1 // SPDX-License-Identifier: GPL-2.0
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
30 * Also see the examples in the liburing library:
32 * git://git.kernel.dk/liburing
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
52 #include <linux/sched/signal.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
65 #include <net/af_unix.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
73 #include <linux/highmem.h>
74 #include <linux/namei.h>
75 #include <linux/fsnotify.h>
76 #include <linux/fadvise.h>
77 #include <linux/eventpoll.h>
78 #include <linux/fs_struct.h>
79 #include <linux/splice.h>
80 #include <linux/task_work.h>
81 #include <linux/pagemap.h>
82 #include <linux/io_uring.h>
83 #include <linux/blk-cgroup.h>
84 #include <linux/audit.h>
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/io_uring.h>
89 #include <uapi/linux/io_uring.h>
94 #define IORING_MAX_ENTRIES 32768
95 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
98 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
100 #define IORING_FILE_TABLE_SHIFT 9
101 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
102 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
103 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
105 IORING_REGISTER_LAST + IORING_OP_LAST)
108 u32 head ____cacheline_aligned_in_smp;
109 u32 tail ____cacheline_aligned_in_smp;
113 * This data is shared with the application through the mmap at offsets
114 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
116 * The offsets to the member fields are published through struct
117 * io_sqring_offsets when calling io_uring_setup.
121 * Head and tail offsets into the ring; the offsets need to be
122 * masked to get valid indices.
124 * The kernel controls head of the sq ring and the tail of the cq ring,
125 * and the application controls tail of the sq ring and the head of the
128 struct io_uring sq, cq;
130 * Bitmasks to apply to head and tail offsets (constant, equals
133 u32 sq_ring_mask, cq_ring_mask;
134 /* Ring sizes (constant, power of 2) */
135 u32 sq_ring_entries, cq_ring_entries;
137 * Number of invalid entries dropped by the kernel due to
138 * invalid index stored in array
140 * Written by the kernel, shouldn't be modified by the
141 * application (i.e. get number of "new events" by comparing to
144 * After a new SQ head value was read by the application this
145 * counter includes all submissions that were dropped reaching
146 * the new SQ head (and possibly more).
152 * Written by the kernel, shouldn't be modified by the
155 * The application needs a full memory barrier before checking
156 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
162 * Written by the application, shouldn't be modified by the
167 * Number of completion events lost because the queue was full;
168 * this should be avoided by the application by making sure
169 * there are not more requests pending than there is space in
170 * the completion queue.
172 * Written by the kernel, shouldn't be modified by the
173 * application (i.e. get number of "new events" by comparing to
176 * As completion events come in out of order this counter is not
177 * ordered with any other data.
181 * Ring buffer of completion events.
183 * The kernel writes completion events fresh every time they are
184 * produced, so the application is allowed to modify pending
187 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
190 struct io_mapped_ubuf {
193 struct bio_vec *bvec;
194 unsigned int nr_bvecs;
195 unsigned long acct_pages;
198 struct fixed_file_table {
202 struct fixed_file_ref_node {
203 struct percpu_ref refs;
204 struct list_head node;
205 struct list_head file_list;
206 struct fixed_file_data *file_data;
207 struct llist_node llist;
211 struct fixed_file_data {
212 struct fixed_file_table *table;
213 struct io_ring_ctx *ctx;
215 struct fixed_file_ref_node *node;
216 struct percpu_ref refs;
217 struct completion done;
218 struct list_head ref_list;
223 struct list_head list;
229 struct io_restriction {
230 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
231 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
232 u8 sqe_flags_allowed;
233 u8 sqe_flags_required;
241 /* ctx's that are using this sqd */
242 struct list_head ctx_list;
243 struct list_head ctx_new_list;
244 struct mutex ctx_lock;
246 struct task_struct *thread;
247 struct wait_queue_head wait;
249 unsigned sq_thread_idle;
254 struct percpu_ref refs;
255 } ____cacheline_aligned_in_smp;
259 unsigned int compat: 1;
260 unsigned int limit_mem: 1;
261 unsigned int cq_overflow_flushed: 1;
262 unsigned int drain_next: 1;
263 unsigned int eventfd_async: 1;
264 unsigned int restricted: 1;
267 * Ring buffer of indices into array of io_uring_sqe, which is
268 * mmapped by the application using the IORING_OFF_SQES offset.
270 * This indirection could e.g. be used to assign fixed
271 * io_uring_sqe entries to operations and only submit them to
272 * the queue when needed.
274 * The kernel modifies neither the indices array nor the entries
278 unsigned cached_sq_head;
281 unsigned sq_thread_idle;
282 unsigned cached_sq_dropped;
283 unsigned cached_cq_overflow;
284 unsigned long sq_check_overflow;
286 struct list_head defer_list;
287 struct list_head timeout_list;
288 struct list_head cq_overflow_list;
290 struct io_uring_sqe *sq_sqes;
291 } ____cacheline_aligned_in_smp;
293 struct io_rings *rings;
299 * For SQPOLL usage - we hold a reference to the parent task, so we
300 * have access to the ->files
302 struct task_struct *sqo_task;
304 /* Only used for accounting purposes */
305 struct mm_struct *mm_account;
307 #ifdef CONFIG_BLK_CGROUP
308 struct cgroup_subsys_state *sqo_blkcg_css;
311 struct io_sq_data *sq_data; /* if using sq thread polling */
313 struct wait_queue_head sqo_sq_wait;
314 struct list_head sqd_list;
317 * If used, fixed file set. Writers must ensure that ->refs is dead,
318 * readers must ensure that ->refs is alive as long as the file* is
319 * used. Only updated through io_uring_register(2).
321 struct fixed_file_data *file_data;
322 unsigned nr_user_files;
324 /* if used, fixed mapped user buffers */
325 unsigned nr_user_bufs;
326 struct io_mapped_ubuf *user_bufs;
328 struct user_struct *user;
330 const struct cred *creds;
334 unsigned int sessionid;
337 struct completion ref_comp;
338 struct completion sq_thread_comp;
340 /* if all else fails... */
341 struct io_kiocb *fallback_req;
343 #if defined(CONFIG_UNIX)
344 struct socket *ring_sock;
347 struct idr io_buffer_idr;
349 struct idr personality_idr;
352 unsigned cached_cq_tail;
355 atomic_t cq_timeouts;
356 unsigned long cq_check_overflow;
357 struct wait_queue_head cq_wait;
358 struct fasync_struct *cq_fasync;
359 struct eventfd_ctx *cq_ev_fd;
360 } ____cacheline_aligned_in_smp;
363 struct mutex uring_lock;
364 wait_queue_head_t wait;
365 } ____cacheline_aligned_in_smp;
368 spinlock_t completion_lock;
371 * ->iopoll_list is protected by the ctx->uring_lock for
372 * io_uring instances that don't use IORING_SETUP_SQPOLL.
373 * For SQPOLL, only the single threaded io_sq_thread() will
374 * manipulate the list, hence no extra locking is needed there.
376 struct list_head iopoll_list;
377 struct hlist_head *cancel_hash;
378 unsigned cancel_hash_bits;
379 bool poll_multi_file;
381 spinlock_t inflight_lock;
382 struct list_head inflight_list;
383 } ____cacheline_aligned_in_smp;
385 struct delayed_work file_put_work;
386 struct llist_head file_put_llist;
388 struct work_struct exit_work;
389 struct io_restriction restrictions;
393 * First field must be the file pointer in all the
394 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
396 struct io_poll_iocb {
398 struct wait_queue_head *head;
402 struct wait_queue_entry wait;
405 struct io_poll_remove {
412 struct file *put_file;
416 struct io_timeout_data {
417 struct io_kiocb *req;
418 struct hrtimer timer;
419 struct timespec64 ts;
420 enum hrtimer_mode mode;
425 struct sockaddr __user *addr;
426 int __user *addr_len;
428 unsigned long nofile;
448 struct list_head list;
449 /* head of the link, used by linked timeouts only */
450 struct io_kiocb *head;
453 struct io_timeout_rem {
458 struct timespec64 ts;
463 /* NOTE: kiocb has the file as the first member, so don't do it here */
471 struct sockaddr __user *addr;
478 struct user_msghdr __user *umsg;
484 struct io_buffer *kbuf;
490 bool ignore_nonblock;
491 struct filename *filename;
493 unsigned long nofile;
496 struct io_files_update {
522 struct epoll_event event;
526 struct file *file_out;
527 struct file *file_in;
534 struct io_provide_buf {
548 const char __user *filename;
549 struct statx __user *buffer;
561 struct filename *oldpath;
562 struct filename *newpath;
570 struct filename *filename;
573 struct io_completion {
575 struct list_head list;
579 struct io_async_connect {
580 struct sockaddr_storage address;
583 struct io_async_msghdr {
584 struct iovec fast_iov[UIO_FASTIOV];
586 struct sockaddr __user *uaddr;
588 struct sockaddr_storage addr;
592 struct iovec fast_iov[UIO_FASTIOV];
593 const struct iovec *free_iovec;
594 struct iov_iter iter;
596 struct wait_page_queue wpq;
600 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
601 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
602 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
603 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
604 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
605 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
611 REQ_F_LINK_TIMEOUT_BIT,
613 REQ_F_NEED_CLEANUP_BIT,
615 REQ_F_BUFFER_SELECTED_BIT,
616 REQ_F_NO_FILE_TABLE_BIT,
617 REQ_F_WORK_INITIALIZED_BIT,
618 REQ_F_LTIMEOUT_ACTIVE_BIT,
620 /* not a real bit, just to check we're not overflowing the space */
626 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
627 /* drain existing IO first */
628 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
630 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
631 /* doesn't sever on completion < 0 */
632 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
634 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
635 /* IOSQE_BUFFER_SELECT */
636 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
638 /* fail rest of links */
639 REQ_F_FAIL_LINK = BIT(REQ_F_FAIL_LINK_BIT),
640 /* on inflight list */
641 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
642 /* read/write uses file position */
643 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
644 /* must not punt to workers */
645 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
646 /* has or had linked timeout */
647 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
649 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
651 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
652 /* already went through poll handler */
653 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
654 /* buffer already selected */
655 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
656 /* doesn't need file table for this request */
657 REQ_F_NO_FILE_TABLE = BIT(REQ_F_NO_FILE_TABLE_BIT),
658 /* io_wq_work is initialized */
659 REQ_F_WORK_INITIALIZED = BIT(REQ_F_WORK_INITIALIZED_BIT),
660 /* linked timeout is active, i.e. prepared by link's head */
661 REQ_F_LTIMEOUT_ACTIVE = BIT(REQ_F_LTIMEOUT_ACTIVE_BIT),
665 struct io_poll_iocb poll;
666 struct io_poll_iocb *double_poll;
670 * NOTE! Each of the iocb union members has the file pointer
671 * as the first entry in their struct definition. So you can
672 * access the file pointer through any of the sub-structs,
673 * or directly as just 'ki_filp' in this struct.
679 struct io_poll_iocb poll;
680 struct io_poll_remove poll_remove;
681 struct io_accept accept;
683 struct io_cancel cancel;
684 struct io_timeout timeout;
685 struct io_timeout_rem timeout_rem;
686 struct io_connect connect;
687 struct io_sr_msg sr_msg;
689 struct io_close close;
690 struct io_files_update files_update;
691 struct io_fadvise fadvise;
692 struct io_madvise madvise;
693 struct io_epoll epoll;
694 struct io_splice splice;
695 struct io_provide_buf pbuf;
696 struct io_statx statx;
697 struct io_shutdown shutdown;
698 struct io_rename rename;
699 struct io_unlink unlink;
700 /* use only after cleaning per-op data, see io_clean_op() */
701 struct io_completion compl;
704 /* opcode allocated if it needs to store data for async defer */
707 /* polled IO has completed */
713 struct io_ring_ctx *ctx;
716 struct task_struct *task;
719 struct io_kiocb *link;
720 struct percpu_ref *fixed_file_refs;
723 * 1. used with ctx->iopoll_list with reads/writes
724 * 2. to track reqs with ->files (see io_op_def::file_table)
726 struct list_head inflight_entry;
727 struct callback_head task_work;
728 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
729 struct hlist_node hash_node;
730 struct async_poll *apoll;
731 struct io_wq_work work;
734 struct io_defer_entry {
735 struct list_head list;
736 struct io_kiocb *req;
740 #define IO_IOPOLL_BATCH 8
742 struct io_comp_state {
744 struct list_head list;
745 struct io_ring_ctx *ctx;
748 struct io_submit_state {
749 struct blk_plug plug;
752 * io_kiocb alloc cache
754 void *reqs[IO_IOPOLL_BATCH];
755 unsigned int free_reqs;
760 * Batch completion logic
762 struct io_comp_state comp;
765 * File reference cache
769 unsigned int file_refs;
770 unsigned int ios_left;
774 /* needs req->file assigned */
775 unsigned needs_file : 1;
776 /* don't fail if file grab fails */
777 unsigned needs_file_no_error : 1;
778 /* hash wq insertion if file is a regular file */
779 unsigned hash_reg_file : 1;
780 /* unbound wq insertion if file is a non-regular file */
781 unsigned unbound_nonreg_file : 1;
782 /* opcode is not supported by this kernel */
783 unsigned not_supported : 1;
784 /* set if opcode supports polled "wait" */
786 unsigned pollout : 1;
787 /* op supports buffer selection */
788 unsigned buffer_select : 1;
789 /* must always have async data allocated */
790 unsigned needs_async_data : 1;
791 /* should block plug */
793 /* size of async data needed, if any */
794 unsigned short async_size;
798 static const struct io_op_def io_op_defs[] = {
799 [IORING_OP_NOP] = {},
800 [IORING_OP_READV] = {
802 .unbound_nonreg_file = 1,
805 .needs_async_data = 1,
807 .async_size = sizeof(struct io_async_rw),
808 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
810 [IORING_OP_WRITEV] = {
813 .unbound_nonreg_file = 1,
815 .needs_async_data = 1,
817 .async_size = sizeof(struct io_async_rw),
818 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
821 [IORING_OP_FSYNC] = {
823 .work_flags = IO_WQ_WORK_BLKCG,
825 [IORING_OP_READ_FIXED] = {
827 .unbound_nonreg_file = 1,
830 .async_size = sizeof(struct io_async_rw),
831 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
833 [IORING_OP_WRITE_FIXED] = {
836 .unbound_nonreg_file = 1,
839 .async_size = sizeof(struct io_async_rw),
840 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE |
843 [IORING_OP_POLL_ADD] = {
845 .unbound_nonreg_file = 1,
847 [IORING_OP_POLL_REMOVE] = {},
848 [IORING_OP_SYNC_FILE_RANGE] = {
850 .work_flags = IO_WQ_WORK_BLKCG,
852 [IORING_OP_SENDMSG] = {
854 .unbound_nonreg_file = 1,
856 .needs_async_data = 1,
857 .async_size = sizeof(struct io_async_msghdr),
858 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
860 [IORING_OP_RECVMSG] = {
862 .unbound_nonreg_file = 1,
865 .needs_async_data = 1,
866 .async_size = sizeof(struct io_async_msghdr),
867 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
869 [IORING_OP_TIMEOUT] = {
870 .needs_async_data = 1,
871 .async_size = sizeof(struct io_timeout_data),
872 .work_flags = IO_WQ_WORK_MM,
874 [IORING_OP_TIMEOUT_REMOVE] = {
875 /* used by timeout updates' prep() */
876 .work_flags = IO_WQ_WORK_MM,
878 [IORING_OP_ACCEPT] = {
880 .unbound_nonreg_file = 1,
882 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES,
884 [IORING_OP_ASYNC_CANCEL] = {},
885 [IORING_OP_LINK_TIMEOUT] = {
886 .needs_async_data = 1,
887 .async_size = sizeof(struct io_timeout_data),
888 .work_flags = IO_WQ_WORK_MM,
890 [IORING_OP_CONNECT] = {
892 .unbound_nonreg_file = 1,
894 .needs_async_data = 1,
895 .async_size = sizeof(struct io_async_connect),
896 .work_flags = IO_WQ_WORK_MM,
898 [IORING_OP_FALLOCATE] = {
900 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE,
902 [IORING_OP_OPENAT] = {
903 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG |
904 IO_WQ_WORK_FS | IO_WQ_WORK_MM,
906 [IORING_OP_CLOSE] = {
908 .needs_file_no_error = 1,
909 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG,
911 [IORING_OP_FILES_UPDATE] = {
912 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM,
914 [IORING_OP_STATX] = {
915 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM |
916 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
920 .unbound_nonreg_file = 1,
924 .async_size = sizeof(struct io_async_rw),
925 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
927 [IORING_OP_WRITE] = {
929 .unbound_nonreg_file = 1,
932 .async_size = sizeof(struct io_async_rw),
933 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
936 [IORING_OP_FADVISE] = {
938 .work_flags = IO_WQ_WORK_BLKCG,
940 [IORING_OP_MADVISE] = {
941 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
945 .unbound_nonreg_file = 1,
947 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
951 .unbound_nonreg_file = 1,
954 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
956 [IORING_OP_OPENAT2] = {
957 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_FS |
958 IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
960 [IORING_OP_EPOLL_CTL] = {
961 .unbound_nonreg_file = 1,
962 .work_flags = IO_WQ_WORK_FILES,
964 [IORING_OP_SPLICE] = {
967 .unbound_nonreg_file = 1,
968 .work_flags = IO_WQ_WORK_BLKCG,
970 [IORING_OP_PROVIDE_BUFFERS] = {},
971 [IORING_OP_REMOVE_BUFFERS] = {},
975 .unbound_nonreg_file = 1,
977 [IORING_OP_SHUTDOWN] = {
980 [IORING_OP_RENAMEAT] = {
981 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
982 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
984 [IORING_OP_UNLINKAT] = {
985 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
986 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
990 enum io_mem_account {
995 static void destroy_fixed_file_ref_node(struct fixed_file_ref_node *ref_node);
996 static struct fixed_file_ref_node *alloc_fixed_file_ref_node(
997 struct io_ring_ctx *ctx);
999 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
1000 struct io_comp_state *cs);
1001 static void io_cqring_fill_event(struct io_kiocb *req, long res);
1002 static void io_put_req(struct io_kiocb *req);
1003 static void io_put_req_deferred(struct io_kiocb *req, int nr);
1004 static void io_double_put_req(struct io_kiocb *req);
1005 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
1006 static void __io_queue_linked_timeout(struct io_kiocb *req);
1007 static void io_queue_linked_timeout(struct io_kiocb *req);
1008 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
1009 struct io_uring_files_update *ip,
1011 static void __io_clean_op(struct io_kiocb *req);
1012 static struct file *io_file_get(struct io_submit_state *state,
1013 struct io_kiocb *req, int fd, bool fixed);
1014 static void __io_queue_sqe(struct io_kiocb *req, struct io_comp_state *cs);
1015 static void io_file_put_work(struct work_struct *work);
1017 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
1018 struct iovec **iovec, struct iov_iter *iter,
1020 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
1021 const struct iovec *fast_iov,
1022 struct iov_iter *iter, bool force);
1024 static struct kmem_cache *req_cachep;
1026 static const struct file_operations io_uring_fops;
1028 struct sock *io_uring_get_socket(struct file *file)
1030 #if defined(CONFIG_UNIX)
1031 if (file->f_op == &io_uring_fops) {
1032 struct io_ring_ctx *ctx = file->private_data;
1034 return ctx->ring_sock->sk;
1039 EXPORT_SYMBOL(io_uring_get_socket);
1041 #define io_for_each_link(pos, head) \
1042 for (pos = (head); pos; pos = pos->link)
1044 static inline void io_clean_op(struct io_kiocb *req)
1046 if (req->flags & (REQ_F_NEED_CLEANUP | REQ_F_BUFFER_SELECTED |
1051 static inline void io_set_resource_node(struct io_kiocb *req)
1053 struct io_ring_ctx *ctx = req->ctx;
1055 if (!req->fixed_file_refs) {
1056 req->fixed_file_refs = &ctx->file_data->node->refs;
1057 percpu_ref_get(req->fixed_file_refs);
1061 static bool io_match_task(struct io_kiocb *head,
1062 struct task_struct *task,
1063 struct files_struct *files)
1065 struct io_kiocb *req;
1067 if (task && head->task != task)
1072 io_for_each_link(req, head) {
1073 if ((req->flags & REQ_F_WORK_INITIALIZED) &&
1074 (req->work.flags & IO_WQ_WORK_FILES) &&
1075 req->work.identity->files == files)
1081 static void io_sq_thread_drop_mm_files(void)
1083 struct files_struct *files = current->files;
1084 struct mm_struct *mm = current->mm;
1087 kthread_unuse_mm(mm);
1092 struct nsproxy *nsproxy = current->nsproxy;
1095 current->files = NULL;
1096 current->nsproxy = NULL;
1097 task_unlock(current);
1098 put_files_struct(files);
1099 put_nsproxy(nsproxy);
1103 static int __io_sq_thread_acquire_files(struct io_ring_ctx *ctx)
1105 if (!current->files) {
1106 struct files_struct *files;
1107 struct nsproxy *nsproxy;
1109 task_lock(ctx->sqo_task);
1110 files = ctx->sqo_task->files;
1112 task_unlock(ctx->sqo_task);
1115 atomic_inc(&files->count);
1116 get_nsproxy(ctx->sqo_task->nsproxy);
1117 nsproxy = ctx->sqo_task->nsproxy;
1118 task_unlock(ctx->sqo_task);
1121 current->files = files;
1122 current->nsproxy = nsproxy;
1123 task_unlock(current);
1128 static int __io_sq_thread_acquire_mm(struct io_ring_ctx *ctx)
1130 struct mm_struct *mm;
1135 /* Should never happen */
1136 if (unlikely(!(ctx->flags & IORING_SETUP_SQPOLL)))
1139 task_lock(ctx->sqo_task);
1140 mm = ctx->sqo_task->mm;
1141 if (unlikely(!mm || !mmget_not_zero(mm)))
1143 task_unlock(ctx->sqo_task);
1153 static int io_sq_thread_acquire_mm_files(struct io_ring_ctx *ctx,
1154 struct io_kiocb *req)
1156 const struct io_op_def *def = &io_op_defs[req->opcode];
1159 if (def->work_flags & IO_WQ_WORK_MM) {
1160 ret = __io_sq_thread_acquire_mm(ctx);
1165 if (def->needs_file || (def->work_flags & IO_WQ_WORK_FILES)) {
1166 ret = __io_sq_thread_acquire_files(ctx);
1174 static void io_sq_thread_associate_blkcg(struct io_ring_ctx *ctx,
1175 struct cgroup_subsys_state **cur_css)
1178 #ifdef CONFIG_BLK_CGROUP
1179 /* puts the old one when swapping */
1180 if (*cur_css != ctx->sqo_blkcg_css) {
1181 kthread_associate_blkcg(ctx->sqo_blkcg_css);
1182 *cur_css = ctx->sqo_blkcg_css;
1187 static void io_sq_thread_unassociate_blkcg(void)
1189 #ifdef CONFIG_BLK_CGROUP
1190 kthread_associate_blkcg(NULL);
1194 static inline void req_set_fail_links(struct io_kiocb *req)
1196 if ((req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) == REQ_F_LINK)
1197 req->flags |= REQ_F_FAIL_LINK;
1201 * None of these are dereferenced, they are simply used to check if any of
1202 * them have changed. If we're under current and check they are still the
1203 * same, we're fine to grab references to them for actual out-of-line use.
1205 static void io_init_identity(struct io_identity *id)
1207 id->files = current->files;
1208 id->mm = current->mm;
1209 #ifdef CONFIG_BLK_CGROUP
1211 id->blkcg_css = blkcg_css();
1214 id->creds = current_cred();
1215 id->nsproxy = current->nsproxy;
1216 id->fs = current->fs;
1217 id->fsize = rlimit(RLIMIT_FSIZE);
1219 id->loginuid = current->loginuid;
1220 id->sessionid = current->sessionid;
1222 refcount_set(&id->count, 1);
1225 static inline void __io_req_init_async(struct io_kiocb *req)
1227 memset(&req->work, 0, sizeof(req->work));
1228 req->flags |= REQ_F_WORK_INITIALIZED;
1232 * Note: must call io_req_init_async() for the first time you
1233 * touch any members of io_wq_work.
1235 static inline void io_req_init_async(struct io_kiocb *req)
1237 struct io_uring_task *tctx = current->io_uring;
1239 if (req->flags & REQ_F_WORK_INITIALIZED)
1242 __io_req_init_async(req);
1244 /* Grab a ref if this isn't our static identity */
1245 req->work.identity = tctx->identity;
1246 if (tctx->identity != &tctx->__identity)
1247 refcount_inc(&req->work.identity->count);
1250 static inline bool io_async_submit(struct io_ring_ctx *ctx)
1252 return ctx->flags & IORING_SETUP_SQPOLL;
1255 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1257 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1259 complete(&ctx->ref_comp);
1262 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1264 return !req->timeout.off;
1267 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1269 struct io_ring_ctx *ctx;
1272 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1276 ctx->fallback_req = kmem_cache_alloc(req_cachep, GFP_KERNEL);
1277 if (!ctx->fallback_req)
1281 * Use 5 bits less than the max cq entries, that should give us around
1282 * 32 entries per hash list if totally full and uniformly spread.
1284 hash_bits = ilog2(p->cq_entries);
1288 ctx->cancel_hash_bits = hash_bits;
1289 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1291 if (!ctx->cancel_hash)
1293 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1295 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1296 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1299 ctx->flags = p->flags;
1300 init_waitqueue_head(&ctx->sqo_sq_wait);
1301 INIT_LIST_HEAD(&ctx->sqd_list);
1302 init_waitqueue_head(&ctx->cq_wait);
1303 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1304 init_completion(&ctx->ref_comp);
1305 init_completion(&ctx->sq_thread_comp);
1306 idr_init(&ctx->io_buffer_idr);
1307 idr_init(&ctx->personality_idr);
1308 mutex_init(&ctx->uring_lock);
1309 init_waitqueue_head(&ctx->wait);
1310 spin_lock_init(&ctx->completion_lock);
1311 INIT_LIST_HEAD(&ctx->iopoll_list);
1312 INIT_LIST_HEAD(&ctx->defer_list);
1313 INIT_LIST_HEAD(&ctx->timeout_list);
1314 spin_lock_init(&ctx->inflight_lock);
1315 INIT_LIST_HEAD(&ctx->inflight_list);
1316 INIT_DELAYED_WORK(&ctx->file_put_work, io_file_put_work);
1317 init_llist_head(&ctx->file_put_llist);
1320 if (ctx->fallback_req)
1321 kmem_cache_free(req_cachep, ctx->fallback_req);
1322 kfree(ctx->cancel_hash);
1327 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1329 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1330 struct io_ring_ctx *ctx = req->ctx;
1332 return seq != ctx->cached_cq_tail
1333 + READ_ONCE(ctx->cached_cq_overflow);
1339 static void __io_commit_cqring(struct io_ring_ctx *ctx)
1341 struct io_rings *rings = ctx->rings;
1343 /* order cqe stores with ring update */
1344 smp_store_release(&rings->cq.tail, ctx->cached_cq_tail);
1346 if (wq_has_sleeper(&ctx->cq_wait)) {
1347 wake_up_interruptible(&ctx->cq_wait);
1348 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1352 static void io_put_identity(struct io_uring_task *tctx, struct io_kiocb *req)
1354 if (req->work.identity == &tctx->__identity)
1356 if (refcount_dec_and_test(&req->work.identity->count))
1357 kfree(req->work.identity);
1360 static void io_req_clean_work(struct io_kiocb *req)
1362 if (!(req->flags & REQ_F_WORK_INITIALIZED))
1365 req->flags &= ~REQ_F_WORK_INITIALIZED;
1367 if (req->work.flags & IO_WQ_WORK_MM) {
1368 mmdrop(req->work.identity->mm);
1369 req->work.flags &= ~IO_WQ_WORK_MM;
1371 #ifdef CONFIG_BLK_CGROUP
1372 if (req->work.flags & IO_WQ_WORK_BLKCG) {
1373 css_put(req->work.identity->blkcg_css);
1374 req->work.flags &= ~IO_WQ_WORK_BLKCG;
1377 if (req->work.flags & IO_WQ_WORK_CREDS) {
1378 put_cred(req->work.identity->creds);
1379 req->work.flags &= ~IO_WQ_WORK_CREDS;
1381 if (req->work.flags & IO_WQ_WORK_FS) {
1382 struct fs_struct *fs = req->work.identity->fs;
1384 spin_lock(&req->work.identity->fs->lock);
1387 spin_unlock(&req->work.identity->fs->lock);
1390 req->work.flags &= ~IO_WQ_WORK_FS;
1393 io_put_identity(req->task->io_uring, req);
1397 * Create a private copy of io_identity, since some fields don't match
1398 * the current context.
