]> Git Repo - linux.git/blob - drivers/gpu/drm/vc4/vc4_crtc.c
Merge tag 'for-linus-5.7-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5
6 /**
7  * DOC: VC4 CRTC module
8  *
9  * In VC4, the Pixel Valve is what most closely corresponds to the
10  * DRM's concept of a CRTC.  The PV generates video timings from the
11  * encoder's clock plus its configuration.  It pulls scaled pixels from
12  * the HVS at that timing, and feeds it to the encoder.
13  *
14  * However, the DRM CRTC also collects the configuration of all the
15  * DRM planes attached to it.  As a result, the CRTC is also
16  * responsible for writing the display list for the HVS channel that
17  * the CRTC will use.
18  *
19  * The 2835 has 3 different pixel valves.  pv0 in the audio power
20  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
21  * image domain can feed either HDMI or the SDTV controller.  The
22  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23  * SDTV, etc.) according to which output type is chosen in the mux.
24  *
25  * For power management, the pixel valve's registers are all clocked
26  * by the AXI clock, while the timings and FIFOs make use of the
27  * output-specific clock.  Since the encoders also directly consume
28  * the CPRMAN clocks, and know what timings they need, they are the
29  * ones that set the clock.
30  */
31
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of_device.h>
35
36 #include <drm/drm_atomic.h>
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_atomic_uapi.h>
39 #include <drm/drm_fb_cma_helper.h>
40 #include <drm/drm_print.h>
41 #include <drm/drm_probe_helper.h>
42 #include <drm/drm_vblank.h>
43
44 #include "vc4_drv.h"
45 #include "vc4_regs.h"
46
47 struct vc4_crtc_state {
48         struct drm_crtc_state base;
49         /* Dlist area for this CRTC configuration. */
50         struct drm_mm_node mm;
51         bool feed_txp;
52         bool txp_armed;
53
54         struct {
55                 unsigned int left;
56                 unsigned int right;
57                 unsigned int top;
58                 unsigned int bottom;
59         } margins;
60 };
61
62 static inline struct vc4_crtc_state *
63 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
64 {
65         return (struct vc4_crtc_state *)crtc_state;
66 }
67
68 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
69 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
70
71 static const struct debugfs_reg32 crtc_regs[] = {
72         VC4_REG32(PV_CONTROL),
73         VC4_REG32(PV_V_CONTROL),
74         VC4_REG32(PV_VSYNCD_EVEN),
75         VC4_REG32(PV_HORZA),
76         VC4_REG32(PV_HORZB),
77         VC4_REG32(PV_VERTA),
78         VC4_REG32(PV_VERTB),
79         VC4_REG32(PV_VERTA_EVEN),
80         VC4_REG32(PV_VERTB_EVEN),
81         VC4_REG32(PV_INTEN),
82         VC4_REG32(PV_INTSTAT),
83         VC4_REG32(PV_STAT),
84         VC4_REG32(PV_HACT_ACT),
85 };
86
87 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
88                                           bool in_vblank_irq,
89                                           int *vpos, int *hpos,
90                                           ktime_t *stime, ktime_t *etime,
91                                           const struct drm_display_mode *mode)
92 {
93         struct drm_device *dev = crtc->dev;
94         struct vc4_dev *vc4 = to_vc4_dev(dev);
95         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
96         u32 val;
97         int fifo_lines;
98         int vblank_lines;
99         bool ret = false;
100
101         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
102
103         /* Get optional system timestamp before query. */
104         if (stime)
105                 *stime = ktime_get();
106
107         /*
108          * Read vertical scanline which is currently composed for our
109          * pixelvalve by the HVS, and also the scaler status.
110          */
111         val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
112
113         /* Get optional system timestamp after query. */
114         if (etime)
115                 *etime = ktime_get();
116
117         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
118
119         /* Vertical position of hvs composed scanline. */
120         *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
121         *hpos = 0;
122
123         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
124                 *vpos /= 2;
125
126                 /* Use hpos to correct for field offset in interlaced mode. */
127                 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
128                         *hpos += mode->crtc_htotal / 2;
129         }
130
131         /* This is the offset we need for translating hvs -> pv scanout pos. */
132         fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
133
134         if (fifo_lines > 0)
135                 ret = true;
136
137         /* HVS more than fifo_lines into frame for compositing? */
138         if (*vpos > fifo_lines) {
139                 /*
140                  * We are in active scanout and can get some meaningful results
141                  * from HVS. The actual PV scanout can not trail behind more
142                  * than fifo_lines as that is the fifo's capacity. Assume that
143                  * in active scanout the HVS and PV work in lockstep wrt. HVS
144                  * refilling the fifo and PV consuming from the fifo, ie.
145                  * whenever the PV consumes and frees up a scanline in the
146                  * fifo, the HVS will immediately refill it, therefore
147                  * incrementing vpos. Therefore we choose HVS read position -
148                  * fifo size in scanlines as a estimate of the real scanout
149                  * position of the PV.
150                  */
151                 *vpos -= fifo_lines + 1;
152
153                 return ret;
154         }
155
156         /*
157          * Less: This happens when we are in vblank and the HVS, after getting
158          * the VSTART restart signal from the PV, just started refilling its
159          * fifo with new lines from the top-most lines of the new framebuffers.
