]> Git Repo - linux.git/blob - arch/x86/kernel/cpu/mcheck/mce_amd.c
lib: radix-tree: check accounting of existing slot replacement users
[linux.git] / arch / x86 / kernel / cpu / mcheck / mce_amd.c
1 /*
2  *  (c) 2005-2016 Advanced Micro Devices, Inc.
3  *  Your use of this code is subject to the terms and conditions of the
4  *  GNU general public license version 2. See "COPYING" or
5  *  http://www.gnu.org/licenses/gpl.html
6  *
7  *  Written by Jacob Shin - AMD, Inc.
8  *  Maintained by: Borislav Petkov <[email protected]>
9  *
10  *  All MC4_MISCi registers are shared between cores on a node.
11  */
12 #include <linux/interrupt.h>
13 #include <linux/notifier.h>
14 #include <linux/kobject.h>
15 #include <linux/percpu.h>
16 #include <linux/errno.h>
17 #include <linux/sched.h>
18 #include <linux/sysfs.h>
19 #include <linux/slab.h>
20 #include <linux/init.h>
21 #include <linux/cpu.h>
22 #include <linux/smp.h>
23 #include <linux/string.h>
24
25 #include <asm/amd_nb.h>
26 #include <asm/apic.h>
27 #include <asm/idle.h>
28 #include <asm/mce.h>
29 #include <asm/msr.h>
30 #include <asm/trace/irq_vectors.h>
31
32 #define NR_BLOCKS         5
33 #define THRESHOLD_MAX     0xFFF
34 #define INT_TYPE_APIC     0x00020000
35 #define MASK_VALID_HI     0x80000000
36 #define MASK_CNTP_HI      0x40000000
37 #define MASK_LOCKED_HI    0x20000000
38 #define MASK_LVTOFF_HI    0x00F00000
39 #define MASK_COUNT_EN_HI  0x00080000
40 #define MASK_INT_TYPE_HI  0x00060000
41 #define MASK_OVERFLOW_HI  0x00010000
42 #define MASK_ERR_COUNT_HI 0x00000FFF
43 #define MASK_BLKPTR_LO    0xFF000000
44 #define MCG_XBLK_ADDR     0xC0000400
45
46 /* Deferred error settings */
47 #define MSR_CU_DEF_ERR          0xC0000410
48 #define MASK_DEF_LVTOFF         0x000000F0
49 #define MASK_DEF_INT_TYPE       0x00000006
50 #define DEF_LVT_OFF             0x2
51 #define DEF_INT_TYPE_APIC       0x2
52
53 /* Scalable MCA: */
54
55 /* Threshold LVT offset is at MSR0xC0000410[15:12] */
56 #define SMCA_THR_LVT_OFF        0xF000
57
58 static const char * const th_names[] = {
59         "load_store",
60         "insn_fetch",
61         "combined_unit",
62         "",
63         "northbridge",
64         "execution_unit",
65 };
66
67 static const char * const smca_umc_block_names[] = {
68         "dram_ecc",
69         "misc_umc"
70 };
71
72 struct smca_bank_name {
73         const char *name;       /* Short name for sysfs */
74         const char *long_name;  /* Long name for pretty-printing */
75 };
76
77 static struct smca_bank_name smca_names[] = {
78         [SMCA_LS]       = { "load_store",       "Load Store Unit" },
79         [SMCA_IF]       = { "insn_fetch",       "Instruction Fetch Unit" },
80         [SMCA_L2_CACHE] = { "l2_cache",         "L2 Cache" },
81         [SMCA_DE]       = { "decode_unit",      "Decode Unit" },
82         [SMCA_EX]       = { "execution_unit",   "Execution Unit" },
83         [SMCA_FP]       = { "floating_point",   "Floating Point Unit" },
84         [SMCA_L3_CACHE] = { "l3_cache",         "L3 Cache" },
85         [SMCA_CS]       = { "coherent_slave",   "Coherent Slave" },
86         [SMCA_PIE]      = { "pie",              "Power, Interrupts, etc." },
87         [SMCA_UMC]      = { "umc",              "Unified Memory Controller" },
88         [SMCA_PB]       = { "param_block",      "Parameter Block" },
89         [SMCA_PSP]      = { "psp",              "Platform Security Processor" },
90         [SMCA_SMU]      = { "smu",              "System Management Unit" },
91 };
92
93 const char *smca_get_name(enum smca_bank_types t)
94 {
95         if (t >= N_SMCA_BANK_TYPES)
96                 return NULL;
97
98         return smca_names[t].name;
99 }
100
101 const char *smca_get_long_name(enum smca_bank_types t)
102 {
103         if (t >= N_SMCA_BANK_TYPES)
104                 return NULL;
105
106         return smca_names[t].long_name;
107 }
108 EXPORT_SYMBOL_GPL(smca_get_long_name);
109
110 static struct smca_hwid smca_hwid_mcatypes[] = {
111         /* { bank_type, hwid_mcatype, xec_bitmap } */
112
113         /* ZN Core (HWID=0xB0) MCA types */
114         { SMCA_LS,       HWID_MCATYPE(0xB0, 0x0), 0x1FFFEF },
115         { SMCA_IF,       HWID_MCATYPE(0xB0, 0x1), 0x3FFF },
116         { SMCA_L2_CACHE, HWID_MCATYPE(0xB0, 0x2), 0xF },
117         { SMCA_DE,       HWID_MCATYPE(0xB0, 0x3), 0x1FF },
118         /* HWID 0xB0 MCATYPE 0x4 is Reserved */
119         { SMCA_EX,       HWID_MCATYPE(0xB0, 0x5), 0x7FF },
120         { SMCA_FP,       HWID_MCATYPE(0xB0, 0x6), 0x7F },
121         { SMCA_L3_CACHE, HWID_MCATYPE(0xB0, 0x7), 0xFF },
122
123         /* Data Fabric MCA types */
124         { SMCA_CS,       HWID_MCATYPE(0x2E, 0x0), 0x1FF },
125         { SMCA_PIE,      HWID_MCATYPE(0x2E, 0x1), 0xF },
126
127         /* Unified Memory Controller MCA type */
128         { SMCA_UMC,      HWID_MCATYPE(0x96, 0x0), 0x3F },
129
130         /* Parameter Block MCA type */
131         { SMCA_PB,       HWID_MCATYPE(0x05, 0x0), 0x1 },
132
133         /* Platform Security Processor MCA type */
134         { SMCA_PSP,      HWID_MCATYPE(0xFF, 0x0), 0x1 },
135
136         /* System Management Unit MCA type */
137         { SMCA_SMU,      HWID_MCATYPE(0x01, 0x0), 0x1 },
138 };
139
140 struct smca_bank smca_banks[MAX_NR_BANKS];
141 EXPORT_SYMBOL_GPL(smca_banks);
142
143 /*
144  * In SMCA enabled processors, we can have multiple banks for a given IP type.
