]> Git Repo - linux.git/blob - fs/ext4/file.c
extrawarn: enable format and stringop overflow warnings in W=1
[linux.git] / fs / ext4 / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/file.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card ([email protected])
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/file.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  ext4 fs regular file handling primitives
17  *
18  *  64-bit file support on 64-bit platforms by Jakub Jelinek
19  *      ([email protected])
20  */
21
22 #include <linux/time.h>
23 #include <linux/fs.h>
24 #include <linux/iomap.h>
25 #include <linux/mount.h>
26 #include <linux/path.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/pagevec.h>
30 #include <linux/uio.h>
31 #include <linux/mman.h>
32 #include <linux/backing-dev.h>
33 #include "ext4.h"
34 #include "ext4_jbd2.h"
35 #include "xattr.h"
36 #include "acl.h"
37 #include "truncate.h"
38
39 /*
40  * Returns %true if the given DIO request should be attempted with DIO, or
41  * %false if it should fall back to buffered I/O.
42  *
43  * DIO isn't well specified; when it's unsupported (either due to the request
44  * being misaligned, or due to the file not supporting DIO at all), filesystems
45  * either fall back to buffered I/O or return EINVAL.  For files that don't use
46  * any special features like encryption or verity, ext4 has traditionally
47  * returned EINVAL for misaligned DIO.  iomap_dio_rw() uses this convention too.
48  * In this case, we should attempt the DIO, *not* fall back to buffered I/O.
49  *
50  * In contrast, in cases where DIO is unsupported due to ext4 features, ext4
51  * traditionally falls back to buffered I/O.
52  *
53  * This function implements the traditional ext4 behavior in all these cases.
54  */
55 static bool ext4_should_use_dio(struct kiocb *iocb, struct iov_iter *iter)
56 {
57         struct inode *inode = file_inode(iocb->ki_filp);
58         u32 dio_align = ext4_dio_alignment(inode);
59
60         if (dio_align == 0)
61                 return false;
62
63         if (dio_align == 1)
64                 return true;
65
66         return IS_ALIGNED(iocb->ki_pos | iov_iter_alignment(iter), dio_align);
67 }
68
69 static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
70 {
71         ssize_t ret;
72         struct inode *inode = file_inode(iocb->ki_filp);
73
74         if (iocb->ki_flags & IOCB_NOWAIT) {
75                 if (!inode_trylock_shared(inode))
76                         return -EAGAIN;
77         } else {
78                 inode_lock_shared(inode);
79         }
80
81         if (!ext4_should_use_dio(iocb, to)) {
82                 inode_unlock_shared(inode);
83                 /*
84                  * Fallback to buffered I/O if the operation being performed on
85                  * the inode is not supported by direct I/O. The IOCB_DIRECT
86                  * flag needs to be cleared here in order to ensure that the
87                  * direct I/O path within generic_file_read_iter() is not
88                  * taken.
