1 /* SPDX-License-Identifier: GPL-2.0 */
5 * Internal slab definitions
10 * Common fields provided in kmem_cache by all slab allocators
11 * This struct is either used directly by the allocator (SLOB)
12 * or the allocator must include definitions for all fields
13 * provided in kmem_cache_common in their definition of kmem_cache.
15 * Once we can do anonymous structs (C11 standard) we could put a
16 * anonymous struct definition in these allocators so that the
17 * separate allocations in the kmem_cache structure of SLAB and
18 * SLUB is no longer needed.
21 unsigned int object_size;/* The original size of the object */
22 unsigned int size; /* The aligned/padded/added on size */
23 unsigned int align; /* Alignment as calculated */
24 slab_flags_t flags; /* Active flags on the slab */
25 const char *name; /* Slab name for sysfs */
26 int refcount; /* Use counter */
27 void (*ctor)(void *); /* Called on object slot creation */
28 struct list_head list; /* List of all slab caches on the system */
31 #endif /* CONFIG_SLOB */
34 #include <linux/slab_def.h>
38 #include <linux/slub_def.h>
41 #include <linux/memcontrol.h>
42 #include <linux/fault-inject.h>
43 #include <linux/kasan.h>
44 #include <linux/kmemleak.h>
45 #include <linux/random.h>
46 #include <linux/sched/mm.h>
49 * State of the slab allocator.
51 * This is used to describe the states of the allocator during bootup.
52 * Allocators use this to gradually bootstrap themselves. Most allocators
53 * have the problem that the structures used for managing slab caches are
54 * allocated from slab caches themselves.
57 DOWN, /* No slab functionality yet */
58 PARTIAL, /* SLUB: kmem_cache_node available */
59 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
60 UP, /* Slab caches usable but not all extras yet */
61 FULL /* Everything is working */
64 extern enum slab_state slab_state;
66 /* The slab cache mutex protects the management structures during changes */
67 extern struct mutex slab_mutex;
69 /* The list of all slab caches on the system */
70 extern struct list_head slab_caches;
72 /* The slab cache that manages slab cache information */
73 extern struct kmem_cache *kmem_cache;
75 /* A table of kmalloc cache names and sizes */
76 extern const struct kmalloc_info_struct {
82 /* Kmalloc array related functions */
83 void setup_kmalloc_cache_index_table(void);
84 void create_kmalloc_caches(slab_flags_t);
86 /* Find the kmalloc slab corresponding for a certain size */
87 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
91 /* Functions provided by the slab allocators */
92 int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
94 extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
96 extern void create_boot_cache(struct kmem_cache *, const char *name,
97 size_t size, slab_flags_t flags);
99 int slab_unmergeable(struct kmem_cache *s);
100 struct kmem_cache *find_mergeable(size_t size, size_t align,
101 slab_flags_t flags, const char *name, void (*ctor)(void *));
104 __kmem_cache_alias(const char *name, size_t size, size_t align,
105 slab_flags_t flags, void (*ctor)(void *));
107 slab_flags_t kmem_cache_flags(unsigned long object_size,
108 slab_flags_t flags, const char *name,
109 void (*ctor)(void *));
111 static inline struct kmem_cache *
112 __kmem_cache_alias(const char *name, size_t size, size_t align,
113 slab_flags_t flags, void (*ctor)(void *))
116 static inline slab_flags_t kmem_cache_flags(unsigned long object_size,
117 slab_flags_t flags, const char *name,
118 void (*ctor)(void *))
125 /* Legal flag mask for kmem_cache_create(), for various configurations */
126 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
127 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
129 #if defined(CONFIG_DEBUG_SLAB)
130 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
131 #elif defined(CONFIG_SLUB_DEBUG)
132 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
133 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
135 #define SLAB_DEBUG_FLAGS (0)
138 #if defined(CONFIG_SLAB)
139 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
140 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
142 #elif defined(CONFIG_SLUB)
143 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
144 SLAB_TEMPORARY | SLAB_ACCOUNT)
146 #define SLAB_CACHE_FLAGS (0)
149 /* Common flags available with current configuration */
150 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
152 /* Common flags permitted for kmem_cache_create */
153 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
158 SLAB_CONSISTENCY_CHECKS | \
161 SLAB_RECLAIM_ACCOUNT | \
165 int __kmem_cache_shutdown(struct kmem_cache *);
166 void __kmem_cache_release(struct kmem_cache *);
167 int __kmem_cache_shrink(struct kmem_cache *);
168 void __kmemcg_cache_deactivate(struct kmem_cache *s);
169 void slab_kmem_cache_release(struct kmem_cache *);
175 unsigned long active_objs;
176 unsigned long num_objs;
177 unsigned long active_slabs;
178 unsigned long num_slabs;
179 unsigned long shared_avail;
181 unsigned int batchcount;
183 unsigned int objects_per_slab;
184 unsigned int cache_order;
187 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
188 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
189 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
190 size_t count, loff_t *ppos);
193 * Generic implementation of bulk operations
194 * These are useful for situations in which the allocator cannot
195 * perform optimizations. In that case segments of the object listed
196 * may be allocated or freed using these operations.