145  * So to define a unique name for each bank, we use a temp c-string to append
146  * the MCA_IPID[InstanceId] to type's name in get_name().
147  *
148  * InstanceId is 32 bits which is 8 characters. Make sure MAX_MCATYPE_NAME_LEN
149  * is greater than 8 plus 1 (for underscore) plus length of longest type name.
150  */
151 #define MAX_MCATYPE_NAME_LEN    30
152 static char buf_mcatype[MAX_MCATYPE_NAME_LEN];
153
154 static DEFINE_PER_CPU(struct threshold_bank **, threshold_banks);
155 static DEFINE_PER_CPU(unsigned int, bank_map);  /* see which banks are on */
156
157 static void amd_threshold_interrupt(void);
158 static void amd_deferred_error_interrupt(void);
159
160 static void default_deferred_error_interrupt(void)
161 {
162         pr_err("Unexpected deferred interrupt at vector %x\n", DEFERRED_ERROR_VECTOR);
163 }
164 void (*deferred_error_int_vector)(void) = default_deferred_error_interrupt;
165
166 static void get_smca_bank_info(unsigned int bank)
167 {
168         unsigned int i, hwid_mcatype, cpu = smp_processor_id();
169         struct smca_hwid *s_hwid;
170         u32 high, instance_id;
171
172         /* Collect bank_info using CPU 0 for now. */
173         if (cpu)
174                 return;
175
176         if (rdmsr_safe_on_cpu(cpu, MSR_AMD64_SMCA_MCx_IPID(bank), &instance_id, &high)) {
177                 pr_warn("Failed to read MCA_IPID for bank %d\n", bank);
178                 return;
179         }
180
181         hwid_mcatype = HWID_MCATYPE(high & MCI_IPID_HWID,
182                                     (high & MCI_IPID_MCATYPE) >> 16);
183
184         for (i = 0; i < ARRAY_SIZE(smca_hwid_mcatypes); i++) {
185                 s_hwid = &smca_hwid_mcatypes[i];
186                 if (hwid_mcatype == s_hwid->hwid_mcatype) {
187
188                         WARN(smca_banks[bank].hwid,
189                              "Bank %s already initialized!\n",
190                              smca_get_name(s_hwid->bank_type));
191
192                         smca_banks[bank].hwid = s_hwid;
193                         smca_banks[bank].id = instance_id;
194                         break;
195                 }
196         }
197 }
198
199 struct thresh_restart {
200         struct threshold_block  *b;
201         int                     reset;
202         int                     set_lvt_off;
203         int                     lvt_off;
204         u16                     old_limit;
205 };
206
207 static inline bool is_shared_bank(int bank)
208 {
209         /*
210          * Scalable MCA provides for only one core to have access to the MSRs of
211          * a shared bank.
212          */
213         if (mce_flags.smca)
214                 return false;
215
216         /* Bank 4 is for northbridge reporting and is thus shared */
217         return (bank == 4);
218 }
219
220 static const char *bank4_names(const struct threshold_block *b)
221 {
222         switch (b->address) {
223         /* MSR4_MISC0 */
224         case 0x00000413:
225                 return "dram";
226
227         case 0xc0000408:
228                 return "ht_links";
229
230         case 0xc0000409:
231                 return "l3_cache";
232
233         default:
234                 WARN(1, "Funny MSR: 0x%08x\n", b->address);
235                 return "";
236         }
237 };
238
239
240 static bool lvt_interrupt_supported(unsigned int bank, u32 msr_high_bits)
241 {
242         /*
243          * bank 4 supports APIC LVT interrupts implicitly since forever.
244          */
245         if (bank == 4)
246                 return true;
247
248         /*
249          * IntP: interrupt present; if this bit is set, the thresholding
250          * bank can generate APIC LVT interrupts
251          */
252         return msr_high_bits & BIT(28);
253 }
254
255 static int lvt_off_valid(struct threshold_block *b, int apic, u32 lo, u32 hi)
256 {
257         int msr = (hi & MASK_LVTOFF_HI) >> 20;
258
259         if (apic < 0) {
260                 pr_err(FW_BUG "cpu %d, failed to setup threshold interrupt "
261                        "for bank %d, block %d (MSR%08X=0x%x%08x)\n", b->cpu,
262                        b->bank, b->block, b->address, hi, lo);
263                 return 0;
264         }
265
266         if (apic != msr) {
267                 /*
268                  * On SMCA CPUs, LVT offset is programmed at a different MSR, and
269                  * the BIOS provides the value. The original field where LVT offset
270                  * was set is reserved. Return early here:
271                  */
272                 if (mce_flags.smca)
273                         return 0;
274
275                 pr_err(FW_BUG "cpu %d, invalid threshold interrupt offset %d "
276                        "for bank %d, block %d (MSR%08X=0x%x%08x)\n",
277                        b->cpu, apic, b->bank, b->block, b->address, hi, lo);
278                 return 0;
279         }
280
281         return 1;
282 };
283
284 /* Reprogram MCx_MISC MSR behind this threshold bank. */
285 static void threshold_restart_bank(void *_tr)
286 {
287         struct thresh_restart *tr = _tr;
288         u32 hi, lo;
289
290         rdmsr(tr->b->address, lo, hi);
291
292         if (tr->b->threshold_limit < (hi & THRESHOLD_MAX))
293                 tr->reset = 1;  /* limit cannot be lower than err count */
294
295         if (tr->reset) {                /* reset err count and overflow bit */
296                 hi =
297                     (hi & ~(MASK_ERR_COUNT_HI | MASK_OVERFLOW_HI)) |
298                     (THRESHOLD_MAX - tr->b->threshold_limit);
299         } else if (tr->old_limit) {     /* change limit w/o reset */
300                 int new_count = (hi & THRESHOLD_MAX) +
301                     (tr->old_limit - tr->b->threshold_limit);
302
303                 hi = (hi & ~MASK_ERR_COUNT_HI) |
304                     (new_count & THRESHOLD_MAX);
305         }
306
307         /* clear IntType */
308         hi &= ~MASK_INT_TYPE_HI;
309
310         if (!tr->b->interrupt_capable)
311                 goto done;
312
313         if (tr->set_lvt_off) {
314                 if (lvt_off_valid(tr->b, tr->lvt_off, lo, hi)) {
315                         /* set new lvt offset */
316                         hi &= ~MASK_LVTOFF_HI;
317                         hi |= tr->lvt_off << 20;
318                 }
319         }
320