160          * The PV does not scan out in vblank, so does not remove lines from
161          * the fifo, so the fifo will be full quickly and the HVS has to pause.
162          * We can't get meaningful readings wrt. scanline position of the PV
163          * and need to make things up in a approximative but consistent way.
164          */
165         vblank_lines = mode->vtotal - mode->vdisplay;
166
167         if (in_vblank_irq) {
168                 /*
169                  * Assume the irq handler got called close to first
170                  * line of vblank, so PV has about a full vblank
171                  * scanlines to go, and as a base timestamp use the
172                  * one taken at entry into vblank irq handler, so it
173                  * is not affected by random delays due to lock
174                  * contention on event_lock or vblank_time lock in
175                  * the core.
176                  */
177                 *vpos = -vblank_lines;
178
179                 if (stime)
180                         *stime = vc4_crtc->t_vblank;
181                 if (etime)
182                         *etime = vc4_crtc->t_vblank;
183
184                 /*
185                  * If the HVS fifo is not yet full then we know for certain
186                  * we are at the very beginning of vblank, as the hvs just
187                  * started refilling, and the stime and etime timestamps
188                  * truly correspond to start of vblank.
189                  *
190                  * Unfortunately there's no way to report this to upper levels
191                  * and make it more useful.
192                  */
193         } else {
194                 /*
195                  * No clue where we are inside vblank. Return a vpos of zero,
196                  * which will cause calling code to just return the etime
197                  * timestamp uncorrected. At least this is no worse than the
198                  * standard fallback.
199                  */
200                 *vpos = 0;
201         }
202
203         return ret;
204 }
205
206 static void vc4_crtc_destroy(struct drm_crtc *crtc)
207 {
208         drm_crtc_cleanup(crtc);
209 }
210
211 static void
212 vc4_crtc_lut_load(struct drm_crtc *crtc)
213 {
214         struct drm_device *dev = crtc->dev;
215         struct vc4_dev *vc4 = to_vc4_dev(dev);
216         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
217         u32 i;
218
219         /* The LUT memory is laid out with each HVS channel in order,
220          * each of which takes 256 writes for R, 256 for G, then 256
221          * for B.
222          */
223         HVS_WRITE(SCALER_GAMADDR,
224                   SCALER_GAMADDR_AUTOINC |
225                   (vc4_crtc->channel * 3 * crtc->gamma_size));
226
227         for (i = 0; i < crtc->gamma_size; i++)
228                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
229         for (i = 0; i < crtc->gamma_size; i++)
230                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
231         for (i = 0; i < crtc->gamma_size; i++)
232                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
233 }
234
235 static void
236 vc4_crtc_update_gamma_lut(struct drm_crtc *crtc)
237 {
238         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
239         struct drm_color_lut *lut = crtc->state->gamma_lut->data;
240         u32 length = drm_color_lut_size(crtc->state->gamma_lut);
241         u32 i;
242
243         for (i = 0; i < length; i++) {
244                 vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
245                 vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
246                 vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
247         }
248
249         vc4_crtc_lut_load(crtc);
250 }
251
252 static u32 vc4_get_fifo_full_level(u32 format)
253 {
254         static const u32 fifo_len_bytes = 64;
255         static const u32 hvs_latency_pix = 6;
256
257         switch (format) {
258         case PV_CONTROL_FORMAT_DSIV_16:
259         case PV_CONTROL_FORMAT_DSIC_16:
260                 return fifo_len_bytes - 2 * hvs_latency_pix;
261         case PV_CONTROL_FORMAT_DSIV_18:
262                 return fifo_len_bytes - 14;
263         case PV_CONTROL_FORMAT_24:
264         case PV_CONTROL_FORMAT_DSIV_24:
265         default:
266                 return fifo_len_bytes - 3 * hvs_latency_pix;
267         }
268 }
269
270 /*
271  * Returns the encoder attached to the CRTC.
272  *
273  * VC4 can only scan out to one encoder at a time, while the DRM core
274  * allows drivers to push pixels to more than one encoder from the
275  * same CRTC.
