1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1992, 1993, 1994, 1995
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
12 * linux/fs/minix/file.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * ext4 fs regular file handling primitives
18 * 64-bit file support on 64-bit platforms by Jakub Jelinek
22 #include <linux/time.h>
24 #include <linux/iomap.h>
25 #include <linux/mount.h>
26 #include <linux/path.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/pagevec.h>
30 #include <linux/uio.h>
31 #include <linux/mman.h>
32 #include <linux/backing-dev.h>
34 #include "ext4_jbd2.h"
40 * Returns %true if the given DIO request should be attempted with DIO, or
41 * %false if it should fall back to buffered I/O.
43 * DIO isn't well specified; when it's unsupported (either due to the request
44 * being misaligned, or due to the file not supporting DIO at all), filesystems
45 * either fall back to buffered I/O or return EINVAL. For files that don't use
46 * any special features like encryption or verity, ext4 has traditionally
47 * returned EINVAL for misaligned DIO. iomap_dio_rw() uses this convention too.
48 * In this case, we should attempt the DIO, *not* fall back to buffered I/O.
50 * In contrast, in cases where DIO is unsupported due to ext4 features, ext4
51 * traditionally falls back to buffered I/O.
53 * This function implements the traditional ext4 behavior in all these cases.
55 static bool ext4_should_use_dio(struct kiocb *iocb, struct iov_iter *iter)
57 struct inode *inode = file_inode(iocb->ki_filp);
58 u32 dio_align = ext4_dio_alignment(inode);
66 return IS_ALIGNED(iocb->ki_pos | iov_iter_alignment(iter), dio_align);
69 static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
72 struct inode *inode = file_inode(iocb->ki_filp);
74 if (iocb->ki_flags & IOCB_NOWAIT) {
75 if (!inode_trylock_shared(inode))
78 inode_lock_shared(inode);
81 if (!ext4_should_use_dio(iocb, to)) {
82 inode_unlock_shared(inode);
84 * Fallback to buffered I/O if the operation being performed on
85 * the inode is not supported by direct I/O. The IOCB_DIRECT
86 * flag needs to be cleared here in order to ensure that the
87 * direct I/O path within generic_file_read_iter() is not
90 iocb->ki_flags &= ~IOCB_DIRECT;
91 return generic_file_read_iter(iocb, to);
94 ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL, 0, NULL, 0);
95 inode_unlock_shared(inode);
97 file_accessed(iocb->ki_filp);
102 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
104 struct inode *inode = file_inode(iocb->ki_filp);
107 if (iocb->ki_flags & IOCB_NOWAIT) {
108 if (!inode_trylock_shared(inode))
111 inode_lock_shared(inode);
114 * Recheck under inode lock - at this point we are sure it cannot
117 if (!IS_DAX(inode)) {
118 inode_unlock_shared(inode);
119 /* Fallback to buffered IO in case we cannot support DAX */
120 return generic_file_read_iter(iocb, to);
122 ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
123 inode_unlock_shared(inode);
125 file_accessed(iocb->ki_filp);
130 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
132 struct inode *inode = file_inode(iocb->ki_filp);
134 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
137 if (!iov_iter_count(to))
138 return 0; /* skip atime */
142 return ext4_dax_read_iter(iocb, to);
144 if (iocb->ki_flags & IOCB_DIRECT)
145 return ext4_dio_read_iter(iocb, to);
147 return generic_file_read_iter(iocb, to);
150 static ssize_t ext4_file_splice_read(struct file *in, loff_t *ppos,
151 struct pipe_inode_info *pipe,
152 size_t len, unsigned int flags)
154 struct inode *inode = file_inode(in);
156 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
158 return filemap_splice_read(in, ppos, pipe, len, flags);
162 * Called when an inode is released. Note that this is different
163 * from ext4_file_open: open gets called at every open, but release
164 * gets called only when /all/ the files are closed.
166 static int ext4_release_file(struct inode *inode, struct file *filp)
168 if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
169 ext4_alloc_da_blocks(inode);
170 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
172 /* if we are the last writer on the inode, drop the block reservation */
173 if ((filp->f_mode & FMODE_WRITE) &&
174 (atomic_read(&inode->i_writecount) == 1) &&
175 !EXT4_I(inode)->i_reserved_data_blocks) {
176 down_write(&EXT4_I(inode)->i_data_sem);
177 ext4_discard_preallocations(inode, 0);
178 up_write(&EXT4_I(inode)->i_data_sem);
180 if (is_dx(inode) && filp->private_data)
181 ext4_htree_free_dir_info(filp->private_data);
187 * This tests whether the IO in question is block-aligned or not.