1400 static bool io_identity_cow(struct io_kiocb *req)
1402 struct io_uring_task *tctx = current->io_uring;
1403 const struct cred *creds = NULL;
1404 struct io_identity *id;
1406 if (req->work.flags & IO_WQ_WORK_CREDS)
1407 creds = req->work.identity->creds;
1409 id = kmemdup(req->work.identity, sizeof(*id), GFP_KERNEL);
1410 if (unlikely(!id)) {
1411 req->work.flags |= IO_WQ_WORK_CANCEL;
1416 * We can safely just re-init the creds we copied Either the field
1417 * matches the current one, or we haven't grabbed it yet. The only
1418 * exception is ->creds, through registered personalities, so handle
1419 * that one separately.
1421 io_init_identity(id);
1425 /* add one for this request */
1426 refcount_inc(&id->count);
1428 /* drop tctx and req identity references, if needed */
1429 if (tctx->identity != &tctx->__identity &&
1430 refcount_dec_and_test(&tctx->identity->count))
1431 kfree(tctx->identity);
1432 if (req->work.identity != &tctx->__identity &&
1433 refcount_dec_and_test(&req->work.identity->count))
1434 kfree(req->work.identity);
1436 req->work.identity = id;
1437 tctx->identity = id;
1441 static bool io_grab_identity(struct io_kiocb *req)
1443 const struct io_op_def *def = &io_op_defs[req->opcode];
1444 struct io_identity *id = req->work.identity;
1445 struct io_ring_ctx *ctx = req->ctx;
1447 if (def->work_flags & IO_WQ_WORK_FSIZE) {
1448 if (id->fsize != rlimit(RLIMIT_FSIZE))
1450 req->work.flags |= IO_WQ_WORK_FSIZE;
1452 #ifdef CONFIG_BLK_CGROUP
1453 if (!(req->work.flags & IO_WQ_WORK_BLKCG) &&
1454 (def->work_flags & IO_WQ_WORK_BLKCG)) {
1456 if (id->blkcg_css != blkcg_css()) {
1461 * This should be rare, either the cgroup is dying or the task
1462 * is moving cgroups. Just punt to root for the handful of ios.
1464 if (css_tryget_online(id->blkcg_css))
1465 req->work.flags |= IO_WQ_WORK_BLKCG;
1469 if (!(req->work.flags & IO_WQ_WORK_CREDS)) {
1470 if (id->creds != current_cred())
1472 get_cred(id->creds);
1473 req->work.flags |= IO_WQ_WORK_CREDS;
1476 if (!uid_eq(current->loginuid, id->loginuid) ||
1477 current->sessionid != id->sessionid)
1480 if (!(req->work.flags & IO_WQ_WORK_FS) &&
1481 (def->work_flags & IO_WQ_WORK_FS)) {
1482 if (current->fs != id->fs)
1484 spin_lock(&id->fs->lock);
1485 if (!id->fs->in_exec) {
1487 req->work.flags |= IO_WQ_WORK_FS;
1489 req->work.flags |= IO_WQ_WORK_CANCEL;
1491 spin_unlock(¤t->fs->lock);
1493 if (!(req->work.flags & IO_WQ_WORK_FILES) &&
1494 (def->work_flags & IO_WQ_WORK_FILES) &&
1495 !(req->flags & REQ_F_NO_FILE_TABLE)) {
1496 if (id->files != current->files ||
1497 id->nsproxy != current->nsproxy)
1499 atomic_inc(&id->files->count);
1500 get_nsproxy(id->nsproxy);
1501 req->flags |= REQ_F_INFLIGHT;
1503 spin_lock_irq(&ctx->inflight_lock);
1504 list_add(&req->inflight_entry, &ctx->inflight_list);
1505 spin_unlock_irq(&ctx->inflight_lock);
1506 req->work.flags |= IO_WQ_WORK_FILES;
1508 if (!(req->work.flags & IO_WQ_WORK_MM) &&
1509 (def->work_flags & IO_WQ_WORK_MM)) {
1510 if (id->mm != current->mm)
1513 req->work.flags |= IO_WQ_WORK_MM;
1519 static void io_prep_async_work(struct io_kiocb *req)
1521 const struct io_op_def *def = &io_op_defs[req->opcode];
1522 struct io_ring_ctx *ctx = req->ctx;
1523 struct io_identity *id;
1525 io_req_init_async(req);
1526 id = req->work.identity;
1528 if (req->flags & REQ_F_FORCE_ASYNC)
1529 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1531 if (req->flags & REQ_F_ISREG) {
1532 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1533 io_wq_hash_work(&req->work, file_inode(req->file));
1535 if (def->unbound_nonreg_file)
1536 req->work.flags |= IO_WQ_WORK_UNBOUND;
1539 /* if we fail grabbing identity, we must COW, regrab, and retry */
1540 if (io_grab_identity(req))
1543 if (!io_identity_cow(req))
1546 /* can't fail at this point */
1547 if (!io_grab_identity(req))
1551 static void io_prep_async_link(struct io_kiocb *req)
1553 struct io_kiocb *cur;
1555 io_for_each_link(cur, req)
1556 io_prep_async_work(cur);
1559 static struct io_kiocb *__io_queue_async_work(struct io_kiocb *req)
1561 struct io_ring_ctx *ctx = req->ctx;
1562 struct io_kiocb *link = io_prep_linked_timeout(req);
1564 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1565 &req->work, req->flags);
1566 io_wq_enqueue(ctx->io_wq, &req->work);
1570 static void io_queue_async_work(struct io_kiocb *req)
1572 struct io_kiocb *link;
1574 /* init ->work of the whole link before punting */
1575 io_prep_async_link(req);
1576 link = __io_queue_async_work(req);
1579 io_queue_linked_timeout(link);
1582 static void io_kill_timeout(struct io_kiocb *req)
1584 struct io_timeout_data *io = req->async_data;
1587 ret = hrtimer_try_to_cancel(&io->timer);
1589 atomic_set(&req->ctx->cq_timeouts,
1590 atomic_read(&req->ctx->cq_timeouts) + 1);
1591 list_del_init(&req->timeout.list);
1592 io_cqring_fill_event(req, 0);
1593 io_put_req_deferred(req, 1);
1598 * Returns true if we found and killed one or more timeouts
1600 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
1601 struct files_struct *files)
1603 struct io_kiocb *req, *tmp;
1606 spin_lock_irq(&ctx->completion_lock);
1607 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
1608 if (io_match_task(req, tsk, files)) {
1609 io_kill_timeout(req);
1613 spin_unlock_irq(&ctx->completion_lock);
1614 return canceled != 0;
1617 static void __io_queue_deferred(struct io_ring_ctx *ctx)
1620 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1621 struct io_defer_entry, list);
1622 struct io_kiocb *link;
1624 if (req_need_defer(de->req, de->seq))
1626 list_del_init(&de->list);
1627 /* punt-init is done before queueing for defer */
1628 link = __io_queue_async_work(de->req);
1630 __io_queue_linked_timeout(link);
1631 /* drop submission reference */
1632 io_put_req_deferred(link, 1);
1635 } while (!list_empty(&ctx->defer_list));
1638 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1640 while (!list_empty(&ctx->timeout_list)) {
1641 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1642 struct io_kiocb, timeout.list);
1644 if (io_is_timeout_noseq(req))
1646 if (req->timeout.target_seq != ctx->cached_cq_tail
1647 - atomic_read(&ctx->cq_timeouts))
1650 list_del_init(&req->timeout.list);
1651 io_kill_timeout(req);
1655 static void io_commit_cqring(struct io_ring_ctx *ctx)
1657 io_flush_timeouts(ctx);
1658 __io_commit_cqring(ctx);
1660 if (unlikely(!list_empty(&ctx->defer_list)))
1661 __io_queue_deferred(ctx);
1664 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1666 struct io_rings *r = ctx->rings;
1668 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == r->sq_ring_entries;
1671 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
1673 struct io_rings *rings = ctx->rings;
1676 tail = ctx->cached_cq_tail;
1678 * writes to the cq entry need to come after reading head; the
1679 * control dependency is enough as we're using WRITE_ONCE to
1682 if (tail - READ_ONCE(rings->cq.head) == rings->cq_ring_entries)
1685 ctx->cached_cq_tail++;
1686 return &rings->cqes[tail & ctx->cq_mask];
1689 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1693 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1695 if (!ctx->eventfd_async)
1697 return io_wq_current_is_worker();
1700 static inline unsigned __io_cqring_events(struct io_ring_ctx *ctx)
1702 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1705 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1707 if (waitqueue_active(&ctx->wait))
1708 wake_up(&ctx->wait);
1709 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1710 wake_up(&ctx->sq_data->wait);
1711 if (io_should_trigger_evfd(ctx))
1712 eventfd_signal(ctx->cq_ev_fd, 1);
1715 /* Returns true if there are no backlogged entries after the flush */
1716 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1717 struct task_struct *tsk,
1718 struct files_struct *files)
1720 struct io_rings *rings = ctx->rings;
1721 struct io_kiocb *req, *tmp;
1722 struct io_uring_cqe *cqe;
1723 unsigned long flags;
1727 if (!force && __io_cqring_events(ctx) == rings->cq_ring_entries)
1730 spin_lock_irqsave(&ctx->completion_lock, flags);
1731 list_for_each_entry_safe(req, tmp, &ctx->cq_overflow_list, compl.list) {
1732 if (!io_match_task(req, tsk, files))
1735 cqe = io_get_cqring(ctx);
1739 list_move(&req->compl.list, &list);
1741 WRITE_ONCE(cqe->user_data, req->user_data);
1742 WRITE_ONCE(cqe->res, req->result);
1743 WRITE_ONCE(cqe->flags, req->compl.cflags);
1745 ctx->cached_cq_overflow++;
1746 WRITE_ONCE(ctx->rings->cq_overflow,
1747 ctx->cached_cq_overflow);
1751 all_flushed = list_empty(&ctx->cq_overflow_list);
1753 clear_bit(0, &ctx->sq_check_overflow);
1754 clear_bit(0, &ctx->cq_check_overflow);
1755 ctx->rings->sq_flags &= ~IORING_SQ_CQ_OVERFLOW;
1758 io_commit_cqring(ctx);
1759 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1760 io_cqring_ev_posted(ctx);
1762 while (!list_empty(&list)) {
1763 req = list_first_entry(&list, struct io_kiocb, compl.list);
1764 list_del(&req->compl.list);
1771 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1772 struct task_struct *tsk,
1773 struct files_struct *files)
1775 if (test_bit(0, &ctx->cq_check_overflow)) {
1776 /* iopoll syncs against uring_lock, not completion_lock */
1777 if (ctx->flags & IORING_SETUP_IOPOLL)
1778 mutex_lock(&ctx->uring_lock);
1779 __io_cqring_overflow_flush(ctx, force, tsk, files);
1780 if (ctx->flags & IORING_SETUP_IOPOLL)
1781 mutex_unlock(&ctx->uring_lock);
1785 static void __io_cqring_fill_event(struct io_kiocb *req, long res, long cflags)
1787 struct io_ring_ctx *ctx = req->ctx;
1788 struct io_uring_cqe *cqe;
1790 trace_io_uring_complete(ctx, req->user_data, res);
1793 * If we can't get a cq entry, userspace overflowed the
1794 * submission (by quite a lot). Increment the overflow count in
1797 cqe = io_get_cqring(ctx);
1799 WRITE_ONCE(cqe->user_data, req->user_data);
1800 WRITE_ONCE(cqe->res, res);
1801 WRITE_ONCE(cqe->flags, cflags);
1802 } else if (ctx->cq_overflow_flushed ||
1803 atomic_read(&req->task->io_uring->in_idle)) {
1805 * If we're in ring overflow flush mode, or in task cancel mode,
1806 * then we cannot store the request for later flushing, we need
1807 * to drop it on the floor.
1809 ctx->cached_cq_overflow++;
1810 WRITE_ONCE(ctx->rings->cq_overflow, ctx->cached_cq_overflow);
1812 if (list_empty(&ctx->cq_overflow_list)) {
1813 set_bit(0, &ctx->sq_check_overflow);
1814 set_bit(0, &ctx->cq_check_overflow);
1815 ctx->rings->sq_flags |= IORING_SQ_CQ_OVERFLOW;
1819 req->compl.cflags = cflags;
1820 refcount_inc(&req->refs);
1821 list_add_tail(&req->compl.list, &ctx->cq_overflow_list);
1825 static void io_cqring_fill_event(struct io_kiocb *req, long res)
1827 __io_cqring_fill_event(req, res, 0);
1830 static void io_cqring_add_event(struct io_kiocb *req, long res, long cflags)
1832 struct io_ring_ctx *ctx = req->ctx;
1833 unsigned long flags;
1835 spin_lock_irqsave(&ctx->completion_lock, flags);
1836 __io_cqring_fill_event(req, res, cflags);
1837 io_commit_cqring(ctx);
1838 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1840 io_cqring_ev_posted(ctx);
1843 static void io_submit_flush_completions(struct io_comp_state *cs)
1845 struct io_ring_ctx *ctx = cs->ctx;
1847 spin_lock_irq(&ctx->completion_lock);
1848 while (!list_empty(&cs->list)) {
1849 struct io_kiocb *req;
1851 req = list_first_entry(&cs->list, struct io_kiocb, compl.list);
1852 list_del(&req->compl.list);
1853 __io_cqring_fill_event(req, req->result, req->compl.cflags);
1856 * io_free_req() doesn't care about completion_lock unless one
1857 * of these flags is set. REQ_F_WORK_INITIALIZED is in the list
1858 * because of a potential deadlock with req->work.fs->lock
1860 if (req->flags & (REQ_F_FAIL_LINK|REQ_F_LINK_TIMEOUT
1861 |REQ_F_WORK_INITIALIZED)) {
1862 spin_unlock_irq(&ctx->completion_lock);
1864 spin_lock_irq(&ctx->completion_lock);
1869 io_commit_cqring(ctx);
1870 spin_unlock_irq(&ctx->completion_lock);
1872 io_cqring_ev_posted(ctx);
1876 static void __io_req_complete(struct io_kiocb *req, long res, unsigned cflags,
1877 struct io_comp_state *cs)
1880 io_cqring_add_event(req, res, cflags);
1885 req->compl.cflags = cflags;
1886 list_add_tail(&req->compl.list, &cs->list);
1888 io_submit_flush_completions(cs);
1892 static void io_req_complete(struct io_kiocb *req, long res)
1894 __io_req_complete(req, res, 0, NULL);
1897 static inline bool io_is_fallback_req(struct io_kiocb *req)
1899 return req == (struct io_kiocb *)
1900 ((unsigned long) req->ctx->fallback_req & ~1UL);
1903 static struct io_kiocb *io_get_fallback_req(struct io_ring_ctx *ctx)
1905 struct io_kiocb *req;
1907 req = ctx->fallback_req;
1908 if (!test_and_set_bit_lock(0, (unsigned long *) &ctx->fallback_req))
1914 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx,
1915 struct io_submit_state *state)
1917 if (!state->free_reqs) {
1918 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1922 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
1923 ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs);
1926 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1927 * retry single alloc to be on the safe side.
1929 if (unlikely(ret <= 0)) {
1930 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1931 if (!state->reqs[0])
1935 state->free_reqs = ret;
1939 return state->reqs[state->free_reqs];
1941 return io_get_fallback_req(ctx);
1944 static inline void io_put_file(struct io_kiocb *req, struct file *file,
1951 static void io_dismantle_req(struct io_kiocb *req)
1955 if (req->async_data)
1956 kfree(req->async_data);
1958 io_put_file(req, req->file, (req->flags & REQ_F_FIXED_FILE));
1959 if (req->fixed_file_refs)
1960 percpu_ref_put(req->fixed_file_refs);
1961 io_req_clean_work(req);
1964 static void __io_free_req(struct io_kiocb *req)
1966 struct io_uring_task *tctx = req->task->io_uring;
1967 struct io_ring_ctx *ctx = req->ctx;
1969 io_dismantle_req(req);
1971 percpu_counter_dec(&tctx->inflight);
1972 if (atomic_read(&tctx->in_idle))
1973 wake_up(&tctx->wait);
1974 put_task_struct(req->task);
1976 if (likely(!io_is_fallback_req(req)))
1977 kmem_cache_free(req_cachep, req);
1979 clear_bit_unlock(0, (unsigned long *) &ctx->fallback_req);
1980 percpu_ref_put(&ctx->refs);
1983 static inline void io_remove_next_linked(struct io_kiocb *req)
1985 struct io_kiocb *nxt = req->link;
1987 req->link = nxt->link;
1991 static void io_kill_linked_timeout(struct io_kiocb *req)
1993 struct io_ring_ctx *ctx = req->ctx;
1994 struct io_kiocb *link;
1995 bool cancelled = false;
1996 unsigned long flags;
1998 spin_lock_irqsave(&ctx->completion_lock, flags);
2002 * Can happen if a linked timeout fired and link had been like
2003 * req -> link t-out -> link t-out [-> ...]
2005 if (link && (link->flags & REQ_F_LTIMEOUT_ACTIVE)) {
2006 struct io_timeout_data *io = link->async_data;
2009 io_remove_next_linked(req);
2010 link->timeout.head = NULL;
2011 ret = hrtimer_try_to_cancel(&io->timer);
2013 io_cqring_fill_event(link, -ECANCELED);
2014 io_commit_cqring(ctx);
2018 req->flags &= ~REQ_F_LINK_TIMEOUT;
2019 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2022 io_cqring_ev_posted(ctx);
2028 static void io_fail_links(struct io_kiocb *req)
2030 struct io_kiocb *link, *nxt;
2031 struct io_ring_ctx *ctx = req->ctx;
2032 unsigned long flags;
2034 spin_lock_irqsave(&ctx->completion_lock, flags);
2042 trace_io_uring_fail_link(req, link);
2043 io_cqring_fill_event(link, -ECANCELED);
2046 * It's ok to free under spinlock as they're not linked anymore,
2047 * but avoid REQ_F_WORK_INITIALIZED because it may deadlock on
2050 if (link->flags & REQ_F_WORK_INITIALIZED)
2051 io_put_req_deferred(link, 2);
2053 io_double_put_req(link);
2056 io_commit_cqring(ctx);
2057 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2059 io_cqring_ev_posted(ctx);
2062 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2064 if (req->flags & REQ_F_LINK_TIMEOUT)
2065 io_kill_linked_timeout(req);
2068 * If LINK is set, we have dependent requests in this chain. If we
2069 * didn't fail this request, queue the first one up, moving any other
2070 * dependencies to the next request. In case of failure, fail the rest
2073 if (likely(!(req->flags & REQ_F_FAIL_LINK))) {
2074 struct io_kiocb *nxt = req->link;
2083 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2085 if (likely(!(req->link) && !(req->flags & REQ_F_LINK_TIMEOUT)))
2087 return __io_req_find_next(req);
2090 static int io_req_task_work_add(struct io_kiocb *req)
2092 struct task_struct *tsk = req->task;
2093 struct io_ring_ctx *ctx = req->ctx;
2094 enum task_work_notify_mode notify;
2097 if (tsk->flags & PF_EXITING)
2101 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2102 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2103 * processing task_work. There's no reliable way to tell if TWA_RESUME
2107 if (!(ctx->flags & IORING_SETUP_SQPOLL))
2108 notify = TWA_SIGNAL;
2110 ret = task_work_add(tsk, &req->task_work, notify);
2112 wake_up_process(tsk);
2117 static void __io_req_task_cancel(struct io_kiocb *req, int error)
2119 struct io_ring_ctx *ctx = req->ctx;
2121 spin_lock_irq(&ctx->completion_lock);
2122 io_cqring_fill_event(req, error);
2123 io_commit_cqring(ctx);
2124 spin_unlock_irq(&ctx->completion_lock);
2126 io_cqring_ev_posted(ctx);
2127 req_set_fail_links(req);
2128 io_double_put_req(req);
2131 static void io_req_task_cancel(struct callback_head *cb)
2133 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2134 struct io_ring_ctx *ctx = req->ctx;
2136 __io_req_task_cancel(req, -ECANCELED);
2137 percpu_ref_put(&ctx->refs);
2140 static void __io_req_task_submit(struct io_kiocb *req)
2142 struct io_ring_ctx *ctx = req->ctx;
2145 fail = __io_sq_thread_acquire_mm(ctx) ||
2146 __io_sq_thread_acquire_files(ctx);
2147 mutex_lock(&ctx->uring_lock);
2149 __io_queue_sqe(req, NULL);
2151 __io_req_task_cancel(req, -EFAULT);
2152 mutex_unlock(&ctx->uring_lock);
2155 static void io_req_task_submit(struct callback_head *cb)
2157 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2158 struct io_ring_ctx *ctx = req->ctx;
2160 __io_req_task_submit(req);
2161 percpu_ref_put(&ctx->refs);
2164 static void io_req_task_queue(struct io_kiocb *req)
2168 init_task_work(&req->task_work, io_req_task_submit);
2169 percpu_ref_get(&req->ctx->refs);
2171 ret = io_req_task_work_add(req);
2172 if (unlikely(ret)) {
2173 struct task_struct *tsk;
2175 init_task_work(&req->task_work, io_req_task_cancel);
2176 tsk = io_wq_get_task(req->ctx->io_wq);
2177 task_work_add(tsk, &req->task_work, TWA_NONE);
2178 wake_up_process(tsk);
2182 static inline void io_queue_next(struct io_kiocb *req)
2184 struct io_kiocb *nxt = io_req_find_next(req);
2187 io_req_task_queue(nxt);
2190 static void io_free_req(struct io_kiocb *req)
2197 void *reqs[IO_IOPOLL_BATCH];
2200 struct task_struct *task;
2204 static inline void io_init_req_batch(struct req_batch *rb)
2211 static void __io_req_free_batch_flush(struct io_ring_ctx *ctx,
2212 struct req_batch *rb)
2214 kmem_cache_free_bulk(req_cachep, rb->to_free, rb->reqs);
2215 percpu_ref_put_many(&ctx->refs, rb->to_free);
2219 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2220 struct req_batch *rb)
2223 __io_req_free_batch_flush(ctx, rb);
2225 struct io_uring_task *tctx = rb->task->io_uring;
2227 percpu_counter_sub(&tctx->inflight, rb->task_refs);
2228 put_task_struct_many(rb->task, rb->task_refs);
2233 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req)
2235 if (unlikely(io_is_fallback_req(req))) {
2241 if (req->task != rb->task) {
2243 struct io_uring_task *tctx = rb->task->io_uring;
2245 percpu_counter_sub(&tctx->inflight, rb->task_refs);
2246 put_task_struct_many(rb->task, rb->task_refs);
2248 rb->task = req->task;
2253 io_dismantle_req(req);
2254 rb->reqs[rb->to_free++] = req;
2255 if (unlikely(rb->to_free == ARRAY_SIZE(rb->reqs)))
2256 __io_req_free_batch_flush(req->ctx, rb);
2260 * Drop reference to request, return next in chain (if there is one) if this
2261 * was the last reference to this request.
2263 static struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2265 struct io_kiocb *nxt = NULL;
2267 if (refcount_dec_and_test(&req->refs)) {
2268 nxt = io_req_find_next(req);
2274 static void io_put_req(struct io_kiocb *req)
2276 if (refcount_dec_and_test(&req->refs))
2280 static void io_put_req_deferred_cb(struct callback_head *cb)
2282 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2287 static void io_free_req_deferred(struct io_kiocb *req)
2291 init_task_work(&req->task_work, io_put_req_deferred_cb);
2292 ret = io_req_task_work_add(req);
2293 if (unlikely(ret)) {
2294 struct task_struct *tsk;
2296 tsk = io_wq_get_task(req->ctx->io_wq);
2297 task_work_add(tsk, &req->task_work, TWA_NONE);
2298 wake_up_process(tsk);
2302 static inline void io_put_req_deferred(struct io_kiocb *req, int refs)
2304 if (refcount_sub_and_test(refs, &req->refs))
2305 io_free_req_deferred(req);
2308 static struct io_wq_work *io_steal_work(struct io_kiocb *req)
2310 struct io_kiocb *nxt;
2313 * A ref is owned by io-wq in which context we're. So, if that's the
2314 * last one, it's safe to steal next work. False negatives are Ok,
2315 * it just will be re-punted async in io_put_work()
2317 if (refcount_read(&req->refs) != 1)
2320 nxt = io_req_find_next(req);
2321 return nxt ? &nxt->work : NULL;
2324 static void io_double_put_req(struct io_kiocb *req)
2326 /* drop both submit and complete references */
2327 if (refcount_sub_and_test(2, &req->refs))
2331 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2333 /* See comment at the top of this file */
2335 return __io_cqring_events(ctx);
2338 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2340 struct io_rings *rings = ctx->rings;
2342 /* make sure SQ entry isn't read before tail */
2343 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2346 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2348 unsigned int cflags;
2350 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2351 cflags |= IORING_CQE_F_BUFFER;
2352 req->flags &= ~REQ_F_BUFFER_SELECTED;
2357 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2359 struct io_buffer *kbuf;
2361 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2362 return io_put_kbuf(req, kbuf);
2365 static inline bool io_run_task_work(void)
2368 * Not safe to run on exiting task, and the task_work handling will
2369 * not add work to such a task.
2371 if (unlikely(current->flags & PF_EXITING))
2373 if (current->task_works) {
2374 __set_current_state(TASK_RUNNING);
2382 static void io_iopoll_queue(struct list_head *again)
2384 struct io_kiocb *req;
2387 req = list_first_entry(again, struct io_kiocb, inflight_entry);
2388 list_del(&req->inflight_entry);
2389 __io_complete_rw(req, -EAGAIN, 0, NULL);
2390 } while (!list_empty(again));
2394 * Find and free completed poll iocbs
2396 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2397 struct list_head *done)
2399 struct req_batch rb;
2400 struct io_kiocb *req;
2403 /* order with ->result store in io_complete_rw_iopoll() */
2406 io_init_req_batch(&rb);
2407 while (!list_empty(done)) {
2410 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2411 if (READ_ONCE(req->result) == -EAGAIN) {
2413 req->iopoll_completed = 0;
2414 list_move_tail(&req->inflight_entry, &again);
2417 list_del(&req->inflight_entry);
2419 if (req->flags & REQ_F_BUFFER_SELECTED)
2420 cflags = io_put_rw_kbuf(req);
2422 __io_cqring_fill_event(req, req->result, cflags);
2425 if (refcount_dec_and_test(&req->refs))
2426 io_req_free_batch(&rb, req);
2429 io_commit_cqring(ctx);
2430 if (ctx->flags & IORING_SETUP_SQPOLL)
2431 io_cqring_ev_posted(ctx);
2432 io_req_free_batch_finish(ctx, &rb);
2434 if (!list_empty(&again))
2435 io_iopoll_queue(&again);
2438 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2441 struct io_kiocb *req, *tmp;
2447 * Only spin for completions if we don't have multiple devices hanging
2448 * off our complete list, and we're under the requested amount.
2450 spin = !ctx->poll_multi_file && *nr_events < min;
2453 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2454 struct kiocb *kiocb = &req->rw.kiocb;
2457 * Move completed and retryable entries to our local lists.
2458 * If we find a request that requires polling, break out
2459 * and complete those lists first, if we have entries there.
2461 if (READ_ONCE(req->iopoll_completed)) {
2462 list_move_tail(&req->inflight_entry, &done);
2465 if (!list_empty(&done))
2468 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2472 /* iopoll may have completed current req */
2473 if (READ_ONCE(req->iopoll_completed))
2474 list_move_tail(&req->inflight_entry, &done);
2481 if (!list_empty(&done))
2482 io_iopoll_complete(ctx, nr_events, &done);
2488 * Poll for a minimum of 'min' events. Note that if min == 0 we consider that a
2489 * non-spinning poll check - we'll still enter the driver poll loop, but only
2490 * as a non-spinning completion check.
2492 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
2495 while (!list_empty(&ctx->iopoll_list) && !need_resched()) {
2498 ret = io_do_iopoll(ctx, nr_events, min);
2501 if (*nr_events >= min)
2509 * We can't just wait for polled events to come to us, we have to actively
2510 * find and complete them.
2512 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2514 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2517 mutex_lock(&ctx->uring_lock);
2518 while (!list_empty(&ctx->iopoll_list)) {
2519 unsigned int nr_events = 0;
2521 io_do_iopoll(ctx, &nr_events, 0);
2523 /* let it sleep and repeat later if can't complete a request */
2527 * Ensure we allow local-to-the-cpu processing to take place,
2528 * in this case we need to ensure that we reap all events.