276  */
277 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
278 {
279         struct drm_connector *connector;
280         struct drm_connector_list_iter conn_iter;
281
282         drm_connector_list_iter_begin(crtc->dev, &conn_iter);
283         drm_for_each_connector_iter(connector, &conn_iter) {
284                 if (connector->state->crtc == crtc) {
285                         drm_connector_list_iter_end(&conn_iter);
286                         return connector->encoder;
287                 }
288         }
289         drm_connector_list_iter_end(&conn_iter);
290
291         return NULL;
292 }
293
294 static void vc4_crtc_config_pv(struct drm_crtc *crtc)
295 {
296         struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
297         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
298         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
299         struct drm_crtc_state *state = crtc->state;
300         struct drm_display_mode *mode = &state->adjusted_mode;
301         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
302         u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
303         bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
304                        vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
305         u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
306
307         /* Reset the PV fifo. */
308         CRTC_WRITE(PV_CONTROL, 0);
309         CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
310         CRTC_WRITE(PV_CONTROL, 0);
311
312         CRTC_WRITE(PV_HORZA,
313                    VC4_SET_FIELD((mode->htotal -
314                                   mode->hsync_end) * pixel_rep,
315                                  PV_HORZA_HBP) |
316                    VC4_SET_FIELD((mode->hsync_end -
317                                   mode->hsync_start) * pixel_rep,
318                                  PV_HORZA_HSYNC));
319         CRTC_WRITE(PV_HORZB,
320                    VC4_SET_FIELD((mode->hsync_start -
321                                   mode->hdisplay) * pixel_rep,
322                                  PV_HORZB_HFP) |
323                    VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
324
325         CRTC_WRITE(PV_VERTA,
326                    VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
327                                  PV_VERTA_VBP) |
328                    VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
329                                  PV_VERTA_VSYNC));
330         CRTC_WRITE(PV_VERTB,
331                    VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
332                                  PV_VERTB_VFP) |
333                    VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
334
335         if (interlace) {
336                 CRTC_WRITE(PV_VERTA_EVEN,
337                            VC4_SET_FIELD(mode->crtc_vtotal -
338                                          mode->crtc_vsync_end - 1,
339                                          PV_VERTA_VBP) |
340                            VC4_SET_FIELD(mode->crtc_vsync_end -
341                                          mode->crtc_vsync_start,
342                                          PV_VERTA_VSYNC));
343                 CRTC_WRITE(PV_VERTB_EVEN,
344                            VC4_SET_FIELD(mode->crtc_vsync_start -
345                                          mode->crtc_vdisplay,
346                                          PV_VERTB_VFP) |
347                            VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
348
349                 /* We set up first field even mode for HDMI.  VEC's
350                  * NTSC mode would want first field odd instead, once
351                  * we support it (to do so, set ODD_FIRST and put the
352                  * delay in VSYNCD_EVEN instead).
353                  */
354                 CRTC_WRITE(PV_V_CONTROL,
355                            PV_VCONTROL_CONTINUOUS |
356                            (is_dsi ? PV_VCONTROL_DSI : 0) |
357                            PV_VCONTROL_INTERLACE |
358                            VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
359                                          PV_VCONTROL_ODD_DELAY));
360                 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
361         } else {
362                 CRTC_WRITE(PV_V_CONTROL,
363                            PV_VCONTROL_CONTINUOUS |
364                            (is_dsi ? PV_VCONTROL_DSI : 0));
365         }
366
367         CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
368
369         CRTC_WRITE(PV_CONTROL,
370                    VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
371                    VC4_SET_FIELD(vc4_get_fifo_full_level(format),
372                                  PV_CONTROL_FIFO_LEVEL) |
373                    VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
374                    PV_CONTROL_CLR_AT_START |
375                    PV_CONTROL_TRIGGER_UNDERFLOW |
376                    PV_CONTROL_WAIT_HSTART |
377                    VC4_SET_FIELD(vc4_encoder->clock_select,
378                                  PV_CONTROL_CLK_SELECT) |
379                    PV_CONTROL_FIFO_CLR |
380                    PV_CONTROL_EN);
381 }
382
383 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
384 {
385         struct drm_device *dev = crtc->dev;
386         struct vc4_dev *vc4 = to_vc4_dev(dev);
387         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
388         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
389         struct drm_display_mode *mode = &crtc->state->adjusted_mode;
390         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
391         bool debug_dump_regs = false;
392
393         if (debug_dump_regs) {
394                 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
395                 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
396                          drm_crtc_index(crtc));
397                 drm_print_regset32(&p, &vc4_crtc->regset);
398         }
399
400         if (vc4_crtc->channel == 2) {
401                 u32 dispctrl;
402                 u32 dsp3_mux;
403
404                 /*
405                  * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
406                  * FIFO X'.
407                  * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
408                  *
409                  * DSP3 is connected to FIFO2 unless the transposer is
410                  * enabled. In this case, FIFO 2 is directly accessed by the
411                  * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
412                  * route.
413                  */
414                 if (vc4_state->feed_txp)
415                         dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
416                 else
417                         dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
418
419                 dispctrl = HVS_READ(SCALER_DISPCTRL) &
420                            ~SCALER_DISPCTRL_DSP3_MUX_MASK;
421                 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
422         }
423
424         if (!vc4_state->feed_txp)
425                 vc4_crtc_config_pv(crtc);
426
427         HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
428                   SCALER_DISPBKGND_AUTOHS |
429                   SCALER_DISPBKGND_GAMMA |
430                   (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
431
432         /* Reload the LUT, since the SRAMs would have been disabled if
433          * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
434          */
435         vc4_crtc_lut_load(crtc);
436
437         if (debug_dump_regs) {
438                 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
439                 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
440                          drm_crtc_index(crtc));
441                 drm_print_regset32(&p, &vc4_crtc->regset);
442         }
443 }
444
445 static void require_hvs_enabled(struct drm_device *dev)
446 {
447         struct vc4_dev *vc4 = to_vc4_dev(dev);
448
449         WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
450                      SCALER_DISPCTRL_ENABLE);
451 }
452
453 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
454                                     struct drm_crtc_state *old_state)
455 {
456         struct drm_device *dev = crtc->dev;
457         struct vc4_dev *vc4 = to_vc4_dev(dev);
458         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
459         u32 chan = vc4_crtc->channel;
460         int ret;
461         require_hvs_enabled(dev);
462
463         /* Disable vblank irq handling before crtc is disabled. */
464         drm_crtc_vblank_off(crtc);
465
466         CRTC_WRITE(PV_V_CONTROL,
467                    CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
468         ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
469         WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
470
471         if (HVS_READ(SCALER_DISPCTRLX(chan)) &
472             SCALER_DISPCTRLX_ENABLE) {
473                 HVS_WRITE(SCALER_DISPCTRLX(chan),
474                           SCALER_DISPCTRLX_RESET);
475
476                 /* While the docs say that reset is self-clearing, it
477                  * seems it doesn't actually.