89                  */
90                 iocb->ki_flags &= ~IOCB_DIRECT;
91                 return generic_file_read_iter(iocb, to);
92         }
93
94         ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL, 0, NULL, 0);
95         inode_unlock_shared(inode);
96
97         file_accessed(iocb->ki_filp);
98         return ret;
99 }
100
101 #ifdef CONFIG_FS_DAX
102 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
103 {
104         struct inode *inode = file_inode(iocb->ki_filp);
105         ssize_t ret;
106
107         if (iocb->ki_flags & IOCB_NOWAIT) {
108                 if (!inode_trylock_shared(inode))
109                         return -EAGAIN;
110         } else {
111                 inode_lock_shared(inode);
112         }
113         /*
114          * Recheck under inode lock - at this point we are sure it cannot
115          * change anymore
116          */
117         if (!IS_DAX(inode)) {
118                 inode_unlock_shared(inode);
119                 /* Fallback to buffered IO in case we cannot support DAX */
120                 return generic_file_read_iter(iocb, to);
121         }
122         ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
123         inode_unlock_shared(inode);
124
125         file_accessed(iocb->ki_filp);
126         return ret;
127 }
128 #endif
129
130 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
131 {
132         struct inode *inode = file_inode(iocb->ki_filp);
133
134         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
135                 return -EIO;
136
137         if (!iov_iter_count(to))
138                 return 0; /* skip atime */
139
140 #ifdef CONFIG_FS_DAX
141         if (IS_DAX(inode))
142                 return ext4_dax_read_iter(iocb, to);
143 #endif
144         if (iocb->ki_flags & IOCB_DIRECT)
145                 return ext4_dio_read_iter(iocb, to);
146
147         return generic_file_read_iter(iocb, to);
148 }
149
150 static ssize_t ext4_file_splice_read(struct file *in, loff_t *ppos,
151                                      struct pipe_inode_info *pipe,
152                                      size_t len, unsigned int flags)
153 {
154         struct inode *inode = file_inode(in);
155
156         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
157                 return -EIO;
158         return filemap_splice_read(in, ppos, pipe, len, flags);
159 }
160
161 /*
162  * Called when an inode is released. Note that this is different
163  * from ext4_file_open: open gets called at every open, but release
164  * gets called only when /all/ the files are closed.
165  */
166 static int ext4_release_file(struct inode *inode, struct file *filp)
167 {
168         if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
169                 ext4_alloc_da_blocks(inode);
170                 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
171         }
172         /* if we are the last writer on the inode, drop the block reservation */
173         if ((filp->f_mode & FMODE_WRITE) &&
174                         (atomic_read(&inode->i_writecount) == 1) &&
175                         !EXT4_I(inode)->i_reserved_data_blocks) {
176                 down_write(&EXT4_I(inode)->i_data_sem);
177                 ext4_discard_preallocations(inode, 0);
178                 up_write(&EXT4_I(inode)->i_data_sem);
179         }
180         if (is_dx(inode) && filp->private_data)
181                 ext4_htree_free_dir_info(filp->private_data);
182
183         return 0;
184 }
185
186 /*
187  * This tests whether the IO in question is block-aligned or not.
188  * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
189  * are converted to written only after the IO is complete.  Until they are
190  * mapped, these blocks appear as holes, so dio_zero_block() will assume that
191  * it needs to zero out portions of the start and/or end block.  If 2 AIO
192  * threads are at work on the same unwritten block, they must be synchronized
193  * or one thread will zero the other's data, causing corruption.
194  */
195 static bool
196 ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
197 {
198         struct super_block *sb = inode->i_sb;
199         unsigned long blockmask = sb->s_blocksize - 1;
200
201         if ((pos | iov_iter_alignment(from)) & blockmask)
202                 return true;
203
204         return false;
205 }
206
207 static bool
208 ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
209 {
210         if (offset + len > i_size_read(inode) ||
211             offset + len > EXT4_I(inode)->i_disksize)
212                 return true;
213         return false;
214 }
215
216 /* Is IO overwriting allocated or initialized blocks? */
217 static bool ext4_overwrite_io(struct inode *inode,
218                               loff_t pos, loff_t len, bool *unwritten)
219 {
220         struct ext4_map_blocks map;
221         unsigned int blkbits = inode->i_blkbits;
222         int err, blklen;
223
224         if (pos + len > i_size_read(inode))
225                 return false;
226
227         map.m_lblk = pos >> blkbits;
228         map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
229         blklen = map.m_len;
230
231         err = ext4_map_blocks(NULL, inode, &map, 0);
232         if (err != blklen)
233                 return false;
234         /*
235          * 'err==len' means that all of the blocks have been preallocated,
236          * regardless of whether they have been initialized or not. We need to
237          * check m_flags to distinguish the unwritten extents.