188 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
189 * are converted to written only after the IO is complete. Until they are
190 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
191 * it needs to zero out portions of the start and/or end block. If 2 AIO
192 * threads are at work on the same unwritten block, they must be synchronized
193 * or one thread will zero the other's data, causing corruption.
196 ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
198 struct super_block *sb = inode->i_sb;
199 unsigned long blockmask = sb->s_blocksize - 1;
201 if ((pos | iov_iter_alignment(from)) & blockmask)
208 ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
210 if (offset + len > i_size_read(inode) ||
211 offset + len > EXT4_I(inode)->i_disksize)
216 /* Is IO overwriting allocated or initialized blocks? */
217 static bool ext4_overwrite_io(struct inode *inode,
218 loff_t pos, loff_t len, bool *unwritten)
220 struct ext4_map_blocks map;
221 unsigned int blkbits = inode->i_blkbits;
224 if (pos + len > i_size_read(inode))
227 map.m_lblk = pos >> blkbits;
228 map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
231 err = ext4_map_blocks(NULL, inode, &map, 0);
235 * 'err==len' means that all of the blocks have been preallocated,
236 * regardless of whether they have been initialized or not. We need to
237 * check m_flags to distinguish the unwritten extents.
239 *unwritten = !(map.m_flags & EXT4_MAP_MAPPED);
243 static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
244 struct iov_iter *from)
246 struct inode *inode = file_inode(iocb->ki_filp);
249 if (unlikely(IS_IMMUTABLE(inode)))
252 ret = generic_write_checks(iocb, from);
257 * If we have encountered a bitmap-format file, the size limit
258 * is smaller than s_maxbytes, which is for extent-mapped files.
260 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
261 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
263 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
265 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
268 return iov_iter_count(from);
271 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
275 count = ext4_generic_write_checks(iocb, from);
279 ret = file_modified(iocb->ki_filp);
285 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
286 struct iov_iter *from)
289 struct inode *inode = file_inode(iocb->ki_filp);
291 if (iocb->ki_flags & IOCB_NOWAIT)
295 ret = ext4_write_checks(iocb, from);
299 ret = generic_perform_write(iocb, from);
303 if (unlikely(ret <= 0))
305 return generic_write_sync(iocb, ret);
308 static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
309 ssize_t written, size_t count)
312 bool truncate = false;
313 u8 blkbits = inode->i_blkbits;
314 ext4_lblk_t written_blk, end_blk;
318 * Note that EXT4_I(inode)->i_disksize can get extended up to
319 * inode->i_size while the I/O was running due to writeback of delalloc
320 * blocks. But, the code in ext4_iomap_alloc() is careful to use
321 * zeroed/unwritten extents if this is possible; thus we won't leave
322 * uninitialized blocks in a file even if we didn't succeed in writing
323 * as much as we intended.
325 WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize);
326 if (offset + count <= EXT4_I(inode)->i_disksize) {
328 * We need to ensure that the inode is removed from the orphan
329 * list if it has been added prematurely, due to writeback of
332 if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
333 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
335 if (IS_ERR(handle)) {
336 ext4_orphan_del(NULL, inode);
337 return PTR_ERR(handle);
340 ext4_orphan_del(handle, inode);
341 ext4_journal_stop(handle);
350 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
351 if (IS_ERR(handle)) {
352 written = PTR_ERR(handle);
356 if (ext4_update_inode_size(inode, offset + written)) {
357 ret = ext4_mark_inode_dirty(handle, inode);
360 ext4_journal_stop(handle);
366 * We may need to truncate allocated but not written blocks beyond EOF.
368 written_blk = ALIGN(offset + written, 1 << blkbits);
369 end_blk = ALIGN(offset + count, 1 << blkbits);
370 if (written_blk < end_blk && ext4_can_truncate(inode))
374 * Remove the inode from the orphan list if it has been extended and
375 * everything went OK.
377 if (!truncate && inode->i_nlink)
378 ext4_orphan_del(handle, inode);
379 ext4_journal_stop(handle);
383 ext4_truncate_failed_write(inode);
385 * If the truncate operation failed early, then the inode may
386 * still be on the orphan list. In that case, we need to try
387 * remove the inode from the in-memory linked list.
390 ext4_orphan_del(NULL, inode);
396 static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
397 int error, unsigned int flags)
399 loff_t pos = iocb->ki_pos;
400 struct inode *inode = file_inode(iocb->ki_filp);
405 if (size && flags & IOMAP_DIO_UNWRITTEN) {
406 error = ext4_convert_unwritten_extents(NULL, inode, pos, size);
411 * If we are extending the file, we have to update i_size here before
412 * page cache gets invalidated in iomap_dio_rw(). Otherwise racing
413 * buffered reads could zero out too much from page cache pages. Update
414 * of on-disk size will happen later in ext4_dio_write_iter() where
415 * we have enough information to also perform orphan list handling etc.