321         if (tr->b->interrupt_enable)
322                 hi |= INT_TYPE_APIC;
323
324  done:
325
326         hi |= MASK_COUNT_EN_HI;
327         wrmsr(tr->b->address, lo, hi);
328 }
329
330 static void mce_threshold_block_init(struct threshold_block *b, int offset)
331 {
332         struct thresh_restart tr = {
333                 .b                      = b,
334                 .set_lvt_off            = 1,
335                 .lvt_off                = offset,
336         };
337
338         b->threshold_limit              = THRESHOLD_MAX;
339         threshold_restart_bank(&tr);
340 };
341
342 static int setup_APIC_mce_threshold(int reserved, int new)
343 {
344         if (reserved < 0 && !setup_APIC_eilvt(new, THRESHOLD_APIC_VECTOR,
345                                               APIC_EILVT_MSG_FIX, 0))
346                 return new;
347
348         return reserved;
349 }
350
351 static int setup_APIC_deferred_error(int reserved, int new)
352 {
353         if (reserved < 0 && !setup_APIC_eilvt(new, DEFERRED_ERROR_VECTOR,
354                                               APIC_EILVT_MSG_FIX, 0))
355                 return new;
356
357         return reserved;
358 }
359
360 static void deferred_error_interrupt_enable(struct cpuinfo_x86 *c)
361 {
362         u32 low = 0, high = 0;
363         int def_offset = -1, def_new;
364
365         if (rdmsr_safe(MSR_CU_DEF_ERR, &low, &high))
366                 return;
367
368         def_new = (low & MASK_DEF_LVTOFF) >> 4;
369         if (!(low & MASK_DEF_LVTOFF)) {
370                 pr_err(FW_BUG "Your BIOS is not setting up LVT offset 0x2 for deferred error IRQs correctly.\n");
371                 def_new = DEF_LVT_OFF;
372                 low = (low & ~MASK_DEF_LVTOFF) | (DEF_LVT_OFF << 4);
373         }
374
375         def_offset = setup_APIC_deferred_error(def_offset, def_new);
376         if ((def_offset == def_new) &&
377             (deferred_error_int_vector != amd_deferred_error_interrupt))
378                 deferred_error_int_vector = amd_deferred_error_interrupt;
379
380         low = (low & ~MASK_DEF_INT_TYPE) | DEF_INT_TYPE_APIC;
381         wrmsr(MSR_CU_DEF_ERR, low, high);
382 }
383
384 static u32 get_block_address(unsigned int cpu, u32 current_addr, u32 low, u32 high,
385                              unsigned int bank, unsigned int block)
386 {
387         u32 addr = 0, offset = 0;
388
389         if (mce_flags.smca) {
390                 if (!block) {
391                         addr = MSR_AMD64_SMCA_MCx_MISC(bank);
392                 } else {
393                         /*
394                          * For SMCA enabled processors, BLKPTR field of the
395                          * first MISC register (MCx_MISC0) indicates presence of
396                          * additional MISC register set (MISC1-4).
397                          */
398                         u32 low, high;
399
400                         if (rdmsr_safe_on_cpu(cpu, MSR_AMD64_SMCA_MCx_CONFIG(bank), &low, &high))
401                                 return addr;
402
403                         if (!(low & MCI_CONFIG_MCAX))
404                                 return addr;
405
406                         if (!rdmsr_safe_on_cpu(cpu, MSR_AMD64_SMCA_MCx_MISC(bank), &low, &high) &&
407                             (low & MASK_BLKPTR_LO))
408                                 addr = MSR_AMD64_SMCA_MCx_MISCy(bank, block - 1);
409                 }
410                 return addr;
411         }
412
413         /* Fall back to method we used for older processors: */
414         switch (block) {
415         case 0:
416                 addr = msr_ops.misc(bank);
417                 break;
418         case 1:
419                 offset = ((low & MASK_BLKPTR_LO) >> 21);
420                 if (offset)
421                         addr = MCG_XBLK_ADDR + offset;
422                 break;
423         default:
424                 addr = ++current_addr;
425         }
426         return addr;
427 }
428
429 static int
430 prepare_threshold_block(unsigned int bank, unsigned int block, u32 addr,
431                         int offset, u32 misc_high)
432 {
433         unsigned int cpu = smp_processor_id();
434         u32 smca_low, smca_high, smca_addr;
435         struct threshold_block b;
436         int new;
437
438         if (!block)
439                 per_cpu(bank_map, cpu) |= (1 << bank);
440
441         memset(&b, 0, sizeof(b));
442         b.cpu                   = cpu;
443         b.bank                  = bank;
444         b.block                 = block;
445         b.address               = addr;
446         b.interrupt_capable     = lvt_interrupt_supported(bank, misc_high);
447
448         if (!b.interrupt_capable)
449                 goto done;
450
451         b.interrupt_enable = 1;
452
453         if (!mce_flags.smca) {
454                 new = (misc_high & MASK_LVTOFF_HI) >> 20;
455                 goto set_offset;
456         }
457
458         smca_addr = MSR_AMD64_SMCA_MCx_CONFIG(bank);
459
460         if (!rdmsr_safe(smca_addr, &smca_low, &smca_high)) {
461                 /*
462                  * OS is required to set the MCAX bit to acknowledge that it is
463                  * now using the new MSR ranges and new registers under each
464                  * bank. It also means that the OS will configure deferred
465                  * errors in the new MCx_CONFIG register. If the bit is not set,
466                  * uncorrectable errors will cause a system panic.
467                  *
468                  * MCA_CONFIG[MCAX] is bit 32 (0 in the high portion of the MSR.)
469                  */
470                 smca_high |= BIT(0);
471
472                 /*
473                  * SMCA logs Deferred Error information in MCA_DE{STAT,ADDR}
474                  * registers with the option of additionally logging to
475                  * MCA_{STATUS,ADDR} if MCA_CONFIG[LogDeferredInMcaStat] is set.
476                  *
477                  * This bit is usually set by BIOS to retain the old behavior
478                  * for OSes that don't use the new registers. Linux supports the
479                  * new registers so let's disable that additional logging here.
480                  *
481                  * MCA_CONFIG[LogDeferredInMcaStat] is bit 34 (bit 2 in the high
482                  * portion of the MSR).