478                  */
479                 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
480         }
481
482         /* Once we leave, the scaler should be disabled and its fifo empty. */
483
484         WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
485
486         WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
487                                    SCALER_DISPSTATX_MODE) !=
488                      SCALER_DISPSTATX_MODE_DISABLED);
489
490         WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
491                       (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
492                      SCALER_DISPSTATX_EMPTY);
493
494         /*
495          * Make sure we issue a vblank event after disabling the CRTC if
496          * someone was waiting it.
497          */
498         if (crtc->state->event) {
499                 unsigned long flags;
500
501                 spin_lock_irqsave(&dev->event_lock, flags);
502                 drm_crtc_send_vblank_event(crtc, crtc->state->event);
503                 crtc->state->event = NULL;
504                 spin_unlock_irqrestore(&dev->event_lock, flags);
505         }
506 }
507
508 void vc4_crtc_txp_armed(struct drm_crtc_state *state)
509 {
510         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
511
512         vc4_state->txp_armed = true;
513 }
514
515 static void vc4_crtc_update_dlist(struct drm_crtc *crtc)
516 {
517         struct drm_device *dev = crtc->dev;
518         struct vc4_dev *vc4 = to_vc4_dev(dev);
519         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
520         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
521
522         if (crtc->state->event) {
523                 unsigned long flags;
524
525                 crtc->state->event->pipe = drm_crtc_index(crtc);
526
527                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
528
529                 spin_lock_irqsave(&dev->event_lock, flags);
530
531                 if (!vc4_state->feed_txp || vc4_state->txp_armed) {
532                         vc4_crtc->event = crtc->state->event;
533                         crtc->state->event = NULL;
534                 }
535
536                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
537                           vc4_state->mm.start);
538
539                 spin_unlock_irqrestore(&dev->event_lock, flags);
540         } else {
541                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
542                           vc4_state->mm.start);
543         }
544 }
545
546 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
547                                    struct drm_crtc_state *old_state)
548 {
549         struct drm_device *dev = crtc->dev;
550         struct vc4_dev *vc4 = to_vc4_dev(dev);
551         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
552         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
553         struct drm_display_mode *mode = &crtc->state->adjusted_mode;
554
555         require_hvs_enabled(dev);
556
557         /* Enable vblank irq handling before crtc is started otherwise
558          * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
559          */
560         drm_crtc_vblank_on(crtc);
561         vc4_crtc_update_dlist(crtc);
562
563         /* Turn on the scaler, which will wait for vstart to start
564          * compositing.
565          * When feeding the transposer, we should operate in oneshot
566          * mode.
567          */
568         HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
569                   VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
570                   VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
571                   SCALER_DISPCTRLX_ENABLE |
572                   (vc4_state->feed_txp ? SCALER_DISPCTRLX_ONESHOT : 0));
573
574         /* When feeding the transposer block the pixelvalve is unneeded and
575          * should not be enabled.
576          */
577         if (!vc4_state->feed_txp)
578                 CRTC_WRITE(PV_V_CONTROL,
579                            CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
580 }
581
582 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
583                                                 const struct drm_display_mode *mode)
584 {
585         /* Do not allow doublescan modes from user space */
586         if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
587                 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
588                               crtc->base.id);
589                 return MODE_NO_DBLESCAN;
590         }
591
592         return MODE_OK;
593 }
594
595 void vc4_crtc_get_margins(struct drm_crtc_state *state,
596                           unsigned int *left, unsigned int *right,
597                           unsigned int *top, unsigned int *bottom)
598 {
599         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
600         struct drm_connector_state *conn_state;
601         struct drm_connector *conn;
602         int i;
603
604         *left = vc4_state->margins.left;
605         *right = vc4_state->margins.right;
606         *top = vc4_state->margins.top;
607         *bottom = vc4_state->margins.bottom;
608
609         /* We have to interate over all new connector states because
610          * vc4_crtc_get_margins() might be called before
611          * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
612          * might be outdated.
613          */
614         for_each_new_connector_in_state(state->state, conn, conn_state, i) {
615                 if (conn_state->crtc != state->crtc)
616                         continue;
617
618                 *left = conn_state->tv.margins.left;
619                 *right = conn_state->tv.margins.right;
620                 *top = conn_state->tv.margins.top;
621                 *bottom = conn_state->tv.margins.bottom;
622                 break;
623         }
624 }
625
626 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
627                                  struct drm_crtc_state *state)
628 {
629         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
630         struct drm_device *dev = crtc->dev;
631         struct vc4_dev *vc4 = to_vc4_dev(dev);
632         struct drm_plane *plane;
633         unsigned long flags;
634         const struct drm_plane_state *plane_state;
635         struct drm_connector *conn;
636         struct drm_connector_state *conn_state;
637         u32 dlist_count = 0;
638         int ret, i;
639
640         /* The pixelvalve can only feed one encoder (and encoders are
641          * 1:1 with connectors.)
