]> Git Repo - linux.git/blob - fs/afs/rxrpc.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[linux.git] / fs / afs / rxrpc.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Maintain an RxRPC server socket to do AFS communications through
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells ([email protected])
6  */
7
8 #include <linux/slab.h>
9 #include <linux/sched/signal.h>
10
11 #include <net/sock.h>
12 #include <net/af_rxrpc.h>
13 #include "internal.h"
14 #include "afs_cm.h"
15 #include "protocol_yfs.h"
16 #define RXRPC_TRACE_ONLY_DEFINE_ENUMS
17 #include <trace/events/rxrpc.h>
18
19 struct workqueue_struct *afs_async_calls;
20
21 static void afs_deferred_free_worker(struct work_struct *work);
22 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
23 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
24 static void afs_process_async_call(struct work_struct *);
25 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
26 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
27 static int afs_deliver_cm_op_id(struct afs_call *);
28
29 /* asynchronous incoming call initial processing */
30 static const struct afs_call_type afs_RXCMxxxx = {
31         .name           = "CB.xxxx",
32         .deliver        = afs_deliver_cm_op_id,
33 };
34
35 /*
36  * open an RxRPC socket and bind it to be a server for callback notifications
37  * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
38  */
39 int afs_open_socket(struct afs_net *net)
40 {
41         struct sockaddr_rxrpc srx;
42         struct socket *socket;
43         int ret;
44
45         _enter("");
46
47         ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket);
48         if (ret < 0)
49                 goto error_1;
50
51         socket->sk->sk_allocation = GFP_NOFS;
52
53         /* bind the callback manager's address to make this a server socket */
54         memset(&srx, 0, sizeof(srx));
55         srx.srx_family                  = AF_RXRPC;
56         srx.srx_service                 = CM_SERVICE;
57         srx.transport_type              = SOCK_DGRAM;
58         srx.transport_len               = sizeof(srx.transport.sin6);
59         srx.transport.sin6.sin6_family  = AF_INET6;
60         srx.transport.sin6.sin6_port    = htons(AFS_CM_PORT);
61
62         ret = rxrpc_sock_set_min_security_level(socket->sk,
63                                                 RXRPC_SECURITY_ENCRYPT);
64         if (ret < 0)
65                 goto error_2;
66
67         ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
68         if (ret == -EADDRINUSE) {
69                 srx.transport.sin6.sin6_port = 0;
70                 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
71         }
72         if (ret < 0)
73                 goto error_2;
74
75         srx.srx_service = YFS_CM_SERVICE;
76         ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
77         if (ret < 0)
78                 goto error_2;
79
80         /* Ideally, we'd turn on service upgrade here, but we can't because
81          * OpenAFS is buggy and leaks the userStatus field from packet to
82          * packet and between FS packets and CB packets - so if we try to do an
83          * upgrade on an FS packet, OpenAFS will leak that into the CB packet
84          * it sends back to us.
85          */
86
87         rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
88                                            afs_rx_discard_new_call);
89
90         ret = kernel_listen(socket, INT_MAX);
91         if (ret < 0)
92                 goto error_2;
93
94         net->socket = socket;
95         afs_charge_preallocation(&net->charge_preallocation_work);
96         _leave(" = 0");
97         return 0;
98
99 error_2:
100         sock_release(socket);
101 error_1:
102         _leave(" = %d", ret);
103         return ret;
104 }
105
106 /*
107  * close the RxRPC socket AFS was using
108  */
109 void afs_close_socket(struct afs_net *net)
110 {
111         _enter("");
112
113         kernel_listen(net->socket, 0);
114         flush_workqueue(afs_async_calls);
115
116         if (net->spare_incoming_call) {
117                 afs_put_call(net->spare_incoming_call);
118                 net->spare_incoming_call = NULL;
119         }
120
121         _debug("outstanding %u", atomic_read(&net->nr_outstanding_calls));
122         wait_var_event(&net->nr_outstanding_calls,
123                        !atomic_read(&net->nr_outstanding_calls));
124         _debug("no outstanding calls");
125
126         kernel_sock_shutdown(net->socket, SHUT_RDWR);
127         flush_workqueue(afs_async_calls);
128         sock_release(net->socket);
129
130         _debug("dework");
131         _leave("");
132 }
133
134 /*
135  * Allocate a call.