238          */
239         *unwritten = !(map.m_flags & EXT4_MAP_MAPPED);
240         return true;
241 }
242
243 static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
244                                          struct iov_iter *from)
245 {
246         struct inode *inode = file_inode(iocb->ki_filp);
247         ssize_t ret;
248
249         if (unlikely(IS_IMMUTABLE(inode)))
250                 return -EPERM;
251
252         ret = generic_write_checks(iocb, from);
253         if (ret <= 0)
254                 return ret;
255
256         /*
257          * If we have encountered a bitmap-format file, the size limit
258          * is smaller than s_maxbytes, which is for extent-mapped files.
259          */
260         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
261                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
262
263                 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
264                         return -EFBIG;
265                 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
266         }
267
268         return iov_iter_count(from);
269 }
270
271 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
272 {
273         ssize_t ret, count;
274
275         count = ext4_generic_write_checks(iocb, from);
276         if (count <= 0)
277                 return count;
278
279         ret = file_modified(iocb->ki_filp);
280         if (ret)
281                 return ret;
282         return count;
283 }
284
285 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
286                                         struct iov_iter *from)
287 {
288         ssize_t ret;
289         struct inode *inode = file_inode(iocb->ki_filp);
290
291         if (iocb->ki_flags & IOCB_NOWAIT)
292                 return -EOPNOTSUPP;
293
294         inode_lock(inode);
295         ret = ext4_write_checks(iocb, from);
296         if (ret <= 0)
297                 goto out;
298
299         ret = generic_perform_write(iocb, from);
300
301 out:
302         inode_unlock(inode);
303         if (unlikely(ret <= 0))
304                 return ret;
305         return generic_write_sync(iocb, ret);
306 }
307
308 static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
309                                            ssize_t written, size_t count)
310 {
311         handle_t *handle;
312         bool truncate = false;
313         u8 blkbits = inode->i_blkbits;
314         ext4_lblk_t written_blk, end_blk;
315         int ret;
316
317         /*
318          * Note that EXT4_I(inode)->i_disksize can get extended up to
319          * inode->i_size while the I/O was running due to writeback of delalloc
320          * blocks. But, the code in ext4_iomap_alloc() is careful to use
321          * zeroed/unwritten extents if this is possible; thus we won't leave
322          * uninitialized blocks in a file even if we didn't succeed in writing
323          * as much as we intended.
324          */
325         WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize);
326         if (offset + count <= EXT4_I(inode)->i_disksize) {
327                 /*
328                  * We need to ensure that the inode is removed from the orphan
329                  * list if it has been added prematurely, due to writeback of
330                  * delalloc blocks.
331                  */
332                 if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
333                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
334
335                         if (IS_ERR(handle)) {
336                                 ext4_orphan_del(NULL, inode);
337                                 return PTR_ERR(handle);
338                         }
339
340                         ext4_orphan_del(handle, inode);
341                         ext4_journal_stop(handle);
342                 }
343
344                 return written;
345         }
346
347         if (written < 0)
348                 goto truncate;
349
350         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
351         if (IS_ERR(handle)) {
352                 written = PTR_ERR(handle);
353                 goto truncate;
354         }
355
356         if (ext4_update_inode_size(inode, offset + written)) {
357                 ret = ext4_mark_inode_dirty(handle, inode);
358                 if (unlikely(ret)) {
359                         written = ret;
360                         ext4_journal_stop(handle);
361                         goto truncate;
362                 }
363         }
364
365         /*
366          * We may need to truncate allocated but not written blocks beyond EOF.
367          */
368         written_blk = ALIGN(offset + written, 1 << blkbits);
369         end_blk = ALIGN(offset + count, 1 << blkbits);
370         if (written_blk < end_blk && ext4_can_truncate(inode))
371                 truncate = true;
372
373         /*
374          * Remove the inode from the orphan list if it has been extended and
375          * everything went OK.
376          */
377         if (!truncate && inode->i_nlink)
378                 ext4_orphan_del(handle, inode);
379         ext4_journal_stop(handle);
380
381         if (truncate) {
382 truncate:
383                 ext4_truncate_failed_write(inode);
384                 /*
385                  * If the truncate operation failed early, then the inode may
386                  * still be on the orphan list. In that case, we need to try
387                  * remove the inode from the in-memory linked list.
