1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
4 * Copyright IBM Corporation, 2007
7 * Copyright 2007 OpenVZ SWsoft Inc
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
67 #include <linux/uaccess.h>
69 #include <trace/events/vmscan.h>
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
76 #define MEM_CGROUP_RECLAIM_RETRIES 5
78 /* Socket memory accounting disabled? */
79 static bool cgroup_memory_nosocket;
81 /* Kernel memory accounting disabled? */
82 static bool cgroup_memory_nokmem;
84 /* Whether the swap controller is active */
85 #ifdef CONFIG_MEMCG_SWAP
86 int do_swap_account __read_mostly;
88 #define do_swap_account 0
91 #ifdef CONFIG_CGROUP_WRITEBACK
92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101 #define THRESHOLDS_EVENTS_TARGET 128
102 #define SOFTLIMIT_EVENTS_TARGET 1024
105 * Cgroups above their limits are maintained in a RB-Tree, independent of
106 * their hierarchy representation
109 struct mem_cgroup_tree_per_node {
110 struct rb_root rb_root;
111 struct rb_node *rb_rightmost;
115 struct mem_cgroup_tree {
116 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
119 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
122 struct mem_cgroup_eventfd_list {
123 struct list_head list;
124 struct eventfd_ctx *eventfd;
128 * cgroup_event represents events which userspace want to receive.
130 struct mem_cgroup_event {
132 * memcg which the event belongs to.
134 struct mem_cgroup *memcg;
136 * eventfd to signal userspace about the event.
138 struct eventfd_ctx *eventfd;
140 * Each of these stored in a list by the cgroup.
142 struct list_head list;
144 * register_event() callback will be used to add new userspace
145 * waiter for changes related to this event. Use eventfd_signal()
146 * on eventfd to send notification to userspace.
148 int (*register_event)(struct mem_cgroup *memcg,
149 struct eventfd_ctx *eventfd, const char *args);
151 * unregister_event() callback will be called when userspace closes
152 * the eventfd or on cgroup removing. This callback must be set,
153 * if you want provide notification functionality.
155 void (*unregister_event)(struct mem_cgroup *memcg,
156 struct eventfd_ctx *eventfd);
158 * All fields below needed to unregister event when
159 * userspace closes eventfd.
162 wait_queue_head_t *wqh;
163 wait_queue_entry_t wait;
164 struct work_struct remove;
167 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
170 /* Stuffs for move charges at task migration. */
172 * Types of charges to be moved.
174 #define MOVE_ANON 0x1U
175 #define MOVE_FILE 0x2U
176 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
178 /* "mc" and its members are protected by cgroup_mutex */
179 static struct move_charge_struct {
180 spinlock_t lock; /* for from, to */
181 struct mm_struct *mm;
182 struct mem_cgroup *from;
183 struct mem_cgroup *to;
185 unsigned long precharge;
186 unsigned long moved_charge;
187 unsigned long moved_swap;
188 struct task_struct *moving_task; /* a task moving charges */
189 wait_queue_head_t waitq; /* a waitq for other context */
191 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
192 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197 * limit reclaim to prevent infinite loops, if they ever occur.
199 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
200 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
203 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
204 MEM_CGROUP_CHARGE_TYPE_ANON,
205 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
206 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
210 /* for encoding cft->private value on file */
219 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
220 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
221 #define MEMFILE_ATTR(val) ((val) & 0xffff)
222 /* Used for OOM nofiier */
223 #define OOM_CONTROL (0)
226 * Iteration constructs for visiting all cgroups (under a tree). If
227 * loops are exited prematurely (break), mem_cgroup_iter_break() must
228 * be used for reference counting.
230 #define for_each_mem_cgroup_tree(iter, root) \
231 for (iter = mem_cgroup_iter(root, NULL, NULL); \
233 iter = mem_cgroup_iter(root, iter, NULL))
235 #define for_each_mem_cgroup(iter) \
236 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
238 iter = mem_cgroup_iter(NULL, iter, NULL))
240 static inline bool should_force_charge(void)
242 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
243 (current->flags & PF_EXITING);
246 /* Some nice accessors for the vmpressure. */
247 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
250 memcg = root_mem_cgroup;
251 return &memcg->vmpressure;
254 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
256 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
259 #ifdef CONFIG_MEMCG_KMEM
261 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
262 * The main reason for not using cgroup id for this:
263 * this works better in sparse environments, where we have a lot of memcgs,
264 * but only a few kmem-limited. Or also, if we have, for instance, 200
265 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
266 * 200 entry array for that.
268 * The current size of the caches array is stored in memcg_nr_cache_ids. It
269 * will double each time we have to increase it.
271 static DEFINE_IDA(memcg_cache_ida);
272 int memcg_nr_cache_ids;
274 /* Protects memcg_nr_cache_ids */
275 static DECLARE_RWSEM(memcg_cache_ids_sem);
277 void memcg_get_cache_ids(void)
279 down_read(&memcg_cache_ids_sem);
282 void memcg_put_cache_ids(void)
284 up_read(&memcg_cache_ids_sem);
288 * MIN_SIZE is different than 1, because we would like to avoid going through
289 * the alloc/free process all the time. In a small machine, 4 kmem-limited
290 * cgroups is a reasonable guess. In the future, it could be a parameter or
291 * tunable, but that is strictly not necessary.
293 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
294 * this constant directly from cgroup, but it is understandable that this is
295 * better kept as an internal representation in cgroup.c. In any case, the
296 * cgrp_id space is not getting any smaller, and we don't have to necessarily
297 * increase ours as well if it increases.
299 #define MEMCG_CACHES_MIN_SIZE 4
300 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
303 * A lot of the calls to the cache allocation functions are expected to be
304 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
305 * conditional to this static branch, we'll have to allow modules that does
306 * kmem_cache_alloc and the such to see this symbol as well
308 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
309 EXPORT_SYMBOL(memcg_kmem_enabled_key);
311 struct workqueue_struct *memcg_kmem_cache_wq;
314 static int memcg_shrinker_map_size;
315 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
317 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
319 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
322 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
323 int size, int old_size)
325 struct memcg_shrinker_map *new, *old;
328 lockdep_assert_held(&memcg_shrinker_map_mutex);
331 old = rcu_dereference_protected(
332 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
333 /* Not yet online memcg */
337 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
341 /* Set all old bits, clear all new bits */
342 memset(new->map, (int)0xff, old_size);
343 memset((void *)new->map + old_size, 0, size - old_size);
345 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
346 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
352 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
354 struct mem_cgroup_per_node *pn;
355 struct memcg_shrinker_map *map;
358 if (mem_cgroup_is_root(memcg))
362 pn = mem_cgroup_nodeinfo(memcg, nid);
363 map = rcu_dereference_protected(pn->shrinker_map, true);
366 rcu_assign_pointer(pn->shrinker_map, NULL);
370 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
372 struct memcg_shrinker_map *map;
373 int nid, size, ret = 0;
375 if (mem_cgroup_is_root(memcg))
378 mutex_lock(&memcg_shrinker_map_mutex);
379 size = memcg_shrinker_map_size;
381 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
383 memcg_free_shrinker_maps(memcg);
387 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
389 mutex_unlock(&memcg_shrinker_map_mutex);
394 int memcg_expand_shrinker_maps(int new_id)
396 int size, old_size, ret = 0;
397 struct mem_cgroup *memcg;
399 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
400 old_size = memcg_shrinker_map_size;
401 if (size <= old_size)
404 mutex_lock(&memcg_shrinker_map_mutex);
405 if (!root_mem_cgroup)
408 for_each_mem_cgroup(memcg) {
409 if (mem_cgroup_is_root(memcg))
411 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
413 mem_cgroup_iter_break(NULL, memcg);
419 memcg_shrinker_map_size = size;
420 mutex_unlock(&memcg_shrinker_map_mutex);
424 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
426 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
427 struct memcg_shrinker_map *map;
430 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
431 /* Pairs with smp mb in shrink_slab() */
432 smp_mb__before_atomic();
433 set_bit(shrinker_id, map->map);
439 * mem_cgroup_css_from_page - css of the memcg associated with a page
440 * @page: page of interest
442 * If memcg is bound to the default hierarchy, css of the memcg associated
443 * with @page is returned. The returned css remains associated with @page
444 * until it is released.
446 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
449 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
451 struct mem_cgroup *memcg;
453 memcg = page->mem_cgroup;
455 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
456 memcg = root_mem_cgroup;
462 * page_cgroup_ino - return inode number of the memcg a page is charged to
465 * Look up the closest online ancestor of the memory cgroup @page is charged to
466 * and return its inode number or 0 if @page is not charged to any cgroup. It
467 * is safe to call this function without holding a reference to @page.
469 * Note, this function is inherently racy, because there is nothing to prevent
470 * the cgroup inode from getting torn down and potentially reallocated a moment
471 * after page_cgroup_ino() returns, so it only should be used by callers that
472 * do not care (such as procfs interfaces).
474 ino_t page_cgroup_ino(struct page *page)
476 struct mem_cgroup *memcg;
477 unsigned long ino = 0;
480 if (PageSlab(page) && !PageTail(page))
481 memcg = memcg_from_slab_page(page);
483 memcg = READ_ONCE(page->mem_cgroup);
484 while (memcg && !(memcg->css.flags & CSS_ONLINE))
485 memcg = parent_mem_cgroup(memcg);
487 ino = cgroup_ino(memcg->css.cgroup);
492 static struct mem_cgroup_per_node *
493 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
495 int nid = page_to_nid(page);
497 return memcg->nodeinfo[nid];
500 static struct mem_cgroup_tree_per_node *
501 soft_limit_tree_node(int nid)
503 return soft_limit_tree.rb_tree_per_node[nid];
506 static struct mem_cgroup_tree_per_node *
507 soft_limit_tree_from_page(struct page *page)
509 int nid = page_to_nid(page);
511 return soft_limit_tree.rb_tree_per_node[nid];
514 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
515 struct mem_cgroup_tree_per_node *mctz,
516 unsigned long new_usage_in_excess)
518 struct rb_node **p = &mctz->rb_root.rb_node;
519 struct rb_node *parent = NULL;
520 struct mem_cgroup_per_node *mz_node;
521 bool rightmost = true;
526 mz->usage_in_excess = new_usage_in_excess;
527 if (!mz->usage_in_excess)
531 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
533 if (mz->usage_in_excess < mz_node->usage_in_excess) {
539 * We can't avoid mem cgroups that are over their soft
540 * limit by the same amount
542 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
547 mctz->rb_rightmost = &mz->tree_node;
549 rb_link_node(&mz->tree_node, parent, p);
550 rb_insert_color(&mz->tree_node, &mctz->rb_root);
554 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
555 struct mem_cgroup_tree_per_node *mctz)
560 if (&mz->tree_node == mctz->rb_rightmost)
561 mctz->rb_rightmost = rb_prev(&mz->tree_node);
563 rb_erase(&mz->tree_node, &mctz->rb_root);
567 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
568 struct mem_cgroup_tree_per_node *mctz)
572 spin_lock_irqsave(&mctz->lock, flags);
573 __mem_cgroup_remove_exceeded(mz, mctz);
574 spin_unlock_irqrestore(&mctz->lock, flags);
577 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
579 unsigned long nr_pages = page_counter_read(&memcg->memory);
580 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
581 unsigned long excess = 0;
583 if (nr_pages > soft_limit)
584 excess = nr_pages - soft_limit;
589 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
591 unsigned long excess;
592 struct mem_cgroup_per_node *mz;
593 struct mem_cgroup_tree_per_node *mctz;
595 mctz = soft_limit_tree_from_page(page);
599 * Necessary to update all ancestors when hierarchy is used.
600 * because their event counter is not touched.
602 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
603 mz = mem_cgroup_page_nodeinfo(memcg, page);
604 excess = soft_limit_excess(memcg);
606 * We have to update the tree if mz is on RB-tree or
607 * mem is over its softlimit.
609 if (excess || mz->on_tree) {
612 spin_lock_irqsave(&mctz->lock, flags);
613 /* if on-tree, remove it */
615 __mem_cgroup_remove_exceeded(mz, mctz);
617 * Insert again. mz->usage_in_excess will be updated.
618 * If excess is 0, no tree ops.
620 __mem_cgroup_insert_exceeded(mz, mctz, excess);
621 spin_unlock_irqrestore(&mctz->lock, flags);
626 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
628 struct mem_cgroup_tree_per_node *mctz;
629 struct mem_cgroup_per_node *mz;
633 mz = mem_cgroup_nodeinfo(memcg, nid);
634 mctz = soft_limit_tree_node(nid);
636 mem_cgroup_remove_exceeded(mz, mctz);
640 static struct mem_cgroup_per_node *
641 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
643 struct mem_cgroup_per_node *mz;
647 if (!mctz->rb_rightmost)
648 goto done; /* Nothing to reclaim from */
650 mz = rb_entry(mctz->rb_rightmost,
651 struct mem_cgroup_per_node, tree_node);
653 * Remove the node now but someone else can add it back,
654 * we will to add it back at the end of reclaim to its correct
655 * position in the tree.
657 __mem_cgroup_remove_exceeded(mz, mctz);
658 if (!soft_limit_excess(mz->memcg) ||
659 !css_tryget_online(&mz->memcg->css))
665 static struct mem_cgroup_per_node *
666 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
668 struct mem_cgroup_per_node *mz;
670 spin_lock_irq(&mctz->lock);
671 mz = __mem_cgroup_largest_soft_limit_node(mctz);
672 spin_unlock_irq(&mctz->lock);
677 * __mod_memcg_state - update cgroup memory statistics
678 * @memcg: the memory cgroup
679 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
680 * @val: delta to add to the counter, can be negative
682 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
686 if (mem_cgroup_disabled())
689 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
690 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
691 struct mem_cgroup *mi;
694 * Batch local counters to keep them in sync with
695 * the hierarchical ones.
697 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
698 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
699 atomic_long_add(x, &mi->vmstats[idx]);
702 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
705 static struct mem_cgroup_per_node *
706 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
708 struct mem_cgroup *parent;
710 parent = parent_mem_cgroup(pn->memcg);
713 return mem_cgroup_nodeinfo(parent, nid);
717 * __mod_lruvec_state - update lruvec memory statistics
718 * @lruvec: the lruvec
719 * @idx: the stat item
720 * @val: delta to add to the counter, can be negative
722 * The lruvec is the intersection of the NUMA node and a cgroup. This
723 * function updates the all three counters that are affected by a
724 * change of state at this level: per-node, per-cgroup, per-lruvec.
726 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
729 pg_data_t *pgdat = lruvec_pgdat(lruvec);
730 struct mem_cgroup_per_node *pn;
731 struct mem_cgroup *memcg;
735 __mod_node_page_state(pgdat, idx, val);
737 if (mem_cgroup_disabled())
740 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
744 __mod_memcg_state(memcg, idx, val);
747 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
749 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
750 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
751 struct mem_cgroup_per_node *pi;
753 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
754 atomic_long_add(x, &pi->lruvec_stat[idx]);
757 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
760 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
762 struct page *page = virt_to_head_page(p);
763 pg_data_t *pgdat = page_pgdat(page);
764 struct mem_cgroup *memcg;
765 struct lruvec *lruvec;
768 memcg = memcg_from_slab_page(page);
770 /* Untracked pages have no memcg, no lruvec. Update only the node */
771 if (!memcg || memcg == root_mem_cgroup) {
772 __mod_node_page_state(pgdat, idx, val);
774 lruvec = mem_cgroup_lruvec(memcg, pgdat);
775 __mod_lruvec_state(lruvec, idx, val);
781 * __count_memcg_events - account VM events in a cgroup
782 * @memcg: the memory cgroup
783 * @idx: the event item
784 * @count: the number of events that occured
786 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
791 if (mem_cgroup_disabled())
794 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
795 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
796 struct mem_cgroup *mi;
799 * Batch local counters to keep them in sync with
800 * the hierarchical ones.
802 __this_cpu_add(memcg->vmstats_local->events[idx], x);
803 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
804 atomic_long_add(x, &mi->vmevents[idx]);
807 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
810 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
812 return atomic_long_read(&memcg->vmevents[event]);
815 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
820 for_each_possible_cpu(cpu)
821 x += per_cpu(memcg->vmstats_local->events[event], cpu);
825 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
827 bool compound, int nr_pages)
830 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
831 * counted as CACHE even if it's on ANON LRU.
834 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
836 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
837 if (PageSwapBacked(page))
838 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
842 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
843 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
846 /* pagein of a big page is an event. So, ignore page size */
848 __count_memcg_events(memcg, PGPGIN, 1);
850 __count_memcg_events(memcg, PGPGOUT, 1);
851 nr_pages = -nr_pages; /* for event */
854 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
857 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
858 enum mem_cgroup_events_target target)
860 unsigned long val, next;
862 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
863 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
864 /* from time_after() in jiffies.h */
865 if ((long)(next - val) < 0) {
867 case MEM_CGROUP_TARGET_THRESH:
868 next = val + THRESHOLDS_EVENTS_TARGET;
870 case MEM_CGROUP_TARGET_SOFTLIMIT:
871 next = val + SOFTLIMIT_EVENTS_TARGET;
876 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
883 * Check events in order.
886 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
888 /* threshold event is triggered in finer grain than soft limit */
889 if (unlikely(mem_cgroup_event_ratelimit(memcg,
890 MEM_CGROUP_TARGET_THRESH))) {
893 do_softlimit = mem_cgroup_event_ratelimit(memcg,
894 MEM_CGROUP_TARGET_SOFTLIMIT);
895 mem_cgroup_threshold(memcg);
896 if (unlikely(do_softlimit))
897 mem_cgroup_update_tree(memcg, page);
901 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
904 * mm_update_next_owner() may clear mm->owner to NULL
905 * if it races with swapoff, page migration, etc.
906 * So this can be called with p == NULL.
911 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
913 EXPORT_SYMBOL(mem_cgroup_from_task);
916 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
917 * @mm: mm from which memcg should be extracted. It can be NULL.
919 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
920 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
923 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
925 struct mem_cgroup *memcg;
927 if (mem_cgroup_disabled())
933 * Page cache insertions can happen withou an
934 * actual mm context, e.g. during disk probing
935 * on boot, loopback IO, acct() writes etc.
938 memcg = root_mem_cgroup;
940 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
941 if (unlikely(!memcg))
942 memcg = root_mem_cgroup;
944 } while (!css_tryget(&memcg->css));
948 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
951 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
952 * @page: page from which memcg should be extracted.
954 * Obtain a reference on page->memcg and returns it if successful. Otherwise
955 * root_mem_cgroup is returned.
957 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
959 struct mem_cgroup *memcg = page->mem_cgroup;
961 if (mem_cgroup_disabled())
965 if (!memcg || !css_tryget_online(&memcg->css))
966 memcg = root_mem_cgroup;
970 EXPORT_SYMBOL(get_mem_cgroup_from_page);
973 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
975 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
977 if (unlikely(current->active_memcg)) {
978 struct mem_cgroup *memcg = root_mem_cgroup;
981 if (css_tryget_online(¤t->active_memcg->css))
982 memcg = current->active_memcg;
986 return get_mem_cgroup_from_mm(current->mm);
990 * mem_cgroup_iter - iterate over memory cgroup hierarchy
991 * @root: hierarchy root
992 * @prev: previously returned memcg, NULL on first invocation
993 * @reclaim: cookie for shared reclaim walks, NULL for full walks
995 * Returns references to children of the hierarchy below @root, or
996 * @root itself, or %NULL after a full round-trip.