2529 * Also let task_work, etc. to progress by releasing the mutex
2531 if (need_resched()) {
2532 mutex_unlock(&ctx->uring_lock);
2534 mutex_lock(&ctx->uring_lock);
2537 mutex_unlock(&ctx->uring_lock);
2540 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2542 unsigned int nr_events = 0;
2543 int iters = 0, ret = 0;
2546 * We disallow the app entering submit/complete with polling, but we
2547 * still need to lock the ring to prevent racing with polled issue
2548 * that got punted to a workqueue.
2550 mutex_lock(&ctx->uring_lock);
2553 * Don't enter poll loop if we already have events pending.
2554 * If we do, we can potentially be spinning for commands that
2555 * already triggered a CQE (eg in error).
2557 if (test_bit(0, &ctx->cq_check_overflow))
2558 __io_cqring_overflow_flush(ctx, false, NULL, NULL);
2559 if (io_cqring_events(ctx))
2563 * If a submit got punted to a workqueue, we can have the
2564 * application entering polling for a command before it gets
2565 * issued. That app will hold the uring_lock for the duration
2566 * of the poll right here, so we need to take a breather every
2567 * now and then to ensure that the issue has a chance to add
2568 * the poll to the issued list. Otherwise we can spin here
2569 * forever, while the workqueue is stuck trying to acquire the
2572 if (!(++iters & 7)) {
2573 mutex_unlock(&ctx->uring_lock);
2575 mutex_lock(&ctx->uring_lock);
2578 ret = io_iopoll_getevents(ctx, &nr_events, min);
2582 } while (min && !nr_events && !need_resched());
2584 mutex_unlock(&ctx->uring_lock);
2588 static void kiocb_end_write(struct io_kiocb *req)
2591 * Tell lockdep we inherited freeze protection from submission
2594 if (req->flags & REQ_F_ISREG) {
2595 struct inode *inode = file_inode(req->file);
2597 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
2599 file_end_write(req->file);
2602 static void io_complete_rw_common(struct kiocb *kiocb, long res,
2603 struct io_comp_state *cs)
2605 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2608 if (kiocb->ki_flags & IOCB_WRITE)
2609 kiocb_end_write(req);
2611 if (res != req->result)
2612 req_set_fail_links(req);
2613 if (req->flags & REQ_F_BUFFER_SELECTED)
2614 cflags = io_put_rw_kbuf(req);
2615 __io_req_complete(req, res, cflags, cs);
2619 static bool io_resubmit_prep(struct io_kiocb *req, int error)
2621 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2622 ssize_t ret = -ECANCELED;
2623 struct iov_iter iter;
2631 switch (req->opcode) {
2632 case IORING_OP_READV:
2633 case IORING_OP_READ_FIXED:
2634 case IORING_OP_READ:
2637 case IORING_OP_WRITEV:
2638 case IORING_OP_WRITE_FIXED:
2639 case IORING_OP_WRITE:
2643 printk_once(KERN_WARNING "io_uring: bad opcode in resubmit %d\n",
2648 if (!req->async_data) {
2649 ret = io_import_iovec(rw, req, &iovec, &iter, false);
2652 ret = io_setup_async_rw(req, iovec, inline_vecs, &iter, false);
2660 req_set_fail_links(req);
2665 static bool io_rw_reissue(struct io_kiocb *req, long res)
2668 umode_t mode = file_inode(req->file)->i_mode;
2671 if (!S_ISBLK(mode) && !S_ISREG(mode))
2673 if ((res != -EAGAIN && res != -EOPNOTSUPP) || io_wq_current_is_worker())
2676 ret = io_sq_thread_acquire_mm_files(req->ctx, req);
2678 if (io_resubmit_prep(req, ret)) {
2679 refcount_inc(&req->refs);
2680 io_queue_async_work(req);
2688 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2689 struct io_comp_state *cs)
2691 if (!io_rw_reissue(req, res))
2692 io_complete_rw_common(&req->rw.kiocb, res, cs);
2695 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2697 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2699 __io_complete_rw(req, res, res2, NULL);
2702 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2704 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2706 if (kiocb->ki_flags & IOCB_WRITE)
2707 kiocb_end_write(req);
2709 if (res != -EAGAIN && res != req->result)
2710 req_set_fail_links(req);
2712 WRITE_ONCE(req->result, res);
2713 /* order with io_poll_complete() checking ->result */
2715 WRITE_ONCE(req->iopoll_completed, 1);
2719 * After the iocb has been issued, it's safe to be found on the poll list.
2720 * Adding the kiocb to the list AFTER submission ensures that we don't
2721 * find it from a io_iopoll_getevents() thread before the issuer is done
2722 * accessing the kiocb cookie.
2724 static void io_iopoll_req_issued(struct io_kiocb *req, bool in_async)
2726 struct io_ring_ctx *ctx = req->ctx;
2729 * Track whether we have multiple files in our lists. This will impact
2730 * how we do polling eventually, not spinning if we're on potentially
2731 * different devices.
2733 if (list_empty(&ctx->iopoll_list)) {
2734 ctx->poll_multi_file = false;
2735 } else if (!ctx->poll_multi_file) {
2736 struct io_kiocb *list_req;
2738 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2740 if (list_req->file != req->file)
2741 ctx->poll_multi_file = true;
2745 * For fast devices, IO may have already completed. If it has, add
2746 * it to the front so we find it first.
2748 if (READ_ONCE(req->iopoll_completed))
2749 list_add(&req->inflight_entry, &ctx->iopoll_list);
2751 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2754 * If IORING_SETUP_SQPOLL is enabled, sqes are either handled in sq thread
2755 * task context or in io worker task context. If current task context is
2756 * sq thread, we don't need to check whether should wake up sq thread.
2758 if (in_async && (ctx->flags & IORING_SETUP_SQPOLL) &&
2759 wq_has_sleeper(&ctx->sq_data->wait))
2760 wake_up(&ctx->sq_data->wait);
2763 static inline void __io_state_file_put(struct io_submit_state *state)
2765 fput_many(state->file, state->file_refs);
2766 state->file_refs = 0;
2769 static inline void io_state_file_put(struct io_submit_state *state)
2771 if (state->file_refs)
2772 __io_state_file_put(state);
2776 * Get as many references to a file as we have IOs left in this submission,
2777 * assuming most submissions are for one file, or at least that each file
2778 * has more than one submission.
2780 static struct file *__io_file_get(struct io_submit_state *state, int fd)
2785 if (state->file_refs) {
2786 if (state->fd == fd) {
2790 __io_state_file_put(state);
2792 state->file = fget_many(fd, state->ios_left);
2793 if (unlikely(!state->file))
2797 state->file_refs = state->ios_left - 1;
2801 static bool io_bdev_nowait(struct block_device *bdev)
2803 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2807 * If we tracked the file through the SCM inflight mechanism, we could support
2808 * any file. For now, just ensure that anything potentially problematic is done
2811 static bool io_file_supports_async(struct file *file, int rw)
2813 umode_t mode = file_inode(file)->i_mode;
2815 if (S_ISBLK(mode)) {
2816 if (IS_ENABLED(CONFIG_BLOCK) &&
2817 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2821 if (S_ISCHR(mode) || S_ISSOCK(mode))
2823 if (S_ISREG(mode)) {
2824 if (IS_ENABLED(CONFIG_BLOCK) &&
2825 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2826 file->f_op != &io_uring_fops)
2831 /* any ->read/write should understand O_NONBLOCK */
2832 if (file->f_flags & O_NONBLOCK)
2835 if (!(file->f_mode & FMODE_NOWAIT))
2839 return file->f_op->read_iter != NULL;
2841 return file->f_op->write_iter != NULL;
2844 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2846 struct io_ring_ctx *ctx = req->ctx;
2847 struct kiocb *kiocb = &req->rw.kiocb;
2851 if (S_ISREG(file_inode(req->file)->i_mode))
2852 req->flags |= REQ_F_ISREG;
2854 kiocb->ki_pos = READ_ONCE(sqe->off);
2855 if (kiocb->ki_pos == -1 && !(req->file->f_mode & FMODE_STREAM)) {
2856 req->flags |= REQ_F_CUR_POS;
2857 kiocb->ki_pos = req->file->f_pos;
2859 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2860 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2861 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2865 ioprio = READ_ONCE(sqe->ioprio);
2867 ret = ioprio_check_cap(ioprio);
2871 kiocb->ki_ioprio = ioprio;
2873 kiocb->ki_ioprio = get_current_ioprio();
2875 /* don't allow async punt if RWF_NOWAIT was requested */
2876 if (kiocb->ki_flags & IOCB_NOWAIT)
2877 req->flags |= REQ_F_NOWAIT;
2879 if (ctx->flags & IORING_SETUP_IOPOLL) {
2880 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2881 !kiocb->ki_filp->f_op->iopoll)
2884 kiocb->ki_flags |= IOCB_HIPRI;
2885 kiocb->ki_complete = io_complete_rw_iopoll;
2886 req->iopoll_completed = 0;
2888 if (kiocb->ki_flags & IOCB_HIPRI)
2890 kiocb->ki_complete = io_complete_rw;
2893 req->rw.addr = READ_ONCE(sqe->addr);
2894 req->rw.len = READ_ONCE(sqe->len);
2895 req->buf_index = READ_ONCE(sqe->buf_index);
2899 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2905 case -ERESTARTNOINTR:
2906 case -ERESTARTNOHAND:
2907 case -ERESTART_RESTARTBLOCK:
2909 * We can't just restart the syscall, since previously
2910 * submitted sqes may already be in progress. Just fail this
2916 kiocb->ki_complete(kiocb, ret, 0);
2920 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2921 struct io_comp_state *cs)
2923 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2924 struct io_async_rw *io = req->async_data;
2926 /* add previously done IO, if any */
2927 if (io && io->bytes_done > 0) {
2929 ret = io->bytes_done;
2931 ret += io->bytes_done;
2934 if (req->flags & REQ_F_CUR_POS)
2935 req->file->f_pos = kiocb->ki_pos;
2936 if (ret >= 0 && kiocb->ki_complete == io_complete_rw)
2937 __io_complete_rw(req, ret, 0, cs);
2939 io_rw_done(kiocb, ret);
2942 static ssize_t io_import_fixed(struct io_kiocb *req, int rw,
2943 struct iov_iter *iter)
2945 struct io_ring_ctx *ctx = req->ctx;
2946 size_t len = req->rw.len;
2947 struct io_mapped_ubuf *imu;
2948 u16 index, buf_index = req->buf_index;
2952 if (unlikely(buf_index >= ctx->nr_user_bufs))
2954 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
2955 imu = &ctx->user_bufs[index];
2956 buf_addr = req->rw.addr;
2959 if (buf_addr + len < buf_addr)
2961 /* not inside the mapped region */
2962 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
2966 * May not be a start of buffer, set size appropriately
2967 * and advance us to the beginning.
2969 offset = buf_addr - imu->ubuf;
2970 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
2974 * Don't use iov_iter_advance() here, as it's really slow for
2975 * using the latter parts of a big fixed buffer - it iterates
2976 * over each segment manually. We can cheat a bit here, because
2979 * 1) it's a BVEC iter, we set it up
2980 * 2) all bvecs are PAGE_SIZE in size, except potentially the
2981 * first and last bvec
2983 * So just find our index, and adjust the iterator afterwards.
2984 * If the offset is within the first bvec (or the whole first
2985 * bvec, just use iov_iter_advance(). This makes it easier
2986 * since we can just skip the first segment, which may not
2987 * be PAGE_SIZE aligned.
2989 const struct bio_vec *bvec = imu->bvec;
2991 if (offset <= bvec->bv_len) {
2992 iov_iter_advance(iter, offset);
2994 unsigned long seg_skip;
2996 /* skip first vec */
2997 offset -= bvec->bv_len;
2998 seg_skip = 1 + (offset >> PAGE_SHIFT);
3000 iter->bvec = bvec + seg_skip;
3001 iter->nr_segs -= seg_skip;
3002 iter->count -= bvec->bv_len + offset;
3003 iter->iov_offset = offset & ~PAGE_MASK;
3010 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3013 mutex_unlock(&ctx->uring_lock);
3016 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3019 * "Normal" inline submissions always hold the uring_lock, since we
3020 * grab it from the system call. Same is true for the SQPOLL offload.
3021 * The only exception is when we've detached the request and issue it
3022 * from an async worker thread, grab the lock for that case.
3025 mutex_lock(&ctx->uring_lock);
3028 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3029 int bgid, struct io_buffer *kbuf,
3032 struct io_buffer *head;
3034 if (req->flags & REQ_F_BUFFER_SELECTED)
3037 io_ring_submit_lock(req->ctx, needs_lock);
3039 lockdep_assert_held(&req->ctx->uring_lock);
3041 head = idr_find(&req->ctx->io_buffer_idr, bgid);
3043 if (!list_empty(&head->list)) {
3044 kbuf = list_last_entry(&head->list, struct io_buffer,
3046 list_del(&kbuf->list);
3049 idr_remove(&req->ctx->io_buffer_idr, bgid);
3051 if (*len > kbuf->len)
3054 kbuf = ERR_PTR(-ENOBUFS);
3057 io_ring_submit_unlock(req->ctx, needs_lock);
3062 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3065 struct io_buffer *kbuf;
3068 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3069 bgid = req->buf_index;
3070 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3073 req->rw.addr = (u64) (unsigned long) kbuf;
3074 req->flags |= REQ_F_BUFFER_SELECTED;
3075 return u64_to_user_ptr(kbuf->addr);
3078 #ifdef CONFIG_COMPAT
3079 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3082 struct compat_iovec __user *uiov;
3083 compat_ssize_t clen;
3087 uiov = u64_to_user_ptr(req->rw.addr);
3088 if (!access_ok(uiov, sizeof(*uiov)))
3090 if (__get_user(clen, &uiov->iov_len))
3096 buf = io_rw_buffer_select(req, &len, needs_lock);
3098 return PTR_ERR(buf);
3099 iov[0].iov_base = buf;
3100 iov[0].iov_len = (compat_size_t) len;
3105 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3108 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3112 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3115 len = iov[0].iov_len;
3118 buf = io_rw_buffer_select(req, &len, needs_lock);
3120 return PTR_ERR(buf);
3121 iov[0].iov_base = buf;
3122 iov[0].iov_len = len;
3126 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3129 if (req->flags & REQ_F_BUFFER_SELECTED) {
3130 struct io_buffer *kbuf;
3132 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3133 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3134 iov[0].iov_len = kbuf->len;
3137 if (req->rw.len != 1)
3140 #ifdef CONFIG_COMPAT
3141 if (req->ctx->compat)
3142 return io_compat_import(req, iov, needs_lock);
3145 return __io_iov_buffer_select(req, iov, needs_lock);
3148 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
3149 struct iovec **iovec, struct iov_iter *iter,
3152 void __user *buf = u64_to_user_ptr(req->rw.addr);
3153 size_t sqe_len = req->rw.len;
3157 opcode = req->opcode;
3158 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3160 return io_import_fixed(req, rw, iter);
3163 /* buffer index only valid with fixed read/write, or buffer select */
3164 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3167 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3168 if (req->flags & REQ_F_BUFFER_SELECT) {
3169 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3171 return PTR_ERR(buf);
3172 req->rw.len = sqe_len;
3175 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3180 if (req->flags & REQ_F_BUFFER_SELECT) {
3181 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3183 ret = (*iovec)->iov_len;
3184 iov_iter_init(iter, rw, *iovec, 1, ret);
3190 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3194 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3196 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3200 * For files that don't have ->read_iter() and ->write_iter(), handle them
3201 * by looping over ->read() or ->write() manually.
3203 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3205 struct kiocb *kiocb = &req->rw.kiocb;
3206 struct file *file = req->file;
3210 * Don't support polled IO through this interface, and we can't
3211 * support non-blocking either. For the latter, this just causes
3212 * the kiocb to be handled from an async context.
3214 if (kiocb->ki_flags & IOCB_HIPRI)
3216 if (kiocb->ki_flags & IOCB_NOWAIT)
3219 while (iov_iter_count(iter)) {
3223 if (!iov_iter_is_bvec(iter)) {
3224 iovec = iov_iter_iovec(iter);
3226 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3227 iovec.iov_len = req->rw.len;
3231 nr = file->f_op->read(file, iovec.iov_base,
3232 iovec.iov_len, io_kiocb_ppos(kiocb));
3234 nr = file->f_op->write(file, iovec.iov_base,
3235 iovec.iov_len, io_kiocb_ppos(kiocb));
3244 if (nr != iovec.iov_len)
3248 iov_iter_advance(iter, nr);
3254 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3255 const struct iovec *fast_iov, struct iov_iter *iter)
3257 struct io_async_rw *rw = req->async_data;
3259 memcpy(&rw->iter, iter, sizeof(*iter));
3260 rw->free_iovec = iovec;
3262 /* can only be fixed buffers, no need to do anything */
3263 if (iov_iter_is_bvec(iter))
3266 unsigned iov_off = 0;
3268 rw->iter.iov = rw->fast_iov;
3269 if (iter->iov != fast_iov) {
3270 iov_off = iter->iov - fast_iov;
3271 rw->iter.iov += iov_off;
3273 if (rw->fast_iov != fast_iov)
3274 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3275 sizeof(struct iovec) * iter->nr_segs);
3277 req->flags |= REQ_F_NEED_CLEANUP;
3281 static inline int __io_alloc_async_data(struct io_kiocb *req)
3283 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3284 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3285 return req->async_data == NULL;
3288 static int io_alloc_async_data(struct io_kiocb *req)
3290 if (!io_op_defs[req->opcode].needs_async_data)
3293 return __io_alloc_async_data(req);
3296 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3297 const struct iovec *fast_iov,
3298 struct iov_iter *iter, bool force)
3300 if (!force && !io_op_defs[req->opcode].needs_async_data)
3302 if (!req->async_data) {
3303 if (__io_alloc_async_data(req))
3306 io_req_map_rw(req, iovec, fast_iov, iter);
3311 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3313 struct io_async_rw *iorw = req->async_data;
3314 struct iovec *iov = iorw->fast_iov;
3317 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3318 if (unlikely(ret < 0))
3321 iorw->bytes_done = 0;
3322 iorw->free_iovec = iov;
3324 req->flags |= REQ_F_NEED_CLEANUP;
3328 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3332 ret = io_prep_rw(req, sqe);
3336 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3339 /* either don't need iovec imported or already have it */
3340 if (!req->async_data)
3342 return io_rw_prep_async(req, READ);
3346 * This is our waitqueue callback handler, registered through lock_page_async()
3347 * when we initially tried to do the IO with the iocb armed our waitqueue.
3348 * This gets called when the page is unlocked, and we generally expect that to
3349 * happen when the page IO is completed and the page is now uptodate. This will
3350 * queue a task_work based retry of the operation, attempting to copy the data
3351 * again. If the latter fails because the page was NOT uptodate, then we will
3352 * do a thread based blocking retry of the operation. That's the unexpected
3355 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3356 int sync, void *arg)
3358 struct wait_page_queue *wpq;
3359 struct io_kiocb *req = wait->private;
3360 struct wait_page_key *key = arg;
3363 wpq = container_of(wait, struct wait_page_queue, wait);
3365 if (!wake_page_match(wpq, key))
3368 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3369 list_del_init(&wait->entry);
3371 init_task_work(&req->task_work, io_req_task_submit);
3372 percpu_ref_get(&req->ctx->refs);
3374 /* submit ref gets dropped, acquire a new one */
3375 refcount_inc(&req->refs);
3376 ret = io_req_task_work_add(req);
3377 if (unlikely(ret)) {
3378 struct task_struct *tsk;
3380 /* queue just for cancelation */
3381 init_task_work(&req->task_work, io_req_task_cancel);
3382 tsk = io_wq_get_task(req->ctx->io_wq);
3383 task_work_add(tsk, &req->task_work, TWA_NONE);
3384 wake_up_process(tsk);
3390 * This controls whether a given IO request should be armed for async page
3391 * based retry. If we return false here, the request is handed to the async
3392 * worker threads for retry. If we're doing buffered reads on a regular file,
3393 * we prepare a private wait_page_queue entry and retry the operation. This
3394 * will either succeed because the page is now uptodate and unlocked, or it
3395 * will register a callback when the page is unlocked at IO completion. Through
3396 * that callback, io_uring uses task_work to setup a retry of the operation.
3397 * That retry will attempt the buffered read again. The retry will generally
3398 * succeed, or in rare cases where it fails, we then fall back to using the
3399 * async worker threads for a blocking retry.
3401 static bool io_rw_should_retry(struct io_kiocb *req)
3403 struct io_async_rw *rw = req->async_data;
3404 struct wait_page_queue *wait = &rw->wpq;
3405 struct kiocb *kiocb = &req->rw.kiocb;
3407 /* never retry for NOWAIT, we just complete with -EAGAIN */
3408 if (req->flags & REQ_F_NOWAIT)
3411 /* Only for buffered IO */
3412 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3416 * just use poll if we can, and don't attempt if the fs doesn't
3417 * support callback based unlocks
3419 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3422 wait->wait.func = io_async_buf_func;
3423 wait->wait.private = req;
3424 wait->wait.flags = 0;
3425 INIT_LIST_HEAD(&wait->wait.entry);
3426 kiocb->ki_flags |= IOCB_WAITQ;
3427 kiocb->ki_flags &= ~IOCB_NOWAIT;
3428 kiocb->ki_waitq = wait;
3432 static int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3434 if (req->file->f_op->read_iter)
3435 return call_read_iter(req->file, &req->rw.kiocb, iter);
3436 else if (req->file->f_op->read)
3437 return loop_rw_iter(READ, req, iter);
3442 static int io_read(struct io_kiocb *req, bool force_nonblock,
3443 struct io_comp_state *cs)
3445 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3446 struct kiocb *kiocb = &req->rw.kiocb;
3447 struct iov_iter __iter, *iter = &__iter;
3448 struct io_async_rw *rw = req->async_data;
3449 ssize_t io_size, ret, ret2;
3456 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3460 io_size = iov_iter_count(iter);
3461 req->result = io_size;
3464 /* Ensure we clear previously set non-block flag */
3465 if (!force_nonblock)
3466 kiocb->ki_flags &= ~IOCB_NOWAIT;
3468 kiocb->ki_flags |= IOCB_NOWAIT;
3471 /* If the file doesn't support async, just async punt */
3472 no_async = force_nonblock && !io_file_supports_async(req->file, READ);
3476 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), io_size);
3480 ret = io_iter_do_read(req, iter);
3484 } else if (ret == -EIOCBQUEUED) {
3487 } else if (ret == -EAGAIN) {
3488 /* IOPOLL retry should happen for io-wq threads */
3489 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3491 /* no retry on NONBLOCK marked file */
3492 if (req->file->f_flags & O_NONBLOCK)
3494 /* some cases will consume bytes even on error returns */
3495 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3498 } else if (ret < 0) {
3499 /* make sure -ERESTARTSYS -> -EINTR is done */
3503 /* read it all, or we did blocking attempt. no retry. */
3504 if (!iov_iter_count(iter) || !force_nonblock ||
3505 (req->file->f_flags & O_NONBLOCK))
3510 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3517 rw = req->async_data;
3518 /* it's copied and will be cleaned with ->io */
3520 /* now use our persistent iterator, if we aren't already */
3523 rw->bytes_done += ret;
3524 /* if we can retry, do so with the callbacks armed */
3525 if (!io_rw_should_retry(req)) {
3526 kiocb->ki_flags &= ~IOCB_WAITQ;
3531 * Now retry read with the IOCB_WAITQ parts set in the iocb. If we
3532 * get -EIOCBQUEUED, then we'll get a notification when the desired
3533 * page gets unlocked. We can also get a partial read here, and if we
3534 * do, then just retry at the new offset.
3536 ret = io_iter_do_read(req, iter);
3537 if (ret == -EIOCBQUEUED) {
3540 } else if (ret > 0 && ret < io_size) {
3541 /* we got some bytes, but not all. retry. */
3545 kiocb_done(kiocb, ret, cs);
3548 /* it's reportedly faster than delegating the null check to kfree() */
3554 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3558 ret = io_prep_rw(req, sqe);
3562 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3565 /* either don't need iovec imported or already have it */
3566 if (!req->async_data)
3568 return io_rw_prep_async(req, WRITE);
3571 static int io_write(struct io_kiocb *req, bool force_nonblock,
3572 struct io_comp_state *cs)
3574 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3575 struct kiocb *kiocb = &req->rw.kiocb;
3576 struct iov_iter __iter, *iter = &__iter;
3577 struct io_async_rw *rw = req->async_data;
3578 ssize_t ret, ret2, io_size;
3584 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3588 io_size = iov_iter_count(iter);
3589 req->result = io_size;
3591 /* Ensure we clear previously set non-block flag */
3592 if (!force_nonblock)
3593 kiocb->ki_flags &= ~IOCB_NOWAIT;
3595 kiocb->ki_flags |= IOCB_NOWAIT;
3597 /* If the file doesn't support async, just async punt */
3598 if (force_nonblock && !io_file_supports_async(req->file, WRITE))
3601 /* file path doesn't support NOWAIT for non-direct_IO */
3602 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3603 (req->flags & REQ_F_ISREG))
3606 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), io_size);
3611 * Open-code file_start_write here to grab freeze protection,
3612 * which will be released by another thread in
3613 * io_complete_rw(). Fool lockdep by telling it the lock got
3614 * released so that it doesn't complain about the held lock when
3615 * we return to userspace.
3617 if (req->flags & REQ_F_ISREG) {
3618 sb_start_write(file_inode(req->file)->i_sb);
3619 __sb_writers_release(file_inode(req->file)->i_sb,
3622 kiocb->ki_flags |= IOCB_WRITE;
3624 if (req->file->f_op->write_iter)
3625 ret2 = call_write_iter(req->file, kiocb, iter);
3626 else if (req->file->f_op->write)
3627 ret2 = loop_rw_iter(WRITE, req, iter);
3632 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3633 * retry them without IOCB_NOWAIT.
3635 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3637 /* no retry on NONBLOCK marked file */
3638 if (ret2 == -EAGAIN && (req->file->f_flags & O_NONBLOCK))
3640 if (!force_nonblock || ret2 != -EAGAIN) {
3641 /* IOPOLL retry should happen for io-wq threads */
3642 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3645 kiocb_done(kiocb, ret2, cs);
3648 /* some cases will consume bytes even on error returns */
3649 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3650 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3655 /* it's reportedly faster than delegating the null check to kfree() */
3661 static int io_renameat_prep(struct io_kiocb *req,
3662 const struct io_uring_sqe *sqe)
3664 struct io_rename *ren = &req->rename;
3665 const char __user *oldf, *newf;
3667 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3670 ren->old_dfd = READ_ONCE(sqe->fd);
3671 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3672 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3673 ren->new_dfd = READ_ONCE(sqe->len);
3674 ren->flags = READ_ONCE(sqe->rename_flags);
3676 ren->oldpath = getname(oldf);
3677 if (IS_ERR(ren->oldpath))
3678 return PTR_ERR(ren->oldpath);
3680 ren->newpath = getname(newf);
3681 if (IS_ERR(ren->newpath)) {
3682 putname(ren->oldpath);
3683 return PTR_ERR(ren->newpath);
3686 req->flags |= REQ_F_NEED_CLEANUP;
3690 static int io_renameat(struct io_kiocb *req, bool force_nonblock)
3692 struct io_rename *ren = &req->rename;
3698 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3699 ren->newpath, ren->flags);
3701 req->flags &= ~REQ_F_NEED_CLEANUP;
3703 req_set_fail_links(req);
3704 io_req_complete(req, ret);
3708 static int io_unlinkat_prep(struct io_kiocb *req,
3709 const struct io_uring_sqe *sqe)
3711 struct io_unlink *un = &req->unlink;
3712 const char __user *fname;
3714 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3717 un->dfd = READ_ONCE(sqe->fd);
3719 un->flags = READ_ONCE(sqe->unlink_flags);
3720 if (un->flags & ~AT_REMOVEDIR)
3723 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3724 un->filename = getname(fname);
3725 if (IS_ERR(un->filename))
3726 return PTR_ERR(un->filename);
3728 req->flags |= REQ_F_NEED_CLEANUP;
3732 static int io_unlinkat(struct io_kiocb *req, bool force_nonblock)
3734 struct io_unlink *un = &req->unlink;
3740 if (un->flags & AT_REMOVEDIR)
3741 ret = do_rmdir(un->dfd, un->filename);
3743 ret = do_unlinkat(un->dfd, un->filename);
3745 req->flags &= ~REQ_F_NEED_CLEANUP;
3747 req_set_fail_links(req);
3748 io_req_complete(req, ret);
3752 static int io_shutdown_prep(struct io_kiocb *req,
3753 const struct io_uring_sqe *sqe)
3755 #if defined(CONFIG_NET)
3756 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3758 if (sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3762 req->shutdown.how = READ_ONCE(sqe->len);
3769 static int io_shutdown(struct io_kiocb *req, bool force_nonblock)
3771 #if defined(CONFIG_NET)
3772 struct socket *sock;
3778 sock = sock_from_file(req->file);
3779 if (unlikely(!sock))
3782 ret = __sys_shutdown_sock(sock, req->shutdown.how);
3784 req_set_fail_links(req);
3785 io_req_complete(req, ret);
3792 static int __io_splice_prep(struct io_kiocb *req,
3793 const struct io_uring_sqe *sqe)
3795 struct io_splice* sp = &req->splice;
3796 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3798 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3802 sp->len = READ_ONCE(sqe->len);
3803 sp->flags = READ_ONCE(sqe->splice_flags);
3805 if (unlikely(sp->flags & ~valid_flags))
3808 sp->file_in = io_file_get(NULL, req, READ_ONCE(sqe->splice_fd_in),
3809 (sp->flags & SPLICE_F_FD_IN_FIXED));
3812 req->flags |= REQ_F_NEED_CLEANUP;
3814 if (!S_ISREG(file_inode(sp->file_in)->i_mode)) {
3816 * Splice operation will be punted aync, and here need to
3817 * modify io_wq_work.flags, so initialize io_wq_work firstly.