388                  */
389                 if (inode->i_nlink)
390                         ext4_orphan_del(NULL, inode);
391         }
392
393         return written;
394 }
395
396 static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
397                                  int error, unsigned int flags)
398 {
399         loff_t pos = iocb->ki_pos;
400         struct inode *inode = file_inode(iocb->ki_filp);
401
402         if (error)
403                 return error;
404
405         if (size && flags & IOMAP_DIO_UNWRITTEN) {
406                 error = ext4_convert_unwritten_extents(NULL, inode, pos, size);
407                 if (error < 0)
408                         return error;
409         }
410         /*
411          * If we are extending the file, we have to update i_size here before
412          * page cache gets invalidated in iomap_dio_rw(). Otherwise racing
413          * buffered reads could zero out too much from page cache pages. Update
414          * of on-disk size will happen later in ext4_dio_write_iter() where
415          * we have enough information to also perform orphan list handling etc.
416          * Note that we perform all extending writes synchronously under
417          * i_rwsem held exclusively so i_size update is safe here in that case.
418          * If the write was not extending, we cannot see pos > i_size here
419          * because operations reducing i_size like truncate wait for all
420          * outstanding DIO before updating i_size.
421          */
422         pos += size;
423         if (pos > i_size_read(inode))
424                 i_size_write(inode, pos);
425
426         return 0;
427 }
428
429 static const struct iomap_dio_ops ext4_dio_write_ops = {
430         .end_io = ext4_dio_write_end_io,
431 };
432
433 /*
434  * The intention here is to start with shared lock acquired then see if any
435  * condition requires an exclusive inode lock. If yes, then we restart the
436  * whole operation by releasing the shared lock and acquiring exclusive lock.
437  *
438  * - For unaligned_io we never take shared lock as it may cause data corruption
439  *   when two unaligned IO tries to modify the same block e.g. while zeroing.
440  *
441  * - For extending writes case we don't take the shared lock, since it requires
442  *   updating inode i_disksize and/or orphan handling with exclusive lock.
443  *
444  * - shared locking will only be true mostly with overwrites, including
445  *   initialized blocks and unwritten blocks. For overwrite unwritten blocks
446  *   we protect splitting extents by i_data_sem in ext4_inode_info, so we can
447  *   also release exclusive i_rwsem lock.
448  *
449  * - Otherwise we will switch to exclusive i_rwsem lock.
450  */
451 static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
452                                      bool *ilock_shared, bool *extend,
453                                      bool *unwritten, int *dio_flags)
454 {
455         struct file *file = iocb->ki_filp;
456         struct inode *inode = file_inode(file);
457         loff_t offset;
458         size_t count;
459         ssize_t ret;
460         bool overwrite, unaligned_io;
461
462 restart:
463         ret = ext4_generic_write_checks(iocb, from);
464         if (ret <= 0)
465                 goto out;
466
467         offset = iocb->ki_pos;
468         count = ret;
469
470         unaligned_io = ext4_unaligned_io(inode, from, offset);
471         *extend = ext4_extending_io(inode, offset, count);
472         overwrite = ext4_overwrite_io(inode, offset, count, unwritten);
473
474         /*
475          * Determine whether we need to upgrade to an exclusive lock. This is
476          * required to change security info in file_modified(), for extending
477          * I/O, any form of non-overwrite I/O, and unaligned I/O to unwritten
478          * extents (as partial block zeroing may be required).
479          */
480         if (*ilock_shared &&
481             ((!IS_NOSEC(inode) || *extend || !overwrite ||
482              (unaligned_io && *unwritten)))) {
483                 if (iocb->ki_flags & IOCB_NOWAIT) {
484                         ret = -EAGAIN;
485                         goto out;
486                 }
487                 inode_unlock_shared(inode);
488                 *ilock_shared = false;
489                 inode_lock(inode);
490                 goto restart;
491         }
492
493         /*
494          * Now that locking is settled, determine dio flags and exclusivity
495          * requirements. Unaligned writes are allowed under shared lock so long
496          * as they are pure overwrites. Set the iomap overwrite only flag as an
497          * added precaution in this case. Even though this is unnecessary, we
498          * can detect and warn on unexpected -EAGAIN if an unsafe unaligned
499          * write is ever submitted.
