1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) STMicroelectronics 2017
9 #include <linux/errno.h>
10 #include <linux/iopoll.h>
11 #include <linux/ioport.h>
12 #include <linux/mfd/syscon.h>
13 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/pm_wakeirq.h>
17 #include <linux/regmap.h>
18 #include <linux/rtc.h>
20 #define DRIVER_NAME "stm32_rtc"
22 /* STM32_RTC_TR bit fields */
23 #define STM32_RTC_TR_SEC_SHIFT 0
24 #define STM32_RTC_TR_SEC GENMASK(6, 0)
25 #define STM32_RTC_TR_MIN_SHIFT 8
26 #define STM32_RTC_TR_MIN GENMASK(14, 8)
27 #define STM32_RTC_TR_HOUR_SHIFT 16
28 #define STM32_RTC_TR_HOUR GENMASK(21, 16)
30 /* STM32_RTC_DR bit fields */
31 #define STM32_RTC_DR_DATE_SHIFT 0
32 #define STM32_RTC_DR_DATE GENMASK(5, 0)
33 #define STM32_RTC_DR_MONTH_SHIFT 8
34 #define STM32_RTC_DR_MONTH GENMASK(12, 8)
35 #define STM32_RTC_DR_WDAY_SHIFT 13
36 #define STM32_RTC_DR_WDAY GENMASK(15, 13)
37 #define STM32_RTC_DR_YEAR_SHIFT 16
38 #define STM32_RTC_DR_YEAR GENMASK(23, 16)
40 /* STM32_RTC_CR bit fields */
41 #define STM32_RTC_CR_FMT BIT(6)
42 #define STM32_RTC_CR_ALRAE BIT(8)
43 #define STM32_RTC_CR_ALRAIE BIT(12)
45 /* STM32_RTC_ISR/STM32_RTC_ICSR bit fields */
46 #define STM32_RTC_ISR_ALRAWF BIT(0)
47 #define STM32_RTC_ISR_INITS BIT(4)
48 #define STM32_RTC_ISR_RSF BIT(5)
49 #define STM32_RTC_ISR_INITF BIT(6)
50 #define STM32_RTC_ISR_INIT BIT(7)
51 #define STM32_RTC_ISR_ALRAF BIT(8)
53 /* STM32_RTC_PRER bit fields */
54 #define STM32_RTC_PRER_PRED_S_SHIFT 0
55 #define STM32_RTC_PRER_PRED_S GENMASK(14, 0)
56 #define STM32_RTC_PRER_PRED_A_SHIFT 16
57 #define STM32_RTC_PRER_PRED_A GENMASK(22, 16)
59 /* STM32_RTC_ALRMAR and STM32_RTC_ALRMBR bit fields */
60 #define STM32_RTC_ALRMXR_SEC_SHIFT 0
61 #define STM32_RTC_ALRMXR_SEC GENMASK(6, 0)
62 #define STM32_RTC_ALRMXR_SEC_MASK BIT(7)
63 #define STM32_RTC_ALRMXR_MIN_SHIFT 8
64 #define STM32_RTC_ALRMXR_MIN GENMASK(14, 8)
65 #define STM32_RTC_ALRMXR_MIN_MASK BIT(15)
66 #define STM32_RTC_ALRMXR_HOUR_SHIFT 16
67 #define STM32_RTC_ALRMXR_HOUR GENMASK(21, 16)
68 #define STM32_RTC_ALRMXR_PM BIT(22)
69 #define STM32_RTC_ALRMXR_HOUR_MASK BIT(23)
70 #define STM32_RTC_ALRMXR_DATE_SHIFT 24
71 #define STM32_RTC_ALRMXR_DATE GENMASK(29, 24)
72 #define STM32_RTC_ALRMXR_WDSEL BIT(30)
73 #define STM32_RTC_ALRMXR_WDAY_SHIFT 24
74 #define STM32_RTC_ALRMXR_WDAY GENMASK(27, 24)
75 #define STM32_RTC_ALRMXR_DATE_MASK BIT(31)
77 /* STM32_RTC_SR/_SCR bit fields */
78 #define STM32_RTC_SR_ALRA BIT(0)
80 /* STM32_RTC_VERR bit fields */
81 #define STM32_RTC_VERR_MINREV_SHIFT 0
82 #define STM32_RTC_VERR_MINREV GENMASK(3, 0)
83 #define STM32_RTC_VERR_MAJREV_SHIFT 4
84 #define STM32_RTC_VERR_MAJREV GENMASK(7, 4)
86 /* STM32_RTC_WPR key constants */
87 #define RTC_WPR_1ST_KEY 0xCA
88 #define RTC_WPR_2ND_KEY 0x53
89 #define RTC_WPR_WRONG_KEY 0xFF
91 /* Max STM32 RTC register offset is 0x3FC */