136  */
137 static struct afs_call *afs_alloc_call(struct afs_net *net,
138                                        const struct afs_call_type *type,
139                                        gfp_t gfp)
140 {
141         struct afs_call *call;
142         int o;
143
144         call = kzalloc(sizeof(*call), gfp);
145         if (!call)
146                 return NULL;
147
148         call->type = type;
149         call->net = net;
150         call->debug_id = atomic_inc_return(&rxrpc_debug_id);
151         refcount_set(&call->ref, 1);
152         INIT_WORK(&call->async_work, afs_process_async_call);
153         INIT_WORK(&call->free_work, afs_deferred_free_worker);
154         init_waitqueue_head(&call->waitq);
155         spin_lock_init(&call->state_lock);
156         call->iter = &call->def_iter;
157
158         o = atomic_inc_return(&net->nr_outstanding_calls);
159         trace_afs_call(call->debug_id, afs_call_trace_alloc, 1, o,
160                        __builtin_return_address(0));
161         return call;
162 }
163
164 static void afs_free_call(struct afs_call *call)
165 {
166         struct afs_net *net = call->net;
167         int o;
168
169         ASSERT(!work_pending(&call->async_work));
170
171         rxrpc_kernel_put_peer(call->peer);
172
173         if (call->rxcall) {
174                 rxrpc_kernel_shutdown_call(net->socket, call->rxcall);
175                 rxrpc_kernel_put_call(net->socket, call->rxcall);
176                 call->rxcall = NULL;
177         }
178         if (call->type->destructor)
179                 call->type->destructor(call);
180
181         afs_unuse_server_notime(call->net, call->server, afs_server_trace_put_call);
182         kfree(call->request);
183
184         o = atomic_read(&net->nr_outstanding_calls);
185         trace_afs_call(call->debug_id, afs_call_trace_free, 0, o,
186                        __builtin_return_address(0));
187         kfree(call);
188
189         o = atomic_dec_return(&net->nr_outstanding_calls);
190         if (o == 0)
191                 wake_up_var(&net->nr_outstanding_calls);
192 }
193
194 /*
195  * Dispose of a reference on a call.
196  */
197 void afs_put_call(struct afs_call *call)
198 {
199         struct afs_net *net = call->net;
200         unsigned int debug_id = call->debug_id;
201         bool zero;
202         int r, o;
203
204         zero = __refcount_dec_and_test(&call->ref, &r);
205         o = atomic_read(&net->nr_outstanding_calls);
206         trace_afs_call(debug_id, afs_call_trace_put, r - 1, o,
207                        __builtin_return_address(0));
208         if (zero)
209                 afs_free_call(call);
210 }
211
212 static void afs_deferred_free_worker(struct work_struct *work)
213 {
214         struct afs_call *call = container_of(work, struct afs_call, free_work);
215
216         afs_free_call(call);
217 }
218
219 /*
220  * Dispose of a reference on a call, deferring the cleanup to a workqueue
221  * to avoid lock recursion.