3819 io_req_init_async(req);
3820 req->work.flags |= IO_WQ_WORK_UNBOUND;
3826 static int io_tee_prep(struct io_kiocb *req,
3827 const struct io_uring_sqe *sqe)
3829 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3831 return __io_splice_prep(req, sqe);
3834 static int io_tee(struct io_kiocb *req, bool force_nonblock)
3836 struct io_splice *sp = &req->splice;
3837 struct file *in = sp->file_in;
3838 struct file *out = sp->file_out;
3839 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3845 ret = do_tee(in, out, sp->len, flags);
3847 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3848 req->flags &= ~REQ_F_NEED_CLEANUP;
3851 req_set_fail_links(req);
3852 io_req_complete(req, ret);
3856 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3858 struct io_splice* sp = &req->splice;
3860 sp->off_in = READ_ONCE(sqe->splice_off_in);
3861 sp->off_out = READ_ONCE(sqe->off);
3862 return __io_splice_prep(req, sqe);
3865 static int io_splice(struct io_kiocb *req, bool force_nonblock)
3867 struct io_splice *sp = &req->splice;
3868 struct file *in = sp->file_in;
3869 struct file *out = sp->file_out;
3870 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3871 loff_t *poff_in, *poff_out;
3877 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
3878 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
3881 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
3883 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3884 req->flags &= ~REQ_F_NEED_CLEANUP;
3887 req_set_fail_links(req);
3888 io_req_complete(req, ret);
3893 * IORING_OP_NOP just posts a completion event, nothing else.
3895 static int io_nop(struct io_kiocb *req, struct io_comp_state *cs)
3897 struct io_ring_ctx *ctx = req->ctx;
3899 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3902 __io_req_complete(req, 0, 0, cs);
3906 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3908 struct io_ring_ctx *ctx = req->ctx;
3913 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3915 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
3918 req->sync.flags = READ_ONCE(sqe->fsync_flags);
3919 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
3922 req->sync.off = READ_ONCE(sqe->off);
3923 req->sync.len = READ_ONCE(sqe->len);
3927 static int io_fsync(struct io_kiocb *req, bool force_nonblock)
3929 loff_t end = req->sync.off + req->sync.len;
3932 /* fsync always requires a blocking context */
3936 ret = vfs_fsync_range(req->file, req->sync.off,
3937 end > 0 ? end : LLONG_MAX,
3938 req->sync.flags & IORING_FSYNC_DATASYNC);
3940 req_set_fail_links(req);
3941 io_req_complete(req, ret);
3945 static int io_fallocate_prep(struct io_kiocb *req,
3946 const struct io_uring_sqe *sqe)
3948 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
3950 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3953 req->sync.off = READ_ONCE(sqe->off);
3954 req->sync.len = READ_ONCE(sqe->addr);
3955 req->sync.mode = READ_ONCE(sqe->len);
3959 static int io_fallocate(struct io_kiocb *req, bool force_nonblock)
3963 /* fallocate always requiring blocking context */
3966 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
3969 req_set_fail_links(req);
3970 io_req_complete(req, ret);
3974 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3976 const char __user *fname;
3979 if (unlikely(sqe->ioprio || sqe->buf_index))
3981 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3984 /* open.how should be already initialised */
3985 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
3986 req->open.how.flags |= O_LARGEFILE;
3988 req->open.dfd = READ_ONCE(sqe->fd);
3989 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3990 req->open.filename = getname(fname);
3991 if (IS_ERR(req->open.filename)) {
3992 ret = PTR_ERR(req->open.filename);
3993 req->open.filename = NULL;
3996 req->open.nofile = rlimit(RLIMIT_NOFILE);
3997 req->open.ignore_nonblock = false;
3998 req->flags |= REQ_F_NEED_CLEANUP;
4002 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4006 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4008 mode = READ_ONCE(sqe->len);
4009 flags = READ_ONCE(sqe->open_flags);
4010 req->open.how = build_open_how(flags, mode);
4011 return __io_openat_prep(req, sqe);
4014 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4016 struct open_how __user *how;
4020 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4022 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4023 len = READ_ONCE(sqe->len);
4024 if (len < OPEN_HOW_SIZE_VER0)
4027 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4032 return __io_openat_prep(req, sqe);
4035 static int io_openat2(struct io_kiocb *req, bool force_nonblock)
4037 struct open_flags op;
4041 if (force_nonblock && !req->open.ignore_nonblock)
4044 ret = build_open_flags(&req->open.how, &op);
4048 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4052 file = do_filp_open(req->open.dfd, req->open.filename, &op);
4055 ret = PTR_ERR(file);
4057 * A work-around to ensure that /proc/self works that way
4058 * that it should - if we get -EOPNOTSUPP back, then assume
4059 * that proc_self_get_link() failed us because we're in async
4060 * context. We should be safe to retry this from the task
4061 * itself with force_nonblock == false set, as it should not
4062 * block on lookup. Would be nice to know this upfront and
4063 * avoid the async dance, but doesn't seem feasible.
4065 if (ret == -EOPNOTSUPP && io_wq_current_is_worker()) {
4066 req->open.ignore_nonblock = true;
4067 refcount_inc(&req->refs);
4068 io_req_task_queue(req);
4072 fsnotify_open(file);
4073 fd_install(ret, file);
4076 putname(req->open.filename);
4077 req->flags &= ~REQ_F_NEED_CLEANUP;
4079 req_set_fail_links(req);
4080 io_req_complete(req, ret);
4084 static int io_openat(struct io_kiocb *req, bool force_nonblock)
4086 return io_openat2(req, force_nonblock);
4089 static int io_remove_buffers_prep(struct io_kiocb *req,
4090 const struct io_uring_sqe *sqe)
4092 struct io_provide_buf *p = &req->pbuf;
4095 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off)
4098 tmp = READ_ONCE(sqe->fd);
4099 if (!tmp || tmp > USHRT_MAX)
4102 memset(p, 0, sizeof(*p));
4104 p->bgid = READ_ONCE(sqe->buf_group);
4108 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4109 int bgid, unsigned nbufs)
4113 /* shouldn't happen */
4117 /* the head kbuf is the list itself */
4118 while (!list_empty(&buf->list)) {
4119 struct io_buffer *nxt;
4121 nxt = list_first_entry(&buf->list, struct io_buffer, list);
4122 list_del(&nxt->list);
4129 idr_remove(&ctx->io_buffer_idr, bgid);
4134 static int io_remove_buffers(struct io_kiocb *req, bool force_nonblock,
4135 struct io_comp_state *cs)
4137 struct io_provide_buf *p = &req->pbuf;
4138 struct io_ring_ctx *ctx = req->ctx;
4139 struct io_buffer *head;
4142 io_ring_submit_lock(ctx, !force_nonblock);
4144 lockdep_assert_held(&ctx->uring_lock);
4147 head = idr_find(&ctx->io_buffer_idr, p->bgid);
4149 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4151 req_set_fail_links(req);
4153 /* need to hold the lock to complete IOPOLL requests */
4154 if (ctx->flags & IORING_SETUP_IOPOLL) {
4155 __io_req_complete(req, ret, 0, cs);
4156 io_ring_submit_unlock(ctx, !force_nonblock);
4158 io_ring_submit_unlock(ctx, !force_nonblock);
4159 __io_req_complete(req, ret, 0, cs);
4164 static int io_provide_buffers_prep(struct io_kiocb *req,
4165 const struct io_uring_sqe *sqe)
4167 struct io_provide_buf *p = &req->pbuf;
4170 if (sqe->ioprio || sqe->rw_flags)
4173 tmp = READ_ONCE(sqe->fd);
4174 if (!tmp || tmp > USHRT_MAX)
4177 p->addr = READ_ONCE(sqe->addr);
4178 p->len = READ_ONCE(sqe->len);
4180 if (!access_ok(u64_to_user_ptr(p->addr), (p->len * p->nbufs)))
4183 p->bgid = READ_ONCE(sqe->buf_group);
4184 tmp = READ_ONCE(sqe->off);
4185 if (tmp > USHRT_MAX)
4191 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4193 struct io_buffer *buf;
4194 u64 addr = pbuf->addr;
4195 int i, bid = pbuf->bid;
4197 for (i = 0; i < pbuf->nbufs; i++) {
4198 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
4203 buf->len = pbuf->len;
4208 INIT_LIST_HEAD(&buf->list);
4211 list_add_tail(&buf->list, &(*head)->list);
4215 return i ? i : -ENOMEM;
4218 static int io_provide_buffers(struct io_kiocb *req, bool force_nonblock,
4219 struct io_comp_state *cs)
4221 struct io_provide_buf *p = &req->pbuf;
4222 struct io_ring_ctx *ctx = req->ctx;
4223 struct io_buffer *head, *list;
4226 io_ring_submit_lock(ctx, !force_nonblock);
4228 lockdep_assert_held(&ctx->uring_lock);
4230 list = head = idr_find(&ctx->io_buffer_idr, p->bgid);
4232 ret = io_add_buffers(p, &head);
4237 ret = idr_alloc(&ctx->io_buffer_idr, head, p->bgid, p->bgid + 1,
4240 __io_remove_buffers(ctx, head, p->bgid, -1U);
4246 req_set_fail_links(req);
4248 /* need to hold the lock to complete IOPOLL requests */
4249 if (ctx->flags & IORING_SETUP_IOPOLL) {
4250 __io_req_complete(req, ret, 0, cs);
4251 io_ring_submit_unlock(ctx, !force_nonblock);
4253 io_ring_submit_unlock(ctx, !force_nonblock);
4254 __io_req_complete(req, ret, 0, cs);
4259 static int io_epoll_ctl_prep(struct io_kiocb *req,
4260 const struct io_uring_sqe *sqe)
4262 #if defined(CONFIG_EPOLL)
4263 if (sqe->ioprio || sqe->buf_index)
4265 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4268 req->epoll.epfd = READ_ONCE(sqe->fd);
4269 req->epoll.op = READ_ONCE(sqe->len);
4270 req->epoll.fd = READ_ONCE(sqe->off);
4272 if (ep_op_has_event(req->epoll.op)) {
4273 struct epoll_event __user *ev;
4275 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4276 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4286 static int io_epoll_ctl(struct io_kiocb *req, bool force_nonblock,
4287 struct io_comp_state *cs)
4289 #if defined(CONFIG_EPOLL)
4290 struct io_epoll *ie = &req->epoll;
4293 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4294 if (force_nonblock && ret == -EAGAIN)
4298 req_set_fail_links(req);
4299 __io_req_complete(req, ret, 0, cs);
4306 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4308 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4309 if (sqe->ioprio || sqe->buf_index || sqe->off)
4311 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4314 req->madvise.addr = READ_ONCE(sqe->addr);
4315 req->madvise.len = READ_ONCE(sqe->len);
4316 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4323 static int io_madvise(struct io_kiocb *req, bool force_nonblock)
4325 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4326 struct io_madvise *ma = &req->madvise;
4332 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4334 req_set_fail_links(req);
4335 io_req_complete(req, ret);
4342 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4344 if (sqe->ioprio || sqe->buf_index || sqe->addr)
4346 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4349 req->fadvise.offset = READ_ONCE(sqe->off);
4350 req->fadvise.len = READ_ONCE(sqe->len);
4351 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4355 static int io_fadvise(struct io_kiocb *req, bool force_nonblock)
4357 struct io_fadvise *fa = &req->fadvise;
4360 if (force_nonblock) {
4361 switch (fa->advice) {
4362 case POSIX_FADV_NORMAL:
4363 case POSIX_FADV_RANDOM:
4364 case POSIX_FADV_SEQUENTIAL:
4371 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4373 req_set_fail_links(req);
4374 io_req_complete(req, ret);
4378 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4380 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4382 if (sqe->ioprio || sqe->buf_index)
4384 if (req->flags & REQ_F_FIXED_FILE)
4387 req->statx.dfd = READ_ONCE(sqe->fd);
4388 req->statx.mask = READ_ONCE(sqe->len);
4389 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4390 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4391 req->statx.flags = READ_ONCE(sqe->statx_flags);
4396 static int io_statx(struct io_kiocb *req, bool force_nonblock)
4398 struct io_statx *ctx = &req->statx;
4401 if (force_nonblock) {
4402 /* only need file table for an actual valid fd */
4403 if (ctx->dfd == -1 || ctx->dfd == AT_FDCWD)
4404 req->flags |= REQ_F_NO_FILE_TABLE;
4408 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4412 req_set_fail_links(req);
4413 io_req_complete(req, ret);
4417 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4420 * If we queue this for async, it must not be cancellable. That would
4421 * leave the 'file' in an undeterminate state, and here need to modify
4422 * io_wq_work.flags, so initialize io_wq_work firstly.
4424 io_req_init_async(req);
4425 req->work.flags |= IO_WQ_WORK_NO_CANCEL;
4427 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4429 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4430 sqe->rw_flags || sqe->buf_index)
4432 if (req->flags & REQ_F_FIXED_FILE)
4435 req->close.fd = READ_ONCE(sqe->fd);
4436 if ((req->file && req->file->f_op == &io_uring_fops))
4439 req->close.put_file = NULL;
4443 static int io_close(struct io_kiocb *req, bool force_nonblock,
4444 struct io_comp_state *cs)
4446 struct io_close *close = &req->close;
4449 /* might be already done during nonblock submission */
4450 if (!close->put_file) {
4451 ret = close_fd_get_file(close->fd, &close->put_file);
4453 return (ret == -ENOENT) ? -EBADF : ret;
4456 /* if the file has a flush method, be safe and punt to async */
4457 if (close->put_file->f_op->flush && force_nonblock) {
4458 /* was never set, but play safe */
4459 req->flags &= ~REQ_F_NOWAIT;
4460 /* avoid grabbing files - we don't need the files */
4461 req->flags |= REQ_F_NO_FILE_TABLE;
4465 /* No ->flush() or already async, safely close from here */
4466 ret = filp_close(close->put_file, req->work.identity->files);
4468 req_set_fail_links(req);
4469 fput(close->put_file);
4470 close->put_file = NULL;
4471 __io_req_complete(req, ret, 0, cs);
4475 static int io_prep_sfr(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4477 struct io_ring_ctx *ctx = req->ctx;
4482 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4484 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
4487 req->sync.off = READ_ONCE(sqe->off);
4488 req->sync.len = READ_ONCE(sqe->len);
4489 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4493 static int io_sync_file_range(struct io_kiocb *req, bool force_nonblock)
4497 /* sync_file_range always requires a blocking context */
4501 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4504 req_set_fail_links(req);
4505 io_req_complete(req, ret);
4509 #if defined(CONFIG_NET)
4510 static int io_setup_async_msg(struct io_kiocb *req,
4511 struct io_async_msghdr *kmsg)
4513 struct io_async_msghdr *async_msg = req->async_data;
4517 if (io_alloc_async_data(req)) {
4518 if (kmsg->iov != kmsg->fast_iov)
4522 async_msg = req->async_data;
4523 req->flags |= REQ_F_NEED_CLEANUP;
4524 memcpy(async_msg, kmsg, sizeof(*kmsg));
4528 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4529 struct io_async_msghdr *iomsg)
4531 iomsg->iov = iomsg->fast_iov;
4532 iomsg->msg.msg_name = &iomsg->addr;
4533 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4534 req->sr_msg.msg_flags, &iomsg->iov);
4537 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4539 struct io_async_msghdr *async_msg = req->async_data;
4540 struct io_sr_msg *sr = &req->sr_msg;
4543 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4546 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4547 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4548 sr->len = READ_ONCE(sqe->len);
4550 #ifdef CONFIG_COMPAT
4551 if (req->ctx->compat)
4552 sr->msg_flags |= MSG_CMSG_COMPAT;
4555 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4557 ret = io_sendmsg_copy_hdr(req, async_msg);
4559 req->flags |= REQ_F_NEED_CLEANUP;
4563 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock,
4564 struct io_comp_state *cs)
4566 struct io_async_msghdr iomsg, *kmsg;
4567 struct socket *sock;
4571 sock = sock_from_file(req->file);
4572 if (unlikely(!sock))
4575 if (req->async_data) {
4576 kmsg = req->async_data;
4577 kmsg->msg.msg_name = &kmsg->addr;
4578 /* if iov is set, it's allocated already */
4580 kmsg->iov = kmsg->fast_iov;
4581 kmsg->msg.msg_iter.iov = kmsg->iov;
4583 ret = io_sendmsg_copy_hdr(req, &iomsg);
4589 flags = req->sr_msg.msg_flags;
4590 if (flags & MSG_DONTWAIT)
4591 req->flags |= REQ_F_NOWAIT;
4592 else if (force_nonblock)
4593 flags |= MSG_DONTWAIT;
4595 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4596 if (force_nonblock && ret == -EAGAIN)
4597 return io_setup_async_msg(req, kmsg);
4598 if (ret == -ERESTARTSYS)
4601 if (kmsg->iov != kmsg->fast_iov)
4603 req->flags &= ~REQ_F_NEED_CLEANUP;
4605 req_set_fail_links(req);
4606 __io_req_complete(req, ret, 0, cs);
4610 static int io_send(struct io_kiocb *req, bool force_nonblock,
4611 struct io_comp_state *cs)
4613 struct io_sr_msg *sr = &req->sr_msg;
4616 struct socket *sock;
4620 sock = sock_from_file(req->file);
4621 if (unlikely(!sock))
4624 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4628 msg.msg_name = NULL;
4629 msg.msg_control = NULL;
4630 msg.msg_controllen = 0;
4631 msg.msg_namelen = 0;
4633 flags = req->sr_msg.msg_flags;
4634 if (flags & MSG_DONTWAIT)
4635 req->flags |= REQ_F_NOWAIT;
4636 else if (force_nonblock)
4637 flags |= MSG_DONTWAIT;
4639 msg.msg_flags = flags;
4640 ret = sock_sendmsg(sock, &msg);
4641 if (force_nonblock && ret == -EAGAIN)
4643 if (ret == -ERESTARTSYS)
4647 req_set_fail_links(req);
4648 __io_req_complete(req, ret, 0, cs);
4652 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4653 struct io_async_msghdr *iomsg)
4655 struct io_sr_msg *sr = &req->sr_msg;
4656 struct iovec __user *uiov;
4660 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4661 &iomsg->uaddr, &uiov, &iov_len);
4665 if (req->flags & REQ_F_BUFFER_SELECT) {
4668 if (copy_from_user(iomsg->iov, uiov, sizeof(*uiov)))
4670 sr->len = iomsg->iov[0].iov_len;
4671 iov_iter_init(&iomsg->msg.msg_iter, READ, iomsg->iov, 1,
4675 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4676 &iomsg->iov, &iomsg->msg.msg_iter,
4685 #ifdef CONFIG_COMPAT
4686 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4687 struct io_async_msghdr *iomsg)
4689 struct compat_msghdr __user *msg_compat;
4690 struct io_sr_msg *sr = &req->sr_msg;
4691 struct compat_iovec __user *uiov;
4696 msg_compat = (struct compat_msghdr __user *) sr->umsg;
4697 ret = __get_compat_msghdr(&iomsg->msg, msg_compat, &iomsg->uaddr,
4702 uiov = compat_ptr(ptr);
4703 if (req->flags & REQ_F_BUFFER_SELECT) {
4704 compat_ssize_t clen;
4708 if (!access_ok(uiov, sizeof(*uiov)))
4710 if (__get_user(clen, &uiov->iov_len))
4715 iomsg->iov[0].iov_len = clen;
4718 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4719 UIO_FASTIOV, &iomsg->iov,
4720 &iomsg->msg.msg_iter, true);
4729 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4730 struct io_async_msghdr *iomsg)
4732 iomsg->msg.msg_name = &iomsg->addr;
4733 iomsg->iov = iomsg->fast_iov;
4735 #ifdef CONFIG_COMPAT
4736 if (req->ctx->compat)
4737 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4740 return __io_recvmsg_copy_hdr(req, iomsg);
4743 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4746 struct io_sr_msg *sr = &req->sr_msg;
4747 struct io_buffer *kbuf;
4749 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4754 req->flags |= REQ_F_BUFFER_SELECTED;
4758 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4760 return io_put_kbuf(req, req->sr_msg.kbuf);
4763 static int io_recvmsg_prep(struct io_kiocb *req,
4764 const struct io_uring_sqe *sqe)
4766 struct io_async_msghdr *async_msg = req->async_data;
4767 struct io_sr_msg *sr = &req->sr_msg;
4770 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4773 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4774 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4775 sr->len = READ_ONCE(sqe->len);
4776 sr->bgid = READ_ONCE(sqe->buf_group);
4778 #ifdef CONFIG_COMPAT
4779 if (req->ctx->compat)
4780 sr->msg_flags |= MSG_CMSG_COMPAT;
4783 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4785 ret = io_recvmsg_copy_hdr(req, async_msg);
4787 req->flags |= REQ_F_NEED_CLEANUP;
4791 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock,
4792 struct io_comp_state *cs)
4794 struct io_async_msghdr iomsg, *kmsg;
4795 struct socket *sock;
4796 struct io_buffer *kbuf;
4798 int ret, cflags = 0;
4800 sock = sock_from_file(req->file);
4801 if (unlikely(!sock))
4804 if (req->async_data) {
4805 kmsg = req->async_data;
4806 kmsg->msg.msg_name = &kmsg->addr;
4807 /* if iov is set, it's allocated already */
4809 kmsg->iov = kmsg->fast_iov;
4810 kmsg->msg.msg_iter.iov = kmsg->iov;
4812 ret = io_recvmsg_copy_hdr(req, &iomsg);
4818 if (req->flags & REQ_F_BUFFER_SELECT) {
4819 kbuf = io_recv_buffer_select(req, !force_nonblock);
4821 return PTR_ERR(kbuf);
4822 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
4823 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->iov,
4824 1, req->sr_msg.len);
4827 flags = req->sr_msg.msg_flags;
4828 if (flags & MSG_DONTWAIT)
4829 req->flags |= REQ_F_NOWAIT;
4830 else if (force_nonblock)
4831 flags |= MSG_DONTWAIT;
4833 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
4834 kmsg->uaddr, flags);
4835 if (force_nonblock && ret == -EAGAIN)
4836 return io_setup_async_msg(req, kmsg);
4837 if (ret == -ERESTARTSYS)
4840 if (req->flags & REQ_F_BUFFER_SELECTED)
4841 cflags = io_put_recv_kbuf(req);
4842 if (kmsg->iov != kmsg->fast_iov)
4844 req->flags &= ~REQ_F_NEED_CLEANUP;
4846 req_set_fail_links(req);
4847 __io_req_complete(req, ret, cflags, cs);
4851 static int io_recv(struct io_kiocb *req, bool force_nonblock,
4852 struct io_comp_state *cs)
4854 struct io_buffer *kbuf;
4855 struct io_sr_msg *sr = &req->sr_msg;
4857 void __user *buf = sr->buf;
4858 struct socket *sock;
4861 int ret, cflags = 0;
4863 sock = sock_from_file(req->file);
4864 if (unlikely(!sock))
4867 if (req->flags & REQ_F_BUFFER_SELECT) {
4868 kbuf = io_recv_buffer_select(req, !force_nonblock);
4870 return PTR_ERR(kbuf);
4871 buf = u64_to_user_ptr(kbuf->addr);
4874 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
4878 msg.msg_name = NULL;
4879 msg.msg_control = NULL;
4880 msg.msg_controllen = 0;
4881 msg.msg_namelen = 0;
4882 msg.msg_iocb = NULL;
4885 flags = req->sr_msg.msg_flags;
4886 if (flags & MSG_DONTWAIT)
4887 req->flags |= REQ_F_NOWAIT;
4888 else if (force_nonblock)
4889 flags |= MSG_DONTWAIT;
4891 ret = sock_recvmsg(sock, &msg, flags);
4892 if (force_nonblock && ret == -EAGAIN)
4894 if (ret == -ERESTARTSYS)
4897 if (req->flags & REQ_F_BUFFER_SELECTED)
4898 cflags = io_put_recv_kbuf(req);
4900 req_set_fail_links(req);
4901 __io_req_complete(req, ret, cflags, cs);
4905 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4907 struct io_accept *accept = &req->accept;
4909 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4911 if (sqe->ioprio || sqe->len || sqe->buf_index)
4914 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4915 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4916 accept->flags = READ_ONCE(sqe->accept_flags);
4917 accept->nofile = rlimit(RLIMIT_NOFILE);
4921 static int io_accept(struct io_kiocb *req, bool force_nonblock,
4922 struct io_comp_state *cs)
4924 struct io_accept *accept = &req->accept;
4925 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
4928 if (req->file->f_flags & O_NONBLOCK)
4929 req->flags |= REQ_F_NOWAIT;
4931 ret = __sys_accept4_file(req->file, file_flags, accept->addr,
4932 accept->addr_len, accept->flags,
4934 if (ret == -EAGAIN && force_nonblock)
4937 if (ret == -ERESTARTSYS)
4939 req_set_fail_links(req);
4941 __io_req_complete(req, ret, 0, cs);
4945 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4947 struct io_connect *conn = &req->connect;
4948 struct io_async_connect *io = req->async_data;
4950 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4952 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
4955 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4956 conn->addr_len = READ_ONCE(sqe->addr2);
4961 return move_addr_to_kernel(conn->addr, conn->addr_len,
4965 static int io_connect(struct io_kiocb *req, bool force_nonblock,
4966 struct io_comp_state *cs)
4968 struct io_async_connect __io, *io;
4969 unsigned file_flags;
4972 if (req->async_data) {
4973 io = req->async_data;
4975 ret = move_addr_to_kernel(req->connect.addr,
4976 req->connect.addr_len,
4983 file_flags = force_nonblock ? O_NONBLOCK : 0;
4985 ret = __sys_connect_file(req->file, &io->address,
4986 req->connect.addr_len, file_flags);
4987 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
4988 if (req->async_data)
4990 if (io_alloc_async_data(req)) {
4994 io = req->async_data;
4995 memcpy(req->async_data, &__io, sizeof(__io));
4998 if (ret == -ERESTARTSYS)
5002 req_set_fail_links(req);
5003 __io_req_complete(req, ret, 0, cs);
5006 #else /* !CONFIG_NET */
5007 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5012 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock,
5013 struct io_comp_state *cs)
5018 static int io_send(struct io_kiocb *req, bool force_nonblock,
5019 struct io_comp_state *cs)
5024 static int io_recvmsg_prep(struct io_kiocb *req,
5025 const struct io_uring_sqe *sqe)
5030 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock,
5031 struct io_comp_state *cs)
5036 static int io_recv(struct io_kiocb *req, bool force_nonblock,
5037 struct io_comp_state *cs)
5042 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5047 static int io_accept(struct io_kiocb *req, bool force_nonblock,
5048 struct io_comp_state *cs)
5053 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5058 static int io_connect(struct io_kiocb *req, bool force_nonblock,
5059 struct io_comp_state *cs)
5063 #endif /* CONFIG_NET */
5065 struct io_poll_table {
5066 struct poll_table_struct pt;
5067 struct io_kiocb *req;
5071 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
5072 __poll_t mask, task_work_func_t func)
5076 /* for instances that support it check for an event match first: */
5077 if (mask && !(mask & poll->events))
5080 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5082 list_del_init(&poll->wait.entry);
5085 init_task_work(&req->task_work, func);
5086 percpu_ref_get(&req->ctx->refs);
5089 * If this fails, then the task is exiting. When a task exits, the
5090 * work gets canceled, so just cancel this request as well instead
5091 * of executing it. We can't safely execute it anyway, as we may not
5092 * have the needed state needed for it anyway.