92 #define UNDEF_REG 0xFFFF
94 /* STM32 RTC driver time helpers */
95 #define SEC_PER_DAY (24 * 60 * 60)
99 struct stm32_rtc_registers {
112 struct stm32_rtc_events {
116 struct stm32_rtc_data {
117 const struct stm32_rtc_registers regs;
118 const struct stm32_rtc_events events;
119 void (*clear_events)(struct stm32_rtc *rtc, unsigned int flags);
126 struct rtc_device *rtc_dev;
129 unsigned int dbp_reg;
130 unsigned int dbp_mask;
133 const struct stm32_rtc_data *data;
137 static void stm32_rtc_wpr_unlock(struct stm32_rtc *rtc)
139 const struct stm32_rtc_registers *regs = &rtc->data->regs;
141 writel_relaxed(RTC_WPR_1ST_KEY, rtc->base + regs->wpr);
142 writel_relaxed(RTC_WPR_2ND_KEY, rtc->base + regs->wpr);
145 static void stm32_rtc_wpr_lock(struct stm32_rtc *rtc)
147 const struct stm32_rtc_registers *regs = &rtc->data->regs;
149 writel_relaxed(RTC_WPR_WRONG_KEY, rtc->base + regs->wpr);
152 static int stm32_rtc_enter_init_mode(struct stm32_rtc *rtc)
154 const struct stm32_rtc_registers *regs = &rtc->data->regs;
155 unsigned int isr = readl_relaxed(rtc->base + regs->isr);
157 if (!(isr & STM32_RTC_ISR_INITF)) {
158 isr |= STM32_RTC_ISR_INIT;
159 writel_relaxed(isr, rtc->base + regs->isr);
162 * It takes around 2 rtc_ck clock cycles to enter in
163 * initialization phase mode (and have INITF flag set). As
164 * slowest rtc_ck frequency may be 32kHz and highest should be
165 * 1MHz, we poll every 10 us with a timeout of 100ms.
167 return readl_relaxed_poll_timeout_atomic(rtc->base + regs->isr, isr,
168 (isr & STM32_RTC_ISR_INITF),
175 static void stm32_rtc_exit_init_mode(struct stm32_rtc *rtc)
177 const struct stm32_rtc_registers *regs = &rtc->data->regs;
178 unsigned int isr = readl_relaxed(rtc->base + regs->isr);
180 isr &= ~STM32_RTC_ISR_INIT;
181 writel_relaxed(isr, rtc->base + regs->isr);
184 static int stm32_rtc_wait_sync(struct stm32_rtc *rtc)
186 const struct stm32_rtc_registers *regs = &rtc->data->regs;
187 unsigned int isr = readl_relaxed(rtc->base + regs->isr);
189 isr &= ~STM32_RTC_ISR_RSF;
190 writel_relaxed(isr, rtc->base + regs->isr);
193 * Wait for RSF to be set to ensure the calendar registers are
194 * synchronised, it takes around 2 rtc_ck clock cycles
196 return readl_relaxed_poll_timeout_atomic(rtc->base + regs->isr,
198 (isr & STM32_RTC_ISR_RSF),
202 static void stm32_rtc_clear_event_flags(struct stm32_rtc *rtc,
205 rtc->data->clear_events(rtc, flags);
208 static irqreturn_t stm32_rtc_alarm_irq(int irq, void *dev_id)
210 struct stm32_rtc *rtc = (struct stm32_rtc *)dev_id;
211 const struct stm32_rtc_registers *regs = &rtc->data->regs;
212 const struct stm32_rtc_events *evts = &rtc->data->events;
213 unsigned int status, cr;
215 rtc_lock(rtc->rtc_dev);
217 status = readl_relaxed(rtc->base + regs->sr);
218 cr = readl_relaxed(rtc->base + regs->cr);
220 if ((status & evts->alra) &&