222  */
223 void afs_deferred_put_call(struct afs_call *call)
224 {
225         struct afs_net *net = call->net;
226         unsigned int debug_id = call->debug_id;
227         bool zero;
228         int r, o;
229
230         zero = __refcount_dec_and_test(&call->ref, &r);
231         o = atomic_read(&net->nr_outstanding_calls);
232         trace_afs_call(debug_id, afs_call_trace_put, r - 1, o,
233                        __builtin_return_address(0));
234         if (zero)
235                 schedule_work(&call->free_work);
236 }
237
238 static struct afs_call *afs_get_call(struct afs_call *call,
239                                      enum afs_call_trace why)
240 {
241         int r;
242
243         __refcount_inc(&call->ref, &r);
244
245         trace_afs_call(call->debug_id, why, r + 1,
246                        atomic_read(&call->net->nr_outstanding_calls),
247                        __builtin_return_address(0));
248         return call;
249 }
250
251 /*
252  * Queue the call for actual work.
253  */
254 static void afs_queue_call_work(struct afs_call *call)
255 {
256         if (call->type->work) {
257                 INIT_WORK(&call->work, call->type->work);
258
259                 afs_get_call(call, afs_call_trace_work);
260                 if (!queue_work(afs_wq, &call->work))
261                         afs_put_call(call);
262         }
263 }
264
265 /*
266  * allocate a call with flat request and reply buffers
267  */
268 struct afs_call *afs_alloc_flat_call(struct afs_net *net,
269                                      const struct afs_call_type *type,
270                                      size_t request_size, size_t reply_max)
271 {
272         struct afs_call *call;
273
274         call = afs_alloc_call(net, type, GFP_NOFS);
275         if (!call)
276                 goto nomem_call;
277
278         if (request_size) {
279                 call->request_size = request_size;
280                 call->request = kmalloc(request_size, GFP_NOFS);
281                 if (!call->request)
282                         goto nomem_free;
283         }
284
285         if (reply_max) {
286                 call->reply_max = reply_max;
287                 call->buffer = kmalloc(reply_max, GFP_NOFS);
288                 if (!call->buffer)
289                         goto nomem_free;
290         }
291
292         afs_extract_to_buf(call, call->reply_max);
293         call->operation_ID = type->op;
294         init_waitqueue_head(&call->waitq);
295         return call;
296
297 nomem_free:
298         afs_put_call(call);
299 nomem_call:
300         return NULL;
301 }
302
303 /*
304  * clean up a call with flat buffer
305  */
306 void afs_flat_call_destructor(struct afs_call *call)
307 {
308         _enter("");
309
310         kfree(call->request);
311         call->request = NULL;
312         kfree(call->buffer);
313         call->buffer = NULL;
314 }
315
316 /*
317  * Advance the AFS call state when the RxRPC call ends the transmit phase.
318  */
319 static void afs_notify_end_request_tx(struct sock *sock,
320                                       struct rxrpc_call *rxcall,
321                                       unsigned long call_user_ID)
322 {
323         struct afs_call *call = (struct afs_call *)call_user_ID;
324
325         afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY);
326 }
327
328 /*
329  * Initiate a call and synchronously queue up the parameters for dispatch.  Any
330  * error is stored into the call struct, which the caller must check for.
331  */
332 void afs_make_call(struct afs_call *call, gfp_t gfp)
333 {
334         struct rxrpc_call *rxcall;
335         struct msghdr msg;
336         struct kvec iov[1];
337         size_t len;
338         s64 tx_total_len;
339         int ret;
340
341         _enter(",{%pISp+%u},", rxrpc_kernel_remote_addr(call->peer), call->service_id);
342
343         ASSERT(call->type != NULL);
344         ASSERT(call->type->name != NULL);
345
346         _debug("____MAKE %p{%s,%x} [%d]____",
347                call, call->type->name, key_serial(call->key),
348                atomic_read(&call->net->nr_outstanding_calls));
349
350         trace_afs_make_call(call);
351
352         /* Work out the length we're going to transmit.  This is awkward for
353          * calls such as FS.StoreData where there's an extra injection of data
354          * after the initial fixed part.
355          */
356         tx_total_len = call->request_size;
357         if (call->write_iter)
358                 tx_total_len += iov_iter_count(call->write_iter);
359
360         /* If the call is going to be asynchronous, we need an extra ref for
361          * the call to hold itself so the caller need not hang on to its ref.
