1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2015 Broadcom
9 * In VC4, the Pixel Valve is what most closely corresponds to the
10 * DRM's concept of a CRTC. The PV generates video timings from the
11 * encoder's clock plus its configuration. It pulls scaled pixels from
12 * the HVS at that timing, and feeds it to the encoder.
14 * However, the DRM CRTC also collects the configuration of all the
15 * DRM planes attached to it. As a result, the CRTC is also
16 * responsible for writing the display list for the HVS channel that
19 * The 2835 has 3 different pixel valves. pv0 in the audio power
20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
21 * image domain can feed either HDMI or the SDTV controller. The
22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23 * SDTV, etc.) according to which output type is chosen in the mux.
25 * For power management, the pixel valve's registers are all clocked
26 * by the AXI clock, while the timings and FIFOs make use of the
27 * output-specific clock. Since the encoders also directly consume
28 * the CPRMAN clocks, and know what timings they need, they are the
29 * ones that set the clock.
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of_device.h>
36 #include <drm/drm_atomic.h>
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_atomic_uapi.h>
39 #include <drm/drm_fb_cma_helper.h>
40 #include <drm/drm_print.h>
41 #include <drm/drm_probe_helper.h>
42 #include <drm/drm_vblank.h>
47 struct vc4_crtc_state {
48 struct drm_crtc_state base;
49 /* Dlist area for this CRTC configuration. */
50 struct drm_mm_node mm;
62 static inline struct vc4_crtc_state *
63 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
65 return (struct vc4_crtc_state *)crtc_state;
68 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
69 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
71 static const struct debugfs_reg32 crtc_regs[] = {
72 VC4_REG32(PV_CONTROL),
73 VC4_REG32(PV_V_CONTROL),
74 VC4_REG32(PV_VSYNCD_EVEN),
79 VC4_REG32(PV_VERTA_EVEN),
80 VC4_REG32(PV_VERTB_EVEN),
82 VC4_REG32(PV_INTSTAT),
84 VC4_REG32(PV_HACT_ACT),
87 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
90 ktime_t *stime, ktime_t *etime,
91 const struct drm_display_mode *mode)
93 struct drm_device *dev = crtc->dev;
94 struct vc4_dev *vc4 = to_vc4_dev(dev);
95 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
101 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
103 /* Get optional system timestamp before query. */
105 *stime = ktime_get();
108 * Read vertical scanline which is currently composed for our
109 * pixelvalve by the HVS, and also the scaler status.
111 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
113 /* Get optional system timestamp after query. */
115 *etime = ktime_get();
117 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
119 /* Vertical position of hvs composed scanline. */
120 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
123 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
126 /* Use hpos to correct for field offset in interlaced mode. */
127 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
128 *hpos += mode->crtc_htotal / 2;
131 /* This is the offset we need for translating hvs -> pv scanout pos. */
132 fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
137 /* HVS more than fifo_lines into frame for compositing? */
138 if (*vpos > fifo_lines) {
140 * We are in active scanout and can get some meaningful results
141 * from HVS. The actual PV scanout can not trail behind more
142 * than fifo_lines as that is the fifo's capacity. Assume that
143 * in active scanout the HVS and PV work in lockstep wrt. HVS
144 * refilling the fifo and PV consuming from the fifo, ie.
145 * whenever the PV consumes and frees up a scanline in the
146 * fifo, the HVS will immediately refill it, therefore
147 * incrementing vpos. Therefore we choose HVS read position -
148 * fifo size in scanlines as a estimate of the real scanout
149 * position of the PV.
151 *vpos -= fifo_lines + 1;
157 * Less: This happens when we are in vblank and the HVS, after getting
158 * the VSTART restart signal from the PV, just started refilling its
159 * fifo with new lines from the top-most lines of the new framebuffers.
160 * The PV does not scan out in vblank, so does not remove lines from
161 * the fifo, so the fifo will be full quickly and the HVS has to pause.
162 * We can't get meaningful readings wrt. scanline position of the PV
163 * and need to make things up in a approximative but consistent way.