5094 ret = io_req_task_work_add(req);
5095 if (unlikely(ret)) {
5096 struct task_struct *tsk;
5098 WRITE_ONCE(poll->canceled, true);
5099 tsk = io_wq_get_task(req->ctx->io_wq);
5100 task_work_add(tsk, &req->task_work, TWA_NONE);
5101 wake_up_process(tsk);
5106 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
5107 __acquires(&req->ctx->completion_lock)
5109 struct io_ring_ctx *ctx = req->ctx;
5111 if (!req->result && !READ_ONCE(poll->canceled)) {
5112 struct poll_table_struct pt = { ._key = poll->events };
5114 req->result = vfs_poll(req->file, &pt) & poll->events;
5117 spin_lock_irq(&ctx->completion_lock);
5118 if (!req->result && !READ_ONCE(poll->canceled)) {
5119 add_wait_queue(poll->head, &poll->wait);
5126 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5128 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5129 if (req->opcode == IORING_OP_POLL_ADD)
5130 return req->async_data;
5131 return req->apoll->double_poll;
5134 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5136 if (req->opcode == IORING_OP_POLL_ADD)
5138 return &req->apoll->poll;
5141 static void io_poll_remove_double(struct io_kiocb *req)
5143 struct io_poll_iocb *poll = io_poll_get_double(req);
5145 lockdep_assert_held(&req->ctx->completion_lock);
5147 if (poll && poll->head) {
5148 struct wait_queue_head *head = poll->head;
5150 spin_lock(&head->lock);
5151 list_del_init(&poll->wait.entry);
5152 if (poll->wait.private)
5153 refcount_dec(&req->refs);
5155 spin_unlock(&head->lock);
5159 static void io_poll_complete(struct io_kiocb *req, __poll_t mask, int error)
5161 struct io_ring_ctx *ctx = req->ctx;
5163 io_poll_remove_double(req);
5164 req->poll.done = true;
5165 io_cqring_fill_event(req, error ? error : mangle_poll(mask));
5166 io_commit_cqring(ctx);
5169 static void io_poll_task_func(struct callback_head *cb)
5171 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5172 struct io_ring_ctx *ctx = req->ctx;
5173 struct io_kiocb *nxt;
5175 if (io_poll_rewait(req, &req->poll)) {
5176 spin_unlock_irq(&ctx->completion_lock);
5178 hash_del(&req->hash_node);
5179 io_poll_complete(req, req->result, 0);
5180 spin_unlock_irq(&ctx->completion_lock);
5182 nxt = io_put_req_find_next(req);
5183 io_cqring_ev_posted(ctx);
5185 __io_req_task_submit(nxt);
5188 percpu_ref_put(&ctx->refs);
5191 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
5192 int sync, void *key)
5194 struct io_kiocb *req = wait->private;
5195 struct io_poll_iocb *poll = io_poll_get_single(req);
5196 __poll_t mask = key_to_poll(key);
5198 /* for instances that support it check for an event match first: */
5199 if (mask && !(mask & poll->events))
5202 list_del_init(&wait->entry);
5204 if (poll && poll->head) {
5207 spin_lock(&poll->head->lock);
5208 done = list_empty(&poll->wait.entry);
5210 list_del_init(&poll->wait.entry);
5211 /* make sure double remove sees this as being gone */
5212 wait->private = NULL;
5213 spin_unlock(&poll->head->lock);
5215 /* use wait func handler, so it matches the rq type */
5216 poll->wait.func(&poll->wait, mode, sync, key);
5219 refcount_dec(&req->refs);
5223 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5224 wait_queue_func_t wake_func)
5228 poll->canceled = false;
5229 poll->events = events;
5230 INIT_LIST_HEAD(&poll->wait.entry);
5231 init_waitqueue_func_entry(&poll->wait, wake_func);
5234 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5235 struct wait_queue_head *head,
5236 struct io_poll_iocb **poll_ptr)
5238 struct io_kiocb *req = pt->req;
5241 * If poll->head is already set, it's because the file being polled
5242 * uses multiple waitqueues for poll handling (eg one for read, one
5243 * for write). Setup a separate io_poll_iocb if this happens.
5245 if (unlikely(poll->head)) {
5246 struct io_poll_iocb *poll_one = poll;
5248 /* already have a 2nd entry, fail a third attempt */
5250 pt->error = -EINVAL;
5253 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5255 pt->error = -ENOMEM;
5258 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5259 refcount_inc(&req->refs);
5260 poll->wait.private = req;
5267 if (poll->events & EPOLLEXCLUSIVE)
5268 add_wait_queue_exclusive(head, &poll->wait);
5270 add_wait_queue(head, &poll->wait);
5273 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5274 struct poll_table_struct *p)
5276 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5277 struct async_poll *apoll = pt->req->apoll;
5279 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5282 static void io_async_task_func(struct callback_head *cb)
5284 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5285 struct async_poll *apoll = req->apoll;
5286 struct io_ring_ctx *ctx = req->ctx;
5288 trace_io_uring_task_run(req->ctx, req->opcode, req->user_data);
5290 if (io_poll_rewait(req, &apoll->poll)) {
5291 spin_unlock_irq(&ctx->completion_lock);
5292 percpu_ref_put(&ctx->refs);
5296 /* If req is still hashed, it cannot have been canceled. Don't check. */
5297 if (hash_hashed(&req->hash_node))
5298 hash_del(&req->hash_node);
5300 io_poll_remove_double(req);
5301 spin_unlock_irq(&ctx->completion_lock);
5303 if (!READ_ONCE(apoll->poll.canceled))
5304 __io_req_task_submit(req);
5306 __io_req_task_cancel(req, -ECANCELED);
5308 percpu_ref_put(&ctx->refs);
5309 kfree(apoll->double_poll);
5313 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5316 struct io_kiocb *req = wait->private;
5317 struct io_poll_iocb *poll = &req->apoll->poll;
5319 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5322 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5325 static void io_poll_req_insert(struct io_kiocb *req)
5327 struct io_ring_ctx *ctx = req->ctx;
5328 struct hlist_head *list;
5330 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5331 hlist_add_head(&req->hash_node, list);
5334 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5335 struct io_poll_iocb *poll,
5336 struct io_poll_table *ipt, __poll_t mask,
5337 wait_queue_func_t wake_func)
5338 __acquires(&ctx->completion_lock)
5340 struct io_ring_ctx *ctx = req->ctx;
5341 bool cancel = false;
5343 INIT_HLIST_NODE(&req->hash_node);
5344 io_init_poll_iocb(poll, mask, wake_func);
5345 poll->file = req->file;
5346 poll->wait.private = req;
5348 ipt->pt._key = mask;
5350 ipt->error = -EINVAL;
5352 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5354 spin_lock_irq(&ctx->completion_lock);
5355 if (likely(poll->head)) {
5356 spin_lock(&poll->head->lock);
5357 if (unlikely(list_empty(&poll->wait.entry))) {
5363 if (mask || ipt->error)
5364 list_del_init(&poll->wait.entry);
5366 WRITE_ONCE(poll->canceled, true);
5367 else if (!poll->done) /* actually waiting for an event */
5368 io_poll_req_insert(req);
5369 spin_unlock(&poll->head->lock);
5375 static bool io_arm_poll_handler(struct io_kiocb *req)
5377 const struct io_op_def *def = &io_op_defs[req->opcode];
5378 struct io_ring_ctx *ctx = req->ctx;
5379 struct async_poll *apoll;
5380 struct io_poll_table ipt;
5384 if (!req->file || !file_can_poll(req->file))
5386 if (req->flags & REQ_F_POLLED)
5390 else if (def->pollout)
5394 /* if we can't nonblock try, then no point in arming a poll handler */
5395 if (!io_file_supports_async(req->file, rw))
5398 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5399 if (unlikely(!apoll))
5401 apoll->double_poll = NULL;
5403 req->flags |= REQ_F_POLLED;
5408 mask |= POLLIN | POLLRDNORM;
5410 mask |= POLLOUT | POLLWRNORM;
5412 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5413 if ((req->opcode == IORING_OP_RECVMSG) &&
5414 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5417 mask |= POLLERR | POLLPRI;
5419 ipt.pt._qproc = io_async_queue_proc;
5421 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5423 if (ret || ipt.error) {
5424 io_poll_remove_double(req);
5425 spin_unlock_irq(&ctx->completion_lock);
5426 kfree(apoll->double_poll);
5430 spin_unlock_irq(&ctx->completion_lock);
5431 trace_io_uring_poll_arm(ctx, req->opcode, req->user_data, mask,
5432 apoll->poll.events);
5436 static bool __io_poll_remove_one(struct io_kiocb *req,
5437 struct io_poll_iocb *poll)
5439 bool do_complete = false;
5441 spin_lock(&poll->head->lock);
5442 WRITE_ONCE(poll->canceled, true);
5443 if (!list_empty(&poll->wait.entry)) {
5444 list_del_init(&poll->wait.entry);
5447 spin_unlock(&poll->head->lock);
5448 hash_del(&req->hash_node);
5452 static bool io_poll_remove_one(struct io_kiocb *req)
5456 io_poll_remove_double(req);
5458 if (req->opcode == IORING_OP_POLL_ADD) {
5459 do_complete = __io_poll_remove_one(req, &req->poll);
5461 struct async_poll *apoll = req->apoll;
5463 /* non-poll requests have submit ref still */
5464 do_complete = __io_poll_remove_one(req, &apoll->poll);
5467 kfree(apoll->double_poll);
5473 io_cqring_fill_event(req, -ECANCELED);
5474 io_commit_cqring(req->ctx);
5475 req_set_fail_links(req);
5476 io_put_req_deferred(req, 1);
5483 * Returns true if we found and killed one or more poll requests
5485 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5486 struct files_struct *files)
5488 struct hlist_node *tmp;
5489 struct io_kiocb *req;
5492 spin_lock_irq(&ctx->completion_lock);
5493 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5494 struct hlist_head *list;
5496 list = &ctx->cancel_hash[i];
5497 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5498 if (io_match_task(req, tsk, files))
5499 posted += io_poll_remove_one(req);
5502 spin_unlock_irq(&ctx->completion_lock);
5505 io_cqring_ev_posted(ctx);
5510 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr)
5512 struct hlist_head *list;
5513 struct io_kiocb *req;
5515 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5516 hlist_for_each_entry(req, list, hash_node) {
5517 if (sqe_addr != req->user_data)
5519 if (io_poll_remove_one(req))
5527 static int io_poll_remove_prep(struct io_kiocb *req,
5528 const struct io_uring_sqe *sqe)
5530 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5532 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
5536 req->poll_remove.addr = READ_ONCE(sqe->addr);
5541 * Find a running poll command that matches one specified in sqe->addr,
5542 * and remove it if found.
5544 static int io_poll_remove(struct io_kiocb *req)
5546 struct io_ring_ctx *ctx = req->ctx;
5549 spin_lock_irq(&ctx->completion_lock);
5550 ret = io_poll_cancel(ctx, req->poll_remove.addr);
5551 spin_unlock_irq(&ctx->completion_lock);
5554 req_set_fail_links(req);
5555 io_req_complete(req, ret);
5559 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5562 struct io_kiocb *req = wait->private;
5563 struct io_poll_iocb *poll = &req->poll;
5565 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5568 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5569 struct poll_table_struct *p)
5571 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5573 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5576 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5578 struct io_poll_iocb *poll = &req->poll;
5581 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5583 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
5586 events = READ_ONCE(sqe->poll32_events);
5588 events = swahw32(events);
5590 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP |
5591 (events & EPOLLEXCLUSIVE);
5595 static int io_poll_add(struct io_kiocb *req)
5597 struct io_poll_iocb *poll = &req->poll;
5598 struct io_ring_ctx *ctx = req->ctx;
5599 struct io_poll_table ipt;
5602 ipt.pt._qproc = io_poll_queue_proc;
5604 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5607 if (mask) { /* no async, we'd stolen it */
5609 io_poll_complete(req, mask, 0);
5611 spin_unlock_irq(&ctx->completion_lock);
5614 io_cqring_ev_posted(ctx);
5620 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5622 struct io_timeout_data *data = container_of(timer,
5623 struct io_timeout_data, timer);
5624 struct io_kiocb *req = data->req;
5625 struct io_ring_ctx *ctx = req->ctx;
5626 unsigned long flags;
5628 spin_lock_irqsave(&ctx->completion_lock, flags);
5629 list_del_init(&req->timeout.list);
5630 atomic_set(&req->ctx->cq_timeouts,
5631 atomic_read(&req->ctx->cq_timeouts) + 1);
5633 io_cqring_fill_event(req, -ETIME);
5634 io_commit_cqring(ctx);
5635 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5637 io_cqring_ev_posted(ctx);
5638 req_set_fail_links(req);
5640 return HRTIMER_NORESTART;
5643 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
5646 struct io_timeout_data *io;
5647 struct io_kiocb *req;
5650 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5651 if (user_data == req->user_data) {
5658 return ERR_PTR(ret);
5660 io = req->async_data;
5661 ret = hrtimer_try_to_cancel(&io->timer);
5663 return ERR_PTR(-EALREADY);
5664 list_del_init(&req->timeout.list);
5668 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
5670 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5673 return PTR_ERR(req);
5675 req_set_fail_links(req);
5676 io_cqring_fill_event(req, -ECANCELED);
5677 io_put_req_deferred(req, 1);
5681 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
5682 struct timespec64 *ts, enum hrtimer_mode mode)
5684 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5685 struct io_timeout_data *data;
5688 return PTR_ERR(req);
5690 req->timeout.off = 0; /* noseq */
5691 data = req->async_data;
5692 list_add_tail(&req->timeout.list, &ctx->timeout_list);
5693 hrtimer_init(&data->timer, CLOCK_MONOTONIC, mode);
5694 data->timer.function = io_timeout_fn;
5695 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
5699 static int io_timeout_remove_prep(struct io_kiocb *req,
5700 const struct io_uring_sqe *sqe)
5702 struct io_timeout_rem *tr = &req->timeout_rem;
5704 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5706 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5708 if (sqe->ioprio || sqe->buf_index || sqe->len)
5711 tr->addr = READ_ONCE(sqe->addr);
5712 tr->flags = READ_ONCE(sqe->timeout_flags);
5713 if (tr->flags & IORING_TIMEOUT_UPDATE) {
5714 if (tr->flags & ~(IORING_TIMEOUT_UPDATE|IORING_TIMEOUT_ABS))
5716 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
5718 } else if (tr->flags) {
5719 /* timeout removal doesn't support flags */
5727 * Remove or update an existing timeout command
5729 static int io_timeout_remove(struct io_kiocb *req)
5731 struct io_timeout_rem *tr = &req->timeout_rem;
5732 struct io_ring_ctx *ctx = req->ctx;
5735 spin_lock_irq(&ctx->completion_lock);
5736 if (req->timeout_rem.flags & IORING_TIMEOUT_UPDATE) {
5737 enum hrtimer_mode mode = (tr->flags & IORING_TIMEOUT_ABS)
5738 ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
5740 ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
5742 ret = io_timeout_cancel(ctx, tr->addr);
5745 io_cqring_fill_event(req, ret);
5746 io_commit_cqring(ctx);
5747 spin_unlock_irq(&ctx->completion_lock);
5748 io_cqring_ev_posted(ctx);
5750 req_set_fail_links(req);
5755 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5756 bool is_timeout_link)
5758 struct io_timeout_data *data;
5760 u32 off = READ_ONCE(sqe->off);
5762 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5764 if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
5766 if (off && is_timeout_link)
5768 flags = READ_ONCE(sqe->timeout_flags);
5769 if (flags & ~IORING_TIMEOUT_ABS)
5772 req->timeout.off = off;
5774 if (!req->async_data && io_alloc_async_data(req))
5777 data = req->async_data;
5780 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
5783 if (flags & IORING_TIMEOUT_ABS)
5784 data->mode = HRTIMER_MODE_ABS;
5786 data->mode = HRTIMER_MODE_REL;
5788 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
5792 static int io_timeout(struct io_kiocb *req)
5794 struct io_ring_ctx *ctx = req->ctx;
5795 struct io_timeout_data *data = req->async_data;
5796 struct list_head *entry;
5797 u32 tail, off = req->timeout.off;
5799 spin_lock_irq(&ctx->completion_lock);
5802 * sqe->off holds how many events that need to occur for this
5803 * timeout event to be satisfied. If it isn't set, then this is
5804 * a pure timeout request, sequence isn't used.
5806 if (io_is_timeout_noseq(req)) {
5807 entry = ctx->timeout_list.prev;
5811 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
5812 req->timeout.target_seq = tail + off;
5815 * Insertion sort, ensuring the first entry in the list is always
5816 * the one we need first.
5818 list_for_each_prev(entry, &ctx->timeout_list) {
5819 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
5822 if (io_is_timeout_noseq(nxt))
5824 /* nxt.seq is behind @tail, otherwise would've been completed */
5825 if (off >= nxt->timeout.target_seq - tail)
5829 list_add(&req->timeout.list, entry);
5830 data->timer.function = io_timeout_fn;
5831 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
5832 spin_unlock_irq(&ctx->completion_lock);
5836 static bool io_cancel_cb(struct io_wq_work *work, void *data)
5838 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5840 return req->user_data == (unsigned long) data;
5843 static int io_async_cancel_one(struct io_ring_ctx *ctx, void *sqe_addr)
5845 enum io_wq_cancel cancel_ret;
5848 cancel_ret = io_wq_cancel_cb(ctx->io_wq, io_cancel_cb, sqe_addr, false);
5849 switch (cancel_ret) {
5850 case IO_WQ_CANCEL_OK:
5853 case IO_WQ_CANCEL_RUNNING:
5856 case IO_WQ_CANCEL_NOTFOUND:
5864 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
5865 struct io_kiocb *req, __u64 sqe_addr,
5868 unsigned long flags;
5871 ret = io_async_cancel_one(ctx, (void *) (unsigned long) sqe_addr);
5872 if (ret != -ENOENT) {
5873 spin_lock_irqsave(&ctx->completion_lock, flags);
5877 spin_lock_irqsave(&ctx->completion_lock, flags);
5878 ret = io_timeout_cancel(ctx, sqe_addr);
5881 ret = io_poll_cancel(ctx, sqe_addr);
5885 io_cqring_fill_event(req, ret);
5886 io_commit_cqring(ctx);
5887 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5888 io_cqring_ev_posted(ctx);
5891 req_set_fail_links(req);
5895 static int io_async_cancel_prep(struct io_kiocb *req,
5896 const struct io_uring_sqe *sqe)
5898 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5900 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5902 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags)
5905 req->cancel.addr = READ_ONCE(sqe->addr);
5909 static int io_async_cancel(struct io_kiocb *req)
5911 struct io_ring_ctx *ctx = req->ctx;
5913 io_async_find_and_cancel(ctx, req, req->cancel.addr, 0);
5917 static int io_files_update_prep(struct io_kiocb *req,
5918 const struct io_uring_sqe *sqe)
5920 if (unlikely(req->ctx->flags & IORING_SETUP_SQPOLL))
5922 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5924 if (sqe->ioprio || sqe->rw_flags)
5927 req->files_update.offset = READ_ONCE(sqe->off);
5928 req->files_update.nr_args = READ_ONCE(sqe->len);
5929 if (!req->files_update.nr_args)
5931 req->files_update.arg = READ_ONCE(sqe->addr);
5935 static int io_files_update(struct io_kiocb *req, bool force_nonblock,
5936 struct io_comp_state *cs)
5938 struct io_ring_ctx *ctx = req->ctx;
5939 struct io_uring_files_update up;
5945 up.offset = req->files_update.offset;
5946 up.fds = req->files_update.arg;
5948 mutex_lock(&ctx->uring_lock);
5949 ret = __io_sqe_files_update(ctx, &up, req->files_update.nr_args);
5950 mutex_unlock(&ctx->uring_lock);
5953 req_set_fail_links(req);
5954 __io_req_complete(req, ret, 0, cs);
5958 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5960 switch (req->opcode) {
5963 case IORING_OP_READV:
5964 case IORING_OP_READ_FIXED:
5965 case IORING_OP_READ:
5966 return io_read_prep(req, sqe);
5967 case IORING_OP_WRITEV:
5968 case IORING_OP_WRITE_FIXED:
5969 case IORING_OP_WRITE:
5970 return io_write_prep(req, sqe);
5971 case IORING_OP_POLL_ADD:
5972 return io_poll_add_prep(req, sqe);
5973 case IORING_OP_POLL_REMOVE:
5974 return io_poll_remove_prep(req, sqe);
5975 case IORING_OP_FSYNC:
5976 return io_prep_fsync(req, sqe);
5977 case IORING_OP_SYNC_FILE_RANGE:
5978 return io_prep_sfr(req, sqe);
5979 case IORING_OP_SENDMSG:
5980 case IORING_OP_SEND:
5981 return io_sendmsg_prep(req, sqe);
5982 case IORING_OP_RECVMSG:
5983 case IORING_OP_RECV:
5984 return io_recvmsg_prep(req, sqe);
5985 case IORING_OP_CONNECT:
5986 return io_connect_prep(req, sqe);
5987 case IORING_OP_TIMEOUT:
5988 return io_timeout_prep(req, sqe, false);
5989 case IORING_OP_TIMEOUT_REMOVE:
5990 return io_timeout_remove_prep(req, sqe);
5991 case IORING_OP_ASYNC_CANCEL:
5992 return io_async_cancel_prep(req, sqe);
5993 case IORING_OP_LINK_TIMEOUT:
5994 return io_timeout_prep(req, sqe, true);
5995 case IORING_OP_ACCEPT:
5996 return io_accept_prep(req, sqe);
5997 case IORING_OP_FALLOCATE:
5998 return io_fallocate_prep(req, sqe);
5999 case IORING_OP_OPENAT:
6000 return io_openat_prep(req, sqe);
6001 case IORING_OP_CLOSE:
6002 return io_close_prep(req, sqe);
6003 case IORING_OP_FILES_UPDATE:
6004 return io_files_update_prep(req, sqe);
6005 case IORING_OP_STATX:
6006 return io_statx_prep(req, sqe);
6007 case IORING_OP_FADVISE:
6008 return io_fadvise_prep(req, sqe);
6009 case IORING_OP_MADVISE:
6010 return io_madvise_prep(req, sqe);
6011 case IORING_OP_OPENAT2:
6012 return io_openat2_prep(req, sqe);
6013 case IORING_OP_EPOLL_CTL:
6014 return io_epoll_ctl_prep(req, sqe);
6015 case IORING_OP_SPLICE:
6016 return io_splice_prep(req, sqe);
6017 case IORING_OP_PROVIDE_BUFFERS:
6018 return io_provide_buffers_prep(req, sqe);
6019 case IORING_OP_REMOVE_BUFFERS:
6020 return io_remove_buffers_prep(req, sqe);
6022 return io_tee_prep(req, sqe);
6023 case IORING_OP_SHUTDOWN:
6024 return io_shutdown_prep(req, sqe);
6025 case IORING_OP_RENAMEAT:
6026 return io_renameat_prep(req, sqe);
6027 case IORING_OP_UNLINKAT:
6028 return io_unlinkat_prep(req, sqe);
6031 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6036 static int io_req_defer_prep(struct io_kiocb *req,
6037 const struct io_uring_sqe *sqe)
6041 if (io_alloc_async_data(req))
6043 return io_req_prep(req, sqe);
6046 static u32 io_get_sequence(struct io_kiocb *req)
6048 struct io_kiocb *pos;
6049 struct io_ring_ctx *ctx = req->ctx;
6050 u32 total_submitted, nr_reqs = 0;
6052 io_for_each_link(pos, req)
6055 total_submitted = ctx->cached_sq_head - ctx->cached_sq_dropped;
6056 return total_submitted - nr_reqs;
6059 static int io_req_defer(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6061 struct io_ring_ctx *ctx = req->ctx;
6062 struct io_defer_entry *de;
6066 /* Still need defer if there is pending req in defer list. */
6067 if (likely(list_empty_careful(&ctx->defer_list) &&
6068 !(req->flags & REQ_F_IO_DRAIN)))
6071 seq = io_get_sequence(req);
6072 /* Still a chance to pass the sequence check */
6073 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6076 if (!req->async_data) {
6077 ret = io_req_defer_prep(req, sqe);
6081 io_prep_async_link(req);
6082 de = kmalloc(sizeof(*de), GFP_KERNEL);
6086 spin_lock_irq(&ctx->completion_lock);
6087 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6088 spin_unlock_irq(&ctx->completion_lock);
6090 io_queue_async_work(req);
6091 return -EIOCBQUEUED;
6094 trace_io_uring_defer(ctx, req, req->user_data);
6097 list_add_tail(&de->list, &ctx->defer_list);
6098 spin_unlock_irq(&ctx->completion_lock);
6099 return -EIOCBQUEUED;
6102 static void io_req_drop_files(struct io_kiocb *req)
6104 struct io_ring_ctx *ctx = req->ctx;
6105 struct io_uring_task *tctx = req->task->io_uring;
6106 unsigned long flags;
6108 put_files_struct(req->work.identity->files);
6109 put_nsproxy(req->work.identity->nsproxy);
6110 spin_lock_irqsave(&ctx->inflight_lock, flags);
6111 list_del(&req->inflight_entry);
6112 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
6113 req->flags &= ~REQ_F_INFLIGHT;
6114 req->work.flags &= ~IO_WQ_WORK_FILES;
6115 if (atomic_read(&tctx->in_idle))
6116 wake_up(&tctx->wait);
6119 static void __io_clean_op(struct io_kiocb *req)
6121 if (req->flags & REQ_F_BUFFER_SELECTED) {
6122 switch (req->opcode) {
6123 case IORING_OP_READV:
6124 case IORING_OP_READ_FIXED:
6125 case IORING_OP_READ:
6126 kfree((void *)(unsigned long)req->rw.addr);
6128 case IORING_OP_RECVMSG:
6129 case IORING_OP_RECV:
6130 kfree(req->sr_msg.kbuf);
6133 req->flags &= ~REQ_F_BUFFER_SELECTED;
6136 if (req->flags & REQ_F_NEED_CLEANUP) {
6137 switch (req->opcode) {
6138 case IORING_OP_READV:
6139 case IORING_OP_READ_FIXED:
6140 case IORING_OP_READ:
6141 case IORING_OP_WRITEV:
6142 case IORING_OP_WRITE_FIXED:
6143 case IORING_OP_WRITE: {
6144 struct io_async_rw *io = req->async_data;
6146 kfree(io->free_iovec);
6149 case IORING_OP_RECVMSG:
6150 case IORING_OP_SENDMSG: {
6151 struct io_async_msghdr *io = req->async_data;
6152 if (io->iov != io->fast_iov)
6156 case IORING_OP_SPLICE:
6158 io_put_file(req, req->splice.file_in,
6159 (req->splice.flags & SPLICE_F_FD_IN_FIXED));
6161 case IORING_OP_OPENAT:
6162 case IORING_OP_OPENAT2:
6163 if (req->open.filename)
6164 putname(req->open.filename);
6166 case IORING_OP_RENAMEAT:
6167 putname(req->rename.oldpath);
6168 putname(req->rename.newpath);
6170 case IORING_OP_UNLINKAT:
6171 putname(req->unlink.filename);
6174 req->flags &= ~REQ_F_NEED_CLEANUP;
6177 if (req->flags & REQ_F_INFLIGHT)
6178 io_req_drop_files(req);
6181 static int io_issue_sqe(struct io_kiocb *req, bool force_nonblock,
6182 struct io_comp_state *cs)
6184 struct io_ring_ctx *ctx = req->ctx;
6187 switch (req->opcode) {
6189 ret = io_nop(req, cs);
6191 case IORING_OP_READV:
6192 case IORING_OP_READ_FIXED:
6193 case IORING_OP_READ:
6194 ret = io_read(req, force_nonblock, cs);
6196 case IORING_OP_WRITEV:
6197 case IORING_OP_WRITE_FIXED:
6198 case IORING_OP_WRITE:
6199 ret = io_write(req, force_nonblock, cs);
6201 case IORING_OP_FSYNC:
6202 ret = io_fsync(req, force_nonblock);
6204 case IORING_OP_POLL_ADD:
6205 ret = io_poll_add(req);
6207 case IORING_OP_POLL_REMOVE:
6208 ret = io_poll_remove(req);
6210 case IORING_OP_SYNC_FILE_RANGE:
6211 ret = io_sync_file_range(req, force_nonblock);
6213 case IORING_OP_SENDMSG:
6214 ret = io_sendmsg(req, force_nonblock, cs);
6216 case IORING_OP_SEND:
6217 ret = io_send(req, force_nonblock, cs);
6219 case IORING_OP_RECVMSG:
6220 ret = io_recvmsg(req, force_nonblock, cs);
6222 case IORING_OP_RECV:
6223 ret = io_recv(req, force_nonblock, cs);
6225 case IORING_OP_TIMEOUT:
6226 ret = io_timeout(req);
6228 case IORING_OP_TIMEOUT_REMOVE:
6229 ret = io_timeout_remove(req);
6231 case IORING_OP_ACCEPT:
6232 ret = io_accept(req, force_nonblock, cs);
6234 case IORING_OP_CONNECT:
6235 ret = io_connect(req, force_nonblock, cs);
6237 case IORING_OP_ASYNC_CANCEL:
6238 ret = io_async_cancel(req);
6240 case IORING_OP_FALLOCATE:
6241 ret = io_fallocate(req, force_nonblock);
6243 case IORING_OP_OPENAT:
6244 ret = io_openat(req, force_nonblock);
6246 case IORING_OP_CLOSE:
6247 ret = io_close(req, force_nonblock, cs);
6249 case IORING_OP_FILES_UPDATE:
6250 ret = io_files_update(req, force_nonblock, cs);
6252 case IORING_OP_STATX:
6253 ret = io_statx(req, force_nonblock);
6255 case IORING_OP_FADVISE:
6256 ret = io_fadvise(req, force_nonblock);
6258 case IORING_OP_MADVISE:
6259 ret = io_madvise(req, force_nonblock);
6261 case IORING_OP_OPENAT2:
6262 ret = io_openat2(req, force_nonblock);
6264 case IORING_OP_EPOLL_CTL:
6265 ret = io_epoll_ctl(req, force_nonblock, cs);
6267 case IORING_OP_SPLICE:
6268 ret = io_splice(req, force_nonblock);
6270 case IORING_OP_PROVIDE_BUFFERS:
6271 ret = io_provide_buffers(req, force_nonblock, cs);
6273 case IORING_OP_REMOVE_BUFFERS:
6274 ret = io_remove_buffers(req, force_nonblock, cs);
6277 ret = io_tee(req, force_nonblock);
6279 case IORING_OP_SHUTDOWN:
6280 ret = io_shutdown(req, force_nonblock);
6282 case IORING_OP_RENAMEAT:
6283 ret = io_renameat(req, force_nonblock);
6285 case IORING_OP_UNLINKAT:
6286 ret = io_unlinkat(req, force_nonblock);
6296 /* If the op doesn't have a file, we're not polling for it */
6297 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file) {
6298 const bool in_async = io_wq_current_is_worker();
6300 /* workqueue context doesn't hold uring_lock, grab it now */
6302 mutex_lock(&ctx->uring_lock);
6304 io_iopoll_req_issued(req, in_async);
6307 mutex_unlock(&ctx->uring_lock);
6313 static struct io_wq_work *io_wq_submit_work(struct io_wq_work *work)
6315 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6316 struct io_kiocb *timeout;
6319 timeout = io_prep_linked_timeout(req);
6321 io_queue_linked_timeout(timeout);
6323 /* if NO_CANCEL is set, we must still run the work */
6324 if ((work->flags & (IO_WQ_WORK_CANCEL|IO_WQ_WORK_NO_CANCEL)) ==
6325 IO_WQ_WORK_CANCEL) {
6331 ret = io_issue_sqe(req, false, NULL);
6333 * We can get EAGAIN for polled IO even though we're
6334 * forcing a sync submission from here, since we can't
6335 * wait for request slots on the block side.