998 * Caller must pass the return value in @prev on subsequent
999 * invocations for reference counting, or use mem_cgroup_iter_break()
1000 * to cancel a hierarchy walk before the round-trip is complete.
1002 * Reclaimers can specify a node and a priority level in @reclaim to
1003 * divide up the memcgs in the hierarchy among all concurrent
1004 * reclaimers operating on the same node and priority.
1006 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1007 struct mem_cgroup *prev,
1008 struct mem_cgroup_reclaim_cookie *reclaim)
1010 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1011 struct cgroup_subsys_state *css = NULL;
1012 struct mem_cgroup *memcg = NULL;
1013 struct mem_cgroup *pos = NULL;
1015 if (mem_cgroup_disabled())
1019 root = root_mem_cgroup;
1021 if (prev && !reclaim)
1024 if (!root->use_hierarchy && root != root_mem_cgroup) {
1033 struct mem_cgroup_per_node *mz;
1035 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1038 if (prev && reclaim->generation != iter->generation)
1042 pos = READ_ONCE(iter->position);
1043 if (!pos || css_tryget(&pos->css))
1046 * css reference reached zero, so iter->position will
1047 * be cleared by ->css_released. However, we should not
1048 * rely on this happening soon, because ->css_released
1049 * is called from a work queue, and by busy-waiting we
1050 * might block it. So we clear iter->position right
1053 (void)cmpxchg(&iter->position, pos, NULL);
1061 css = css_next_descendant_pre(css, &root->css);
1064 * Reclaimers share the hierarchy walk, and a
1065 * new one might jump in right at the end of
1066 * the hierarchy - make sure they see at least
1067 * one group and restart from the beginning.
1075 * Verify the css and acquire a reference. The root
1076 * is provided by the caller, so we know it's alive
1077 * and kicking, and don't take an extra reference.
1079 memcg = mem_cgroup_from_css(css);
1081 if (css == &root->css)
1084 if (css_tryget(css))
1092 * The position could have already been updated by a competing
1093 * thread, so check that the value hasn't changed since we read
1094 * it to avoid reclaiming from the same cgroup twice.
1096 (void)cmpxchg(&iter->position, pos, memcg);
1104 reclaim->generation = iter->generation;
1110 if (prev && prev != root)
1111 css_put(&prev->css);
1117 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1118 * @root: hierarchy root
1119 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1121 void mem_cgroup_iter_break(struct mem_cgroup *root,
1122 struct mem_cgroup *prev)
1125 root = root_mem_cgroup;
1126 if (prev && prev != root)
1127 css_put(&prev->css);
1130 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1131 struct mem_cgroup *dead_memcg)
1133 struct mem_cgroup_reclaim_iter *iter;
1134 struct mem_cgroup_per_node *mz;
1137 for_each_node(nid) {
1138 mz = mem_cgroup_nodeinfo(from, nid);
1140 cmpxchg(&iter->position, dead_memcg, NULL);
1144 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1146 struct mem_cgroup *memcg = dead_memcg;
1147 struct mem_cgroup *last;
1150 __invalidate_reclaim_iterators(memcg, dead_memcg);
1152 } while ((memcg = parent_mem_cgroup(memcg)));
1155 * When cgruop1 non-hierarchy mode is used,
1156 * parent_mem_cgroup() does not walk all the way up to the
1157 * cgroup root (root_mem_cgroup). So we have to handle
1158 * dead_memcg from cgroup root separately.
1160 if (last != root_mem_cgroup)
1161 __invalidate_reclaim_iterators(root_mem_cgroup,
1166 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1167 * @memcg: hierarchy root
1168 * @fn: function to call for each task
1169 * @arg: argument passed to @fn
1171 * This function iterates over tasks attached to @memcg or to any of its
1172 * descendants and calls @fn for each task. If @fn returns a non-zero
1173 * value, the function breaks the iteration loop and returns the value.
1174 * Otherwise, it will iterate over all tasks and return 0.
1176 * This function must not be called for the root memory cgroup.
1178 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1179 int (*fn)(struct task_struct *, void *), void *arg)
1181 struct mem_cgroup *iter;
1184 BUG_ON(memcg == root_mem_cgroup);
1186 for_each_mem_cgroup_tree(iter, memcg) {
1187 struct css_task_iter it;
1188 struct task_struct *task;
1190 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1191 while (!ret && (task = css_task_iter_next(&it)))
1192 ret = fn(task, arg);
1193 css_task_iter_end(&it);
1195 mem_cgroup_iter_break(memcg, iter);
1203 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1205 * @pgdat: pgdat of the page
1207 * This function is only safe when following the LRU page isolation
1208 * and putback protocol: the LRU lock must be held, and the page must
1209 * either be PageLRU() or the caller must have isolated/allocated it.
1211 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1213 struct mem_cgroup_per_node *mz;
1214 struct mem_cgroup *memcg;
1215 struct lruvec *lruvec;
1217 if (mem_cgroup_disabled()) {
1218 lruvec = &pgdat->__lruvec;
1222 memcg = page->mem_cgroup;
1224 * Swapcache readahead pages are added to the LRU - and
1225 * possibly migrated - before they are charged.
1228 memcg = root_mem_cgroup;
1230 mz = mem_cgroup_page_nodeinfo(memcg, page);
1231 lruvec = &mz->lruvec;
1234 * Since a node can be onlined after the mem_cgroup was created,
1235 * we have to be prepared to initialize lruvec->zone here;
1236 * and if offlined then reonlined, we need to reinitialize it.
1238 if (unlikely(lruvec->pgdat != pgdat))
1239 lruvec->pgdat = pgdat;
1244 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1245 * @lruvec: mem_cgroup per zone lru vector
1246 * @lru: index of lru list the page is sitting on
1247 * @zid: zone id of the accounted pages
1248 * @nr_pages: positive when adding or negative when removing
1250 * This function must be called under lru_lock, just before a page is added
1251 * to or just after a page is removed from an lru list (that ordering being
1252 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1254 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1255 int zid, int nr_pages)
1257 struct mem_cgroup_per_node *mz;
1258 unsigned long *lru_size;
1261 if (mem_cgroup_disabled())
1264 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1265 lru_size = &mz->lru_zone_size[zid][lru];
1268 *lru_size += nr_pages;
1271 if (WARN_ONCE(size < 0,
1272 "%s(%p, %d, %d): lru_size %ld\n",
1273 __func__, lruvec, lru, nr_pages, size)) {
1279 *lru_size += nr_pages;
1283 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1284 * @memcg: the memory cgroup
1286 * Returns the maximum amount of memory @mem can be charged with, in
1289 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1291 unsigned long margin = 0;
1292 unsigned long count;
1293 unsigned long limit;
1295 count = page_counter_read(&memcg->memory);
1296 limit = READ_ONCE(memcg->memory.max);
1298 margin = limit - count;
1300 if (do_memsw_account()) {
1301 count = page_counter_read(&memcg->memsw);
1302 limit = READ_ONCE(memcg->memsw.max);
1304 margin = min(margin, limit - count);
1313 * A routine for checking "mem" is under move_account() or not.
1315 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1316 * moving cgroups. This is for waiting at high-memory pressure
1319 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1321 struct mem_cgroup *from;
1322 struct mem_cgroup *to;
1325 * Unlike task_move routines, we access mc.to, mc.from not under
1326 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1328 spin_lock(&mc.lock);
1334 ret = mem_cgroup_is_descendant(from, memcg) ||
1335 mem_cgroup_is_descendant(to, memcg);
1337 spin_unlock(&mc.lock);
1341 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1343 if (mc.moving_task && current != mc.moving_task) {
1344 if (mem_cgroup_under_move(memcg)) {
1346 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1347 /* moving charge context might have finished. */
1350 finish_wait(&mc.waitq, &wait);
1357 static char *memory_stat_format(struct mem_cgroup *memcg)
1362 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1367 * Provide statistics on the state of the memory subsystem as
1368 * well as cumulative event counters that show past behavior.
1370 * This list is ordered following a combination of these gradients:
1371 * 1) generic big picture -> specifics and details
1372 * 2) reflecting userspace activity -> reflecting kernel heuristics
1374 * Current memory state:
1377 seq_buf_printf(&s, "anon %llu\n",
1378 (u64)memcg_page_state(memcg, MEMCG_RSS) *
1380 seq_buf_printf(&s, "file %llu\n",
1381 (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1383 seq_buf_printf(&s, "kernel_stack %llu\n",
1384 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1386 seq_buf_printf(&s, "slab %llu\n",
1387 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1388 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1390 seq_buf_printf(&s, "sock %llu\n",
1391 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1394 seq_buf_printf(&s, "shmem %llu\n",
1395 (u64)memcg_page_state(memcg, NR_SHMEM) *
1397 seq_buf_printf(&s, "file_mapped %llu\n",
1398 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1400 seq_buf_printf(&s, "file_dirty %llu\n",
1401 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1403 seq_buf_printf(&s, "file_writeback %llu\n",
1404 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1408 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1409 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1410 * arse because it requires migrating the work out of rmap to a place
1411 * where the page->mem_cgroup is set up and stable.
1413 seq_buf_printf(&s, "anon_thp %llu\n",
1414 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1417 for (i = 0; i < NR_LRU_LISTS; i++)
1418 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1419 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1422 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1423 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1425 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1426 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1429 /* Accumulated memory events */
1431 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1432 memcg_events(memcg, PGFAULT));
1433 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1434 memcg_events(memcg, PGMAJFAULT));
1436 seq_buf_printf(&s, "workingset_refault %lu\n",
1437 memcg_page_state(memcg, WORKINGSET_REFAULT));
1438 seq_buf_printf(&s, "workingset_activate %lu\n",
1439 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1440 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1441 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1443 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1444 memcg_events(memcg, PGREFILL));
1445 seq_buf_printf(&s, "pgscan %lu\n",
1446 memcg_events(memcg, PGSCAN_KSWAPD) +
1447 memcg_events(memcg, PGSCAN_DIRECT));
1448 seq_buf_printf(&s, "pgsteal %lu\n",
1449 memcg_events(memcg, PGSTEAL_KSWAPD) +
1450 memcg_events(memcg, PGSTEAL_DIRECT));
1451 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1452 memcg_events(memcg, PGACTIVATE));
1453 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1454 memcg_events(memcg, PGDEACTIVATE));
1455 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1456 memcg_events(memcg, PGLAZYFREE));
1457 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1458 memcg_events(memcg, PGLAZYFREED));
1460 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1461 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1462 memcg_events(memcg, THP_FAULT_ALLOC));
1463 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1464 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1465 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1467 /* The above should easily fit into one page */
1468 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1473 #define K(x) ((x) << (PAGE_SHIFT-10))
1475 * mem_cgroup_print_oom_context: Print OOM information relevant to
1476 * memory controller.
1477 * @memcg: The memory cgroup that went over limit
1478 * @p: Task that is going to be killed
1480 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1483 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1488 pr_cont(",oom_memcg=");
1489 pr_cont_cgroup_path(memcg->css.cgroup);
1491 pr_cont(",global_oom");
1493 pr_cont(",task_memcg=");
1494 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1500 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1501 * memory controller.
1502 * @memcg: The memory cgroup that went over limit
1504 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1508 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1509 K((u64)page_counter_read(&memcg->memory)),
1510 K((u64)memcg->memory.max), memcg->memory.failcnt);
1511 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1512 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1513 K((u64)page_counter_read(&memcg->swap)),
1514 K((u64)memcg->swap.max), memcg->swap.failcnt);
1516 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1517 K((u64)page_counter_read(&memcg->memsw)),
1518 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1519 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1520 K((u64)page_counter_read(&memcg->kmem)),
1521 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1524 pr_info("Memory cgroup stats for ");
1525 pr_cont_cgroup_path(memcg->css.cgroup);
1527 buf = memory_stat_format(memcg);
1535 * Return the memory (and swap, if configured) limit for a memcg.
1537 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1541 max = memcg->memory.max;
1542 if (mem_cgroup_swappiness(memcg)) {
1543 unsigned long memsw_max;
1544 unsigned long swap_max;
1546 memsw_max = memcg->memsw.max;
1547 swap_max = memcg->swap.max;
1548 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1549 max = min(max + swap_max, memsw_max);
1554 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1556 return page_counter_read(&memcg->memory);
1559 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1562 struct oom_control oc = {
1566 .gfp_mask = gfp_mask,
1571 if (mutex_lock_killable(&oom_lock))
1574 * A few threads which were not waiting at mutex_lock_killable() can
1575 * fail to bail out. Therefore, check again after holding oom_lock.
1577 ret = should_force_charge() || out_of_memory(&oc);
1578 mutex_unlock(&oom_lock);
1582 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1585 unsigned long *total_scanned)
1587 struct mem_cgroup *victim = NULL;
1590 unsigned long excess;
1591 unsigned long nr_scanned;
1592 struct mem_cgroup_reclaim_cookie reclaim = {
1596 excess = soft_limit_excess(root_memcg);
1599 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1604 * If we have not been able to reclaim
1605 * anything, it might because there are
1606 * no reclaimable pages under this hierarchy
1611 * We want to do more targeted reclaim.
1612 * excess >> 2 is not to excessive so as to
1613 * reclaim too much, nor too less that we keep
1614 * coming back to reclaim from this cgroup
1616 if (total >= (excess >> 2) ||
1617 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1622 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1623 pgdat, &nr_scanned);
1624 *total_scanned += nr_scanned;
1625 if (!soft_limit_excess(root_memcg))
1628 mem_cgroup_iter_break(root_memcg, victim);
1632 #ifdef CONFIG_LOCKDEP
1633 static struct lockdep_map memcg_oom_lock_dep_map = {
1634 .name = "memcg_oom_lock",
1638 static DEFINE_SPINLOCK(memcg_oom_lock);
1641 * Check OOM-Killer is already running under our hierarchy.
1642 * If someone is running, return false.
1644 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1646 struct mem_cgroup *iter, *failed = NULL;
1648 spin_lock(&memcg_oom_lock);
1650 for_each_mem_cgroup_tree(iter, memcg) {
1651 if (iter->oom_lock) {
1653 * this subtree of our hierarchy is already locked
1654 * so we cannot give a lock.
1657 mem_cgroup_iter_break(memcg, iter);
1660 iter->oom_lock = true;
1665 * OK, we failed to lock the whole subtree so we have
1666 * to clean up what we set up to the failing subtree
1668 for_each_mem_cgroup_tree(iter, memcg) {
1669 if (iter == failed) {
1670 mem_cgroup_iter_break(memcg, iter);
1673 iter->oom_lock = false;
1676 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1678 spin_unlock(&memcg_oom_lock);
1683 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1685 struct mem_cgroup *iter;
1687 spin_lock(&memcg_oom_lock);
1688 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1689 for_each_mem_cgroup_tree(iter, memcg)
1690 iter->oom_lock = false;
1691 spin_unlock(&memcg_oom_lock);
1694 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1696 struct mem_cgroup *iter;
1698 spin_lock(&memcg_oom_lock);
1699 for_each_mem_cgroup_tree(iter, memcg)
1701 spin_unlock(&memcg_oom_lock);
1704 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1706 struct mem_cgroup *iter;
1709 * When a new child is created while the hierarchy is under oom,
1710 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1712 spin_lock(&memcg_oom_lock);
1713 for_each_mem_cgroup_tree(iter, memcg)
1714 if (iter->under_oom > 0)
1716 spin_unlock(&memcg_oom_lock);
1719 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1721 struct oom_wait_info {
1722 struct mem_cgroup *memcg;
1723 wait_queue_entry_t wait;
1726 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1727 unsigned mode, int sync, void *arg)
1729 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1730 struct mem_cgroup *oom_wait_memcg;
1731 struct oom_wait_info *oom_wait_info;
1733 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1734 oom_wait_memcg = oom_wait_info->memcg;
1736 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1737 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1739 return autoremove_wake_function(wait, mode, sync, arg);
1742 static void memcg_oom_recover(struct mem_cgroup *memcg)
1745 * For the following lockless ->under_oom test, the only required
1746 * guarantee is that it must see the state asserted by an OOM when
1747 * this function is called as a result of userland actions
1748 * triggered by the notification of the OOM. This is trivially
1749 * achieved by invoking mem_cgroup_mark_under_oom() before
1750 * triggering notification.
1752 if (memcg && memcg->under_oom)
1753 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1763 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1765 enum oom_status ret;
1768 if (order > PAGE_ALLOC_COSTLY_ORDER)
1771 memcg_memory_event(memcg, MEMCG_OOM);
1774 * We are in the middle of the charge context here, so we
1775 * don't want to block when potentially sitting on a callstack
1776 * that holds all kinds of filesystem and mm locks.
1778 * cgroup1 allows disabling the OOM killer and waiting for outside
1779 * handling until the charge can succeed; remember the context and put
1780 * the task to sleep at the end of the page fault when all locks are
1783 * On the other hand, in-kernel OOM killer allows for an async victim
1784 * memory reclaim (oom_reaper) and that means that we are not solely
1785 * relying on the oom victim to make a forward progress and we can
1786 * invoke the oom killer here.
1788 * Please note that mem_cgroup_out_of_memory might fail to find a
1789 * victim and then we have to bail out from the charge path.
1791 if (memcg->oom_kill_disable) {
1792 if (!current->in_user_fault)
1794 css_get(&memcg->css);
1795 current->memcg_in_oom = memcg;
1796 current->memcg_oom_gfp_mask = mask;
1797 current->memcg_oom_order = order;
1802 mem_cgroup_mark_under_oom(memcg);
1804 locked = mem_cgroup_oom_trylock(memcg);
1807 mem_cgroup_oom_notify(memcg);
1809 mem_cgroup_unmark_under_oom(memcg);
1810 if (mem_cgroup_out_of_memory(memcg, mask, order))
1816 mem_cgroup_oom_unlock(memcg);
1822 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1823 * @handle: actually kill/wait or just clean up the OOM state
1825 * This has to be called at the end of a page fault if the memcg OOM
1826 * handler was enabled.
1828 * Memcg supports userspace OOM handling where failed allocations must
1829 * sleep on a waitqueue until the userspace task resolves the
1830 * situation. Sleeping directly in the charge context with all kinds
1831 * of locks held is not a good idea, instead we remember an OOM state
1832 * in the task and mem_cgroup_oom_synchronize() has to be called at
1833 * the end of the page fault to complete the OOM handling.
1835 * Returns %true if an ongoing memcg OOM situation was detected and
1836 * completed, %false otherwise.
1838 bool mem_cgroup_oom_synchronize(bool handle)
1840 struct mem_cgroup *memcg = current->memcg_in_oom;
1841 struct oom_wait_info owait;
1844 /* OOM is global, do not handle */
1851 owait.memcg = memcg;
1852 owait.wait.flags = 0;
1853 owait.wait.func = memcg_oom_wake_function;
1854 owait.wait.private = current;
1855 INIT_LIST_HEAD(&owait.wait.entry);
1857 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1858 mem_cgroup_mark_under_oom(memcg);
1860 locked = mem_cgroup_oom_trylock(memcg);
1863 mem_cgroup_oom_notify(memcg);
1865 if (locked && !memcg->oom_kill_disable) {
1866 mem_cgroup_unmark_under_oom(memcg);
1867 finish_wait(&memcg_oom_waitq, &owait.wait);
1868 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1869 current->memcg_oom_order);
1872 mem_cgroup_unmark_under_oom(memcg);
1873 finish_wait(&memcg_oom_waitq, &owait.wait);
1877 mem_cgroup_oom_unlock(memcg);
1879 * There is no guarantee that an OOM-lock contender
1880 * sees the wakeups triggered by the OOM kill
1881 * uncharges. Wake any sleepers explicitely.