362          */
363         if (call->async) {
364                 afs_get_call(call, afs_call_trace_get);
365                 call->drop_ref = true;
366         }
367
368         /* create a call */
369         rxcall = rxrpc_kernel_begin_call(call->net->socket, call->peer, call->key,
370                                          (unsigned long)call,
371                                          tx_total_len,
372                                          call->max_lifespan,
373                                          gfp,
374                                          (call->async ?
375                                           afs_wake_up_async_call :
376                                           afs_wake_up_call_waiter),
377                                          call->service_id,
378                                          call->upgrade,
379                                          (call->intr ? RXRPC_PREINTERRUPTIBLE :
380                                           RXRPC_UNINTERRUPTIBLE),
381                                          call->debug_id);
382         if (IS_ERR(rxcall)) {
383                 ret = PTR_ERR(rxcall);
384                 call->error = ret;
385                 goto error_kill_call;
386         }
387
388         call->rxcall = rxcall;
389         call->issue_time = ktime_get_real();
390
391         /* send the request */
392         iov[0].iov_base = call->request;
393         iov[0].iov_len  = call->request_size;
394
395         msg.msg_name            = NULL;
396         msg.msg_namelen         = 0;
397         iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, iov, 1, call->request_size);
398         msg.msg_control         = NULL;
399         msg.msg_controllen      = 0;
400         msg.msg_flags           = MSG_WAITALL | (call->write_iter ? MSG_MORE : 0);
401
402         ret = rxrpc_kernel_send_data(call->net->socket, rxcall,
403                                      &msg, call->request_size,
404                                      afs_notify_end_request_tx);
405         if (ret < 0)
406                 goto error_do_abort;
407
408         if (call->write_iter) {
409                 msg.msg_iter = *call->write_iter;
410                 msg.msg_flags &= ~MSG_MORE;
411                 trace_afs_send_data(call, &msg);
412
413                 ret = rxrpc_kernel_send_data(call->net->socket,
414                                              call->rxcall, &msg,
415                                              iov_iter_count(&msg.msg_iter),
416                                              afs_notify_end_request_tx);
417                 *call->write_iter = msg.msg_iter;
418
419                 trace_afs_sent_data(call, &msg, ret);
420                 if (ret < 0)
421                         goto error_do_abort;
422         }
423
424         /* Note that at this point, we may have received the reply or an abort
425          * - and an asynchronous call may already have completed.
426          *
427          * afs_wait_for_call_to_complete(call)
428          * must be called to synchronously clean up.
429          */
430         return;
431
432 error_do_abort:
433         if (ret != -ECONNABORTED) {
434                 rxrpc_kernel_abort_call(call->net->socket, rxcall,
435                                         RX_USER_ABORT, ret,
436                                         afs_abort_send_data_error);
437         } else {
438                 len = 0;
439                 iov_iter_kvec(&msg.msg_iter, ITER_DEST, NULL, 0, 0);
440                 rxrpc_kernel_recv_data(call->net->socket, rxcall,
441                                        &msg.msg_iter, &len, false,
442                                        &call->abort_code, &call->service_id);
443                 call->responded = true;
444         }
445         call->error = ret;
446         trace_afs_call_done(call);
447 error_kill_call:
448         if (call->type->done)
449                 call->type->done(call);
450
451         /* We need to dispose of the extra ref we grabbed for an async call.
452          * The call, however, might be queued on afs_async_calls and we need to
453          * make sure we don't get any more notifications that might requeue it.
454          */
455         if (call->rxcall)
456                 rxrpc_kernel_shutdown_call(call->net->socket, call->rxcall);
457         if (call->async) {
458                 if (cancel_work_sync(&call->async_work))
459                         afs_put_call(call);
460                 afs_set_call_complete(call, ret, 0);
461         }
462
463         call->error = ret;
464         call->state = AFS_CALL_COMPLETE;
465         _leave(" = %d", ret);
466 }
467
468 /*
469  * Log remote abort codes that indicate that we have a protocol disagreement
470  * with the server.