642          */
643         if (hweight32(state->connector_mask) > 1)
644                 return -EINVAL;
645
646         drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
647                 dlist_count += vc4_plane_dlist_size(plane_state);
648
649         dlist_count++; /* Account for SCALER_CTL0_END. */
650
651         spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
652         ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
653                                  dlist_count);
654         spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
655         if (ret)
656                 return ret;
657
658         for_each_new_connector_in_state(state->state, conn, conn_state, i) {
659                 if (conn_state->crtc != crtc)
660                         continue;
661
662                 /* The writeback connector is implemented using the transposer
663                  * block which is directly taking its data from the HVS FIFO.
664                  */
665                 if (conn->connector_type == DRM_MODE_CONNECTOR_WRITEBACK) {
666                         state->no_vblank = true;
667                         vc4_state->feed_txp = true;
668                 } else {
669                         state->no_vblank = false;
670                         vc4_state->feed_txp = false;
671                 }
672
673                 vc4_state->margins.left = conn_state->tv.margins.left;
674                 vc4_state->margins.right = conn_state->tv.margins.right;
675                 vc4_state->margins.top = conn_state->tv.margins.top;
676                 vc4_state->margins.bottom = conn_state->tv.margins.bottom;
677                 break;
678         }
679
680         return 0;
681 }
682
683 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
684                                   struct drm_crtc_state *old_state)
685 {
686         struct drm_device *dev = crtc->dev;
687         struct vc4_dev *vc4 = to_vc4_dev(dev);
688         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
689         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
690         struct drm_plane *plane;
691         struct vc4_plane_state *vc4_plane_state;
692         bool debug_dump_regs = false;
693         bool enable_bg_fill = false;
694         u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
695         u32 __iomem *dlist_next = dlist_start;
696
697         if (debug_dump_regs) {
698                 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
699                 vc4_hvs_dump_state(dev);
700         }
701
702         /* Copy all the active planes' dlist contents to the hardware dlist. */
703         drm_atomic_crtc_for_each_plane(plane, crtc) {
704                 /* Is this the first active plane? */
705                 if (dlist_next == dlist_start) {
706                         /* We need to enable background fill when a plane
707                          * could be alpha blending from the background, i.e.
708                          * where no other plane is underneath. It suffices to
709                          * consider the first active plane here since we set
710                          * needs_bg_fill such that either the first plane
711                          * already needs it or all planes on top blend from
712                          * the first or a lower plane.
713                          */
714                         vc4_plane_state = to_vc4_plane_state(plane->state);
715                         enable_bg_fill = vc4_plane_state->needs_bg_fill;
716                 }
717
718                 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
719         }
720
721         writel(SCALER_CTL0_END, dlist_next);
722         dlist_next++;
723
724         WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
725
726         if (enable_bg_fill)
727                 /* This sets a black background color fill, as is the case
728                  * with other DRM drivers.
729                  */
730                 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
731                           HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) |
732                           SCALER_DISPBKGND_FILL);
733
734         /* Only update DISPLIST if the CRTC was already running and is not
735          * being disabled.
736          * vc4_crtc_enable() takes care of updating the dlist just after
737          * re-enabling VBLANK interrupts and before enabling the engine.
738          * If the CRTC is being disabled, there's no point in updating this
739          * information.
740          */
741         if (crtc->state->active && old_state->active)
742                 vc4_crtc_update_dlist(crtc);
743
744         if (crtc->state->color_mgmt_changed) {
745                 u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel));
746
747                 if (crtc->state->gamma_lut) {
748                         vc4_crtc_update_gamma_lut(crtc);
749                         dispbkgndx |= SCALER_DISPBKGND_GAMMA;
750                 } else {
751                         /* Unsetting DISPBKGND_GAMMA skips the gamma lut step
752                          * in hardware, which is the same as a linear lut that
753                          * DRM expects us to use in absence of a user lut.
754                          */
755                         dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
756                 }
757                 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), dispbkgndx);
758         }
759
760         if (debug_dump_regs) {
761                 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
762                 vc4_hvs_dump_state(dev);
763         }
764 }
765
766 static int vc4_enable_vblank(struct drm_crtc *crtc)
767 {
768         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
769
770         CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
771
772         return 0;
773 }
774
775 static void vc4_disable_vblank(struct drm_crtc *crtc)
776 {
777         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
778
779         CRTC_WRITE(PV_INTEN, 0);
780 }
781
782 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
783 {
784         struct drm_crtc *crtc = &vc4_crtc->base;
785         struct drm_device *dev = crtc->dev;
786         struct vc4_dev *vc4 = to_vc4_dev(dev);
787         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
788         u32 chan = vc4_crtc->channel;
789         unsigned long flags;
790
791         spin_lock_irqsave(&dev->event_lock, flags);
792         if (vc4_crtc->event &&
793             (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
794              vc4_state->feed_txp)) {
795                 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
796                 vc4_crtc->event = NULL;
797                 drm_crtc_vblank_put(crtc);
798
799                 /* Wait for the page flip to unmask the underrun to ensure that
800                  * the display list was updated by the hardware. Before that
801                  * happens, the HVS will be using the previous display list with
802                  * the CRTC and encoder already reconfigured, leading to
803                  * underruns. This can be seen when reconfiguring the CRTC.