1883 memcg_oom_recover(memcg);
1886 current->memcg_in_oom = NULL;
1887 css_put(&memcg->css);
1892 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1893 * @victim: task to be killed by the OOM killer
1894 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1896 * Returns a pointer to a memory cgroup, which has to be cleaned up
1897 * by killing all belonging OOM-killable tasks.
1899 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1901 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1902 struct mem_cgroup *oom_domain)
1904 struct mem_cgroup *oom_group = NULL;
1905 struct mem_cgroup *memcg;
1907 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1911 oom_domain = root_mem_cgroup;
1915 memcg = mem_cgroup_from_task(victim);
1916 if (memcg == root_mem_cgroup)
1920 * Traverse the memory cgroup hierarchy from the victim task's
1921 * cgroup up to the OOMing cgroup (or root) to find the
1922 * highest-level memory cgroup with oom.group set.
1924 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1925 if (memcg->oom_group)
1928 if (memcg == oom_domain)
1933 css_get(&oom_group->css);
1940 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1942 pr_info("Tasks in ");
1943 pr_cont_cgroup_path(memcg->css.cgroup);
1944 pr_cont(" are going to be killed due to memory.oom.group set\n");
1948 * lock_page_memcg - lock a page->mem_cgroup binding
1951 * This function protects unlocked LRU pages from being moved to
1954 * It ensures lifetime of the returned memcg. Caller is responsible
1955 * for the lifetime of the page; __unlock_page_memcg() is available
1956 * when @page might get freed inside the locked section.
1958 struct mem_cgroup *lock_page_memcg(struct page *page)
1960 struct mem_cgroup *memcg;
1961 unsigned long flags;
1964 * The RCU lock is held throughout the transaction. The fast
1965 * path can get away without acquiring the memcg->move_lock
1966 * because page moving starts with an RCU grace period.
1968 * The RCU lock also protects the memcg from being freed when
1969 * the page state that is going to change is the only thing
1970 * preventing the page itself from being freed. E.g. writeback
1971 * doesn't hold a page reference and relies on PG_writeback to
1972 * keep off truncation, migration and so forth.
1976 if (mem_cgroup_disabled())
1979 memcg = page->mem_cgroup;
1980 if (unlikely(!memcg))
1983 if (atomic_read(&memcg->moving_account) <= 0)
1986 spin_lock_irqsave(&memcg->move_lock, flags);
1987 if (memcg != page->mem_cgroup) {
1988 spin_unlock_irqrestore(&memcg->move_lock, flags);
1993 * When charge migration first begins, we can have locked and
1994 * unlocked page stat updates happening concurrently. Track
1995 * the task who has the lock for unlock_page_memcg().
1997 memcg->move_lock_task = current;
1998 memcg->move_lock_flags = flags;
2002 EXPORT_SYMBOL(lock_page_memcg);
2005 * __unlock_page_memcg - unlock and unpin a memcg
2008 * Unlock and unpin a memcg returned by lock_page_memcg().
2010 void __unlock_page_memcg(struct mem_cgroup *memcg)
2012 if (memcg && memcg->move_lock_task == current) {
2013 unsigned long flags = memcg->move_lock_flags;
2015 memcg->move_lock_task = NULL;
2016 memcg->move_lock_flags = 0;
2018 spin_unlock_irqrestore(&memcg->move_lock, flags);
2025 * unlock_page_memcg - unlock a page->mem_cgroup binding
2028 void unlock_page_memcg(struct page *page)
2030 __unlock_page_memcg(page->mem_cgroup);
2032 EXPORT_SYMBOL(unlock_page_memcg);
2034 struct memcg_stock_pcp {
2035 struct mem_cgroup *cached; /* this never be root cgroup */
2036 unsigned int nr_pages;
2037 struct work_struct work;
2038 unsigned long flags;
2039 #define FLUSHING_CACHED_CHARGE 0
2041 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2042 static DEFINE_MUTEX(percpu_charge_mutex);
2045 * consume_stock: Try to consume stocked charge on this cpu.
2046 * @memcg: memcg to consume from.
2047 * @nr_pages: how many pages to charge.
2049 * The charges will only happen if @memcg matches the current cpu's memcg
2050 * stock, and at least @nr_pages are available in that stock. Failure to
2051 * service an allocation will refill the stock.
2053 * returns true if successful, false otherwise.
2055 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2057 struct memcg_stock_pcp *stock;
2058 unsigned long flags;
2061 if (nr_pages > MEMCG_CHARGE_BATCH)
2064 local_irq_save(flags);
2066 stock = this_cpu_ptr(&memcg_stock);
2067 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2068 stock->nr_pages -= nr_pages;
2072 local_irq_restore(flags);
2078 * Returns stocks cached in percpu and reset cached information.
2080 static void drain_stock(struct memcg_stock_pcp *stock)
2082 struct mem_cgroup *old = stock->cached;
2084 if (stock->nr_pages) {
2085 page_counter_uncharge(&old->memory, stock->nr_pages);
2086 if (do_memsw_account())
2087 page_counter_uncharge(&old->memsw, stock->nr_pages);
2088 css_put_many(&old->css, stock->nr_pages);
2089 stock->nr_pages = 0;
2091 stock->cached = NULL;
2094 static void drain_local_stock(struct work_struct *dummy)
2096 struct memcg_stock_pcp *stock;
2097 unsigned long flags;
2100 * The only protection from memory hotplug vs. drain_stock races is
2101 * that we always operate on local CPU stock here with IRQ disabled
2103 local_irq_save(flags);
2105 stock = this_cpu_ptr(&memcg_stock);
2107 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2109 local_irq_restore(flags);
2113 * Cache charges(val) to local per_cpu area.
2114 * This will be consumed by consume_stock() function, later.
2116 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2118 struct memcg_stock_pcp *stock;
2119 unsigned long flags;
2121 local_irq_save(flags);
2123 stock = this_cpu_ptr(&memcg_stock);
2124 if (stock->cached != memcg) { /* reset if necessary */
2126 stock->cached = memcg;
2128 stock->nr_pages += nr_pages;
2130 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2133 local_irq_restore(flags);
2137 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2138 * of the hierarchy under it.
2140 static void drain_all_stock(struct mem_cgroup *root_memcg)
2144 /* If someone's already draining, avoid adding running more workers. */
2145 if (!mutex_trylock(&percpu_charge_mutex))
2148 * Notify other cpus that system-wide "drain" is running
2149 * We do not care about races with the cpu hotplug because cpu down
2150 * as well as workers from this path always operate on the local
2151 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2154 for_each_online_cpu(cpu) {
2155 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2156 struct mem_cgroup *memcg;
2160 memcg = stock->cached;
2161 if (memcg && stock->nr_pages &&
2162 mem_cgroup_is_descendant(memcg, root_memcg))
2167 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2169 drain_local_stock(&stock->work);
2171 schedule_work_on(cpu, &stock->work);
2175 mutex_unlock(&percpu_charge_mutex);
2178 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2180 struct memcg_stock_pcp *stock;
2181 struct mem_cgroup *memcg, *mi;
2183 stock = &per_cpu(memcg_stock, cpu);
2186 for_each_mem_cgroup(memcg) {
2189 for (i = 0; i < MEMCG_NR_STAT; i++) {
2193 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2195 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2196 atomic_long_add(x, &memcg->vmstats[i]);
2198 if (i >= NR_VM_NODE_STAT_ITEMS)
2201 for_each_node(nid) {
2202 struct mem_cgroup_per_node *pn;
2204 pn = mem_cgroup_nodeinfo(memcg, nid);
2205 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2208 atomic_long_add(x, &pn->lruvec_stat[i]);
2209 } while ((pn = parent_nodeinfo(pn, nid)));
2213 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2216 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2218 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2219 atomic_long_add(x, &memcg->vmevents[i]);
2226 static void reclaim_high(struct mem_cgroup *memcg,
2227 unsigned int nr_pages,
2231 if (page_counter_read(&memcg->memory) <= memcg->high)
2233 memcg_memory_event(memcg, MEMCG_HIGH);
2234 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2235 } while ((memcg = parent_mem_cgroup(memcg)));
2238 static void high_work_func(struct work_struct *work)
2240 struct mem_cgroup *memcg;
2242 memcg = container_of(work, struct mem_cgroup, high_work);
2243 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2247 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2248 * enough to still cause a significant slowdown in most cases, while still
2249 * allowing diagnostics and tracing to proceed without becoming stuck.
2251 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2254 * When calculating the delay, we use these either side of the exponentiation to
2255 * maintain precision and scale to a reasonable number of jiffies (see the table
2258 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2259 * overage ratio to a delay.
2260 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2261 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2262 * to produce a reasonable delay curve.
2264 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2265 * reasonable delay curve compared to precision-adjusted overage, not
2266 * penalising heavily at first, but still making sure that growth beyond the
2267 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2268 * example, with a high of 100 megabytes:
2270 * +-------+------------------------+
2271 * | usage | time to allocate in ms |
2272 * +-------+------------------------+
2294 * +-------+------------------------+
2296 #define MEMCG_DELAY_PRECISION_SHIFT 20
2297 #define MEMCG_DELAY_SCALING_SHIFT 14
2300 * Scheduled by try_charge() to be executed from the userland return path
2301 * and reclaims memory over the high limit.
2303 void mem_cgroup_handle_over_high(void)
2305 unsigned long usage, high, clamped_high;
2306 unsigned long pflags;
2307 unsigned long penalty_jiffies, overage;
2308 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2309 struct mem_cgroup *memcg;
2311 if (likely(!nr_pages))
2314 memcg = get_mem_cgroup_from_mm(current->mm);
2315 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2316 current->memcg_nr_pages_over_high = 0;
2319 * memory.high is breached and reclaim is unable to keep up. Throttle
2320 * allocators proactively to slow down excessive growth.
2322 * We use overage compared to memory.high to calculate the number of
2323 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2324 * fairly lenient on small overages, and increasingly harsh when the
2325 * memcg in question makes it clear that it has no intention of stopping
2326 * its crazy behaviour, so we exponentially increase the delay based on
2330 usage = page_counter_read(&memcg->memory);
2331 high = READ_ONCE(memcg->high);
2337 * Prevent division by 0 in overage calculation by acting as if it was a
2338 * threshold of 1 page
2340 clamped_high = max(high, 1UL);
2342 overage = div_u64((u64)(usage - high) << MEMCG_DELAY_PRECISION_SHIFT,
2345 penalty_jiffies = ((u64)overage * overage * HZ)
2346 >> (MEMCG_DELAY_PRECISION_SHIFT + MEMCG_DELAY_SCALING_SHIFT);
2349 * Factor in the task's own contribution to the overage, such that four
2350 * N-sized allocations are throttled approximately the same as one
2351 * 4N-sized allocation.
2353 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2354 * larger the current charge patch is than that.
2356 penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2359 * Clamp the max delay per usermode return so as to still keep the
2360 * application moving forwards and also permit diagnostics, albeit
2363 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2366 * Don't sleep if the amount of jiffies this memcg owes us is so low
2367 * that it's not even worth doing, in an attempt to be nice to those who
2368 * go only a small amount over their memory.high value and maybe haven't
2369 * been aggressively reclaimed enough yet.
2371 if (penalty_jiffies <= HZ / 100)
2375 * If we exit early, we're guaranteed to die (since
2376 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2377 * need to account for any ill-begotten jiffies to pay them off later.
2379 psi_memstall_enter(&pflags);
2380 schedule_timeout_killable(penalty_jiffies);
2381 psi_memstall_leave(&pflags);
2384 css_put(&memcg->css);
2387 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2388 unsigned int nr_pages)
2390 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2391 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2392 struct mem_cgroup *mem_over_limit;
2393 struct page_counter *counter;
2394 unsigned long nr_reclaimed;
2395 bool may_swap = true;
2396 bool drained = false;
2397 enum oom_status oom_status;
2399 if (mem_cgroup_is_root(memcg))
2402 if (consume_stock(memcg, nr_pages))
2405 if (!do_memsw_account() ||
2406 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2407 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2409 if (do_memsw_account())
2410 page_counter_uncharge(&memcg->memsw, batch);
2411 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2413 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2417 if (batch > nr_pages) {
2423 * Memcg doesn't have a dedicated reserve for atomic
2424 * allocations. But like the global atomic pool, we need to
2425 * put the burden of reclaim on regular allocation requests
2426 * and let these go through as privileged allocations.
2428 if (gfp_mask & __GFP_ATOMIC)
2432 * Unlike in global OOM situations, memcg is not in a physical
2433 * memory shortage. Allow dying and OOM-killed tasks to
2434 * bypass the last charges so that they can exit quickly and
2435 * free their memory.
2437 if (unlikely(should_force_charge()))
2441 * Prevent unbounded recursion when reclaim operations need to
2442 * allocate memory. This might exceed the limits temporarily,
2443 * but we prefer facilitating memory reclaim and getting back
2444 * under the limit over triggering OOM kills in these cases.
2446 if (unlikely(current->flags & PF_MEMALLOC))
2449 if (unlikely(task_in_memcg_oom(current)))
2452 if (!gfpflags_allow_blocking(gfp_mask))
2455 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2457 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2458 gfp_mask, may_swap);
2460 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2464 drain_all_stock(mem_over_limit);
2469 if (gfp_mask & __GFP_NORETRY)
2472 * Even though the limit is exceeded at this point, reclaim
2473 * may have been able to free some pages. Retry the charge
2474 * before killing the task.
2476 * Only for regular pages, though: huge pages are rather
2477 * unlikely to succeed so close to the limit, and we fall back
2478 * to regular pages anyway in case of failure.
2480 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2483 * At task move, charge accounts can be doubly counted. So, it's
2484 * better to wait until the end of task_move if something is going on.
2486 if (mem_cgroup_wait_acct_move(mem_over_limit))
2492 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2495 if (gfp_mask & __GFP_NOFAIL)
2498 if (fatal_signal_pending(current))
2502 * keep retrying as long as the memcg oom killer is able to make
2503 * a forward progress or bypass the charge if the oom killer
2504 * couldn't make any progress.
2506 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2507 get_order(nr_pages * PAGE_SIZE));
2508 switch (oom_status) {
2510 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2518 if (!(gfp_mask & __GFP_NOFAIL))
2522 * The allocation either can't fail or will lead to more memory
2523 * being freed very soon. Allow memory usage go over the limit
2524 * temporarily by force charging it.
2526 page_counter_charge(&memcg->memory, nr_pages);
2527 if (do_memsw_account())
2528 page_counter_charge(&memcg->memsw, nr_pages);
2529 css_get_many(&memcg->css, nr_pages);
2534 css_get_many(&memcg->css, batch);
2535 if (batch > nr_pages)
2536 refill_stock(memcg, batch - nr_pages);
2539 * If the hierarchy is above the normal consumption range, schedule
2540 * reclaim on returning to userland. We can perform reclaim here
2541 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2542 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2543 * not recorded as it most likely matches current's and won't
2544 * change in the meantime. As high limit is checked again before
2545 * reclaim, the cost of mismatch is negligible.
2548 if (page_counter_read(&memcg->memory) > memcg->high) {
2549 /* Don't bother a random interrupted task */
2550 if (in_interrupt()) {
2551 schedule_work(&memcg->high_work);
2554 current->memcg_nr_pages_over_high += batch;
2555 set_notify_resume(current);
2558 } while ((memcg = parent_mem_cgroup(memcg)));
2563 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2565 if (mem_cgroup_is_root(memcg))
2568 page_counter_uncharge(&memcg->memory, nr_pages);
2569 if (do_memsw_account())
2570 page_counter_uncharge(&memcg->memsw, nr_pages);
2572 css_put_many(&memcg->css, nr_pages);
2575 static void lock_page_lru(struct page *page, int *isolated)
2577 pg_data_t *pgdat = page_pgdat(page);
2579 spin_lock_irq(&pgdat->lru_lock);
2580 if (PageLRU(page)) {
2581 struct lruvec *lruvec;
2583 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2585 del_page_from_lru_list(page, lruvec, page_lru(page));
2591 static void unlock_page_lru(struct page *page, int isolated)
2593 pg_data_t *pgdat = page_pgdat(page);
2596 struct lruvec *lruvec;
2598 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2599 VM_BUG_ON_PAGE(PageLRU(page), page);
2601 add_page_to_lru_list(page, lruvec, page_lru(page));
2603 spin_unlock_irq(&pgdat->lru_lock);
2606 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2611 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2614 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2615 * may already be on some other mem_cgroup's LRU. Take care of it.
2618 lock_page_lru(page, &isolated);
2621 * Nobody should be changing or seriously looking at
2622 * page->mem_cgroup at this point:
2624 * - the page is uncharged
2626 * - the page is off-LRU
2628 * - an anonymous fault has exclusive page access, except for
2629 * a locked page table
2631 * - a page cache insertion, a swapin fault, or a migration
2632 * have the page locked
2634 page->mem_cgroup = memcg;
2637 unlock_page_lru(page, isolated);
2640 #ifdef CONFIG_MEMCG_KMEM
2641 static int memcg_alloc_cache_id(void)
2646 id = ida_simple_get(&memcg_cache_ida,
2647 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2651 if (id < memcg_nr_cache_ids)
2655 * There's no space for the new id in memcg_caches arrays,
2656 * so we have to grow them.
2658 down_write(&memcg_cache_ids_sem);
2660 size = 2 * (id + 1);
2661 if (size < MEMCG_CACHES_MIN_SIZE)
2662 size = MEMCG_CACHES_MIN_SIZE;
2663 else if (size > MEMCG_CACHES_MAX_SIZE)
2664 size = MEMCG_CACHES_MAX_SIZE;
2666 err = memcg_update_all_caches(size);
2668 err = memcg_update_all_list_lrus(size);
2670 memcg_nr_cache_ids = size;
2672 up_write(&memcg_cache_ids_sem);
2675 ida_simple_remove(&memcg_cache_ida, id);
2681 static void memcg_free_cache_id(int id)
2683 ida_simple_remove(&memcg_cache_ida, id);
2686 struct memcg_kmem_cache_create_work {
2687 struct mem_cgroup *memcg;
2688 struct kmem_cache *cachep;
2689 struct work_struct work;
2692 static void memcg_kmem_cache_create_func(struct work_struct *w)
2694 struct memcg_kmem_cache_create_work *cw =
2695 container_of(w, struct memcg_kmem_cache_create_work, work);
2696 struct mem_cgroup *memcg = cw->memcg;
2697 struct kmem_cache *cachep = cw->cachep;
2699 memcg_create_kmem_cache(memcg, cachep);
2701 css_put(&memcg->css);
2706 * Enqueue the creation of a per-memcg kmem_cache.