165 vblank_lines = mode->vtotal - mode->vdisplay;
169 * Assume the irq handler got called close to first
170 * line of vblank, so PV has about a full vblank
171 * scanlines to go, and as a base timestamp use the
172 * one taken at entry into vblank irq handler, so it
173 * is not affected by random delays due to lock
174 * contention on event_lock or vblank_time lock in
177 *vpos = -vblank_lines;
180 *stime = vc4_crtc->t_vblank;
182 *etime = vc4_crtc->t_vblank;
185 * If the HVS fifo is not yet full then we know for certain
186 * we are at the very beginning of vblank, as the hvs just
187 * started refilling, and the stime and etime timestamps
188 * truly correspond to start of vblank.
190 * Unfortunately there's no way to report this to upper levels
191 * and make it more useful.
195 * No clue where we are inside vblank. Return a vpos of zero,
196 * which will cause calling code to just return the etime
197 * timestamp uncorrected. At least this is no worse than the
206 static void vc4_crtc_destroy(struct drm_crtc *crtc)
208 drm_crtc_cleanup(crtc);
212 vc4_crtc_lut_load(struct drm_crtc *crtc)
214 struct drm_device *dev = crtc->dev;
215 struct vc4_dev *vc4 = to_vc4_dev(dev);
216 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
219 /* The LUT memory is laid out with each HVS channel in order,
220 * each of which takes 256 writes for R, 256 for G, then 256
223 HVS_WRITE(SCALER_GAMADDR,
224 SCALER_GAMADDR_AUTOINC |
225 (vc4_crtc->channel * 3 * crtc->gamma_size));
227 for (i = 0; i < crtc->gamma_size; i++)
228 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
229 for (i = 0; i < crtc->gamma_size; i++)
230 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
231 for (i = 0; i < crtc->gamma_size; i++)
232 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
236 vc4_crtc_update_gamma_lut(struct drm_crtc *crtc)
238 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
239 struct drm_color_lut *lut = crtc->state->gamma_lut->data;
240 u32 length = drm_color_lut_size(crtc->state->gamma_lut);
243 for (i = 0; i < length; i++) {
244 vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
245 vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
246 vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
249 vc4_crtc_lut_load(crtc);
252 static u32 vc4_get_fifo_full_level(u32 format)
254 static const u32 fifo_len_bytes = 64;
255 static const u32 hvs_latency_pix = 6;
258 case PV_CONTROL_FORMAT_DSIV_16:
259 case PV_CONTROL_FORMAT_DSIC_16:
260 return fifo_len_bytes - 2 * hvs_latency_pix;
261 case PV_CONTROL_FORMAT_DSIV_18:
262 return fifo_len_bytes - 14;
263 case PV_CONTROL_FORMAT_24:
264 case PV_CONTROL_FORMAT_DSIV_24:
266 return fifo_len_bytes - 3 * hvs_latency_pix;
271 * Returns the encoder attached to the CRTC.
273 * VC4 can only scan out to one encoder at a time, while the DRM core
274 * allows drivers to push pixels to more than one encoder from the
277 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
279 struct drm_connector *connector;
280 struct drm_connector_list_iter conn_iter;
282 drm_connector_list_iter_begin(crtc->dev, &conn_iter);
283 drm_for_each_connector_iter(connector, &conn_iter) {
284 if (connector->state->crtc == crtc) {
285 drm_connector_list_iter_end(&conn_iter);
286 return connector->encoder;
289 drm_connector_list_iter_end(&conn_iter);
294 static void vc4_crtc_config_pv(struct drm_crtc *crtc)
296 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
297 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
298 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
299 struct drm_crtc_state *state = crtc->state;
300 struct drm_display_mode *mode = &state->adjusted_mode;
301 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
302 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
303 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
304 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
305 u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
307 /* Reset the PV fifo. */
308 CRTC_WRITE(PV_CONTROL, 0);
309 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
310 CRTC_WRITE(PV_CONTROL, 0);
313 VC4_SET_FIELD((mode->htotal -
314 mode->hsync_end) * pixel_rep,
316 VC4_SET_FIELD((mode->hsync_end -
317 mode->hsync_start) * pixel_rep,
320 VC4_SET_FIELD((mode->hsync_start -
321 mode->hdisplay) * pixel_rep,
323 VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
326 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
328 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
331 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
333 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
336 CRTC_WRITE(PV_VERTA_EVEN,
337 VC4_SET_FIELD(mode->crtc_vtotal -
338 mode->crtc_vsync_end - 1,
340 VC4_SET_FIELD(mode->crtc_vsync_end -
341 mode->crtc_vsync_start,
343 CRTC_WRITE(PV_VERTB_EVEN,
344 VC4_SET_FIELD(mode->crtc_vsync_start -
347 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
349 /* We set up first field even mode for HDMI. VEC's
350 * NTSC mode would want first field odd instead, once
351 * we support it (to do so, set ODD_FIRST and put the
352 * delay in VSYNCD_EVEN instead).