198 void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
199 int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
201 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
203 /* List of all root caches. */
204 extern struct list_head slab_root_caches;
205 #define root_caches_node memcg_params.__root_caches_node
208 * Iterate over all memcg caches of the given root cache. The caller must hold
211 #define for_each_memcg_cache(iter, root) \
212 list_for_each_entry(iter, &(root)->memcg_params.children, \
213 memcg_params.children_node)
215 static inline bool is_root_cache(struct kmem_cache *s)
217 return !s->memcg_params.root_cache;
220 static inline bool slab_equal_or_root(struct kmem_cache *s,
221 struct kmem_cache *p)
223 return p == s || p == s->memcg_params.root_cache;
227 * We use suffixes to the name in memcg because we can't have caches
228 * created in the system with the same name. But when we print them
229 * locally, better refer to them with the base name
231 static inline const char *cache_name(struct kmem_cache *s)
233 if (!is_root_cache(s))
234 s = s->memcg_params.root_cache;
239 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
240 * That said the caller must assure the memcg's cache won't go away by either
241 * taking a css reference to the owner cgroup, or holding the slab_mutex.
243 static inline struct kmem_cache *
244 cache_from_memcg_idx(struct kmem_cache *s, int idx)
246 struct kmem_cache *cachep;
247 struct memcg_cache_array *arr;
250 arr = rcu_dereference(s->memcg_params.memcg_caches);
253 * Make sure we will access the up-to-date value. The code updating
254 * memcg_caches issues a write barrier to match this (see
255 * memcg_create_kmem_cache()).
257 cachep = READ_ONCE(arr->entries[idx]);
263 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
265 if (is_root_cache(s))
267 return s->memcg_params.root_cache;
270 static __always_inline int memcg_charge_slab(struct page *page,
271 gfp_t gfp, int order,
272 struct kmem_cache *s)
274 if (!memcg_kmem_enabled())
276 if (is_root_cache(s))
278 return memcg_kmem_charge_memcg(page, gfp, order, s->memcg_params.memcg);
281 static __always_inline void memcg_uncharge_slab(struct page *page, int order,
282 struct kmem_cache *s)
284 if (!memcg_kmem_enabled())
286 memcg_kmem_uncharge(page, order);
289 extern void slab_init_memcg_params(struct kmem_cache *);
290 extern void memcg_link_cache(struct kmem_cache *s);
291 extern void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
292 void (*deact_fn)(struct kmem_cache *));
294 #else /* CONFIG_MEMCG && !CONFIG_SLOB */
296 /* If !memcg, all caches are root. */
297 #define slab_root_caches slab_caches
298 #define root_caches_node list
300 #define for_each_memcg_cache(iter, root) \
301 for ((void)(iter), (void)(root); 0; )
303 static inline bool is_root_cache(struct kmem_cache *s)
308 static inline bool slab_equal_or_root(struct kmem_cache *s,
309 struct kmem_cache *p)
314 static inline const char *cache_name(struct kmem_cache *s)
319 static inline struct kmem_cache *
320 cache_from_memcg_idx(struct kmem_cache *s, int idx)
325 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
330 static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order,
331 struct kmem_cache *s)
336 static inline void memcg_uncharge_slab(struct page *page, int order,
337 struct kmem_cache *s)
341 static inline void slab_init_memcg_params(struct kmem_cache *s)
345 static inline void memcg_link_cache(struct kmem_cache *s)
349 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
351 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
353 struct kmem_cache *cachep;
357 * When kmemcg is not being used, both assignments should return the
358 * same value. but we don't want to pay the assignment price in that
359 * case. If it is not compiled in, the compiler should be smart enough
360 * to not do even the assignment. In that case, slab_equal_or_root
361 * will also be a constant.
