per_word) transmission.
728 * @word_delay: clock cycles to inter word delay after each word size
729 * (set by bits_per_word) transmission.
730 * @transfer_list: transfers are sequenced through @spi_message.transfers
731 * @tx_sg: Scatterlist for transmit, currently not for client use
732 * @rx_sg: Scatterlist for receive, currently not for client use
734 * SPI transfers always write the same number of bytes as they read.
735 * Protocol drivers should always provide @rx_buf and/or @tx_buf.
736 * In some cases, they may also want to provide DMA addresses for
737 * the data being transferred; that may reduce overhead, when the
738 * underlying driver uses dma.
740 * If the transmit buffer is null, zeroes will be shifted out
741 * while filling @rx_buf. If the receive buffer is null, the data
742 * shifted in will be discarded. Only "len" bytes shift out (or in).
743 * It's an error to try to shift out a partial word. (For example, by
744 * shifting out three bytes with word size of sixteen or twenty bits;
745 * the former uses two bytes per word, the latter uses four bytes.)
747 * In-memory data values are always in native CPU byte order, translated
748 * from the wire byte order (big-endian except with SPI_LSB_FIRST). So
749 * for example when bits_per_word is sixteen, buffers are 2N bytes long
750 * (@len = 2N) and hold N sixteen bit words in CPU byte order.
752 * When the word size of the SPI transfer is not a power-of-two multiple
753 * of eight bits, those in-memory words include extra bits. In-memory
754 * words are always seen by protocol drivers as right-justified, so the
755 * undefined (rx) or unused (tx) bits are always the most significant bits.
757 * All SPI transfers start with the relevant chipselect active. Normally
758 * it stays selected until after the last transfer in a message. Drivers
759 * can affect the chipselect signal using cs_change.
761 * (i) If the transfer isn't the last one in the message, this flag is
762 * used to make the chipselect briefly go inactive in the middle of the
763 * message. Toggling chipselect in this way may be needed to terminate
764 * a chip command, letting a single spi_message perform all of group of
765 * chip transactions together.
767 * (ii) When the transfer is the last one in the message, the chip may
768 * stay selected until the next transfer. On multi-device SPI busses
769 * with nothing blocking messages going to other devices, this is just
770 * a performance hint; starting a message to another device deselects
771 * this one. But in other cases, this can be used to ensure correctness.
772 * Some devices need protocol transactions to be built from a series of
773 * spi_message submissions, where the content of one message is determined
774 * by the results of previous messages and where the whole transaction
775 * ends when the chipselect goes intactive.
777 * When SPI can transfer in 1x,2x or 4x. It can get this transfer information
778 * from device through @tx_nbits and @rx_nbits. In Bi-direction, these
779 * two should both be set. User can set transfer mode with SPI_NBITS_SINGLE(1x)
780 * SPI_NBITS_DUAL(2x) and SPI_NBITS_QUAD(4x) to support these three transfer.
782 * The code that submits an spi_message (and its spi_transfers)
783 * to the lower layers is responsible for managing its memory.
784 * Zero-initialize every field you don't set up explicitly, to
785 * insulate against future API updates. After you submit a message
786 * and its transfers, ignore them until its completion callback.
788 struct spi_transfer {
789 /* it's ok if tx_buf == rx_buf (right?)
790 * for MicroWire, one buffer must be null
791 * buffers must work with dma_*map_single() calls, unless
792 * spi_message.is_dma_mapped reports a pre-existing mapping
800 struct sg_table tx_sg;
801 struct sg_table rx_sg;
803 unsigned cs_change:1;
806 #define SPI_NBITS_SINGLE 0x01 /* 1bit transfer */
807 #define SPI_NBITS_DUAL 0x02 /* 2bits transfer */
808 #define SPI_NBITS_QUAD 0x04 /* 4bits transfer */
815 struct list_head transfer_list;
819 * struct spi_message - one multi-segment SPI transaction
820 * @transfers: list of transfer segments in this transaction
821 * @spi: SPI device to which the transaction is queued
822 * @is_dma_mapped: if true, the caller provided both dma and cpu virtual
823 * addresses for each transfer buffer
824 * @complete: called to report transaction completions
825 * @context: the argument to complete() when it's called
826 * @frame_length: the total number of bytes in the message
827 * @actual_length: the total number of bytes that were transferred in all
828 * successful segments
829 * @status: zero for success, else negative errno
830 * @queue: for use by whichever driver currently owns the message
831 * @state: for use by whichever driver currently owns the message
832 * @resources: for resource management when the spi message is processed
834 * A @spi_message is used to execute an atomic sequence of data transfers,
835 * each represented by a struct spi_transfer. The sequence is "atomic"
836 * in the sense that no other spi_message may use that SPI bus until that
837 * sequence completes. On some systems, many such sequences can execute as
838 * as single programmed DMA transfer. On all systems, these messages are
839 * queued, and might complete after transactions to other devices. Messages
840 * sent to a given spi_device are always executed in FIFO order.