354 CRTC_WRITE(PV_V_CONTROL,
355 PV_VCONTROL_CONTINUOUS |
356 (is_dsi ? PV_VCONTROL_DSI : 0) |
357 PV_VCONTROL_INTERLACE |
358 VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
359 PV_VCONTROL_ODD_DELAY));
360 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
362 CRTC_WRITE(PV_V_CONTROL,
363 PV_VCONTROL_CONTINUOUS |
364 (is_dsi ? PV_VCONTROL_DSI : 0));
367 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
369 CRTC_WRITE(PV_CONTROL,
370 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
371 VC4_SET_FIELD(vc4_get_fifo_full_level(format),
372 PV_CONTROL_FIFO_LEVEL) |
373 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
374 PV_CONTROL_CLR_AT_START |
375 PV_CONTROL_TRIGGER_UNDERFLOW |
376 PV_CONTROL_WAIT_HSTART |
377 VC4_SET_FIELD(vc4_encoder->clock_select,
378 PV_CONTROL_CLK_SELECT) |
379 PV_CONTROL_FIFO_CLR |
383 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
385 struct drm_device *dev = crtc->dev;
386 struct vc4_dev *vc4 = to_vc4_dev(dev);
387 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
388 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
389 struct drm_display_mode *mode = &crtc->state->adjusted_mode;
390 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
391 bool debug_dump_regs = false;
393 if (debug_dump_regs) {
394 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
395 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
396 drm_crtc_index(crtc));
397 drm_print_regset32(&p, &vc4_crtc->regset);
400 if (vc4_crtc->channel == 2) {
405 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
407 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
409 * DSP3 is connected to FIFO2 unless the transposer is
410 * enabled. In this case, FIFO 2 is directly accessed by the
411 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
414 if (vc4_state->feed_txp)
415 dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
417 dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
419 dispctrl = HVS_READ(SCALER_DISPCTRL) &
420 ~SCALER_DISPCTRL_DSP3_MUX_MASK;
421 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
424 if (!vc4_state->feed_txp)
425 vc4_crtc_config_pv(crtc);
427 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
428 SCALER_DISPBKGND_AUTOHS |
429 SCALER_DISPBKGND_GAMMA |
430 (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
432 /* Reload the LUT, since the SRAMs would have been disabled if
433 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
435 vc4_crtc_lut_load(crtc);
437 if (debug_dump_regs) {
438 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
439 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
440 drm_crtc_index(crtc));
441 drm_print_regset32(&p, &vc4_crtc->regset);
445 static void require_hvs_enabled(struct drm_device *dev)
447 struct vc4_dev *vc4 = to_vc4_dev(dev);
449 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
450 SCALER_DISPCTRL_ENABLE);
453 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
454 struct drm_crtc_state *old_state)
456 struct drm_device *dev = crtc->dev;
457 struct vc4_dev *vc4 = to_vc4_dev(dev);
458 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
459 u32 chan = vc4_crtc->channel;
461 require_hvs_enabled(dev);
463 /* Disable vblank irq handling before crtc is disabled. */
464 drm_crtc_vblank_off(crtc);
466 CRTC_WRITE(PV_V_CONTROL,
467 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
468 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
469 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
471 if (HVS_READ(SCALER_DISPCTRLX(chan)) &
472 SCALER_DISPCTRLX_ENABLE) {
473 HVS_WRITE(SCALER_DISPCTRLX(chan),
474 SCALER_DISPCTRLX_RESET);
476 /* While the docs say that reset is self-clearing, it
477 * seems it doesn't actually.