6344 struct io_ring_ctx *lock_ctx = NULL;
6346 if (req->ctx->flags & IORING_SETUP_IOPOLL)
6347 lock_ctx = req->ctx;
6350 * io_iopoll_complete() does not hold completion_lock to
6351 * complete polled io, so here for polled io, we can not call
6352 * io_req_complete() directly, otherwise there maybe concurrent
6353 * access to cqring, defer_list, etc, which is not safe. Given
6354 * that io_iopoll_complete() is always called under uring_lock,
6355 * so here for polled io, we also get uring_lock to complete
6359 mutex_lock(&lock_ctx->uring_lock);
6361 req_set_fail_links(req);
6362 io_req_complete(req, ret);
6365 mutex_unlock(&lock_ctx->uring_lock);
6368 return io_steal_work(req);
6371 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6374 struct fixed_file_table *table;
6376 table = &ctx->file_data->table[index >> IORING_FILE_TABLE_SHIFT];
6377 return table->files[index & IORING_FILE_TABLE_MASK];
6380 static struct file *io_file_get(struct io_submit_state *state,
6381 struct io_kiocb *req, int fd, bool fixed)
6383 struct io_ring_ctx *ctx = req->ctx;
6387 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6389 fd = array_index_nospec(fd, ctx->nr_user_files);
6390 file = io_file_from_index(ctx, fd);
6391 io_set_resource_node(req);
6393 trace_io_uring_file_get(ctx, fd);
6394 file = __io_file_get(state, fd);
6400 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6402 struct io_timeout_data *data = container_of(timer,
6403 struct io_timeout_data, timer);
6404 struct io_kiocb *prev, *req = data->req;
6405 struct io_ring_ctx *ctx = req->ctx;
6406 unsigned long flags;
6408 spin_lock_irqsave(&ctx->completion_lock, flags);
6409 prev = req->timeout.head;
6410 req->timeout.head = NULL;
6413 * We don't expect the list to be empty, that will only happen if we
6414 * race with the completion of the linked work.
6416 if (prev && refcount_inc_not_zero(&prev->refs))
6417 io_remove_next_linked(prev);
6420 spin_unlock_irqrestore(&ctx->completion_lock, flags);
6423 req_set_fail_links(prev);
6424 io_async_find_and_cancel(ctx, req, prev->user_data, -ETIME);
6427 io_req_complete(req, -ETIME);
6429 return HRTIMER_NORESTART;
6432 static void __io_queue_linked_timeout(struct io_kiocb *req)
6435 * If the back reference is NULL, then our linked request finished
6436 * before we got a chance to setup the timer
6438 if (req->timeout.head) {
6439 struct io_timeout_data *data = req->async_data;
6441 data->timer.function = io_link_timeout_fn;
6442 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6447 static void io_queue_linked_timeout(struct io_kiocb *req)
6449 struct io_ring_ctx *ctx = req->ctx;
6451 spin_lock_irq(&ctx->completion_lock);
6452 __io_queue_linked_timeout(req);
6453 spin_unlock_irq(&ctx->completion_lock);
6455 /* drop submission reference */
6459 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
6461 struct io_kiocb *nxt = req->link;
6463 if (!nxt || (req->flags & REQ_F_LINK_TIMEOUT) ||
6464 nxt->opcode != IORING_OP_LINK_TIMEOUT)
6467 nxt->timeout.head = req;
6468 nxt->flags |= REQ_F_LTIMEOUT_ACTIVE;
6469 req->flags |= REQ_F_LINK_TIMEOUT;
6473 static void __io_queue_sqe(struct io_kiocb *req, struct io_comp_state *cs)
6475 struct io_kiocb *linked_timeout;
6476 const struct cred *old_creds = NULL;
6480 linked_timeout = io_prep_linked_timeout(req);
6482 if ((req->flags & REQ_F_WORK_INITIALIZED) &&
6483 (req->work.flags & IO_WQ_WORK_CREDS) &&
6484 req->work.identity->creds != current_cred()) {
6486 revert_creds(old_creds);
6487 if (old_creds == req->work.identity->creds)
6488 old_creds = NULL; /* restored original creds */
6490 old_creds = override_creds(req->work.identity->creds);
6493 ret = io_issue_sqe(req, true, cs);
6496 * We async punt it if the file wasn't marked NOWAIT, or if the file
6497 * doesn't support non-blocking read/write attempts
6499 if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
6500 if (!io_arm_poll_handler(req)) {
6502 * Queued up for async execution, worker will release
6503 * submit reference when the iocb is actually submitted.
6505 io_queue_async_work(req);
6509 io_queue_linked_timeout(linked_timeout);
6510 } else if (likely(!ret)) {
6511 /* drop submission reference */
6512 req = io_put_req_find_next(req);
6514 io_queue_linked_timeout(linked_timeout);
6517 if (!(req->flags & REQ_F_FORCE_ASYNC))
6519 io_queue_async_work(req);
6522 /* un-prep timeout, so it'll be killed as any other linked */
6523 req->flags &= ~REQ_F_LINK_TIMEOUT;
6524 req_set_fail_links(req);
6526 io_req_complete(req, ret);
6530 revert_creds(old_creds);
6533 static void io_queue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6534 struct io_comp_state *cs)
6538 ret = io_req_defer(req, sqe);
6540 if (ret != -EIOCBQUEUED) {
6542 req_set_fail_links(req);
6544 io_req_complete(req, ret);
6546 } else if (req->flags & REQ_F_FORCE_ASYNC) {
6547 if (!req->async_data) {
6548 ret = io_req_defer_prep(req, sqe);
6552 io_queue_async_work(req);
6555 ret = io_req_prep(req, sqe);
6559 __io_queue_sqe(req, cs);
6563 static inline void io_queue_link_head(struct io_kiocb *req,
6564 struct io_comp_state *cs)
6566 if (unlikely(req->flags & REQ_F_FAIL_LINK)) {
6568 io_req_complete(req, -ECANCELED);
6570 io_queue_sqe(req, NULL, cs);
6573 struct io_submit_link {
6574 struct io_kiocb *head;
6575 struct io_kiocb *last;
6578 static int io_submit_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6579 struct io_submit_link *link, struct io_comp_state *cs)
6581 struct io_ring_ctx *ctx = req->ctx;
6585 * If we already have a head request, queue this one for async
6586 * submittal once the head completes. If we don't have a head but
6587 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
6588 * submitted sync once the chain is complete. If none of those
6589 * conditions are true (normal request), then just queue it.
6592 struct io_kiocb *head = link->head;
6595 * Taking sequential execution of a link, draining both sides
6596 * of the link also fullfils IOSQE_IO_DRAIN semantics for all
6597 * requests in the link. So, it drains the head and the
6598 * next after the link request. The last one is done via
6599 * drain_next flag to persist the effect across calls.
6601 if (req->flags & REQ_F_IO_DRAIN) {
6602 head->flags |= REQ_F_IO_DRAIN;
6603 ctx->drain_next = 1;
6605 ret = io_req_defer_prep(req, sqe);
6606 if (unlikely(ret)) {
6607 /* fail even hard links since we don't submit */
6608 head->flags |= REQ_F_FAIL_LINK;
6611 trace_io_uring_link(ctx, req, head);
6612 link->last->link = req;
6615 /* last request of a link, enqueue the link */
6616 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
6617 io_queue_link_head(head, cs);
6621 if (unlikely(ctx->drain_next)) {
6622 req->flags |= REQ_F_IO_DRAIN;
6623 ctx->drain_next = 0;
6625 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
6626 ret = io_req_defer_prep(req, sqe);
6628 req->flags |= REQ_F_FAIL_LINK;
6632 io_queue_sqe(req, sqe, cs);
6640 * Batched submission is done, ensure local IO is flushed out.
6642 static void io_submit_state_end(struct io_submit_state *state)
6644 if (!list_empty(&state->comp.list))
6645 io_submit_flush_completions(&state->comp);
6646 if (state->plug_started)
6647 blk_finish_plug(&state->plug);
6648 io_state_file_put(state);
6649 if (state->free_reqs)
6650 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
6654 * Start submission side cache.
6656 static void io_submit_state_start(struct io_submit_state *state,
6657 struct io_ring_ctx *ctx, unsigned int max_ios)
6659 state->plug_started = false;
6661 INIT_LIST_HEAD(&state->comp.list);
6662 state->comp.ctx = ctx;
6663 state->free_reqs = 0;
6664 state->file_refs = 0;
6665 state->ios_left = max_ios;
6668 static void io_commit_sqring(struct io_ring_ctx *ctx)
6670 struct io_rings *rings = ctx->rings;
6673 * Ensure any loads from the SQEs are done at this point,
6674 * since once we write the new head, the application could
6675 * write new data to them.
6677 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
6681 * Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
6682 * that is mapped by userspace. This means that care needs to be taken to
6683 * ensure that reads are stable, as we cannot rely on userspace always
6684 * being a good citizen. If members of the sqe are validated and then later
6685 * used, it's important that those reads are done through READ_ONCE() to
6686 * prevent a re-load down the line.
6688 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
6690 u32 *sq_array = ctx->sq_array;
6694 * The cached sq head (or cq tail) serves two purposes:
6696 * 1) allows us to batch the cost of updating the user visible
6698 * 2) allows the kernel side to track the head on its own, even
6699 * though the application is the one updating it.
6701 head = READ_ONCE(sq_array[ctx->cached_sq_head & ctx->sq_mask]);
6702 if (likely(head < ctx->sq_entries))
6703 return &ctx->sq_sqes[head];
6705 /* drop invalid entries */
6706 ctx->cached_sq_dropped++;
6707 WRITE_ONCE(ctx->rings->sq_dropped, ctx->cached_sq_dropped);
6711 static inline void io_consume_sqe(struct io_ring_ctx *ctx)
6713 ctx->cached_sq_head++;
6717 * Check SQE restrictions (opcode and flags).
6719 * Returns 'true' if SQE is allowed, 'false' otherwise.
6721 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
6722 struct io_kiocb *req,
6723 unsigned int sqe_flags)
6725 if (!ctx->restricted)
6728 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
6731 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
6732 ctx->restrictions.sqe_flags_required)
6735 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
6736 ctx->restrictions.sqe_flags_required))
6742 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
6743 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
6744 IOSQE_BUFFER_SELECT)
6746 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
6747 const struct io_uring_sqe *sqe,
6748 struct io_submit_state *state)
6750 unsigned int sqe_flags;
6753 req->opcode = READ_ONCE(sqe->opcode);
6754 req->user_data = READ_ONCE(sqe->user_data);
6755 req->async_data = NULL;
6760 req->fixed_file_refs = NULL;
6761 /* one is dropped after submission, the other at completion */
6762 refcount_set(&req->refs, 2);
6763 req->task = current;
6766 if (unlikely(req->opcode >= IORING_OP_LAST))
6769 if (unlikely(io_sq_thread_acquire_mm_files(ctx, req)))
6772 sqe_flags = READ_ONCE(sqe->flags);
6773 /* enforce forwards compatibility on users */
6774 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
6777 if (unlikely(!io_check_restriction(ctx, req, sqe_flags)))
6780 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
6781 !io_op_defs[req->opcode].buffer_select)
6784 id = READ_ONCE(sqe->personality);
6786 struct io_identity *iod;
6788 iod = idr_find(&ctx->personality_idr, id);
6791 refcount_inc(&iod->count);
6793 __io_req_init_async(req);
6794 get_cred(iod->creds);
6795 req->work.identity = iod;
6796 req->work.flags |= IO_WQ_WORK_CREDS;
6799 /* same numerical values with corresponding REQ_F_*, safe to copy */
6800 req->flags |= sqe_flags;
6803 * Plug now if we have more than 1 IO left after this, and the target
6804 * is potentially a read/write to block based storage.
6806 if (!state->plug_started && state->ios_left > 1 &&
6807 io_op_defs[req->opcode].plug) {
6808 blk_start_plug(&state->plug);
6809 state->plug_started = true;
6813 if (io_op_defs[req->opcode].needs_file) {
6814 bool fixed = req->flags & REQ_F_FIXED_FILE;
6816 req->file = io_file_get(state, req, READ_ONCE(sqe->fd), fixed);
6817 if (unlikely(!req->file &&
6818 !io_op_defs[req->opcode].needs_file_no_error))
6826 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
6828 struct io_submit_state state;
6829 struct io_submit_link link;
6830 int i, submitted = 0;
6832 /* if we have a backlog and couldn't flush it all, return BUSY */
6833 if (test_bit(0, &ctx->sq_check_overflow)) {
6834 if (!__io_cqring_overflow_flush(ctx, false, NULL, NULL))
6838 /* make sure SQ entry isn't read before tail */
6839 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
6841 if (!percpu_ref_tryget_many(&ctx->refs, nr))
6844 percpu_counter_add(¤t->io_uring->inflight, nr);
6845 refcount_add(nr, ¤t->usage);
6847 io_submit_state_start(&state, ctx, nr);
6850 for (i = 0; i < nr; i++) {
6851 const struct io_uring_sqe *sqe;
6852 struct io_kiocb *req;
6855 sqe = io_get_sqe(ctx);
6856 if (unlikely(!sqe)) {
6857 io_consume_sqe(ctx);
6860 req = io_alloc_req(ctx, &state);
6861 if (unlikely(!req)) {
6863 submitted = -EAGAIN;
6866 io_consume_sqe(ctx);
6867 /* will complete beyond this point, count as submitted */
6870 err = io_init_req(ctx, req, sqe, &state);
6871 if (unlikely(err)) {
6874 io_req_complete(req, err);
6878 trace_io_uring_submit_sqe(ctx, req->opcode, req->user_data,
6879 true, io_async_submit(ctx));
6880 err = io_submit_sqe(req, sqe, &link, &state.comp);
6885 if (unlikely(submitted != nr)) {
6886 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
6887 struct io_uring_task *tctx = current->io_uring;
6888 int unused = nr - ref_used;
6890 percpu_ref_put_many(&ctx->refs, unused);
6891 percpu_counter_sub(&tctx->inflight, unused);
6892 put_task_struct_many(current, unused);
6895 io_queue_link_head(link.head, &state.comp);
6896 io_submit_state_end(&state);
6898 /* Commit SQ ring head once we've consumed and submitted all SQEs */
6899 io_commit_sqring(ctx);
6904 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
6906 /* Tell userspace we may need a wakeup call */
6907 spin_lock_irq(&ctx->completion_lock);
6908 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
6909 spin_unlock_irq(&ctx->completion_lock);
6912 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
6914 spin_lock_irq(&ctx->completion_lock);
6915 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6916 spin_unlock_irq(&ctx->completion_lock);
6919 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
6921 unsigned int to_submit;
6924 to_submit = io_sqring_entries(ctx);
6925 /* if we're handling multiple rings, cap submit size for fairness */
6926 if (cap_entries && to_submit > 8)
6929 if (!list_empty(&ctx->iopoll_list) || to_submit) {
6930 unsigned nr_events = 0;
6932 mutex_lock(&ctx->uring_lock);
6933 if (!list_empty(&ctx->iopoll_list))
6934 io_do_iopoll(ctx, &nr_events, 0);
6936 if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)))
6937 ret = io_submit_sqes(ctx, to_submit);
6938 mutex_unlock(&ctx->uring_lock);
6941 if (!io_sqring_full(ctx) && wq_has_sleeper(&ctx->sqo_sq_wait))
6942 wake_up(&ctx->sqo_sq_wait);
6947 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
6949 struct io_ring_ctx *ctx;
6950 unsigned sq_thread_idle = 0;
6952 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
6953 if (sq_thread_idle < ctx->sq_thread_idle)
6954 sq_thread_idle = ctx->sq_thread_idle;
6957 sqd->sq_thread_idle = sq_thread_idle;
6960 static void io_sqd_init_new(struct io_sq_data *sqd)
6962 struct io_ring_ctx *ctx;
6964 while (!list_empty(&sqd->ctx_new_list)) {
6965 ctx = list_first_entry(&sqd->ctx_new_list, struct io_ring_ctx, sqd_list);
6966 list_move_tail(&ctx->sqd_list, &sqd->ctx_list);
6967 complete(&ctx->sq_thread_comp);
6970 io_sqd_update_thread_idle(sqd);
6973 static int io_sq_thread(void *data)
6975 struct cgroup_subsys_state *cur_css = NULL;
6976 struct files_struct *old_files = current->files;
6977 struct nsproxy *old_nsproxy = current->nsproxy;
6978 const struct cred *old_cred = NULL;
6979 struct io_sq_data *sqd = data;
6980 struct io_ring_ctx *ctx;
6981 unsigned long timeout = 0;
6985 current->files = NULL;
6986 current->nsproxy = NULL;
6987 task_unlock(current);
6989 while (!kthread_should_stop()) {
6991 bool cap_entries, sqt_spin, needs_sched;
6994 * Any changes to the sqd lists are synchronized through the
6995 * kthread parking. This synchronizes the thread vs users,
6996 * the users are synchronized on the sqd->ctx_lock.
6998 if (kthread_should_park()) {
7001 * When sq thread is unparked, in case the previous park operation
7002 * comes from io_put_sq_data(), which means that sq thread is going
7003 * to be stopped, so here needs to have a check.
7005 if (kthread_should_stop())
7009 if (unlikely(!list_empty(&sqd->ctx_new_list))) {
7010 io_sqd_init_new(sqd);
7011 timeout = jiffies + sqd->sq_thread_idle;
7015 cap_entries = !list_is_singular(&sqd->ctx_list);
7016 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7017 if (current->cred != ctx->creds) {
7019 revert_creds(old_cred);
7020 old_cred = override_creds(ctx->creds);
7022 io_sq_thread_associate_blkcg(ctx, &cur_css);
7024 current->loginuid = ctx->loginuid;
7025 current->sessionid = ctx->sessionid;
7028 ret = __io_sq_thread(ctx, cap_entries);
7029 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7032 io_sq_thread_drop_mm_files();
7035 if (sqt_spin || !time_after(jiffies, timeout)) {
7039 timeout = jiffies + sqd->sq_thread_idle;
7043 if (kthread_should_park())
7047 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7048 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7049 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7050 !list_empty_careful(&ctx->iopoll_list)) {
7051 needs_sched = false;
7054 if (io_sqring_entries(ctx)) {
7055 needs_sched = false;
7061 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7062 io_ring_set_wakeup_flag(ctx);
7065 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7066 io_ring_clear_wakeup_flag(ctx);
7069 finish_wait(&sqd->wait, &wait);
7070 timeout = jiffies + sqd->sq_thread_idle;
7076 io_sq_thread_unassociate_blkcg();
7078 revert_creds(old_cred);
7081 current->files = old_files;
7082 current->nsproxy = old_nsproxy;
7083 task_unlock(current);
7090 struct io_wait_queue {
7091 struct wait_queue_entry wq;
7092 struct io_ring_ctx *ctx;
7094 unsigned nr_timeouts;
7097 static inline bool io_should_wake(struct io_wait_queue *iowq)
7099 struct io_ring_ctx *ctx = iowq->ctx;
7102 * Wake up if we have enough events, or if a timeout occurred since we
7103 * started waiting. For timeouts, we always want to return to userspace,
7104 * regardless of event count.
7106 return io_cqring_events(ctx) >= iowq->to_wait ||
7107 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7110 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7111 int wake_flags, void *key)
7113 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7117 * Cannot safely flush overflowed CQEs from here, ensure we wake up
7118 * the task, and the next invocation will do it.
7120 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->cq_check_overflow))
7121 return autoremove_wake_function(curr, mode, wake_flags, key);
7125 static int io_run_task_work_sig(void)
7127 if (io_run_task_work())
7129 if (!signal_pending(current))
7131 if (test_tsk_thread_flag(current, TIF_NOTIFY_SIGNAL))
7132 return -ERESTARTSYS;
7137 * Wait until events become available, if we don't already have some. The
7138 * application must reap them itself, as they reside on the shared cq ring.
7140 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7141 const sigset_t __user *sig, size_t sigsz,
7142 struct __kernel_timespec __user *uts)
7144 struct io_wait_queue iowq = {
7147 .func = io_wake_function,
7148 .entry = LIST_HEAD_INIT(iowq.wq.entry),
7151 .to_wait = min_events,
7153 struct io_rings *rings = ctx->rings;
7154 struct timespec64 ts;
7155 signed long timeout = 0;
7159 io_cqring_overflow_flush(ctx, false, NULL, NULL);
7160 if (io_cqring_events(ctx) >= min_events)
7162 if (!io_run_task_work())
7167 #ifdef CONFIG_COMPAT
7168 if (in_compat_syscall())
7169 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7173 ret = set_user_sigmask(sig, sigsz);
7180 if (get_timespec64(&ts, uts))
7182 timeout = timespec64_to_jiffies(&ts);
7185 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7186 trace_io_uring_cqring_wait(ctx, min_events);
7188 io_cqring_overflow_flush(ctx, false, NULL, NULL);
7189 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
7190 TASK_INTERRUPTIBLE);
7191 /* make sure we run task_work before checking for signals */
7192 ret = io_run_task_work_sig();
7197 if (io_should_wake(&iowq))
7199 if (test_bit(0, &ctx->cq_check_overflow))
7202 timeout = schedule_timeout(timeout);
7211 finish_wait(&ctx->wait, &iowq.wq);
7213 restore_saved_sigmask_unless(ret == -EINTR);
7215 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7218 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7220 #if defined(CONFIG_UNIX)
7221 if (ctx->ring_sock) {
7222 struct sock *sock = ctx->ring_sock->sk;
7223 struct sk_buff *skb;
7225 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7231 for (i = 0; i < ctx->nr_user_files; i++) {
7234 file = io_file_from_index(ctx, i);
7241 static void io_file_ref_kill(struct percpu_ref *ref)
7243 struct fixed_file_data *data;
7245 data = container_of(ref, struct fixed_file_data, refs);
7246 complete(&data->done);
7249 static void io_sqe_files_set_node(struct fixed_file_data *file_data,
7250 struct fixed_file_ref_node *ref_node)
7252 spin_lock_bh(&file_data->lock);
7253 file_data->node = ref_node;
7254 list_add_tail(&ref_node->node, &file_data->ref_list);
7255 spin_unlock_bh(&file_data->lock);
7256 percpu_ref_get(&file_data->refs);
7259 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7261 struct fixed_file_data *data = ctx->file_data;
7262 struct fixed_file_ref_node *backup_node, *ref_node = NULL;
7263 unsigned nr_tables, i;
7268 backup_node = alloc_fixed_file_ref_node(ctx);
7272 spin_lock_bh(&data->lock);
7273 ref_node = data->node;
7274 spin_unlock_bh(&data->lock);
7276 percpu_ref_kill(&ref_node->refs);
7278 percpu_ref_kill(&data->refs);
7280 /* wait for all refs nodes to complete */
7281 flush_delayed_work(&ctx->file_put_work);
7283 ret = wait_for_completion_interruptible(&data->done);
7286 ret = io_run_task_work_sig();
7288 percpu_ref_resurrect(&data->refs);
7289 reinit_completion(&data->done);
7290 io_sqe_files_set_node(data, backup_node);
7295 __io_sqe_files_unregister(ctx);
7296 nr_tables = DIV_ROUND_UP(ctx->nr_user_files, IORING_MAX_FILES_TABLE);
7297 for (i = 0; i < nr_tables; i++)
7298 kfree(data->table[i].files);
7300 percpu_ref_exit(&data->refs);
7302 ctx->file_data = NULL;
7303 ctx->nr_user_files = 0;
7304 destroy_fixed_file_ref_node(backup_node);
7308 static void io_put_sq_data(struct io_sq_data *sqd)
7310 if (refcount_dec_and_test(&sqd->refs)) {
7312 * The park is a bit of a work-around, without it we get
7313 * warning spews on shutdown with SQPOLL set and affinity
7314 * set to a single CPU.
7317 kthread_park(sqd->thread);
7318 kthread_stop(sqd->thread);
7325 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
7327 struct io_ring_ctx *ctx_attach;
7328 struct io_sq_data *sqd;
7331 f = fdget(p->wq_fd);
7333 return ERR_PTR(-ENXIO);
7334 if (f.file->f_op != &io_uring_fops) {
7336 return ERR_PTR(-EINVAL);
7339 ctx_attach = f.file->private_data;
7340 sqd = ctx_attach->sq_data;
7343 return ERR_PTR(-EINVAL);
7346 refcount_inc(&sqd->refs);
7351 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p)
7353 struct io_sq_data *sqd;
7355 if (p->flags & IORING_SETUP_ATTACH_WQ)
7356 return io_attach_sq_data(p);
7358 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
7360 return ERR_PTR(-ENOMEM);
7362 refcount_set(&sqd->refs, 1);
7363 INIT_LIST_HEAD(&sqd->ctx_list);
7364 INIT_LIST_HEAD(&sqd->ctx_new_list);
7365 mutex_init(&sqd->ctx_lock);
7366 mutex_init(&sqd->lock);
7367 init_waitqueue_head(&sqd->wait);
7371 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7372 __releases(&sqd->lock)
7376 kthread_unpark(sqd->thread);
7377 mutex_unlock(&sqd->lock);
7380 static void io_sq_thread_park(struct io_sq_data *sqd)
7381 __acquires(&sqd->lock)
7385 mutex_lock(&sqd->lock);
7386 kthread_park(sqd->thread);
7389 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
7391 struct io_sq_data *sqd = ctx->sq_data;
7396 * We may arrive here from the error branch in
7397 * io_sq_offload_create() where the kthread is created
7398 * without being waked up, thus wake it up now to make
7399 * sure the wait will complete.