483                  */
484                 smca_high &= ~BIT(2);
485
486                 /*
487                  * SMCA sets the Deferred Error Interrupt type per bank.
488                  *
489                  * MCA_CONFIG[DeferredIntTypeSupported] is bit 5, and tells us
490                  * if the DeferredIntType bit field is available.
491                  *
492                  * MCA_CONFIG[DeferredIntType] is bits [38:37] ([6:5] in the
493                  * high portion of the MSR). OS should set this to 0x1 to enable
494                  * APIC based interrupt. First, check that no interrupt has been
495                  * set.
496                  */
497                 if ((smca_low & BIT(5)) && !((smca_high >> 5) & 0x3))
498                         smca_high |= BIT(5);
499
500                 wrmsr(smca_addr, smca_low, smca_high);
501         }
502
503         /* Gather LVT offset for thresholding: */
504         if (rdmsr_safe(MSR_CU_DEF_ERR, &smca_low, &smca_high))
505                 goto out;
506
507         new = (smca_low & SMCA_THR_LVT_OFF) >> 12;
508
509 set_offset:
510         offset = setup_APIC_mce_threshold(offset, new);
511
512         if ((offset == new) && (mce_threshold_vector != amd_threshold_interrupt))
513                 mce_threshold_vector = amd_threshold_interrupt;
514
515 done:
516         mce_threshold_block_init(&b, offset);
517
518 out:
519         return offset;
520 }
521
522 /* cpu init entry point, called from mce.c with preempt off */
523 void mce_amd_feature_init(struct cpuinfo_x86 *c)
524 {
525         u32 low = 0, high = 0, address = 0;
526         unsigned int bank, block, cpu = smp_processor_id();
527         int offset = -1;
528
529         for (bank = 0; bank < mca_cfg.banks; ++bank) {
530                 if (mce_flags.smca)
531                         get_smca_bank_info(bank);
532
533                 for (block = 0; block < NR_BLOCKS; ++block) {
534                         address = get_block_address(cpu, address, low, high, bank, block);
535                         if (!address)
536                                 break;
537
538                         if (rdmsr_safe(address, &low, &high))
539                                 break;
540
541                         if (!(high & MASK_VALID_HI))
542                                 continue;
543
544                         if (!(high & MASK_CNTP_HI)  ||
545                              (high & MASK_LOCKED_HI))
546                                 continue;
547
548                         offset = prepare_threshold_block(bank, block, address, offset, high);
549                 }
550         }
551
552         if (mce_flags.succor)
553                 deferred_error_interrupt_enable(c);
554 }
555
556 int umc_normaddr_to_sysaddr(u64 norm_addr, u16 nid, u8 umc, u64 *sys_addr)
557 {
558         u64 dram_base_addr, dram_limit_addr, dram_hole_base;
559         /* We start from the normalized address */
560         u64 ret_addr = norm_addr;
561
562         u32 tmp;
563
564         u8 die_id_shift, die_id_mask, socket_id_shift, socket_id_mask;
565         u8 intlv_num_dies, intlv_num_chan, intlv_num_sockets;
566         u8 intlv_addr_sel, intlv_addr_bit;
567         u8 num_intlv_bits, hashed_bit;
568         u8 lgcy_mmio_hole_en, base = 0;
569         u8 cs_mask, cs_id = 0;
570         bool hash_enabled = false;
571
572         /* Read D18F0x1B4 (DramOffset), check if base 1 is used. */
573         if (amd_df_indirect_read(nid, 0, 0x1B4, umc, &tmp))
574                 goto out_err;
575
576         /* Remove HiAddrOffset from normalized address, if enabled: */
577         if (tmp & BIT(0)) {
578                 u64 hi_addr_offset = (tmp & GENMASK_ULL(31, 20)) << 8;
579
580                 if (norm_addr >= hi_addr_offset) {
581                         ret_addr -= hi_addr_offset;
582                         base = 1;
583                 }
584         }
585
586         /* Read D18F0x110 (DramBaseAddress). */
587         if (amd_df_indirect_read(nid, 0, 0x110 + (8 * base), umc, &tmp))
588                 goto out_err;
589
590         /* Check if address range is valid. */
591         if (!(tmp & BIT(0))) {
592                 pr_err("%s: Invalid DramBaseAddress range: 0x%x.\n",
593                         __func__, tmp);
594                 goto out_err;
595         }
596
597         lgcy_mmio_hole_en = tmp & BIT(1);
598         intlv_num_chan    = (tmp >> 4) & 0xF;
599         intlv_addr_sel    = (tmp >> 8) & 0x7;
600         dram_base_addr    = (tmp & GENMASK_ULL(31, 12)) << 16;
601
602         /* {0, 1, 2, 3} map to address bits {8, 9, 10, 11} respectively */
603         if (intlv_addr_sel > 3) {
604                 pr_err("%s: Invalid interleave address select %d.\n",
605                         __func__, intlv_addr_sel);
606                 goto out_err;
607         }
608
609         /* Read D18F0x114 (DramLimitAddress). */
610         if (amd_df_indirect_read(nid, 0, 0x114 + (8 * base), umc, &tmp))
611                 goto out_err;
612
613         intlv_num_sockets = (tmp >> 8) & 0x1;
614         intlv_num_dies    = (tmp >> 10) & 0x3;
615         dram_limit_addr   = ((tmp & GENMASK_ULL(31, 12)) << 16) | GENMASK_ULL(27, 0);
616
617         intlv_addr_bit = intlv_addr_sel + 8;
618
619         /* Re-use intlv_num_chan by setting it equal to log2(#channels) */
620         switch (intlv_num_chan) {
621         case 0: intlv_num_chan = 0; break;
622         case 1: intlv_num_chan = 1; break;
623         case 3: intlv_num_chan = 2; break;
624         case 5: intlv_num_chan = 3; break;
625         case 7: intlv_num_chan = 4; break;
626
627         case 8: intlv_num_chan = 1;
628                 hash_enabled = true;
629                 break;
630         default:
631                 pr_err("%s: Invalid number of interleaved channels %d.\n",
632                         __func__, intlv_num_chan);
633                 goto out_err;
634         }
635
636         num_intlv_bits = intlv_num_chan;
637
638         if (intlv_num_dies > 2) {
639                 pr_err("%s: Invalid number of interleaved nodes/dies %d.\n",
640                         __func__, intlv_num_dies);
641                 goto out_err;
642         }
643
644         num_intlv_bits += intlv_num_dies;
645
646         /* Add a bit if sockets are interleaved. */
647         num_intlv_bits += intlv_num_sockets;
648
649         /* Assert num_intlv_bits <= 4 */
650         if (num_intlv_bits > 4) {
651                 pr_err("%s: Invalid interleave bits %d.\n",
652                         __func__, num_intlv_bits);
653                 goto out_err;
654         }
655
656         if (num_intlv_bits > 0) {
657                 u64 temp_addr_x, temp_addr_i, temp_addr_y;
658                 u8 die_id_bit, sock_id_bit, cs_fabric_id;
659
660                 /*
661                  * Read FabricBlockInstanceInformation3_CS[BlockFabricID].