479 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
482 /* Once we leave, the scaler should be disabled and its fifo empty. */
484 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
486 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
487 SCALER_DISPSTATX_MODE) !=
488 SCALER_DISPSTATX_MODE_DISABLED);
490 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
491 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
492 SCALER_DISPSTATX_EMPTY);
495 * Make sure we issue a vblank event after disabling the CRTC if
496 * someone was waiting it.
498 if (crtc->state->event) {
501 spin_lock_irqsave(&dev->event_lock, flags);
502 drm_crtc_send_vblank_event(crtc, crtc->state->event);
503 crtc->state->event = NULL;
504 spin_unlock_irqrestore(&dev->event_lock, flags);
508 void vc4_crtc_txp_armed(struct drm_crtc_state *state)
510 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
512 vc4_state->txp_armed = true;
515 static void vc4_crtc_update_dlist(struct drm_crtc *crtc)
517 struct drm_device *dev = crtc->dev;
518 struct vc4_dev *vc4 = to_vc4_dev(dev);
519 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
520 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
522 if (crtc->state->event) {
525 crtc->state->event->pipe = drm_crtc_index(crtc);
527 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
529 spin_lock_irqsave(&dev->event_lock, flags);
531 if (!vc4_state->feed_txp || vc4_state->txp_armed) {
532 vc4_crtc->event = crtc->state->event;
533 crtc->state->event = NULL;
536 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
537 vc4_state->mm.start);
539 spin_unlock_irqrestore(&dev->event_lock, flags);
541 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
542 vc4_state->mm.start);
546 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
547 struct drm_crtc_state *old_state)
549 struct drm_device *dev = crtc->dev;
550 struct vc4_dev *vc4 = to_vc4_dev(dev);
551 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
552 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
553 struct drm_display_mode *mode = &crtc->state->adjusted_mode;
555 require_hvs_enabled(dev);
557 /* Enable vblank irq handling before crtc is started otherwise
558 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
560 drm_crtc_vblank_on(crtc);
561 vc4_crtc_update_dlist(crtc);
563 /* Turn on the scaler, which will wait for vstart to start
565 * When feeding the transposer, we should operate in oneshot
568 HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
569 VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
570 VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
571 SCALER_DISPCTRLX_ENABLE |
572 (vc4_state->feed_txp ? SCALER_DISPCTRLX_ONESHOT : 0));
574 /* When feeding the transposer block the pixelvalve is unneeded and
575 * should not be enabled.
577 if (!vc4_state->feed_txp)
578 CRTC_WRITE(PV_V_CONTROL,
579 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
582 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
583 const struct drm_display_mode *mode)
585 /* Do not allow doublescan modes from user space */
586 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
587 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
589 return MODE_NO_DBLESCAN;
595 void vc4_crtc_get_margins(struct drm_crtc_state *state,
596 unsigned int *left, unsigned int *right,
597 unsigned int *top, unsigned int *bottom)
599 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
600 struct drm_connector_state *conn_state;
601 struct drm_connector *conn;
604 *left = vc4_state->margins.left;
605 *right = vc4_state->margins.right;
606 *top = vc4_state->margins.top;
607 *bottom = vc4_state->margins.bottom;
609 /* We have to interate over all new connector states because
610 * vc4_crtc_get_margins() might be called before
611 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
614 for_each_new_connector_in_state(state->state, conn, conn_state, i) {
615 if (conn_state->crtc != state->crtc)
618 *left = conn_state->tv.margins.left;
619 *right = conn_state->tv.margins.right;
620 *top = conn_state->tv.margins.top;
621 *bottom = conn_state->tv.margins.bottom;
626 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
627 struct drm_crtc_state *state)
629 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
630 struct drm_device *dev = crtc->dev;
631 struct vc4_dev *vc4 = to_vc4_dev(dev);
632 struct drm_plane *plane;
634 const struct drm_plane_state *plane_state;
635 struct drm_connector *conn;
636 struct drm_connector_state *conn_state;
640 /* The pixelvalve can only feed one encoder (and encoders are
641 * 1:1 with connectors.)