471  */
472 static void afs_log_error(struct afs_call *call, s32 remote_abort)
473 {
474         static int max = 0;
475         const char *msg;
476         int m;
477
478         switch (remote_abort) {
479         case RX_EOF:             msg = "unexpected EOF";        break;
480         case RXGEN_CC_MARSHAL:   msg = "client marshalling";    break;
481         case RXGEN_CC_UNMARSHAL: msg = "client unmarshalling";  break;
482         case RXGEN_SS_MARSHAL:   msg = "server marshalling";    break;
483         case RXGEN_SS_UNMARSHAL: msg = "server unmarshalling";  break;
484         case RXGEN_DECODE:       msg = "opcode decode";         break;
485         case RXGEN_SS_XDRFREE:   msg = "server XDR cleanup";    break;
486         case RXGEN_CC_XDRFREE:   msg = "client XDR cleanup";    break;
487         case -32:                msg = "insufficient data";     break;
488         default:
489                 return;
490         }
491
492         m = max;
493         if (m < 3) {
494                 max = m + 1;
495                 pr_notice("kAFS: Peer reported %s failure on %s [%pISp]\n",
496                           msg, call->type->name,
497                           rxrpc_kernel_remote_addr(call->peer));
498         }
499 }
500
501 /*
502  * deliver messages to a call
503  */
504 static void afs_deliver_to_call(struct afs_call *call)
505 {
506         enum afs_call_state state;
507         size_t len;
508         u32 abort_code, remote_abort = 0;
509         int ret;
510
511         _enter("%s", call->type->name);
512
513         while (state = READ_ONCE(call->state),
514                state == AFS_CALL_CL_AWAIT_REPLY ||
515                state == AFS_CALL_SV_AWAIT_OP_ID ||
516                state == AFS_CALL_SV_AWAIT_REQUEST ||
517                state == AFS_CALL_SV_AWAIT_ACK
518                ) {
519                 if (state == AFS_CALL_SV_AWAIT_ACK) {
520                         len = 0;
521                         iov_iter_kvec(&call->def_iter, ITER_DEST, NULL, 0, 0);
522                         ret = rxrpc_kernel_recv_data(call->net->socket,
523                                                      call->rxcall, &call->def_iter,
524                                                      &len, false, &remote_abort,
525                                                      &call->service_id);
526                         trace_afs_receive_data(call, &call->def_iter, false, ret);
527
528                         if (ret == -EINPROGRESS || ret == -EAGAIN)
529                                 return;
530                         if (ret < 0 || ret == 1) {
531                                 if (ret == 1)
532                                         ret = 0;
533                                 goto call_complete;
534                         }
535                         return;
536                 }
537
538                 ret = call->type->deliver(call);
539                 state = READ_ONCE(call->state);
540                 if (ret == 0 && call->unmarshalling_error)
541                         ret = -EBADMSG;
542                 switch (ret) {
543                 case 0:
544                         call->responded = true;
545                         afs_queue_call_work(call);
546                         if (state == AFS_CALL_CL_PROC_REPLY) {
547                                 if (call->op)
548                                         set_bit(AFS_SERVER_FL_MAY_HAVE_CB,
549                                                 &call->op->server->flags);
550                                 goto call_complete;
551                         }
552                         ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY);
553                         goto done;
554                 case -EINPROGRESS:
555                 case -EAGAIN:
556                         goto out;
557                 case -ECONNABORTED:
558                         ASSERTCMP(state, ==, AFS_CALL_COMPLETE);
559                         call->responded = true;
560                         afs_log_error(call, call->abort_code);
561                         goto done;
562                 case -ENOTSUPP:
563                         call->responded = true;
564                         abort_code = RXGEN_OPCODE;
565                         rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
566                                                 abort_code, ret,
567                                                 afs_abort_op_not_supported);