662                  * This is the fabric id for this coherent slave. Use
663                  * umc/channel# as instance id of the coherent slave
664                  * for FICAA.
665                  */
666                 if (amd_df_indirect_read(nid, 0, 0x50, umc, &tmp))
667                         goto out_err;
668
669                 cs_fabric_id = (tmp >> 8) & 0xFF;
670                 die_id_bit   = 0;
671
672                 /* If interleaved over more than 1 channel: */
673                 if (intlv_num_chan) {
674                         die_id_bit = intlv_num_chan;
675                         cs_mask    = (1 << die_id_bit) - 1;
676                         cs_id      = cs_fabric_id & cs_mask;
677                 }
678
679                 sock_id_bit = die_id_bit;
680
681                 /* Read D18F1x208 (SystemFabricIdMask). */
682                 if (intlv_num_dies || intlv_num_sockets)
683                         if (amd_df_indirect_read(nid, 1, 0x208, umc, &tmp))
684                                 goto out_err;
685
686                 /* If interleaved over more than 1 die. */
687                 if (intlv_num_dies) {
688                         sock_id_bit  = die_id_bit + intlv_num_dies;
689                         die_id_shift = (tmp >> 24) & 0xF;
690                         die_id_mask  = (tmp >> 8) & 0xFF;
691
692                         cs_id |= ((cs_fabric_id & die_id_mask) >> die_id_shift) << die_id_bit;
693                 }
694
695                 /* If interleaved over more than 1 socket. */
696                 if (intlv_num_sockets) {
697                         socket_id_shift = (tmp >> 28) & 0xF;
698                         socket_id_mask  = (tmp >> 16) & 0xFF;
699
700                         cs_id |= ((cs_fabric_id & socket_id_mask) >> socket_id_shift) << sock_id_bit;
701                 }
702
703                 /*
704                  * The pre-interleaved address consists of XXXXXXIIIYYYYY
705                  * where III is the ID for this CS, and XXXXXXYYYYY are the
706                  * address bits from the post-interleaved address.
707                  * "num_intlv_bits" has been calculated to tell us how many "I"
708                  * bits there are. "intlv_addr_bit" tells us how many "Y" bits
709                  * there are (where "I" starts).
710                  */
711                 temp_addr_y = ret_addr & GENMASK_ULL(intlv_addr_bit-1, 0);
712                 temp_addr_i = (cs_id << intlv_addr_bit);
713                 temp_addr_x = (ret_addr & GENMASK_ULL(63, intlv_addr_bit)) << num_intlv_bits;
714                 ret_addr    = temp_addr_x | temp_addr_i | temp_addr_y;
715         }
716
717         /* Add dram base address */
718         ret_addr += dram_base_addr;
719
720         /* If legacy MMIO hole enabled */
721         if (lgcy_mmio_hole_en) {
722                 if (amd_df_indirect_read(nid, 0, 0x104, umc, &tmp))
723                         goto out_err;
724
725                 dram_hole_base = tmp & GENMASK(31, 24);
726                 if (ret_addr >= dram_hole_base)
727                         ret_addr += (BIT_ULL(32) - dram_hole_base);
728         }
729
730         if (hash_enabled) {
731                 /* Save some parentheses and grab ls-bit at the end. */
732                 hashed_bit =    (ret_addr >> 12) ^
733                                 (ret_addr >> 18) ^
734                                 (ret_addr >> 21) ^
735                                 (ret_addr >> 30) ^
736                                 cs_id;
737
738                 hashed_bit &= BIT(0);
739
740                 if (hashed_bit != ((ret_addr >> intlv_addr_bit) & BIT(0)))
741                         ret_addr ^= BIT(intlv_addr_bit);
742         }
743
744         /* Is calculated system address is above DRAM limit address? */
745         if (ret_addr > dram_limit_addr)
746                 goto out_err;
747
748         *sys_addr = ret_addr;
749         return 0;
750
751 out_err:
752         return -EINVAL;
753 }
754 EXPORT_SYMBOL_GPL(umc_normaddr_to_sysaddr);
755
756 static void
757 __log_error(unsigned int bank, bool deferred_err, bool threshold_err, u64 misc)
758 {
759         u32 msr_status = msr_ops.status(bank);
760         u32 msr_addr = msr_ops.addr(bank);
761         struct mce m;
762         u64 status;
763
764         WARN_ON_ONCE(deferred_err && threshold_err);
765
766         if (deferred_err && mce_flags.smca) {
767                 msr_status = MSR_AMD64_SMCA_MCx_DESTAT(bank);
768                 msr_addr = MSR_AMD64_SMCA_MCx_DEADDR(bank);
769         }
770
771         rdmsrl(msr_status, status);
772
773         if (!(status & MCI_STATUS_VAL))
774                 return;
775
776         mce_setup(&m);
777
778         m.status = status;
779         m.bank = bank;
780
781         if (threshold_err)
782                 m.misc = misc;
783
784         if (m.status & MCI_STATUS_ADDRV) {
785                 rdmsrl(msr_addr, m.addr);
786
787                 /*
788                  * Extract [55:<lsb>] where lsb is the least significant
789                  * *valid* bit of the address bits.