643 if (hweight32(state->connector_mask) > 1)
646 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
647 dlist_count += vc4_plane_dlist_size(plane_state);
649 dlist_count++; /* Account for SCALER_CTL0_END. */
651 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
652 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
654 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
658 for_each_new_connector_in_state(state->state, conn, conn_state, i) {
659 if (conn_state->crtc != crtc)
662 /* The writeback connector is implemented using the transposer
663 * block which is directly taking its data from the HVS FIFO.
665 if (conn->connector_type == DRM_MODE_CONNECTOR_WRITEBACK) {
666 state->no_vblank = true;
667 vc4_state->feed_txp = true;
669 state->no_vblank = false;
670 vc4_state->feed_txp = false;
673 vc4_state->margins.left = conn_state->tv.margins.left;
674 vc4_state->margins.right = conn_state->tv.margins.right;
675 vc4_state->margins.top = conn_state->tv.margins.top;
676 vc4_state->margins.bottom = conn_state->tv.margins.bottom;
683 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
684 struct drm_crtc_state *old_state)
686 struct drm_device *dev = crtc->dev;
687 struct vc4_dev *vc4 = to_vc4_dev(dev);
688 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
689 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
690 struct drm_plane *plane;
691 struct vc4_plane_state *vc4_plane_state;
692 bool debug_dump_regs = false;
693 bool enable_bg_fill = false;
694 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
695 u32 __iomem *dlist_next = dlist_start;
697 if (debug_dump_regs) {
698 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
699 vc4_hvs_dump_state(dev);
702 /* Copy all the active planes' dlist contents to the hardware dlist. */
703 drm_atomic_crtc_for_each_plane(plane, crtc) {
704 /* Is this the first active plane? */
705 if (dlist_next == dlist_start) {
706 /* We need to enable background fill when a plane
707 * could be alpha blending from the background, i.e.
708 * where no other plane is underneath. It suffices to
709 * consider the first active plane here since we set
710 * needs_bg_fill such that either the first plane
711 * already needs it or all planes on top blend from
712 * the first or a lower plane.
714 vc4_plane_state = to_vc4_plane_state(plane->state);
715 enable_bg_fill = vc4_plane_state->needs_bg_fill;
718 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
721 writel(SCALER_CTL0_END, dlist_next);
724 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
727 /* This sets a black background color fill, as is the case
728 * with other DRM drivers.
730 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
731 HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) |
732 SCALER_DISPBKGND_FILL);
734 /* Only update DISPLIST if the CRTC was already running and is not
736 * vc4_crtc_enable() takes care of updating the dlist just after
737 * re-enabling VBLANK interrupts and before enabling the engine.
738 * If the CRTC is being disabled, there's no point in updating this
741 if (crtc->state->active && old_state->active)
742 vc4_crtc_update_dlist(crtc);
744 if (crtc->state->color_mgmt_changed) {
745 u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel));
747 if (crtc->state->gamma_lut) {
748 vc4_crtc_update_gamma_lut(crtc);
749 dispbkgndx |= SCALER_DISPBKGND_GAMMA;
751 /* Unsetting DISPBKGND_GAMMA skips the gamma lut step
752 * in hardware, which is the same as a linear lut that
753 * DRM expects us to use in absence of a user lut.
755 dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
757 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), dispbkgndx);
760 if (debug_dump_regs) {
761 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
762 vc4_hvs_dump_state(dev);
766 static int vc4_enable_vblank(struct drm_crtc *crtc)
768 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
770 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
775 static void vc4_disable_vblank(struct drm_crtc *crtc)
777 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
779 CRTC_WRITE(PV_INTEN, 0);
782 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
784 struct drm_crtc *crtc = &vc4_crtc->base;
785 struct drm_device *dev = crtc->dev;
786 struct vc4_dev *vc4 = to_vc4_dev(dev);
787 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
788 u32 chan = vc4_crtc->channel;
791 spin_lock_irqsave(&dev->event_lock, flags);
792 if (vc4_crtc->event &&
793 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
794 vc4_state->feed_txp)) {
795 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
796 vc4_crtc->event = NULL;
797 drm_crtc_vblank_put(crtc);
799 /* Wait for the page flip to unmask the underrun to ensure that
800 * the display list was updated by the hardware. Before that
801 * happens, the HVS will be using the previous display list with
802 * the CRTC and encoder already reconfigured, leading to
803 * underruns. This can be seen when reconfiguring the CRTC.