500          *
501          * Otherwise, concurrent unaligned writes risk data corruption due to
502          * partial block zeroing in the dio layer, and so the I/O must occur
503          * exclusively. The inode lock is already held exclusive if the write is
504          * non-overwrite or extending, so drain all outstanding dio and set the
505          * force wait dio flag.
506          */
507         if (*ilock_shared && unaligned_io) {
508                 *dio_flags = IOMAP_DIO_OVERWRITE_ONLY;
509         } else if (!*ilock_shared && (unaligned_io || *extend)) {
510                 if (iocb->ki_flags & IOCB_NOWAIT) {
511                         ret = -EAGAIN;
512                         goto out;
513                 }
514                 if (unaligned_io && (!overwrite || *unwritten))
515                         inode_dio_wait(inode);
516                 *dio_flags = IOMAP_DIO_FORCE_WAIT;
517         }
518
519         ret = file_modified(file);
520         if (ret < 0)
521                 goto out;
522
523         return count;
524 out:
525         if (*ilock_shared)
526                 inode_unlock_shared(inode);
527         else
528                 inode_unlock(inode);
529         return ret;
530 }
531
532 static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
533 {
534         ssize_t ret;
535         handle_t *handle;
536         struct inode *inode = file_inode(iocb->ki_filp);
537         loff_t offset = iocb->ki_pos;
538         size_t count = iov_iter_count(from);
539         const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
540         bool extend = false, unwritten = false;
541         bool ilock_shared = true;
542         int dio_flags = 0;
543
544         /*
545          * Quick check here without any i_rwsem lock to see if it is extending
546          * IO. A more reliable check is done in ext4_dio_write_checks() with
547          * proper locking in place.
548          */
549         if (offset + count > i_size_read(inode))
550                 ilock_shared = false;
551
552         if (iocb->ki_flags & IOCB_NOWAIT) {
553                 if (ilock_shared) {
554                         if (!inode_trylock_shared(inode))
555                                 return -EAGAIN;
556                 } else {
557                         if (!inode_trylock(inode))
558                                 return -EAGAIN;
559                 }
560         } else {
561                 if (ilock_shared)
562                         inode_lock_shared(inode);
563                 else
564                         inode_lock(inode);
565         }
566
567         /* Fallback to buffered I/O if the inode does not support direct I/O. */
568         if (!ext4_should_use_dio(iocb, from)) {
569                 if (ilock_shared)
570                         inode_unlock_shared(inode);
571                 else
572                         inode_unlock(inode);
573                 return ext4_buffered_write_iter(iocb, from);
574         }
575
576         ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend,
577                                     &unwritten, &dio_flags);
578         if (ret <= 0)
579                 return ret;
580
581         /*
582          * Make sure inline data cannot be created anymore since we are going
583          * to allocate blocks for DIO. We know the inode does not have any
584          * inline data now because ext4_dio_supported() checked for that.