790                  */
791                 if (mce_flags.smca) {
792                         u8 lsb = (m.addr >> 56) & 0x3f;
793
794                         m.addr &= GENMASK_ULL(55, lsb);
795                 }
796         }
797
798         if (mce_flags.smca) {
799                 rdmsrl(MSR_AMD64_SMCA_MCx_IPID(bank), m.ipid);
800
801                 if (m.status & MCI_STATUS_SYNDV)
802                         rdmsrl(MSR_AMD64_SMCA_MCx_SYND(bank), m.synd);
803         }
804
805         mce_log(&m);
806
807         wrmsrl(msr_status, 0);
808 }
809
810 static inline void __smp_deferred_error_interrupt(void)
811 {
812         inc_irq_stat(irq_deferred_error_count);
813         deferred_error_int_vector();
814 }
815
816 asmlinkage __visible void smp_deferred_error_interrupt(void)
817 {
818         entering_irq();
819         __smp_deferred_error_interrupt();
820         exiting_ack_irq();
821 }
822
823 asmlinkage __visible void smp_trace_deferred_error_interrupt(void)
824 {
825         entering_irq();
826         trace_deferred_error_apic_entry(DEFERRED_ERROR_VECTOR);
827         __smp_deferred_error_interrupt();
828         trace_deferred_error_apic_exit(DEFERRED_ERROR_VECTOR);
829         exiting_ack_irq();
830 }
831
832 /* APIC interrupt handler for deferred errors */
833 static void amd_deferred_error_interrupt(void)
834 {
835         unsigned int bank;
836         u32 msr_status;
837         u64 status;
838
839         for (bank = 0; bank < mca_cfg.banks; ++bank) {
840                 msr_status = (mce_flags.smca) ? MSR_AMD64_SMCA_MCx_DESTAT(bank)
841                                               : msr_ops.status(bank);
842
843                 rdmsrl(msr_status, status);
844
845                 if (!(status & MCI_STATUS_VAL) ||
846                     !(status & MCI_STATUS_DEFERRED))
847                         continue;
848
849                 __log_error(bank, true, false, 0);
850                 break;
851         }
852 }
853
854 /*
855  * APIC Interrupt Handler
856  */
857
858 /*
859  * threshold interrupt handler will service THRESHOLD_APIC_VECTOR.
860  * the interrupt goes off when error_count reaches threshold_limit.
861  * the handler will simply log mcelog w/ software defined bank number.
862  */
863
864 static void amd_threshold_interrupt(void)
865 {
866         u32 low = 0, high = 0, address = 0;
867         unsigned int bank, block, cpu = smp_processor_id();
868         struct thresh_restart tr;
869
870         /* assume first bank caused it */
871         for (bank = 0; bank < mca_cfg.banks; ++bank) {
872                 if (!(per_cpu(bank_map, cpu) & (1 << bank)))
873                         continue;
874                 for (block = 0; block < NR_BLOCKS; ++block) {
875                         address = get_block_address(cpu, address, low, high, bank, block);
876                         if (!address)
877                                 break;
878
879                         if (rdmsr_safe(address, &low, &high))
880                                 break;
881
882                         if (!(high & MASK_VALID_HI)) {
883                                 if (block)
884                                         continue;
885                                 else
886                                         break;
887                         }
888
889                         if (!(high & MASK_CNTP_HI)  ||
890                              (high & MASK_LOCKED_HI))
891                                 continue;
892
893                         /*
894                          * Log the machine check that caused the threshold
895                          * event.
896                          */
897                         if (high & MASK_OVERFLOW_HI)
898                                 goto log;
899                 }
900         }
901         return;
902
903 log:
904         __log_error(bank, false, true, ((u64)high << 32) | low);
905
906         /* Reset threshold block after logging error. */
907         memset(&tr, 0, sizeof(tr));
908         tr.b = &per_cpu(threshold_banks, cpu)[bank]->blocks[block];
909         threshold_restart_bank(&tr);
910 }
911
912 /*
913  * Sysfs Interface
914  */
915
916 struct threshold_attr {
917         struct attribute attr;
918         ssize_t (*show) (struct threshold_block *, char *);
919         ssize_t (*store) (struct threshold_block *, const char *, size_t count);
920 };
921
922 #define SHOW_FIELDS(name)                                               \
923 static ssize_t show_ ## name(struct threshold_block *b, char *buf)      \
924 {                                                                       \
925         return sprintf(buf, "%lu\n", (unsigned long) b->name);          \
926 }
927 SHOW_FIELDS(interrupt_enable)
928 SHOW_FIELDS(threshold_limit)
929
930 static ssize_t
931 store_interrupt_enable(struct threshold_block *b, const char *buf, size_t size)
932 {
933         struct thresh_restart tr;
934         unsigned long new;
935
936         if (!b->interrupt_capable)
937                 return -EINVAL;
938
939         if (kstrtoul(buf, 0, &new) < 0)
940                 return -EINVAL;
941
942         b->interrupt_enable = !!new;
943
944         memset(&tr, 0, sizeof(tr));
945         tr.b            = b;
946
947         smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1);
948
949         return size;
950 }
951
952 static ssize_t
953 store_threshold_limit(struct threshold_block *b, const char *buf, size_t size)
954 {
955         struct thresh_restart tr;
956         unsigned long new;
957
958         if (kstrtoul(buf, 0, &new) < 0)
959                 return -EINVAL;
960
961         if (new > THRESHOLD_MAX)
962                 new = THRESHOLD_MAX;
963         if (new < 1)
964                 new = 1;
965
966         memset(&tr, 0, sizeof(tr));
967         tr.old_limit = b->threshold_limit;
968         b->threshold_limit = new;
969         tr.b = b;
970
971         smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1);
972
973         return size;
974 }
975
976 static ssize_t show_error_count(struct threshold_block *b, char *buf)
977 {
978         u32 lo, hi;
979
980         rdmsr_on_cpu(b->cpu, b->address, &lo, &hi);
981
982         return sprintf(buf, "%u\n", ((hi & THRESHOLD_MAX) -
983                                      (THRESHOLD_MAX - b->threshold_limit)));
984 }
985
986 static struct threshold_attr error_count = {
987         .attr = {.name = __stringify(error_count), .mode = 0444 },
988         .show = show_error_count,
989 };
990
991 #define RW_ATTR(val)                                                    \
992 static struct threshold_attr val = {                                    \
993         .attr   = {.name = __stringify(val), .mode = 0644 },            \
994         .show   = show_## val,                                          \