804                  */
805                 vc4_hvs_unmask_underrun(dev, vc4_crtc->channel);
806         }
807         spin_unlock_irqrestore(&dev->event_lock, flags);
808 }
809
810 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
811 {
812         crtc->t_vblank = ktime_get();
813         drm_crtc_handle_vblank(&crtc->base);
814         vc4_crtc_handle_page_flip(crtc);
815 }
816
817 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
818 {
819         struct vc4_crtc *vc4_crtc = data;
820         u32 stat = CRTC_READ(PV_INTSTAT);
821         irqreturn_t ret = IRQ_NONE;
822
823         if (stat & PV_INT_VFP_START) {
824                 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
825                 vc4_crtc_handle_vblank(vc4_crtc);
826                 ret = IRQ_HANDLED;
827         }
828
829         return ret;
830 }
831
832 struct vc4_async_flip_state {
833         struct drm_crtc *crtc;
834         struct drm_framebuffer *fb;
835         struct drm_framebuffer *old_fb;
836         struct drm_pending_vblank_event *event;
837
838         struct vc4_seqno_cb cb;
839 };
840
841 /* Called when the V3D execution for the BO being flipped to is done, so that
842  * we can actually update the plane's address to point to it.
843  */
844 static void
845 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
846 {
847         struct vc4_async_flip_state *flip_state =
848                 container_of(cb, struct vc4_async_flip_state, cb);
849         struct drm_crtc *crtc = flip_state->crtc;
850         struct drm_device *dev = crtc->dev;
851         struct vc4_dev *vc4 = to_vc4_dev(dev);
852         struct drm_plane *plane = crtc->primary;
853
854         vc4_plane_async_set_fb(plane, flip_state->fb);
855         if (flip_state->event) {
856                 unsigned long flags;
857
858                 spin_lock_irqsave(&dev->event_lock, flags);
859                 drm_crtc_send_vblank_event(crtc, flip_state->event);
860                 spin_unlock_irqrestore(&dev->event_lock, flags);
861         }
862
863         drm_crtc_vblank_put(crtc);
864         drm_framebuffer_put(flip_state->fb);
865
866         /* Decrement the BO usecnt in order to keep the inc/dec calls balanced
867          * when the planes are updated through the async update path.
868          * FIXME: we should move to generic async-page-flip when it's
869          * available, so that we can get rid of this hand-made cleanup_fb()
870          * logic.
871          */
872         if (flip_state->old_fb) {
873                 struct drm_gem_cma_object *cma_bo;
874                 struct vc4_bo *bo;
875
876                 cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
877                 bo = to_vc4_bo(&cma_bo->base);
878                 vc4_bo_dec_usecnt(bo);
879                 drm_framebuffer_put(flip_state->old_fb);
880         }
881
882         kfree(flip_state);
883
884         up(&vc4->async_modeset);
885 }
886
887 /* Implements async (non-vblank-synced) page flips.
888  *
889  * The page flip ioctl needs to return immediately, so we grab the
890  * modeset semaphore on the pipe, and queue the address update for
891  * when V3D is done with the BO being flipped to.
892  */
893 static int vc4_async_page_flip(struct drm_crtc *crtc,
894                                struct drm_framebuffer *fb,
895                                struct drm_pending_vblank_event *event,
896                                uint32_t flags)
897 {
898         struct drm_device *dev = crtc->dev;
899         struct vc4_dev *vc4 = to_vc4_dev(dev);
900         struct drm_plane *plane = crtc->primary;
901         int ret = 0;
902         struct vc4_async_flip_state *flip_state;
903         struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
904         struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
905
906         /* Increment the BO usecnt here, so that we never end up with an
907          * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
908          * plane is later updated through the non-async path.
909          * FIXME: we should move to generic async-page-flip when it's
910          * available, so that we can get rid of this hand-made prepare_fb()
911          * logic.
912          */
913         ret = vc4_bo_inc_usecnt(bo);
914         if (ret)
915                 return ret;
916
917         flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
918         if (!flip_state) {
919                 vc4_bo_dec_usecnt(bo);
920                 return -ENOMEM;
921         }
922
923         drm_framebuffer_get(fb);
924         flip_state->fb = fb;
925         flip_state->crtc = crtc;
926         flip_state->event = event;
927
928         /* Make sure all other async modesetes have landed. */
929         ret = down_interruptible(&vc4->async_modeset);
930         if (ret) {
931                 drm_framebuffer_put(fb);
932                 vc4_bo_dec_usecnt(bo);
933                 kfree(flip_state);
934                 return ret;
935         }
936
937         /* Save the current FB before it's replaced by the new one in
938          * drm_atomic_set_fb_for_plane(). We'll need the old FB in
939          * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
940          * it consistent.
941          * FIXME: we should move to generic async-page-flip when it's
942          * available, so that we can get rid of this hand-made cleanup_fb()
943          * logic.
944          */
945         flip_state->old_fb = plane->state->fb;
946         if (flip_state->old_fb)
947                 drm_framebuffer_get(flip_state->old_fb);
948
949         WARN_ON(drm_crtc_vblank_get(crtc) != 0);
950
951         /* Immediately update the plane's legacy fb pointer, so that later
952          * modeset prep sees the state that will be present when the semaphore
953          * is released.
