2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
51 * Rudi Cilibrasi : Pass the right thing to
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/net_tstamp.h>
136 #include <linux/static_key.h>
138 #include "net-sysfs.h"
140 /* Instead of increasing this, you should create a hash table. */
141 #define MAX_GRO_SKBS 8
143 /* This should be increased if a protocol with a bigger head is added. */
144 #define GRO_MAX_HEAD (MAX_HEADER + 128)
147 * The list of packet types we will receive (as opposed to discard)
148 * and the routines to invoke.
150 * Why 16. Because with 16 the only overlap we get on a hash of the
151 * low nibble of the protocol value is RARP/SNAP/X.25.
153 * NOTE: That is no longer true with the addition of VLAN tags. Not
154 * sure which should go first, but I bet it won't make much
155 * difference if we are running VLANs. The good news is that
156 * this protocol won't be in the list unless compiled in, so
157 * the average user (w/out VLANs) will not be adversely affected.
174 #define PTYPE_HASH_SIZE (16)
175 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
177 static DEFINE_SPINLOCK(ptype_lock);
178 static DEFINE_SPINLOCK(offload_lock);
179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180 static struct list_head ptype_all __read_mostly; /* Taps */
181 static struct list_head offload_base __read_mostly;
184 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
187 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
189 * Writers must hold the rtnl semaphore while they loop through the
190 * dev_base_head list, and hold dev_base_lock for writing when they do the
191 * actual updates. This allows pure readers to access the list even
192 * while a writer is preparing to update it.
194 * To put it another way, dev_base_lock is held for writing only to
195 * protect against pure readers; the rtnl semaphore provides the
196 * protection against other writers.
198 * See, for example usages, register_netdevice() and
199 * unregister_netdevice(), which must be called with the rtnl
202 DEFINE_RWLOCK(dev_base_lock);
203 EXPORT_SYMBOL(dev_base_lock);
205 seqcount_t devnet_rename_seq;
207 static inline void dev_base_seq_inc(struct net *net)
209 while (++net->dev_base_seq == 0);
212 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
214 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
216 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
219 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
221 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
224 static inline void rps_lock(struct softnet_data *sd)
227 spin_lock(&sd->input_pkt_queue.lock);
231 static inline void rps_unlock(struct softnet_data *sd)
234 spin_unlock(&sd->input_pkt_queue.lock);
238 /* Device list insertion */
239 static int list_netdevice(struct net_device *dev)
241 struct net *net = dev_net(dev);
245 write_lock_bh(&dev_base_lock);
246 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
247 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
248 hlist_add_head_rcu(&dev->index_hlist,
249 dev_index_hash(net, dev->ifindex));
250 write_unlock_bh(&dev_base_lock);
252 dev_base_seq_inc(net);
257 /* Device list removal
258 * caller must respect a RCU grace period before freeing/reusing dev
260 static void unlist_netdevice(struct net_device *dev)
264 /* Unlink dev from the device chain */
265 write_lock_bh(&dev_base_lock);
266 list_del_rcu(&dev->dev_list);
267 hlist_del_rcu(&dev->name_hlist);
268 hlist_del_rcu(&dev->index_hlist);
269 write_unlock_bh(&dev_base_lock);
271 dev_base_seq_inc(dev_net(dev));
278 static RAW_NOTIFIER_HEAD(netdev_chain);
281 * Device drivers call our routines to queue packets here. We empty the
282 * queue in the local softnet handler.
285 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
286 EXPORT_PER_CPU_SYMBOL(softnet_data);
288 #ifdef CONFIG_LOCKDEP
290 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
291 * according to dev->type
293 static const unsigned short netdev_lock_type[] =
294 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
295 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
296 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
297 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
298 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
299 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
300 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
301 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
302 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
303 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
304 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
305 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
306 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
307 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
308 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
310 static const char *const netdev_lock_name[] =
311 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
312 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
313 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
314 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
315 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
316 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
317 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
318 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
319 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
320 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
321 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
322 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
323 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
324 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
325 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
327 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
328 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
330 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
334 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
335 if (netdev_lock_type[i] == dev_type)
337 /* the last key is used by default */
338 return ARRAY_SIZE(netdev_lock_type) - 1;
341 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
342 unsigned short dev_type)
346 i = netdev_lock_pos(dev_type);
347 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
348 netdev_lock_name[i]);
351 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
355 i = netdev_lock_pos(dev->type);
356 lockdep_set_class_and_name(&dev->addr_list_lock,
357 &netdev_addr_lock_key[i],
358 netdev_lock_name[i]);
361 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
362 unsigned short dev_type)
365 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
370 /*******************************************************************************
372 Protocol management and registration routines
374 *******************************************************************************/
377 * Add a protocol ID to the list. Now that the input handler is
378 * smarter we can dispense with all the messy stuff that used to be
381 * BEWARE!!! Protocol handlers, mangling input packets,
382 * MUST BE last in hash buckets and checking protocol handlers
383 * MUST start from promiscuous ptype_all chain in net_bh.
384 * It is true now, do not change it.
385 * Explanation follows: if protocol handler, mangling packet, will
386 * be the first on list, it is not able to sense, that packet
387 * is cloned and should be copied-on-write, so that it will
388 * change it and subsequent readers will get broken packet.
392 static inline struct list_head *ptype_head(const struct packet_type *pt)
394 if (pt->type == htons(ETH_P_ALL))
397 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
401 * dev_add_pack - add packet handler
402 * @pt: packet type declaration
404 * Add a protocol handler to the networking stack. The passed &packet_type
405 * is linked into kernel lists and may not be freed until it has been
406 * removed from the kernel lists.
408 * This call does not sleep therefore it can not
409 * guarantee all CPU's that are in middle of receiving packets
410 * will see the new packet type (until the next received packet).
413 void dev_add_pack(struct packet_type *pt)
415 struct list_head *head = ptype_head(pt);
417 spin_lock(&ptype_lock);
418 list_add_rcu(&pt->list, head);
419 spin_unlock(&ptype_lock);
421 EXPORT_SYMBOL(dev_add_pack);
424 * __dev_remove_pack - remove packet handler
425 * @pt: packet type declaration
427 * Remove a protocol handler that was previously added to the kernel
428 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
429 * from the kernel lists and can be freed or reused once this function
432 * The packet type might still be in use by receivers
433 * and must not be freed until after all the CPU's have gone
434 * through a quiescent state.
436 void __dev_remove_pack(struct packet_type *pt)
438 struct list_head *head = ptype_head(pt);
439 struct packet_type *pt1;
441 spin_lock(&ptype_lock);
443 list_for_each_entry(pt1, head, list) {
445 list_del_rcu(&pt->list);
450 pr_warn("dev_remove_pack: %p not found\n", pt);
452 spin_unlock(&ptype_lock);
454 EXPORT_SYMBOL(__dev_remove_pack);
457 * dev_remove_pack - remove packet handler
458 * @pt: packet type declaration
460 * Remove a protocol handler that was previously added to the kernel
461 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
462 * from the kernel lists and can be freed or reused once this function
465 * This call sleeps to guarantee that no CPU is looking at the packet
468 void dev_remove_pack(struct packet_type *pt)
470 __dev_remove_pack(pt);
474 EXPORT_SYMBOL(dev_remove_pack);
478 * dev_add_offload - register offload handlers
479 * @po: protocol offload declaration
481 * Add protocol offload handlers to the networking stack. The passed
482 * &proto_offload is linked into kernel lists and may not be freed until
483 * it has been removed from the kernel lists.
485 * This call does not sleep therefore it can not
486 * guarantee all CPU's that are in middle of receiving packets
487 * will see the new offload handlers (until the next received packet).
489 void dev_add_offload(struct packet_offload *po)
491 struct list_head *head = &offload_base;
493 spin_lock(&offload_lock);
494 list_add_rcu(&po->list, head);
495 spin_unlock(&offload_lock);
497 EXPORT_SYMBOL(dev_add_offload);
500 * __dev_remove_offload - remove offload handler
501 * @po: packet offload declaration
503 * Remove a protocol offload handler that was previously added to the
504 * kernel offload handlers by dev_add_offload(). The passed &offload_type
505 * is removed from the kernel lists and can be freed or reused once this
508 * The packet type might still be in use by receivers
509 * and must not be freed until after all the CPU's have gone
510 * through a quiescent state.
512 void __dev_remove_offload(struct packet_offload *po)
514 struct list_head *head = &offload_base;
515 struct packet_offload *po1;
517 spin_lock(&offload_lock);
519 list_for_each_entry(po1, head, list) {
521 list_del_rcu(&po->list);
526 pr_warn("dev_remove_offload: %p not found\n", po);
528 spin_unlock(&offload_lock);
530 EXPORT_SYMBOL(__dev_remove_offload);
533 * dev_remove_offload - remove packet offload handler
534 * @po: packet offload declaration
536 * Remove a packet offload handler that was previously added to the kernel
537 * offload handlers by dev_add_offload(). The passed &offload_type is
538 * removed from the kernel lists and can be freed or reused once this
541 * This call sleeps to guarantee that no CPU is looking at the packet
544 void dev_remove_offload(struct packet_offload *po)
546 __dev_remove_offload(po);
550 EXPORT_SYMBOL(dev_remove_offload);
552 /******************************************************************************
554 Device Boot-time Settings Routines
556 *******************************************************************************/
558 /* Boot time configuration table */
559 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
562 * netdev_boot_setup_add - add new setup entry
563 * @name: name of the device
564 * @map: configured settings for the device
566 * Adds new setup entry to the dev_boot_setup list. The function
567 * returns 0 on error and 1 on success. This is a generic routine to
570 static int netdev_boot_setup_add(char *name, struct ifmap *map)
572 struct netdev_boot_setup *s;
576 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
577 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
578 memset(s[i].name, 0, sizeof(s[i].name));
579 strlcpy(s[i].name, name, IFNAMSIZ);
580 memcpy(&s[i].map, map, sizeof(s[i].map));
585 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
589 * netdev_boot_setup_check - check boot time settings
590 * @dev: the netdevice
592 * Check boot time settings for the device.
593 * The found settings are set for the device to be used
594 * later in the device probing.
595 * Returns 0 if no settings found, 1 if they are.
597 int netdev_boot_setup_check(struct net_device *dev)
599 struct netdev_boot_setup *s = dev_boot_setup;
602 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
603 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
604 !strcmp(dev->name, s[i].name)) {
605 dev->irq = s[i].map.irq;
606 dev->base_addr = s[i].map.base_addr;
607 dev->mem_start = s[i].map.mem_start;
608 dev->mem_end = s[i].map.mem_end;
614 EXPORT_SYMBOL(netdev_boot_setup_check);
618 * netdev_boot_base - get address from boot time settings
619 * @prefix: prefix for network device
620 * @unit: id for network device
622 * Check boot time settings for the base address of device.
623 * The found settings are set for the device to be used
624 * later in the device probing.
625 * Returns 0 if no settings found.
627 unsigned long netdev_boot_base(const char *prefix, int unit)
629 const struct netdev_boot_setup *s = dev_boot_setup;
633 sprintf(name, "%s%d", prefix, unit);
636 * If device already registered then return base of 1
637 * to indicate not to probe for this interface
639 if (__dev_get_by_name(&init_net, name))
642 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
643 if (!strcmp(name, s[i].name))
644 return s[i].map.base_addr;
649 * Saves at boot time configured settings for any netdevice.
651 int __init netdev_boot_setup(char *str)
656 str = get_options(str, ARRAY_SIZE(ints), ints);
661 memset(&map, 0, sizeof(map));
665 map.base_addr = ints[2];
667 map.mem_start = ints[3];
669 map.mem_end = ints[4];
671 /* Add new entry to the list */
672 return netdev_boot_setup_add(str, &map);
675 __setup("netdev=", netdev_boot_setup);
677 /*******************************************************************************
679 Device Interface Subroutines
681 *******************************************************************************/
684 * __dev_get_by_name - find a device by its name
685 * @net: the applicable net namespace
686 * @name: name to find
688 * Find an interface by name. Must be called under RTNL semaphore
689 * or @dev_base_lock. If the name is found a pointer to the device
690 * is returned. If the name is not found then %NULL is returned. The
691 * reference counters are not incremented so the caller must be
692 * careful with locks.
695 struct net_device *__dev_get_by_name(struct net *net, const char *name)
697 struct hlist_node *p;
698 struct net_device *dev;
699 struct hlist_head *head = dev_name_hash(net, name);
701 hlist_for_each_entry(dev, p, head, name_hlist)
702 if (!strncmp(dev->name, name, IFNAMSIZ))
707 EXPORT_SYMBOL(__dev_get_by_name);
710 * dev_get_by_name_rcu - find a device by its name
711 * @net: the applicable net namespace
712 * @name: name to find
714 * Find an interface by name.
715 * If the name is found a pointer to the device is returned.
716 * If the name is not found then %NULL is returned.
717 * The reference counters are not incremented so the caller must be
718 * careful with locks. The caller must hold RCU lock.
721 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
723 struct hlist_node *p;
724 struct net_device *dev;
725 struct hlist_head *head = dev_name_hash(net, name);
727 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
728 if (!strncmp(dev->name, name, IFNAMSIZ))
733 EXPORT_SYMBOL(dev_get_by_name_rcu);
736 * dev_get_by_name - find a device by its name
737 * @net: the applicable net namespace
738 * @name: name to find
740 * Find an interface by name. This can be called from any
741 * context and does its own locking. The returned handle has
742 * the usage count incremented and the caller must use dev_put() to
743 * release it when it is no longer needed. %NULL is returned if no
744 * matching device is found.
747 struct net_device *dev_get_by_name(struct net *net, const char *name)
749 struct net_device *dev;
752 dev = dev_get_by_name_rcu(net, name);
758 EXPORT_SYMBOL(dev_get_by_name);
761 * __dev_get_by_index - find a device by its ifindex
762 * @net: the applicable net namespace
763 * @ifindex: index of device
765 * Search for an interface by index. Returns %NULL if the device
766 * is not found or a pointer to the device. The device has not
767 * had its reference counter increased so the caller must be careful
768 * about locking. The caller must hold either the RTNL semaphore
772 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
774 struct hlist_node *p;
775 struct net_device *dev;
776 struct hlist_head *head = dev_index_hash(net, ifindex);
778 hlist_for_each_entry(dev, p, head, index_hlist)
779 if (dev->ifindex == ifindex)
784 EXPORT_SYMBOL(__dev_get_by_index);
787 * dev_get_by_index_rcu - find a device by its ifindex
788 * @net: the applicable net namespace
789 * @ifindex: index of device
791 * Search for an interface by index. Returns %NULL if the device
792 * is not found or a pointer to the device. The device has not
793 * had its reference counter increased so the caller must be careful
794 * about locking. The caller must hold RCU lock.
797 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
799 struct hlist_node *p;
800 struct net_device *dev;
801 struct hlist_head *head = dev_index_hash(net, ifindex);
803 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
804 if (dev->ifindex == ifindex)
809 EXPORT_SYMBOL(dev_get_by_index_rcu);
813 * dev_get_by_index - find a device by its ifindex
814 * @net: the applicable net namespace
815 * @ifindex: index of device
817 * Search for an interface by index. Returns NULL if the device
818 * is not found or a pointer to the device. The device returned has
819 * had a reference added and the pointer is safe until the user calls
820 * dev_put to indicate they have finished with it.
823 struct net_device *dev_get_by_index(struct net *net, int ifindex)
825 struct net_device *dev;
828 dev = dev_get_by_index_rcu(net, ifindex);
834 EXPORT_SYMBOL(dev_get_by_index);
837 * dev_getbyhwaddr_rcu - find a device by its hardware address
838 * @net: the applicable net namespace
839 * @type: media type of device
840 * @ha: hardware address
842 * Search for an interface by MAC address. Returns NULL if the device
843 * is not found or a pointer to the device.
844 * The caller must hold RCU or RTNL.
845 * The returned device has not had its ref count increased
846 * and the caller must therefore be careful about locking
850 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
853 struct net_device *dev;
855 for_each_netdev_rcu(net, dev)
856 if (dev->type == type &&
857 !memcmp(dev->dev_addr, ha, dev->addr_len))
862 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
864 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
866 struct net_device *dev;
869 for_each_netdev(net, dev)
870 if (dev->type == type)
875 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
877 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
879 struct net_device *dev, *ret = NULL;
882 for_each_netdev_rcu(net, dev)
883 if (dev->type == type) {
891 EXPORT_SYMBOL(dev_getfirstbyhwtype);
894 * dev_get_by_flags_rcu - find any device with given flags
895 * @net: the applicable net namespace
896 * @if_flags: IFF_* values
897 * @mask: bitmask of bits in if_flags to check
899 * Search for any interface with the given flags. Returns NULL if a device
900 * is not found or a pointer to the device. Must be called inside
901 * rcu_read_lock(), and result refcount is unchanged.
904 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
907 struct net_device *dev, *ret;
910 for_each_netdev_rcu(net, dev) {
911 if (((dev->flags ^ if_flags) & mask) == 0) {
918 EXPORT_SYMBOL(dev_get_by_flags_rcu);
921 * dev_valid_name - check if name is okay for network device
924 * Network device names need to be valid file names to
925 * to allow sysfs to work. We also disallow any kind of
928 bool dev_valid_name(const char *name)
932 if (strlen(name) >= IFNAMSIZ)
934 if (!strcmp(name, ".") || !strcmp(name, ".."))
938 if (*name == '/' || isspace(*name))
944 EXPORT_SYMBOL(dev_valid_name);
947 * __dev_alloc_name - allocate a name for a device
948 * @net: network namespace to allocate the device name in
949 * @name: name format string
950 * @buf: scratch buffer and result name string
952 * Passed a format string - eg "lt%d" it will try and find a suitable
953 * id. It scans list of devices to build up a free map, then chooses
954 * the first empty slot. The caller must hold the dev_base or rtnl lock
955 * while allocating the name and adding the device in order to avoid
957 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
958 * Returns the number of the unit assigned or a negative errno code.
961 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
965 const int max_netdevices = 8*PAGE_SIZE;
966 unsigned long *inuse;
967 struct net_device *d;
969 p = strnchr(name, IFNAMSIZ-1, '%');
972 * Verify the string as this thing may have come from
973 * the user. There must be either one "%d" and no other "%"
976 if (p[1] != 'd' || strchr(p + 2, '%'))
979 /* Use one page as a bit array of possible slots */
980 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
984 for_each_netdev(net, d) {
985 if (!sscanf(d->name, name, &i))
987 if (i < 0 || i >= max_netdevices)
990 /* avoid cases where sscanf is not exact inverse of printf */
991 snprintf(buf, IFNAMSIZ, name, i);
992 if (!strncmp(buf, d->name, IFNAMSIZ))
996 i = find_first_zero_bit(inuse, max_netdevices);
997 free_page((unsigned long) inuse);
1001 snprintf(buf, IFNAMSIZ, name, i);
1002 if (!__dev_get_by_name(net, buf))
1005 /* It is possible to run out of possible slots
1006 * when the name is long and there isn't enough space left
1007 * for the digits, or if all bits are used.