842 * The code that submits an spi_message (and its spi_transfers)
843 * to the lower layers is responsible for managing its memory.
844 * Zero-initialize every field you don't set up explicitly, to
845 * insulate against future API updates. After you submit a message
846 * and its transfers, ignore them until its completion callback.
849 struct list_head transfers;
851 struct spi_device *spi;
853 unsigned is_dma_mapped:1;
855 /* REVISIT: we might want a flag affecting the behavior of the
856 * last transfer ... allowing things like "read 16 bit length L"
857 * immediately followed by "read L bytes". Basically imposing
858 * a specific message scheduling algorithm.
860 * Some controller drivers (message-at-a-time queue processing)
861 * could provide that as their default scheduling algorithm. But
862 * others (with multi-message pipelines) could need a flag to
863 * tell them about such special cases.
866 /* completion is reported through a callback */
867 void (*complete)(void *context);
869 unsigned frame_length;
870 unsigned actual_length;
873 /* for optional use by whatever driver currently owns the
874 * spi_message ... between calls to spi_async and then later
875 * complete(), that's the spi_controller controller driver.
877 struct list_head queue;
880 /* list of spi_res reources when the spi message is processed */
881 struct list_head resources;
884 static inline void spi_message_init_no_memset(struct spi_message *m)
886 INIT_LIST_HEAD(&m->transfers);
887 INIT_LIST_HEAD(&m->resources);
890 static inline void spi_message_init(struct spi_message *m)
892 memset(m, 0, sizeof *m);
893 spi_message_init_no_memset(m);
897 spi_message_add_tail(struct spi_transfer *t, struct spi_message *m)
899 list_add_tail(&t->transfer_list, &m->transfers);
903 spi_transfer_del(struct spi_transfer *t)
905 list_del(&t->transfer_list);
909 * spi_message_init_with_transfers - Initialize spi_message and append transfers
910 * @m: spi_message to be initialized
911 * @xfers: An array of spi transfers
912 * @num_xfers: Number of items in the xfer array
914 * This function initializes the given spi_message and adds each spi_transfer in
915 * the given array to the message.
918 spi_message_init_with_transfers(struct spi_message *m,
919 struct spi_transfer *xfers, unsigned int num_xfers)
924 for (i = 0; i < num_xfers; ++i)
925 spi_message_add_tail(&xfers[i], m);
928 /* It's fine to embed message and transaction structures in other data
929 * structures so long as you don't free them while they're in use.