2708 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2709 struct kmem_cache *cachep)
2711 struct memcg_kmem_cache_create_work *cw;
2713 if (!css_tryget_online(&memcg->css))
2716 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2721 cw->cachep = cachep;
2722 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2724 queue_work(memcg_kmem_cache_wq, &cw->work);
2727 static inline bool memcg_kmem_bypass(void)
2729 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2735 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2736 * @cachep: the original global kmem cache
2738 * Return the kmem_cache we're supposed to use for a slab allocation.
2739 * We try to use the current memcg's version of the cache.
2741 * If the cache does not exist yet, if we are the first user of it, we
2742 * create it asynchronously in a workqueue and let the current allocation
2743 * go through with the original cache.
2745 * This function takes a reference to the cache it returns to assure it
2746 * won't get destroyed while we are working with it. Once the caller is
2747 * done with it, memcg_kmem_put_cache() must be called to release the
2750 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2752 struct mem_cgroup *memcg;
2753 struct kmem_cache *memcg_cachep;
2754 struct memcg_cache_array *arr;
2757 VM_BUG_ON(!is_root_cache(cachep));
2759 if (memcg_kmem_bypass())
2764 if (unlikely(current->active_memcg))
2765 memcg = current->active_memcg;
2767 memcg = mem_cgroup_from_task(current);
2769 if (!memcg || memcg == root_mem_cgroup)
2772 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2776 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2779 * Make sure we will access the up-to-date value. The code updating
2780 * memcg_caches issues a write barrier to match the data dependency
2781 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2783 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2786 * If we are in a safe context (can wait, and not in interrupt
2787 * context), we could be be predictable and return right away.
2788 * This would guarantee that the allocation being performed
2789 * already belongs in the new cache.
2791 * However, there are some clashes that can arrive from locking.
2792 * For instance, because we acquire the slab_mutex while doing
2793 * memcg_create_kmem_cache, this means no further allocation
2794 * could happen with the slab_mutex held. So it's better to
2797 * If the memcg is dying or memcg_cache is about to be released,
2798 * don't bother creating new kmem_caches. Because memcg_cachep
2799 * is ZEROed as the fist step of kmem offlining, we don't need
2800 * percpu_ref_tryget_live() here. css_tryget_online() check in
2801 * memcg_schedule_kmem_cache_create() will prevent us from
2802 * creation of a new kmem_cache.
2804 if (unlikely(!memcg_cachep))
2805 memcg_schedule_kmem_cache_create(memcg, cachep);
2806 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2807 cachep = memcg_cachep;
2814 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2815 * @cachep: the cache returned by memcg_kmem_get_cache
2817 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2819 if (!is_root_cache(cachep))
2820 percpu_ref_put(&cachep->memcg_params.refcnt);
2824 * __memcg_kmem_charge_memcg: charge a kmem page
2825 * @page: page to charge
2826 * @gfp: reclaim mode
2827 * @order: allocation order
2828 * @memcg: memory cgroup to charge
2830 * Returns 0 on success, an error code on failure.
2832 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2833 struct mem_cgroup *memcg)
2835 unsigned int nr_pages = 1 << order;
2836 struct page_counter *counter;
2839 ret = try_charge(memcg, gfp, nr_pages);
2843 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2844 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2847 * Enforce __GFP_NOFAIL allocation because callers are not
2848 * prepared to see failures and likely do not have any failure
2851 if (gfp & __GFP_NOFAIL) {
2852 page_counter_charge(&memcg->kmem, nr_pages);
2855 cancel_charge(memcg, nr_pages);
2862 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2863 * @page: page to charge
2864 * @gfp: reclaim mode
2865 * @order: allocation order
2867 * Returns 0 on success, an error code on failure.
2869 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2871 struct mem_cgroup *memcg;
2874 if (memcg_kmem_bypass())
2877 memcg = get_mem_cgroup_from_current();
2878 if (!mem_cgroup_is_root(memcg)) {
2879 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2881 page->mem_cgroup = memcg;
2882 __SetPageKmemcg(page);
2885 css_put(&memcg->css);
2890 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2891 * @memcg: memcg to uncharge
2892 * @nr_pages: number of pages to uncharge
2894 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
2895 unsigned int nr_pages)
2897 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2898 page_counter_uncharge(&memcg->kmem, nr_pages);
2900 page_counter_uncharge(&memcg->memory, nr_pages);
2901 if (do_memsw_account())
2902 page_counter_uncharge(&memcg->memsw, nr_pages);
2905 * __memcg_kmem_uncharge: uncharge a kmem page
2906 * @page: page to uncharge
2907 * @order: allocation order
2909 void __memcg_kmem_uncharge(struct page *page, int order)
2911 struct mem_cgroup *memcg = page->mem_cgroup;
2912 unsigned int nr_pages = 1 << order;
2917 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2918 __memcg_kmem_uncharge_memcg(memcg, nr_pages);
2919 page->mem_cgroup = NULL;
2921 /* slab pages do not have PageKmemcg flag set */
2922 if (PageKmemcg(page))
2923 __ClearPageKmemcg(page);
2925 css_put_many(&memcg->css, nr_pages);
2927 #endif /* CONFIG_MEMCG_KMEM */
2929 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2932 * Because tail pages are not marked as "used", set it. We're under
2933 * pgdat->lru_lock and migration entries setup in all page mappings.
2935 void mem_cgroup_split_huge_fixup(struct page *head)
2939 if (mem_cgroup_disabled())
2942 for (i = 1; i < HPAGE_PMD_NR; i++)
2943 head[i].mem_cgroup = head->mem_cgroup;
2945 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2947 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2949 #ifdef CONFIG_MEMCG_SWAP
2951 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2952 * @entry: swap entry to be moved
2953 * @from: mem_cgroup which the entry is moved from
2954 * @to: mem_cgroup which the entry is moved to
2956 * It succeeds only when the swap_cgroup's record for this entry is the same
2957 * as the mem_cgroup's id of @from.
2959 * Returns 0 on success, -EINVAL on failure.
2961 * The caller must have charged to @to, IOW, called page_counter_charge() about
2962 * both res and memsw, and called css_get().
2964 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2965 struct mem_cgroup *from, struct mem_cgroup *to)
2967 unsigned short old_id, new_id;
2969 old_id = mem_cgroup_id(from);
2970 new_id = mem_cgroup_id(to);
2972 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2973 mod_memcg_state(from, MEMCG_SWAP, -1);
2974 mod_memcg_state(to, MEMCG_SWAP, 1);
2980 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2981 struct mem_cgroup *from, struct mem_cgroup *to)
2987 static DEFINE_MUTEX(memcg_max_mutex);
2989 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2990 unsigned long max, bool memsw)
2992 bool enlarge = false;
2993 bool drained = false;
2995 bool limits_invariant;
2996 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2999 if (signal_pending(current)) {
3004 mutex_lock(&memcg_max_mutex);
3006 * Make sure that the new limit (memsw or memory limit) doesn't
3007 * break our basic invariant rule memory.max <= memsw.max.
3009 limits_invariant = memsw ? max >= memcg->memory.max :
3010 max <= memcg->memsw.max;
3011 if (!limits_invariant) {
3012 mutex_unlock(&memcg_max_mutex);
3016 if (max > counter->max)
3018 ret = page_counter_set_max(counter, max);
3019 mutex_unlock(&memcg_max_mutex);
3025 drain_all_stock(memcg);
3030 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3031 GFP_KERNEL, !memsw)) {
3037 if (!ret && enlarge)
3038 memcg_oom_recover(memcg);
3043 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3045 unsigned long *total_scanned)
3047 unsigned long nr_reclaimed = 0;
3048 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3049 unsigned long reclaimed;
3051 struct mem_cgroup_tree_per_node *mctz;
3052 unsigned long excess;
3053 unsigned long nr_scanned;
3058 mctz = soft_limit_tree_node(pgdat->node_id);
3061 * Do not even bother to check the largest node if the root
3062 * is empty. Do it lockless to prevent lock bouncing. Races
3063 * are acceptable as soft limit is best effort anyway.
3065 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3069 * This loop can run a while, specially if mem_cgroup's continuously
3070 * keep exceeding their soft limit and putting the system under
3077 mz = mem_cgroup_largest_soft_limit_node(mctz);
3082 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3083 gfp_mask, &nr_scanned);
3084 nr_reclaimed += reclaimed;
3085 *total_scanned += nr_scanned;
3086 spin_lock_irq(&mctz->lock);
3087 __mem_cgroup_remove_exceeded(mz, mctz);
3090 * If we failed to reclaim anything from this memory cgroup
3091 * it is time to move on to the next cgroup
3095 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3097 excess = soft_limit_excess(mz->memcg);
3099 * One school of thought says that we should not add
3100 * back the node to the tree if reclaim returns 0.
3101 * But our reclaim could return 0, simply because due
3102 * to priority we are exposing a smaller subset of
3103 * memory to reclaim from. Consider this as a longer
3106 /* If excess == 0, no tree ops */
3107 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3108 spin_unlock_irq(&mctz->lock);
3109 css_put(&mz->memcg->css);
3112 * Could not reclaim anything and there are no more
3113 * mem cgroups to try or we seem to be looping without
3114 * reclaiming anything.
3116 if (!nr_reclaimed &&
3118 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3120 } while (!nr_reclaimed);
3122 css_put(&next_mz->memcg->css);
3123 return nr_reclaimed;
3127 * Test whether @memcg has children, dead or alive. Note that this
3128 * function doesn't care whether @memcg has use_hierarchy enabled and
3129 * returns %true if there are child csses according to the cgroup
3130 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3132 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3137 ret = css_next_child(NULL, &memcg->css);
3143 * Reclaims as many pages from the given memcg as possible.
3145 * Caller is responsible for holding css reference for memcg.
3147 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3149 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3151 /* we call try-to-free pages for make this cgroup empty */
3152 lru_add_drain_all();
3154 drain_all_stock(memcg);
3156 /* try to free all pages in this cgroup */
3157 while (nr_retries && page_counter_read(&memcg->memory)) {
3160 if (signal_pending(current))
3163 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3167 /* maybe some writeback is necessary */
3168 congestion_wait(BLK_RW_ASYNC, HZ/10);
3176 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3177 char *buf, size_t nbytes,
3180 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3182 if (mem_cgroup_is_root(memcg))
3184 return mem_cgroup_force_empty(memcg) ?: nbytes;
3187 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3190 return mem_cgroup_from_css(css)->use_hierarchy;
3193 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3194 struct cftype *cft, u64 val)
3197 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3198 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3200 if (memcg->use_hierarchy == val)
3204 * If parent's use_hierarchy is set, we can't make any modifications
3205 * in the child subtrees. If it is unset, then the change can
3206 * occur, provided the current cgroup has no children.
3208 * For the root cgroup, parent_mem is NULL, we allow value to be
3209 * set if there are no children.
3211 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3212 (val == 1 || val == 0)) {
3213 if (!memcg_has_children(memcg))
3214 memcg->use_hierarchy = val;
3223 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3227 if (mem_cgroup_is_root(memcg)) {
3228 val = memcg_page_state(memcg, MEMCG_CACHE) +
3229 memcg_page_state(memcg, MEMCG_RSS);
3231 val += memcg_page_state(memcg, MEMCG_SWAP);
3234 val = page_counter_read(&memcg->memory);
3236 val = page_counter_read(&memcg->memsw);
3249 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3252 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3253 struct page_counter *counter;
3255 switch (MEMFILE_TYPE(cft->private)) {
3257 counter = &memcg->memory;
3260 counter = &memcg->memsw;
3263 counter = &memcg->kmem;
3266 counter = &memcg->tcpmem;
3272 switch (MEMFILE_ATTR(cft->private)) {
3274 if (counter == &memcg->memory)
3275 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3276 if (counter == &memcg->memsw)
3277 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3278 return (u64)page_counter_read(counter) * PAGE_SIZE;
3280 return (u64)counter->max * PAGE_SIZE;
3282 return (u64)counter->watermark * PAGE_SIZE;
3284 return counter->failcnt;
3285 case RES_SOFT_LIMIT:
3286 return (u64)memcg->soft_limit * PAGE_SIZE;
3292 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3294 unsigned long stat[MEMCG_NR_STAT] = {0};
3295 struct mem_cgroup *mi;
3298 for_each_online_cpu(cpu)
3299 for (i = 0; i < MEMCG_NR_STAT; i++)
3300 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3302 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3303 for (i = 0; i < MEMCG_NR_STAT; i++)
3304 atomic_long_add(stat[i], &mi->vmstats[i]);
3306 for_each_node(node) {
3307 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3308 struct mem_cgroup_per_node *pi;
3310 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3313 for_each_online_cpu(cpu)
3314 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3316 pn->lruvec_stat_cpu->count[i], cpu);
3318 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3319 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3320 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3324 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3326 unsigned long events[NR_VM_EVENT_ITEMS];
3327 struct mem_cgroup *mi;
3330 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3333 for_each_online_cpu(cpu)
3334 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3335 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3338 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3339 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3340 atomic_long_add(events[i], &mi->vmevents[i]);
3343 #ifdef CONFIG_MEMCG_KMEM
3344 static int memcg_online_kmem(struct mem_cgroup *memcg)
3348 if (cgroup_memory_nokmem)
3351 BUG_ON(memcg->kmemcg_id >= 0);
3352 BUG_ON(memcg->kmem_state);
3354 memcg_id = memcg_alloc_cache_id();
3358 static_branch_inc(&memcg_kmem_enabled_key);
3360 * A memory cgroup is considered kmem-online as soon as it gets
3361 * kmemcg_id. Setting the id after enabling static branching will
3362 * guarantee no one starts accounting before all call sites are
3365 memcg->kmemcg_id = memcg_id;
3366 memcg->kmem_state = KMEM_ONLINE;
3367 INIT_LIST_HEAD(&memcg->kmem_caches);
3372 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3374 struct cgroup_subsys_state *css;
3375 struct mem_cgroup *parent, *child;
3378 if (memcg->kmem_state != KMEM_ONLINE)
3381 * Clear the online state before clearing memcg_caches array
3382 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3383 * guarantees that no cache will be created for this cgroup
3384 * after we are done (see memcg_create_kmem_cache()).
3386 memcg->kmem_state = KMEM_ALLOCATED;
3388 parent = parent_mem_cgroup(memcg);
3390 parent = root_mem_cgroup;
3393 * Deactivate and reparent kmem_caches.
3395 memcg_deactivate_kmem_caches(memcg, parent);
3397 kmemcg_id = memcg->kmemcg_id;
3398 BUG_ON(kmemcg_id < 0);
3401 * Change kmemcg_id of this cgroup and all its descendants to the
3402 * parent's id, and then move all entries from this cgroup's list_lrus
3403 * to ones of the parent. After we have finished, all list_lrus
3404 * corresponding to this cgroup are guaranteed to remain empty. The
3405 * ordering is imposed by list_lru_node->lock taken by
3406 * memcg_drain_all_list_lrus().
3408 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3409 css_for_each_descendant_pre(css, &memcg->css) {
3410 child = mem_cgroup_from_css(css);
3411 BUG_ON(child->kmemcg_id != kmemcg_id);
3412 child->kmemcg_id = parent->kmemcg_id;
3413 if (!memcg->use_hierarchy)
3418 memcg_drain_all_list_lrus(kmemcg_id, parent);
3420 memcg_free_cache_id(kmemcg_id);
3423 static void memcg_free_kmem(struct mem_cgroup *memcg)
3425 /* css_alloc() failed, offlining didn't happen */
3426 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3427 memcg_offline_kmem(memcg);
3429 if (memcg->kmem_state == KMEM_ALLOCATED) {
3430 WARN_ON(!list_empty(&memcg->kmem_caches));
3431 static_branch_dec(&memcg_kmem_enabled_key);
3435 static int memcg_online_kmem(struct mem_cgroup *memcg)
3439 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3442 static void memcg_free_kmem(struct mem_cgroup *memcg)
3445 #endif /* CONFIG_MEMCG_KMEM */
3447 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3452 mutex_lock(&memcg_max_mutex);
3453 ret = page_counter_set_max(&memcg->kmem, max);
3454 mutex_unlock(&memcg_max_mutex);
3458 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3462 mutex_lock(&memcg_max_mutex);
3464 ret = page_counter_set_max(&memcg->tcpmem, max);
3468 if (!memcg->tcpmem_active) {
3470 * The active flag needs to be written after the static_key
3471 * update. This is what guarantees that the socket activation
3472 * function is the last one to run. See mem_cgroup_sk_alloc()
3473 * for details, and note that we don't mark any socket as
3474 * belonging to this memcg until that flag is up.
3476 * We need to do this, because static_keys will span multiple
3477 * sites, but we can't control their order. If we mark a socket
3478 * as accounted, but the accounting functions are not patched in
3479 * yet, we'll lose accounting.
3481 * We never race with the readers in mem_cgroup_sk_alloc(),
3482 * because when this value change, the code to process it is not
3485 static_branch_inc(&memcg_sockets_enabled_key);
3486 memcg->tcpmem_active = true;
3489 mutex_unlock(&memcg_max_mutex);
3494 * The user of this function is...
3497 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3498 char *buf, size_t nbytes, loff_t off)
3500 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3501 unsigned long nr_pages;
3504 buf = strstrip(buf);
3505 ret = page_counter_memparse(buf, "-1", &nr_pages);
3509 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3511 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3515 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3517 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3520 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3523 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3525 "depend on this functionality.\n");
3526 ret = memcg_update_kmem_max(memcg, nr_pages);
3529 ret = memcg_update_tcp_max(memcg, nr_pages);
3533 case RES_SOFT_LIMIT:
3534 memcg->soft_limit = nr_pages;
3538 return ret ?: nbytes;
3541 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3542 size_t nbytes, loff_t off)
3544 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3545 struct page_counter *counter;
3547 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3549 counter = &memcg->memory;
3552 counter = &memcg->memsw;
3555 counter = &memcg->kmem;
3558 counter = &memcg->tcpmem;
3564 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3566 page_counter_reset_watermark(counter);
3569 counter->failcnt = 0;
3578 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3581 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3585 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3586 struct cftype *cft, u64 val)
3588 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3590 if (val & ~MOVE_MASK)
3594 * No kind of locking is needed in here, because ->can_attach() will
3595 * check this value once in the beginning of the process, and then carry
3596 * on with stale data. This means that changes to this value will only
3597 * affect task migrations starting after the change.