221 (cr & STM32_RTC_CR_ALRAIE)) {
222 /* Alarm A flag - Alarm interrupt */
223 dev_dbg(&rtc->rtc_dev->dev, "Alarm occurred\n");
225 /* Pass event to the kernel */
226 rtc_update_irq(rtc->rtc_dev, 1, RTC_IRQF | RTC_AF);
228 /* Clear event flags, otherwise new events won't be received */
229 stm32_rtc_clear_event_flags(rtc, evts->alra);
232 rtc_unlock(rtc->rtc_dev);
237 /* Convert rtc_time structure from bin to bcd format */
238 static void tm2bcd(struct rtc_time *tm)
240 tm->tm_sec = bin2bcd(tm->tm_sec);
241 tm->tm_min = bin2bcd(tm->tm_min);
242 tm->tm_hour = bin2bcd(tm->tm_hour);
244 tm->tm_mday = bin2bcd(tm->tm_mday);
245 tm->tm_mon = bin2bcd(tm->tm_mon + 1);
246 tm->tm_year = bin2bcd(tm->tm_year - 100);
248 * Number of days since Sunday
249 * - on kernel side, 0=Sunday...6=Saturday
250 * - on rtc side, 0=invalid,1=Monday...7=Sunday
252 tm->tm_wday = (!tm->tm_wday) ? 7 : tm->tm_wday;
255 /* Convert rtc_time structure from bcd to bin format */
256 static void bcd2tm(struct rtc_time *tm)
258 tm->tm_sec = bcd2bin(tm->tm_sec);
259 tm->tm_min = bcd2bin(tm->tm_min);
260 tm->tm_hour = bcd2bin(tm->tm_hour);
262 tm->tm_mday = bcd2bin(tm->tm_mday);
263 tm->tm_mon = bcd2bin(tm->tm_mon) - 1;
264 tm->tm_year = bcd2bin(tm->tm_year) + 100;
266 * Number of days since Sunday
267 * - on kernel side, 0=Sunday...6=Saturday
268 * - on rtc side, 0=invalid,1=Monday...7=Sunday
273 static int stm32_rtc_read_time(struct device *dev, struct rtc_time *tm)
275 struct stm32_rtc *rtc = dev_get_drvdata(dev);
276 const struct stm32_rtc_registers *regs = &rtc->data->regs;
279 /* Time and Date in BCD format */
280 tr = readl_relaxed(rtc->base + regs->tr);
281 dr = readl_relaxed(rtc->base + regs->dr);
283 tm->tm_sec = (tr & STM32_RTC_TR_SEC) >> STM32_RTC_TR_SEC_SHIFT;
284 tm->tm_min = (tr & STM32_RTC_TR_MIN) >> STM32_RTC_TR_MIN_SHIFT;
285 tm->tm_hour = (tr & STM32_RTC_TR_HOUR) >> STM32_RTC_TR_HOUR_SHIFT;
287 tm->tm_mday = (dr & STM32_RTC_DR_DATE) >> STM32_RTC_DR_DATE_SHIFT;
288 tm->tm_mon = (dr & STM32_RTC_DR_MONTH) >> STM32_RTC_DR_MONTH_SHIFT;
289 tm->tm_year = (dr & STM32_RTC_DR_YEAR) >> STM32_RTC_DR_YEAR_SHIFT;
290 tm->tm_wday = (dr & STM32_RTC_DR_WDAY) >> STM32_RTC_DR_WDAY_SHIFT;
292 /* We don't report tm_yday and tm_isdst */
299 static int stm32_rtc_set_time(struct device *dev, struct rtc_time *tm)
301 struct stm32_rtc *rtc = dev_get_drvdata(dev);
302 const struct stm32_rtc_registers *regs = &rtc->data->regs;
308 /* Time in BCD format */
309 tr = ((tm->tm_sec << STM32_RTC_TR_SEC_SHIFT) & STM32_RTC_TR_SEC) |
310 ((tm->tm_min << STM32_RTC_TR_MIN_SHIFT) & STM32_RTC_TR_MIN) |
311 ((tm->tm_hour << STM32_RTC_TR_HOUR_SHIFT) & STM32_RTC_TR_HOUR);
313 /* Date in BCD format */
314 dr = ((tm->tm_mday << STM32_RTC_DR_DATE_SHIFT) & STM32_RTC_DR_DATE) |
315 ((tm->tm_mon << STM32_RTC_DR_MONTH_SHIFT) & STM32_RTC_DR_MONTH) |
316 ((tm->tm_year << STM32_RTC_DR_YEAR_SHIFT) & STM32_RTC_DR_YEAR) |