932 static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags)
934 struct spi_message *m;
936 m = kzalloc(sizeof(struct spi_message)
937 + ntrans * sizeof(struct spi_transfer),
941 struct spi_transfer *t = (struct spi_transfer *)(m + 1);
943 spi_message_init_no_memset(m);
944 for (i = 0; i < ntrans; i++, t++)
945 spi_message_add_tail(t, m);
950 static inline void spi_message_free(struct spi_message *m)
955 extern int spi_setup(struct spi_device *spi);
956 extern int spi_async(struct spi_device *spi, struct spi_message *message);
957 extern int spi_async_locked(struct spi_device *spi,
958 struct spi_message *message);
959 extern int spi_slave_abort(struct spi_device *spi);
962 spi_max_message_size(struct spi_device *spi)
964 struct spi_controller *ctlr = spi->controller;
966 if (!ctlr->max_message_size)
968 return ctlr->max_message_size(spi);
972 spi_max_transfer_size(struct spi_device *spi)
974 struct spi_controller *ctlr = spi->controller;
975 size_t tr_max = SIZE_MAX;
976 size_t msg_max = spi_max_message_size(spi);
978 if (ctlr->max_transfer_size)
979 tr_max = ctlr->max_transfer_size(spi);
981 /* transfer size limit must not be greater than messsage size limit */
982 return min(tr_max, msg_max);
985 /*---------------------------------------------------------------------------*/
987 /* SPI transfer replacement methods which make use of spi_res */
989 struct spi_replaced_transfers;
990 typedef void (*spi_replaced_release_t)(struct spi_controller *ctlr,
991 struct spi_message *msg,
992 struct spi_replaced_transfers *res);
994 * struct spi_replaced_transfers - structure describing the spi_transfer
995 * replacements that have occurred
996 * so that they can get reverted
997 * @release: some extra release code to get executed prior to
998 * relasing this structure
999 * @extradata: pointer to some extra data if requested or NULL
1000 * @replaced_transfers: transfers that have been replaced and which need
1002 * @replaced_after: the transfer after which the @replaced_transfers
1003 * are to get re-inserted
1004 * @inserted: number of transfers inserted
1005 * @inserted_transfers: array of spi_transfers of array-size @inserted,
1006 * that have been replacing replaced_transfers
1008 * note: that @extradata will point to @inserted_transfers[@inserted]
1009 * if some extra allocation is requested, so alignment will be the same
1010 * as for spi_transfers
1012 struct spi_replaced_transfers {
1013 spi_replaced_release_t release;
1015 struct list_head replaced_transfers;
1016 struct list_head *replaced_after;
1018 struct spi_transfer inserted_transfers[];
1021 extern struct spi_replaced_transfers *spi_replace_transfers(
1022 struct spi_message *msg,
1023 struct spi_transfer *xfer_first,
1026 spi_replaced_release_t release,
1027 size_t extradatasize,
1030 /*---------------------------------------------------------------------------*/
1032 /* SPI transfer transformation methods */
1034 extern int spi_split_transfers_maxsize(struct spi_controller *ctlr,
1035 struct spi_message *msg,
1039 /*---------------------------------------------------------------------------*/
1041 /* All these synchronous SPI transfer routines are utilities layered
1042 * over the core async transfer primitive. Here, "synchronous" means
1043 * they will sleep uninterruptibly until the async transfer completes.
1046 extern int spi_sync(struct spi_device *spi, struct spi_message *message);
1047 extern int spi_sync_locked(struct spi_device *spi, struct spi_message *message);
1048 extern int spi_bus_lock(struct spi_controller *ctlr);
1049 extern int spi_bus_unlock(struct spi_controller *ctlr);
1052 * spi_sync_transfer - synchronous SPI data transfer
1053 * @spi: device with which data will be exchanged
1054 * @xfers: An array of spi_transfers
1055 * @num_xfers: Number of items in the xfer array
1056 * Context: can sleep
1058 * Does a synchronous SPI data transfer of the given spi_transfer array.
1060 * For more specific semantics see spi_sync().
1062 * Return: Return: zero on success, else a negative error code.
1065 spi_sync_transfer(struct spi_device *spi, struct spi_transfer *xfers,
1066 unsigned int num_xfers)
1068 struct spi_message msg;
1070 spi_message_init_with_transfers(&msg, xfers, num_xfers);
1072 return spi_sync(spi, &msg);
1076 * spi_write - SPI synchronous write
1077 * @spi: device to which data will be written
1079 * @len: data buffer size
1080 * Context: can sleep
1082 * This function writes the buffer @buf.
1083 * Callable only from contexts that can sleep.
1085 * Return: zero on success, else a negative error code.
1088 spi_write(struct spi_device *spi, const void *buf, size_t len)
1090 struct spi_transfer t = {
1095 return spi_sync_transfer(spi, &t, 1);
1099 * spi_read - SPI synchronous read
1100 * @spi: device from which data will be read
1102 * @len: data buffer size
1103 * Context: can sleep
1105 * This function reads the buffer @buf.
1106 * Callable only from contexts that can sleep.
1108 * Return: zero on success, else a negative error code.