3599 memcg->move_charge_at_immigrate = val;
3603 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3604 struct cftype *cft, u64 val)
3612 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3613 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3614 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3616 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3617 int nid, unsigned int lru_mask)
3619 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3620 unsigned long nr = 0;
3623 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3626 if (!(BIT(lru) & lru_mask))
3628 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3633 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3634 unsigned int lru_mask)
3636 unsigned long nr = 0;
3640 if (!(BIT(lru) & lru_mask))
3642 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3647 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3651 unsigned int lru_mask;
3654 static const struct numa_stat stats[] = {
3655 { "total", LRU_ALL },
3656 { "file", LRU_ALL_FILE },
3657 { "anon", LRU_ALL_ANON },
3658 { "unevictable", BIT(LRU_UNEVICTABLE) },
3660 const struct numa_stat *stat;
3663 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3665 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3666 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3667 seq_printf(m, "%s=%lu", stat->name, nr);
3668 for_each_node_state(nid, N_MEMORY) {
3669 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3671 seq_printf(m, " N%d=%lu", nid, nr);
3676 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3677 struct mem_cgroup *iter;
3680 for_each_mem_cgroup_tree(iter, memcg)
3681 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3682 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3683 for_each_node_state(nid, N_MEMORY) {
3685 for_each_mem_cgroup_tree(iter, memcg)
3686 nr += mem_cgroup_node_nr_lru_pages(
3687 iter, nid, stat->lru_mask);
3688 seq_printf(m, " N%d=%lu", nid, nr);
3695 #endif /* CONFIG_NUMA */
3697 static const unsigned int memcg1_stats[] = {
3708 static const char *const memcg1_stat_names[] = {
3719 /* Universal VM events cgroup1 shows, original sort order */
3720 static const unsigned int memcg1_events[] = {
3727 static int memcg_stat_show(struct seq_file *m, void *v)
3729 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3730 unsigned long memory, memsw;
3731 struct mem_cgroup *mi;
3734 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3736 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3737 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3739 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3740 memcg_page_state_local(memcg, memcg1_stats[i]) *
3744 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3745 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3746 memcg_events_local(memcg, memcg1_events[i]));
3748 for (i = 0; i < NR_LRU_LISTS; i++)
3749 seq_printf(m, "%s %lu\n", lru_list_name(i),
3750 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3753 /* Hierarchical information */
3754 memory = memsw = PAGE_COUNTER_MAX;
3755 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3756 memory = min(memory, mi->memory.max);
3757 memsw = min(memsw, mi->memsw.max);
3759 seq_printf(m, "hierarchical_memory_limit %llu\n",
3760 (u64)memory * PAGE_SIZE);
3761 if (do_memsw_account())
3762 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3763 (u64)memsw * PAGE_SIZE);
3765 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3766 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3768 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3769 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3773 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3774 seq_printf(m, "total_%s %llu\n",
3775 vm_event_name(memcg1_events[i]),
3776 (u64)memcg_events(memcg, memcg1_events[i]));
3778 for (i = 0; i < NR_LRU_LISTS; i++)
3779 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
3780 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3783 #ifdef CONFIG_DEBUG_VM
3786 struct mem_cgroup_per_node *mz;
3787 struct zone_reclaim_stat *rstat;
3788 unsigned long recent_rotated[2] = {0, 0};
3789 unsigned long recent_scanned[2] = {0, 0};
3791 for_each_online_pgdat(pgdat) {
3792 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3793 rstat = &mz->lruvec.reclaim_stat;
3795 recent_rotated[0] += rstat->recent_rotated[0];
3796 recent_rotated[1] += rstat->recent_rotated[1];
3797 recent_scanned[0] += rstat->recent_scanned[0];
3798 recent_scanned[1] += rstat->recent_scanned[1];
3800 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3801 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3802 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3803 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3810 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3813 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3815 return mem_cgroup_swappiness(memcg);
3818 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3819 struct cftype *cft, u64 val)
3821 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3827 memcg->swappiness = val;
3829 vm_swappiness = val;
3834 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3836 struct mem_cgroup_threshold_ary *t;
3837 unsigned long usage;
3842 t = rcu_dereference(memcg->thresholds.primary);
3844 t = rcu_dereference(memcg->memsw_thresholds.primary);
3849 usage = mem_cgroup_usage(memcg, swap);
3852 * current_threshold points to threshold just below or equal to usage.
3853 * If it's not true, a threshold was crossed after last
3854 * call of __mem_cgroup_threshold().
3856 i = t->current_threshold;
3859 * Iterate backward over array of thresholds starting from
3860 * current_threshold and check if a threshold is crossed.
3861 * If none of thresholds below usage is crossed, we read
3862 * only one element of the array here.
3864 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3865 eventfd_signal(t->entries[i].eventfd, 1);
3867 /* i = current_threshold + 1 */
3871 * Iterate forward over array of thresholds starting from
3872 * current_threshold+1 and check if a threshold is crossed.
3873 * If none of thresholds above usage is crossed, we read
3874 * only one element of the array here.
3876 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3877 eventfd_signal(t->entries[i].eventfd, 1);
3879 /* Update current_threshold */
3880 t->current_threshold = i - 1;
3885 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3888 __mem_cgroup_threshold(memcg, false);
3889 if (do_memsw_account())
3890 __mem_cgroup_threshold(memcg, true);
3892 memcg = parent_mem_cgroup(memcg);
3896 static int compare_thresholds(const void *a, const void *b)
3898 const struct mem_cgroup_threshold *_a = a;
3899 const struct mem_cgroup_threshold *_b = b;
3901 if (_a->threshold > _b->threshold)
3904 if (_a->threshold < _b->threshold)
3910 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3912 struct mem_cgroup_eventfd_list *ev;
3914 spin_lock(&memcg_oom_lock);
3916 list_for_each_entry(ev, &memcg->oom_notify, list)
3917 eventfd_signal(ev->eventfd, 1);
3919 spin_unlock(&memcg_oom_lock);
3923 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3925 struct mem_cgroup *iter;
3927 for_each_mem_cgroup_tree(iter, memcg)
3928 mem_cgroup_oom_notify_cb(iter);
3931 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3932 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3934 struct mem_cgroup_thresholds *thresholds;
3935 struct mem_cgroup_threshold_ary *new;
3936 unsigned long threshold;
3937 unsigned long usage;
3940 ret = page_counter_memparse(args, "-1", &threshold);
3944 mutex_lock(&memcg->thresholds_lock);
3947 thresholds = &memcg->thresholds;
3948 usage = mem_cgroup_usage(memcg, false);
3949 } else if (type == _MEMSWAP) {
3950 thresholds = &memcg->memsw_thresholds;
3951 usage = mem_cgroup_usage(memcg, true);
3955 /* Check if a threshold crossed before adding a new one */
3956 if (thresholds->primary)
3957 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3959 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3961 /* Allocate memory for new array of thresholds */
3962 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
3969 /* Copy thresholds (if any) to new array */
3970 if (thresholds->primary) {
3971 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3972 sizeof(struct mem_cgroup_threshold));
3975 /* Add new threshold */
3976 new->entries[size - 1].eventfd = eventfd;
3977 new->entries[size - 1].threshold = threshold;
3979 /* Sort thresholds. Registering of new threshold isn't time-critical */
3980 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3981 compare_thresholds, NULL);
3983 /* Find current threshold */
3984 new->current_threshold = -1;
3985 for (i = 0; i < size; i++) {
3986 if (new->entries[i].threshold <= usage) {
3988 * new->current_threshold will not be used until
3989 * rcu_assign_pointer(), so it's safe to increment
3992 ++new->current_threshold;
3997 /* Free old spare buffer and save old primary buffer as spare */
3998 kfree(thresholds->spare);
3999 thresholds->spare = thresholds->primary;
4001 rcu_assign_pointer(thresholds->primary, new);
4003 /* To be sure that nobody uses thresholds */
4007 mutex_unlock(&memcg->thresholds_lock);
4012 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4013 struct eventfd_ctx *eventfd, const char *args)
4015 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4018 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4019 struct eventfd_ctx *eventfd, const char *args)
4021 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4024 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4025 struct eventfd_ctx *eventfd, enum res_type type)
4027 struct mem_cgroup_thresholds *thresholds;
4028 struct mem_cgroup_threshold_ary *new;
4029 unsigned long usage;
4032 mutex_lock(&memcg->thresholds_lock);
4035 thresholds = &memcg->thresholds;
4036 usage = mem_cgroup_usage(memcg, false);
4037 } else if (type == _MEMSWAP) {
4038 thresholds = &memcg->memsw_thresholds;
4039 usage = mem_cgroup_usage(memcg, true);
4043 if (!thresholds->primary)
4046 /* Check if a threshold crossed before removing */
4047 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4049 /* Calculate new number of threshold */
4051 for (i = 0; i < thresholds->primary->size; i++) {
4052 if (thresholds->primary->entries[i].eventfd != eventfd)
4056 new = thresholds->spare;
4058 /* Set thresholds array to NULL if we don't have thresholds */
4067 /* Copy thresholds and find current threshold */
4068 new->current_threshold = -1;
4069 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4070 if (thresholds->primary->entries[i].eventfd == eventfd)
4073 new->entries[j] = thresholds->primary->entries[i];
4074 if (new->entries[j].threshold <= usage) {
4076 * new->current_threshold will not be used
4077 * until rcu_assign_pointer(), so it's safe to increment
4080 ++new->current_threshold;
4086 /* Swap primary and spare array */
4087 thresholds->spare = thresholds->primary;
4089 rcu_assign_pointer(thresholds->primary, new);
4091 /* To be sure that nobody uses thresholds */
4094 /* If all events are unregistered, free the spare array */
4096 kfree(thresholds->spare);
4097 thresholds->spare = NULL;
4100 mutex_unlock(&memcg->thresholds_lock);
4103 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4104 struct eventfd_ctx *eventfd)
4106 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4109 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4110 struct eventfd_ctx *eventfd)
4112 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4115 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4116 struct eventfd_ctx *eventfd, const char *args)
4118 struct mem_cgroup_eventfd_list *event;
4120 event = kmalloc(sizeof(*event), GFP_KERNEL);
4124 spin_lock(&memcg_oom_lock);
4126 event->eventfd = eventfd;
4127 list_add(&event->list, &memcg->oom_notify);
4129 /* already in OOM ? */
4130 if (memcg->under_oom)
4131 eventfd_signal(eventfd, 1);
4132 spin_unlock(&memcg_oom_lock);
4137 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4138 struct eventfd_ctx *eventfd)
4140 struct mem_cgroup_eventfd_list *ev, *tmp;
4142 spin_lock(&memcg_oom_lock);
4144 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4145 if (ev->eventfd == eventfd) {
4146 list_del(&ev->list);
4151 spin_unlock(&memcg_oom_lock);
4154 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4156 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4158 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4159 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4160 seq_printf(sf, "oom_kill %lu\n",
4161 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4165 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4166 struct cftype *cft, u64 val)
4168 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4170 /* cannot set to root cgroup and only 0 and 1 are allowed */
4171 if (!css->parent || !((val == 0) || (val == 1)))
4174 memcg->oom_kill_disable = val;
4176 memcg_oom_recover(memcg);
4181 #ifdef CONFIG_CGROUP_WRITEBACK
4183 #include <trace/events/writeback.h>
4185 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4187 return wb_domain_init(&memcg->cgwb_domain, gfp);
4190 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4192 wb_domain_exit(&memcg->cgwb_domain);
4195 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4197 wb_domain_size_changed(&memcg->cgwb_domain);
4200 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4202 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4204 if (!memcg->css.parent)
4207 return &memcg->cgwb_domain;
4211 * idx can be of type enum memcg_stat_item or node_stat_item.
4212 * Keep in sync with memcg_exact_page().
4214 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4216 long x = atomic_long_read(&memcg->vmstats[idx]);
4219 for_each_online_cpu(cpu)
4220 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4227 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4228 * @wb: bdi_writeback in question
4229 * @pfilepages: out parameter for number of file pages
4230 * @pheadroom: out parameter for number of allocatable pages according to memcg
4231 * @pdirty: out parameter for number of dirty pages
4232 * @pwriteback: out parameter for number of pages under writeback
4234 * Determine the numbers of file, headroom, dirty, and writeback pages in
4235 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4236 * is a bit more involved.
4238 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4239 * headroom is calculated as the lowest headroom of itself and the
4240 * ancestors. Note that this doesn't consider the actual amount of
4241 * available memory in the system. The caller should further cap
4242 * *@pheadroom accordingly.
4244 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4245 unsigned long *pheadroom, unsigned long *pdirty,
4246 unsigned long *pwriteback)
4248 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4249 struct mem_cgroup *parent;
4251 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4253 /* this should eventually include NR_UNSTABLE_NFS */
4254 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4255 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4256 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4257 *pheadroom = PAGE_COUNTER_MAX;
4259 while ((parent = parent_mem_cgroup(memcg))) {
4260 unsigned long ceiling = min(memcg->memory.max, memcg->high);
4261 unsigned long used = page_counter_read(&memcg->memory);
4263 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4269 * Foreign dirty flushing
4271 * There's an inherent mismatch between memcg and writeback. The former
4272 * trackes ownership per-page while the latter per-inode. This was a
4273 * deliberate design decision because honoring per-page ownership in the
4274 * writeback path is complicated, may lead to higher CPU and IO overheads
4275 * and deemed unnecessary given that write-sharing an inode across
4276 * different cgroups isn't a common use-case.
4278 * Combined with inode majority-writer ownership switching, this works well
4279 * enough in most cases but there are some pathological cases. For
4280 * example, let's say there are two cgroups A and B which keep writing to
4281 * different but confined parts of the same inode. B owns the inode and
4282 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4283 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4284 * triggering background writeback. A will be slowed down without a way to
4285 * make writeback of the dirty pages happen.
4287 * Conditions like the above can lead to a cgroup getting repatedly and
4288 * severely throttled after making some progress after each
4289 * dirty_expire_interval while the underyling IO device is almost
4292 * Solving this problem completely requires matching the ownership tracking
4293 * granularities between memcg and writeback in either direction. However,
4294 * the more egregious behaviors can be avoided by simply remembering the
4295 * most recent foreign dirtying events and initiating remote flushes on
4296 * them when local writeback isn't enough to keep the memory clean enough.
4298 * The following two functions implement such mechanism. When a foreign
4299 * page - a page whose memcg and writeback ownerships don't match - is
4300 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4301 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4302 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4303 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4304 * foreign bdi_writebacks which haven't expired. Both the numbers of
4305 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4306 * limited to MEMCG_CGWB_FRN_CNT.
4308 * The mechanism only remembers IDs and doesn't hold any object references.
4309 * As being wrong occasionally doesn't matter, updates and accesses to the
4310 * records are lockless and racy.
4312 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4313 struct bdi_writeback *wb)
4315 struct mem_cgroup *memcg = page->mem_cgroup;
4316 struct memcg_cgwb_frn *frn;
4317 u64 now = get_jiffies_64();
4318 u64 oldest_at = now;
4322 trace_track_foreign_dirty(page, wb);
4325 * Pick the slot to use. If there is already a slot for @wb, keep
4326 * using it. If not replace the oldest one which isn't being
4329 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4330 frn = &memcg->cgwb_frn[i];
4331 if (frn->bdi_id == wb->bdi->id &&
4332 frn->memcg_id == wb->memcg_css->id)
4334 if (time_before64(frn->at, oldest_at) &&
4335 atomic_read(&frn->done.cnt) == 1) {
4337 oldest_at = frn->at;
4341 if (i < MEMCG_CGWB_FRN_CNT) {
4343 * Re-using an existing one. Update timestamp lazily to
4344 * avoid making the cacheline hot. We want them to be
4345 * reasonably up-to-date and significantly shorter than
4346 * dirty_expire_interval as that's what expires the record.
4347 * Use the shorter of 1s and dirty_expire_interval / 8.
4349 unsigned long update_intv =
4350 min_t(unsigned long, HZ,
4351 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4353 if (time_before64(frn->at, now - update_intv))
4355 } else if (oldest >= 0) {
4356 /* replace the oldest free one */
4357 frn = &memcg->cgwb_frn[oldest];
4358 frn->bdi_id = wb->bdi->id;
4359 frn->memcg_id = wb->memcg_css->id;
4364 /* issue foreign writeback flushes for recorded foreign dirtying events */
4365 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4367 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4368 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4369 u64 now = jiffies_64;
4372 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4373 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4376 * If the record is older than dirty_expire_interval,
4377 * writeback on it has already started. No need to kick it
4378 * off again. Also, don't start a new one if there's
4379 * already one in flight.
4381 if (time_after64(frn->at, now - intv) &&
4382 atomic_read(&frn->done.cnt) == 1) {
4384 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4385 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4386 WB_REASON_FOREIGN_FLUSH,
4392 #else /* CONFIG_CGROUP_WRITEBACK */
4394 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4399 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4403 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4407 #endif /* CONFIG_CGROUP_WRITEBACK */
4410 * DO NOT USE IN NEW FILES.
4412 * "cgroup.event_control" implementation.
4414 * This is way over-engineered. It tries to support fully configurable
4415 * events for each user. Such level of flexibility is completely
4416 * unnecessary especially in the light of the planned unified hierarchy.
4418 * Please deprecate this and replace with something simpler if at all
4423 * Unregister event and free resources.
4425 * Gets called from workqueue.
4427 static void memcg_event_remove(struct work_struct *work)
4429 struct mem_cgroup_event *event =
4430 container_of(work, struct mem_cgroup_event, remove);
4431 struct mem_cgroup *memcg = event->memcg;
4433 remove_wait_queue(event->wqh, &event->wait);
4435 event->unregister_event(memcg, event->eventfd);
4437 /* Notify userspace the event is going away. */
4438 eventfd_signal(event->eventfd, 1);
4440 eventfd_ctx_put(event->eventfd);
4442 css_put(&memcg->css);
4446 * Gets called on EPOLLHUP on eventfd when user closes it.
4448 * Called with wqh->lock held and interrupts disabled.
4450 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4451 int sync, void *key)
4453 struct mem_cgroup_event *event =
4454 container_of(wait, struct mem_cgroup_event, wait);
4455 struct mem_cgroup *memcg = event->memcg;
4456 __poll_t flags = key_to_poll(key);
4458 if (flags & EPOLLHUP) {
4460 * If the event has been detached at cgroup removal, we
4461 * can simply return knowing the other side will cleanup
4464 * We can't race against event freeing since the other
4465 * side will require wqh->lock via remove_wait_queue(),
4468 spin_lock(&memcg->event_list_lock);
4469 if (!list_empty(&event->list)) {
4470 list_del_init(&event->list);
4472 * We are in atomic context, but cgroup_event_remove()
4473 * may sleep, so we have to call it in workqueue.
4475 schedule_work(&event->remove);
4477 spin_unlock(&memcg->event_list_lock);
4483 static void memcg_event_ptable_queue_proc(struct file *file,
4484 wait_queue_head_t *wqh, poll_table *pt)
4486 struct mem_cgroup_event *event =
4487 container_of(pt, struct mem_cgroup_event, pt);
4490 add_wait_queue(wqh, &event->wait);
4494 * DO NOT USE IN NEW FILES.
4496 * Parse input and register new cgroup event handler.
4498 * Input must be in format '<event_fd> <control_fd> <args>'.
4499 * Interpretation of args is defined by control file implementation.
4501 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4502 char *buf, size_t nbytes, loff_t off)
4504 struct cgroup_subsys_state *css = of_css(of);
4505 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4506 struct mem_cgroup_event *event;
4507 struct cgroup_subsys_state *cfile_css;
4508 unsigned int efd, cfd;
4515 buf = strstrip(buf);
4517 efd = simple_strtoul(buf, &endp, 10);
4522 cfd = simple_strtoul(buf, &endp, 10);
4523 if ((*endp != ' ') && (*endp != '\0'))
4527 event = kzalloc(sizeof(*event), GFP_KERNEL);
4531 event->memcg = memcg;
4532 INIT_LIST_HEAD(&event->list);
4533 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4534 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4535 INIT_WORK(&event->remove, memcg_event_remove);
4543 event->eventfd = eventfd_ctx_fileget(efile.file);
4544 if (IS_ERR(event->eventfd)) {
4545 ret = PTR_ERR(event->eventfd);
4552 goto out_put_eventfd;
4555 /* the process need read permission on control file */
4556 /* AV: shouldn't we check that it's been opened for read instead? */
4557 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4562 * Determine the event callbacks and set them in @event. This used
4563 * to be done via struct cftype but cgroup core no longer knows
4564 * about these events. The following is crude but the whole thing
4565 * is for compatibility anyway.