1013 * dev_alloc_name - allocate a name for a device
1015 * @name: name format string
1017 * Passed a format string - eg "lt%d" it will try and find a suitable
1018 * id. It scans list of devices to build up a free map, then chooses
1019 * the first empty slot. The caller must hold the dev_base or rtnl lock
1020 * while allocating the name and adding the device in order to avoid
1022 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1023 * Returns the number of the unit assigned or a negative errno code.
1026 int dev_alloc_name(struct net_device *dev, const char *name)
1032 BUG_ON(!dev_net(dev));
1034 ret = __dev_alloc_name(net, name, buf);
1036 strlcpy(dev->name, buf, IFNAMSIZ);
1039 EXPORT_SYMBOL(dev_alloc_name);
1041 static int dev_alloc_name_ns(struct net *net,
1042 struct net_device *dev,
1048 ret = __dev_alloc_name(net, name, buf);
1050 strlcpy(dev->name, buf, IFNAMSIZ);
1054 static int dev_get_valid_name(struct net *net,
1055 struct net_device *dev,
1060 if (!dev_valid_name(name))
1063 if (strchr(name, '%'))
1064 return dev_alloc_name_ns(net, dev, name);
1065 else if (__dev_get_by_name(net, name))
1067 else if (dev->name != name)
1068 strlcpy(dev->name, name, IFNAMSIZ);
1074 * dev_change_name - change name of a device
1076 * @newname: name (or format string) must be at least IFNAMSIZ
1078 * Change name of a device, can pass format strings "eth%d".
1081 int dev_change_name(struct net_device *dev, const char *newname)
1083 char oldname[IFNAMSIZ];
1089 BUG_ON(!dev_net(dev));
1092 if (dev->flags & IFF_UP)
1095 write_seqcount_begin(&devnet_rename_seq);
1097 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1098 write_seqcount_end(&devnet_rename_seq);
1102 memcpy(oldname, dev->name, IFNAMSIZ);
1104 err = dev_get_valid_name(net, dev, newname);
1106 write_seqcount_end(&devnet_rename_seq);
1111 ret = device_rename(&dev->dev, dev->name);
1113 memcpy(dev->name, oldname, IFNAMSIZ);
1114 write_seqcount_end(&devnet_rename_seq);
1118 write_seqcount_end(&devnet_rename_seq);
1120 write_lock_bh(&dev_base_lock);
1121 hlist_del_rcu(&dev->name_hlist);
1122 write_unlock_bh(&dev_base_lock);
1126 write_lock_bh(&dev_base_lock);
1127 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1128 write_unlock_bh(&dev_base_lock);
1130 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1131 ret = notifier_to_errno(ret);
1134 /* err >= 0 after dev_alloc_name() or stores the first errno */
1137 write_seqcount_begin(&devnet_rename_seq);
1138 memcpy(dev->name, oldname, IFNAMSIZ);
1141 pr_err("%s: name change rollback failed: %d\n",
1150 * dev_set_alias - change ifalias of a device
1152 * @alias: name up to IFALIASZ
1153 * @len: limit of bytes to copy from info
1155 * Set ifalias for a device,
1157 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1163 if (len >= IFALIASZ)
1167 kfree(dev->ifalias);
1168 dev->ifalias = NULL;
1172 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1175 dev->ifalias = new_ifalias;
1177 strlcpy(dev->ifalias, alias, len+1);
1183 * netdev_features_change - device changes features
1184 * @dev: device to cause notification
1186 * Called to indicate a device has changed features.
1188 void netdev_features_change(struct net_device *dev)
1190 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1192 EXPORT_SYMBOL(netdev_features_change);
1195 * netdev_state_change - device changes state
1196 * @dev: device to cause notification
1198 * Called to indicate a device has changed state. This function calls
1199 * the notifier chains for netdev_chain and sends a NEWLINK message
1200 * to the routing socket.
1202 void netdev_state_change(struct net_device *dev)
1204 if (dev->flags & IFF_UP) {
1205 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1206 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1209 EXPORT_SYMBOL(netdev_state_change);
1212 * netdev_notify_peers - notify network peers about existence of @dev
1213 * @dev: network device
1215 * Generate traffic such that interested network peers are aware of
1216 * @dev, such as by generating a gratuitous ARP. This may be used when
1217 * a device wants to inform the rest of the network about some sort of
1218 * reconfiguration such as a failover event or virtual machine
1221 void netdev_notify_peers(struct net_device *dev)
1224 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1227 EXPORT_SYMBOL(netdev_notify_peers);
1230 * dev_load - load a network module
1231 * @net: the applicable net namespace
1232 * @name: name of interface
1234 * If a network interface is not present and the process has suitable
1235 * privileges this function loads the module. If module loading is not
1236 * available in this kernel then it becomes a nop.
1239 void dev_load(struct net *net, const char *name)
1241 struct net_device *dev;
1245 dev = dev_get_by_name_rcu(net, name);
1249 if (no_module && capable(CAP_NET_ADMIN))
1250 no_module = request_module("netdev-%s", name);
1251 if (no_module && capable(CAP_SYS_MODULE)) {
1252 if (!request_module("%s", name))
1253 pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1257 EXPORT_SYMBOL(dev_load);
1259 static int __dev_open(struct net_device *dev)
1261 const struct net_device_ops *ops = dev->netdev_ops;
1266 if (!netif_device_present(dev))
1269 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1270 ret = notifier_to_errno(ret);
1274 set_bit(__LINK_STATE_START, &dev->state);
1276 if (ops->ndo_validate_addr)
1277 ret = ops->ndo_validate_addr(dev);
1279 if (!ret && ops->ndo_open)
1280 ret = ops->ndo_open(dev);
1283 clear_bit(__LINK_STATE_START, &dev->state);
1285 dev->flags |= IFF_UP;
1286 net_dmaengine_get();
1287 dev_set_rx_mode(dev);
1289 add_device_randomness(dev->dev_addr, dev->addr_len);
1296 * dev_open - prepare an interface for use.
1297 * @dev: device to open
1299 * Takes a device from down to up state. The device's private open
1300 * function is invoked and then the multicast lists are loaded. Finally
1301 * the device is moved into the up state and a %NETDEV_UP message is
1302 * sent to the netdev notifier chain.
1304 * Calling this function on an active interface is a nop. On a failure
1305 * a negative errno code is returned.
1307 int dev_open(struct net_device *dev)
1311 if (dev->flags & IFF_UP)
1314 ret = __dev_open(dev);
1318 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1319 call_netdevice_notifiers(NETDEV_UP, dev);
1323 EXPORT_SYMBOL(dev_open);
1325 static int __dev_close_many(struct list_head *head)
1327 struct net_device *dev;
1332 list_for_each_entry(dev, head, unreg_list) {
1333 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1335 clear_bit(__LINK_STATE_START, &dev->state);
1337 /* Synchronize to scheduled poll. We cannot touch poll list, it
1338 * can be even on different cpu. So just clear netif_running().
1340 * dev->stop() will invoke napi_disable() on all of it's
1341 * napi_struct instances on this device.
1343 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1346 dev_deactivate_many(head);
1348 list_for_each_entry(dev, head, unreg_list) {
1349 const struct net_device_ops *ops = dev->netdev_ops;
1352 * Call the device specific close. This cannot fail.
1353 * Only if device is UP
1355 * We allow it to be called even after a DETACH hot-plug
1361 dev->flags &= ~IFF_UP;
1362 net_dmaengine_put();
1368 static int __dev_close(struct net_device *dev)
1373 list_add(&dev->unreg_list, &single);
1374 retval = __dev_close_many(&single);
1379 static int dev_close_many(struct list_head *head)
1381 struct net_device *dev, *tmp;
1382 LIST_HEAD(tmp_list);
1384 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1385 if (!(dev->flags & IFF_UP))
1386 list_move(&dev->unreg_list, &tmp_list);
1388 __dev_close_many(head);
1390 list_for_each_entry(dev, head, unreg_list) {
1391 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1392 call_netdevice_notifiers(NETDEV_DOWN, dev);
1395 /* rollback_registered_many needs the complete original list */
1396 list_splice(&tmp_list, head);
1401 * dev_close - shutdown an interface.
1402 * @dev: device to shutdown
1404 * This function moves an active device into down state. A
1405 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1406 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1409 int dev_close(struct net_device *dev)
1411 if (dev->flags & IFF_UP) {
1414 list_add(&dev->unreg_list, &single);
1415 dev_close_many(&single);
1420 EXPORT_SYMBOL(dev_close);
1424 * dev_disable_lro - disable Large Receive Offload on a device
1427 * Disable Large Receive Offload (LRO) on a net device. Must be
1428 * called under RTNL. This is needed if received packets may be
1429 * forwarded to another interface.
1431 void dev_disable_lro(struct net_device *dev)
1434 * If we're trying to disable lro on a vlan device
1435 * use the underlying physical device instead
1437 if (is_vlan_dev(dev))
1438 dev = vlan_dev_real_dev(dev);
1440 dev->wanted_features &= ~NETIF_F_LRO;
1441 netdev_update_features(dev);
1443 if (unlikely(dev->features & NETIF_F_LRO))
1444 netdev_WARN(dev, "failed to disable LRO!\n");
1446 EXPORT_SYMBOL(dev_disable_lro);
1449 static int dev_boot_phase = 1;
1452 * register_netdevice_notifier - register a network notifier block
1455 * Register a notifier to be called when network device events occur.
1456 * The notifier passed is linked into the kernel structures and must
1457 * not be reused until it has been unregistered. A negative errno code
1458 * is returned on a failure.
1460 * When registered all registration and up events are replayed
1461 * to the new notifier to allow device to have a race free
1462 * view of the network device list.
1465 int register_netdevice_notifier(struct notifier_block *nb)
1467 struct net_device *dev;
1468 struct net_device *last;
1473 err = raw_notifier_chain_register(&netdev_chain, nb);
1479 for_each_netdev(net, dev) {
1480 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1481 err = notifier_to_errno(err);
1485 if (!(dev->flags & IFF_UP))
1488 nb->notifier_call(nb, NETDEV_UP, dev);
1499 for_each_netdev(net, dev) {
1503 if (dev->flags & IFF_UP) {
1504 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1505 nb->notifier_call(nb, NETDEV_DOWN, dev);
1507 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1512 raw_notifier_chain_unregister(&netdev_chain, nb);
1515 EXPORT_SYMBOL(register_netdevice_notifier);
1518 * unregister_netdevice_notifier - unregister a network notifier block
1521 * Unregister a notifier previously registered by
1522 * register_netdevice_notifier(). The notifier is unlinked into the
1523 * kernel structures and may then be reused. A negative errno code
1524 * is returned on a failure.
1526 * After unregistering unregister and down device events are synthesized
1527 * for all devices on the device list to the removed notifier to remove
1528 * the need for special case cleanup code.
1531 int unregister_netdevice_notifier(struct notifier_block *nb)
1533 struct net_device *dev;
1538 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1543 for_each_netdev(net, dev) {
1544 if (dev->flags & IFF_UP) {
1545 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1546 nb->notifier_call(nb, NETDEV_DOWN, dev);
1548 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1555 EXPORT_SYMBOL(unregister_netdevice_notifier);
1558 * call_netdevice_notifiers - call all network notifier blocks
1559 * @val: value passed unmodified to notifier function
1560 * @dev: net_device pointer passed unmodified to notifier function
1562 * Call all network notifier blocks. Parameters and return value
1563 * are as for raw_notifier_call_chain().
1566 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1569 return raw_notifier_call_chain(&netdev_chain, val, dev);
1571 EXPORT_SYMBOL(call_netdevice_notifiers);
1573 static struct static_key netstamp_needed __read_mostly;
1574 #ifdef HAVE_JUMP_LABEL
1575 /* We are not allowed to call static_key_slow_dec() from irq context
1576 * If net_disable_timestamp() is called from irq context, defer the
1577 * static_key_slow_dec() calls.
1579 static atomic_t netstamp_needed_deferred;
1582 void net_enable_timestamp(void)
1584 #ifdef HAVE_JUMP_LABEL
1585 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1589 static_key_slow_dec(&netstamp_needed);
1593 WARN_ON(in_interrupt());
1594 static_key_slow_inc(&netstamp_needed);
1596 EXPORT_SYMBOL(net_enable_timestamp);
1598 void net_disable_timestamp(void)
1600 #ifdef HAVE_JUMP_LABEL
1601 if (in_interrupt()) {
1602 atomic_inc(&netstamp_needed_deferred);
1606 static_key_slow_dec(&netstamp_needed);
1608 EXPORT_SYMBOL(net_disable_timestamp);
1610 static inline void net_timestamp_set(struct sk_buff *skb)
1612 skb->tstamp.tv64 = 0;
1613 if (static_key_false(&netstamp_needed))
1614 __net_timestamp(skb);
1617 #define net_timestamp_check(COND, SKB) \
1618 if (static_key_false(&netstamp_needed)) { \
1619 if ((COND) && !(SKB)->tstamp.tv64) \
1620 __net_timestamp(SKB); \
1623 static int net_hwtstamp_validate(struct ifreq *ifr)
1625 struct hwtstamp_config cfg;
1626 enum hwtstamp_tx_types tx_type;
1627 enum hwtstamp_rx_filters rx_filter;
1628 int tx_type_valid = 0;
1629 int rx_filter_valid = 0;
1631 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1634 if (cfg.flags) /* reserved for future extensions */
1637 tx_type = cfg.tx_type;
1638 rx_filter = cfg.rx_filter;
1641 case HWTSTAMP_TX_OFF:
1642 case HWTSTAMP_TX_ON:
1643 case HWTSTAMP_TX_ONESTEP_SYNC:
1648 switch (rx_filter) {
1649 case HWTSTAMP_FILTER_NONE:
1650 case HWTSTAMP_FILTER_ALL:
1651 case HWTSTAMP_FILTER_SOME:
1652 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1653 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1654 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1655 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1656 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1657 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1658 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1659 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1660 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1661 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1662 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1663 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1664 rx_filter_valid = 1;
1668 if (!tx_type_valid || !rx_filter_valid)
1674 static inline bool is_skb_forwardable(struct net_device *dev,
1675 struct sk_buff *skb)
1679 if (!(dev->flags & IFF_UP))
1682 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1683 if (skb->len <= len)
1686 /* if TSO is enabled, we don't care about the length as the packet
1687 * could be forwarded without being segmented before
1689 if (skb_is_gso(skb))
1696 * dev_forward_skb - loopback an skb to another netif
1698 * @dev: destination network device
1699 * @skb: buffer to forward
1702 * NET_RX_SUCCESS (no congestion)
1703 * NET_RX_DROP (packet was dropped, but freed)
1705 * dev_forward_skb can be used for injecting an skb from the
1706 * start_xmit function of one device into the receive queue
1707 * of another device.
1709 * The receiving device may be in another namespace, so
1710 * we have to clear all information in the skb that could
1711 * impact namespace isolation.
1713 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1715 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1716 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1717 atomic_long_inc(&dev->rx_dropped);
1726 if (unlikely(!is_skb_forwardable(dev, skb))) {
1727 atomic_long_inc(&dev->rx_dropped);
1734 skb->tstamp.tv64 = 0;
1735 skb->pkt_type = PACKET_HOST;
1736 skb->protocol = eth_type_trans(skb, dev);
1740 return netif_rx(skb);
1742 EXPORT_SYMBOL_GPL(dev_forward_skb);
1744 static inline int deliver_skb(struct sk_buff *skb,
1745 struct packet_type *pt_prev,
1746 struct net_device *orig_dev)
1748 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1750 atomic_inc(&skb->users);
1751 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1754 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1756 if (!ptype->af_packet_priv || !skb->sk)
1759 if (ptype->id_match)
1760 return ptype->id_match(ptype, skb->sk);
1761 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1768 * Support routine. Sends outgoing frames to any network
1769 * taps currently in use.
1772 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1774 struct packet_type *ptype;
1775 struct sk_buff *skb2 = NULL;
1776 struct packet_type *pt_prev = NULL;
1779 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1780 /* Never send packets back to the socket
1783 if ((ptype->dev == dev || !ptype->dev) &&
1784 (!skb_loop_sk(ptype, skb))) {
1786 deliver_skb(skb2, pt_prev, skb->dev);
1791 skb2 = skb_clone(skb, GFP_ATOMIC);
1795 net_timestamp_set(skb2);
1797 /* skb->nh should be correctly
1798 set by sender, so that the second statement is
1799 just protection against buggy protocols.
1801 skb_reset_mac_header(skb2);
1803 if (skb_network_header(skb2) < skb2->data ||
1804 skb2->network_header > skb2->tail) {
1805 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1806 ntohs(skb2->protocol),
1808 skb_reset_network_header(skb2);
1811 skb2->transport_header = skb2->network_header;
1812 skb2->pkt_type = PACKET_OUTGOING;
1817 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1822 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1823 * @dev: Network device
1824 * @txq: number of queues available
1826 * If real_num_tx_queues is changed the tc mappings may no longer be
1827 * valid. To resolve this verify the tc mapping remains valid and if
1828 * not NULL the mapping. With no priorities mapping to this
1829 * offset/count pair it will no longer be used. In the worst case TC0
1830 * is invalid nothing can be done so disable priority mappings. If is
1831 * expected that drivers will fix this mapping if they can before
1832 * calling netif_set_real_num_tx_queues.