568                         goto local_abort;
569                 case -EIO:
570                         pr_err("kAFS: Call %u in bad state %u\n",
571                                call->debug_id, state);
572                         fallthrough;
573                 case -ENODATA:
574                 case -EBADMSG:
575                 case -EMSGSIZE:
576                 case -ENOMEM:
577                 case -EFAULT:
578                         abort_code = RXGEN_CC_UNMARSHAL;
579                         if (state != AFS_CALL_CL_AWAIT_REPLY)
580                                 abort_code = RXGEN_SS_UNMARSHAL;
581                         rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
582                                                 abort_code, ret,
583                                                 afs_abort_unmarshal_error);
584                         goto local_abort;
585                 default:
586                         abort_code = RX_CALL_DEAD;
587                         rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
588                                                 abort_code, ret,
589                                                 afs_abort_general_error);
590                         goto local_abort;
591                 }
592         }
593
594 done:
595         if (call->type->done)
596                 call->type->done(call);
597 out:
598         _leave("");
599         return;
600
601 local_abort:
602         abort_code = 0;
603 call_complete:
604         afs_set_call_complete(call, ret, remote_abort);
605         state = AFS_CALL_COMPLETE;
606         goto done;
607 }
608
609 /*
610  * Wait synchronously for a call to complete.
611  */
612 void afs_wait_for_call_to_complete(struct afs_call *call)
613 {
614         bool rxrpc_complete = false;
615
616         _enter("");
617
618         if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
619                 DECLARE_WAITQUEUE(myself, current);
620
621                 add_wait_queue(&call->waitq, &myself);
622                 for (;;) {
623                         set_current_state(TASK_UNINTERRUPTIBLE);
624
625                         /* deliver any messages that are in the queue */
626                         if (!afs_check_call_state(call, AFS_CALL_COMPLETE) &&
627                             call->need_attention) {
628                                 call->need_attention = false;
629                                 __set_current_state(TASK_RUNNING);
630                                 afs_deliver_to_call(call);
631                                 continue;
632                         }
633
634                         if (afs_check_call_state(call, AFS_CALL_COMPLETE))
635                                 break;
636
637                         if (!rxrpc_kernel_check_life(call->net->socket, call->rxcall)) {
638                                 /* rxrpc terminated the call. */
639                                 rxrpc_complete = true;
640                                 break;
641                         }
642
643                         schedule();
644                 }
645
646                 remove_wait_queue(&call->waitq, &myself);
647                 __set_current_state(TASK_RUNNING);
648         }
649
650         if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
651                 if (rxrpc_complete) {
652                         afs_set_call_complete(call, call->error, call->abort_code);
653                 } else {
654                         /* Kill off the call if it's still live. */
655                         _debug("call interrupted");
656                         if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
657                                                     RX_USER_ABORT, -EINTR,
658                                                     afs_abort_interrupted))
659                                 afs_set_call_complete(call, -EINTR, 0);
660                 }
661         }
662 }
663
664 /*
665  * wake up a waiting call
666  */
667 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
668                                     unsigned long call_user_ID)
669 {
670         struct afs_call *call = (struct afs_call *)call_user_ID;
671
672         call->need_attention = true;
673         wake_up(&call->waitq);
674 }
675
676 /*
677  * Wake up an asynchronous call.  The caller is holding the call notify
678  * spinlock around this, so we can't call afs_put_call().