317 ((tm->tm_wday << STM32_RTC_DR_WDAY_SHIFT) & STM32_RTC_DR_WDAY);
319 stm32_rtc_wpr_unlock(rtc);
321 ret = stm32_rtc_enter_init_mode(rtc);
323 dev_err(dev, "Can't enter in init mode. Set time aborted.\n");
327 writel_relaxed(tr, rtc->base + regs->tr);
328 writel_relaxed(dr, rtc->base + regs->dr);
330 stm32_rtc_exit_init_mode(rtc);
332 ret = stm32_rtc_wait_sync(rtc);
334 stm32_rtc_wpr_lock(rtc);
339 static int stm32_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
341 struct stm32_rtc *rtc = dev_get_drvdata(dev);
342 const struct stm32_rtc_registers *regs = &rtc->data->regs;
343 const struct stm32_rtc_events *evts = &rtc->data->events;
344 struct rtc_time *tm = &alrm->time;
345 unsigned int alrmar, cr, status;
347 alrmar = readl_relaxed(rtc->base + regs->alrmar);
348 cr = readl_relaxed(rtc->base + regs->cr);
349 status = readl_relaxed(rtc->base + regs->sr);
351 if (alrmar & STM32_RTC_ALRMXR_DATE_MASK) {
353 * Date/day doesn't matter in Alarm comparison so alarm
359 if (alrmar & STM32_RTC_ALRMXR_WDSEL) {
360 /* Alarm is set to a day of week */
362 tm->tm_wday = (alrmar & STM32_RTC_ALRMXR_WDAY) >>
363 STM32_RTC_ALRMXR_WDAY_SHIFT;
366 /* Alarm is set to a day of month */
368 tm->tm_mday = (alrmar & STM32_RTC_ALRMXR_DATE) >>
369 STM32_RTC_ALRMXR_DATE_SHIFT;
373 if (alrmar & STM32_RTC_ALRMXR_HOUR_MASK) {
374 /* Hours don't matter in Alarm comparison */
377 tm->tm_hour = (alrmar & STM32_RTC_ALRMXR_HOUR) >>
378 STM32_RTC_ALRMXR_HOUR_SHIFT;
379 if (alrmar & STM32_RTC_ALRMXR_PM)
383 if (alrmar & STM32_RTC_ALRMXR_MIN_MASK) {
384 /* Minutes don't matter in Alarm comparison */
387 tm->tm_min = (alrmar & STM32_RTC_ALRMXR_MIN) >>
388 STM32_RTC_ALRMXR_MIN_SHIFT;
391 if (alrmar & STM32_RTC_ALRMXR_SEC_MASK) {
392 /* Seconds don't matter in Alarm comparison */
395 tm->tm_sec = (alrmar & STM32_RTC_ALRMXR_SEC) >>
396 STM32_RTC_ALRMXR_SEC_SHIFT;
401 alrm->enabled = (cr & STM32_RTC_CR_ALRAE) ? 1 : 0;
402 alrm->pending = (status & evts->alra) ? 1 : 0;
407 static int stm32_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
409 struct stm32_rtc *rtc = dev_get_drvdata(dev);
410 const struct stm32_rtc_registers *regs = &rtc->data->regs;
411 const struct stm32_rtc_events *evts = &rtc->data->events;
414 cr = readl_relaxed(rtc->base + regs->cr);
416 stm32_rtc_wpr_unlock(rtc);
418 /* We expose Alarm A to the kernel */
420 cr |= (STM32_RTC_CR_ALRAIE | STM32_RTC_CR_ALRAE);
422 cr &= ~(STM32_RTC_CR_ALRAIE | STM32_RTC_CR_ALRAE);
423 writel_relaxed(cr, rtc->base + regs->cr);
425 /* Clear event flags, otherwise new events won't be received */
426 stm32_rtc_clear_event_flags(rtc, evts->alra);
428 stm32_rtc_wpr_lock(rtc);
433 static int stm32_rtc_valid_alrm(struct device *dev, struct rtc_time *tm)
435 static struct rtc_time now;
436 time64_t max_alarm_time64;
442 * Assuming current date is M-D-Y H:M:S.