805 vc4_hvs_unmask_underrun(dev, vc4_crtc->channel);
807 spin_unlock_irqrestore(&dev->event_lock, flags);
810 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
812 crtc->t_vblank = ktime_get();
813 drm_crtc_handle_vblank(&crtc->base);
814 vc4_crtc_handle_page_flip(crtc);
817 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
819 struct vc4_crtc *vc4_crtc = data;
820 u32 stat = CRTC_READ(PV_INTSTAT);
821 irqreturn_t ret = IRQ_NONE;
823 if (stat & PV_INT_VFP_START) {
824 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
825 vc4_crtc_handle_vblank(vc4_crtc);
832 struct vc4_async_flip_state {
833 struct drm_crtc *crtc;
834 struct drm_framebuffer *fb;
835 struct drm_framebuffer *old_fb;
836 struct drm_pending_vblank_event *event;
838 struct vc4_seqno_cb cb;
841 /* Called when the V3D execution for the BO being flipped to is done, so that
842 * we can actually update the plane's address to point to it.
845 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
847 struct vc4_async_flip_state *flip_state =
848 container_of(cb, struct vc4_async_flip_state, cb);
849 struct drm_crtc *crtc = flip_state->crtc;
850 struct drm_device *dev = crtc->dev;
851 struct vc4_dev *vc4 = to_vc4_dev(dev);
852 struct drm_plane *plane = crtc->primary;
854 vc4_plane_async_set_fb(plane, flip_state->fb);
855 if (flip_state->event) {
858 spin_lock_irqsave(&dev->event_lock, flags);
859 drm_crtc_send_vblank_event(crtc, flip_state->event);
860 spin_unlock_irqrestore(&dev->event_lock, flags);
863 drm_crtc_vblank_put(crtc);
864 drm_framebuffer_put(flip_state->fb);
866 /* Decrement the BO usecnt in order to keep the inc/dec calls balanced
867 * when the planes are updated through the async update path.
868 * FIXME: we should move to generic async-page-flip when it's
869 * available, so that we can get rid of this hand-made cleanup_fb()
872 if (flip_state->old_fb) {
873 struct drm_gem_cma_object *cma_bo;
876 cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
877 bo = to_vc4_bo(&cma_bo->base);
878 vc4_bo_dec_usecnt(bo);
879 drm_framebuffer_put(flip_state->old_fb);
884 up(&vc4->async_modeset);
887 /* Implements async (non-vblank-synced) page flips.
889 * The page flip ioctl needs to return immediately, so we grab the
890 * modeset semaphore on the pipe, and queue the address update for
891 * when V3D is done with the BO being flipped to.
893 static int vc4_async_page_flip(struct drm_crtc *crtc,
894 struct drm_framebuffer *fb,
895 struct drm_pending_vblank_event *event,
898 struct drm_device *dev = crtc->dev;
899 struct vc4_dev *vc4 = to_vc4_dev(dev);
900 struct drm_plane *plane = crtc->primary;
902 struct vc4_async_flip_state *flip_state;
903 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
904 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
906 /* Increment the BO usecnt here, so that we never end up with an
907 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
908 * plane is later updated through the non-async path.