416 * Note that we perform all extending writes synchronously under
417 * i_rwsem held exclusively so i_size update is safe here in that case.
418 * If the write was not extending, we cannot see pos > i_size here
419 * because operations reducing i_size like truncate wait for all
420 * outstanding DIO before updating i_size.
423 if (pos > i_size_read(inode))
424 i_size_write(inode, pos);
429 static const struct iomap_dio_ops ext4_dio_write_ops = {
430 .end_io = ext4_dio_write_end_io,
434 * The intention here is to start with shared lock acquired then see if any
435 * condition requires an exclusive inode lock. If yes, then we restart the
436 * whole operation by releasing the shared lock and acquiring exclusive lock.
438 * - For unaligned_io we never take shared lock as it may cause data corruption
439 * when two unaligned IO tries to modify the same block e.g. while zeroing.
441 * - For extending writes case we don't take the shared lock, since it requires
442 * updating inode i_disksize and/or orphan handling with exclusive lock.
444 * - shared locking will only be true mostly with overwrites, including
445 * initialized blocks and unwritten blocks. For overwrite unwritten blocks
446 * we protect splitting extents by i_data_sem in ext4_inode_info, so we can
447 * also release exclusive i_rwsem lock.
449 * - Otherwise we will switch to exclusive i_rwsem lock.
451 static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
452 bool *ilock_shared, bool *extend,
453 bool *unwritten, int *dio_flags)
455 struct file *file = iocb->ki_filp;
456 struct inode *inode = file_inode(file);
460 bool overwrite, unaligned_io;
463 ret = ext4_generic_write_checks(iocb, from);
467 offset = iocb->ki_pos;
470 unaligned_io = ext4_unaligned_io(inode, from, offset);
471 *extend = ext4_extending_io(inode, offset, count);
472 overwrite = ext4_overwrite_io(inode, offset, count, unwritten);
475 * Determine whether we need to upgrade to an exclusive lock. This is
476 * required to change security info in file_modified(), for extending
477 * I/O, any form of non-overwrite I/O, and unaligned I/O to unwritten
478 * extents (as partial block zeroing may be required).
481 ((!IS_NOSEC(inode) || *extend || !overwrite ||
482 (unaligned_io && *unwritten)))) {
483 if (iocb->ki_flags & IOCB_NOWAIT) {
487 inode_unlock_shared(inode);
488 *ilock_shared = false;
494 * Now that locking is settled, determine dio flags and exclusivity
495 * requirements. Unaligned writes are allowed under shared lock so long
496 * as they are pure overwrites. Set the iomap overwrite only flag as an
497 * added precaution in this case. Even though this is unnecessary, we
498 * can detect and warn on unexpected -EAGAIN if an unsafe unaligned
499 * write is ever submitted.
501 * Otherwise, concurrent unaligned writes risk data corruption due to
502 * partial block zeroing in the dio layer, and so the I/O must occur
503 * exclusively. The inode lock is already held exclusive if the write is
504 * non-overwrite or extending, so drain all outstanding dio and set the
505 * force wait dio flag.
507 if (*ilock_shared && unaligned_io) {
508 *dio_flags = IOMAP_DIO_OVERWRITE_ONLY;
509 } else if (!*ilock_shared && (unaligned_io || *extend)) {
510 if (iocb->ki_flags & IOCB_NOWAIT) {
514 if (unaligned_io && (!overwrite || *unwritten))
515 inode_dio_wait(inode);
516 *dio_flags = IOMAP_DIO_FORCE_WAIT;
519 ret = file_modified(file);
526 inode_unlock_shared(inode);
532 static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
536 struct inode *inode = file_inode(iocb->ki_filp);
537 loff_t offset = iocb->ki_pos;
538 size_t count = iov_iter_count(from);
539 const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
540 bool extend = false, unwritten = false;
541 bool ilock_shared = true;
545 * Quick check here without any i_rwsem lock to see if it is extending
546 * IO. A more reliable check is done in ext4_dio_write_checks() with
547 * proper locking in place.