443 * RTC alarm can't be set on a specific month and year.
444 * So the valid alarm range is:
445 * M-D-Y H:M:S < alarm <= (M+1)-D-Y H:M:S
447 stm32_rtc_read_time(dev, &now);
450 * Find the next month and the year of the next month.
451 * Note: tm_mon and next_month are from 0 to 11
453 next_month = now.tm_mon + 1;
454 if (next_month == 12) {
456 next_year = now.tm_year + 1;
458 next_year = now.tm_year;
461 /* Find the maximum limit of alarm in days. */
462 max_day_forward = rtc_month_days(now.tm_mon, now.tm_year)
464 + min(rtc_month_days(next_month, next_year), now.tm_mday);
466 /* Convert to timestamp and compare the alarm time and its upper limit */
467 max_alarm_time64 = rtc_tm_to_time64(&now) + max_day_forward * SEC_PER_DAY;
468 return rtc_tm_to_time64(tm) <= max_alarm_time64 ? 0 : -EINVAL;
471 static int stm32_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
473 struct stm32_rtc *rtc = dev_get_drvdata(dev);
474 const struct stm32_rtc_registers *regs = &rtc->data->regs;
475 struct rtc_time *tm = &alrm->time;
476 unsigned int cr, isr, alrmar;
480 * RTC alarm can't be set on a specific date, unless this date is
481 * up to the same day of month next month.
483 if (stm32_rtc_valid_alrm(dev, tm) < 0) {
484 dev_err(dev, "Alarm can be set only on upcoming month.\n");
491 /* tm_year and tm_mon are not used because not supported by RTC */
492 alrmar |= (tm->tm_mday << STM32_RTC_ALRMXR_DATE_SHIFT) &
493 STM32_RTC_ALRMXR_DATE;
495 alrmar &= ~STM32_RTC_ALRMXR_PM;
496 alrmar |= (tm->tm_hour << STM32_RTC_ALRMXR_HOUR_SHIFT) &
497 STM32_RTC_ALRMXR_HOUR;
498 alrmar |= (tm->tm_min << STM32_RTC_ALRMXR_MIN_SHIFT) &
499 STM32_RTC_ALRMXR_MIN;
500 alrmar |= (tm->tm_sec << STM32_RTC_ALRMXR_SEC_SHIFT) &
501 STM32_RTC_ALRMXR_SEC;
503 stm32_rtc_wpr_unlock(rtc);
506 cr = readl_relaxed(rtc->base + regs->cr);
507 cr &= ~STM32_RTC_CR_ALRAE;
508 writel_relaxed(cr, rtc->base + regs->cr);
511 * Poll Alarm write flag to be sure that Alarm update is allowed: it
512 * takes around 2 rtc_ck clock cycles
514 ret = readl_relaxed_poll_timeout_atomic(rtc->base + regs->isr,
516 (isr & STM32_RTC_ISR_ALRAWF),
520 dev_err(dev, "Alarm update not allowed\n");
524 /* Write to Alarm register */
525 writel_relaxed(alrmar, rtc->base + regs->alrmar);
527 stm32_rtc_alarm_irq_enable(dev, alrm->enabled);
529 stm32_rtc_wpr_lock(rtc);
534 static const struct rtc_class_ops stm32_rtc_ops = {
535 .read_time = stm32_rtc_read_time,
536 .set_time = stm32_rtc_set_time,
537 .read_alarm = stm32_rtc_read_alarm,
538 .set_alarm = stm32_rtc_set_alarm,
539 .alarm_irq_enable = stm32_rtc_alarm_irq_enable,
542 static void stm32_rtc_clear_events(struct stm32_rtc *rtc,