4567 * DO NOT ADD NEW FILES.
4569 name = cfile.file->f_path.dentry->d_name.name;
4571 if (!strcmp(name, "memory.usage_in_bytes")) {
4572 event->register_event = mem_cgroup_usage_register_event;
4573 event->unregister_event = mem_cgroup_usage_unregister_event;
4574 } else if (!strcmp(name, "memory.oom_control")) {
4575 event->register_event = mem_cgroup_oom_register_event;
4576 event->unregister_event = mem_cgroup_oom_unregister_event;
4577 } else if (!strcmp(name, "memory.pressure_level")) {
4578 event->register_event = vmpressure_register_event;
4579 event->unregister_event = vmpressure_unregister_event;
4580 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4581 event->register_event = memsw_cgroup_usage_register_event;
4582 event->unregister_event = memsw_cgroup_usage_unregister_event;
4589 * Verify @cfile should belong to @css. Also, remaining events are
4590 * automatically removed on cgroup destruction but the removal is
4591 * asynchronous, so take an extra ref on @css.
4593 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4594 &memory_cgrp_subsys);
4596 if (IS_ERR(cfile_css))
4598 if (cfile_css != css) {
4603 ret = event->register_event(memcg, event->eventfd, buf);
4607 vfs_poll(efile.file, &event->pt);
4609 spin_lock(&memcg->event_list_lock);
4610 list_add(&event->list, &memcg->event_list);
4611 spin_unlock(&memcg->event_list_lock);
4623 eventfd_ctx_put(event->eventfd);
4632 static struct cftype mem_cgroup_legacy_files[] = {
4634 .name = "usage_in_bytes",
4635 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4636 .read_u64 = mem_cgroup_read_u64,
4639 .name = "max_usage_in_bytes",
4640 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4641 .write = mem_cgroup_reset,
4642 .read_u64 = mem_cgroup_read_u64,
4645 .name = "limit_in_bytes",
4646 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4647 .write = mem_cgroup_write,
4648 .read_u64 = mem_cgroup_read_u64,
4651 .name = "soft_limit_in_bytes",
4652 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4653 .write = mem_cgroup_write,
4654 .read_u64 = mem_cgroup_read_u64,
4658 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4659 .write = mem_cgroup_reset,
4660 .read_u64 = mem_cgroup_read_u64,
4664 .seq_show = memcg_stat_show,
4667 .name = "force_empty",
4668 .write = mem_cgroup_force_empty_write,
4671 .name = "use_hierarchy",
4672 .write_u64 = mem_cgroup_hierarchy_write,
4673 .read_u64 = mem_cgroup_hierarchy_read,
4676 .name = "cgroup.event_control", /* XXX: for compat */
4677 .write = memcg_write_event_control,
4678 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4681 .name = "swappiness",
4682 .read_u64 = mem_cgroup_swappiness_read,
4683 .write_u64 = mem_cgroup_swappiness_write,
4686 .name = "move_charge_at_immigrate",
4687 .read_u64 = mem_cgroup_move_charge_read,
4688 .write_u64 = mem_cgroup_move_charge_write,
4691 .name = "oom_control",
4692 .seq_show = mem_cgroup_oom_control_read,
4693 .write_u64 = mem_cgroup_oom_control_write,
4694 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4697 .name = "pressure_level",
4701 .name = "numa_stat",
4702 .seq_show = memcg_numa_stat_show,
4706 .name = "kmem.limit_in_bytes",
4707 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4708 .write = mem_cgroup_write,
4709 .read_u64 = mem_cgroup_read_u64,
4712 .name = "kmem.usage_in_bytes",
4713 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4714 .read_u64 = mem_cgroup_read_u64,
4717 .name = "kmem.failcnt",
4718 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4719 .write = mem_cgroup_reset,
4720 .read_u64 = mem_cgroup_read_u64,
4723 .name = "kmem.max_usage_in_bytes",
4724 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4725 .write = mem_cgroup_reset,
4726 .read_u64 = mem_cgroup_read_u64,
4728 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4730 .name = "kmem.slabinfo",
4731 .seq_start = memcg_slab_start,
4732 .seq_next = memcg_slab_next,
4733 .seq_stop = memcg_slab_stop,
4734 .seq_show = memcg_slab_show,
4738 .name = "kmem.tcp.limit_in_bytes",
4739 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4740 .write = mem_cgroup_write,
4741 .read_u64 = mem_cgroup_read_u64,
4744 .name = "kmem.tcp.usage_in_bytes",
4745 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4746 .read_u64 = mem_cgroup_read_u64,
4749 .name = "kmem.tcp.failcnt",
4750 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4751 .write = mem_cgroup_reset,
4752 .read_u64 = mem_cgroup_read_u64,
4755 .name = "kmem.tcp.max_usage_in_bytes",
4756 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4757 .write = mem_cgroup_reset,
4758 .read_u64 = mem_cgroup_read_u64,
4760 { }, /* terminate */
4764 * Private memory cgroup IDR
4766 * Swap-out records and page cache shadow entries need to store memcg
4767 * references in constrained space, so we maintain an ID space that is
4768 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4769 * memory-controlled cgroups to 64k.
4771 * However, there usually are many references to the oflline CSS after
4772 * the cgroup has been destroyed, such as page cache or reclaimable
4773 * slab objects, that don't need to hang on to the ID. We want to keep
4774 * those dead CSS from occupying IDs, or we might quickly exhaust the
4775 * relatively small ID space and prevent the creation of new cgroups
4776 * even when there are much fewer than 64k cgroups - possibly none.
4778 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4779 * be freed and recycled when it's no longer needed, which is usually
4780 * when the CSS is offlined.
4782 * The only exception to that are records of swapped out tmpfs/shmem
4783 * pages that need to be attributed to live ancestors on swapin. But
4784 * those references are manageable from userspace.
4787 static DEFINE_IDR(mem_cgroup_idr);
4789 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4791 if (memcg->id.id > 0) {
4792 idr_remove(&mem_cgroup_idr, memcg->id.id);
4797 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4799 refcount_add(n, &memcg->id.ref);
4802 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4804 if (refcount_sub_and_test(n, &memcg->id.ref)) {
4805 mem_cgroup_id_remove(memcg);
4807 /* Memcg ID pins CSS */
4808 css_put(&memcg->css);
4812 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4814 mem_cgroup_id_put_many(memcg, 1);
4818 * mem_cgroup_from_id - look up a memcg from a memcg id
4819 * @id: the memcg id to look up
4821 * Caller must hold rcu_read_lock().
4823 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4825 WARN_ON_ONCE(!rcu_read_lock_held());
4826 return idr_find(&mem_cgroup_idr, id);
4829 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4831 struct mem_cgroup_per_node *pn;
4834 * This routine is called against possible nodes.
4835 * But it's BUG to call kmalloc() against offline node.
4837 * TODO: this routine can waste much memory for nodes which will
4838 * never be onlined. It's better to use memory hotplug callback
4841 if (!node_state(node, N_NORMAL_MEMORY))
4843 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4847 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4848 if (!pn->lruvec_stat_local) {
4853 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4854 if (!pn->lruvec_stat_cpu) {
4855 free_percpu(pn->lruvec_stat_local);
4860 lruvec_init(&pn->lruvec);
4861 pn->usage_in_excess = 0;
4862 pn->on_tree = false;
4865 memcg->nodeinfo[node] = pn;
4869 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4871 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4876 free_percpu(pn->lruvec_stat_cpu);
4877 free_percpu(pn->lruvec_stat_local);
4881 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4886 free_mem_cgroup_per_node_info(memcg, node);
4887 free_percpu(memcg->vmstats_percpu);
4888 free_percpu(memcg->vmstats_local);
4892 static void mem_cgroup_free(struct mem_cgroup *memcg)
4894 memcg_wb_domain_exit(memcg);
4896 * Flush percpu vmstats and vmevents to guarantee the value correctness
4897 * on parent's and all ancestor levels.
4899 memcg_flush_percpu_vmstats(memcg);
4900 memcg_flush_percpu_vmevents(memcg);
4901 __mem_cgroup_free(memcg);
4904 static struct mem_cgroup *mem_cgroup_alloc(void)
4906 struct mem_cgroup *memcg;
4909 int __maybe_unused i;
4911 size = sizeof(struct mem_cgroup);
4912 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4914 memcg = kzalloc(size, GFP_KERNEL);
4918 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4919 1, MEM_CGROUP_ID_MAX,
4921 if (memcg->id.id < 0)
4924 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4925 if (!memcg->vmstats_local)
4928 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4929 if (!memcg->vmstats_percpu)
4933 if (alloc_mem_cgroup_per_node_info(memcg, node))
4936 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4939 INIT_WORK(&memcg->high_work, high_work_func);
4940 INIT_LIST_HEAD(&memcg->oom_notify);
4941 mutex_init(&memcg->thresholds_lock);
4942 spin_lock_init(&memcg->move_lock);
4943 vmpressure_init(&memcg->vmpressure);
4944 INIT_LIST_HEAD(&memcg->event_list);
4945 spin_lock_init(&memcg->event_list_lock);
4946 memcg->socket_pressure = jiffies;
4947 #ifdef CONFIG_MEMCG_KMEM
4948 memcg->kmemcg_id = -1;
4950 #ifdef CONFIG_CGROUP_WRITEBACK
4951 INIT_LIST_HEAD(&memcg->cgwb_list);
4952 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
4953 memcg->cgwb_frn[i].done =
4954 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
4956 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4957 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
4958 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
4959 memcg->deferred_split_queue.split_queue_len = 0;
4961 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4964 mem_cgroup_id_remove(memcg);
4965 __mem_cgroup_free(memcg);
4969 static struct cgroup_subsys_state * __ref
4970 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4972 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4973 struct mem_cgroup *memcg;
4974 long error = -ENOMEM;
4976 memcg = mem_cgroup_alloc();
4978 return ERR_PTR(error);
4980 memcg->high = PAGE_COUNTER_MAX;
4981 memcg->soft_limit = PAGE_COUNTER_MAX;
4983 memcg->swappiness = mem_cgroup_swappiness(parent);
4984 memcg->oom_kill_disable = parent->oom_kill_disable;
4986 if (parent && parent->use_hierarchy) {
4987 memcg->use_hierarchy = true;
4988 page_counter_init(&memcg->memory, &parent->memory);
4989 page_counter_init(&memcg->swap, &parent->swap);
4990 page_counter_init(&memcg->memsw, &parent->memsw);
4991 page_counter_init(&memcg->kmem, &parent->kmem);
4992 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4994 page_counter_init(&memcg->memory, NULL);
4995 page_counter_init(&memcg->swap, NULL);
4996 page_counter_init(&memcg->memsw, NULL);
4997 page_counter_init(&memcg->kmem, NULL);
4998 page_counter_init(&memcg->tcpmem, NULL);
5000 * Deeper hierachy with use_hierarchy == false doesn't make
5001 * much sense so let cgroup subsystem know about this
5002 * unfortunate state in our controller.
5004 if (parent != root_mem_cgroup)
5005 memory_cgrp_subsys.broken_hierarchy = true;
5008 /* The following stuff does not apply to the root */
5010 #ifdef CONFIG_MEMCG_KMEM
5011 INIT_LIST_HEAD(&memcg->kmem_caches);
5013 root_mem_cgroup = memcg;
5017 error = memcg_online_kmem(memcg);
5021 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5022 static_branch_inc(&memcg_sockets_enabled_key);
5026 mem_cgroup_id_remove(memcg);
5027 mem_cgroup_free(memcg);
5028 return ERR_PTR(-ENOMEM);
5031 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5033 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5036 * A memcg must be visible for memcg_expand_shrinker_maps()
5037 * by the time the maps are allocated. So, we allocate maps
5038 * here, when for_each_mem_cgroup() can't skip it.
5040 if (memcg_alloc_shrinker_maps(memcg)) {
5041 mem_cgroup_id_remove(memcg);
5045 /* Online state pins memcg ID, memcg ID pins CSS */
5046 refcount_set(&memcg->id.ref, 1);
5051 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5053 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5054 struct mem_cgroup_event *event, *tmp;
5057 * Unregister events and notify userspace.
5058 * Notify userspace about cgroup removing only after rmdir of cgroup
5059 * directory to avoid race between userspace and kernelspace.
5061 spin_lock(&memcg->event_list_lock);
5062 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5063 list_del_init(&event->list);
5064 schedule_work(&event->remove);
5066 spin_unlock(&memcg->event_list_lock);
5068 page_counter_set_min(&memcg->memory, 0);
5069 page_counter_set_low(&memcg->memory, 0);
5071 memcg_offline_kmem(memcg);
5072 wb_memcg_offline(memcg);
5074 drain_all_stock(memcg);
5076 mem_cgroup_id_put(memcg);
5079 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5081 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5083 invalidate_reclaim_iterators(memcg);
5086 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5088 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5089 int __maybe_unused i;
5091 #ifdef CONFIG_CGROUP_WRITEBACK
5092 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5093 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5095 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5096 static_branch_dec(&memcg_sockets_enabled_key);
5098 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5099 static_branch_dec(&memcg_sockets_enabled_key);
5101 vmpressure_cleanup(&memcg->vmpressure);
5102 cancel_work_sync(&memcg->high_work);
5103 mem_cgroup_remove_from_trees(memcg);
5104 memcg_free_shrinker_maps(memcg);
5105 memcg_free_kmem(memcg);
5106 mem_cgroup_free(memcg);
5110 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5111 * @css: the target css
5113 * Reset the states of the mem_cgroup associated with @css. This is
5114 * invoked when the userland requests disabling on the default hierarchy
5115 * but the memcg is pinned through dependency. The memcg should stop
5116 * applying policies and should revert to the vanilla state as it may be
5117 * made visible again.
5119 * The current implementation only resets the essential configurations.
5120 * This needs to be expanded to cover all the visible parts.
5122 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5124 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5126 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5127 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5128 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5129 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5130 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5131 page_counter_set_min(&memcg->memory, 0);
5132 page_counter_set_low(&memcg->memory, 0);
5133 memcg->high = PAGE_COUNTER_MAX;
5134 memcg->soft_limit = PAGE_COUNTER_MAX;
5135 memcg_wb_domain_size_changed(memcg);
5139 /* Handlers for move charge at task migration. */
5140 static int mem_cgroup_do_precharge(unsigned long count)
5144 /* Try a single bulk charge without reclaim first, kswapd may wake */
5145 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5147 mc.precharge += count;
5151 /* Try charges one by one with reclaim, but do not retry */
5153 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5167 enum mc_target_type {
5174 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5175 unsigned long addr, pte_t ptent)
5177 struct page *page = vm_normal_page(vma, addr, ptent);
5179 if (!page || !page_mapped(page))
5181 if (PageAnon(page)) {
5182 if (!(mc.flags & MOVE_ANON))
5185 if (!(mc.flags & MOVE_FILE))
5188 if (!get_page_unless_zero(page))
5194 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5195 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5196 pte_t ptent, swp_entry_t *entry)
5198 struct page *page = NULL;
5199 swp_entry_t ent = pte_to_swp_entry(ptent);
5201 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5205 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5206 * a device and because they are not accessible by CPU they are store
5207 * as special swap entry in the CPU page table.
5209 if (is_device_private_entry(ent)) {
5210 page = device_private_entry_to_page(ent);
5212 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5213 * a refcount of 1 when free (unlike normal page)
5215 if (!page_ref_add_unless(page, 1, 1))
5221 * Because lookup_swap_cache() updates some statistics counter,
5222 * we call find_get_page() with swapper_space directly.
5224 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5225 if (do_memsw_account())
5226 entry->val = ent.val;
5231 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5232 pte_t ptent, swp_entry_t *entry)
5238 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5239 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5241 struct page *page = NULL;
5242 struct address_space *mapping;
5245 if (!vma->vm_file) /* anonymous vma */
5247 if (!(mc.flags & MOVE_FILE))
5250 mapping = vma->vm_file->f_mapping;
5251 pgoff = linear_page_index(vma, addr);
5253 /* page is moved even if it's not RSS of this task(page-faulted). */
5255 /* shmem/tmpfs may report page out on swap: account for that too. */
5256 if (shmem_mapping(mapping)) {
5257 page = find_get_entry(mapping, pgoff);
5258 if (xa_is_value(page)) {
5259 swp_entry_t swp = radix_to_swp_entry(page);
5260 if (do_memsw_account())
5262 page = find_get_page(swap_address_space(swp),
5266 page = find_get_page(mapping, pgoff);
5268 page = find_get_page(mapping, pgoff);
5274 * mem_cgroup_move_account - move account of the page
5276 * @compound: charge the page as compound or small page
5277 * @from: mem_cgroup which the page is moved from.
5278 * @to: mem_cgroup which the page is moved to. @from != @to.
5280 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5282 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5285 static int mem_cgroup_move_account(struct page *page,
5287 struct mem_cgroup *from,
5288 struct mem_cgroup *to)
5290 struct lruvec *from_vec, *to_vec;
5291 struct pglist_data *pgdat;
5292 unsigned long flags;
5293 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5297 VM_BUG_ON(from == to);
5298 VM_BUG_ON_PAGE(PageLRU(page), page);
5299 VM_BUG_ON(compound && !PageTransHuge(page));
5302 * Prevent mem_cgroup_migrate() from looking at
5303 * page->mem_cgroup of its source page while we change it.
5306 if (!trylock_page(page))
5310 if (page->mem_cgroup != from)
5313 anon = PageAnon(page);
5315 pgdat = page_pgdat(page);
5316 from_vec = mem_cgroup_lruvec(from, pgdat);
5317 to_vec = mem_cgroup_lruvec(to, pgdat);
5319 spin_lock_irqsave(&from->move_lock, flags);
5321 if (!anon && page_mapped(page)) {
5322 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5323 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5327 * move_lock grabbed above and caller set from->moving_account, so
5328 * mod_memcg_page_state will serialize updates to PageDirty.
5329 * So mapping should be stable for dirty pages.
5331 if (!anon && PageDirty(page)) {
5332 struct address_space *mapping = page_mapping(page);
5334 if (mapping_cap_account_dirty(mapping)) {
5335 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
5336 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
5340 if (PageWriteback(page)) {
5341 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5342 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5346 * It is safe to change page->mem_cgroup here because the page
5347 * is referenced, charged, and isolated - we can't race with
5348 * uncharging, charging, migration, or LRU putback.
5351 /* caller should have done css_get */
5352 page->mem_cgroup = to;
5354 spin_unlock_irqrestore(&from->move_lock, flags);
5358 local_irq_disable();
5359 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5360 memcg_check_events(to, page);
5361 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5362 memcg_check_events(from, page);
5371 * get_mctgt_type - get target type of moving charge
5372 * @vma: the vma the pte to be checked belongs
5373 * @addr: the address corresponding to the pte to be checked
5374 * @ptent: the pte to be checked
5375 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5378 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5379 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5380 * move charge. if @target is not NULL, the page is stored in target->page
5381 * with extra refcnt got(Callers should handle it).