909 * FIXME: we should move to generic async-page-flip when it's
910 * available, so that we can get rid of this hand-made prepare_fb()
913 ret = vc4_bo_inc_usecnt(bo);
917 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
919 vc4_bo_dec_usecnt(bo);
923 drm_framebuffer_get(fb);
925 flip_state->crtc = crtc;
926 flip_state->event = event;
928 /* Make sure all other async modesetes have landed. */
929 ret = down_interruptible(&vc4->async_modeset);
931 drm_framebuffer_put(fb);
932 vc4_bo_dec_usecnt(bo);
937 /* Save the current FB before it's replaced by the new one in
938 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
939 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
941 * FIXME: we should move to generic async-page-flip when it's
942 * available, so that we can get rid of this hand-made cleanup_fb()
945 flip_state->old_fb = plane->state->fb;
946 if (flip_state->old_fb)
947 drm_framebuffer_get(flip_state->old_fb);
949 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
951 /* Immediately update the plane's legacy fb pointer, so that later
952 * modeset prep sees the state that will be present when the semaphore
955 drm_atomic_set_fb_for_plane(plane->state, fb);
957 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
958 vc4_async_page_flip_complete);
960 /* Driver takes ownership of state on successful async commit. */
964 static int vc4_page_flip(struct drm_crtc *crtc,
965 struct drm_framebuffer *fb,
966 struct drm_pending_vblank_event *event,
968 struct drm_modeset_acquire_ctx *ctx)
970 if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
971 return vc4_async_page_flip(crtc, fb, event, flags);
973 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
976 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
978 struct vc4_crtc_state *vc4_state, *old_vc4_state;
980 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
984 old_vc4_state = to_vc4_crtc_state(crtc->state);
985 vc4_state->feed_txp = old_vc4_state->feed_txp;
986 vc4_state->margins = old_vc4_state->margins;
988 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
989 return &vc4_state->base;
992 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
993 struct drm_crtc_state *state)
995 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
996 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
998 if (drm_mm_node_allocated(&vc4_state->mm)) {
1001 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1002 drm_mm_remove_node(&vc4_state->mm);
1003 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1007 drm_atomic_helper_crtc_destroy_state(crtc, state);
1011 vc4_crtc_reset(struct drm_crtc *crtc)
1014 vc4_crtc_destroy_state(crtc, crtc->state);
1016 crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
1018 crtc->state->crtc = crtc;
1021 static const struct drm_crtc_funcs vc4_crtc_funcs = {
1022 .set_config = drm_atomic_helper_set_config,
1023 .destroy = vc4_crtc_destroy,
1024 .page_flip = vc4_page_flip,
1025 .set_property = NULL,
1026 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1027 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1028 .reset = vc4_crtc_reset,
1029 .atomic_duplicate_state = vc4_crtc_duplicate_state,
1030 .atomic_destroy_state = vc4_crtc_destroy_state,
1031 .gamma_set = drm_atomic_helper_legacy_gamma_set,
1032 .enable_vblank = vc4_enable_vblank,
1033 .disable_vblank = vc4_disable_vblank,
1034 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1037 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1038 .mode_set_nofb = vc4_crtc_mode_set_nofb,
1039 .mode_valid = vc4_crtc_mode_valid,
1040 .atomic_check = vc4_crtc_atomic_check,
1041 .atomic_flush = vc4_crtc_atomic_flush,
1042 .atomic_enable = vc4_crtc_atomic_enable,
1043 .atomic_disable = vc4_crtc_atomic_disable,
1044 .get_scanout_position = vc4_crtc_get_scanout_position,
1047 static const struct vc4_crtc_data pv0_data = {
1049 .debugfs_name = "crtc0_regs",
1051 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1052 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1056 static const struct vc4_crtc_data pv1_data = {
1058 .debugfs_name = "crtc1_regs",
1060 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1061 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1065 static const struct vc4_crtc_data pv2_data = {
1067 .debugfs_name = "crtc2_regs",
1069 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
1070 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1074 static const struct of_device_id vc4_crtc_dt_match[] = {
1075 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
1076 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
1077 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
1081 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1082 struct drm_crtc *crtc)
1084 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1085 const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
1086 const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
1087 struct drm_encoder *encoder;
1089 drm_for_each_encoder(encoder, drm) {
1090 struct vc4_encoder *vc4_encoder;
1093 /* HVS FIFO2 can feed the TXP IP. */
1094 if (crtc_data->hvs_channel == 2 &&
1095 encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
1096 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1100 vc4_encoder = to_vc4_encoder(encoder);
1101 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
1102 if (vc4_encoder->type == encoder_types[i]) {
1103 vc4_encoder->clock_select = i;
1104 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1112 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
1114 struct drm_device *drm = vc4_crtc->base.dev;
1115 struct vc4_dev *vc4 = to_vc4_dev(drm);
1116 u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
1117 /* Top/base are supposed to be 4-pixel aligned, but the
1118 * Raspberry Pi firmware fills the low bits (which are
1119 * presumably ignored).