545 const struct stm32_rtc_registers *regs = &rtc->data->regs;
547 /* Flags are cleared by writing 0 in RTC_ISR */
548 writel_relaxed(readl_relaxed(rtc->base + regs->isr) & ~flags,
549 rtc->base + regs->isr);
552 static const struct stm32_rtc_data stm32_rtc_data = {
555 .need_accuracy = false,
564 .sr = 0x0C, /* set to ISR offset to ease alarm management */
569 .alra = STM32_RTC_ISR_ALRAF,
571 .clear_events = stm32_rtc_clear_events,
574 static const struct stm32_rtc_data stm32h7_rtc_data = {
577 .need_accuracy = false,
586 .sr = 0x0C, /* set to ISR offset to ease alarm management */
591 .alra = STM32_RTC_ISR_ALRAF,
593 .clear_events = stm32_rtc_clear_events,
596 static void stm32mp1_rtc_clear_events(struct stm32_rtc *rtc,
599 struct stm32_rtc_registers regs = rtc->data->regs;
601 /* Flags are cleared by writing 1 in RTC_SCR */
602 writel_relaxed(flags, rtc->base + regs.scr);
605 static const struct stm32_rtc_data stm32mp1_data = {
608 .need_accuracy = true,
613 .isr = 0x0C, /* named RTC_ICSR on stm32mp1 */
622 .alra = STM32_RTC_SR_ALRA,
624 .clear_events = stm32mp1_rtc_clear_events,
627 static const struct of_device_id stm32_rtc_of_match[] = {
628 { .compatible = "st,stm32-rtc", .data = &stm32_rtc_data },
629 { .compatible = "st,stm32h7-rtc", .data = &stm32h7_rtc_data },
630 { .compatible = "st,stm32mp1-rtc", .data = &stm32mp1_data },
633 MODULE_DEVICE_TABLE(of, stm32_rtc_of_match);
635 static int stm32_rtc_init(struct platform_device *pdev,
636 struct stm32_rtc *rtc)
638 const struct stm32_rtc_registers *regs = &rtc->data->regs;
639 unsigned int prer, pred_a, pred_s, pred_a_max, pred_s_max, cr;
643 rate = clk_get_rate(rtc->rtc_ck);
645 /* Find prediv_a and prediv_s to obtain the 1Hz calendar clock */
646 pred_a_max = STM32_RTC_PRER_PRED_A >> STM32_RTC_PRER_PRED_A_SHIFT;
647 pred_s_max = STM32_RTC_PRER_PRED_S >> STM32_RTC_PRER_PRED_S_SHIFT;
649 if (rate > (pred_a_max + 1) * (pred_s_max + 1)) {
650 dev_err(&pdev->dev, "rtc_ck rate is too high: %dHz\n", rate);
654 if (rtc->data->need_accuracy) {
655 for (pred_a = 0; pred_a <= pred_a_max; pred_a++) {
656 pred_s = (rate / (pred_a + 1)) - 1;
658 if (pred_s <= pred_s_max && ((pred_s + 1) * (pred_a + 1)) == rate)
662 for (pred_a = pred_a_max; pred_a + 1 > 0; pred_a--) {
663 pred_s = (rate / (pred_a + 1)) - 1;
665 if (((pred_s + 1) * (pred_a + 1)) == rate)
671 * Can't find a 1Hz, so give priority to RTC power consumption
672 * by choosing the higher possible value for prediv_a
674 if (pred_s > pred_s_max || pred_a > pred_a_max) {
676 pred_s = (rate / (pred_a + 1)) - 1;
678 dev_warn(&pdev->dev, "rtc_ck is %s\n",
679 (rate < ((pred_a + 1) * (pred_s + 1))) ?