1111 spi_read(struct spi_device *spi, void *buf, size_t len)
1113 struct spi_transfer t = {
1118 return spi_sync_transfer(spi, &t, 1);
1121 /* this copies txbuf and rxbuf data; for small transfers only! */
1122 extern int spi_write_then_read(struct spi_device *spi,
1123 const void *txbuf, unsigned n_tx,
1124 void *rxbuf, unsigned n_rx);
1127 * spi_w8r8 - SPI synchronous 8 bit write followed by 8 bit read
1128 * @spi: device with which data will be exchanged
1129 * @cmd: command to be written before data is read back
1130 * Context: can sleep
1132 * Callable only from contexts that can sleep.
1134 * Return: the (unsigned) eight bit number returned by the
1135 * device, or else a negative error code.
1137 static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd)
1142 status = spi_write_then_read(spi, &cmd, 1, &result, 1);
1144 /* return negative errno or unsigned value */
1145 return (status < 0) ? status : result;
1149 * spi_w8r16 - SPI synchronous 8 bit write followed by 16 bit read
1150 * @spi: device with which data will be exchanged
1151 * @cmd: command to be written before data is read back
1152 * Context: can sleep
1154 * The number is returned in wire-order, which is at least sometimes
1157 * Callable only from contexts that can sleep.
1159 * Return: the (unsigned) sixteen bit number returned by the
1160 * device, or else a negative error code.
1162 static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
1167 status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1169 /* return negative errno or unsigned value */
1170 return (status < 0) ? status : result;
1174 * spi_w8r16be - SPI synchronous 8 bit write followed by 16 bit big-endian read
1175 * @spi: device with which data will be exchanged
1176 * @cmd: command to be written before data is read back
1177 * Context: can sleep
1179 * This function is similar to spi_w8r16, with the exception that it will
1180 * convert the read 16 bit data word from big-endian to native endianness.
1182 * Callable only from contexts that can sleep.
1184 * Return: the (unsigned) sixteen bit number returned by the device in cpu
1185 * endianness, or else a negative error code.
1187 static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
1193 status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1197 return be16_to_cpu(result);
1200 /*---------------------------------------------------------------------------*/
1203 * INTERFACE between board init code and SPI infrastructure.
1205 * No SPI driver ever sees these SPI device table segments, but
1206 * it's how the SPI core (or adapters that get hotplugged) grows
1207 * the driver model tree.
1209 * As a rule, SPI devices can't be probed. Instead, board init code
1210 * provides a table listing the devices which are present, with enough
1211 * information to bind and set up the device's driver. There's basic
1212 * support for nonstatic configurations too; enough to handle adding
1213 * parport adapters, or microcontrollers acting as USB-to-SPI bridges.
1217 * struct spi_board_info - board-specific template for a SPI device
1218 * @modalias: Initializes spi_device.modalias; identifies the driver.
1219 * @platform_data: Initializes spi_device.platform_data; the particular
1220 * data stored there is driver-specific.
1221 * @properties: Additional device properties for the device.
1222 * @controller_data: Initializes spi_device.controller_data; some
1223 * controllers need hints about hardware setup, e.g. for DMA.
1224 * @irq: Initializes spi_device.irq; depends on how the board is wired.
1225 * @max_speed_hz: Initializes spi_device.max_speed_hz; based on limits
1226 * from the chip datasheet and board-specific signal quality issues.
1227 * @bus_num: Identifies which spi_controller parents the spi_device; unused
1228 * by spi_new_device(), and otherwise depends on board wiring.
1229 * @chip_select: Initializes spi_device.chip_select; depends on how
1230 * the board is wired.
1231 * @mode: Initializes spi_device.mode; based on the chip datasheet, board
1232 * wiring (some devices support both 3WIRE and standard modes), and
1233 * possibly presence of an inverter in the chipselect path.
1235 * When adding new SPI devices to the device tree, these structures serve
1236 * as a partial device template. They hold information which can't always
1237 * be determined by drivers. Information that probe() can establish (such
1238 * as the default transfer wordsize) is not included here.
1240 * These structures are used in two places. Their primary role is to
1241 * be stored in tables of board-specific device descriptors, which are
1242 * declared early in board initialization and then used (much later) to
1243 * populate a controller's device tree after the that controller's driver
1244 * initializes. A secondary (and atypical) role is as a parameter to
1245 * spi_new_device() call, which happens after those controller drivers
1246 * are active in some dynamic board configuration models.
1248 struct spi_board_info {
1249 /* the device name and module name are coupled, like platform_bus;
1250 * "modalias" is normally the driver name.