5382 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5383 * target for charge migration. if @target is not NULL, the entry is stored
5385 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5386 * (so ZONE_DEVICE page and thus not on the lru).
5387 * For now we such page is charge like a regular page would be as for all
5388 * intent and purposes it is just special memory taking the place of a
5391 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5393 * Called with pte lock held.
5396 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5397 unsigned long addr, pte_t ptent, union mc_target *target)
5399 struct page *page = NULL;
5400 enum mc_target_type ret = MC_TARGET_NONE;
5401 swp_entry_t ent = { .val = 0 };
5403 if (pte_present(ptent))
5404 page = mc_handle_present_pte(vma, addr, ptent);
5405 else if (is_swap_pte(ptent))
5406 page = mc_handle_swap_pte(vma, ptent, &ent);
5407 else if (pte_none(ptent))
5408 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5410 if (!page && !ent.val)
5414 * Do only loose check w/o serialization.
5415 * mem_cgroup_move_account() checks the page is valid or
5416 * not under LRU exclusion.
5418 if (page->mem_cgroup == mc.from) {
5419 ret = MC_TARGET_PAGE;
5420 if (is_device_private_page(page))
5421 ret = MC_TARGET_DEVICE;
5423 target->page = page;
5425 if (!ret || !target)
5429 * There is a swap entry and a page doesn't exist or isn't charged.
5430 * But we cannot move a tail-page in a THP.
5432 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5433 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5434 ret = MC_TARGET_SWAP;
5441 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5443 * We don't consider PMD mapped swapping or file mapped pages because THP does
5444 * not support them for now.
5445 * Caller should make sure that pmd_trans_huge(pmd) is true.
5447 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5448 unsigned long addr, pmd_t pmd, union mc_target *target)
5450 struct page *page = NULL;
5451 enum mc_target_type ret = MC_TARGET_NONE;
5453 if (unlikely(is_swap_pmd(pmd))) {
5454 VM_BUG_ON(thp_migration_supported() &&
5455 !is_pmd_migration_entry(pmd));
5458 page = pmd_page(pmd);
5459 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5460 if (!(mc.flags & MOVE_ANON))
5462 if (page->mem_cgroup == mc.from) {
5463 ret = MC_TARGET_PAGE;
5466 target->page = page;
5472 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5473 unsigned long addr, pmd_t pmd, union mc_target *target)
5475 return MC_TARGET_NONE;
5479 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5480 unsigned long addr, unsigned long end,
5481 struct mm_walk *walk)
5483 struct vm_area_struct *vma = walk->vma;
5487 ptl = pmd_trans_huge_lock(pmd, vma);
5490 * Note their can not be MC_TARGET_DEVICE for now as we do not
5491 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5492 * this might change.
5494 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5495 mc.precharge += HPAGE_PMD_NR;
5500 if (pmd_trans_unstable(pmd))
5502 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5503 for (; addr != end; pte++, addr += PAGE_SIZE)
5504 if (get_mctgt_type(vma, addr, *pte, NULL))
5505 mc.precharge++; /* increment precharge temporarily */
5506 pte_unmap_unlock(pte - 1, ptl);
5512 static const struct mm_walk_ops precharge_walk_ops = {
5513 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5516 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5518 unsigned long precharge;
5520 down_read(&mm->mmap_sem);
5521 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5522 up_read(&mm->mmap_sem);
5524 precharge = mc.precharge;
5530 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5532 unsigned long precharge = mem_cgroup_count_precharge(mm);
5534 VM_BUG_ON(mc.moving_task);
5535 mc.moving_task = current;
5536 return mem_cgroup_do_precharge(precharge);
5539 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5540 static void __mem_cgroup_clear_mc(void)
5542 struct mem_cgroup *from = mc.from;
5543 struct mem_cgroup *to = mc.to;
5545 /* we must uncharge all the leftover precharges from mc.to */
5547 cancel_charge(mc.to, mc.precharge);
5551 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5552 * we must uncharge here.
5554 if (mc.moved_charge) {
5555 cancel_charge(mc.from, mc.moved_charge);
5556 mc.moved_charge = 0;
5558 /* we must fixup refcnts and charges */
5559 if (mc.moved_swap) {
5560 /* uncharge swap account from the old cgroup */
5561 if (!mem_cgroup_is_root(mc.from))
5562 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5564 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5567 * we charged both to->memory and to->memsw, so we
5568 * should uncharge to->memory.
5570 if (!mem_cgroup_is_root(mc.to))
5571 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5573 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5574 css_put_many(&mc.to->css, mc.moved_swap);
5578 memcg_oom_recover(from);
5579 memcg_oom_recover(to);
5580 wake_up_all(&mc.waitq);
5583 static void mem_cgroup_clear_mc(void)
5585 struct mm_struct *mm = mc.mm;
5588 * we must clear moving_task before waking up waiters at the end of
5591 mc.moving_task = NULL;
5592 __mem_cgroup_clear_mc();
5593 spin_lock(&mc.lock);
5597 spin_unlock(&mc.lock);
5602 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5604 struct cgroup_subsys_state *css;
5605 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5606 struct mem_cgroup *from;
5607 struct task_struct *leader, *p;
5608 struct mm_struct *mm;
5609 unsigned long move_flags;
5612 /* charge immigration isn't supported on the default hierarchy */
5613 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5617 * Multi-process migrations only happen on the default hierarchy
5618 * where charge immigration is not used. Perform charge
5619 * immigration if @tset contains a leader and whine if there are
5623 cgroup_taskset_for_each_leader(leader, css, tset) {
5626 memcg = mem_cgroup_from_css(css);
5632 * We are now commited to this value whatever it is. Changes in this
5633 * tunable will only affect upcoming migrations, not the current one.
5634 * So we need to save it, and keep it going.
5636 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5640 from = mem_cgroup_from_task(p);
5642 VM_BUG_ON(from == memcg);
5644 mm = get_task_mm(p);
5647 /* We move charges only when we move a owner of the mm */
5648 if (mm->owner == p) {
5651 VM_BUG_ON(mc.precharge);
5652 VM_BUG_ON(mc.moved_charge);
5653 VM_BUG_ON(mc.moved_swap);
5655 spin_lock(&mc.lock);
5659 mc.flags = move_flags;
5660 spin_unlock(&mc.lock);
5661 /* We set mc.moving_task later */
5663 ret = mem_cgroup_precharge_mc(mm);
5665 mem_cgroup_clear_mc();
5672 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5675 mem_cgroup_clear_mc();
5678 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5679 unsigned long addr, unsigned long end,
5680 struct mm_walk *walk)
5683 struct vm_area_struct *vma = walk->vma;
5686 enum mc_target_type target_type;
5687 union mc_target target;
5690 ptl = pmd_trans_huge_lock(pmd, vma);
5692 if (mc.precharge < HPAGE_PMD_NR) {
5696 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5697 if (target_type == MC_TARGET_PAGE) {
5699 if (!isolate_lru_page(page)) {
5700 if (!mem_cgroup_move_account(page, true,
5702 mc.precharge -= HPAGE_PMD_NR;
5703 mc.moved_charge += HPAGE_PMD_NR;
5705 putback_lru_page(page);
5708 } else if (target_type == MC_TARGET_DEVICE) {
5710 if (!mem_cgroup_move_account(page, true,
5712 mc.precharge -= HPAGE_PMD_NR;
5713 mc.moved_charge += HPAGE_PMD_NR;
5721 if (pmd_trans_unstable(pmd))
5724 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5725 for (; addr != end; addr += PAGE_SIZE) {
5726 pte_t ptent = *(pte++);
5727 bool device = false;
5733 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5734 case MC_TARGET_DEVICE:
5737 case MC_TARGET_PAGE:
5740 * We can have a part of the split pmd here. Moving it
5741 * can be done but it would be too convoluted so simply
5742 * ignore such a partial THP and keep it in original
5743 * memcg. There should be somebody mapping the head.
5745 if (PageTransCompound(page))
5747 if (!device && isolate_lru_page(page))
5749 if (!mem_cgroup_move_account(page, false,
5752 /* we uncharge from mc.from later. */
5756 putback_lru_page(page);
5757 put: /* get_mctgt_type() gets the page */
5760 case MC_TARGET_SWAP:
5762 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5764 /* we fixup refcnts and charges later. */
5772 pte_unmap_unlock(pte - 1, ptl);
5777 * We have consumed all precharges we got in can_attach().
5778 * We try charge one by one, but don't do any additional
5779 * charges to mc.to if we have failed in charge once in attach()
5782 ret = mem_cgroup_do_precharge(1);
5790 static const struct mm_walk_ops charge_walk_ops = {
5791 .pmd_entry = mem_cgroup_move_charge_pte_range,
5794 static void mem_cgroup_move_charge(void)
5796 lru_add_drain_all();
5798 * Signal lock_page_memcg() to take the memcg's move_lock
5799 * while we're moving its pages to another memcg. Then wait
5800 * for already started RCU-only updates to finish.
5802 atomic_inc(&mc.from->moving_account);
5805 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5807 * Someone who are holding the mmap_sem might be waiting in
5808 * waitq. So we cancel all extra charges, wake up all waiters,
5809 * and retry. Because we cancel precharges, we might not be able
5810 * to move enough charges, but moving charge is a best-effort
5811 * feature anyway, so it wouldn't be a big problem.
5813 __mem_cgroup_clear_mc();
5818 * When we have consumed all precharges and failed in doing
5819 * additional charge, the page walk just aborts.
5821 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5824 up_read(&mc.mm->mmap_sem);
5825 atomic_dec(&mc.from->moving_account);
5828 static void mem_cgroup_move_task(void)
5831 mem_cgroup_move_charge();
5832 mem_cgroup_clear_mc();
5835 #else /* !CONFIG_MMU */
5836 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5840 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5843 static void mem_cgroup_move_task(void)
5849 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5850 * to verify whether we're attached to the default hierarchy on each mount
5853 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5856 * use_hierarchy is forced on the default hierarchy. cgroup core
5857 * guarantees that @root doesn't have any children, so turning it
5858 * on for the root memcg is enough.
5860 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5861 root_mem_cgroup->use_hierarchy = true;
5863 root_mem_cgroup->use_hierarchy = false;
5866 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5868 if (value == PAGE_COUNTER_MAX)
5869 seq_puts(m, "max\n");
5871 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5876 static u64 memory_current_read(struct cgroup_subsys_state *css,
5879 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5881 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5884 static int memory_min_show(struct seq_file *m, void *v)
5886 return seq_puts_memcg_tunable(m,
5887 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5890 static ssize_t memory_min_write(struct kernfs_open_file *of,
5891 char *buf, size_t nbytes, loff_t off)
5893 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5897 buf = strstrip(buf);
5898 err = page_counter_memparse(buf, "max", &min);
5902 page_counter_set_min(&memcg->memory, min);
5907 static int memory_low_show(struct seq_file *m, void *v)
5909 return seq_puts_memcg_tunable(m,
5910 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5913 static ssize_t memory_low_write(struct kernfs_open_file *of,
5914 char *buf, size_t nbytes, loff_t off)
5916 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5920 buf = strstrip(buf);
5921 err = page_counter_memparse(buf, "max", &low);
5925 page_counter_set_low(&memcg->memory, low);
5930 static int memory_high_show(struct seq_file *m, void *v)
5932 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
5935 static ssize_t memory_high_write(struct kernfs_open_file *of,
5936 char *buf, size_t nbytes, loff_t off)
5938 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5939 unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
5940 bool drained = false;
5944 buf = strstrip(buf);
5945 err = page_counter_memparse(buf, "max", &high);
5952 unsigned long nr_pages = page_counter_read(&memcg->memory);
5953 unsigned long reclaimed;
5955 if (nr_pages <= high)
5958 if (signal_pending(current))
5962 drain_all_stock(memcg);
5967 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5970 if (!reclaimed && !nr_retries--)
5977 static int memory_max_show(struct seq_file *m, void *v)
5979 return seq_puts_memcg_tunable(m,
5980 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
5983 static ssize_t memory_max_write(struct kernfs_open_file *of,
5984 char *buf, size_t nbytes, loff_t off)
5986 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5987 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5988 bool drained = false;
5992 buf = strstrip(buf);
5993 err = page_counter_memparse(buf, "max", &max);
5997 xchg(&memcg->memory.max, max);
6000 unsigned long nr_pages = page_counter_read(&memcg->memory);
6002 if (nr_pages <= max)
6005 if (signal_pending(current))
6009 drain_all_stock(memcg);
6015 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6021 memcg_memory_event(memcg, MEMCG_OOM);
6022 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6026 memcg_wb_domain_size_changed(memcg);
6030 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6032 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6033 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6034 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6035 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6036 seq_printf(m, "oom_kill %lu\n",
6037 atomic_long_read(&events[MEMCG_OOM_KILL]));
6040 static int memory_events_show(struct seq_file *m, void *v)
6042 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6044 __memory_events_show(m, memcg->memory_events);
6048 static int memory_events_local_show(struct seq_file *m, void *v)
6050 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6052 __memory_events_show(m, memcg->memory_events_local);
6056 static int memory_stat_show(struct seq_file *m, void *v)
6058 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6061 buf = memory_stat_format(memcg);
6069 static int memory_oom_group_show(struct seq_file *m, void *v)
6071 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6073 seq_printf(m, "%d\n", memcg->oom_group);
6078 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6079 char *buf, size_t nbytes, loff_t off)
6081 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6084 buf = strstrip(buf);
6088 ret = kstrtoint(buf, 0, &oom_group);
6092 if (oom_group != 0 && oom_group != 1)
6095 memcg->oom_group = oom_group;
6100 static struct cftype memory_files[] = {
6103 .flags = CFTYPE_NOT_ON_ROOT,
6104 .read_u64 = memory_current_read,
6108 .flags = CFTYPE_NOT_ON_ROOT,
6109 .seq_show = memory_min_show,
6110 .write = memory_min_write,
6114 .flags = CFTYPE_NOT_ON_ROOT,
6115 .seq_show = memory_low_show,
6116 .write = memory_low_write,
6120 .flags = CFTYPE_NOT_ON_ROOT,
6121 .seq_show = memory_high_show,
6122 .write = memory_high_write,
6126 .flags = CFTYPE_NOT_ON_ROOT,
6127 .seq_show = memory_max_show,
6128 .write = memory_max_write,
6132 .flags = CFTYPE_NOT_ON_ROOT,
6133 .file_offset = offsetof(struct mem_cgroup, events_file),
6134 .seq_show = memory_events_show,
6137 .name = "events.local",
6138 .flags = CFTYPE_NOT_ON_ROOT,
6139 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6140 .seq_show = memory_events_local_show,
6144 .flags = CFTYPE_NOT_ON_ROOT,
6145 .seq_show = memory_stat_show,
6148 .name = "oom.group",
6149 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6150 .seq_show = memory_oom_group_show,
6151 .write = memory_oom_group_write,
6156 struct cgroup_subsys memory_cgrp_subsys = {
6157 .css_alloc = mem_cgroup_css_alloc,
6158 .css_online = mem_cgroup_css_online,
6159 .css_offline = mem_cgroup_css_offline,
6160 .css_released = mem_cgroup_css_released,
6161 .css_free = mem_cgroup_css_free,
6162 .css_reset = mem_cgroup_css_reset,
6163 .can_attach = mem_cgroup_can_attach,
6164 .cancel_attach = mem_cgroup_cancel_attach,
6165 .post_attach = mem_cgroup_move_task,
6166 .bind = mem_cgroup_bind,
6167 .dfl_cftypes = memory_files,
6168 .legacy_cftypes = mem_cgroup_legacy_files,
6173 * mem_cgroup_protected - check if memory consumption is in the normal range
6174 * @root: the top ancestor of the sub-tree being checked
6175 * @memcg: the memory cgroup to check
6177 * WARNING: This function is not stateless! It can only be used as part
6178 * of a top-down tree iteration, not for isolated queries.
6180 * Returns one of the following:
6181 * MEMCG_PROT_NONE: cgroup memory is not protected
6182 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6183 * an unprotected supply of reclaimable memory from other cgroups.
6184 * MEMCG_PROT_MIN: cgroup memory is protected
6186 * @root is exclusive; it is never protected when looked at directly
6188 * To provide a proper hierarchical behavior, effective memory.min/low values
6189 * are used. Below is the description of how effective memory.low is calculated.
6190 * Effective memory.min values is calculated in the same way.
6192 * Effective memory.low is always equal or less than the original memory.low.
6193 * If there is no memory.low overcommittment (which is always true for
6194 * top-level memory cgroups), these two values are equal.
6195 * Otherwise, it's a part of parent's effective memory.low,
6196 * calculated as a cgroup's memory.low usage divided by sum of sibling's
6197 * memory.low usages, where memory.low usage is the size of actually
6201 * elow = min( memory.low, parent->elow * ------------------ ),
6202 * siblings_low_usage
6204 * | memory.current, if memory.current < memory.low
6209 * Such definition of the effective memory.low provides the expected
6210 * hierarchical behavior: parent's memory.low value is limiting
6211 * children, unprotected memory is reclaimed first and cgroups,
6212 * which are not using their guarantee do not affect actual memory
6215 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6217 * A A/memory.low = 2G, A/memory.current = 6G
6219 * BC DE B/memory.low = 3G B/memory.current = 2G
6220 * C/memory.low = 1G C/memory.current = 2G
6221 * D/memory.low = 0 D/memory.current = 2G
6222 * E/memory.low = 10G E/memory.current = 0
6224 * and the memory pressure is applied, the following memory distribution
6225 * is expected (approximately):
6227 * A/memory.current = 2G
6229 * B/memory.current = 1.3G
6230 * C/memory.current = 0.6G
6231 * D/memory.current = 0
6232 * E/memory.current = 0
6234 * These calculations require constant tracking of the actual low usages
6235 * (see propagate_protected_usage()), as well as recursive calculation of
6236 * effective memory.low values. But as we do call mem_cgroup_protected()
6237 * path for each memory cgroup top-down from the reclaim,
6238 * it's possible to optimize this part, and save calculated elow
6239 * for next usage. This part is intentionally racy, but it's ok,
6240 * as memory.low is a best-effort mechanism.
6242 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6243 struct mem_cgroup *memcg)
6245 struct mem_cgroup *parent;
6246 unsigned long emin, parent_emin;
6247 unsigned long elow, parent_elow;
6248 unsigned long usage;
6250 if (mem_cgroup_disabled())
6251 return MEMCG_PROT_NONE;
6254 root = root_mem_cgroup;
6256 return MEMCG_PROT_NONE;
6258 usage = page_counter_read(&memcg->memory);
6260 return MEMCG_PROT_NONE;
6262 emin = memcg->memory.min;
6263 elow = memcg->memory.low;
6265 parent = parent_mem_cgroup(memcg);
6266 /* No parent means a non-hierarchical mode on v1 memcg */
6268 return MEMCG_PROT_NONE;
6273 parent_emin = READ_ONCE(parent->memory.emin);
6274 emin = min(emin, parent_emin);
6275 if (emin && parent_emin) {
6276 unsigned long min_usage, siblings_min_usage;
6278 min_usage = min(usage, memcg->memory.min);
6279 siblings_min_usage = atomic_long_read(
6280 &parent->memory.children_min_usage);
6282 if (min_usage && siblings_min_usage)
6283 emin = min(emin, parent_emin * min_usage /
6284 siblings_min_usage);
6287 parent_elow = READ_ONCE(parent->memory.elow);
6288 elow = min(elow, parent_elow);
6289 if (elow && parent_elow) {
6290 unsigned long low_usage, siblings_low_usage;
6292 low_usage = min(usage, memcg->memory.low);
6293 siblings_low_usage = atomic_long_read(
6294 &parent->memory.children_low_usage);
6296 if (low_usage && siblings_low_usage)
6297 elow = min(elow, parent_elow * low_usage /
6298 siblings_low_usage);
6302 memcg->memory.emin = emin;
6303 memcg->memory.elow = elow;
6306 return MEMCG_PROT_MIN;
6307 else if (usage <= elow)
6308 return MEMCG_PROT_LOW;
6310 return MEMCG_PROT_NONE;
6314 * mem_cgroup_try_charge - try charging a page
6315 * @page: page to charge
6316 * @mm: mm context of the victim
6317 * @gfp_mask: reclaim mode
6318 * @memcgp: charged memcg return
6319 * @compound: charge the page as compound or small page
6321 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6322 * pages according to @gfp_mask if necessary.