683 cr = readl_relaxed(rtc->base + regs->cr);
685 prer = readl_relaxed(rtc->base + regs->prer);
686 prer &= STM32_RTC_PRER_PRED_S | STM32_RTC_PRER_PRED_A;
688 pred_s = (pred_s << STM32_RTC_PRER_PRED_S_SHIFT) &
689 STM32_RTC_PRER_PRED_S;
690 pred_a = (pred_a << STM32_RTC_PRER_PRED_A_SHIFT) &
691 STM32_RTC_PRER_PRED_A;
693 /* quit if there is nothing to initialize */
694 if ((cr & STM32_RTC_CR_FMT) == 0 && prer == (pred_s | pred_a))
697 stm32_rtc_wpr_unlock(rtc);
699 ret = stm32_rtc_enter_init_mode(rtc);
702 "Can't enter in init mode. Prescaler config failed.\n");
706 writel_relaxed(pred_s, rtc->base + regs->prer);
707 writel_relaxed(pred_a | pred_s, rtc->base + regs->prer);
709 /* Force 24h time format */
710 cr &= ~STM32_RTC_CR_FMT;
711 writel_relaxed(cr, rtc->base + regs->cr);
713 stm32_rtc_exit_init_mode(rtc);
715 ret = stm32_rtc_wait_sync(rtc);
717 stm32_rtc_wpr_lock(rtc);
722 static int stm32_rtc_probe(struct platform_device *pdev)
724 struct stm32_rtc *rtc;
725 const struct stm32_rtc_registers *regs;
728 rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
732 rtc->base = devm_platform_ioremap_resource(pdev, 0);
733 if (IS_ERR(rtc->base))
734 return PTR_ERR(rtc->base);
736 rtc->data = (struct stm32_rtc_data *)
737 of_device_get_match_data(&pdev->dev);
738 regs = &rtc->data->regs;
740 if (rtc->data->need_dbp) {
741 rtc->dbp = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
743 if (IS_ERR(rtc->dbp)) {
744 dev_err(&pdev->dev, "no st,syscfg\n");
745 return PTR_ERR(rtc->dbp);
748 ret = of_property_read_u32_index(pdev->dev.of_node, "st,syscfg",
751 dev_err(&pdev->dev, "can't read DBP register offset\n");
755 ret = of_property_read_u32_index(pdev->dev.of_node, "st,syscfg",
758 dev_err(&pdev->dev, "can't read DBP register mask\n");
763 if (!rtc->data->has_pclk) {
765 rtc->rtc_ck = devm_clk_get(&pdev->dev, NULL);
767 rtc->pclk = devm_clk_get(&pdev->dev, "pclk");
768 if (IS_ERR(rtc->pclk))
769 return dev_err_probe(&pdev->dev, PTR_ERR(rtc->pclk), "no pclk clock");
771 rtc->rtc_ck = devm_clk_get(&pdev->dev, "rtc_ck");
773 if (IS_ERR(rtc->rtc_ck))
774 return dev_err_probe(&pdev->dev, PTR_ERR(rtc->rtc_ck), "no rtc_ck clock");
776 if (rtc->data->has_pclk) {
777 ret = clk_prepare_enable(rtc->pclk);
782 ret = clk_prepare_enable(rtc->rtc_ck);
786 if (rtc->data->need_dbp)
787 regmap_update_bits(rtc->dbp, rtc->dbp_reg,
788 rtc->dbp_mask, rtc->dbp_mask);
791 * After a system reset, RTC_ISR.INITS flag can be read to check if
792 * the calendar has been initialized or not. INITS flag is reset by a
793 * power-on reset (no vbat, no power-supply). It is not reset if
794 * rtc_ck parent clock has changed (so RTC prescalers need to be
795 * changed). That's why we cannot rely on this flag to know if RTC
796 * init has to be done.