1834 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1837 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1839 /* If TC0 is invalidated disable TC mapping */
1840 if (tc->offset + tc->count > txq) {
1841 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1846 /* Invalidated prio to tc mappings set to TC0 */
1847 for (i = 1; i < TC_BITMASK + 1; i++) {
1848 int q = netdev_get_prio_tc_map(dev, i);
1850 tc = &dev->tc_to_txq[q];
1851 if (tc->offset + tc->count > txq) {
1852 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1854 netdev_set_prio_tc_map(dev, i, 0);
1860 static DEFINE_MUTEX(xps_map_mutex);
1861 #define xmap_dereference(P) \
1862 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1864 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1867 struct xps_map *map = NULL;
1871 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1873 for (pos = 0; map && pos < map->len; pos++) {
1874 if (map->queues[pos] == index) {
1876 map->queues[pos] = map->queues[--map->len];
1878 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1879 kfree_rcu(map, rcu);
1889 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1891 struct xps_dev_maps *dev_maps;
1893 bool active = false;
1895 mutex_lock(&xps_map_mutex);
1896 dev_maps = xmap_dereference(dev->xps_maps);
1901 for_each_possible_cpu(cpu) {
1902 for (i = index; i < dev->num_tx_queues; i++) {
1903 if (!remove_xps_queue(dev_maps, cpu, i))
1906 if (i == dev->num_tx_queues)
1911 RCU_INIT_POINTER(dev->xps_maps, NULL);
1912 kfree_rcu(dev_maps, rcu);
1915 for (i = index; i < dev->num_tx_queues; i++)
1916 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1920 mutex_unlock(&xps_map_mutex);
1923 static struct xps_map *expand_xps_map(struct xps_map *map,
1926 struct xps_map *new_map;
1927 int alloc_len = XPS_MIN_MAP_ALLOC;
1930 for (pos = 0; map && pos < map->len; pos++) {
1931 if (map->queues[pos] != index)
1936 /* Need to add queue to this CPU's existing map */
1938 if (pos < map->alloc_len)
1941 alloc_len = map->alloc_len * 2;
1944 /* Need to allocate new map to store queue on this CPU's map */
1945 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1950 for (i = 0; i < pos; i++)
1951 new_map->queues[i] = map->queues[i];
1952 new_map->alloc_len = alloc_len;
1958 int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask, u16 index)
1960 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1961 struct xps_map *map, *new_map;
1962 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1963 int cpu, numa_node_id = -2;
1964 bool active = false;
1966 mutex_lock(&xps_map_mutex);
1968 dev_maps = xmap_dereference(dev->xps_maps);
1970 /* allocate memory for queue storage */
1971 for_each_online_cpu(cpu) {
1972 if (!cpumask_test_cpu(cpu, mask))
1976 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1980 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1983 map = expand_xps_map(map, cpu, index);
1987 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1991 goto out_no_new_maps;
1993 for_each_possible_cpu(cpu) {
1994 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1995 /* add queue to CPU maps */
1998 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1999 while ((pos < map->len) && (map->queues[pos] != index))
2002 if (pos == map->len)
2003 map->queues[map->len++] = index;
2005 if (numa_node_id == -2)
2006 numa_node_id = cpu_to_node(cpu);
2007 else if (numa_node_id != cpu_to_node(cpu))
2010 } else if (dev_maps) {
2011 /* fill in the new device map from the old device map */
2012 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2013 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2018 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2020 /* Cleanup old maps */
2022 for_each_possible_cpu(cpu) {
2023 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2024 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2025 if (map && map != new_map)
2026 kfree_rcu(map, rcu);
2029 kfree_rcu(dev_maps, rcu);
2032 dev_maps = new_dev_maps;
2036 /* update Tx queue numa node */
2037 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2038 (numa_node_id >= 0) ? numa_node_id :
2044 /* removes queue from unused CPUs */
2045 for_each_possible_cpu(cpu) {
2046 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2049 if (remove_xps_queue(dev_maps, cpu, index))
2053 /* free map if not active */
2055 RCU_INIT_POINTER(dev->xps_maps, NULL);
2056 kfree_rcu(dev_maps, rcu);
2060 mutex_unlock(&xps_map_mutex);
2064 /* remove any maps that we added */
2065 for_each_possible_cpu(cpu) {
2066 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2067 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2069 if (new_map && new_map != map)
2073 mutex_unlock(&xps_map_mutex);
2075 kfree(new_dev_maps);
2078 EXPORT_SYMBOL(netif_set_xps_queue);
2082 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2083 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2085 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2089 if (txq < 1 || txq > dev->num_tx_queues)
2092 if (dev->reg_state == NETREG_REGISTERED ||
2093 dev->reg_state == NETREG_UNREGISTERING) {
2096 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2102 netif_setup_tc(dev, txq);
2104 if (txq < dev->real_num_tx_queues) {
2105 qdisc_reset_all_tx_gt(dev, txq);
2107 netif_reset_xps_queues_gt(dev, txq);
2112 dev->real_num_tx_queues = txq;
2115 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2119 * netif_set_real_num_rx_queues - set actual number of RX queues used
2120 * @dev: Network device
2121 * @rxq: Actual number of RX queues
2123 * This must be called either with the rtnl_lock held or before
2124 * registration of the net device. Returns 0 on success, or a
2125 * negative error code. If called before registration, it always
2128 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2132 if (rxq < 1 || rxq > dev->num_rx_queues)
2135 if (dev->reg_state == NETREG_REGISTERED) {
2138 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2144 dev->real_num_rx_queues = rxq;
2147 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2151 * netif_get_num_default_rss_queues - default number of RSS queues
2153 * This routine should set an upper limit on the number of RSS queues
2154 * used by default by multiqueue devices.
2156 int netif_get_num_default_rss_queues(void)
2158 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2160 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2162 static inline void __netif_reschedule(struct Qdisc *q)
2164 struct softnet_data *sd;
2165 unsigned long flags;
2167 local_irq_save(flags);
2168 sd = &__get_cpu_var(softnet_data);
2169 q->next_sched = NULL;
2170 *sd->output_queue_tailp = q;
2171 sd->output_queue_tailp = &q->next_sched;
2172 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2173 local_irq_restore(flags);
2176 void __netif_schedule(struct Qdisc *q)
2178 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2179 __netif_reschedule(q);
2181 EXPORT_SYMBOL(__netif_schedule);
2183 void dev_kfree_skb_irq(struct sk_buff *skb)
2185 if (atomic_dec_and_test(&skb->users)) {
2186 struct softnet_data *sd;
2187 unsigned long flags;
2189 local_irq_save(flags);
2190 sd = &__get_cpu_var(softnet_data);
2191 skb->next = sd->completion_queue;
2192 sd->completion_queue = skb;
2193 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2194 local_irq_restore(flags);
2197 EXPORT_SYMBOL(dev_kfree_skb_irq);
2199 void dev_kfree_skb_any(struct sk_buff *skb)
2201 if (in_irq() || irqs_disabled())
2202 dev_kfree_skb_irq(skb);
2206 EXPORT_SYMBOL(dev_kfree_skb_any);
2210 * netif_device_detach - mark device as removed
2211 * @dev: network device
2213 * Mark device as removed from system and therefore no longer available.
2215 void netif_device_detach(struct net_device *dev)
2217 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2218 netif_running(dev)) {
2219 netif_tx_stop_all_queues(dev);
2222 EXPORT_SYMBOL(netif_device_detach);
2225 * netif_device_attach - mark device as attached
2226 * @dev: network device
2228 * Mark device as attached from system and restart if needed.
2230 void netif_device_attach(struct net_device *dev)
2232 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2233 netif_running(dev)) {
2234 netif_tx_wake_all_queues(dev);
2235 __netdev_watchdog_up(dev);
2238 EXPORT_SYMBOL(netif_device_attach);
2240 static void skb_warn_bad_offload(const struct sk_buff *skb)
2242 static const netdev_features_t null_features = 0;
2243 struct net_device *dev = skb->dev;
2244 const char *driver = "";
2246 if (dev && dev->dev.parent)
2247 driver = dev_driver_string(dev->dev.parent);
2249 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2250 "gso_type=%d ip_summed=%d\n",
2251 driver, dev ? &dev->features : &null_features,
2252 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2253 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2254 skb_shinfo(skb)->gso_type, skb->ip_summed);
2258 * Invalidate hardware checksum when packet is to be mangled, and
2259 * complete checksum manually on outgoing path.
2261 int skb_checksum_help(struct sk_buff *skb)
2264 int ret = 0, offset;
2266 if (skb->ip_summed == CHECKSUM_COMPLETE)
2267 goto out_set_summed;
2269 if (unlikely(skb_shinfo(skb)->gso_size)) {
2270 skb_warn_bad_offload(skb);
2274 /* Before computing a checksum, we should make sure no frag could
2275 * be modified by an external entity : checksum could be wrong.
2277 if (skb_has_shared_frag(skb)) {
2278 ret = __skb_linearize(skb);
2283 offset = skb_checksum_start_offset(skb);
2284 BUG_ON(offset >= skb_headlen(skb));
2285 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2287 offset += skb->csum_offset;
2288 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2290 if (skb_cloned(skb) &&
2291 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2292 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2297 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2299 skb->ip_summed = CHECKSUM_NONE;
2303 EXPORT_SYMBOL(skb_checksum_help);
2306 * skb_gso_segment - Perform segmentation on skb.
2307 * @skb: buffer to segment
2308 * @features: features for the output path (see dev->features)
2310 * This function segments the given skb and returns a list of segments.
2312 * It may return NULL if the skb requires no segmentation. This is
2313 * only possible when GSO is used for verifying header integrity.
2315 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
2316 netdev_features_t features)
2318 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2319 struct packet_offload *ptype;
2320 __be16 type = skb->protocol;
2321 int vlan_depth = ETH_HLEN;
2324 while (type == htons(ETH_P_8021Q)) {
2325 struct vlan_hdr *vh;
2327 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2328 return ERR_PTR(-EINVAL);
2330 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2331 type = vh->h_vlan_encapsulated_proto;
2332 vlan_depth += VLAN_HLEN;
2335 skb_reset_mac_header(skb);
2336 skb->mac_len = skb->network_header - skb->mac_header;
2337 __skb_pull(skb, skb->mac_len);
2339 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2340 skb_warn_bad_offload(skb);
2342 if (skb_header_cloned(skb) &&
2343 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2344 return ERR_PTR(err);
2348 list_for_each_entry_rcu(ptype, &offload_base, list) {
2349 if (ptype->type == type && ptype->callbacks.gso_segment) {
2350 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2351 err = ptype->callbacks.gso_send_check(skb);
2352 segs = ERR_PTR(err);
2353 if (err || skb_gso_ok(skb, features))
2355 __skb_push(skb, (skb->data -
2356 skb_network_header(skb)));
2358 segs = ptype->callbacks.gso_segment(skb, features);
2364 __skb_push(skb, skb->data - skb_mac_header(skb));
2368 EXPORT_SYMBOL(skb_gso_segment);
2370 /* Take action when hardware reception checksum errors are detected. */
2372 void netdev_rx_csum_fault(struct net_device *dev)
2374 if (net_ratelimit()) {
2375 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2379 EXPORT_SYMBOL(netdev_rx_csum_fault);
2382 /* Actually, we should eliminate this check as soon as we know, that:
2383 * 1. IOMMU is present and allows to map all the memory.
2384 * 2. No high memory really exists on this machine.
2387 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2389 #ifdef CONFIG_HIGHMEM
2391 if (!(dev->features & NETIF_F_HIGHDMA)) {
2392 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2393 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2394 if (PageHighMem(skb_frag_page(frag)))
2399 if (PCI_DMA_BUS_IS_PHYS) {
2400 struct device *pdev = dev->dev.parent;
2404 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2405 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2406 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2407 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2416 void (*destructor)(struct sk_buff *skb);
2419 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2421 static void dev_gso_skb_destructor(struct sk_buff *skb)
2423 struct dev_gso_cb *cb;
2426 struct sk_buff *nskb = skb->next;
2428 skb->next = nskb->next;
2431 } while (skb->next);
2433 cb = DEV_GSO_CB(skb);
2435 cb->destructor(skb);
2439 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2440 * @skb: buffer to segment
2441 * @features: device features as applicable to this skb
2443 * This function segments the given skb and stores the list of segments
2446 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2448 struct sk_buff *segs;
2450 segs = skb_gso_segment(skb, features);
2452 /* Verifying header integrity only. */
2457 return PTR_ERR(segs);
2460 DEV_GSO_CB(skb)->destructor = skb->destructor;
2461 skb->destructor = dev_gso_skb_destructor;
2466 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2468 return ((features & NETIF_F_GEN_CSUM) ||
2469 ((features & NETIF_F_V4_CSUM) &&
2470 protocol == htons(ETH_P_IP)) ||
2471 ((features & NETIF_F_V6_CSUM) &&
2472 protocol == htons(ETH_P_IPV6)) ||
2473 ((features & NETIF_F_FCOE_CRC) &&
2474 protocol == htons(ETH_P_FCOE)));
2477 static netdev_features_t harmonize_features(struct sk_buff *skb,
2478 __be16 protocol, netdev_features_t features)
2480 if (skb->ip_summed != CHECKSUM_NONE &&
2481 !can_checksum_protocol(features, protocol)) {
2482 features &= ~NETIF_F_ALL_CSUM;
2483 features &= ~NETIF_F_SG;
2484 } else if (illegal_highdma(skb->dev, skb)) {
2485 features &= ~NETIF_F_SG;
2491 netdev_features_t netif_skb_features(struct sk_buff *skb)
2493 __be16 protocol = skb->protocol;
2494 netdev_features_t features = skb->dev->features;
2496 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2497 features &= ~NETIF_F_GSO_MASK;
2499 if (protocol == htons(ETH_P_8021Q)) {
2500 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2501 protocol = veh->h_vlan_encapsulated_proto;
2502 } else if (!vlan_tx_tag_present(skb)) {
2503 return harmonize_features(skb, protocol, features);
2506 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2508 if (protocol != htons(ETH_P_8021Q)) {
2509 return harmonize_features(skb, protocol, features);
2511 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2512 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2513 return harmonize_features(skb, protocol, features);
2516 EXPORT_SYMBOL(netif_skb_features);
2519 * Returns true if either:
2520 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2521 * 2. skb is fragmented and the device does not support SG.
2523 static inline int skb_needs_linearize(struct sk_buff *skb,
2526 return skb_is_nonlinear(skb) &&
2527 ((skb_has_frag_list(skb) &&
2528 !(features & NETIF_F_FRAGLIST)) ||
2529 (skb_shinfo(skb)->nr_frags &&
2530 !(features & NETIF_F_SG)));
2533 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2534 struct netdev_queue *txq)
2536 const struct net_device_ops *ops = dev->netdev_ops;
2537 int rc = NETDEV_TX_OK;
2538 unsigned int skb_len;
2540 if (likely(!skb->next)) {
2541 netdev_features_t features;
2544 * If device doesn't need skb->dst, release it right now while
2545 * its hot in this cpu cache
2547 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2550 features = netif_skb_features(skb);
2552 if (vlan_tx_tag_present(skb) &&
2553 !(features & NETIF_F_HW_VLAN_TX)) {
2554 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2561 /* If encapsulation offload request, verify we are testing
2562 * hardware encapsulation features instead of standard
2563 * features for the netdev
2565 if (skb->encapsulation)
2566 features &= dev->hw_enc_features;
2568 if (netif_needs_gso(skb, features)) {
2569 if (unlikely(dev_gso_segment(skb, features)))
2574 if (skb_needs_linearize(skb, features) &&
2575 __skb_linearize(skb))
2578 /* If packet is not checksummed and device does not
2579 * support checksumming for this protocol, complete
2580 * checksumming here.
2582 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2583 if (skb->encapsulation)
2584 skb_set_inner_transport_header(skb,
2585 skb_checksum_start_offset(skb));
2587 skb_set_transport_header(skb,
2588 skb_checksum_start_offset(skb));
2589 if (!(features & NETIF_F_ALL_CSUM) &&
2590 skb_checksum_help(skb))
2595 if (!list_empty(&ptype_all))
2596 dev_queue_xmit_nit(skb, dev);
2599 rc = ops->ndo_start_xmit(skb, dev);
2600 trace_net_dev_xmit(skb, rc, dev, skb_len);
2601 if (rc == NETDEV_TX_OK)
2602 txq_trans_update(txq);
2608 struct sk_buff *nskb = skb->next;
2610 skb->next = nskb->next;
2614 * If device doesn't need nskb->dst, release it right now while
2615 * its hot in this cpu cache
2617 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2620 if (!list_empty(&ptype_all))
2621 dev_queue_xmit_nit(nskb, dev);
2623 skb_len = nskb->len;
2624 rc = ops->ndo_start_xmit(nskb, dev);
2625 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2626 if (unlikely(rc != NETDEV_TX_OK)) {
2627 if (rc & ~NETDEV_TX_MASK)
2628 goto out_kfree_gso_skb;
2629 nskb->next = skb->next;
2633 txq_trans_update(txq);
2634 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2635 return NETDEV_TX_BUSY;
2636 } while (skb->next);
2639 if (likely(skb->next == NULL))
2640 skb->destructor = DEV_GSO_CB(skb)->destructor;
2647 static void qdisc_pkt_len_init(struct sk_buff *skb)
2649 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2651 qdisc_skb_cb(skb)->pkt_len = skb->len;
2653 /* To get more precise estimation of bytes sent on wire,
2654 * we add to pkt_len the headers size of all segments
2656 if (shinfo->gso_size) {
2657 unsigned int hdr_len;
2659 /* mac layer + network layer */
2660 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2662 /* + transport layer */
2663 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2664 hdr_len += tcp_hdrlen(skb);
2666 hdr_len += sizeof(struct udphdr);
2667 qdisc_skb_cb(skb)->pkt_len += (shinfo->gso_segs - 1) * hdr_len;
2671 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2672 struct net_device *dev,
2673 struct netdev_queue *txq)
2675 spinlock_t *root_lock = qdisc_lock(q);
2679 qdisc_pkt_len_init(skb);
2680 qdisc_calculate_pkt_len(skb, q);
2682 * Heuristic to force contended enqueues to serialize on a
2683 * separate lock before trying to get qdisc main lock.
2684 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2685 * and dequeue packets faster.
2687 contended = qdisc_is_running(q);
2688 if (unlikely(contended))
2689 spin_lock(&q->busylock);
2691 spin_lock(root_lock);
2692 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2695 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2696 qdisc_run_begin(q)) {
2698 * This is a work-conserving queue; there are no old skbs
2699 * waiting to be sent out; and the qdisc is not running -
2700 * xmit the skb directly.
2702 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2705 qdisc_bstats_update(q, skb);
2707 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2708 if (unlikely(contended)) {
2709 spin_unlock(&q->busylock);
2716 rc = NET_XMIT_SUCCESS;
2719 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2720 if (qdisc_run_begin(q)) {
2721 if (unlikely(contended)) {
2722 spin_unlock(&q->busylock);
2728 spin_unlock(root_lock);
2729 if (unlikely(contended))
2730 spin_unlock(&q->busylock);
2734 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2735 static void skb_update_prio(struct sk_buff *skb)
2737 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2739 if (!skb->priority && skb->sk && map) {
2740 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2742 if (prioidx < map->priomap_len)
2743 skb->priority = map->priomap[prioidx];
2747 #define skb_update_prio(skb)
2750 static DEFINE_PER_CPU(int, xmit_recursion);
2751 #define RECURSION_LIMIT 10
2754 * dev_loopback_xmit - loop back @skb
2755 * @skb: buffer to transmit
2757 int dev_loopback_xmit(struct sk_buff *skb)
2759 skb_reset_mac_header(skb);
2760 __skb_pull(skb, skb_network_offset(skb));
2761 skb->pkt_type = PACKET_LOOPBACK;
2762 skb->ip_summed = CHECKSUM_UNNECESSARY;
2763 WARN_ON(!skb_dst(skb));
2768 EXPORT_SYMBOL(dev_loopback_xmit);
2771 * dev_queue_xmit - transmit a buffer
2772 * @skb: buffer to transmit
2774 * Queue a buffer for transmission to a network device. The caller must
2775 * have set the device and priority and built the buffer before calling
2776 * this function. The function can be called from an interrupt.