585          */
586         ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
587
588         offset = iocb->ki_pos;
589         count = ret;
590
591         if (extend) {
592                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
593                 if (IS_ERR(handle)) {
594                         ret = PTR_ERR(handle);
595                         goto out;
596                 }
597
598                 ret = ext4_orphan_add(handle, inode);
599                 if (ret) {
600                         ext4_journal_stop(handle);
601                         goto out;
602                 }
603
604                 ext4_journal_stop(handle);
605         }
606
607         if (ilock_shared && !unwritten)
608                 iomap_ops = &ext4_iomap_overwrite_ops;
609         ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
610                            dio_flags, NULL, 0);
611         WARN_ON_ONCE(ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT));
612         if (ret == -ENOTBLK)
613                 ret = 0;
614
615         if (extend)
616                 ret = ext4_handle_inode_extension(inode, offset, ret, count);
617
618 out:
619         if (ilock_shared)
620                 inode_unlock_shared(inode);
621         else
622                 inode_unlock(inode);
623
624         if (ret >= 0 && iov_iter_count(from)) {
625                 ssize_t err;
626                 loff_t endbyte;
627
628                 offset = iocb->ki_pos;
629                 err = ext4_buffered_write_iter(iocb, from);
630                 if (err < 0)
631                         return err;
632
633                 /*
634                  * We need to ensure that the pages within the page cache for
635                  * the range covered by this I/O are written to disk and
636                  * invalidated. This is in attempt to preserve the expected
637                  * direct I/O semantics in the case we fallback to buffered I/O
638                  * to complete off the I/O request.
639                  */
640                 ret += err;
641                 endbyte = offset + err - 1;
642                 err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
643                                                    offset, endbyte);
644                 if (!err)
645                         invalidate_mapping_pages(iocb->ki_filp->f_mapping,
646                                                  offset >> PAGE_SHIFT,
647                                                  endbyte >> PAGE_SHIFT);
648         }
649
650         return ret;
651 }
652
653 #ifdef CONFIG_FS_DAX
654 static ssize_t
655 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
656 {
657         ssize_t ret;
658         size_t count;
659         loff_t offset;
660         handle_t *handle;
661         bool extend = false;
662         struct inode *inode = file_inode(iocb->ki_filp);
663
664         if (iocb->ki_flags & IOCB_NOWAIT) {
665                 if (!inode_trylock(inode))
666                         return -EAGAIN;
667         } else {
668                 inode_lock(inode);
669         }
670
671         ret = ext4_write_checks(iocb, from);
672         if (ret <= 0)
673                 goto out;
674
675         offset = iocb->ki_pos;
676         count = iov_iter_count(from);
677
678         if (offset + count > EXT4_I(inode)->i_disksize) {
679                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
680                 if (IS_ERR(handle)) {
681                         ret = PTR_ERR(handle);
682                         goto out;
683                 }
684
685                 ret = ext4_orphan_add(handle, inode);
686                 if (ret) {
687                         ext4_journal_stop(handle);
688                         goto out;
689                 }
690
691                 extend = true;
692                 ext4_journal_stop(handle);
693         }
694
695         ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
696
697         if (extend)
698                 ret = ext4_handle_inode_extension(inode, offset, ret, count);
699 out:
700         inode_unlock(inode);
701         if (ret > 0)
702                 ret = generic_write_sync(iocb, ret);
703         return ret;
704 }
705 #endif
706
707 static ssize_t
708 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
709 {
710         struct inode *inode = file_inode(iocb->ki_filp);
711
712         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
713                 return -EIO;
714
715 #ifdef CONFIG_FS_DAX
716         if (IS_DAX(inode))
717                 return ext4_dax_write_iter(iocb, from);
718 #endif
719         if (iocb->ki_flags & IOCB_DIRECT)
720                 return ext4_dio_write_iter(iocb, from);
721         else
722                 return ext4_buffered_write_iter(iocb, from);
723 }
724
725 #ifdef CONFIG_FS_DAX
726 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf,
727                 enum page_entry_size pe_size)
728 {
729         int error = 0;
730         vm_fault_t result;
731         int retries = 0;
732         handle_t *handle = NULL;
733         struct inode *inode = file_inode(vmf->vma->vm_file);
734         struct super_block *sb = inode->i_sb;
735
736         /*
737          * We have to distinguish real writes from writes which will result in a
738          * COW page; COW writes should *not* poke the journal (the file will not
739          * be changed). Doing so would cause unintended failures when mounted
740          * read-only.
741          *
742          * We check for VM_SHARED rather than vmf->cow_page since the latter is
743          * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
744          * other sizes, dax_iomap_fault will handle splitting / fallback so that
745          * we eventually come back with a COW page.