7401 wake_up_process(sqd->thread);
7402 wait_for_completion(&ctx->sq_thread_comp);
7404 io_sq_thread_park(sqd);
7407 mutex_lock(&sqd->ctx_lock);
7408 list_del(&ctx->sqd_list);
7409 io_sqd_update_thread_idle(sqd);
7410 mutex_unlock(&sqd->ctx_lock);
7413 io_sq_thread_unpark(sqd);
7415 io_put_sq_data(sqd);
7416 ctx->sq_data = NULL;
7420 static void io_finish_async(struct io_ring_ctx *ctx)
7422 io_sq_thread_stop(ctx);
7425 io_wq_destroy(ctx->io_wq);
7430 #if defined(CONFIG_UNIX)
7432 * Ensure the UNIX gc is aware of our file set, so we are certain that
7433 * the io_uring can be safely unregistered on process exit, even if we have
7434 * loops in the file referencing.
7436 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
7438 struct sock *sk = ctx->ring_sock->sk;
7439 struct scm_fp_list *fpl;
7440 struct sk_buff *skb;
7443 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
7447 skb = alloc_skb(0, GFP_KERNEL);
7456 fpl->user = get_uid(ctx->user);
7457 for (i = 0; i < nr; i++) {
7458 struct file *file = io_file_from_index(ctx, i + offset);
7462 fpl->fp[nr_files] = get_file(file);
7463 unix_inflight(fpl->user, fpl->fp[nr_files]);
7468 fpl->max = SCM_MAX_FD;
7469 fpl->count = nr_files;
7470 UNIXCB(skb).fp = fpl;
7471 skb->destructor = unix_destruct_scm;
7472 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
7473 skb_queue_head(&sk->sk_receive_queue, skb);
7475 for (i = 0; i < nr_files; i++)
7486 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
7487 * causes regular reference counting to break down. We rely on the UNIX
7488 * garbage collection to take care of this problem for us.
7490 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7492 unsigned left, total;
7496 left = ctx->nr_user_files;
7498 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
7500 ret = __io_sqe_files_scm(ctx, this_files, total);
7504 total += this_files;
7510 while (total < ctx->nr_user_files) {
7511 struct file *file = io_file_from_index(ctx, total);
7521 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7527 static int io_sqe_alloc_file_tables(struct fixed_file_data *file_data,
7528 unsigned nr_tables, unsigned nr_files)
7532 for (i = 0; i < nr_tables; i++) {
7533 struct fixed_file_table *table = &file_data->table[i];
7534 unsigned this_files;
7536 this_files = min(nr_files, IORING_MAX_FILES_TABLE);
7537 table->files = kcalloc(this_files, sizeof(struct file *),
7541 nr_files -= this_files;
7547 for (i = 0; i < nr_tables; i++) {
7548 struct fixed_file_table *table = &file_data->table[i];
7549 kfree(table->files);
7554 static void io_ring_file_put(struct io_ring_ctx *ctx, struct file *file)
7556 #if defined(CONFIG_UNIX)
7557 struct sock *sock = ctx->ring_sock->sk;
7558 struct sk_buff_head list, *head = &sock->sk_receive_queue;
7559 struct sk_buff *skb;
7562 __skb_queue_head_init(&list);
7565 * Find the skb that holds this file in its SCM_RIGHTS. When found,
7566 * remove this entry and rearrange the file array.
7568 skb = skb_dequeue(head);
7570 struct scm_fp_list *fp;
7572 fp = UNIXCB(skb).fp;
7573 for (i = 0; i < fp->count; i++) {
7576 if (fp->fp[i] != file)
7579 unix_notinflight(fp->user, fp->fp[i]);
7580 left = fp->count - 1 - i;
7582 memmove(&fp->fp[i], &fp->fp[i + 1],
7583 left * sizeof(struct file *));
7590 __skb_queue_tail(&list, skb);
7600 __skb_queue_tail(&list, skb);
7602 skb = skb_dequeue(head);
7605 if (skb_peek(&list)) {
7606 spin_lock_irq(&head->lock);
7607 while ((skb = __skb_dequeue(&list)) != NULL)
7608 __skb_queue_tail(head, skb);
7609 spin_unlock_irq(&head->lock);
7616 struct io_file_put {
7617 struct list_head list;
7621 static void __io_file_put_work(struct fixed_file_ref_node *ref_node)
7623 struct fixed_file_data *file_data = ref_node->file_data;
7624 struct io_ring_ctx *ctx = file_data->ctx;
7625 struct io_file_put *pfile, *tmp;
7627 list_for_each_entry_safe(pfile, tmp, &ref_node->file_list, list) {
7628 list_del(&pfile->list);
7629 io_ring_file_put(ctx, pfile->file);
7633 percpu_ref_exit(&ref_node->refs);
7635 percpu_ref_put(&file_data->refs);
7638 static void io_file_put_work(struct work_struct *work)
7640 struct io_ring_ctx *ctx;
7641 struct llist_node *node;
7643 ctx = container_of(work, struct io_ring_ctx, file_put_work.work);
7644 node = llist_del_all(&ctx->file_put_llist);
7647 struct fixed_file_ref_node *ref_node;
7648 struct llist_node *next = node->next;
7650 ref_node = llist_entry(node, struct fixed_file_ref_node, llist);
7651 __io_file_put_work(ref_node);
7656 static void io_file_data_ref_zero(struct percpu_ref *ref)
7658 struct fixed_file_ref_node *ref_node;
7659 struct fixed_file_data *data;
7660 struct io_ring_ctx *ctx;
7661 bool first_add = false;
7664 ref_node = container_of(ref, struct fixed_file_ref_node, refs);
7665 data = ref_node->file_data;
7668 spin_lock_bh(&data->lock);
7669 ref_node->done = true;
7671 while (!list_empty(&data->ref_list)) {
7672 ref_node = list_first_entry(&data->ref_list,
7673 struct fixed_file_ref_node, node);
7674 /* recycle ref nodes in order */
7675 if (!ref_node->done)
7677 list_del(&ref_node->node);
7678 first_add |= llist_add(&ref_node->llist, &ctx->file_put_llist);
7680 spin_unlock_bh(&data->lock);
7682 if (percpu_ref_is_dying(&data->refs))
7686 mod_delayed_work(system_wq, &ctx->file_put_work, 0);
7688 queue_delayed_work(system_wq, &ctx->file_put_work, delay);
7691 static struct fixed_file_ref_node *alloc_fixed_file_ref_node(
7692 struct io_ring_ctx *ctx)
7694 struct fixed_file_ref_node *ref_node;
7696 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7698 return ERR_PTR(-ENOMEM);
7700 if (percpu_ref_init(&ref_node->refs, io_file_data_ref_zero,
7703 return ERR_PTR(-ENOMEM);
7705 INIT_LIST_HEAD(&ref_node->node);
7706 INIT_LIST_HEAD(&ref_node->file_list);
7707 ref_node->file_data = ctx->file_data;
7708 ref_node->done = false;
7712 static void destroy_fixed_file_ref_node(struct fixed_file_ref_node *ref_node)
7714 percpu_ref_exit(&ref_node->refs);
7718 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
7721 __s32 __user *fds = (__s32 __user *) arg;
7722 unsigned nr_tables, i;
7724 int fd, ret = -ENOMEM;
7725 struct fixed_file_ref_node *ref_node;
7726 struct fixed_file_data *file_data;
7732 if (nr_args > IORING_MAX_FIXED_FILES)
7735 file_data = kzalloc(sizeof(*ctx->file_data), GFP_KERNEL);
7738 file_data->ctx = ctx;
7739 init_completion(&file_data->done);
7740 INIT_LIST_HEAD(&file_data->ref_list);
7741 spin_lock_init(&file_data->lock);
7743 nr_tables = DIV_ROUND_UP(nr_args, IORING_MAX_FILES_TABLE);
7744 file_data->table = kcalloc(nr_tables, sizeof(*file_data->table),
7746 if (!file_data->table)
7749 if (percpu_ref_init(&file_data->refs, io_file_ref_kill,
7750 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
7753 if (io_sqe_alloc_file_tables(file_data, nr_tables, nr_args))
7755 ctx->file_data = file_data;
7757 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
7758 struct fixed_file_table *table;
7761 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
7765 /* allow sparse sets */
7775 * Don't allow io_uring instances to be registered. If UNIX
7776 * isn't enabled, then this causes a reference cycle and this
7777 * instance can never get freed. If UNIX is enabled we'll
7778 * handle it just fine, but there's still no point in allowing
7779 * a ring fd as it doesn't support regular read/write anyway.
7781 if (file->f_op == &io_uring_fops) {
7785 table = &file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7786 index = i & IORING_FILE_TABLE_MASK;
7787 table->files[index] = file;
7790 ret = io_sqe_files_scm(ctx);
7792 io_sqe_files_unregister(ctx);
7796 ref_node = alloc_fixed_file_ref_node(ctx);
7797 if (IS_ERR(ref_node)) {
7798 io_sqe_files_unregister(ctx);
7799 return PTR_ERR(ref_node);
7802 io_sqe_files_set_node(file_data, ref_node);
7805 for (i = 0; i < ctx->nr_user_files; i++) {
7806 file = io_file_from_index(ctx, i);
7810 for (i = 0; i < nr_tables; i++)
7811 kfree(file_data->table[i].files);
7812 ctx->nr_user_files = 0;
7814 percpu_ref_exit(&file_data->refs);
7816 kfree(file_data->table);
7818 ctx->file_data = NULL;
7822 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
7825 #if defined(CONFIG_UNIX)
7826 struct sock *sock = ctx->ring_sock->sk;
7827 struct sk_buff_head *head = &sock->sk_receive_queue;
7828 struct sk_buff *skb;
7831 * See if we can merge this file into an existing skb SCM_RIGHTS
7832 * file set. If there's no room, fall back to allocating a new skb
7833 * and filling it in.
7835 spin_lock_irq(&head->lock);
7836 skb = skb_peek(head);
7838 struct scm_fp_list *fpl = UNIXCB(skb).fp;
7840 if (fpl->count < SCM_MAX_FD) {
7841 __skb_unlink(skb, head);
7842 spin_unlock_irq(&head->lock);
7843 fpl->fp[fpl->count] = get_file(file);
7844 unix_inflight(fpl->user, fpl->fp[fpl->count]);
7846 spin_lock_irq(&head->lock);
7847 __skb_queue_head(head, skb);
7852 spin_unlock_irq(&head->lock);
7859 return __io_sqe_files_scm(ctx, 1, index);
7865 static int io_queue_file_removal(struct fixed_file_data *data,
7868 struct io_file_put *pfile;
7869 struct fixed_file_ref_node *ref_node = data->node;
7871 pfile = kzalloc(sizeof(*pfile), GFP_KERNEL);
7876 list_add(&pfile->list, &ref_node->file_list);
7881 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
7882 struct io_uring_files_update *up,
7885 struct fixed_file_data *data = ctx->file_data;
7886 struct fixed_file_ref_node *ref_node;
7891 bool needs_switch = false;
7893 if (check_add_overflow(up->offset, nr_args, &done))
7895 if (done > ctx->nr_user_files)
7898 ref_node = alloc_fixed_file_ref_node(ctx);
7899 if (IS_ERR(ref_node))
7900 return PTR_ERR(ref_node);
7903 fds = u64_to_user_ptr(up->fds);
7905 struct fixed_file_table *table;
7909 if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
7913 i = array_index_nospec(up->offset, ctx->nr_user_files);
7914 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7915 index = i & IORING_FILE_TABLE_MASK;
7916 if (table->files[index]) {
7917 file = table->files[index];
7918 err = io_queue_file_removal(data, file);
7921 table->files[index] = NULL;
7922 needs_switch = true;
7931 * Don't allow io_uring instances to be registered. If
7932 * UNIX isn't enabled, then this causes a reference
7933 * cycle and this instance can never get freed. If UNIX
7934 * is enabled we'll handle it just fine, but there's
7935 * still no point in allowing a ring fd as it doesn't
7936 * support regular read/write anyway.
7938 if (file->f_op == &io_uring_fops) {
7943 table->files[index] = file;
7944 err = io_sqe_file_register(ctx, file, i);
7946 table->files[index] = NULL;
7957 percpu_ref_kill(&data->node->refs);
7958 io_sqe_files_set_node(data, ref_node);
7960 destroy_fixed_file_ref_node(ref_node);
7962 return done ? done : err;
7965 static int io_sqe_files_update(struct io_ring_ctx *ctx, void __user *arg,
7968 struct io_uring_files_update up;
7970 if (!ctx->file_data)
7974 if (copy_from_user(&up, arg, sizeof(up)))
7979 return __io_sqe_files_update(ctx, &up, nr_args);
7982 static void io_free_work(struct io_wq_work *work)
7984 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
7986 /* Consider that io_steal_work() relies on this ref */
7990 static int io_init_wq_offload(struct io_ring_ctx *ctx,
7991 struct io_uring_params *p)
7993 struct io_wq_data data;
7995 struct io_ring_ctx *ctx_attach;
7996 unsigned int concurrency;
7999 data.user = ctx->user;
8000 data.free_work = io_free_work;
8001 data.do_work = io_wq_submit_work;
8003 if (!(p->flags & IORING_SETUP_ATTACH_WQ)) {
8004 /* Do QD, or 4 * CPUS, whatever is smallest */
8005 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
8007 ctx->io_wq = io_wq_create(concurrency, &data);
8008 if (IS_ERR(ctx->io_wq)) {
8009 ret = PTR_ERR(ctx->io_wq);
8015 f = fdget(p->wq_fd);
8019 if (f.file->f_op != &io_uring_fops) {
8024 ctx_attach = f.file->private_data;
8025 /* @io_wq is protected by holding the fd */
8026 if (!io_wq_get(ctx_attach->io_wq, &data)) {
8031 ctx->io_wq = ctx_attach->io_wq;
8037 static int io_uring_alloc_task_context(struct task_struct *task)
8039 struct io_uring_task *tctx;
8042 tctx = kmalloc(sizeof(*tctx), GFP_KERNEL);
8043 if (unlikely(!tctx))
8046 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8047 if (unlikely(ret)) {
8053 init_waitqueue_head(&tctx->wait);
8055 atomic_set(&tctx->in_idle, 0);
8056 tctx->sqpoll = false;
8057 io_init_identity(&tctx->__identity);
8058 tctx->identity = &tctx->__identity;
8059 task->io_uring = tctx;
8063 void __io_uring_free(struct task_struct *tsk)
8065 struct io_uring_task *tctx = tsk->io_uring;
8067 WARN_ON_ONCE(!xa_empty(&tctx->xa));
8068 WARN_ON_ONCE(refcount_read(&tctx->identity->count) != 1);
8069 if (tctx->identity != &tctx->__identity)
8070 kfree(tctx->identity);
8071 percpu_counter_destroy(&tctx->inflight);
8073 tsk->io_uring = NULL;
8076 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8077 struct io_uring_params *p)
8081 if (ctx->flags & IORING_SETUP_SQPOLL) {
8082 struct io_sq_data *sqd;
8085 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_NICE))
8088 sqd = io_get_sq_data(p);
8095 io_sq_thread_park(sqd);
8096 mutex_lock(&sqd->ctx_lock);
8097 list_add(&ctx->sqd_list, &sqd->ctx_new_list);
8098 mutex_unlock(&sqd->ctx_lock);
8099 io_sq_thread_unpark(sqd);
8101 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8102 if (!ctx->sq_thread_idle)
8103 ctx->sq_thread_idle = HZ;
8108 if (p->flags & IORING_SETUP_SQ_AFF) {
8109 int cpu = p->sq_thread_cpu;
8112 if (cpu >= nr_cpu_ids)
8114 if (!cpu_online(cpu))
8117 sqd->thread = kthread_create_on_cpu(io_sq_thread, sqd,
8118 cpu, "io_uring-sq");
8120 sqd->thread = kthread_create(io_sq_thread, sqd,
8123 if (IS_ERR(sqd->thread)) {
8124 ret = PTR_ERR(sqd->thread);
8128 ret = io_uring_alloc_task_context(sqd->thread);
8131 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8132 /* Can't have SQ_AFF without SQPOLL */
8138 ret = io_init_wq_offload(ctx, p);
8144 io_finish_async(ctx);
8148 static void io_sq_offload_start(struct io_ring_ctx *ctx)
8150 struct io_sq_data *sqd = ctx->sq_data;
8152 if ((ctx->flags & IORING_SETUP_SQPOLL) && sqd->thread)
8153 wake_up_process(sqd->thread);
8156 static inline void __io_unaccount_mem(struct user_struct *user,
8157 unsigned long nr_pages)
8159 atomic_long_sub(nr_pages, &user->locked_vm);
8162 static inline int __io_account_mem(struct user_struct *user,
8163 unsigned long nr_pages)
8165 unsigned long page_limit, cur_pages, new_pages;
8167 /* Don't allow more pages than we can safely lock */
8168 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8171 cur_pages = atomic_long_read(&user->locked_vm);
8172 new_pages = cur_pages + nr_pages;
8173 if (new_pages > page_limit)
8175 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8176 new_pages) != cur_pages);
8181 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
8182 enum io_mem_account acct)
8185 __io_unaccount_mem(ctx->user, nr_pages);
8187 if (ctx->mm_account) {
8188 if (acct == ACCT_LOCKED) {
8189 mmap_write_lock(ctx->mm_account);
8190 ctx->mm_account->locked_vm -= nr_pages;
8191 mmap_write_unlock(ctx->mm_account);
8192 }else if (acct == ACCT_PINNED) {
8193 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8198 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
8199 enum io_mem_account acct)
8203 if (ctx->limit_mem) {
8204 ret = __io_account_mem(ctx->user, nr_pages);
8209 if (ctx->mm_account) {
8210 if (acct == ACCT_LOCKED) {
8211 mmap_write_lock(ctx->mm_account);
8212 ctx->mm_account->locked_vm += nr_pages;
8213 mmap_write_unlock(ctx->mm_account);
8214 } else if (acct == ACCT_PINNED) {
8215 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8222 static void io_mem_free(void *ptr)
8229 page = virt_to_head_page(ptr);
8230 if (put_page_testzero(page))
8231 free_compound_page(page);
8234 static void *io_mem_alloc(size_t size)
8236 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
8239 return (void *) __get_free_pages(gfp_flags, get_order(size));
8242 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8245 struct io_rings *rings;
8246 size_t off, sq_array_size;
8248 off = struct_size(rings, cqes, cq_entries);
8249 if (off == SIZE_MAX)
8253 off = ALIGN(off, SMP_CACHE_BYTES);
8261 sq_array_size = array_size(sizeof(u32), sq_entries);
8262 if (sq_array_size == SIZE_MAX)
8265 if (check_add_overflow(off, sq_array_size, &off))
8271 static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
8275 pages = (size_t)1 << get_order(
8276 rings_size(sq_entries, cq_entries, NULL));
8277 pages += (size_t)1 << get_order(
8278 array_size(sizeof(struct io_uring_sqe), sq_entries));
8283 static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
8287 if (!ctx->user_bufs)
8290 for (i = 0; i < ctx->nr_user_bufs; i++) {
8291 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8293 for (j = 0; j < imu->nr_bvecs; j++)
8294 unpin_user_page(imu->bvec[j].bv_page);
8296 if (imu->acct_pages)
8297 io_unaccount_mem(ctx, imu->acct_pages, ACCT_PINNED);
8302 kfree(ctx->user_bufs);
8303 ctx->user_bufs = NULL;
8304 ctx->nr_user_bufs = 0;
8308 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8309 void __user *arg, unsigned index)
8311 struct iovec __user *src;
8313 #ifdef CONFIG_COMPAT
8315 struct compat_iovec __user *ciovs;
8316 struct compat_iovec ciov;
8318 ciovs = (struct compat_iovec __user *) arg;
8319 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8322 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8323 dst->iov_len = ciov.iov_len;
8327 src = (struct iovec __user *) arg;
8328 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8334 * Not super efficient, but this is just a registration time. And we do cache
8335 * the last compound head, so generally we'll only do a full search if we don't
8338 * We check if the given compound head page has already been accounted, to
8339 * avoid double accounting it. This allows us to account the full size of the
8340 * page, not just the constituent pages of a huge page.
8342 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8343 int nr_pages, struct page *hpage)
8347 /* check current page array */
8348 for (i = 0; i < nr_pages; i++) {
8349 if (!PageCompound(pages[i]))
8351 if (compound_head(pages[i]) == hpage)
8355 /* check previously registered pages */
8356 for (i = 0; i < ctx->nr_user_bufs; i++) {
8357 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8359 for (j = 0; j < imu->nr_bvecs; j++) {
8360 if (!PageCompound(imu->bvec[j].bv_page))
8362 if (compound_head(imu->bvec[j].bv_page) == hpage)
8370 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8371 int nr_pages, struct io_mapped_ubuf *imu,
8372 struct page **last_hpage)
8376 for (i = 0; i < nr_pages; i++) {
8377 if (!PageCompound(pages[i])) {
8382 hpage = compound_head(pages[i]);
8383 if (hpage == *last_hpage)
8385 *last_hpage = hpage;
8386 if (headpage_already_acct(ctx, pages, i, hpage))
8388 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8392 if (!imu->acct_pages)
8395 ret = io_account_mem(ctx, imu->acct_pages, ACCT_PINNED);
8397 imu->acct_pages = 0;
8401 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
8404 struct vm_area_struct **vmas = NULL;
8405 struct page **pages = NULL;
8406 struct page *last_hpage = NULL;
8407 int i, j, got_pages = 0;
8412 if (!nr_args || nr_args > UIO_MAXIOV)
8415 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
8417 if (!ctx->user_bufs)
8420 for (i = 0; i < nr_args; i++) {
8421 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8422 unsigned long off, start, end, ubuf;
8427 ret = io_copy_iov(ctx, &iov, arg, i);
8432 * Don't impose further limits on the size and buffer
8433 * constraints here, we'll -EINVAL later when IO is
8434 * submitted if they are wrong.
8437 if (!iov.iov_base || !iov.iov_len)
8440 /* arbitrary limit, but we need something */
8441 if (iov.iov_len > SZ_1G)
8444 ubuf = (unsigned long) iov.iov_base;
8445 end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
8446 start = ubuf >> PAGE_SHIFT;
8447 nr_pages = end - start;
8450 if (!pages || nr_pages > got_pages) {
8453 pages = kvmalloc_array(nr_pages, sizeof(struct page *),
8455 vmas = kvmalloc_array(nr_pages,
8456 sizeof(struct vm_area_struct *),
8458 if (!pages || !vmas) {
8462 got_pages = nr_pages;
8465 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
8472 mmap_read_lock(current->mm);
8473 pret = pin_user_pages(ubuf, nr_pages,
8474 FOLL_WRITE | FOLL_LONGTERM,
8476 if (pret == nr_pages) {
8477 /* don't support file backed memory */
8478 for (j = 0; j < nr_pages; j++) {
8479 struct vm_area_struct *vma = vmas[j];
8482 !is_file_hugepages(vma->vm_file)) {
8488 ret = pret < 0 ? pret : -EFAULT;
8490 mmap_read_unlock(current->mm);
8493 * if we did partial map, or found file backed vmas,
8494 * release any pages we did get
8497 unpin_user_pages(pages, pret);
8502 ret = io_buffer_account_pin(ctx, pages, pret, imu, &last_hpage);
8504 unpin_user_pages(pages, pret);
8509 off = ubuf & ~PAGE_MASK;
8511 for (j = 0; j < nr_pages; j++) {
8514 vec_len = min_t(size_t, size, PAGE_SIZE - off);
8515 imu->bvec[j].bv_page = pages[j];
8516 imu->bvec[j].bv_len = vec_len;
8517 imu->bvec[j].bv_offset = off;
8521 /* store original address for later verification */
8523 imu->len = iov.iov_len;
8524 imu->nr_bvecs = nr_pages;
8526 ctx->nr_user_bufs++;
8534 io_sqe_buffer_unregister(ctx);
8538 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
8540 __s32 __user *fds = arg;
8546 if (copy_from_user(&fd, fds, sizeof(*fds)))
8549 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
8550 if (IS_ERR(ctx->cq_ev_fd)) {
8551 int ret = PTR_ERR(ctx->cq_ev_fd);
8552 ctx->cq_ev_fd = NULL;
8559 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
8561 if (ctx->cq_ev_fd) {
8562 eventfd_ctx_put(ctx->cq_ev_fd);
8563 ctx->cq_ev_fd = NULL;
8570 static int __io_destroy_buffers(int id, void *p, void *data)
8572 struct io_ring_ctx *ctx = data;
8573 struct io_buffer *buf = p;
8575 __io_remove_buffers(ctx, buf, id, -1U);
8579 static void io_destroy_buffers(struct io_ring_ctx *ctx)
8581 idr_for_each(&ctx->io_buffer_idr, __io_destroy_buffers, ctx);
8582 idr_destroy(&ctx->io_buffer_idr);
8585 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
8587 io_finish_async(ctx);
8588 io_sqe_buffer_unregister(ctx);
8590 if (ctx->sqo_task) {
8591 put_task_struct(ctx->sqo_task);
8592 ctx->sqo_task = NULL;
8593 mmdrop(ctx->mm_account);
8594 ctx->mm_account = NULL;
8597 #ifdef CONFIG_BLK_CGROUP
8598 if (ctx->sqo_blkcg_css)
8599 css_put(ctx->sqo_blkcg_css);
8602 io_sqe_files_unregister(ctx);
8603 io_eventfd_unregister(ctx);
8604 io_destroy_buffers(ctx);
8605 idr_destroy(&ctx->personality_idr);
8607 #if defined(CONFIG_UNIX)
8608 if (ctx->ring_sock) {
8609 ctx->ring_sock->file = NULL; /* so that iput() is called */
8610 sock_release(ctx->ring_sock);
8614 io_mem_free(ctx->rings);
8615 io_mem_free(ctx->sq_sqes);
8617 percpu_ref_exit(&ctx->refs);
8618 free_uid(ctx->user);
8619 put_cred(ctx->creds);
8620 kfree(ctx->cancel_hash);
8621 kmem_cache_free(req_cachep, ctx->fallback_req);
8625 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
8627 struct io_ring_ctx *ctx = file->private_data;
8630 poll_wait(file, &ctx->cq_wait, wait);
8632 * synchronizes with barrier from wq_has_sleeper call in
8636 if (!io_sqring_full(ctx))
8637 mask |= EPOLLOUT | EPOLLWRNORM;
8638 io_cqring_overflow_flush(ctx, false, NULL, NULL);
8639 if (io_cqring_events(ctx))
8640 mask |= EPOLLIN | EPOLLRDNORM;
8645 static int io_uring_fasync(int fd, struct file *file, int on)
8647 struct io_ring_ctx *ctx = file->private_data;
8649 return fasync_helper(fd, file, on, &ctx->cq_fasync);
8652 static int io_remove_personalities(int id, void *p, void *data)
8654 struct io_ring_ctx *ctx = data;
8655 struct io_identity *iod;
8657 iod = idr_remove(&ctx->personality_idr, id);
8659 put_cred(iod->creds);
8660 if (refcount_dec_and_test(&iod->count))
8666 static void io_ring_exit_work(struct work_struct *work)
8668 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
8672 * If we're doing polled IO and end up having requests being
8673 * submitted async (out-of-line), then completions can come in while
8674 * we're waiting for refs to drop. We need to reap these manually,
8675 * as nobody else will be looking for them.
8678 io_iopoll_try_reap_events(ctx);
8679 } while (!wait_for_completion_timeout(&ctx->ref_comp, HZ/20));
8680 io_ring_ctx_free(ctx);
8683 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
8685 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8687 return req->ctx == data;
8690 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
8692 mutex_lock(&ctx->uring_lock);
8693 percpu_ref_kill(&ctx->refs);
8694 /* if force is set, the ring is going away. always drop after that */
8695 ctx->cq_overflow_flushed = 1;
8697 __io_cqring_overflow_flush(ctx, true, NULL, NULL);
8698 mutex_unlock(&ctx->uring_lock);
8700 io_kill_timeouts(ctx, NULL, NULL);
8701 io_poll_remove_all(ctx, NULL, NULL);
8704 io_wq_cancel_cb(ctx->io_wq, io_cancel_ctx_cb, ctx, true);
8706 /* if we failed setting up the ctx, we might not have any rings */
8707 io_iopoll_try_reap_events(ctx);
8708 idr_for_each(&ctx->personality_idr, io_remove_personalities, ctx);
8711 * Do this upfront, so we won't have a grace period where the ring
8712 * is closed but resources aren't reaped yet. This can cause
8713 * spurious failure in setting up a new ring.
8715 io_unaccount_mem(ctx, ring_pages(ctx->sq_entries, ctx->cq_entries),
8718 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
8720 * Use system_unbound_wq to avoid spawning tons of event kworkers
8721 * if we're exiting a ton of rings at the same time. It just adds
8722 * noise and overhead, there's no discernable change in runtime
8723 * over using system_wq.