2778 * A negative errno code is returned on a failure. A success does not
2779 * guarantee the frame will be transmitted as it may be dropped due
2780 * to congestion or traffic shaping.
2782 * -----------------------------------------------------------------------------------
2783 * I notice this method can also return errors from the queue disciplines,
2784 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2787 * Regardless of the return value, the skb is consumed, so it is currently
2788 * difficult to retry a send to this method. (You can bump the ref count
2789 * before sending to hold a reference for retry if you are careful.)
2791 * When calling this method, interrupts MUST be enabled. This is because
2792 * the BH enable code must have IRQs enabled so that it will not deadlock.
2795 int dev_queue_xmit(struct sk_buff *skb)
2797 struct net_device *dev = skb->dev;
2798 struct netdev_queue *txq;
2802 /* Disable soft irqs for various locks below. Also
2803 * stops preemption for RCU.
2807 skb_update_prio(skb);
2809 txq = netdev_pick_tx(dev, skb);
2810 q = rcu_dereference_bh(txq->qdisc);
2812 #ifdef CONFIG_NET_CLS_ACT
2813 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2815 trace_net_dev_queue(skb);
2817 rc = __dev_xmit_skb(skb, q, dev, txq);
2821 /* The device has no queue. Common case for software devices:
2822 loopback, all the sorts of tunnels...
2824 Really, it is unlikely that netif_tx_lock protection is necessary
2825 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2827 However, it is possible, that they rely on protection
2830 Check this and shot the lock. It is not prone from deadlocks.
2831 Either shot noqueue qdisc, it is even simpler 8)
2833 if (dev->flags & IFF_UP) {
2834 int cpu = smp_processor_id(); /* ok because BHs are off */
2836 if (txq->xmit_lock_owner != cpu) {
2838 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2839 goto recursion_alert;
2841 HARD_TX_LOCK(dev, txq, cpu);
2843 if (!netif_xmit_stopped(txq)) {
2844 __this_cpu_inc(xmit_recursion);
2845 rc = dev_hard_start_xmit(skb, dev, txq);
2846 __this_cpu_dec(xmit_recursion);
2847 if (dev_xmit_complete(rc)) {
2848 HARD_TX_UNLOCK(dev, txq);
2852 HARD_TX_UNLOCK(dev, txq);
2853 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2856 /* Recursion is detected! It is possible,
2860 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2866 rcu_read_unlock_bh();
2871 rcu_read_unlock_bh();
2874 EXPORT_SYMBOL(dev_queue_xmit);
2877 /*=======================================================================
2879 =======================================================================*/
2881 int netdev_max_backlog __read_mostly = 1000;
2882 EXPORT_SYMBOL(netdev_max_backlog);
2884 int netdev_tstamp_prequeue __read_mostly = 1;
2885 int netdev_budget __read_mostly = 300;
2886 int weight_p __read_mostly = 64; /* old backlog weight */
2888 /* Called with irq disabled */
2889 static inline void ____napi_schedule(struct softnet_data *sd,
2890 struct napi_struct *napi)
2892 list_add_tail(&napi->poll_list, &sd->poll_list);
2893 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2898 /* One global table that all flow-based protocols share. */
2899 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2900 EXPORT_SYMBOL(rps_sock_flow_table);
2902 struct static_key rps_needed __read_mostly;
2904 static struct rps_dev_flow *
2905 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2906 struct rps_dev_flow *rflow, u16 next_cpu)
2908 if (next_cpu != RPS_NO_CPU) {
2909 #ifdef CONFIG_RFS_ACCEL
2910 struct netdev_rx_queue *rxqueue;
2911 struct rps_dev_flow_table *flow_table;
2912 struct rps_dev_flow *old_rflow;
2917 /* Should we steer this flow to a different hardware queue? */
2918 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2919 !(dev->features & NETIF_F_NTUPLE))
2921 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2922 if (rxq_index == skb_get_rx_queue(skb))
2925 rxqueue = dev->_rx + rxq_index;
2926 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2929 flow_id = skb->rxhash & flow_table->mask;
2930 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2931 rxq_index, flow_id);
2935 rflow = &flow_table->flows[flow_id];
2937 if (old_rflow->filter == rflow->filter)
2938 old_rflow->filter = RPS_NO_FILTER;
2942 per_cpu(softnet_data, next_cpu).input_queue_head;
2945 rflow->cpu = next_cpu;
2950 * get_rps_cpu is called from netif_receive_skb and returns the target
2951 * CPU from the RPS map of the receiving queue for a given skb.
2952 * rcu_read_lock must be held on entry.
2954 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2955 struct rps_dev_flow **rflowp)
2957 struct netdev_rx_queue *rxqueue;
2958 struct rps_map *map;
2959 struct rps_dev_flow_table *flow_table;
2960 struct rps_sock_flow_table *sock_flow_table;
2964 if (skb_rx_queue_recorded(skb)) {
2965 u16 index = skb_get_rx_queue(skb);
2966 if (unlikely(index >= dev->real_num_rx_queues)) {
2967 WARN_ONCE(dev->real_num_rx_queues > 1,
2968 "%s received packet on queue %u, but number "
2969 "of RX queues is %u\n",
2970 dev->name, index, dev->real_num_rx_queues);
2973 rxqueue = dev->_rx + index;
2977 map = rcu_dereference(rxqueue->rps_map);
2979 if (map->len == 1 &&
2980 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2981 tcpu = map->cpus[0];
2982 if (cpu_online(tcpu))
2986 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2990 skb_reset_network_header(skb);
2991 if (!skb_get_rxhash(skb))
2994 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2995 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2996 if (flow_table && sock_flow_table) {
2998 struct rps_dev_flow *rflow;
3000 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
3003 next_cpu = sock_flow_table->ents[skb->rxhash &
3004 sock_flow_table->mask];
3007 * If the desired CPU (where last recvmsg was done) is
3008 * different from current CPU (one in the rx-queue flow
3009 * table entry), switch if one of the following holds:
3010 * - Current CPU is unset (equal to RPS_NO_CPU).
3011 * - Current CPU is offline.
3012 * - The current CPU's queue tail has advanced beyond the
3013 * last packet that was enqueued using this table entry.
3014 * This guarantees that all previous packets for the flow
3015 * have been dequeued, thus preserving in order delivery.
3017 if (unlikely(tcpu != next_cpu) &&
3018 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3019 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3020 rflow->last_qtail)) >= 0)) {
3022 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3025 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3033 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
3035 if (cpu_online(tcpu)) {
3045 #ifdef CONFIG_RFS_ACCEL
3048 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3049 * @dev: Device on which the filter was set
3050 * @rxq_index: RX queue index
3051 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3052 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3054 * Drivers that implement ndo_rx_flow_steer() should periodically call
3055 * this function for each installed filter and remove the filters for
3056 * which it returns %true.
3058 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3059 u32 flow_id, u16 filter_id)
3061 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3062 struct rps_dev_flow_table *flow_table;
3063 struct rps_dev_flow *rflow;
3068 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3069 if (flow_table && flow_id <= flow_table->mask) {
3070 rflow = &flow_table->flows[flow_id];
3071 cpu = ACCESS_ONCE(rflow->cpu);
3072 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3073 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3074 rflow->last_qtail) <
3075 (int)(10 * flow_table->mask)))
3081 EXPORT_SYMBOL(rps_may_expire_flow);
3083 #endif /* CONFIG_RFS_ACCEL */
3085 /* Called from hardirq (IPI) context */
3086 static void rps_trigger_softirq(void *data)
3088 struct softnet_data *sd = data;
3090 ____napi_schedule(sd, &sd->backlog);
3094 #endif /* CONFIG_RPS */
3097 * Check if this softnet_data structure is another cpu one
3098 * If yes, queue it to our IPI list and return 1
3101 static int rps_ipi_queued(struct softnet_data *sd)
3104 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3107 sd->rps_ipi_next = mysd->rps_ipi_list;
3108 mysd->rps_ipi_list = sd;
3110 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3113 #endif /* CONFIG_RPS */
3118 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3119 * queue (may be a remote CPU queue).
3121 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3122 unsigned int *qtail)
3124 struct softnet_data *sd;
3125 unsigned long flags;
3127 sd = &per_cpu(softnet_data, cpu);
3129 local_irq_save(flags);
3132 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
3133 if (skb_queue_len(&sd->input_pkt_queue)) {
3135 __skb_queue_tail(&sd->input_pkt_queue, skb);
3136 input_queue_tail_incr_save(sd, qtail);
3138 local_irq_restore(flags);
3139 return NET_RX_SUCCESS;
3142 /* Schedule NAPI for backlog device
3143 * We can use non atomic operation since we own the queue lock
3145 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3146 if (!rps_ipi_queued(sd))
3147 ____napi_schedule(sd, &sd->backlog);
3155 local_irq_restore(flags);
3157 atomic_long_inc(&skb->dev->rx_dropped);
3163 * netif_rx - post buffer to the network code
3164 * @skb: buffer to post
3166 * This function receives a packet from a device driver and queues it for
3167 * the upper (protocol) levels to process. It always succeeds. The buffer
3168 * may be dropped during processing for congestion control or by the
3172 * NET_RX_SUCCESS (no congestion)
3173 * NET_RX_DROP (packet was dropped)
3177 int netif_rx(struct sk_buff *skb)
3181 /* if netpoll wants it, pretend we never saw it */
3182 if (netpoll_rx(skb))
3185 net_timestamp_check(netdev_tstamp_prequeue, skb);
3187 trace_netif_rx(skb);
3189 if (static_key_false(&rps_needed)) {
3190 struct rps_dev_flow voidflow, *rflow = &voidflow;
3196 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3198 cpu = smp_processor_id();
3200 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3208 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3213 EXPORT_SYMBOL(netif_rx);
3215 int netif_rx_ni(struct sk_buff *skb)
3220 err = netif_rx(skb);
3221 if (local_softirq_pending())
3227 EXPORT_SYMBOL(netif_rx_ni);
3229 static void net_tx_action(struct softirq_action *h)
3231 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3233 if (sd->completion_queue) {
3234 struct sk_buff *clist;
3236 local_irq_disable();
3237 clist = sd->completion_queue;
3238 sd->completion_queue = NULL;
3242 struct sk_buff *skb = clist;
3243 clist = clist->next;
3245 WARN_ON(atomic_read(&skb->users));
3246 trace_kfree_skb(skb, net_tx_action);
3251 if (sd->output_queue) {
3254 local_irq_disable();
3255 head = sd->output_queue;
3256 sd->output_queue = NULL;
3257 sd->output_queue_tailp = &sd->output_queue;
3261 struct Qdisc *q = head;
3262 spinlock_t *root_lock;
3264 head = head->next_sched;
3266 root_lock = qdisc_lock(q);
3267 if (spin_trylock(root_lock)) {
3268 smp_mb__before_clear_bit();
3269 clear_bit(__QDISC_STATE_SCHED,
3272 spin_unlock(root_lock);
3274 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3276 __netif_reschedule(q);
3278 smp_mb__before_clear_bit();
3279 clear_bit(__QDISC_STATE_SCHED,
3287 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3288 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3289 /* This hook is defined here for ATM LANE */
3290 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3291 unsigned char *addr) __read_mostly;
3292 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3295 #ifdef CONFIG_NET_CLS_ACT
3296 /* TODO: Maybe we should just force sch_ingress to be compiled in
3297 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3298 * a compare and 2 stores extra right now if we dont have it on
3299 * but have CONFIG_NET_CLS_ACT
3300 * NOTE: This doesn't stop any functionality; if you dont have
3301 * the ingress scheduler, you just can't add policies on ingress.
3304 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3306 struct net_device *dev = skb->dev;
3307 u32 ttl = G_TC_RTTL(skb->tc_verd);
3308 int result = TC_ACT_OK;
3311 if (unlikely(MAX_RED_LOOP < ttl++)) {
3312 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3313 skb->skb_iif, dev->ifindex);
3317 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3318 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3321 if (q != &noop_qdisc) {
3322 spin_lock(qdisc_lock(q));
3323 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3324 result = qdisc_enqueue_root(skb, q);
3325 spin_unlock(qdisc_lock(q));
3331 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3332 struct packet_type **pt_prev,
3333 int *ret, struct net_device *orig_dev)
3335 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3337 if (!rxq || rxq->qdisc == &noop_qdisc)
3341 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3345 switch (ing_filter(skb, rxq)) {
3359 * netdev_rx_handler_register - register receive handler
3360 * @dev: device to register a handler for
3361 * @rx_handler: receive handler to register
3362 * @rx_handler_data: data pointer that is used by rx handler
3364 * Register a receive hander for a device. This handler will then be
3365 * called from __netif_receive_skb. A negative errno code is returned
3368 * The caller must hold the rtnl_mutex.
3370 * For a general description of rx_handler, see enum rx_handler_result.
3372 int netdev_rx_handler_register(struct net_device *dev,
3373 rx_handler_func_t *rx_handler,
3374 void *rx_handler_data)
3378 if (dev->rx_handler)
3381 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3382 rcu_assign_pointer(dev->rx_handler, rx_handler);
3386 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3389 * netdev_rx_handler_unregister - unregister receive handler
3390 * @dev: device to unregister a handler from
3392 * Unregister a receive hander from a device.
3394 * The caller must hold the rtnl_mutex.
3396 void netdev_rx_handler_unregister(struct net_device *dev)
3400 RCU_INIT_POINTER(dev->rx_handler, NULL);
3401 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3403 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3406 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3407 * the special handling of PFMEMALLOC skbs.
3409 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3411 switch (skb->protocol) {
3412 case __constant_htons(ETH_P_ARP):
3413 case __constant_htons(ETH_P_IP):
3414 case __constant_htons(ETH_P_IPV6):
3415 case __constant_htons(ETH_P_8021Q):
3422 static int __netif_receive_skb(struct sk_buff *skb)
3424 struct packet_type *ptype, *pt_prev;
3425 rx_handler_func_t *rx_handler;
3426 struct net_device *orig_dev;
3427 struct net_device *null_or_dev;
3428 bool deliver_exact = false;
3429 int ret = NET_RX_DROP;
3431 unsigned long pflags = current->flags;
3433 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3435 trace_netif_receive_skb(skb);
3438 * PFMEMALLOC skbs are special, they should
3439 * - be delivered to SOCK_MEMALLOC sockets only
3440 * - stay away from userspace
3441 * - have bounded memory usage
3443 * Use PF_MEMALLOC as this saves us from propagating the allocation
3444 * context down to all allocation sites.
3446 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3447 current->flags |= PF_MEMALLOC;
3449 /* if we've gotten here through NAPI, check netpoll */
3450 if (netpoll_receive_skb(skb))
3453 orig_dev = skb->dev;
3455 skb_reset_network_header(skb);
3456 if (!skb_transport_header_was_set(skb))
3457 skb_reset_transport_header(skb);
3458 skb_reset_mac_len(skb);
3465 skb->skb_iif = skb->dev->ifindex;
3467 __this_cpu_inc(softnet_data.processed);
3469 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3470 skb = vlan_untag(skb);
3475 #ifdef CONFIG_NET_CLS_ACT
3476 if (skb->tc_verd & TC_NCLS) {
3477 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3482 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3485 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3486 if (!ptype->dev || ptype->dev == skb->dev) {
3488 ret = deliver_skb(skb, pt_prev, orig_dev);
3494 #ifdef CONFIG_NET_CLS_ACT
3495 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3501 if (sk_memalloc_socks() && skb_pfmemalloc(skb)
3502 && !skb_pfmemalloc_protocol(skb))
3505 if (vlan_tx_tag_present(skb)) {
3507 ret = deliver_skb(skb, pt_prev, orig_dev);
3510 if (vlan_do_receive(&skb))
3512 else if (unlikely(!skb))
3516 rx_handler = rcu_dereference(skb->dev->rx_handler);
3519 ret = deliver_skb(skb, pt_prev, orig_dev);
3522 switch (rx_handler(&skb)) {
3523 case RX_HANDLER_CONSUMED:
3525 case RX_HANDLER_ANOTHER:
3527 case RX_HANDLER_EXACT:
3528 deliver_exact = true;
3529 case RX_HANDLER_PASS:
3536 if (vlan_tx_nonzero_tag_present(skb))
3537 skb->pkt_type = PACKET_OTHERHOST;
3539 /* deliver only exact match when indicated */
3540 null_or_dev = deliver_exact ? skb->dev : NULL;
3542 type = skb->protocol;
3543 list_for_each_entry_rcu(ptype,
3544 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3545 if (ptype->type == type &&
3546 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3547 ptype->dev == orig_dev)) {
3549 ret = deliver_skb(skb, pt_prev, orig_dev);
3555 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3558 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3561 atomic_long_inc(&skb->dev->rx_dropped);
3563 /* Jamal, now you will not able to escape explaining
3564 * me how you were going to use this. :-)
3572 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3577 * netif_receive_skb - process receive buffer from network
3578 * @skb: buffer to process
3580 * netif_receive_skb() is the main receive data processing function.
3581 * It always succeeds. The buffer may be dropped during processing
3582 * for congestion control or by the protocol layers.
3584 * This function may only be called from softirq context and interrupts
3585 * should be enabled.
3587 * Return values (usually ignored):
3588 * NET_RX_SUCCESS: no congestion
3589 * NET_RX_DROP: packet was dropped
3591 int netif_receive_skb(struct sk_buff *skb)
3593 net_timestamp_check(netdev_tstamp_prequeue, skb);
3595 if (skb_defer_rx_timestamp(skb))
3596 return NET_RX_SUCCESS;
3599 if (static_key_false(&rps_needed)) {
3600 struct rps_dev_flow voidflow, *rflow = &voidflow;
3605 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3608 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3615 return __netif_receive_skb(skb);
3617 EXPORT_SYMBOL(netif_receive_skb);
3619 /* Network device is going away, flush any packets still pending
3620 * Called with irqs disabled.