798 ret = stm32_rtc_init(pdev, rtc);
802 rtc->irq_alarm = platform_get_irq(pdev, 0);
803 if (rtc->irq_alarm <= 0) {
804 ret = rtc->irq_alarm;
808 ret = device_init_wakeup(&pdev->dev, true);
812 ret = dev_pm_set_wake_irq(&pdev->dev, rtc->irq_alarm);
816 platform_set_drvdata(pdev, rtc);
818 rtc->rtc_dev = devm_rtc_device_register(&pdev->dev, pdev->name,
819 &stm32_rtc_ops, THIS_MODULE);
820 if (IS_ERR(rtc->rtc_dev)) {
821 ret = PTR_ERR(rtc->rtc_dev);
822 dev_err(&pdev->dev, "rtc device registration failed, err=%d\n",
827 /* Handle RTC alarm interrupts */
828 ret = devm_request_threaded_irq(&pdev->dev, rtc->irq_alarm, NULL,
829 stm32_rtc_alarm_irq, IRQF_ONESHOT,
832 dev_err(&pdev->dev, "IRQ%d (alarm interrupt) already claimed\n",
838 * If INITS flag is reset (calendar year field set to 0x00), calendar
839 * must be initialized
841 if (!(readl_relaxed(rtc->base + regs->isr) & STM32_RTC_ISR_INITS))
842 dev_warn(&pdev->dev, "Date/Time must be initialized\n");
844 if (regs->verr != UNDEF_REG) {
845 u32 ver = readl_relaxed(rtc->base + regs->verr);
847 dev_info(&pdev->dev, "registered rev:%d.%d\n",
848 (ver >> STM32_RTC_VERR_MAJREV_SHIFT) & 0xF,
849 (ver >> STM32_RTC_VERR_MINREV_SHIFT) & 0xF);
855 clk_disable_unprepare(rtc->rtc_ck);
857 if (rtc->data->has_pclk)
858 clk_disable_unprepare(rtc->pclk);
860 if (rtc->data->need_dbp)
861 regmap_update_bits(rtc->dbp, rtc->dbp_reg, rtc->dbp_mask, 0);
863 dev_pm_clear_wake_irq(&pdev->dev);
864 device_init_wakeup(&pdev->dev, false);
869 static void stm32_rtc_remove(struct platform_device *pdev)
871 struct stm32_rtc *rtc = platform_get_drvdata(pdev);
872 const struct stm32_rtc_registers *regs = &rtc->data->regs;
875 /* Disable interrupts */
876 stm32_rtc_wpr_unlock(rtc);
877 cr = readl_relaxed(rtc->base + regs->cr);
878 cr &= ~STM32_RTC_CR_ALRAIE;
879 writel_relaxed(cr, rtc->base + regs->cr);
880 stm32_rtc_wpr_lock(rtc);
882 clk_disable_unprepare(rtc->rtc_ck);
883 if (rtc->data->has_pclk)
884 clk_disable_unprepare(rtc->pclk);
886 /* Enable backup domain write protection if needed */
887 if (rtc->data->need_dbp)
888 regmap_update_bits(rtc->dbp, rtc->dbp_reg, rtc->dbp_mask, 0);
890 dev_pm_clear_wake_irq(&pdev->dev);
891 device_init_wakeup(&pdev->dev, false);
894 static int stm32_rtc_suspend(struct device *dev)
896 struct stm32_rtc *rtc = dev_get_drvdata(dev);
898 if (rtc->data->has_pclk)
899 clk_disable_unprepare(rtc->pclk);
904 static int stm32_rtc_resume(struct device *dev)
906 struct stm32_rtc *rtc = dev_get_drvdata(dev);
909 if (rtc->data->has_pclk) {
910 ret = clk_prepare_enable(rtc->pclk);
915 ret = stm32_rtc_wait_sync(rtc);
917 if (rtc->data->has_pclk)
918 clk_disable_unprepare(rtc->pclk);
925 static const struct dev_pm_ops stm32_rtc_pm_ops = {
926 NOIRQ_SYSTEM_SLEEP_PM_OPS(stm32_rtc_suspend, stm32_rtc_resume)
929 static struct platform_driver stm32_rtc_driver = {
930 .probe = stm32_rtc_probe,
931 .remove_new = stm32_rtc_remove,
934 .pm = &stm32_rtc_pm_ops,
935 .of_match_table = stm32_rtc_of_match,
939 module_platform_driver(stm32_rtc_driver);
941 MODULE_ALIAS("platform:" DRIVER_NAME);
943 MODULE_DESCRIPTION("STMicroelectronics STM32 Real Time Clock driver");
944 MODULE_LICENSE("GPL v2");