954          */
955         drm_atomic_set_fb_for_plane(plane->state, fb);
956
957         vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
958                            vc4_async_page_flip_complete);
959
960         /* Driver takes ownership of state on successful async commit. */
961         return 0;
962 }
963
964 static int vc4_page_flip(struct drm_crtc *crtc,
965                          struct drm_framebuffer *fb,
966                          struct drm_pending_vblank_event *event,
967                          uint32_t flags,
968                          struct drm_modeset_acquire_ctx *ctx)
969 {
970         if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
971                 return vc4_async_page_flip(crtc, fb, event, flags);
972         else
973                 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
974 }
975
976 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
977 {
978         struct vc4_crtc_state *vc4_state, *old_vc4_state;
979
980         vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
981         if (!vc4_state)
982                 return NULL;
983
984         old_vc4_state = to_vc4_crtc_state(crtc->state);
985         vc4_state->feed_txp = old_vc4_state->feed_txp;
986         vc4_state->margins = old_vc4_state->margins;
987
988         __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
989         return &vc4_state->base;
990 }
991
992 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
993                                    struct drm_crtc_state *state)
994 {
995         struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
996         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
997
998         if (drm_mm_node_allocated(&vc4_state->mm)) {
999                 unsigned long flags;
1000
1001                 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1002                 drm_mm_remove_node(&vc4_state->mm);
1003                 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1004
1005         }
1006
1007         drm_atomic_helper_crtc_destroy_state(crtc, state);
1008 }
1009
1010 static void
1011 vc4_crtc_reset(struct drm_crtc *crtc)
1012 {
1013         if (crtc->state)
1014                 vc4_crtc_destroy_state(crtc, crtc->state);
1015
1016         crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
1017         if (crtc->state)
1018                 crtc->state->crtc = crtc;
1019 }
1020
1021 static const struct drm_crtc_funcs vc4_crtc_funcs = {
1022         .set_config = drm_atomic_helper_set_config,
1023         .destroy = vc4_crtc_destroy,
1024         .page_flip = vc4_page_flip,
1025         .set_property = NULL,
1026         .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1027         .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1028         .reset = vc4_crtc_reset,
1029         .atomic_duplicate_state = vc4_crtc_duplicate_state,
1030         .atomic_destroy_state = vc4_crtc_destroy_state,
1031         .gamma_set = drm_atomic_helper_legacy_gamma_set,
1032         .enable_vblank = vc4_enable_vblank,
1033         .disable_vblank = vc4_disable_vblank,
1034         .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1035 };
1036
1037 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1038         .mode_set_nofb = vc4_crtc_mode_set_nofb,
1039         .mode_valid = vc4_crtc_mode_valid,
1040         .atomic_check = vc4_crtc_atomic_check,
1041         .atomic_flush = vc4_crtc_atomic_flush,
1042         .atomic_enable = vc4_crtc_atomic_enable,
1043         .atomic_disable = vc4_crtc_atomic_disable,
1044         .get_scanout_position = vc4_crtc_get_scanout_position,
1045 };
1046
1047 static const struct vc4_crtc_data pv0_data = {
1048         .hvs_channel = 0,
1049         .debugfs_name = "crtc0_regs",
1050         .encoder_types = {
1051                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1052                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1053         },
1054 };
1055
1056 static const struct vc4_crtc_data pv1_data = {
1057         .hvs_channel = 2,
1058         .debugfs_name = "crtc1_regs",
1059         .encoder_types = {
1060                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1061                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1062         },
1063 };
1064
1065 static const struct vc4_crtc_data pv2_data = {
1066         .hvs_channel = 1,
1067         .debugfs_name = "crtc2_regs",
1068         .encoder_types = {
1069                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
1070                 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1071         },
1072 };
1073
1074 static const struct of_device_id vc4_crtc_dt_match[] = {
1075         { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
1076         { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
1077         { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
1078         {}
1079 };
1080
1081 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1082                                         struct drm_crtc *crtc)
1083 {
1084         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1085         const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
1086         const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
1087         struct drm_encoder *encoder;
1088
1089         drm_for_each_encoder(encoder, drm) {
1090                 struct vc4_encoder *vc4_encoder;
1091                 int i;
1092
1093                 /* HVS FIFO2 can feed the TXP IP. */
1094                 if (crtc_data->hvs_channel == 2 &&
1095                     encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
1096                         encoder->possible_crtcs |= drm_crtc_mask(crtc);
1097                         continue;
1098                 }
1099
1100                 vc4_encoder = to_vc4_encoder(encoder);
1101                 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
1102                         if (vc4_encoder->type == encoder_types[i]) {
1103                                 vc4_encoder->clock_select = i;
1104                                 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1105                                 break;
1106                         }
1107                 }
1108         }
1109 }
1110
1111 static void
1112 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
1113 {
1114         struct drm_device *drm = vc4_crtc->base.dev;
1115         struct vc4_dev *vc4 = to_vc4_dev(drm);
1116         u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
1117         /* Top/base are supposed to be 4-pixel aligned, but the
1118          * Raspberry Pi firmware fills the low bits (which are
1119          * presumably ignored).