3622 static void flush_backlog(void *arg)
3624 struct net_device *dev = arg;
3625 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3626 struct sk_buff *skb, *tmp;
3629 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3630 if (skb->dev == dev) {
3631 __skb_unlink(skb, &sd->input_pkt_queue);
3633 input_queue_head_incr(sd);
3638 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3639 if (skb->dev == dev) {
3640 __skb_unlink(skb, &sd->process_queue);
3642 input_queue_head_incr(sd);
3647 static int napi_gro_complete(struct sk_buff *skb)
3649 struct packet_offload *ptype;
3650 __be16 type = skb->protocol;
3651 struct list_head *head = &offload_base;
3654 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3656 if (NAPI_GRO_CB(skb)->count == 1) {
3657 skb_shinfo(skb)->gso_size = 0;
3662 list_for_each_entry_rcu(ptype, head, list) {
3663 if (ptype->type != type || !ptype->callbacks.gro_complete)
3666 err = ptype->callbacks.gro_complete(skb);
3672 WARN_ON(&ptype->list == head);
3674 return NET_RX_SUCCESS;
3678 return netif_receive_skb(skb);
3681 /* napi->gro_list contains packets ordered by age.
3682 * youngest packets at the head of it.
3683 * Complete skbs in reverse order to reduce latencies.
3685 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3687 struct sk_buff *skb, *prev = NULL;
3689 /* scan list and build reverse chain */
3690 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3695 for (skb = prev; skb; skb = prev) {
3698 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3702 napi_gro_complete(skb);
3706 napi->gro_list = NULL;
3708 EXPORT_SYMBOL(napi_gro_flush);
3710 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3713 unsigned int maclen = skb->dev->hard_header_len;
3715 for (p = napi->gro_list; p; p = p->next) {
3716 unsigned long diffs;
3718 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3719 diffs |= p->vlan_tci ^ skb->vlan_tci;
3720 if (maclen == ETH_HLEN)
3721 diffs |= compare_ether_header(skb_mac_header(p),
3722 skb_gro_mac_header(skb));
3724 diffs = memcmp(skb_mac_header(p),
3725 skb_gro_mac_header(skb),
3727 NAPI_GRO_CB(p)->same_flow = !diffs;
3728 NAPI_GRO_CB(p)->flush = 0;
3732 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3734 struct sk_buff **pp = NULL;
3735 struct packet_offload *ptype;
3736 __be16 type = skb->protocol;
3737 struct list_head *head = &offload_base;
3740 enum gro_result ret;
3742 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3745 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3748 gro_list_prepare(napi, skb);
3751 list_for_each_entry_rcu(ptype, head, list) {
3752 if (ptype->type != type || !ptype->callbacks.gro_receive)
3755 skb_set_network_header(skb, skb_gro_offset(skb));
3756 mac_len = skb->network_header - skb->mac_header;
3757 skb->mac_len = mac_len;
3758 NAPI_GRO_CB(skb)->same_flow = 0;
3759 NAPI_GRO_CB(skb)->flush = 0;
3760 NAPI_GRO_CB(skb)->free = 0;
3762 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3767 if (&ptype->list == head)
3770 same_flow = NAPI_GRO_CB(skb)->same_flow;
3771 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3774 struct sk_buff *nskb = *pp;
3778 napi_gro_complete(nskb);
3785 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3789 NAPI_GRO_CB(skb)->count = 1;
3790 NAPI_GRO_CB(skb)->age = jiffies;
3791 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3792 skb->next = napi->gro_list;
3793 napi->gro_list = skb;
3797 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3798 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3800 BUG_ON(skb->end - skb->tail < grow);
3802 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3805 skb->data_len -= grow;
3807 skb_shinfo(skb)->frags[0].page_offset += grow;
3808 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3810 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3811 skb_frag_unref(skb, 0);
3812 memmove(skb_shinfo(skb)->frags,
3813 skb_shinfo(skb)->frags + 1,
3814 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3827 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3831 if (netif_receive_skb(skb))
3839 case GRO_MERGED_FREE:
3840 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3841 kmem_cache_free(skbuff_head_cache, skb);
3854 static void skb_gro_reset_offset(struct sk_buff *skb)
3856 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3857 const skb_frag_t *frag0 = &pinfo->frags[0];
3859 NAPI_GRO_CB(skb)->data_offset = 0;
3860 NAPI_GRO_CB(skb)->frag0 = NULL;
3861 NAPI_GRO_CB(skb)->frag0_len = 0;
3863 if (skb->mac_header == skb->tail &&
3865 !PageHighMem(skb_frag_page(frag0))) {
3866 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3867 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3871 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3873 skb_gro_reset_offset(skb);
3875 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
3877 EXPORT_SYMBOL(napi_gro_receive);
3879 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3881 __skb_pull(skb, skb_headlen(skb));
3882 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3883 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3885 skb->dev = napi->dev;
3891 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3893 struct sk_buff *skb = napi->skb;
3896 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3902 EXPORT_SYMBOL(napi_get_frags);
3904 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3910 skb->protocol = eth_type_trans(skb, skb->dev);
3912 if (ret == GRO_HELD)
3913 skb_gro_pull(skb, -ETH_HLEN);
3914 else if (netif_receive_skb(skb))
3919 case GRO_MERGED_FREE:
3920 napi_reuse_skb(napi, skb);
3930 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3932 struct sk_buff *skb = napi->skb;
3939 skb_reset_mac_header(skb);
3940 skb_gro_reset_offset(skb);
3942 off = skb_gro_offset(skb);
3943 hlen = off + sizeof(*eth);
3944 eth = skb_gro_header_fast(skb, off);
3945 if (skb_gro_header_hard(skb, hlen)) {
3946 eth = skb_gro_header_slow(skb, hlen, off);
3947 if (unlikely(!eth)) {
3948 napi_reuse_skb(napi, skb);
3954 skb_gro_pull(skb, sizeof(*eth));
3957 * This works because the only protocols we care about don't require
3958 * special handling. We'll fix it up properly at the end.
3960 skb->protocol = eth->h_proto;
3966 gro_result_t napi_gro_frags(struct napi_struct *napi)
3968 struct sk_buff *skb = napi_frags_skb(napi);
3973 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
3975 EXPORT_SYMBOL(napi_gro_frags);
3978 * net_rps_action sends any pending IPI's for rps.
3979 * Note: called with local irq disabled, but exits with local irq enabled.
3981 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3984 struct softnet_data *remsd = sd->rps_ipi_list;
3987 sd->rps_ipi_list = NULL;
3991 /* Send pending IPI's to kick RPS processing on remote cpus. */
3993 struct softnet_data *next = remsd->rps_ipi_next;
3995 if (cpu_online(remsd->cpu))
3996 __smp_call_function_single(remsd->cpu,
4005 static int process_backlog(struct napi_struct *napi, int quota)
4008 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4011 /* Check if we have pending ipi, its better to send them now,
4012 * not waiting net_rx_action() end.
4014 if (sd->rps_ipi_list) {
4015 local_irq_disable();
4016 net_rps_action_and_irq_enable(sd);
4019 napi->weight = weight_p;
4020 local_irq_disable();
4021 while (work < quota) {
4022 struct sk_buff *skb;
4025 while ((skb = __skb_dequeue(&sd->process_queue))) {
4027 __netif_receive_skb(skb);
4028 local_irq_disable();
4029 input_queue_head_incr(sd);
4030 if (++work >= quota) {
4037 qlen = skb_queue_len(&sd->input_pkt_queue);
4039 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4040 &sd->process_queue);
4042 if (qlen < quota - work) {
4044 * Inline a custom version of __napi_complete().
4045 * only current cpu owns and manipulates this napi,
4046 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4047 * we can use a plain write instead of clear_bit(),
4048 * and we dont need an smp_mb() memory barrier.
4050 list_del(&napi->poll_list);
4053 quota = work + qlen;
4063 * __napi_schedule - schedule for receive
4064 * @n: entry to schedule
4066 * The entry's receive function will be scheduled to run
4068 void __napi_schedule(struct napi_struct *n)
4070 unsigned long flags;
4072 local_irq_save(flags);
4073 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4074 local_irq_restore(flags);
4076 EXPORT_SYMBOL(__napi_schedule);
4078 void __napi_complete(struct napi_struct *n)
4080 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4081 BUG_ON(n->gro_list);
4083 list_del(&n->poll_list);
4084 smp_mb__before_clear_bit();
4085 clear_bit(NAPI_STATE_SCHED, &n->state);
4087 EXPORT_SYMBOL(__napi_complete);
4089 void napi_complete(struct napi_struct *n)
4091 unsigned long flags;
4094 * don't let napi dequeue from the cpu poll list
4095 * just in case its running on a different cpu
4097 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4100 napi_gro_flush(n, false);
4101 local_irq_save(flags);
4103 local_irq_restore(flags);
4105 EXPORT_SYMBOL(napi_complete);
4107 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4108 int (*poll)(struct napi_struct *, int), int weight)
4110 INIT_LIST_HEAD(&napi->poll_list);
4111 napi->gro_count = 0;
4112 napi->gro_list = NULL;
4115 napi->weight = weight;
4116 list_add(&napi->dev_list, &dev->napi_list);
4118 #ifdef CONFIG_NETPOLL
4119 spin_lock_init(&napi->poll_lock);
4120 napi->poll_owner = -1;
4122 set_bit(NAPI_STATE_SCHED, &napi->state);
4124 EXPORT_SYMBOL(netif_napi_add);
4126 void netif_napi_del(struct napi_struct *napi)
4128 struct sk_buff *skb, *next;
4130 list_del_init(&napi->dev_list);
4131 napi_free_frags(napi);
4133 for (skb = napi->gro_list; skb; skb = next) {
4139 napi->gro_list = NULL;
4140 napi->gro_count = 0;
4142 EXPORT_SYMBOL(netif_napi_del);
4144 static void net_rx_action(struct softirq_action *h)
4146 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4147 unsigned long time_limit = jiffies + 2;
4148 int budget = netdev_budget;
4151 local_irq_disable();
4153 while (!list_empty(&sd->poll_list)) {
4154 struct napi_struct *n;
4157 /* If softirq window is exhuasted then punt.
4158 * Allow this to run for 2 jiffies since which will allow
4159 * an average latency of 1.5/HZ.
4161 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
4166 /* Even though interrupts have been re-enabled, this
4167 * access is safe because interrupts can only add new
4168 * entries to the tail of this list, and only ->poll()
4169 * calls can remove this head entry from the list.
4171 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4173 have = netpoll_poll_lock(n);
4177 /* This NAPI_STATE_SCHED test is for avoiding a race
4178 * with netpoll's poll_napi(). Only the entity which
4179 * obtains the lock and sees NAPI_STATE_SCHED set will
4180 * actually make the ->poll() call. Therefore we avoid
4181 * accidentally calling ->poll() when NAPI is not scheduled.
4184 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4185 work = n->poll(n, weight);
4189 WARN_ON_ONCE(work > weight);
4193 local_irq_disable();
4195 /* Drivers must not modify the NAPI state if they
4196 * consume the entire weight. In such cases this code
4197 * still "owns" the NAPI instance and therefore can
4198 * move the instance around on the list at-will.
4200 if (unlikely(work == weight)) {
4201 if (unlikely(napi_disable_pending(n))) {
4204 local_irq_disable();
4207 /* flush too old packets
4208 * If HZ < 1000, flush all packets.
4211 napi_gro_flush(n, HZ >= 1000);
4212 local_irq_disable();
4214 list_move_tail(&n->poll_list, &sd->poll_list);
4218 netpoll_poll_unlock(have);
4221 net_rps_action_and_irq_enable(sd);
4223 #ifdef CONFIG_NET_DMA
4225 * There may not be any more sk_buffs coming right now, so push
4226 * any pending DMA copies to hardware
4228 dma_issue_pending_all();
4235 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4239 static gifconf_func_t *gifconf_list[NPROTO];
4242 * register_gifconf - register a SIOCGIF handler
4243 * @family: Address family
4244 * @gifconf: Function handler
4246 * Register protocol dependent address dumping routines. The handler
4247 * that is passed must not be freed or reused until it has been replaced
4248 * by another handler.
4250 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
4252 if (family >= NPROTO)
4254 gifconf_list[family] = gifconf;
4257 EXPORT_SYMBOL(register_gifconf);
4261 * Map an interface index to its name (SIOCGIFNAME)
4265 * We need this ioctl for efficient implementation of the
4266 * if_indextoname() function required by the IPv6 API. Without
4267 * it, we would have to search all the interfaces to find a
4271 static int dev_ifname(struct net *net, struct ifreq __user *arg)
4273 struct net_device *dev;
4278 * Fetch the caller's info block.
4281 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4285 seq = read_seqcount_begin(&devnet_rename_seq);
4287 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
4293 strcpy(ifr.ifr_name, dev->name);
4295 if (read_seqcount_retry(&devnet_rename_seq, seq))
4298 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
4304 * Perform a SIOCGIFCONF call. This structure will change
4305 * size eventually, and there is nothing I can do about it.
4306 * Thus we will need a 'compatibility mode'.
4309 static int dev_ifconf(struct net *net, char __user *arg)
4312 struct net_device *dev;
4319 * Fetch the caller's info block.
4322 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
4329 * Loop over the interfaces, and write an info block for each.
4333 for_each_netdev(net, dev) {
4334 for (i = 0; i < NPROTO; i++) {
4335 if (gifconf_list[i]) {
4338 done = gifconf_list[i](dev, NULL, 0);
4340 done = gifconf_list[i](dev, pos + total,
4350 * All done. Write the updated control block back to the caller.
4352 ifc.ifc_len = total;
4355 * Both BSD and Solaris return 0 here, so we do too.
4357 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4360 #ifdef CONFIG_PROC_FS
4362 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4364 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4365 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4366 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4368 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4370 struct net *net = seq_file_net(seq);
4371 struct net_device *dev;
4372 struct hlist_node *p;
4373 struct hlist_head *h;
4374 unsigned int count = 0, offset = get_offset(*pos);
4376 h = &net->dev_name_head[get_bucket(*pos)];
4377 hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4378 if (++count == offset)
4385 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4387 struct net_device *dev;
4388 unsigned int bucket;
4391 dev = dev_from_same_bucket(seq, pos);
4395 bucket = get_bucket(*pos) + 1;
4396 *pos = set_bucket_offset(bucket, 1);
4397 } while (bucket < NETDEV_HASHENTRIES);
4403 * This is invoked by the /proc filesystem handler to display a device
4406 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4411 return SEQ_START_TOKEN;
4413 if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4416 return dev_from_bucket(seq, pos);
4419 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4422 return dev_from_bucket(seq, pos);
4425 void dev_seq_stop(struct seq_file *seq, void *v)
4431 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4433 struct rtnl_link_stats64 temp;
4434 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4436 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4437 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4438 dev->name, stats->rx_bytes, stats->rx_packets,
4440 stats->rx_dropped + stats->rx_missed_errors,
4441 stats->rx_fifo_errors,
4442 stats->rx_length_errors + stats->rx_over_errors +
4443 stats->rx_crc_errors + stats->rx_frame_errors,
4444 stats->rx_compressed, stats->multicast,
4445 stats->tx_bytes, stats->tx_packets,
4446 stats->tx_errors, stats->tx_dropped,
4447 stats->tx_fifo_errors, stats->collisions,
4448 stats->tx_carrier_errors +
4449 stats->tx_aborted_errors +
4450 stats->tx_window_errors +
4451 stats->tx_heartbeat_errors,
4452 stats->tx_compressed);
4456 * Called from the PROCfs module. This now uses the new arbitrary sized
4457 * /proc/net interface to create /proc/net/dev
4459 static int dev_seq_show(struct seq_file *seq, void *v)
4461 if (v == SEQ_START_TOKEN)
4462 seq_puts(seq, "Inter-| Receive "
4464 " face |bytes packets errs drop fifo frame "
4465 "compressed multicast|bytes packets errs "
4466 "drop fifo colls carrier compressed\n");
4468 dev_seq_printf_stats(seq, v);
4472 static struct softnet_data *softnet_get_online(loff_t *pos)
4474 struct softnet_data *sd = NULL;
4476 while (*pos < nr_cpu_ids)
4477 if (cpu_online(*pos)) {
4478 sd = &per_cpu(softnet_data, *pos);
4485 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4487 return softnet_get_online(pos);
4490 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4493 return softnet_get_online(pos);
4496 static void softnet_seq_stop(struct seq_file *seq, void *v)
4500 static int softnet_seq_show(struct seq_file *seq, void *v)
4502 struct softnet_data *sd = v;
4504 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4505 sd->processed, sd->dropped, sd->time_squeeze, 0,
4506 0, 0, 0, 0, /* was fastroute */
4507 sd->cpu_collision, sd->received_rps);
4511 static const struct seq_operations dev_seq_ops = {
4512 .start = dev_seq_start,
4513 .next = dev_seq_next,
4514 .stop = dev_seq_stop,
4515 .show = dev_seq_show,
4518 static int dev_seq_open(struct inode *inode, struct file *file)
4520 return seq_open_net(inode, file, &dev_seq_ops,
4521 sizeof(struct seq_net_private));
4524 static const struct file_operations dev_seq_fops = {
4525 .owner = THIS_MODULE,
4526 .open = dev_seq_open,
4528 .llseek = seq_lseek,
4529 .release = seq_release_net,
4532 static const struct seq_operations softnet_seq_ops = {
4533 .start = softnet_seq_start,
4534 .next = softnet_seq_next,
4535 .stop = softnet_seq_stop,
4536 .show = softnet_seq_show,
4539 static int softnet_seq_open(struct inode *inode, struct file *file)
4541 return seq_open(file, &softnet_seq_ops);
4544 static const struct file_operations softnet_seq_fops = {
4545 .owner = THIS_MODULE,
4546 .open = softnet_seq_open,
4548 .llseek = seq_lseek,
4549 .release = seq_release,
4552 static void *ptype_get_idx(loff_t pos)
4554 struct packet_type *pt = NULL;
4558 list_for_each_entry_rcu(pt, &ptype_all, list) {
4564 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4565 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4574 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4578 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4581 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4583 struct packet_type *pt;
4584 struct list_head *nxt;
4588 if (v == SEQ_START_TOKEN)
4589 return ptype_get_idx(0);
4592 nxt = pt->list.next;
4593 if (pt->type == htons(ETH_P_ALL)) {
4594 if (nxt != &ptype_all)
4597 nxt = ptype_base[0].next;
4599 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4601 while (nxt == &ptype_base[hash]) {
4602 if (++hash >= PTYPE_HASH_SIZE)
4604 nxt = ptype_base[hash].next;
4607 return list_entry(nxt, struct packet_type, list);
4610 static void ptype_seq_stop(struct seq_file *seq, void *v)
4616 static int ptype_seq_show(struct seq_file *seq, void *v)
4618 struct packet_type *pt = v;
4620 if (v == SEQ_START_TOKEN)
4621 seq_puts(seq, "Type Device Function\n");
4622 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4623 if (pt->type == htons(ETH_P_ALL))
4624 seq_puts(seq, "ALL ");
4626 seq_printf(seq, "%04x", ntohs(pt->type));
4628 seq_printf(seq, " %-8s %pF\n",
4629 pt->dev ? pt->dev->name : "", pt->func);
4635 static const struct seq_operations ptype_seq_ops = {
4636 .start = ptype_seq_start,
4637 .next = ptype_seq_next,
4638 .stop = ptype_seq_stop,
4639 .show = ptype_seq_show,
4642 static int ptype_seq_open(struct inode *inode, struct file *file)
4644 return seq_open_net(inode, file, &ptype_seq_ops,
4645 sizeof(struct seq_net_private));
4648 static const struct file_operations ptype_seq_fops = {
4649 .owner = THIS_MODULE,
4650 .open = ptype_seq_open,
4652 .llseek = seq_lseek,
4653 .release = seq_release_net,
4657 static int __net_init dev_proc_net_init(struct net *net)
4661 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4663 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4665 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4668 if (wext_proc_init(net))
4674 proc_net_remove(net, "ptype");
4676 proc_net_remove(net, "softnet_stat");
4678 proc_net_remove(net, "dev");
4682 static void __net_exit dev_proc_net_exit(struct net *net)
4684 wext_proc_exit(net);
4686 proc_net_remove(net, "ptype");
4687 proc_net_remove(net, "softnet_stat");
4688 proc_net_remove(net, "dev");
4691 static struct pernet_operations __net_initdata dev_proc_ops = {
4692 .init = dev_proc_net_init,
4693 .exit = dev_proc_net_exit,
4696 static int __init dev_proc_init(void)
4698 return register_pernet_subsys(&dev_proc_ops);
4701 #define dev_proc_init() 0
4702 #endif /* CONFIG_PROC_FS */
4705 struct netdev_upper {
4706 struct net_device *dev;
4708 struct list_head list;
4709 struct rcu_head rcu;
4710 struct list_head search_list;
4713 static void __append_search_uppers(struct list_head *search_list,
4714 struct net_device *dev)
4716 struct netdev_upper *upper;
4718 list_for_each_entry(upper, &dev->upper_dev_list, list) {
4719 /* check if this upper is not already in search list */
4720 if (list_empty(&upper->search_list))
4721 list_add_tail(&upper->search_list, search_list);
4725 static bool __netdev_search_upper_dev(struct net_device *dev,
4726 struct net_device *upper_dev)
4728 LIST_HEAD(search_list);
4729 struct netdev_upper *upper;
4730 struct netdev_upper *tmp;
4733 __append_search_uppers(&search_list, dev);
4734 list_for_each_entry(upper, &search_list, search_list) {
4735 if (upper->dev == upper_dev) {
4739 __append_search_uppers(&search_list, upper->dev);
4741 list_for_each_entry_safe(upper, tmp, &search_list, search_list)
4742 INIT_LIST_HEAD(&upper->search_list);
4746 static struct netdev_upper *__netdev_find_upper(struct net_device *dev,
4747 struct net_device *upper_dev)
4749 struct netdev_upper *upper;
4751 list_for_each_entry(upper, &dev->upper_dev_list, list) {
4752 if (upper->dev == upper_dev)
4759 * netdev_has_upper_dev - Check if device is linked to an upper device
4761 * @upper_dev: upper device to check
4763 * Find out if a device is linked to specified upper device and return true
4764 * in case it is. Note that this checks only immediate upper device,
4765 * not through a complete stack of devices. The caller must hold the RTNL lock.