995         .store  = store_## val,                                         \
996 };
997
998 RW_ATTR(interrupt_enable);
999 RW_ATTR(threshold_limit);
1000
1001 static struct attribute *default_attrs[] = {
1002         &threshold_limit.attr,
1003         &error_count.attr,
1004         NULL,   /* possibly interrupt_enable if supported, see below */
1005         NULL,
1006 };
1007
1008 #define to_block(k)     container_of(k, struct threshold_block, kobj)
1009 #define to_attr(a)      container_of(a, struct threshold_attr, attr)
1010
1011 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
1012 {
1013         struct threshold_block *b = to_block(kobj);
1014         struct threshold_attr *a = to_attr(attr);
1015         ssize_t ret;
1016
1017         ret = a->show ? a->show(b, buf) : -EIO;
1018
1019         return ret;
1020 }
1021
1022 static ssize_t store(struct kobject *kobj, struct attribute *attr,
1023                      const char *buf, size_t count)
1024 {
1025         struct threshold_block *b = to_block(kobj);
1026         struct threshold_attr *a = to_attr(attr);
1027         ssize_t ret;
1028
1029         ret = a->store ? a->store(b, buf, count) : -EIO;
1030
1031         return ret;
1032 }
1033
1034 static const struct sysfs_ops threshold_ops = {
1035         .show                   = show,
1036         .store                  = store,
1037 };
1038
1039 static struct kobj_type threshold_ktype = {
1040         .sysfs_ops              = &threshold_ops,
1041         .default_attrs          = default_attrs,
1042 };
1043
1044 static const char *get_name(unsigned int bank, struct threshold_block *b)
1045 {
1046         unsigned int bank_type;
1047
1048         if (!mce_flags.smca) {
1049                 if (b && bank == 4)
1050                         return bank4_names(b);
1051
1052                 return th_names[bank];
1053         }
1054
1055         if (!smca_banks[bank].hwid)
1056                 return NULL;
1057
1058         bank_type = smca_banks[bank].hwid->bank_type;
1059
1060         if (b && bank_type == SMCA_UMC) {
1061                 if (b->block < ARRAY_SIZE(smca_umc_block_names))
1062                         return smca_umc_block_names[b->block];
1063                 return NULL;
1064         }
1065
1066         snprintf(buf_mcatype, MAX_MCATYPE_NAME_LEN,
1067                  "%s_%x", smca_get_name(bank_type),
1068                           smca_banks[bank].id);
1069         return buf_mcatype;
1070 }
1071
1072 static int allocate_threshold_blocks(unsigned int cpu, unsigned int bank,
1073                                      unsigned int block, u32 address)
1074 {
1075         struct threshold_block *b = NULL;
1076         u32 low, high;
1077         int err;
1078
1079         if ((bank >= mca_cfg.banks) || (block >= NR_BLOCKS))
1080                 return 0;
1081
1082         if (rdmsr_safe_on_cpu(cpu, address, &low, &high))
1083                 return 0;
1084
1085         if (!(high & MASK_VALID_HI)) {
1086                 if (block)
1087                         goto recurse;
1088                 else
1089                         return 0;
1090         }
1091
1092         if (!(high & MASK_CNTP_HI)  ||
1093              (high & MASK_LOCKED_HI))
1094                 goto recurse;
1095
1096         b = kzalloc(sizeof(struct threshold_block), GFP_KERNEL);
1097         if (!b)
1098                 return -ENOMEM;
1099
1100         b->block                = block;
1101         b->bank                 = bank;
1102         b->cpu                  = cpu;
1103         b->address              = address;
1104         b->interrupt_enable     = 0;
1105         b->interrupt_capable    = lvt_interrupt_supported(bank, high);
1106         b->threshold_limit      = THRESHOLD_MAX;
1107
1108         if (b->interrupt_capable) {
1109                 threshold_ktype.default_attrs[2] = &interrupt_enable.attr;
1110                 b->interrupt_enable = 1;
1111         } else {
1112                 threshold_ktype.default_attrs[2] = NULL;
1113         }
1114
1115         INIT_LIST_HEAD(&b->miscj);
1116
1117         if (per_cpu(threshold_banks, cpu)[bank]->blocks) {
1118                 list_add(&b->miscj,
1119                          &per_cpu(threshold_banks, cpu)[bank]->blocks->miscj);
1120         } else {
1121                 per_cpu(threshold_banks, cpu)[bank]->blocks = b;
1122         }
1123
1124         err = kobject_init_and_add(&b->kobj, &threshold_ktype,
1125                                    per_cpu(threshold_banks, cpu)[bank]->kobj,
1126                                    get_name(bank, b));
1127         if (err)
1128                 goto out_free;
1129 recurse:
1130         address = get_block_address(cpu, address, low, high, bank, ++block);
1131         if (!address)
1132                 return 0;
1133
1134         err = allocate_threshold_blocks(cpu, bank, block, address);
1135         if (err)
1136                 goto out_free;
1137
1138         if (b)
1139                 kobject_uevent(&b->kobj, KOBJ_ADD);
1140
1141         return err;
1142
1143 out_free:
1144         if (b) {
1145                 kobject_put(&b->kobj);
1146                 list_del(&b->miscj);
1147                 kfree(b);
1148         }
1149         return err;
1150 }
1151
1152 static int __threshold_add_blocks(struct threshold_bank *b)
1153 {
1154         struct list_head *head = &b->blocks->miscj;
1155         struct threshold_block *pos = NULL;
1156         struct threshold_block *tmp = NULL;
1157         int err = 0;
1158
1159         err = kobject_add(&b->blocks->kobj, b->kobj, b->blocks->kobj.name);
1160         if (err)
1161                 return err;
1162
1163         list_for_each_entry_safe(pos, tmp, head, miscj) {
1164
1165                 err = kobject_add(&pos->kobj, b->kobj, pos->kobj.name);
1166                 if (err) {
1167                         list_for_each_entry_safe_reverse(pos, tmp, head, miscj)
1168                                 kobject_del(&pos->kobj);
1169
1170                         return err;
1171                 }
1172         }
1173         return err;
1174 }
1175
1176 static int threshold_create_bank(unsigned int cpu, unsigned int bank)
1177 {
1178         struct device *dev = per_cpu(mce_device, cpu);
1179         struct amd_northbridge *nb = NULL;
1180         struct threshold_bank *b = NULL;
1181         const char *name = get_name(bank, NULL);
1182         int err = 0;
1183
1184         if (is_shared_bank(bank)) {
1185                 nb = node_to_amd_nb(amd_get_nb_id(cpu));
1186
1187                 /* threshold descriptor already initialized on this node? */
1188                 if (nb && nb->bank4) {
1189                         /* yes, use it */
1190                         b = nb->bank4;
1191                         err = kobject_add(b->kobj, &dev->kobj, name);