363 if (!memcg_kmem_enabled() &&
364 !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS))
367 page = virt_to_head_page(x);
368 cachep = page->slab_cache;
369 if (slab_equal_or_root(cachep, s))
372 pr_err("%s: Wrong slab cache. %s but object is from %s\n",
373 __func__, s->name, cachep->name);
378 static inline size_t slab_ksize(const struct kmem_cache *s)
381 return s->object_size;
383 #else /* CONFIG_SLUB */
384 # ifdef CONFIG_SLUB_DEBUG
386 * Debugging requires use of the padding between object
387 * and whatever may come after it.
389 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
390 return s->object_size;
392 if (s->flags & SLAB_KASAN)
393 return s->object_size;
395 * If we have the need to store the freelist pointer
396 * back there or track user information then we can
397 * only use the space before that information.
399 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
402 * Else we can use all the padding etc for the allocation
408 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
411 flags &= gfp_allowed_mask;
413 fs_reclaim_acquire(flags);
414 fs_reclaim_release(flags);
416 might_sleep_if(gfpflags_allow_blocking(flags));
418 if (should_failslab(s, flags))
421 if (memcg_kmem_enabled() &&
422 ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT)))
423 return memcg_kmem_get_cache(s);
428 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
429 size_t size, void **p)
433 flags &= gfp_allowed_mask;
434 for (i = 0; i < size; i++) {
437 kmemleak_alloc_recursive(object, s->object_size, 1,
439 kasan_slab_alloc(s, object, flags);
442 if (memcg_kmem_enabled())
443 memcg_kmem_put_cache(s);
448 * The slab lists for all objects.
450 struct kmem_cache_node {
451 spinlock_t list_lock;
454 struct list_head slabs_partial; /* partial list first, better asm code */
455 struct list_head slabs_full;
456 struct list_head slabs_free;
457 unsigned long total_slabs; /* length of all slab lists */
458 unsigned long free_slabs; /* length of free slab list only */
459 unsigned long free_objects;
460 unsigned int free_limit;
461 unsigned int colour_next; /* Per-node cache coloring */
462 struct array_cache *shared; /* shared per node */
463 struct alien_cache **alien; /* on other nodes */
464 unsigned long next_reap; /* updated without locking */
465 int free_touched; /* updated without locking */
469 unsigned long nr_partial;
470 struct list_head partial;
471 #ifdef CONFIG_SLUB_DEBUG
472 atomic_long_t nr_slabs;
473 atomic_long_t total_objects;
474 struct list_head full;
480 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
482 return s->node[node];
486 * Iterator over all nodes. The body will be executed for each node that has
487 * a kmem_cache_node structure allocated (which is true for all online nodes)
489 #define for_each_kmem_cache_node(__s, __node, __n) \
490 for (__node = 0; __node < nr_node_ids; __node++) \
491 if ((__n = get_node(__s, __node)))
495 void *slab_start(struct seq_file *m, loff_t *pos);
496 void *slab_next(struct seq_file *m, void *p, loff_t *pos);
497 void slab_stop(struct seq_file *m, void *p);
498 void *memcg_slab_start(struct seq_file *m, loff_t *pos);
499 void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos);
500 void memcg_slab_stop(struct seq_file *m, void *p);
501 int memcg_slab_show(struct seq_file *m, void *p);
503 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
504 void dump_unreclaimable_slab(void);
506 static inline void dump_unreclaimable_slab(void)
511 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
513 #ifdef CONFIG_SLAB_FREELIST_RANDOM
514 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
516 void cache_random_seq_destroy(struct kmem_cache *cachep);
518 static inline int cache_random_seq_create(struct kmem_cache *cachep,
519 unsigned int count, gfp_t gfp)
523 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
524 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
526 #endif /* MM_SLAB_H */