4767 bool netdev_has_upper_dev(struct net_device *dev,
4768 struct net_device *upper_dev)
4772 return __netdev_find_upper(dev, upper_dev);
4774 EXPORT_SYMBOL(netdev_has_upper_dev);
4777 * netdev_has_any_upper_dev - Check if device is linked to some device
4780 * Find out if a device is linked to an upper device and return true in case
4781 * it is. The caller must hold the RTNL lock.
4783 bool netdev_has_any_upper_dev(struct net_device *dev)
4787 return !list_empty(&dev->upper_dev_list);
4789 EXPORT_SYMBOL(netdev_has_any_upper_dev);
4792 * netdev_master_upper_dev_get - Get master upper device
4795 * Find a master upper device and return pointer to it or NULL in case
4796 * it's not there. The caller must hold the RTNL lock.
4798 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4800 struct netdev_upper *upper;
4804 if (list_empty(&dev->upper_dev_list))
4807 upper = list_first_entry(&dev->upper_dev_list,
4808 struct netdev_upper, list);
4809 if (likely(upper->master))
4813 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4816 * netdev_master_upper_dev_get_rcu - Get master upper device
4819 * Find a master upper device and return pointer to it or NULL in case
4820 * it's not there. The caller must hold the RCU read lock.
4822 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4824 struct netdev_upper *upper;
4826 upper = list_first_or_null_rcu(&dev->upper_dev_list,
4827 struct netdev_upper, list);
4828 if (upper && likely(upper->master))
4832 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4834 static int __netdev_upper_dev_link(struct net_device *dev,
4835 struct net_device *upper_dev, bool master)
4837 struct netdev_upper *upper;
4841 if (dev == upper_dev)
4844 /* To prevent loops, check if dev is not upper device to upper_dev. */
4845 if (__netdev_search_upper_dev(upper_dev, dev))
4848 if (__netdev_find_upper(dev, upper_dev))
4851 if (master && netdev_master_upper_dev_get(dev))
4854 upper = kmalloc(sizeof(*upper), GFP_KERNEL);
4858 upper->dev = upper_dev;
4859 upper->master = master;
4860 INIT_LIST_HEAD(&upper->search_list);
4862 /* Ensure that master upper link is always the first item in list. */
4864 list_add_rcu(&upper->list, &dev->upper_dev_list);
4866 list_add_tail_rcu(&upper->list, &dev->upper_dev_list);
4867 dev_hold(upper_dev);
4873 * netdev_upper_dev_link - Add a link to the upper device
4875 * @upper_dev: new upper device
4877 * Adds a link to device which is upper to this one. The caller must hold
4878 * the RTNL lock. On a failure a negative errno code is returned.
4879 * On success the reference counts are adjusted and the function
4882 int netdev_upper_dev_link(struct net_device *dev,
4883 struct net_device *upper_dev)
4885 return __netdev_upper_dev_link(dev, upper_dev, false);
4887 EXPORT_SYMBOL(netdev_upper_dev_link);
4890 * netdev_master_upper_dev_link - Add a master link to the upper device
4892 * @upper_dev: new upper device
4894 * Adds a link to device which is upper to this one. In this case, only
4895 * one master upper device can be linked, although other non-master devices
4896 * might be linked as well. The caller must hold the RTNL lock.
4897 * On a failure a negative errno code is returned. On success the reference
4898 * counts are adjusted and the function returns zero.
4900 int netdev_master_upper_dev_link(struct net_device *dev,
4901 struct net_device *upper_dev)
4903 return __netdev_upper_dev_link(dev, upper_dev, true);
4905 EXPORT_SYMBOL(netdev_master_upper_dev_link);
4908 * netdev_upper_dev_unlink - Removes a link to upper device
4910 * @upper_dev: new upper device
4912 * Removes a link to device which is upper to this one. The caller must hold
4915 void netdev_upper_dev_unlink(struct net_device *dev,
4916 struct net_device *upper_dev)
4918 struct netdev_upper *upper;
4922 upper = __netdev_find_upper(dev, upper_dev);
4925 list_del_rcu(&upper->list);
4927 kfree_rcu(upper, rcu);
4929 EXPORT_SYMBOL(netdev_upper_dev_unlink);
4931 static void dev_change_rx_flags(struct net_device *dev, int flags)
4933 const struct net_device_ops *ops = dev->netdev_ops;
4935 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4936 ops->ndo_change_rx_flags(dev, flags);
4939 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4941 unsigned int old_flags = dev->flags;
4947 dev->flags |= IFF_PROMISC;
4948 dev->promiscuity += inc;
4949 if (dev->promiscuity == 0) {
4952 * If inc causes overflow, untouch promisc and return error.
4955 dev->flags &= ~IFF_PROMISC;
4957 dev->promiscuity -= inc;
4958 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4963 if (dev->flags != old_flags) {
4964 pr_info("device %s %s promiscuous mode\n",
4966 dev->flags & IFF_PROMISC ? "entered" : "left");
4967 if (audit_enabled) {
4968 current_uid_gid(&uid, &gid);
4969 audit_log(current->audit_context, GFP_ATOMIC,
4970 AUDIT_ANOM_PROMISCUOUS,
4971 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4972 dev->name, (dev->flags & IFF_PROMISC),
4973 (old_flags & IFF_PROMISC),
4974 from_kuid(&init_user_ns, audit_get_loginuid(current)),
4975 from_kuid(&init_user_ns, uid),
4976 from_kgid(&init_user_ns, gid),
4977 audit_get_sessionid(current));
4980 dev_change_rx_flags(dev, IFF_PROMISC);
4986 * dev_set_promiscuity - update promiscuity count on a device
4990 * Add or remove promiscuity from a device. While the count in the device
4991 * remains above zero the interface remains promiscuous. Once it hits zero
4992 * the device reverts back to normal filtering operation. A negative inc
4993 * value is used to drop promiscuity on the device.
4994 * Return 0 if successful or a negative errno code on error.
4996 int dev_set_promiscuity(struct net_device *dev, int inc)
4998 unsigned int old_flags = dev->flags;
5001 err = __dev_set_promiscuity(dev, inc);
5004 if (dev->flags != old_flags)
5005 dev_set_rx_mode(dev);
5008 EXPORT_SYMBOL(dev_set_promiscuity);
5011 * dev_set_allmulti - update allmulti count on a device
5015 * Add or remove reception of all multicast frames to a device. While the
5016 * count in the device remains above zero the interface remains listening
5017 * to all interfaces. Once it hits zero the device reverts back to normal
5018 * filtering operation. A negative @inc value is used to drop the counter
5019 * when releasing a resource needing all multicasts.
5020 * Return 0 if successful or a negative errno code on error.
5023 int dev_set_allmulti(struct net_device *dev, int inc)
5025 unsigned int old_flags = dev->flags;
5029 dev->flags |= IFF_ALLMULTI;
5030 dev->allmulti += inc;
5031 if (dev->allmulti == 0) {
5034 * If inc causes overflow, untouch allmulti and return error.
5037 dev->flags &= ~IFF_ALLMULTI;
5039 dev->allmulti -= inc;
5040 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5045 if (dev->flags ^ old_flags) {
5046 dev_change_rx_flags(dev, IFF_ALLMULTI);
5047 dev_set_rx_mode(dev);
5051 EXPORT_SYMBOL(dev_set_allmulti);
5054 * Upload unicast and multicast address lists to device and
5055 * configure RX filtering. When the device doesn't support unicast
5056 * filtering it is put in promiscuous mode while unicast addresses
5059 void __dev_set_rx_mode(struct net_device *dev)
5061 const struct net_device_ops *ops = dev->netdev_ops;
5063 /* dev_open will call this function so the list will stay sane. */
5064 if (!(dev->flags&IFF_UP))
5067 if (!netif_device_present(dev))
5070 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5071 /* Unicast addresses changes may only happen under the rtnl,
5072 * therefore calling __dev_set_promiscuity here is safe.
5074 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5075 __dev_set_promiscuity(dev, 1);
5076 dev->uc_promisc = true;
5077 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5078 __dev_set_promiscuity(dev, -1);
5079 dev->uc_promisc = false;
5083 if (ops->ndo_set_rx_mode)
5084 ops->ndo_set_rx_mode(dev);
5087 void dev_set_rx_mode(struct net_device *dev)
5089 netif_addr_lock_bh(dev);
5090 __dev_set_rx_mode(dev);
5091 netif_addr_unlock_bh(dev);
5095 * dev_get_flags - get flags reported to userspace
5098 * Get the combination of flag bits exported through APIs to userspace.
5100 unsigned int dev_get_flags(const struct net_device *dev)
5104 flags = (dev->flags & ~(IFF_PROMISC |
5109 (dev->gflags & (IFF_PROMISC |
5112 if (netif_running(dev)) {
5113 if (netif_oper_up(dev))
5114 flags |= IFF_RUNNING;
5115 if (netif_carrier_ok(dev))
5116 flags |= IFF_LOWER_UP;
5117 if (netif_dormant(dev))
5118 flags |= IFF_DORMANT;
5123 EXPORT_SYMBOL(dev_get_flags);
5125 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5127 unsigned int old_flags = dev->flags;
5133 * Set the flags on our device.
5136 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5137 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5139 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5143 * Load in the correct multicast list now the flags have changed.
5146 if ((old_flags ^ flags) & IFF_MULTICAST)
5147 dev_change_rx_flags(dev, IFF_MULTICAST);
5149 dev_set_rx_mode(dev);
5152 * Have we downed the interface. We handle IFF_UP ourselves
5153 * according to user attempts to set it, rather than blindly
5158 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
5159 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5162 dev_set_rx_mode(dev);
5165 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5166 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5168 dev->gflags ^= IFF_PROMISC;
5169 dev_set_promiscuity(dev, inc);
5172 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5173 is important. Some (broken) drivers set IFF_PROMISC, when
5174 IFF_ALLMULTI is requested not asking us and not reporting.
5176 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5177 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5179 dev->gflags ^= IFF_ALLMULTI;
5180 dev_set_allmulti(dev, inc);
5186 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
5188 unsigned int changes = dev->flags ^ old_flags;
5190 if (changes & IFF_UP) {
5191 if (dev->flags & IFF_UP)
5192 call_netdevice_notifiers(NETDEV_UP, dev);
5194 call_netdevice_notifiers(NETDEV_DOWN, dev);
5197 if (dev->flags & IFF_UP &&
5198 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
5199 call_netdevice_notifiers(NETDEV_CHANGE, dev);
5203 * dev_change_flags - change device settings
5205 * @flags: device state flags
5207 * Change settings on device based state flags. The flags are
5208 * in the userspace exported format.
5210 int dev_change_flags(struct net_device *dev, unsigned int flags)
5213 unsigned int changes, old_flags = dev->flags;
5215 ret = __dev_change_flags(dev, flags);
5219 changes = old_flags ^ dev->flags;
5221 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
5223 __dev_notify_flags(dev, old_flags);
5226 EXPORT_SYMBOL(dev_change_flags);
5229 * dev_set_mtu - Change maximum transfer unit
5231 * @new_mtu: new transfer unit
5233 * Change the maximum transfer size of the network device.
5235 int dev_set_mtu(struct net_device *dev, int new_mtu)
5237 const struct net_device_ops *ops = dev->netdev_ops;
5240 if (new_mtu == dev->mtu)
5243 /* MTU must be positive. */
5247 if (!netif_device_present(dev))
5251 if (ops->ndo_change_mtu)
5252 err = ops->ndo_change_mtu(dev, new_mtu);
5257 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5260 EXPORT_SYMBOL(dev_set_mtu);
5263 * dev_set_group - Change group this device belongs to
5265 * @new_group: group this device should belong to
5267 void dev_set_group(struct net_device *dev, int new_group)
5269 dev->group = new_group;
5271 EXPORT_SYMBOL(dev_set_group);
5274 * dev_set_mac_address - Change Media Access Control Address
5278 * Change the hardware (MAC) address of the device
5280 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5282 const struct net_device_ops *ops = dev->netdev_ops;
5285 if (!ops->ndo_set_mac_address)
5287 if (sa->sa_family != dev->type)
5289 if (!netif_device_present(dev))
5291 err = ops->ndo_set_mac_address(dev, sa);
5294 dev->addr_assign_type = NET_ADDR_SET;
5295 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5296 add_device_randomness(dev->dev_addr, dev->addr_len);
5299 EXPORT_SYMBOL(dev_set_mac_address);
5302 * dev_change_carrier - Change device carrier
5304 * @new_carries: new value
5306 * Change device carrier
5308 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5310 const struct net_device_ops *ops = dev->netdev_ops;
5312 if (!ops->ndo_change_carrier)
5314 if (!netif_device_present(dev))
5316 return ops->ndo_change_carrier(dev, new_carrier);
5318 EXPORT_SYMBOL(dev_change_carrier);
5321 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
5323 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
5326 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
5332 case SIOCGIFFLAGS: /* Get interface flags */
5333 ifr->ifr_flags = (short) dev_get_flags(dev);
5336 case SIOCGIFMETRIC: /* Get the metric on the interface
5337 (currently unused) */
5338 ifr->ifr_metric = 0;
5341 case SIOCGIFMTU: /* Get the MTU of a device */
5342 ifr->ifr_mtu = dev->mtu;
5347 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
5349 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
5350 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
5351 ifr->ifr_hwaddr.sa_family = dev->type;
5359 ifr->ifr_map.mem_start = dev->mem_start;
5360 ifr->ifr_map.mem_end = dev->mem_end;
5361 ifr->ifr_map.base_addr = dev->base_addr;
5362 ifr->ifr_map.irq = dev->irq;
5363 ifr->ifr_map.dma = dev->dma;
5364 ifr->ifr_map.port = dev->if_port;
5368 ifr->ifr_ifindex = dev->ifindex;
5372 ifr->ifr_qlen = dev->tx_queue_len;
5376 /* dev_ioctl() should ensure this case
5388 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
5390 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
5393 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
5394 const struct net_device_ops *ops;
5399 ops = dev->netdev_ops;
5402 case SIOCSIFFLAGS: /* Set interface flags */
5403 return dev_change_flags(dev, ifr->ifr_flags);
5405 case SIOCSIFMETRIC: /* Set the metric on the interface
5406 (currently unused) */
5409 case SIOCSIFMTU: /* Set the MTU of a device */
5410 return dev_set_mtu(dev, ifr->ifr_mtu);
5413 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
5415 case SIOCSIFHWBROADCAST:
5416 if (ifr->ifr_hwaddr.sa_family != dev->type)
5418 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
5419 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
5420 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5424 if (ops->ndo_set_config) {
5425 if (!netif_device_present(dev))
5427 return ops->ndo_set_config(dev, &ifr->ifr_map);
5432 if (!ops->ndo_set_rx_mode ||
5433 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
5435 if (!netif_device_present(dev))
5437 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
5440 if (!ops->ndo_set_rx_mode ||
5441 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
5443 if (!netif_device_present(dev))
5445 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
5448 if (ifr->ifr_qlen < 0)
5450 dev->tx_queue_len = ifr->ifr_qlen;
5454 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
5455 return dev_change_name(dev, ifr->ifr_newname);
5458 err = net_hwtstamp_validate(ifr);
5464 * Unknown or private ioctl
5467 if ((cmd >= SIOCDEVPRIVATE &&
5468 cmd <= SIOCDEVPRIVATE + 15) ||
5469 cmd == SIOCBONDENSLAVE ||
5470 cmd == SIOCBONDRELEASE ||
5471 cmd == SIOCBONDSETHWADDR ||
5472 cmd == SIOCBONDSLAVEINFOQUERY ||
5473 cmd == SIOCBONDINFOQUERY ||
5474 cmd == SIOCBONDCHANGEACTIVE ||
5475 cmd == SIOCGMIIPHY ||
5476 cmd == SIOCGMIIREG ||
5477 cmd == SIOCSMIIREG ||
5478 cmd == SIOCBRADDIF ||
5479 cmd == SIOCBRDELIF ||
5480 cmd == SIOCSHWTSTAMP ||
5481 cmd == SIOCWANDEV) {
5483 if (ops->ndo_do_ioctl) {
5484 if (netif_device_present(dev))
5485 err = ops->ndo_do_ioctl(dev, ifr, cmd);
5497 * This function handles all "interface"-type I/O control requests. The actual
5498 * 'doing' part of this is dev_ifsioc above.