6324 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6325 * Otherwise, an error code is returned.
6327 * After page->mapping has been set up, the caller must finalize the
6328 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6329 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6331 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6332 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6335 struct mem_cgroup *memcg = NULL;
6336 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6339 if (mem_cgroup_disabled())
6342 if (PageSwapCache(page)) {
6344 * Every swap fault against a single page tries to charge the
6345 * page, bail as early as possible. shmem_unuse() encounters
6346 * already charged pages, too. The USED bit is protected by
6347 * the page lock, which serializes swap cache removal, which
6348 * in turn serializes uncharging.
6350 VM_BUG_ON_PAGE(!PageLocked(page), page);
6351 if (compound_head(page)->mem_cgroup)
6354 if (do_swap_account) {
6355 swp_entry_t ent = { .val = page_private(page), };
6356 unsigned short id = lookup_swap_cgroup_id(ent);
6359 memcg = mem_cgroup_from_id(id);
6360 if (memcg && !css_tryget_online(&memcg->css))
6367 memcg = get_mem_cgroup_from_mm(mm);
6369 ret = try_charge(memcg, gfp_mask, nr_pages);
6371 css_put(&memcg->css);
6377 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6378 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6381 struct mem_cgroup *memcg;
6384 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6386 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6391 * mem_cgroup_commit_charge - commit a page charge
6392 * @page: page to charge
6393 * @memcg: memcg to charge the page to
6394 * @lrucare: page might be on LRU already
6395 * @compound: charge the page as compound or small page
6397 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6398 * after page->mapping has been set up. This must happen atomically
6399 * as part of the page instantiation, i.e. under the page table lock
6400 * for anonymous pages, under the page lock for page and swap cache.
6402 * In addition, the page must not be on the LRU during the commit, to
6403 * prevent racing with task migration. If it might be, use @lrucare.
6405 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6407 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6408 bool lrucare, bool compound)
6410 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6412 VM_BUG_ON_PAGE(!page->mapping, page);
6413 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6415 if (mem_cgroup_disabled())
6418 * Swap faults will attempt to charge the same page multiple
6419 * times. But reuse_swap_page() might have removed the page
6420 * from swapcache already, so we can't check PageSwapCache().
6425 commit_charge(page, memcg, lrucare);
6427 local_irq_disable();
6428 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6429 memcg_check_events(memcg, page);
6432 if (do_memsw_account() && PageSwapCache(page)) {
6433 swp_entry_t entry = { .val = page_private(page) };
6435 * The swap entry might not get freed for a long time,
6436 * let's not wait for it. The page already received a
6437 * memory+swap charge, drop the swap entry duplicate.
6439 mem_cgroup_uncharge_swap(entry, nr_pages);
6444 * mem_cgroup_cancel_charge - cancel a page charge
6445 * @page: page to charge
6446 * @memcg: memcg to charge the page to
6447 * @compound: charge the page as compound or small page
6449 * Cancel a charge transaction started by mem_cgroup_try_charge().
6451 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6454 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6456 if (mem_cgroup_disabled())
6459 * Swap faults will attempt to charge the same page multiple
6460 * times. But reuse_swap_page() might have removed the page
6461 * from swapcache already, so we can't check PageSwapCache().
6466 cancel_charge(memcg, nr_pages);
6469 struct uncharge_gather {
6470 struct mem_cgroup *memcg;
6471 unsigned long pgpgout;
6472 unsigned long nr_anon;
6473 unsigned long nr_file;
6474 unsigned long nr_kmem;
6475 unsigned long nr_huge;
6476 unsigned long nr_shmem;
6477 struct page *dummy_page;
6480 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6482 memset(ug, 0, sizeof(*ug));
6485 static void uncharge_batch(const struct uncharge_gather *ug)
6487 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6488 unsigned long flags;
6490 if (!mem_cgroup_is_root(ug->memcg)) {
6491 page_counter_uncharge(&ug->memcg->memory, nr_pages);
6492 if (do_memsw_account())
6493 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6494 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6495 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6496 memcg_oom_recover(ug->memcg);
6499 local_irq_save(flags);
6500 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6501 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6502 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6503 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6504 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6505 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6506 memcg_check_events(ug->memcg, ug->dummy_page);
6507 local_irq_restore(flags);
6509 if (!mem_cgroup_is_root(ug->memcg))
6510 css_put_many(&ug->memcg->css, nr_pages);
6513 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6515 VM_BUG_ON_PAGE(PageLRU(page), page);
6516 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6517 !PageHWPoison(page) , page);
6519 if (!page->mem_cgroup)
6523 * Nobody should be changing or seriously looking at
6524 * page->mem_cgroup at this point, we have fully
6525 * exclusive access to the page.
6528 if (ug->memcg != page->mem_cgroup) {
6531 uncharge_gather_clear(ug);
6533 ug->memcg = page->mem_cgroup;
6536 if (!PageKmemcg(page)) {
6537 unsigned int nr_pages = 1;
6539 if (PageTransHuge(page)) {
6540 nr_pages = compound_nr(page);
6541 ug->nr_huge += nr_pages;
6544 ug->nr_anon += nr_pages;
6546 ug->nr_file += nr_pages;
6547 if (PageSwapBacked(page))
6548 ug->nr_shmem += nr_pages;
6552 ug->nr_kmem += compound_nr(page);
6553 __ClearPageKmemcg(page);
6556 ug->dummy_page = page;
6557 page->mem_cgroup = NULL;
6560 static void uncharge_list(struct list_head *page_list)
6562 struct uncharge_gather ug;
6563 struct list_head *next;
6565 uncharge_gather_clear(&ug);
6568 * Note that the list can be a single page->lru; hence the
6569 * do-while loop instead of a simple list_for_each_entry().
6571 next = page_list->next;
6575 page = list_entry(next, struct page, lru);
6576 next = page->lru.next;
6578 uncharge_page(page, &ug);
6579 } while (next != page_list);
6582 uncharge_batch(&ug);
6586 * mem_cgroup_uncharge - uncharge a page
6587 * @page: page to uncharge
6589 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6590 * mem_cgroup_commit_charge().
6592 void mem_cgroup_uncharge(struct page *page)
6594 struct uncharge_gather ug;
6596 if (mem_cgroup_disabled())
6599 /* Don't touch page->lru of any random page, pre-check: */
6600 if (!page->mem_cgroup)
6603 uncharge_gather_clear(&ug);
6604 uncharge_page(page, &ug);
6605 uncharge_batch(&ug);
6609 * mem_cgroup_uncharge_list - uncharge a list of page
6610 * @page_list: list of pages to uncharge
6612 * Uncharge a list of pages previously charged with
6613 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6615 void mem_cgroup_uncharge_list(struct list_head *page_list)
6617 if (mem_cgroup_disabled())
6620 if (!list_empty(page_list))
6621 uncharge_list(page_list);
6625 * mem_cgroup_migrate - charge a page's replacement
6626 * @oldpage: currently circulating page
6627 * @newpage: replacement page
6629 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6630 * be uncharged upon free.
6632 * Both pages must be locked, @newpage->mapping must be set up.
6634 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6636 struct mem_cgroup *memcg;
6637 unsigned int nr_pages;
6638 unsigned long flags;
6640 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6641 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6642 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6643 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6646 if (mem_cgroup_disabled())
6649 /* Page cache replacement: new page already charged? */
6650 if (newpage->mem_cgroup)
6653 /* Swapcache readahead pages can get replaced before being charged */
6654 memcg = oldpage->mem_cgroup;
6658 /* Force-charge the new page. The old one will be freed soon */
6659 nr_pages = hpage_nr_pages(newpage);
6661 page_counter_charge(&memcg->memory, nr_pages);
6662 if (do_memsw_account())
6663 page_counter_charge(&memcg->memsw, nr_pages);
6664 css_get_many(&memcg->css, nr_pages);
6666 commit_charge(newpage, memcg, false);
6668 local_irq_save(flags);
6669 mem_cgroup_charge_statistics(memcg, newpage, PageTransHuge(newpage),
6671 memcg_check_events(memcg, newpage);
6672 local_irq_restore(flags);
6675 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6676 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6678 void mem_cgroup_sk_alloc(struct sock *sk)
6680 struct mem_cgroup *memcg;
6682 if (!mem_cgroup_sockets_enabled)
6686 * Socket cloning can throw us here with sk_memcg already
6687 * filled. It won't however, necessarily happen from
6688 * process context. So the test for root memcg given
6689 * the current task's memcg won't help us in this case.
6691 * Respecting the original socket's memcg is a better
6692 * decision in this case.
6695 css_get(&sk->sk_memcg->css);
6700 memcg = mem_cgroup_from_task(current);
6701 if (memcg == root_mem_cgroup)
6703 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6705 if (css_tryget_online(&memcg->css))
6706 sk->sk_memcg = memcg;
6711 void mem_cgroup_sk_free(struct sock *sk)
6714 css_put(&sk->sk_memcg->css);
6718 * mem_cgroup_charge_skmem - charge socket memory
6719 * @memcg: memcg to charge
6720 * @nr_pages: number of pages to charge
6722 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6723 * @memcg's configured limit, %false if the charge had to be forced.
6725 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6727 gfp_t gfp_mask = GFP_KERNEL;
6729 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6730 struct page_counter *fail;
6732 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6733 memcg->tcpmem_pressure = 0;
6736 page_counter_charge(&memcg->tcpmem, nr_pages);
6737 memcg->tcpmem_pressure = 1;
6741 /* Don't block in the packet receive path */
6743 gfp_mask = GFP_NOWAIT;
6745 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6747 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6750 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6755 * mem_cgroup_uncharge_skmem - uncharge socket memory
6756 * @memcg: memcg to uncharge
6757 * @nr_pages: number of pages to uncharge
6759 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6761 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6762 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6766 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6768 refill_stock(memcg, nr_pages);
6771 static int __init cgroup_memory(char *s)
6775 while ((token = strsep(&s, ",")) != NULL) {
6778 if (!strcmp(token, "nosocket"))
6779 cgroup_memory_nosocket = true;
6780 if (!strcmp(token, "nokmem"))
6781 cgroup_memory_nokmem = true;
6785 __setup("cgroup.memory=", cgroup_memory);
6788 * subsys_initcall() for memory controller.
6790 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6791 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6792 * basically everything that doesn't depend on a specific mem_cgroup structure
6793 * should be initialized from here.
6795 static int __init mem_cgroup_init(void)
6799 #ifdef CONFIG_MEMCG_KMEM
6801 * Kmem cache creation is mostly done with the slab_mutex held,
6802 * so use a workqueue with limited concurrency to avoid stalling
6803 * all worker threads in case lots of cgroups are created and
6804 * destroyed simultaneously.
6806 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6807 BUG_ON(!memcg_kmem_cache_wq);
6810 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6811 memcg_hotplug_cpu_dead);
6813 for_each_possible_cpu(cpu)
6814 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6817 for_each_node(node) {
6818 struct mem_cgroup_tree_per_node *rtpn;
6820 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6821 node_online(node) ? node : NUMA_NO_NODE);
6823 rtpn->rb_root = RB_ROOT;
6824 rtpn->rb_rightmost = NULL;
6825 spin_lock_init(&rtpn->lock);
6826 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6831 subsys_initcall(mem_cgroup_init);
6833 #ifdef CONFIG_MEMCG_SWAP
6834 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6836 while (!refcount_inc_not_zero(&memcg->id.ref)) {
6838 * The root cgroup cannot be destroyed, so it's refcount must
6841 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6845 memcg = parent_mem_cgroup(memcg);
6847 memcg = root_mem_cgroup;
6853 * mem_cgroup_swapout - transfer a memsw charge to swap
6854 * @page: page whose memsw charge to transfer
6855 * @entry: swap entry to move the charge to
6857 * Transfer the memsw charge of @page to @entry.
6859 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6861 struct mem_cgroup *memcg, *swap_memcg;
6862 unsigned int nr_entries;
6863 unsigned short oldid;
6865 VM_BUG_ON_PAGE(PageLRU(page), page);
6866 VM_BUG_ON_PAGE(page_count(page), page);
6868 if (!do_memsw_account())
6871 memcg = page->mem_cgroup;
6873 /* Readahead page, never charged */
6878 * In case the memcg owning these pages has been offlined and doesn't
6879 * have an ID allocated to it anymore, charge the closest online
6880 * ancestor for the swap instead and transfer the memory+swap charge.
6882 swap_memcg = mem_cgroup_id_get_online(memcg);
6883 nr_entries = hpage_nr_pages(page);
6884 /* Get references for the tail pages, too */
6886 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6887 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6889 VM_BUG_ON_PAGE(oldid, page);
6890 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6892 page->mem_cgroup = NULL;
6894 if (!mem_cgroup_is_root(memcg))
6895 page_counter_uncharge(&memcg->memory, nr_entries);
6897 if (memcg != swap_memcg) {
6898 if (!mem_cgroup_is_root(swap_memcg))
6899 page_counter_charge(&swap_memcg->memsw, nr_entries);
6900 page_counter_uncharge(&memcg->memsw, nr_entries);
6904 * Interrupts should be disabled here because the caller holds the
6905 * i_pages lock which is taken with interrupts-off. It is
6906 * important here to have the interrupts disabled because it is the
6907 * only synchronisation we have for updating the per-CPU variables.
6909 VM_BUG_ON(!irqs_disabled());
6910 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6912 memcg_check_events(memcg, page);
6914 if (!mem_cgroup_is_root(memcg))
6915 css_put_many(&memcg->css, nr_entries);
6919 * mem_cgroup_try_charge_swap - try charging swap space for a page
6920 * @page: page being added to swap
6921 * @entry: swap entry to charge
6923 * Try to charge @page's memcg for the swap space at @entry.
6925 * Returns 0 on success, -ENOMEM on failure.
6927 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6929 unsigned int nr_pages = hpage_nr_pages(page);
6930 struct page_counter *counter;
6931 struct mem_cgroup *memcg;
6932 unsigned short oldid;
6934 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6937 memcg = page->mem_cgroup;
6939 /* Readahead page, never charged */
6944 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6948 memcg = mem_cgroup_id_get_online(memcg);
6950 if (!mem_cgroup_is_root(memcg) &&
6951 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6952 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6953 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6954 mem_cgroup_id_put(memcg);
6958 /* Get references for the tail pages, too */
6960 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6961 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6962 VM_BUG_ON_PAGE(oldid, page);
6963 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6969 * mem_cgroup_uncharge_swap - uncharge swap space
6970 * @entry: swap entry to uncharge
6971 * @nr_pages: the amount of swap space to uncharge
6973 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6975 struct mem_cgroup *memcg;
6978 if (!do_swap_account)
6981 id = swap_cgroup_record(entry, 0, nr_pages);
6983 memcg = mem_cgroup_from_id(id);
6985 if (!mem_cgroup_is_root(memcg)) {
6986 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6987 page_counter_uncharge(&memcg->swap, nr_pages);
6989 page_counter_uncharge(&memcg->memsw, nr_pages);
6991 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6992 mem_cgroup_id_put_many(memcg, nr_pages);
6997 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6999 long nr_swap_pages = get_nr_swap_pages();
7001 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7002 return nr_swap_pages;
7003 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7004 nr_swap_pages = min_t(long, nr_swap_pages,
7005 READ_ONCE(memcg->swap.max) -
7006 page_counter_read(&memcg->swap));
7007 return nr_swap_pages;
7010 bool mem_cgroup_swap_full(struct page *page)
7012 struct mem_cgroup *memcg;
7014 VM_BUG_ON_PAGE(!PageLocked(page), page);
7018 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7021 memcg = page->mem_cgroup;
7025 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7026 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
7032 /* for remember boot option*/
7033 #ifdef CONFIG_MEMCG_SWAP_ENABLED
7034 static int really_do_swap_account __initdata = 1;
7036 static int really_do_swap_account __initdata;
7039 static int __init enable_swap_account(char *s)
7041 if (!strcmp(s, "1"))
7042 really_do_swap_account = 1;
7043 else if (!strcmp(s, "0"))
7044 really_do_swap_account = 0;
7047 __setup("swapaccount=", enable_swap_account);
7049 static u64 swap_current_read(struct cgroup_subsys_state *css,
7052 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7054 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7057 static int swap_max_show(struct seq_file *m, void *v)
7059 return seq_puts_memcg_tunable(m,
7060 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7063 static ssize_t swap_max_write(struct kernfs_open_file *of,
7064 char *buf, size_t nbytes, loff_t off)
7066 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7070 buf = strstrip(buf);
7071 err = page_counter_memparse(buf, "max", &max);
7075 xchg(&memcg->swap.max, max);
7080 static int swap_events_show(struct seq_file *m, void *v)
7082 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7084 seq_printf(m, "max %lu\n",
7085 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7086 seq_printf(m, "fail %lu\n",
7087 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7092 static struct cftype swap_files[] = {
7094 .name = "swap.current",
7095 .flags = CFTYPE_NOT_ON_ROOT,
7096 .read_u64 = swap_current_read,
7100 .flags = CFTYPE_NOT_ON_ROOT,
7101 .seq_show = swap_max_show,
7102 .write = swap_max_write,
7105 .name = "swap.events",
7106 .flags = CFTYPE_NOT_ON_ROOT,
7107 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7108 .seq_show = swap_events_show,
7113 static struct cftype memsw_cgroup_files[] = {
7115 .name = "memsw.usage_in_bytes",
7116 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7117 .read_u64 = mem_cgroup_read_u64,
7120 .name = "memsw.max_usage_in_bytes",
7121 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7122 .write = mem_cgroup_reset,
7123 .read_u64 = mem_cgroup_read_u64,
7126 .name = "memsw.limit_in_bytes",
7127 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7128 .write = mem_cgroup_write,
7129 .read_u64 = mem_cgroup_read_u64,
7132 .name = "memsw.failcnt",
7133 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7134 .write = mem_cgroup_reset,
7135 .read_u64 = mem_cgroup_read_u64,
7137 { }, /* terminate */
7140 static int __init mem_cgroup_swap_init(void)
7142 if (!mem_cgroup_disabled() && really_do_swap_account) {
7143 do_swap_account = 1;
7144 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7146 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7147 memsw_cgroup_files));
7151 subsys_initcall(mem_cgroup_swap_init);
7153 #endif /* CONFIG_MEMCG_SWAP */