746          */
747         bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
748                 (vmf->vma->vm_flags & VM_SHARED);
749         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
750         pfn_t pfn;
751
752         if (write) {
753                 sb_start_pagefault(sb);
754                 file_update_time(vmf->vma->vm_file);
755                 filemap_invalidate_lock_shared(mapping);
756 retry:
757                 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
758                                                EXT4_DATA_TRANS_BLOCKS(sb));
759                 if (IS_ERR(handle)) {
760                         filemap_invalidate_unlock_shared(mapping);
761                         sb_end_pagefault(sb);
762                         return VM_FAULT_SIGBUS;
763                 }
764         } else {
765                 filemap_invalidate_lock_shared(mapping);
766         }
767         result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops);
768         if (write) {
769                 ext4_journal_stop(handle);
770
771                 if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
772                     ext4_should_retry_alloc(sb, &retries))
773                         goto retry;
774                 /* Handling synchronous page fault? */
775                 if (result & VM_FAULT_NEEDDSYNC)
776                         result = dax_finish_sync_fault(vmf, pe_size, pfn);
777                 filemap_invalidate_unlock_shared(mapping);
778                 sb_end_pagefault(sb);
779         } else {
780                 filemap_invalidate_unlock_shared(mapping);
781         }
782
783         return result;
784 }
785
786 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
787 {
788         return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
789 }
790
791 static const struct vm_operations_struct ext4_dax_vm_ops = {
792         .fault          = ext4_dax_fault,
793         .huge_fault     = ext4_dax_huge_fault,
794         .page_mkwrite   = ext4_dax_fault,
795         .pfn_mkwrite    = ext4_dax_fault,
796 };
797 #else
798 #define ext4_dax_vm_ops ext4_file_vm_ops
799 #endif
800
801 static const struct vm_operations_struct ext4_file_vm_ops = {
802         .fault          = filemap_fault,
803         .map_pages      = filemap_map_pages,
804         .page_mkwrite   = ext4_page_mkwrite,
805 };
806
807 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
808 {
809         struct inode *inode = file->f_mapping->host;
810         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
811         struct dax_device *dax_dev = sbi->s_daxdev;
812
813         if (unlikely(ext4_forced_shutdown(sbi)))
814                 return -EIO;
815
816         /*
817          * We don't support synchronous mappings for non-DAX files and
818          * for DAX files if underneath dax_device is not synchronous.
819          */
820         if (!daxdev_mapping_supported(vma, dax_dev))
821                 return -EOPNOTSUPP;
822
823         file_accessed(file);
824         if (IS_DAX(file_inode(file))) {
825                 vma->vm_ops = &ext4_dax_vm_ops;
826                 vm_flags_set(vma, VM_HUGEPAGE);
827         } else {
828                 vma->vm_ops = &ext4_file_vm_ops;
829         }
830         return 0;
831 }
832
833 static int ext4_sample_last_mounted(struct super_block *sb,
834                                     struct vfsmount *mnt)
835 {
836         struct ext4_sb_info *sbi = EXT4_SB(sb);
837         struct path path;
838         char buf[64], *cp;
839         handle_t *handle;
840         int err;
841
842         if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED)))
843                 return 0;
844
845         if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
846                 return 0;
847
848         ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED);
849         /*
850          * Sample where the filesystem has been mounted and
851          * store it in the superblock for sysadmin convenience
852          * when trying to sort through large numbers of block
853          * devices or filesystem images.