1121 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
1122 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
1124 vc4_crtc->cob_size = top - base + 4;
1127 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1129 struct platform_device *pdev = to_platform_device(dev);
1130 struct drm_device *drm = dev_get_drvdata(master);
1131 struct vc4_crtc *vc4_crtc;
1132 struct drm_crtc *crtc;
1133 struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
1134 const struct of_device_id *match;
1137 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1140 crtc = &vc4_crtc->base;
1142 match = of_match_device(vc4_crtc_dt_match, dev);
1145 vc4_crtc->data = match->data;
1146 vc4_crtc->pdev = pdev;
1148 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1149 if (IS_ERR(vc4_crtc->regs))
1150 return PTR_ERR(vc4_crtc->regs);
1152 vc4_crtc->regset.base = vc4_crtc->regs;
1153 vc4_crtc->regset.regs = crtc_regs;
1154 vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1156 /* For now, we create just the primary and the legacy cursor
1157 * planes. We should be able to stack more planes on easily,
1158 * but to do that we would need to compute the bandwidth
1159 * requirement of the plane configuration, and reject ones
1160 * that will take too much.
1162 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1163 if (IS_ERR(primary_plane)) {
1164 dev_err(dev, "failed to construct primary plane\n");
1165 ret = PTR_ERR(primary_plane);
1169 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1170 &vc4_crtc_funcs, NULL);
1171 drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
1172 vc4_crtc->channel = vc4_crtc->data->hvs_channel;
1173 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1174 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1176 /* We support CTM, but only for one CRTC at a time. It's therefore
1177 * implemented as private driver state in vc4_kms, not here.
1179 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1181 /* Set up some arbitrary number of planes. We're not limited
1182 * by a set number of physical registers, just the space in
1183 * the HVS (16k) and how small an plane can be (28 bytes).
1184 * However, each plane we set up takes up some memory, and
1185 * increases the cost of looping over planes, which atomic
1186 * modesetting does quite a bit. As a result, we pick a
1187 * modest number of planes to expose, that should hopefully
1188 * still cover any sane usecase.
1190 for (i = 0; i < 8; i++) {
1191 struct drm_plane *plane =
1192 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1197 plane->possible_crtcs = drm_crtc_mask(crtc);
1200 /* Set up the legacy cursor after overlay initialization,
1201 * since we overlay planes on the CRTC in the order they were
1204 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1205 if (!IS_ERR(cursor_plane)) {
1206 cursor_plane->possible_crtcs = drm_crtc_mask(crtc);
1207 crtc->cursor = cursor_plane;
1210 vc4_crtc_get_cob_allocation(vc4_crtc);
1212 CRTC_WRITE(PV_INTEN, 0);
1213 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1214 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1215 vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1217 goto err_destroy_planes;
1219 vc4_set_crtc_possible_masks(drm, crtc);
1221 for (i = 0; i < crtc->gamma_size; i++) {
1222 vc4_crtc->lut_r[i] = i;
1223 vc4_crtc->lut_g[i] = i;
1224 vc4_crtc->lut_b[i] = i;
1227 platform_set_drvdata(pdev, vc4_crtc);
1229 vc4_debugfs_add_regset32(drm, vc4_crtc->data->debugfs_name,
1235 list_for_each_entry_safe(destroy_plane, temp,
1236 &drm->mode_config.plane_list, head) {
1237 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1238 destroy_plane->funcs->destroy(destroy_plane);
1244 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1247 struct platform_device *pdev = to_platform_device(dev);
1248 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1250 vc4_crtc_destroy(&vc4_crtc->base);
1252 CRTC_WRITE(PV_INTEN, 0);
1254 platform_set_drvdata(pdev, NULL);
1257 static const struct component_ops vc4_crtc_ops = {
1258 .bind = vc4_crtc_bind,
1259 .unbind = vc4_crtc_unbind,
1262 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1264 return component_add(&pdev->dev, &vc4_crtc_ops);
1267 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1269 component_del(&pdev->dev, &vc4_crtc_ops);
1273 struct platform_driver vc4_crtc_driver = {
1274 .probe = vc4_crtc_dev_probe,
1275 .remove = vc4_crtc_dev_remove,
1278 .of_match_table = vc4_crtc_dt_match,