8725 queue_work(system_unbound_wq, &ctx->exit_work);
8728 static int io_uring_release(struct inode *inode, struct file *file)
8730 struct io_ring_ctx *ctx = file->private_data;
8732 file->private_data = NULL;
8733 io_ring_ctx_wait_and_kill(ctx);
8737 struct io_task_cancel {
8738 struct task_struct *task;
8739 struct files_struct *files;
8742 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
8744 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8745 struct io_task_cancel *cancel = data;
8748 if (cancel->files && (req->flags & REQ_F_LINK_TIMEOUT)) {
8749 unsigned long flags;
8750 struct io_ring_ctx *ctx = req->ctx;
8752 /* protect against races with linked timeouts */
8753 spin_lock_irqsave(&ctx->completion_lock, flags);
8754 ret = io_match_task(req, cancel->task, cancel->files);
8755 spin_unlock_irqrestore(&ctx->completion_lock, flags);
8757 ret = io_match_task(req, cancel->task, cancel->files);
8762 static void io_cancel_defer_files(struct io_ring_ctx *ctx,
8763 struct task_struct *task,
8764 struct files_struct *files)
8766 struct io_defer_entry *de = NULL;
8769 spin_lock_irq(&ctx->completion_lock);
8770 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
8771 if (io_match_task(de->req, task, files)) {
8772 list_cut_position(&list, &ctx->defer_list, &de->list);
8776 spin_unlock_irq(&ctx->completion_lock);
8778 while (!list_empty(&list)) {
8779 de = list_first_entry(&list, struct io_defer_entry, list);
8780 list_del_init(&de->list);
8781 req_set_fail_links(de->req);
8782 io_put_req(de->req);
8783 io_req_complete(de->req, -ECANCELED);
8788 static void io_uring_cancel_files(struct io_ring_ctx *ctx,
8789 struct task_struct *task,
8790 struct files_struct *files)
8792 while (!list_empty_careful(&ctx->inflight_list)) {
8793 struct io_task_cancel cancel = { .task = task, .files = files };
8794 struct io_kiocb *req;
8798 spin_lock_irq(&ctx->inflight_lock);
8799 list_for_each_entry(req, &ctx->inflight_list, inflight_entry) {
8800 if (req->task != task ||
8801 req->work.identity->files != files)
8807 prepare_to_wait(&task->io_uring->wait, &wait,
8808 TASK_UNINTERRUPTIBLE);
8809 spin_unlock_irq(&ctx->inflight_lock);
8811 /* We need to keep going until we don't find a matching req */
8815 io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb, &cancel, true);
8816 io_poll_remove_all(ctx, task, files);
8817 io_kill_timeouts(ctx, task, files);
8818 /* cancellations _may_ trigger task work */
8821 finish_wait(&task->io_uring->wait, &wait);
8825 static void __io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
8826 struct task_struct *task)
8829 struct io_task_cancel cancel = { .task = task, .files = NULL, };
8830 enum io_wq_cancel cret;
8833 cret = io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb, &cancel, true);
8834 if (cret != IO_WQ_CANCEL_NOTFOUND)
8837 /* SQPOLL thread does its own polling */
8838 if (!(ctx->flags & IORING_SETUP_SQPOLL)) {
8839 while (!list_empty_careful(&ctx->iopoll_list)) {
8840 io_iopoll_try_reap_events(ctx);
8845 ret |= io_poll_remove_all(ctx, task, NULL);
8846 ret |= io_kill_timeouts(ctx, task, NULL);
8847 ret |= io_run_task_work();
8855 * We need to iteratively cancel requests, in case a request has dependent
8856 * hard links. These persist even for failure of cancelations, hence keep
8857 * looping until none are found.
8859 static void io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
8860 struct files_struct *files)
8862 struct task_struct *task = current;
8864 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
8865 task = ctx->sq_data->thread;
8866 atomic_inc(&task->io_uring->in_idle);
8867 io_sq_thread_park(ctx->sq_data);
8870 io_cancel_defer_files(ctx, task, files);
8871 io_cqring_overflow_flush(ctx, true, task, files);
8874 __io_uring_cancel_task_requests(ctx, task);
8876 io_uring_cancel_files(ctx, task, files);
8878 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
8879 atomic_dec(&task->io_uring->in_idle);
8881 * If the files that are going away are the ones in the thread
8882 * identity, clear them out.
8884 if (task->io_uring->identity->files == files)
8885 task->io_uring->identity->files = NULL;
8886 io_sq_thread_unpark(ctx->sq_data);
8891 * Note that this task has used io_uring. We use it for cancelation purposes.
8893 static int io_uring_add_task_file(struct io_ring_ctx *ctx, struct file *file)
8895 struct io_uring_task *tctx = current->io_uring;
8898 if (unlikely(!tctx)) {
8899 ret = io_uring_alloc_task_context(current);
8902 tctx = current->io_uring;
8904 if (tctx->last != file) {
8905 void *old = xa_load(&tctx->xa, (unsigned long)file);
8909 ret = xa_err(xa_store(&tctx->xa, (unsigned long)file,
8920 * This is race safe in that the task itself is doing this, hence it
8921 * cannot be going through the exit/cancel paths at the same time.
8922 * This cannot be modified while exit/cancel is running.
8924 if (!tctx->sqpoll && (ctx->flags & IORING_SETUP_SQPOLL))
8925 tctx->sqpoll = true;
8931 * Remove this io_uring_file -> task mapping.
8933 static void io_uring_del_task_file(struct file *file)
8935 struct io_uring_task *tctx = current->io_uring;
8937 if (tctx->last == file)
8939 file = xa_erase(&tctx->xa, (unsigned long)file);
8945 * Drop task note for this file if we're the only ones that hold it after
8948 static void io_uring_attempt_task_drop(struct file *file)
8950 if (!current->io_uring)
8953 * fput() is pending, will be 2 if the only other ref is our potential
8954 * task file note. If the task is exiting, drop regardless of count.
8956 if (fatal_signal_pending(current) || (current->flags & PF_EXITING) ||
8957 atomic_long_read(&file->f_count) == 2)
8958 io_uring_del_task_file(file);
8961 void __io_uring_files_cancel(struct files_struct *files)
8963 struct io_uring_task *tctx = current->io_uring;
8965 unsigned long index;
8967 /* make sure overflow events are dropped */
8968 atomic_inc(&tctx->in_idle);
8970 xa_for_each(&tctx->xa, index, file) {
8971 struct io_ring_ctx *ctx = file->private_data;
8973 io_uring_cancel_task_requests(ctx, files);
8975 io_uring_del_task_file(file);
8978 atomic_dec(&tctx->in_idle);
8981 static s64 tctx_inflight(struct io_uring_task *tctx)
8983 unsigned long index;
8987 inflight = percpu_counter_sum(&tctx->inflight);
8992 * If we have SQPOLL rings, then we need to iterate and find them, and
8993 * add the pending count for those.
8995 xa_for_each(&tctx->xa, index, file) {
8996 struct io_ring_ctx *ctx = file->private_data;
8998 if (ctx->flags & IORING_SETUP_SQPOLL) {
8999 struct io_uring_task *__tctx = ctx->sqo_task->io_uring;
9001 inflight += percpu_counter_sum(&__tctx->inflight);
9009 * Find any io_uring fd that this task has registered or done IO on, and cancel
9012 void __io_uring_task_cancel(void)
9014 struct io_uring_task *tctx = current->io_uring;
9018 /* make sure overflow events are dropped */
9019 atomic_inc(&tctx->in_idle);
9022 /* read completions before cancelations */
9023 inflight = tctx_inflight(tctx);
9026 __io_uring_files_cancel(NULL);
9028 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9031 * If we've seen completions, retry. This avoids a race where
9032 * a completion comes in before we did prepare_to_wait().
9034 if (inflight != tctx_inflight(tctx))
9037 finish_wait(&tctx->wait, &wait);
9040 atomic_dec(&tctx->in_idle);
9043 static int io_uring_flush(struct file *file, void *data)
9045 io_uring_attempt_task_drop(file);
9049 static void *io_uring_validate_mmap_request(struct file *file,
9050 loff_t pgoff, size_t sz)
9052 struct io_ring_ctx *ctx = file->private_data;
9053 loff_t offset = pgoff << PAGE_SHIFT;
9058 case IORING_OFF_SQ_RING:
9059 case IORING_OFF_CQ_RING:
9062 case IORING_OFF_SQES:
9066 return ERR_PTR(-EINVAL);
9069 page = virt_to_head_page(ptr);
9070 if (sz > page_size(page))
9071 return ERR_PTR(-EINVAL);
9078 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9080 size_t sz = vma->vm_end - vma->vm_start;
9084 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9086 return PTR_ERR(ptr);
9088 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9089 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9092 #else /* !CONFIG_MMU */
9094 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9096 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9099 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9101 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9104 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9105 unsigned long addr, unsigned long len,
9106 unsigned long pgoff, unsigned long flags)
9110 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9112 return PTR_ERR(ptr);
9114 return (unsigned long) ptr;
9117 #endif /* !CONFIG_MMU */
9119 static void io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9124 if (!io_sqring_full(ctx))
9127 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9129 if (!io_sqring_full(ctx))
9133 } while (!signal_pending(current));
9135 finish_wait(&ctx->sqo_sq_wait, &wait);
9138 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9139 struct __kernel_timespec __user **ts,
9140 const sigset_t __user **sig)
9142 struct io_uring_getevents_arg arg;
9145 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9146 * is just a pointer to the sigset_t.
9148 if (!(flags & IORING_ENTER_EXT_ARG)) {
9149 *sig = (const sigset_t __user *) argp;
9155 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9156 * timespec and sigset_t pointers if good.
9158 if (*argsz != sizeof(arg))
9160 if (copy_from_user(&arg, argp, sizeof(arg)))
9162 *sig = u64_to_user_ptr(arg.sigmask);
9163 *argsz = arg.sigmask_sz;
9164 *ts = u64_to_user_ptr(arg.ts);
9168 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9169 u32, min_complete, u32, flags, const void __user *, argp,
9172 struct io_ring_ctx *ctx;
9179 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
9180 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG))
9188 if (f.file->f_op != &io_uring_fops)
9192 ctx = f.file->private_data;
9193 if (!percpu_ref_tryget(&ctx->refs))
9197 if (ctx->flags & IORING_SETUP_R_DISABLED)
9201 * For SQ polling, the thread will do all submissions and completions.
9202 * Just return the requested submit count, and wake the thread if
9206 if (ctx->flags & IORING_SETUP_SQPOLL) {
9207 io_cqring_overflow_flush(ctx, false, NULL, NULL);
9209 if (flags & IORING_ENTER_SQ_WAKEUP)
9210 wake_up(&ctx->sq_data->wait);
9211 if (flags & IORING_ENTER_SQ_WAIT)
9212 io_sqpoll_wait_sq(ctx);
9213 submitted = to_submit;
9214 } else if (to_submit) {
9215 ret = io_uring_add_task_file(ctx, f.file);
9218 mutex_lock(&ctx->uring_lock);
9219 submitted = io_submit_sqes(ctx, to_submit);
9220 mutex_unlock(&ctx->uring_lock);
9222 if (submitted != to_submit)
9225 if (flags & IORING_ENTER_GETEVENTS) {
9226 const sigset_t __user *sig;
9227 struct __kernel_timespec __user *ts;
9229 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
9233 min_complete = min(min_complete, ctx->cq_entries);
9236 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
9237 * space applications don't need to do io completion events
9238 * polling again, they can rely on io_sq_thread to do polling
9239 * work, which can reduce cpu usage and uring_lock contention.
9241 if (ctx->flags & IORING_SETUP_IOPOLL &&
9242 !(ctx->flags & IORING_SETUP_SQPOLL)) {
9243 ret = io_iopoll_check(ctx, min_complete);
9245 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
9250 percpu_ref_put(&ctx->refs);
9253 return submitted ? submitted : ret;
9256 #ifdef CONFIG_PROC_FS
9257 static int io_uring_show_cred(int id, void *p, void *data)
9259 struct io_identity *iod = p;
9260 const struct cred *cred = iod->creds;
9261 struct seq_file *m = data;
9262 struct user_namespace *uns = seq_user_ns(m);
9263 struct group_info *gi;
9268 seq_printf(m, "%5d\n", id);
9269 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
9270 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
9271 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
9272 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
9273 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
9274 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
9275 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
9276 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
9277 seq_puts(m, "\n\tGroups:\t");
9278 gi = cred->group_info;
9279 for (g = 0; g < gi->ngroups; g++) {
9280 seq_put_decimal_ull(m, g ? " " : "",
9281 from_kgid_munged(uns, gi->gid[g]));
9283 seq_puts(m, "\n\tCapEff:\t");
9284 cap = cred->cap_effective;
9285 CAP_FOR_EACH_U32(__capi)
9286 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
9291 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
9293 struct io_sq_data *sq = NULL;
9298 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
9299 * since fdinfo case grabs it in the opposite direction of normal use
9300 * cases. If we fail to get the lock, we just don't iterate any
9301 * structures that could be going away outside the io_uring mutex.
9303 has_lock = mutex_trylock(&ctx->uring_lock);
9305 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL))
9308 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
9309 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
9310 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
9311 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
9312 struct fixed_file_table *table;
9315 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
9316 f = table->files[i & IORING_FILE_TABLE_MASK];
9318 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
9320 seq_printf(m, "%5u: <none>\n", i);
9322 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
9323 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
9324 struct io_mapped_ubuf *buf = &ctx->user_bufs[i];
9326 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf,
9327 (unsigned int) buf->len);
9329 if (has_lock && !idr_is_empty(&ctx->personality_idr)) {
9330 seq_printf(m, "Personalities:\n");
9331 idr_for_each(&ctx->personality_idr, io_uring_show_cred, m);
9333 seq_printf(m, "PollList:\n");
9334 spin_lock_irq(&ctx->completion_lock);
9335 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
9336 struct hlist_head *list = &ctx->cancel_hash[i];
9337 struct io_kiocb *req;
9339 hlist_for_each_entry(req, list, hash_node)
9340 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
9341 req->task->task_works != NULL);
9343 spin_unlock_irq(&ctx->completion_lock);
9345 mutex_unlock(&ctx->uring_lock);
9348 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
9350 struct io_ring_ctx *ctx = f->private_data;
9352 if (percpu_ref_tryget(&ctx->refs)) {
9353 __io_uring_show_fdinfo(ctx, m);
9354 percpu_ref_put(&ctx->refs);
9359 static const struct file_operations io_uring_fops = {
9360 .release = io_uring_release,
9361 .flush = io_uring_flush,
9362 .mmap = io_uring_mmap,
9364 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
9365 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
9367 .poll = io_uring_poll,
9368 .fasync = io_uring_fasync,
9369 #ifdef CONFIG_PROC_FS
9370 .show_fdinfo = io_uring_show_fdinfo,
9374 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
9375 struct io_uring_params *p)
9377 struct io_rings *rings;
9378 size_t size, sq_array_offset;
9380 /* make sure these are sane, as we already accounted them */
9381 ctx->sq_entries = p->sq_entries;
9382 ctx->cq_entries = p->cq_entries;
9384 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
9385 if (size == SIZE_MAX)
9388 rings = io_mem_alloc(size);
9393 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
9394 rings->sq_ring_mask = p->sq_entries - 1;
9395 rings->cq_ring_mask = p->cq_entries - 1;
9396 rings->sq_ring_entries = p->sq_entries;
9397 rings->cq_ring_entries = p->cq_entries;
9398 ctx->sq_mask = rings->sq_ring_mask;
9399 ctx->cq_mask = rings->cq_ring_mask;
9401 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
9402 if (size == SIZE_MAX) {
9403 io_mem_free(ctx->rings);
9408 ctx->sq_sqes = io_mem_alloc(size);
9409 if (!ctx->sq_sqes) {
9410 io_mem_free(ctx->rings);
9418 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
9422 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
9426 ret = io_uring_add_task_file(ctx, file);
9431 fd_install(fd, file);
9436 * Allocate an anonymous fd, this is what constitutes the application
9437 * visible backing of an io_uring instance. The application mmaps this
9438 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
9439 * we have to tie this fd to a socket for file garbage collection purposes.
9441 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
9444 #if defined(CONFIG_UNIX)
9447 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
9450 return ERR_PTR(ret);
9453 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
9454 O_RDWR | O_CLOEXEC);
9455 #if defined(CONFIG_UNIX)
9457 sock_release(ctx->ring_sock);
9458 ctx->ring_sock = NULL;
9460 ctx->ring_sock->file = file;
9466 static int io_uring_create(unsigned entries, struct io_uring_params *p,
9467 struct io_uring_params __user *params)
9469 struct user_struct *user = NULL;
9470 struct io_ring_ctx *ctx;
9477 if (entries > IORING_MAX_ENTRIES) {
9478 if (!(p->flags & IORING_SETUP_CLAMP))
9480 entries = IORING_MAX_ENTRIES;
9484 * Use twice as many entries for the CQ ring. It's possible for the
9485 * application to drive a higher depth than the size of the SQ ring,
9486 * since the sqes are only used at submission time. This allows for
9487 * some flexibility in overcommitting a bit. If the application has
9488 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
9489 * of CQ ring entries manually.
9491 p->sq_entries = roundup_pow_of_two(entries);
9492 if (p->flags & IORING_SETUP_CQSIZE) {
9494 * If IORING_SETUP_CQSIZE is set, we do the same roundup
9495 * to a power-of-two, if it isn't already. We do NOT impose
9496 * any cq vs sq ring sizing.
9500 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
9501 if (!(p->flags & IORING_SETUP_CLAMP))
9503 p->cq_entries = IORING_MAX_CQ_ENTRIES;
9505 p->cq_entries = roundup_pow_of_two(p->cq_entries);
9506 if (p->cq_entries < p->sq_entries)
9509 p->cq_entries = 2 * p->sq_entries;
9512 user = get_uid(current_user());
9513 limit_mem = !capable(CAP_IPC_LOCK);
9516 ret = __io_account_mem(user,
9517 ring_pages(p->sq_entries, p->cq_entries));
9524 ctx = io_ring_ctx_alloc(p);
9527 __io_unaccount_mem(user, ring_pages(p->sq_entries,
9532 ctx->compat = in_compat_syscall();
9534 ctx->creds = get_current_cred();
9536 ctx->loginuid = current->loginuid;
9537 ctx->sessionid = current->sessionid;
9539 ctx->sqo_task = get_task_struct(current);
9542 * This is just grabbed for accounting purposes. When a process exits,
9543 * the mm is exited and dropped before the files, hence we need to hang
9544 * on to this mm purely for the purposes of being able to unaccount
9545 * memory (locked/pinned vm). It's not used for anything else.
9547 mmgrab(current->mm);
9548 ctx->mm_account = current->mm;
9550 #ifdef CONFIG_BLK_CGROUP
9552 * The sq thread will belong to the original cgroup it was inited in.
9553 * If the cgroup goes offline (e.g. disabling the io controller), then
9554 * issued bios will be associated with the closest cgroup later in the
9558 ctx->sqo_blkcg_css = blkcg_css();
9559 ret = css_tryget_online(ctx->sqo_blkcg_css);
9562 /* don't init against a dying cgroup, have the user try again */
9563 ctx->sqo_blkcg_css = NULL;
9570 * Account memory _before_ installing the file descriptor. Once
9571 * the descriptor is installed, it can get closed at any time. Also
9572 * do this before hitting the general error path, as ring freeing
9573 * will un-account as well.
9575 io_account_mem(ctx, ring_pages(p->sq_entries, p->cq_entries),
9577 ctx->limit_mem = limit_mem;
9579 ret = io_allocate_scq_urings(ctx, p);
9583 ret = io_sq_offload_create(ctx, p);
9587 if (!(p->flags & IORING_SETUP_R_DISABLED))
9588 io_sq_offload_start(ctx);
9590 memset(&p->sq_off, 0, sizeof(p->sq_off));
9591 p->sq_off.head = offsetof(struct io_rings, sq.head);
9592 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
9593 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
9594 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
9595 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
9596 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
9597 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
9599 memset(&p->cq_off, 0, sizeof(p->cq_off));
9600 p->cq_off.head = offsetof(struct io_rings, cq.head);
9601 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
9602 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
9603 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
9604 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
9605 p->cq_off.cqes = offsetof(struct io_rings, cqes);
9606 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
9608 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
9609 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
9610 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
9611 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
9612 IORING_FEAT_EXT_ARG;
9614 if (copy_to_user(params, p, sizeof(*p))) {
9619 file = io_uring_get_file(ctx);
9621 ret = PTR_ERR(file);
9626 * Install ring fd as the very last thing, so we don't risk someone
9627 * having closed it before we finish setup
9629 ret = io_uring_install_fd(ctx, file);
9631 /* fput will clean it up */
9636 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
9639 io_ring_ctx_wait_and_kill(ctx);
9644 * Sets up an aio uring context, and returns the fd. Applications asks for a
9645 * ring size, we return the actual sq/cq ring sizes (among other things) in the
9646 * params structure passed in.
9648 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
9650 struct io_uring_params p;
9653 if (copy_from_user(&p, params, sizeof(p)))
9655 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
9660 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
9661 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
9662 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
9663 IORING_SETUP_R_DISABLED))
9666 return io_uring_create(entries, &p, params);
9669 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
9670 struct io_uring_params __user *, params)
9672 return io_uring_setup(entries, params);
9675 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
9677 struct io_uring_probe *p;
9681 size = struct_size(p, ops, nr_args);
9682 if (size == SIZE_MAX)
9684 p = kzalloc(size, GFP_KERNEL);
9689 if (copy_from_user(p, arg, size))
9692 if (memchr_inv(p, 0, size))
9695 p->last_op = IORING_OP_LAST - 1;
9696 if (nr_args > IORING_OP_LAST)
9697 nr_args = IORING_OP_LAST;
9699 for (i = 0; i < nr_args; i++) {
9701 if (!io_op_defs[i].not_supported)
9702 p->ops[i].flags = IO_URING_OP_SUPPORTED;
9707 if (copy_to_user(arg, p, size))
9714 static int io_register_personality(struct io_ring_ctx *ctx)
9716 struct io_identity *id;
9719 id = kmalloc(sizeof(*id), GFP_KERNEL);
9723 io_init_identity(id);
9724 id->creds = get_current_cred();
9726 ret = idr_alloc_cyclic(&ctx->personality_idr, id, 1, USHRT_MAX, GFP_KERNEL);
9728 put_cred(id->creds);
9734 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
9736 struct io_identity *iod;
9738 iod = idr_remove(&ctx->personality_idr, id);
9740 put_cred(iod->creds);
9741 if (refcount_dec_and_test(&iod->count))
9749 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
9750 unsigned int nr_args)
9752 struct io_uring_restriction *res;
9756 /* Restrictions allowed only if rings started disabled */
9757 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9760 /* We allow only a single restrictions registration */
9761 if (ctx->restrictions.registered)
9764 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
9767 size = array_size(nr_args, sizeof(*res));
9768 if (size == SIZE_MAX)
9771 res = memdup_user(arg, size);
9773 return PTR_ERR(res);
9777 for (i = 0; i < nr_args; i++) {
9778 switch (res[i].opcode) {
9779 case IORING_RESTRICTION_REGISTER_OP:
9780 if (res[i].register_op >= IORING_REGISTER_LAST) {
9785 __set_bit(res[i].register_op,
9786 ctx->restrictions.register_op);
9788 case IORING_RESTRICTION_SQE_OP:
9789 if (res[i].sqe_op >= IORING_OP_LAST) {
9794 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
9796 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
9797 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
9799 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
9800 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
9809 /* Reset all restrictions if an error happened */
9811 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
9813 ctx->restrictions.registered = true;
9819 static int io_register_enable_rings(struct io_ring_ctx *ctx)
9821 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9824 if (ctx->restrictions.registered)
9825 ctx->restricted = 1;
9827 ctx->flags &= ~IORING_SETUP_R_DISABLED;
9829 io_sq_offload_start(ctx);
9834 static bool io_register_op_must_quiesce(int op)
9837 case IORING_UNREGISTER_FILES:
9838 case IORING_REGISTER_FILES_UPDATE:
9839 case IORING_REGISTER_PROBE:
9840 case IORING_REGISTER_PERSONALITY:
9841 case IORING_UNREGISTER_PERSONALITY:
9848 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
9849 void __user *arg, unsigned nr_args)
9850 __releases(ctx->uring_lock)
9851 __acquires(ctx->uring_lock)
9856 * We're inside the ring mutex, if the ref is already dying, then
9857 * someone else killed the ctx or is already going through
9858 * io_uring_register().
9860 if (percpu_ref_is_dying(&ctx->refs))
9863 if (io_register_op_must_quiesce(opcode)) {
9864 percpu_ref_kill(&ctx->refs);
9867 * Drop uring mutex before waiting for references to exit. If
9868 * another thread is currently inside io_uring_enter() it might
9869 * need to grab the uring_lock to make progress. If we hold it
9870 * here across the drain wait, then we can deadlock. It's safe
9871 * to drop the mutex here, since no new references will come in
9872 * after we've killed the percpu ref.
9874 mutex_unlock(&ctx->uring_lock);
9876 ret = wait_for_completion_interruptible(&ctx->ref_comp);
9879 ret = io_run_task_work_sig();
9884 mutex_lock(&ctx->uring_lock);
9887 percpu_ref_resurrect(&ctx->refs);
9892 if (ctx->restricted) {
9893 if (opcode >= IORING_REGISTER_LAST) {
9898 if (!test_bit(opcode, ctx->restrictions.register_op)) {
9905 case IORING_REGISTER_BUFFERS:
9906 ret = io_sqe_buffer_register(ctx, arg, nr_args);
9908 case IORING_UNREGISTER_BUFFERS:
9912 ret = io_sqe_buffer_unregister(ctx);
9914 case IORING_REGISTER_FILES:
9915 ret = io_sqe_files_register(ctx, arg, nr_args);
9917 case IORING_UNREGISTER_FILES:
9921 ret = io_sqe_files_unregister(ctx);
9923 case IORING_REGISTER_FILES_UPDATE:
9924 ret = io_sqe_files_update(ctx, arg, nr_args);
9926 case IORING_REGISTER_EVENTFD:
9927 case IORING_REGISTER_EVENTFD_ASYNC:
9931 ret = io_eventfd_register(ctx, arg);
9934 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
9935 ctx->eventfd_async = 1;
9937 ctx->eventfd_async = 0;
9939 case IORING_UNREGISTER_EVENTFD:
9943 ret = io_eventfd_unregister(ctx);
9945 case IORING_REGISTER_PROBE:
9947 if (!arg || nr_args > 256)
9949 ret = io_probe(ctx, arg, nr_args);
9951 case IORING_REGISTER_PERSONALITY:
9955 ret = io_register_personality(ctx);
9957 case IORING_UNREGISTER_PERSONALITY:
9961 ret = io_unregister_personality(ctx, nr_args);
9963 case IORING_REGISTER_ENABLE_RINGS:
9967 ret = io_register_enable_rings(ctx);
9969 case IORING_REGISTER_RESTRICTIONS:
9970 ret = io_register_restrictions(ctx, arg, nr_args);
9978 if (io_register_op_must_quiesce(opcode)) {
9979 /* bring the ctx back to life */
9980 percpu_ref_reinit(&ctx->refs);
9982 reinit_completion(&ctx->ref_comp);
9987 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
9988 void __user *, arg, unsigned int, nr_args)
9990 struct io_ring_ctx *ctx;
9999 if (f.file->f_op != &io_uring_fops)
10002 ctx = f.file->private_data;
10004 mutex_lock(&ctx->uring_lock);
10005 ret = __io_uring_register(ctx, opcode, arg, nr_args);
10006 mutex_unlock(&ctx->uring_lock);
10007 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
10008 ctx->cq_ev_fd != NULL, ret);
10014 static int __init io_uring_init(void)
10016 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
10017 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
10018 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
10021 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
10022 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
10023 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
10024 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
10025 BUILD_BUG_SQE_ELEM(1, __u8, flags);
10026 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
10027 BUILD_BUG_SQE_ELEM(4, __s32, fd);
10028 BUILD_BUG_SQE_ELEM(8, __u64, off);
10029 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
10030 BUILD_BUG_SQE_ELEM(16, __u64, addr);
10031 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
10032 BUILD_BUG_SQE_ELEM(24, __u32, len);
10033 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
10034 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
10035 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
10036 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
10037 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
10038 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
10039 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
10040 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
10041 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
10042 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
10043 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
10044 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
10045 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
10046 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
10047 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
10048 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
10049 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
10050 BUILD_BUG_SQE_ELEM(42, __u16, personality);
10051 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
10053 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
10054 BUILD_BUG_ON(__REQ_F_LAST_BIT >= 8 * sizeof(int));
10055 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
10058 __initcall(io_uring_init);