5502 * dev_ioctl - network device ioctl
5503 * @net: the applicable net namespace
5504 * @cmd: command to issue
5505 * @arg: pointer to a struct ifreq in user space
5507 * Issue ioctl functions to devices. This is normally called by the
5508 * user space syscall interfaces but can sometimes be useful for
5509 * other purposes. The return value is the return from the syscall if
5510 * positive or a negative errno code on error.
5513 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5519 /* One special case: SIOCGIFCONF takes ifconf argument
5520 and requires shared lock, because it sleeps writing
5524 if (cmd == SIOCGIFCONF) {
5526 ret = dev_ifconf(net, (char __user *) arg);
5530 if (cmd == SIOCGIFNAME)
5531 return dev_ifname(net, (struct ifreq __user *)arg);
5533 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5536 ifr.ifr_name[IFNAMSIZ-1] = 0;
5538 colon = strchr(ifr.ifr_name, ':');
5543 * See which interface the caller is talking about.
5548 * These ioctl calls:
5549 * - can be done by all.
5550 * - atomic and do not require locking.
5561 dev_load(net, ifr.ifr_name);
5563 ret = dev_ifsioc_locked(net, &ifr, cmd);
5568 if (copy_to_user(arg, &ifr,
5569 sizeof(struct ifreq)))
5575 dev_load(net, ifr.ifr_name);
5577 ret = dev_ethtool(net, &ifr);
5582 if (copy_to_user(arg, &ifr,
5583 sizeof(struct ifreq)))
5589 * These ioctl calls:
5590 * - require superuser power.
5591 * - require strict serialization.
5597 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
5599 dev_load(net, ifr.ifr_name);
5601 ret = dev_ifsioc(net, &ifr, cmd);
5606 if (copy_to_user(arg, &ifr,
5607 sizeof(struct ifreq)))
5613 * These ioctl calls:
5614 * - require superuser power.
5615 * - require strict serialization.
5616 * - do not return a value
5620 if (!capable(CAP_NET_ADMIN))
5624 * These ioctl calls:
5625 * - require local superuser power.
5626 * - require strict serialization.
5627 * - do not return a value
5636 case SIOCSIFHWBROADCAST:
5638 case SIOCBONDENSLAVE:
5639 case SIOCBONDRELEASE:
5640 case SIOCBONDSETHWADDR:
5641 case SIOCBONDCHANGEACTIVE:
5645 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
5648 case SIOCBONDSLAVEINFOQUERY:
5649 case SIOCBONDINFOQUERY:
5650 dev_load(net, ifr.ifr_name);
5652 ret = dev_ifsioc(net, &ifr, cmd);
5657 /* Get the per device memory space. We can add this but
5658 * currently do not support it */
5660 /* Set the per device memory buffer space.
5661 * Not applicable in our case */
5666 * Unknown or private ioctl.
5669 if (cmd == SIOCWANDEV ||
5670 (cmd >= SIOCDEVPRIVATE &&
5671 cmd <= SIOCDEVPRIVATE + 15)) {
5672 dev_load(net, ifr.ifr_name);
5674 ret = dev_ifsioc(net, &ifr, cmd);
5676 if (!ret && copy_to_user(arg, &ifr,
5677 sizeof(struct ifreq)))
5681 /* Take care of Wireless Extensions */
5682 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5683 return wext_handle_ioctl(net, &ifr, cmd, arg);
5690 * dev_new_index - allocate an ifindex
5691 * @net: the applicable net namespace
5693 * Returns a suitable unique value for a new device interface
5694 * number. The caller must hold the rtnl semaphore or the
5695 * dev_base_lock to be sure it remains unique.
5697 static int dev_new_index(struct net *net)
5699 int ifindex = net->ifindex;
5703 if (!__dev_get_by_index(net, ifindex))
5704 return net->ifindex = ifindex;
5708 /* Delayed registration/unregisteration */
5709 static LIST_HEAD(net_todo_list);
5711 static void net_set_todo(struct net_device *dev)
5713 list_add_tail(&dev->todo_list, &net_todo_list);
5716 static void rollback_registered_many(struct list_head *head)
5718 struct net_device *dev, *tmp;
5720 BUG_ON(dev_boot_phase);
5723 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5724 /* Some devices call without registering
5725 * for initialization unwind. Remove those
5726 * devices and proceed with the remaining.
5728 if (dev->reg_state == NETREG_UNINITIALIZED) {
5729 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5733 list_del(&dev->unreg_list);
5736 dev->dismantle = true;
5737 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5740 /* If device is running, close it first. */
5741 dev_close_many(head);
5743 list_for_each_entry(dev, head, unreg_list) {
5744 /* And unlink it from device chain. */
5745 unlist_netdevice(dev);
5747 dev->reg_state = NETREG_UNREGISTERING;
5752 list_for_each_entry(dev, head, unreg_list) {
5753 /* Shutdown queueing discipline. */
5757 /* Notify protocols, that we are about to destroy
5758 this device. They should clean all the things.
5760 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5762 if (!dev->rtnl_link_ops ||
5763 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5764 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5767 * Flush the unicast and multicast chains
5772 if (dev->netdev_ops->ndo_uninit)
5773 dev->netdev_ops->ndo_uninit(dev);
5775 /* Notifier chain MUST detach us all upper devices. */
5776 WARN_ON(netdev_has_any_upper_dev(dev));
5778 /* Remove entries from kobject tree */
5779 netdev_unregister_kobject(dev);
5781 /* Remove XPS queueing entries */
5782 netif_reset_xps_queues_gt(dev, 0);
5788 list_for_each_entry(dev, head, unreg_list)
5792 static void rollback_registered(struct net_device *dev)
5796 list_add(&dev->unreg_list, &single);
5797 rollback_registered_many(&single);
5801 static netdev_features_t netdev_fix_features(struct net_device *dev,
5802 netdev_features_t features)
5804 /* Fix illegal checksum combinations */
5805 if ((features & NETIF_F_HW_CSUM) &&
5806 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5807 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5808 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5811 /* Fix illegal SG+CSUM combinations. */
5812 if ((features & NETIF_F_SG) &&
5813 !(features & NETIF_F_ALL_CSUM)) {
5815 "Dropping NETIF_F_SG since no checksum feature.\n");
5816 features &= ~NETIF_F_SG;
5819 /* TSO requires that SG is present as well. */
5820 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5821 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5822 features &= ~NETIF_F_ALL_TSO;
5825 /* TSO ECN requires that TSO is present as well. */
5826 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5827 features &= ~NETIF_F_TSO_ECN;
5829 /* Software GSO depends on SG. */
5830 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5831 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5832 features &= ~NETIF_F_GSO;
5835 /* UFO needs SG and checksumming */
5836 if (features & NETIF_F_UFO) {
5837 /* maybe split UFO into V4 and V6? */
5838 if (!((features & NETIF_F_GEN_CSUM) ||
5839 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5840 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5842 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5843 features &= ~NETIF_F_UFO;
5846 if (!(features & NETIF_F_SG)) {
5848 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5849 features &= ~NETIF_F_UFO;
5856 int __netdev_update_features(struct net_device *dev)
5858 netdev_features_t features;
5863 features = netdev_get_wanted_features(dev);
5865 if (dev->netdev_ops->ndo_fix_features)
5866 features = dev->netdev_ops->ndo_fix_features(dev, features);
5868 /* driver might be less strict about feature dependencies */
5869 features = netdev_fix_features(dev, features);
5871 if (dev->features == features)
5874 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5875 &dev->features, &features);
5877 if (dev->netdev_ops->ndo_set_features)
5878 err = dev->netdev_ops->ndo_set_features(dev, features);
5880 if (unlikely(err < 0)) {
5882 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5883 err, &features, &dev->features);
5888 dev->features = features;
5894 * netdev_update_features - recalculate device features
5895 * @dev: the device to check
5897 * Recalculate dev->features set and send notifications if it
5898 * has changed. Should be called after driver or hardware dependent
5899 * conditions might have changed that influence the features.
5901 void netdev_update_features(struct net_device *dev)
5903 if (__netdev_update_features(dev))
5904 netdev_features_change(dev);
5906 EXPORT_SYMBOL(netdev_update_features);
5909 * netdev_change_features - recalculate device features
5910 * @dev: the device to check
5912 * Recalculate dev->features set and send notifications even
5913 * if they have not changed. Should be called instead of
5914 * netdev_update_features() if also dev->vlan_features might
5915 * have changed to allow the changes to be propagated to stacked
5918 void netdev_change_features(struct net_device *dev)
5920 __netdev_update_features(dev);
5921 netdev_features_change(dev);
5923 EXPORT_SYMBOL(netdev_change_features);
5926 * netif_stacked_transfer_operstate - transfer operstate
5927 * @rootdev: the root or lower level device to transfer state from
5928 * @dev: the device to transfer operstate to
5930 * Transfer operational state from root to device. This is normally
5931 * called when a stacking relationship exists between the root
5932 * device and the device(a leaf device).
5934 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5935 struct net_device *dev)
5937 if (rootdev->operstate == IF_OPER_DORMANT)
5938 netif_dormant_on(dev);
5940 netif_dormant_off(dev);
5942 if (netif_carrier_ok(rootdev)) {
5943 if (!netif_carrier_ok(dev))
5944 netif_carrier_on(dev);
5946 if (netif_carrier_ok(dev))
5947 netif_carrier_off(dev);
5950 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5953 static int netif_alloc_rx_queues(struct net_device *dev)
5955 unsigned int i, count = dev->num_rx_queues;
5956 struct netdev_rx_queue *rx;
5960 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5962 pr_err("netdev: Unable to allocate %u rx queues\n", count);
5967 for (i = 0; i < count; i++)
5973 static void netdev_init_one_queue(struct net_device *dev,
5974 struct netdev_queue *queue, void *_unused)
5976 /* Initialize queue lock */
5977 spin_lock_init(&queue->_xmit_lock);
5978 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5979 queue->xmit_lock_owner = -1;
5980 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5983 dql_init(&queue->dql, HZ);
5987 static int netif_alloc_netdev_queues(struct net_device *dev)
5989 unsigned int count = dev->num_tx_queues;
5990 struct netdev_queue *tx;
5994 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5996 pr_err("netdev: Unable to allocate %u tx queues\n", count);
6001 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6002 spin_lock_init(&dev->tx_global_lock);
6008 * register_netdevice - register a network device
6009 * @dev: device to register
6011 * Take a completed network device structure and add it to the kernel
6012 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6013 * chain. 0 is returned on success. A negative errno code is returned
6014 * on a failure to set up the device, or if the name is a duplicate.
6016 * Callers must hold the rtnl semaphore. You may want
6017 * register_netdev() instead of this.
6020 * The locking appears insufficient to guarantee two parallel registers
6021 * will not get the same name.
6024 int register_netdevice(struct net_device *dev)
6027 struct net *net = dev_net(dev);
6029 BUG_ON(dev_boot_phase);
6034 /* When net_device's are persistent, this will be fatal. */
6035 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6038 spin_lock_init(&dev->addr_list_lock);
6039 netdev_set_addr_lockdep_class(dev);
6043 ret = dev_get_valid_name(net, dev, dev->name);
6047 /* Init, if this function is available */
6048 if (dev->netdev_ops->ndo_init) {
6049 ret = dev->netdev_ops->ndo_init(dev);
6059 dev->ifindex = dev_new_index(net);
6060 else if (__dev_get_by_index(net, dev->ifindex))
6063 if (dev->iflink == -1)
6064 dev->iflink = dev->ifindex;
6066 /* Transfer changeable features to wanted_features and enable
6067 * software offloads (GSO and GRO).
6069 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6070 dev->features |= NETIF_F_SOFT_FEATURES;
6071 dev->wanted_features = dev->features & dev->hw_features;
6073 /* Turn on no cache copy if HW is doing checksum */
6074 if (!(dev->flags & IFF_LOOPBACK)) {
6075 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6076 if (dev->features & NETIF_F_ALL_CSUM) {
6077 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
6078 dev->features |= NETIF_F_NOCACHE_COPY;
6082 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6084 dev->vlan_features |= NETIF_F_HIGHDMA;
6086 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6087 ret = notifier_to_errno(ret);
6091 ret = netdev_register_kobject(dev);
6094 dev->reg_state = NETREG_REGISTERED;
6096 __netdev_update_features(dev);
6099 * Default initial state at registry is that the
6100 * device is present.
6103 set_bit(__LINK_STATE_PRESENT, &dev->state);
6105 linkwatch_init_dev(dev);
6107 dev_init_scheduler(dev);
6109 list_netdevice(dev);
6110 add_device_randomness(dev->dev_addr, dev->addr_len);
6112 /* If the device has permanent device address, driver should
6113 * set dev_addr and also addr_assign_type should be set to
6114 * NET_ADDR_PERM (default value).
6116 if (dev->addr_assign_type == NET_ADDR_PERM)
6117 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6119 /* Notify protocols, that a new device appeared. */
6120 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6121 ret = notifier_to_errno(ret);
6123 rollback_registered(dev);
6124 dev->reg_state = NETREG_UNREGISTERED;
6127 * Prevent userspace races by waiting until the network
6128 * device is fully setup before sending notifications.
6130 if (!dev->rtnl_link_ops ||
6131 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6132 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6138 if (dev->netdev_ops->ndo_uninit)
6139 dev->netdev_ops->ndo_uninit(dev);
6142 EXPORT_SYMBOL(register_netdevice);
6145 * init_dummy_netdev - init a dummy network device for NAPI
6146 * @dev: device to init
6148 * This takes a network device structure and initialize the minimum
6149 * amount of fields so it can be used to schedule NAPI polls without
6150 * registering a full blown interface. This is to be used by drivers
6151 * that need to tie several hardware interfaces to a single NAPI
6152 * poll scheduler due to HW limitations.
6154 int init_dummy_netdev(struct net_device *dev)
6156 /* Clear everything. Note we don't initialize spinlocks
6157 * are they aren't supposed to be taken by any of the
6158 * NAPI code and this dummy netdev is supposed to be
6159 * only ever used for NAPI polls
6161 memset(dev, 0, sizeof(struct net_device));
6163 /* make sure we BUG if trying to hit standard
6164 * register/unregister code path
6166 dev->reg_state = NETREG_DUMMY;
6168 /* NAPI wants this */
6169 INIT_LIST_HEAD(&dev->napi_list);
6171 /* a dummy interface is started by default */
6172 set_bit(__LINK_STATE_PRESENT, &dev->state);
6173 set_bit(__LINK_STATE_START, &dev->state);
6175 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6176 * because users of this 'device' dont need to change
6182 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6186 * register_netdev - register a network device
6187 * @dev: device to register
6189 * Take a completed network device structure and add it to the kernel
6190 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6191 * chain. 0 is returned on success. A negative errno code is returned
6192 * on a failure to set up the device, or if the name is a duplicate.
6194 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6195 * and expands the device name if you passed a format string to
6198 int register_netdev(struct net_device *dev)
6203 err = register_netdevice(dev);
6207 EXPORT_SYMBOL(register_netdev);
6209 int netdev_refcnt_read(const struct net_device *dev)
6213 for_each_possible_cpu(i)
6214 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6217 EXPORT_SYMBOL(netdev_refcnt_read);
6220 * netdev_wait_allrefs - wait until all references are gone.
6221 * @dev: target net_device
6223 * This is called when unregistering network devices.
6225 * Any protocol or device that holds a reference should register
6226 * for netdevice notification, and cleanup and put back the
6227 * reference if they receive an UNREGISTER event.
6228 * We can get stuck here if buggy protocols don't correctly
6231 static void netdev_wait_allrefs(struct net_device *dev)
6233 unsigned long rebroadcast_time, warning_time;
6236 linkwatch_forget_dev(dev);
6238 rebroadcast_time = warning_time = jiffies;
6239 refcnt = netdev_refcnt_read(dev);
6241 while (refcnt != 0) {
6242 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6245 /* Rebroadcast unregister notification */
6246 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6252 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6253 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6255 /* We must not have linkwatch events
6256 * pending on unregister. If this
6257 * happens, we simply run the queue
6258 * unscheduled, resulting in a noop
6261 linkwatch_run_queue();
6266 rebroadcast_time = jiffies;
6271 refcnt = netdev_refcnt_read(dev);
6273 if (time_after(jiffies, warning_time + 10 * HZ)) {
6274 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6276 warning_time = jiffies;
6285 * register_netdevice(x1);
6286 * register_netdevice(x2);
6288 * unregister_netdevice(y1);
6289 * unregister_netdevice(y2);
6295 * We are invoked by rtnl_unlock().
6296 * This allows us to deal with problems:
6297 * 1) We can delete sysfs objects which invoke hotplug
6298 * without deadlocking with linkwatch via keventd.
6299 * 2) Since we run with the RTNL semaphore not held, we can sleep
6300 * safely in order to wait for the netdev refcnt to drop to zero.
6302 * We must not return until all unregister events added during
6303 * the interval the lock was held have been completed.