854          */
855         memset(buf, 0, sizeof(buf));
856         path.mnt = mnt;
857         path.dentry = mnt->mnt_root;
858         cp = d_path(&path, buf, sizeof(buf));
859         err = 0;
860         if (IS_ERR(cp))
861                 goto out;
862
863         handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
864         err = PTR_ERR(handle);
865         if (IS_ERR(handle))
866                 goto out;
867         BUFFER_TRACE(sbi->s_sbh, "get_write_access");
868         err = ext4_journal_get_write_access(handle, sb, sbi->s_sbh,
869                                             EXT4_JTR_NONE);
870         if (err)
871                 goto out_journal;
872         lock_buffer(sbi->s_sbh);
873         strncpy(sbi->s_es->s_last_mounted, cp,
874                 sizeof(sbi->s_es->s_last_mounted));
875         ext4_superblock_csum_set(sb);
876         unlock_buffer(sbi->s_sbh);
877         ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh);
878 out_journal:
879         ext4_journal_stop(handle);
880 out:
881         sb_end_intwrite(sb);
882         return err;
883 }
884
885 static int ext4_file_open(struct inode *inode, struct file *filp)
886 {
887         int ret;
888
889         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
890                 return -EIO;
891
892         ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
893         if (ret)
894                 return ret;
895
896         ret = fscrypt_file_open(inode, filp);
897         if (ret)
898                 return ret;
899
900         ret = fsverity_file_open(inode, filp);
901         if (ret)
902                 return ret;
903
904         /*
905          * Set up the jbd2_inode if we are opening the inode for
906          * writing and the journal is present
907          */
908         if (filp->f_mode & FMODE_WRITE) {
909                 ret = ext4_inode_attach_jinode(inode);
910                 if (ret < 0)
911                         return ret;
912         }
913
914         filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC |
915                         FMODE_DIO_PARALLEL_WRITE;
916         return dquot_file_open(inode, filp);
917 }
918
919 /*
920  * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
921  * by calling generic_file_llseek_size() with the appropriate maxbytes
922  * value for each.
923  */
924 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
925 {
926         struct inode *inode = file->f_mapping->host;
927         loff_t maxbytes;
928
929         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
930                 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
931         else
932                 maxbytes = inode->i_sb->s_maxbytes;
933
934         switch (whence) {
935         default:
936                 return generic_file_llseek_size(file, offset, whence,
937                                                 maxbytes, i_size_read(inode));
938         case SEEK_HOLE:
939                 inode_lock_shared(inode);
940                 offset = iomap_seek_hole(inode, offset,
941                                          &ext4_iomap_report_ops);
942                 inode_unlock_shared(inode);
943                 break;
944         case SEEK_DATA:
945                 inode_lock_shared(inode);
946                 offset = iomap_seek_data(inode, offset,
947                                          &ext4_iomap_report_ops);
948                 inode_unlock_shared(inode);
949                 break;
950         }
951
952         if (offset < 0)
953                 return offset;
954         return vfs_setpos(file, offset, maxbytes);
955 }
956
957 const struct file_operations ext4_file_operations = {
958         .llseek         = ext4_llseek,
959         .read_iter      = ext4_file_read_iter,
960         .write_iter     = ext4_file_write_iter,
961         .iopoll         = iocb_bio_iopoll,
962         .unlocked_ioctl = ext4_ioctl,
963 #ifdef CONFIG_COMPAT
964         .compat_ioctl   = ext4_compat_ioctl,
965 #endif
966         .mmap           = ext4_file_mmap,
967         .mmap_supported_flags = MAP_SYNC,
968         .open           = ext4_file_open,
969         .release        = ext4_release_file,
970         .fsync          = ext4_sync_file,
971         .get_unmapped_area = thp_get_unmapped_area,
972         .splice_read    = ext4_file_splice_read,
973         .splice_write   = iter_file_splice_write,
974         .fallocate      = ext4_fallocate,
975 };
976
977 const struct inode_operations ext4_file_inode_operations = {
978         .setattr        = ext4_setattr,
979         .getattr        = ext4_file_getattr,
980         .listxattr      = ext4_listxattr,
981         .get_inode_acl  = ext4_get_acl,
982         .set_acl        = ext4_set_acl,
983         .fiemap         = ext4_fiemap,
984         .fileattr_get   = ext4_fileattr_get,
985         .fileattr_set   = ext4_fileattr_set,
986 };
987
This page took 0.087006 seconds and 4 git commands to generate.