679  */
680 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
681                                    unsigned long call_user_ID)
682 {
683         struct afs_call *call = (struct afs_call *)call_user_ID;
684         int r;
685
686         trace_afs_notify_call(rxcall, call);
687         call->need_attention = true;
688
689         if (__refcount_inc_not_zero(&call->ref, &r)) {
690                 trace_afs_call(call->debug_id, afs_call_trace_wake, r + 1,
691                                atomic_read(&call->net->nr_outstanding_calls),
692                                __builtin_return_address(0));
693
694                 if (!queue_work(afs_async_calls, &call->async_work))
695                         afs_deferred_put_call(call);
696         }
697 }
698
699 /*
700  * Perform I/O processing on an asynchronous call.  The work item carries a ref
701  * to the call struct that we either need to release or to pass on.
702  */
703 static void afs_process_async_call(struct work_struct *work)
704 {
705         struct afs_call *call = container_of(work, struct afs_call, async_work);
706
707         _enter("");
708
709         if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
710                 call->need_attention = false;
711                 afs_deliver_to_call(call);
712         }
713
714         afs_put_call(call);
715         _leave("");
716 }
717
718 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
719 {
720         struct afs_call *call = (struct afs_call *)user_call_ID;
721
722         call->rxcall = rxcall;
723 }
724
725 /*
726  * Charge the incoming call preallocation.
727  */
728 void afs_charge_preallocation(struct work_struct *work)
729 {
730         struct afs_net *net =
731                 container_of(work, struct afs_net, charge_preallocation_work);
732         struct afs_call *call = net->spare_incoming_call;
733
734         for (;;) {
735                 if (!call) {
736                         call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL);
737                         if (!call)
738                                 break;
739
740                         call->drop_ref = true;
741                         call->async = true;
742                         call->state = AFS_CALL_SV_AWAIT_OP_ID;
743                         init_waitqueue_head(&call->waitq);
744                         afs_extract_to_tmp(call);
745                 }
746
747                 if (rxrpc_kernel_charge_accept(net->socket,
748                                                afs_wake_up_async_call,
749                                                afs_rx_attach,
750                                                (unsigned long)call,
751                                                GFP_KERNEL,
752                                                call->debug_id) < 0)
753                         break;
754                 call = NULL;
755         }
756         net->spare_incoming_call = call;
757 }
758
759 /*
760  * Discard a preallocated call when a socket is shut down.
761  */
762 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
763                                     unsigned long user_call_ID)
764 {
765         struct afs_call *call = (struct afs_call *)user_call_ID;
766
767         call->rxcall = NULL;
768         afs_put_call(call);
769 }
770
771 /*
772  * Notification of an incoming call.
773  */
774 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
775                             unsigned long user_call_ID)
776 {
777         struct afs_net *net = afs_sock2net(sk);
778
779         queue_work(afs_wq, &net->charge_preallocation_work);
780 }
781
782 /*
783  * Grab the operation ID from an incoming cache manager call.  The socket
784  * buffer is discarded on error or if we don't yet have sufficient data.
785  */
786 static int afs_deliver_cm_op_id(struct afs_call *call)
787 {
788         int ret;
789
790         _enter("{%zu}", iov_iter_count(call->iter));
791
792         /* the operation ID forms the first four bytes of the request data */
793         ret = afs_extract_data(call, true);
794         if (ret < 0)
795                 return ret;
796
797         call->operation_ID = ntohl(call->tmp);
798         afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST);
799
800         /* ask the cache manager to route the call (it'll change the call type
801          * if successful) */
802         if (!afs_cm_incoming_call(call))
803                 return -ENOTSUPP;
804
805         trace_afs_cb_call(call);
806
807         /* pass responsibility for the remainer of this message off to the
808          * cache manager op */
809         return call->type->deliver(call);
810 }
811
812 /*
813  * Advance the AFS call state when an RxRPC service call ends the transmit
814  * phase.