1192                         if (err)
1193                                 goto out;
1194
1195                         per_cpu(threshold_banks, cpu)[bank] = b;
1196                         atomic_inc(&b->cpus);
1197
1198                         err = __threshold_add_blocks(b);
1199
1200                         goto out;
1201                 }
1202         }
1203
1204         b = kzalloc(sizeof(struct threshold_bank), GFP_KERNEL);
1205         if (!b) {
1206                 err = -ENOMEM;
1207                 goto out;
1208         }
1209
1210         b->kobj = kobject_create_and_add(name, &dev->kobj);
1211         if (!b->kobj) {
1212                 err = -EINVAL;
1213                 goto out_free;
1214         }
1215
1216         per_cpu(threshold_banks, cpu)[bank] = b;
1217
1218         if (is_shared_bank(bank)) {
1219                 atomic_set(&b->cpus, 1);
1220
1221                 /* nb is already initialized, see above */
1222                 if (nb) {
1223                         WARN_ON(nb->bank4);
1224                         nb->bank4 = b;
1225                 }
1226         }
1227
1228         err = allocate_threshold_blocks(cpu, bank, 0, msr_ops.misc(bank));
1229         if (!err)
1230                 goto out;
1231
1232  out_free:
1233         kfree(b);
1234
1235  out:
1236         return err;
1237 }
1238
1239 /* create dir/files for all valid threshold banks */
1240 static int threshold_create_device(unsigned int cpu)
1241 {
1242         unsigned int bank;
1243         struct threshold_bank **bp;
1244         int err = 0;
1245
1246         bp = kzalloc(sizeof(struct threshold_bank *) * mca_cfg.banks,
1247                      GFP_KERNEL);
1248         if (!bp)
1249                 return -ENOMEM;
1250
1251         per_cpu(threshold_banks, cpu) = bp;
1252
1253         for (bank = 0; bank < mca_cfg.banks; ++bank) {
1254                 if (!(per_cpu(bank_map, cpu) & (1 << bank)))
1255                         continue;
1256                 err = threshold_create_bank(cpu, bank);
1257                 if (err)
1258                         return err;
1259         }
1260
1261         return err;
1262 }
1263
1264 static void deallocate_threshold_block(unsigned int cpu,
1265                                                  unsigned int bank)
1266 {
1267         struct threshold_block *pos = NULL;
1268         struct threshold_block *tmp = NULL;
1269         struct threshold_bank *head = per_cpu(threshold_banks, cpu)[bank];
1270
1271         if (!head)
1272                 return;
1273
1274         list_for_each_entry_safe(pos, tmp, &head->blocks->miscj, miscj) {
1275                 kobject_put(&pos->kobj);
1276                 list_del(&pos->miscj);
1277                 kfree(pos);
1278         }
1279
1280         kfree(per_cpu(threshold_banks, cpu)[bank]->blocks);
1281         per_cpu(threshold_banks, cpu)[bank]->blocks = NULL;
1282 }
1283
1284 static void __threshold_remove_blocks(struct threshold_bank *b)
1285 {
1286         struct threshold_block *pos = NULL;
1287         struct threshold_block *tmp = NULL;
1288
1289         kobject_del(b->kobj);
1290
1291         list_for_each_entry_safe(pos, tmp, &b->blocks->miscj, miscj)
1292                 kobject_del(&pos->kobj);
1293 }
1294
1295 static void threshold_remove_bank(unsigned int cpu, int bank)
1296 {
1297         struct amd_northbridge *nb;
1298         struct threshold_bank *b;
1299
1300         b = per_cpu(threshold_banks, cpu)[bank];
1301         if (!b)
1302                 return;
1303
1304         if (!b->blocks)
1305                 goto free_out;
1306
1307         if (is_shared_bank(bank)) {
1308                 if (!atomic_dec_and_test(&b->cpus)) {
1309                         __threshold_remove_blocks(b);
1310                         per_cpu(threshold_banks, cpu)[bank] = NULL;
1311                         return;
1312                 } else {
1313                         /*
1314                          * the last CPU on this node using the shared bank is
1315                          * going away, remove that bank now.
1316                          */
1317                         nb = node_to_amd_nb(amd_get_nb_id(cpu));
1318                         nb->bank4 = NULL;
1319                 }
1320         }
1321
1322         deallocate_threshold_block(cpu, bank);
1323
1324 free_out:
1325         kobject_del(b->kobj);
1326         kobject_put(b->kobj);
1327         kfree(b);
1328         per_cpu(threshold_banks, cpu)[bank] = NULL;
1329 }
1330
1331 static void threshold_remove_device(unsigned int cpu)
1332 {
1333         unsigned int bank;
1334
1335         for (bank = 0; bank < mca_cfg.banks; ++bank) {
1336                 if (!(per_cpu(bank_map, cpu) & (1 << bank)))
1337                         continue;
1338                 threshold_remove_bank(cpu, bank);
1339         }
1340         kfree(per_cpu(threshold_banks, cpu));
1341 }
1342
1343 /* get notified when a cpu comes on/off */
1344 static void
1345 amd_64_threshold_cpu_callback(unsigned long action, unsigned int cpu)
1346 {
1347         switch (action) {
1348         case CPU_ONLINE:
1349         case CPU_ONLINE_FROZEN:
1350                 threshold_create_device(cpu);
1351                 break;
1352         case CPU_DEAD:
1353         case CPU_DEAD_FROZEN:
1354                 threshold_remove_device(cpu);
1355                 break;
1356         default:
1357                 break;
1358         }
1359 }
1360
1361 static __init int threshold_init_device(void)
1362 {
1363         unsigned lcpu = 0;
1364
1365         /* to hit CPUs online before the notifier is up */
1366         for_each_online_cpu(lcpu) {
1367                 int err = threshold_create_device(lcpu);
1368
1369                 if (err)
1370                         return err;
1371         }
1372         threshold_cpu_callback = amd_64_threshold_cpu_callback;
1373
1374         return 0;
1375 }
1376 /*
1377  * there are 3 funcs which need to be _initcalled in a logic sequence:
1378  * 1. xen_late_init_mcelog
1379  * 2. mcheck_init_device
1380  * 3. threshold_init_device
1381  *
1382  * xen_late_init_mcelog must register xen_mce_chrdev_device before
1383  * native mce_chrdev_device registration if running under xen platform;
1384  *
1385  * mcheck_init_device should be inited before threshold_init_device to
1386  * initialize mce_device, otherwise a NULL ptr dereference will cause panic.
1387  *
1388  * so we use following _initcalls
1389  * 1. device_initcall(xen_late_init_mcelog);
1390  * 2. device_initcall_sync(mcheck_init_device);
1391  * 3. late_initcall(threshold_init_device);
1392  *
1393  * when running under xen, the initcall order is 1,2,3;
1394  * on baremetal, we skip 1 and we do only 2 and 3.
1395  */
1396 late_initcall(threshold_init_device);
This page took 0.118641 seconds and 4 git commands to generate.