549 if (offset + count > i_size_read(inode))
550 ilock_shared = false;
552 if (iocb->ki_flags & IOCB_NOWAIT) {
554 if (!inode_trylock_shared(inode))
557 if (!inode_trylock(inode))
562 inode_lock_shared(inode);
567 /* Fallback to buffered I/O if the inode does not support direct I/O. */
568 if (!ext4_should_use_dio(iocb, from)) {
570 inode_unlock_shared(inode);
573 return ext4_buffered_write_iter(iocb, from);
576 ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend,
577 &unwritten, &dio_flags);
582 * Make sure inline data cannot be created anymore since we are going
583 * to allocate blocks for DIO. We know the inode does not have any
584 * inline data now because ext4_dio_supported() checked for that.
586 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
588 offset = iocb->ki_pos;
592 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
593 if (IS_ERR(handle)) {
594 ret = PTR_ERR(handle);
598 ret = ext4_orphan_add(handle, inode);
600 ext4_journal_stop(handle);
604 ext4_journal_stop(handle);
607 if (ilock_shared && !unwritten)
608 iomap_ops = &ext4_iomap_overwrite_ops;
609 ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
611 WARN_ON_ONCE(ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT));
616 ret = ext4_handle_inode_extension(inode, offset, ret, count);
620 inode_unlock_shared(inode);
624 if (ret >= 0 && iov_iter_count(from)) {
628 offset = iocb->ki_pos;
629 err = ext4_buffered_write_iter(iocb, from);
634 * We need to ensure that the pages within the page cache for
635 * the range covered by this I/O are written to disk and
636 * invalidated. This is in attempt to preserve the expected
637 * direct I/O semantics in the case we fallback to buffered I/O
638 * to complete off the I/O request.
641 endbyte = offset + err - 1;
642 err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
645 invalidate_mapping_pages(iocb->ki_filp->f_mapping,
646 offset >> PAGE_SHIFT,
647 endbyte >> PAGE_SHIFT);
655 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
662 struct inode *inode = file_inode(iocb->ki_filp);
664 if (iocb->ki_flags & IOCB_NOWAIT) {
665 if (!inode_trylock(inode))
671 ret = ext4_write_checks(iocb, from);
675 offset = iocb->ki_pos;
676 count = iov_iter_count(from);
678 if (offset + count > EXT4_I(inode)->i_disksize) {
679 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
680 if (IS_ERR(handle)) {
681 ret = PTR_ERR(handle);
685 ret = ext4_orphan_add(handle, inode);
687 ext4_journal_stop(handle);
692 ext4_journal_stop(handle);
695 ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
698 ret = ext4_handle_inode_extension(inode, offset, ret, count);
702 ret = generic_write_sync(iocb, ret);
708 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
710 struct inode *inode = file_inode(iocb->ki_filp);
712 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
717 return ext4_dax_write_iter(iocb, from);
719 if (iocb->ki_flags & IOCB_DIRECT)
720 return ext4_dio_write_iter(iocb, from);
722 return ext4_buffered_write_iter(iocb, from);
726 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf,
727 enum page_entry_size pe_size)
732 handle_t *handle = NULL;
733 struct inode *inode = file_inode(vmf->vma->vm_file);
734 struct super_block *sb = inode->i_sb;
737 * We have to distinguish real writes from writes which will result in a
738 * COW page; COW writes should *not* poke the journal (the file will not
739 * be changed). Doing so would cause unintended failures when mounted
742 * We check for VM_SHARED rather than vmf->cow_page since the latter is
743 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
744 * other sizes, dax_iomap_fault will handle splitting / fallback so that
745 * we eventually come back with a COW page.
747 bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
748 (vmf->vma->vm_flags & VM_SHARED);
749 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
753 sb_start_pagefault(sb);
754 file_update_time(vmf->vma->vm_file);
755 filemap_invalidate_lock_shared(mapping);
757 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
758 EXT4_DATA_TRANS_BLOCKS(sb));
759 if (IS_ERR(handle)) {
760 filemap_invalidate_unlock_shared(mapping);
761 sb_end_pagefault(sb);
762 return VM_FAULT_SIGBUS;
765 filemap_invalidate_lock_shared(mapping);
767 result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops);
769 ext4_journal_stop(handle);
771 if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
772 ext4_should_retry_alloc(sb, &retries))
774 /* Handling synchronous page fault? */
775 if (result & VM_FAULT_NEEDDSYNC)
776 result = dax_finish_sync_fault(vmf, pe_size, pfn);
777 filemap_invalidate_unlock_shared(mapping);
778 sb_end_pagefault(sb);
780 filemap_invalidate_unlock_shared(mapping);
786 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
788 return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
791 static const struct vm_operations_struct ext4_dax_vm_ops = {
792 .fault = ext4_dax_fault,
793 .huge_fault = ext4_dax_huge_fault,
794 .page_mkwrite = ext4_dax_fault,
795 .pfn_mkwrite = ext4_dax_fault,
798 #define ext4_dax_vm_ops ext4_file_vm_ops
801 static const struct vm_operations_struct ext4_file_vm_ops = {
802 .fault = filemap_fault,
803 .map_pages = filemap_map_pages,
804 .page_mkwrite = ext4_page_mkwrite,
807 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
809 struct inode *inode = file->f_mapping->host;
810 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
811 struct dax_device *dax_dev = sbi->s_daxdev;
813 if (unlikely(ext4_forced_shutdown(sbi)))
817 * We don't support synchronous mappings for non-DAX files and
818 * for DAX files if underneath dax_device is not synchronous.