815  */
816 static void afs_notify_end_reply_tx(struct sock *sock,
817                                     struct rxrpc_call *rxcall,
818                                     unsigned long call_user_ID)
819 {
820         struct afs_call *call = (struct afs_call *)call_user_ID;
821
822         afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK);
823 }
824
825 /*
826  * send an empty reply
827  */
828 void afs_send_empty_reply(struct afs_call *call)
829 {
830         struct afs_net *net = call->net;
831         struct msghdr msg;
832
833         _enter("");
834
835         rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0);
836
837         msg.msg_name            = NULL;
838         msg.msg_namelen         = 0;
839         iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, NULL, 0, 0);
840         msg.msg_control         = NULL;
841         msg.msg_controllen      = 0;
842         msg.msg_flags           = 0;
843
844         switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0,
845                                        afs_notify_end_reply_tx)) {
846         case 0:
847                 _leave(" [replied]");
848                 return;
849
850         case -ENOMEM:
851                 _debug("oom");
852                 rxrpc_kernel_abort_call(net->socket, call->rxcall,
853                                         RXGEN_SS_MARSHAL, -ENOMEM,
854                                         afs_abort_oom);
855                 fallthrough;
856         default:
857                 _leave(" [error]");
858                 return;
859         }
860 }
861
862 /*
863  * send a simple reply
864  */
865 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
866 {
867         struct afs_net *net = call->net;
868         struct msghdr msg;
869         struct kvec iov[1];
870         int n;
871
872         _enter("");
873
874         rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len);
875
876         iov[0].iov_base         = (void *) buf;
877         iov[0].iov_len          = len;
878         msg.msg_name            = NULL;
879         msg.msg_namelen         = 0;
880         iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, iov, 1, len);
881         msg.msg_control         = NULL;
882         msg.msg_controllen      = 0;
883         msg.msg_flags           = 0;
884
885         n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len,
886                                    afs_notify_end_reply_tx);
887         if (n >= 0) {
888                 /* Success */
889                 _leave(" [replied]");
890                 return;
891         }
892
893         if (n == -ENOMEM) {
894                 _debug("oom");
895                 rxrpc_kernel_abort_call(net->socket, call->rxcall,
896                                         RXGEN_SS_MARSHAL, -ENOMEM,
897                                         afs_abort_oom);
898         }
899         _leave(" [error]");
900 }
901
902 /*
903  * Extract a piece of data from the received data socket buffers.
904  */
905 int afs_extract_data(struct afs_call *call, bool want_more)
906 {
907         struct afs_net *net = call->net;
908         struct iov_iter *iter = call->iter;
909         enum afs_call_state state;
910         u32 remote_abort = 0;
911         int ret;
912
913         _enter("{%s,%zu,%zu},%d",
914                call->type->name, call->iov_len, iov_iter_count(iter), want_more);
915
916         ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter,
917                                      &call->iov_len, want_more, &remote_abort,
918                                      &call->service_id);
919         trace_afs_receive_data(call, call->iter, want_more, ret);
920         if (ret == 0 || ret == -EAGAIN)
921                 return ret;
922
923         state = READ_ONCE(call->state);
924         if (ret == 1) {
925                 switch (state) {
926                 case AFS_CALL_CL_AWAIT_REPLY:
927                         afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY);
928                         break;
929                 case AFS_CALL_SV_AWAIT_REQUEST:
930                         afs_set_call_state(call, state, AFS_CALL_SV_REPLYING);
931                         break;
932                 case AFS_CALL_COMPLETE:
933                         kdebug("prem complete %d", call->error);
934                         return afs_io_error(call, afs_io_error_extract);
935                 default:
936                         break;
937                 }
938                 return 0;
939         }
940
941         afs_set_call_complete(call, ret, remote_abort);
942         return ret;
943 }
944
945 /*
946  * Log protocol error production.
947  */
948 noinline int afs_protocol_error(struct afs_call *call,
949                                 enum afs_eproto_cause cause)
950 {
951         trace_afs_protocol_error(call, cause);
952         if (call)
953                 call->unmarshalling_error = true;
954         return -EBADMSG;
955 }
This page took 0.085486 seconds and 4 git commands to generate.