1120          */
1121         u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
1122         u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
1123
1124         vc4_crtc->cob_size = top - base + 4;
1125 }
1126
1127 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1128 {
1129         struct platform_device *pdev = to_platform_device(dev);
1130         struct drm_device *drm = dev_get_drvdata(master);
1131         struct vc4_crtc *vc4_crtc;
1132         struct drm_crtc *crtc;
1133         struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
1134         const struct of_device_id *match;
1135         int ret, i;
1136
1137         vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1138         if (!vc4_crtc)
1139                 return -ENOMEM;
1140         crtc = &vc4_crtc->base;
1141
1142         match = of_match_device(vc4_crtc_dt_match, dev);
1143         if (!match)
1144                 return -ENODEV;
1145         vc4_crtc->data = match->data;
1146         vc4_crtc->pdev = pdev;
1147
1148         vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1149         if (IS_ERR(vc4_crtc->regs))
1150                 return PTR_ERR(vc4_crtc->regs);
1151
1152         vc4_crtc->regset.base = vc4_crtc->regs;
1153         vc4_crtc->regset.regs = crtc_regs;
1154         vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1155
1156         /* For now, we create just the primary and the legacy cursor
1157          * planes.  We should be able to stack more planes on easily,
1158          * but to do that we would need to compute the bandwidth
1159          * requirement of the plane configuration, and reject ones
1160          * that will take too much.
1161          */
1162         primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1163         if (IS_ERR(primary_plane)) {
1164                 dev_err(dev, "failed to construct primary plane\n");
1165                 ret = PTR_ERR(primary_plane);
1166                 goto err;
1167         }
1168
1169         drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1170                                   &vc4_crtc_funcs, NULL);
1171         drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
1172         vc4_crtc->channel = vc4_crtc->data->hvs_channel;
1173         drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1174         drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1175
1176         /* We support CTM, but only for one CRTC at a time. It's therefore
1177          * implemented as private driver state in vc4_kms, not here.
1178          */
1179         drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1180
1181         /* Set up some arbitrary number of planes.  We're not limited
1182          * by a set number of physical registers, just the space in
1183          * the HVS (16k) and how small an plane can be (28 bytes).
1184          * However, each plane we set up takes up some memory, and
1185          * increases the cost of looping over planes, which atomic
1186          * modesetting does quite a bit.  As a result, we pick a
1187          * modest number of planes to expose, that should hopefully
1188          * still cover any sane usecase.
1189          */
1190         for (i = 0; i < 8; i++) {
1191                 struct drm_plane *plane =
1192                         vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1193
1194                 if (IS_ERR(plane))
1195                         continue;
1196
1197                 plane->possible_crtcs = drm_crtc_mask(crtc);
1198         }
1199
1200         /* Set up the legacy cursor after overlay initialization,
1201          * since we overlay planes on the CRTC in the order they were
1202          * initialized.
1203          */
1204         cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1205         if (!IS_ERR(cursor_plane)) {
1206                 cursor_plane->possible_crtcs = drm_crtc_mask(crtc);
1207                 crtc->cursor = cursor_plane;
1208         }
1209
1210         vc4_crtc_get_cob_allocation(vc4_crtc);
1211
1212         CRTC_WRITE(PV_INTEN, 0);
1213         CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1214         ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1215                                vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1216         if (ret)
1217                 goto err_destroy_planes;
1218
1219         vc4_set_crtc_possible_masks(drm, crtc);
1220
1221         for (i = 0; i < crtc->gamma_size; i++) {
1222                 vc4_crtc->lut_r[i] = i;
1223                 vc4_crtc->lut_g[i] = i;
1224                 vc4_crtc->lut_b[i] = i;
1225         }
1226
1227         platform_set_drvdata(pdev, vc4_crtc);
1228
1229         vc4_debugfs_add_regset32(drm, vc4_crtc->data->debugfs_name,
1230                                  &vc4_crtc->regset);
1231
1232         return 0;
1233
1234 err_destroy_planes:
1235         list_for_each_entry_safe(destroy_plane, temp,
1236                                  &drm->mode_config.plane_list, head) {
1237                 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1238                     destroy_plane->funcs->destroy(destroy_plane);
1239         }
1240 err:
1241         return ret;
1242 }
1243
1244 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1245                             void *data)
1246 {
1247         struct platform_device *pdev = to_platform_device(dev);
1248         struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1249
1250         vc4_crtc_destroy(&vc4_crtc->base);
1251
1252         CRTC_WRITE(PV_INTEN, 0);
1253
1254         platform_set_drvdata(pdev, NULL);
1255 }
1256
1257 static const struct component_ops vc4_crtc_ops = {
1258         .bind   = vc4_crtc_bind,
1259         .unbind = vc4_crtc_unbind,
1260 };
1261
1262 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1263 {
1264         return component_add(&pdev->dev, &vc4_crtc_ops);
1265 }
1266
1267 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1268 {
1269         component_del(&pdev->dev, &vc4_crtc_ops);
1270         return 0;
1271 }
1272
1273 struct platform_driver vc4_crtc_driver = {
1274         .probe = vc4_crtc_dev_probe,
1275         .remove = vc4_crtc_dev_remove,
1276         .driver = {
1277                 .name = "vc4_crtc",
1278                 .of_match_table = vc4_crtc_dt_match,
1279         },
1280 };
This page took 0.117341 seconds and 4 git commands to generate.