1252 * platform_data goes to spi_device.dev.platform_data,
1253 * controller_data goes to spi_device.controller_data,
1254 * device properties are copied and attached to spi_device,
1257 char modalias[SPI_NAME_SIZE];
1258 const void *platform_data;
1259 const struct property_entry *properties;
1260 void *controller_data;
1263 /* slower signaling on noisy or low voltage boards */
1267 /* bus_num is board specific and matches the bus_num of some
1268 * spi_controller that will probably be registered later.
1270 * chip_select reflects how this chip is wired to that master;
1271 * it's less than num_chipselect.
1276 /* mode becomes spi_device.mode, and is essential for chips
1277 * where the default of SPI_CS_HIGH = 0 is wrong.
1281 /* ... may need additional spi_device chip config data here.
1282 * avoid stuff protocol drivers can set; but include stuff
1283 * needed to behave without being bound to a driver:
1284 * - quirks like clock rate mattering when not selected
1290 spi_register_board_info(struct spi_board_info const *info, unsigned n);
1292 /* board init code may ignore whether SPI is configured or not */
1294 spi_register_board_info(struct spi_board_info const *info, unsigned n)
1298 /* If you're hotplugging an adapter with devices (parport, usb, etc)
1299 * use spi_new_device() to describe each device. You can also call
1300 * spi_unregister_device() to start making that device vanish, but
1301 * normally that would be handled by spi_unregister_controller().
1303 * You can also use spi_alloc_device() and spi_add_device() to use a two
1304 * stage registration sequence for each spi_device. This gives the caller
1305 * some more control over the spi_device structure before it is registered,
1306 * but requires that caller to initialize fields that would otherwise
1307 * be defined using the board info.
1309 extern struct spi_device *
1310 spi_alloc_device(struct spi_controller *ctlr);
1313 spi_add_device(struct spi_device *spi);
1315 extern struct spi_device *
1316 spi_new_device(struct spi_controller *, struct spi_board_info *);
1318 extern void spi_unregister_device(struct spi_device *spi);
1320 extern const struct spi_device_id *
1321 spi_get_device_id(const struct spi_device *sdev);
1324 spi_transfer_is_last(struct spi_controller *ctlr, struct spi_transfer *xfer)
1326 return list_is_last(&xfer->transfer_list, &ctlr->cur_msg->transfers);
1329 /* OF support code */
1330 #if IS_ENABLED(CONFIG_OF)
1332 /* must call put_device() when done with returned spi_device device */
1333 extern struct spi_device *
1334 of_find_spi_device_by_node(struct device_node *node);
1338 static inline struct spi_device *
1339 of_find_spi_device_by_node(struct device_node *node)
1344 #endif /* IS_ENABLED(CONFIG_OF) */
1346 /* Compatibility layer */
1347 #define spi_master spi_controller
1349 #define SPI_MASTER_HALF_DUPLEX SPI_CONTROLLER_HALF_DUPLEX
1350 #define SPI_MASTER_NO_RX SPI_CONTROLLER_NO_RX
1351 #define SPI_MASTER_NO_TX SPI_CONTROLLER_NO_TX
1352 #define SPI_MASTER_MUST_RX SPI_CONTROLLER_MUST_RX
1353 #define SPI_MASTER_MUST_TX SPI_CONTROLLER_MUST_TX
1355 #define spi_master_get_devdata(_ctlr) spi_controller_get_devdata(_ctlr)
1356 #define spi_master_set_devdata(_ctlr, _data) \
1357 spi_controller_set_devdata(_ctlr, _data)
1358 #define spi_master_get(_ctlr) spi_controller_get(_ctlr)
1359 #define spi_master_put(_ctlr) spi_controller_put(_ctlr)
1360 #define spi_master_suspend(_ctlr) spi_controller_suspend(_ctlr)
1361 #define spi_master_resume(_ctlr) spi_controller_resume(_ctlr)
1363 #define spi_register_master(_ctlr) spi_register_controller(_ctlr)
1364 #define devm_spi_register_master(_dev, _ctlr) \
1365 devm_spi_register_controller(_dev, _ctlr)
1366 #define spi_unregister_master(_ctlr) spi_unregister_controller(_ctlr)
1368 #endif /* __LINUX_SPI_H */