6305 void netdev_run_todo(void)
6307 struct list_head list;
6309 /* Snapshot list, allow later requests */
6310 list_replace_init(&net_todo_list, &list);
6315 /* Wait for rcu callbacks to finish before next phase */
6316 if (!list_empty(&list))
6319 while (!list_empty(&list)) {
6320 struct net_device *dev
6321 = list_first_entry(&list, struct net_device, todo_list);
6322 list_del(&dev->todo_list);
6325 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6328 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6329 pr_err("network todo '%s' but state %d\n",
6330 dev->name, dev->reg_state);
6335 dev->reg_state = NETREG_UNREGISTERED;
6337 on_each_cpu(flush_backlog, dev, 1);
6339 netdev_wait_allrefs(dev);
6342 BUG_ON(netdev_refcnt_read(dev));
6343 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6344 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6345 WARN_ON(dev->dn_ptr);
6347 if (dev->destructor)
6348 dev->destructor(dev);
6350 /* Free network device */
6351 kobject_put(&dev->dev.kobj);
6355 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6356 * fields in the same order, with only the type differing.
6358 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6359 const struct net_device_stats *netdev_stats)
6361 #if BITS_PER_LONG == 64
6362 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6363 memcpy(stats64, netdev_stats, sizeof(*stats64));
6365 size_t i, n = sizeof(*stats64) / sizeof(u64);
6366 const unsigned long *src = (const unsigned long *)netdev_stats;
6367 u64 *dst = (u64 *)stats64;
6369 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6370 sizeof(*stats64) / sizeof(u64));
6371 for (i = 0; i < n; i++)
6375 EXPORT_SYMBOL(netdev_stats_to_stats64);
6378 * dev_get_stats - get network device statistics
6379 * @dev: device to get statistics from
6380 * @storage: place to store stats
6382 * Get network statistics from device. Return @storage.
6383 * The device driver may provide its own method by setting
6384 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6385 * otherwise the internal statistics structure is used.
6387 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6388 struct rtnl_link_stats64 *storage)
6390 const struct net_device_ops *ops = dev->netdev_ops;
6392 if (ops->ndo_get_stats64) {
6393 memset(storage, 0, sizeof(*storage));
6394 ops->ndo_get_stats64(dev, storage);
6395 } else if (ops->ndo_get_stats) {
6396 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6398 netdev_stats_to_stats64(storage, &dev->stats);
6400 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6403 EXPORT_SYMBOL(dev_get_stats);
6405 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6407 struct netdev_queue *queue = dev_ingress_queue(dev);
6409 #ifdef CONFIG_NET_CLS_ACT
6412 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6415 netdev_init_one_queue(dev, queue, NULL);
6416 queue->qdisc = &noop_qdisc;
6417 queue->qdisc_sleeping = &noop_qdisc;
6418 rcu_assign_pointer(dev->ingress_queue, queue);
6423 static const struct ethtool_ops default_ethtool_ops;
6425 void netdev_set_default_ethtool_ops(struct net_device *dev,
6426 const struct ethtool_ops *ops)
6428 if (dev->ethtool_ops == &default_ethtool_ops)
6429 dev->ethtool_ops = ops;
6431 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6434 * alloc_netdev_mqs - allocate network device
6435 * @sizeof_priv: size of private data to allocate space for
6436 * @name: device name format string
6437 * @setup: callback to initialize device
6438 * @txqs: the number of TX subqueues to allocate
6439 * @rxqs: the number of RX subqueues to allocate
6441 * Allocates a struct net_device with private data area for driver use
6442 * and performs basic initialization. Also allocates subquue structs
6443 * for each queue on the device.
6445 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6446 void (*setup)(struct net_device *),
6447 unsigned int txqs, unsigned int rxqs)
6449 struct net_device *dev;
6451 struct net_device *p;
6453 BUG_ON(strlen(name) >= sizeof(dev->name));
6456 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6462 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6467 alloc_size = sizeof(struct net_device);
6469 /* ensure 32-byte alignment of private area */
6470 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6471 alloc_size += sizeof_priv;
6473 /* ensure 32-byte alignment of whole construct */
6474 alloc_size += NETDEV_ALIGN - 1;
6476 p = kzalloc(alloc_size, GFP_KERNEL);
6478 pr_err("alloc_netdev: Unable to allocate device\n");
6482 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6483 dev->padded = (char *)dev - (char *)p;
6485 dev->pcpu_refcnt = alloc_percpu(int);
6486 if (!dev->pcpu_refcnt)
6489 if (dev_addr_init(dev))
6495 dev_net_set(dev, &init_net);
6497 dev->gso_max_size = GSO_MAX_SIZE;
6498 dev->gso_max_segs = GSO_MAX_SEGS;
6500 INIT_LIST_HEAD(&dev->napi_list);
6501 INIT_LIST_HEAD(&dev->unreg_list);
6502 INIT_LIST_HEAD(&dev->link_watch_list);
6503 INIT_LIST_HEAD(&dev->upper_dev_list);
6504 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6507 dev->num_tx_queues = txqs;
6508 dev->real_num_tx_queues = txqs;
6509 if (netif_alloc_netdev_queues(dev))
6513 dev->num_rx_queues = rxqs;
6514 dev->real_num_rx_queues = rxqs;
6515 if (netif_alloc_rx_queues(dev))
6519 strcpy(dev->name, name);
6520 dev->group = INIT_NETDEV_GROUP;
6521 if (!dev->ethtool_ops)
6522 dev->ethtool_ops = &default_ethtool_ops;
6530 free_percpu(dev->pcpu_refcnt);
6540 EXPORT_SYMBOL(alloc_netdev_mqs);
6543 * free_netdev - free network device
6546 * This function does the last stage of destroying an allocated device
6547 * interface. The reference to the device object is released.
6548 * If this is the last reference then it will be freed.
6550 void free_netdev(struct net_device *dev)
6552 struct napi_struct *p, *n;
6554 release_net(dev_net(dev));
6561 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6563 /* Flush device addresses */
6564 dev_addr_flush(dev);
6566 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6569 free_percpu(dev->pcpu_refcnt);
6570 dev->pcpu_refcnt = NULL;
6572 /* Compatibility with error handling in drivers */
6573 if (dev->reg_state == NETREG_UNINITIALIZED) {
6574 kfree((char *)dev - dev->padded);
6578 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6579 dev->reg_state = NETREG_RELEASED;
6581 /* will free via device release */
6582 put_device(&dev->dev);
6584 EXPORT_SYMBOL(free_netdev);
6587 * synchronize_net - Synchronize with packet receive processing
6589 * Wait for packets currently being received to be done.
6590 * Does not block later packets from starting.
6592 void synchronize_net(void)
6595 if (rtnl_is_locked())
6596 synchronize_rcu_expedited();
6600 EXPORT_SYMBOL(synchronize_net);
6603 * unregister_netdevice_queue - remove device from the kernel
6607 * This function shuts down a device interface and removes it
6608 * from the kernel tables.
6609 * If head not NULL, device is queued to be unregistered later.
6611 * Callers must hold the rtnl semaphore. You may want
6612 * unregister_netdev() instead of this.
6615 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6620 list_move_tail(&dev->unreg_list, head);
6622 rollback_registered(dev);
6623 /* Finish processing unregister after unlock */
6627 EXPORT_SYMBOL(unregister_netdevice_queue);
6630 * unregister_netdevice_many - unregister many devices
6631 * @head: list of devices
6633 void unregister_netdevice_many(struct list_head *head)
6635 struct net_device *dev;
6637 if (!list_empty(head)) {
6638 rollback_registered_many(head);
6639 list_for_each_entry(dev, head, unreg_list)
6643 EXPORT_SYMBOL(unregister_netdevice_many);
6646 * unregister_netdev - remove device from the kernel
6649 * This function shuts down a device interface and removes it
6650 * from the kernel tables.
6652 * This is just a wrapper for unregister_netdevice that takes
6653 * the rtnl semaphore. In general you want to use this and not
6654 * unregister_netdevice.
6656 void unregister_netdev(struct net_device *dev)
6659 unregister_netdevice(dev);
6662 EXPORT_SYMBOL(unregister_netdev);
6665 * dev_change_net_namespace - move device to different nethost namespace
6667 * @net: network namespace
6668 * @pat: If not NULL name pattern to try if the current device name
6669 * is already taken in the destination network namespace.
6671 * This function shuts down a device interface and moves it
6672 * to a new network namespace. On success 0 is returned, on
6673 * a failure a netagive errno code is returned.
6675 * Callers must hold the rtnl semaphore.
6678 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6684 /* Don't allow namespace local devices to be moved. */
6686 if (dev->features & NETIF_F_NETNS_LOCAL)
6689 /* Ensure the device has been registrered */
6690 if (dev->reg_state != NETREG_REGISTERED)
6693 /* Get out if there is nothing todo */
6695 if (net_eq(dev_net(dev), net))
6698 /* Pick the destination device name, and ensure
6699 * we can use it in the destination network namespace.
6702 if (__dev_get_by_name(net, dev->name)) {
6703 /* We get here if we can't use the current device name */
6706 if (dev_get_valid_name(net, dev, pat) < 0)
6711 * And now a mini version of register_netdevice unregister_netdevice.
6714 /* If device is running close it first. */
6717 /* And unlink it from device chain */
6719 unlist_netdevice(dev);
6723 /* Shutdown queueing discipline. */
6726 /* Notify protocols, that we are about to destroy
6727 this device. They should clean all the things.
6729 Note that dev->reg_state stays at NETREG_REGISTERED.
6730 This is wanted because this way 8021q and macvlan know
6731 the device is just moving and can keep their slaves up.
6733 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6735 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6736 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6739 * Flush the unicast and multicast chains
6744 /* Send a netdev-removed uevent to the old namespace */
6745 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6747 /* Actually switch the network namespace */
6748 dev_net_set(dev, net);
6750 /* If there is an ifindex conflict assign a new one */
6751 if (__dev_get_by_index(net, dev->ifindex)) {
6752 int iflink = (dev->iflink == dev->ifindex);
6753 dev->ifindex = dev_new_index(net);
6755 dev->iflink = dev->ifindex;
6758 /* Send a netdev-add uevent to the new namespace */
6759 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6761 /* Fixup kobjects */
6762 err = device_rename(&dev->dev, dev->name);
6765 /* Add the device back in the hashes */
6766 list_netdevice(dev);
6768 /* Notify protocols, that a new device appeared. */
6769 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6772 * Prevent userspace races by waiting until the network
6773 * device is fully setup before sending notifications.
6775 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6782 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6784 static int dev_cpu_callback(struct notifier_block *nfb,
6785 unsigned long action,
6788 struct sk_buff **list_skb;
6789 struct sk_buff *skb;
6790 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6791 struct softnet_data *sd, *oldsd;
6793 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6796 local_irq_disable();
6797 cpu = smp_processor_id();
6798 sd = &per_cpu(softnet_data, cpu);
6799 oldsd = &per_cpu(softnet_data, oldcpu);
6801 /* Find end of our completion_queue. */
6802 list_skb = &sd->completion_queue;
6804 list_skb = &(*list_skb)->next;
6805 /* Append completion queue from offline CPU. */
6806 *list_skb = oldsd->completion_queue;
6807 oldsd->completion_queue = NULL;
6809 /* Append output queue from offline CPU. */
6810 if (oldsd->output_queue) {
6811 *sd->output_queue_tailp = oldsd->output_queue;
6812 sd->output_queue_tailp = oldsd->output_queue_tailp;
6813 oldsd->output_queue = NULL;
6814 oldsd->output_queue_tailp = &oldsd->output_queue;
6816 /* Append NAPI poll list from offline CPU. */
6817 if (!list_empty(&oldsd->poll_list)) {
6818 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6819 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6822 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6825 /* Process offline CPU's input_pkt_queue */
6826 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6828 input_queue_head_incr(oldsd);
6830 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6832 input_queue_head_incr(oldsd);
6840 * netdev_increment_features - increment feature set by one
6841 * @all: current feature set
6842 * @one: new feature set
6843 * @mask: mask feature set
6845 * Computes a new feature set after adding a device with feature set
6846 * @one to the master device with current feature set @all. Will not
6847 * enable anything that is off in @mask. Returns the new feature set.
6849 netdev_features_t netdev_increment_features(netdev_features_t all,
6850 netdev_features_t one, netdev_features_t mask)
6852 if (mask & NETIF_F_GEN_CSUM)
6853 mask |= NETIF_F_ALL_CSUM;
6854 mask |= NETIF_F_VLAN_CHALLENGED;
6856 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6857 all &= one | ~NETIF_F_ALL_FOR_ALL;
6859 /* If one device supports hw checksumming, set for all. */
6860 if (all & NETIF_F_GEN_CSUM)
6861 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6865 EXPORT_SYMBOL(netdev_increment_features);
6867 static struct hlist_head *netdev_create_hash(void)
6870 struct hlist_head *hash;
6872 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6874 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6875 INIT_HLIST_HEAD(&hash[i]);
6880 /* Initialize per network namespace state */
6881 static int __net_init netdev_init(struct net *net)
6883 if (net != &init_net)
6884 INIT_LIST_HEAD(&net->dev_base_head);
6886 net->dev_name_head = netdev_create_hash();
6887 if (net->dev_name_head == NULL)
6890 net->dev_index_head = netdev_create_hash();
6891 if (net->dev_index_head == NULL)
6897 kfree(net->dev_name_head);
6903 * netdev_drivername - network driver for the device
6904 * @dev: network device
6906 * Determine network driver for device.
6908 const char *netdev_drivername(const struct net_device *dev)
6910 const struct device_driver *driver;
6911 const struct device *parent;
6912 const char *empty = "";
6914 parent = dev->dev.parent;
6918 driver = parent->driver;
6919 if (driver && driver->name)
6920 return driver->name;
6924 static int __netdev_printk(const char *level, const struct net_device *dev,
6925 struct va_format *vaf)
6929 if (dev && dev->dev.parent) {
6930 r = dev_printk_emit(level[1] - '0',
6933 dev_driver_string(dev->dev.parent),
6934 dev_name(dev->dev.parent),
6935 netdev_name(dev), vaf);
6937 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6939 r = printk("%s(NULL net_device): %pV", level, vaf);
6945 int netdev_printk(const char *level, const struct net_device *dev,
6946 const char *format, ...)
6948 struct va_format vaf;
6952 va_start(args, format);
6957 r = __netdev_printk(level, dev, &vaf);
6963 EXPORT_SYMBOL(netdev_printk);
6965 #define define_netdev_printk_level(func, level) \
6966 int func(const struct net_device *dev, const char *fmt, ...) \
6969 struct va_format vaf; \
6972 va_start(args, fmt); \
6977 r = __netdev_printk(level, dev, &vaf); \
6983 EXPORT_SYMBOL(func);
6985 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6986 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6987 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6988 define_netdev_printk_level(netdev_err, KERN_ERR);
6989 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6990 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6991 define_netdev_printk_level(netdev_info, KERN_INFO);
6993 static void __net_exit netdev_exit(struct net *net)
6995 kfree(net->dev_name_head);
6996 kfree(net->dev_index_head);
6999 static struct pernet_operations __net_initdata netdev_net_ops = {
7000 .init = netdev_init,
7001 .exit = netdev_exit,
7004 static void __net_exit default_device_exit(struct net *net)
7006 struct net_device *dev, *aux;
7008 * Push all migratable network devices back to the
7009 * initial network namespace
7012 for_each_netdev_safe(net, dev, aux) {
7014 char fb_name[IFNAMSIZ];
7016 /* Ignore unmoveable devices (i.e. loopback) */
7017 if (dev->features & NETIF_F_NETNS_LOCAL)
7020 /* Leave virtual devices for the generic cleanup */
7021 if (dev->rtnl_link_ops)
7024 /* Push remaining network devices to init_net */
7025 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7026 err = dev_change_net_namespace(dev, &init_net, fb_name);
7028 pr_emerg("%s: failed to move %s to init_net: %d\n",
7029 __func__, dev->name, err);
7036 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7038 /* At exit all network devices most be removed from a network
7039 * namespace. Do this in the reverse order of registration.
7040 * Do this across as many network namespaces as possible to
7041 * improve batching efficiency.
7043 struct net_device *dev;
7045 LIST_HEAD(dev_kill_list);
7048 list_for_each_entry(net, net_list, exit_list) {
7049 for_each_netdev_reverse(net, dev) {
7050 if (dev->rtnl_link_ops)
7051 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7053 unregister_netdevice_queue(dev, &dev_kill_list);
7056 unregister_netdevice_many(&dev_kill_list);
7057 list_del(&dev_kill_list);
7061 static struct pernet_operations __net_initdata default_device_ops = {
7062 .exit = default_device_exit,
7063 .exit_batch = default_device_exit_batch,
7067 * Initialize the DEV module. At boot time this walks the device list and
7068 * unhooks any devices that fail to initialise (normally hardware not
7069 * present) and leaves us with a valid list of present and active devices.
7074 * This is called single threaded during boot, so no need
7075 * to take the rtnl semaphore.
7077 static int __init net_dev_init(void)
7079 int i, rc = -ENOMEM;
7081 BUG_ON(!dev_boot_phase);
7083 if (dev_proc_init())
7086 if (netdev_kobject_init())
7089 INIT_LIST_HEAD(&ptype_all);
7090 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7091 INIT_LIST_HEAD(&ptype_base[i]);
7093 INIT_LIST_HEAD(&offload_base);
7095 if (register_pernet_subsys(&netdev_net_ops))
7099 * Initialise the packet receive queues.
7102 for_each_possible_cpu(i) {
7103 struct softnet_data *sd = &per_cpu(softnet_data, i);
7105 memset(sd, 0, sizeof(*sd));
7106 skb_queue_head_init(&sd->input_pkt_queue);
7107 skb_queue_head_init(&sd->process_queue);
7108 sd->completion_queue = NULL;
7109 INIT_LIST_HEAD(&sd->poll_list);
7110 sd->output_queue = NULL;
7111 sd->output_queue_tailp = &sd->output_queue;
7113 sd->csd.func = rps_trigger_softirq;
7119 sd->backlog.poll = process_backlog;
7120 sd->backlog.weight = weight_p;
7121 sd->backlog.gro_list = NULL;
7122 sd->backlog.gro_count = 0;
7127 /* The loopback device is special if any other network devices
7128 * is present in a network namespace the loopback device must
7129 * be present. Since we now dynamically allocate and free the
7130 * loopback device ensure this invariant is maintained by
7131 * keeping the loopback device as the first device on the
7132 * list of network devices. Ensuring the loopback devices
7133 * is the first device that appears and the last network device
7136 if (register_pernet_device(&loopback_net_ops))
7139 if (register_pernet_device(&default_device_ops))
7142 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7143 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7145 hotcpu_notifier(dev_cpu_callback, 0);
7153 subsys_initcall(net_dev_init);