820 if (!daxdev_mapping_supported(vma, dax_dev))
824 if (IS_DAX(file_inode(file))) {
825 vma->vm_ops = &ext4_dax_vm_ops;
826 vm_flags_set(vma, VM_HUGEPAGE);
828 vma->vm_ops = &ext4_file_vm_ops;
833 static int ext4_sample_last_mounted(struct super_block *sb,
834 struct vfsmount *mnt)
836 struct ext4_sb_info *sbi = EXT4_SB(sb);
842 if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED)))
845 if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
848 ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED);
850 * Sample where the filesystem has been mounted and
851 * store it in the superblock for sysadmin convenience
852 * when trying to sort through large numbers of block
853 * devices or filesystem images.
855 memset(buf, 0, sizeof(buf));
857 path.dentry = mnt->mnt_root;
858 cp = d_path(&path, buf, sizeof(buf));
863 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
864 err = PTR_ERR(handle);
867 BUFFER_TRACE(sbi->s_sbh, "get_write_access");
868 err = ext4_journal_get_write_access(handle, sb, sbi->s_sbh,
872 lock_buffer(sbi->s_sbh);
873 strncpy(sbi->s_es->s_last_mounted, cp,
874 sizeof(sbi->s_es->s_last_mounted));
875 ext4_superblock_csum_set(sb);
876 unlock_buffer(sbi->s_sbh);
877 ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh);
879 ext4_journal_stop(handle);
885 static int ext4_file_open(struct inode *inode, struct file *filp)
889 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
892 ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
896 ret = fscrypt_file_open(inode, filp);
900 ret = fsverity_file_open(inode, filp);
905 * Set up the jbd2_inode if we are opening the inode for
906 * writing and the journal is present
908 if (filp->f_mode & FMODE_WRITE) {
909 ret = ext4_inode_attach_jinode(inode);
914 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC |
915 FMODE_DIO_PARALLEL_WRITE;
916 return dquot_file_open(inode, filp);
920 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
921 * by calling generic_file_llseek_size() with the appropriate maxbytes
924 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
926 struct inode *inode = file->f_mapping->host;
929 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
930 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
932 maxbytes = inode->i_sb->s_maxbytes;
936 return generic_file_llseek_size(file, offset, whence,
937 maxbytes, i_size_read(inode));
939 inode_lock_shared(inode);
940 offset = iomap_seek_hole(inode, offset,
941 &ext4_iomap_report_ops);
942 inode_unlock_shared(inode);
945 inode_lock_shared(inode);
946 offset = iomap_seek_data(inode, offset,
947 &ext4_iomap_report_ops);
948 inode_unlock_shared(inode);
954 return vfs_setpos(file, offset, maxbytes);
957 const struct file_operations ext4_file_operations = {
958 .llseek = ext4_llseek,
959 .read_iter = ext4_file_read_iter,
960 .write_iter = ext4_file_write_iter,
961 .iopoll = iocb_bio_iopoll,
962 .unlocked_ioctl = ext4_ioctl,
964 .compat_ioctl = ext4_compat_ioctl,
966 .mmap = ext4_file_mmap,
967 .mmap_supported_flags = MAP_SYNC,
968 .open = ext4_file_open,
969 .release = ext4_release_file,
970 .fsync = ext4_sync_file,
971 .get_unmapped_area = thp_get_unmapped_area,
972 .splice_read = ext4_file_splice_read,
973 .splice_write = iter_file_splice_write,
974 .fallocate = ext4_fallocate,
977 const struct inode_operations ext4_file_inode_operations = {
978 .setattr = ext4_setattr,
979 .getattr = ext4_file_getattr,
980 .listxattr = ext4_listxattr,
981 .get_inode_acl = ext4_get_acl,
982 .set_acl = ext4_set_acl,
983 .fiemap = ext4_fiemap,
984 .fileattr_get = ext4_fileattr_get,
985 .fileattr_set = ext4_fileattr_set,