1 // SPDX-License-Identifier: GPL-2.0-or-later
7 #include <linux/kernel.h>
8 #include <linux/kprobes.h>
9 #include <linux/ptrace.h>
10 #include <linux/prefetch.h>
11 #include <asm/sstep.h>
12 #include <asm/processor.h>
13 #include <linux/uaccess.h>
14 #include <asm/cpu_has_feature.h>
15 #include <asm/cputable.h>
16 #include <asm/disassemble.h>
18 extern char system_call_common[];
19 extern char system_call_vectored_emulate[];
22 /* Bits in SRR1 that are copied from MSR */
23 #define MSR_MASK 0xffffffff87c0ffffUL
25 #define MSR_MASK 0x87c0ffff
29 #define XER_SO 0x80000000U
30 #define XER_OV 0x40000000U
31 #define XER_CA 0x20000000U
32 #define XER_OV32 0x00080000U
33 #define XER_CA32 0x00040000U
36 #define VSX_REGISTER_XTP(rd) ((((rd) & 1) << 5) | ((rd) & 0xfe))
41 * Functions in ldstfp.S
43 extern void get_fpr(int rn, double *p);
44 extern void put_fpr(int rn, const double *p);
45 extern void get_vr(int rn, __vector128 *p);
46 extern void put_vr(int rn, __vector128 *p);
47 extern void load_vsrn(int vsr, const void *p);
48 extern void store_vsrn(int vsr, void *p);
49 extern void conv_sp_to_dp(const float *sp, double *dp);
50 extern void conv_dp_to_sp(const double *dp, float *sp);
57 extern int do_lq(unsigned long ea, unsigned long *regs);
58 extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
59 extern int do_lqarx(unsigned long ea, unsigned long *regs);
60 extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
64 #ifdef __LITTLE_ENDIAN__
73 * Emulate the truncation of 64 bit values in 32-bit mode.
75 static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
78 if ((msr & MSR_64BIT) == 0)
84 * Determine whether a conditional branch instruction would branch.
86 static nokprobe_inline int branch_taken(unsigned int instr,
87 const struct pt_regs *regs,
88 struct instruction_op *op)
90 unsigned int bo = (instr >> 21) & 0x1f;
94 /* decrement counter */
96 if (((bo >> 1) & 1) ^ (regs->ctr == 1))
99 if ((bo & 0x10) == 0) {
100 /* check bit from CR */
101 bi = (instr >> 16) & 0x1f;
102 if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
108 static nokprobe_inline long address_ok(struct pt_regs *regs,
109 unsigned long ea, int nb)
111 if (!user_mode(regs))
113 if (access_ok((void __user *)ea, nb))
115 if (access_ok((void __user *)ea, 1))
116 /* Access overlaps the end of the user region */
117 regs->dar = TASK_SIZE_MAX - 1;
124 * Calculate effective address for a D-form instruction
126 static nokprobe_inline unsigned long dform_ea(unsigned int instr,
127 const struct pt_regs *regs)
132 ra = (instr >> 16) & 0x1f;
133 ea = (signed short) instr; /* sign-extend */
142 * Calculate effective address for a DS-form instruction
144 static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
145 const struct pt_regs *regs)
150 ra = (instr >> 16) & 0x1f;
151 ea = (signed short) (instr & ~3); /* sign-extend */
159 * Calculate effective address for a DQ-form instruction
161 static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
162 const struct pt_regs *regs)
167 ra = (instr >> 16) & 0x1f;
168 ea = (signed short) (instr & ~0xf); /* sign-extend */
174 #endif /* __powerpc64 */
177 * Calculate effective address for an X-form instruction
179 static nokprobe_inline unsigned long xform_ea(unsigned int instr,
180 const struct pt_regs *regs)
185 ra = (instr >> 16) & 0x1f;
186 rb = (instr >> 11) & 0x1f;
195 * Calculate effective address for a MLS:D-form / 8LS:D-form
196 * prefixed instruction
198 static nokprobe_inline unsigned long mlsd_8lsd_ea(unsigned int instr,
200 const struct pt_regs *regs)
204 unsigned long ea, d0, d1, d;
206 prefix_r = GET_PREFIX_R(instr);
207 ra = GET_PREFIX_RA(suffix);
209 d0 = instr & 0x3ffff;
210 d1 = suffix & 0xffff;
214 * sign extend a 34 bit number
216 dd = (unsigned int)(d >> 2);
218 ea = (ea << 2) | (d & 0x3);
222 else if (!prefix_r && !ra)
223 ; /* Leave ea as is */
228 * (prefix_r && ra) is an invalid form. Should already be
229 * checked for by caller!
236 * Return the largest power of 2, not greater than sizeof(unsigned long),
237 * such that x is a multiple of it.
239 static nokprobe_inline unsigned long max_align(unsigned long x)
241 x |= sizeof(unsigned long);
242 return x & -x; /* isolates rightmost bit */
245 static nokprobe_inline unsigned long byterev_2(unsigned long x)
247 return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
250 static nokprobe_inline unsigned long byterev_4(unsigned long x)
252 return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
253 ((x & 0xff00) << 8) | ((x & 0xff) << 24);
257 static nokprobe_inline unsigned long byterev_8(unsigned long x)
259 return (byterev_4(x) << 32) | byterev_4(x >> 32);
263 static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
267 *(u16 *)ptr = byterev_2(*(u16 *)ptr);
270 *(u32 *)ptr = byterev_4(*(u32 *)ptr);
274 *(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
277 unsigned long *up = (unsigned long *)ptr;
279 tmp = byterev_8(up[0]);
280 up[0] = byterev_8(up[1]);
285 unsigned long *up = (unsigned long *)ptr;
288 tmp = byterev_8(up[0]);
289 up[0] = byterev_8(up[3]);
291 tmp = byterev_8(up[2]);
292 up[2] = byterev_8(up[1]);
303 static __always_inline int
304 __read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs)
310 unsafe_get_user(x, (unsigned char __user *)ea, Efault);
313 unsafe_get_user(x, (unsigned short __user *)ea, Efault);
316 unsafe_get_user(x, (unsigned int __user *)ea, Efault);
320 unsafe_get_user(x, (unsigned long __user *)ea, Efault);
332 static nokprobe_inline int
333 read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs)
337 if (is_kernel_addr(ea))
338 return __read_mem_aligned(dest, ea, nb, regs);
340 if (user_read_access_begin((void __user *)ea, nb)) {
341 err = __read_mem_aligned(dest, ea, nb, regs);
342 user_read_access_end();
352 * Copy from userspace to a buffer, using the largest possible
353 * aligned accesses, up to sizeof(long).
355 static __always_inline int __copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
359 for (; nb > 0; nb -= c) {
365 unsafe_get_user(*dest, (u8 __user *)ea, Efault);
368 unsafe_get_user(*(u16 *)dest, (u16 __user *)ea, Efault);
371 unsafe_get_user(*(u32 *)dest, (u32 __user *)ea, Efault);
375 unsafe_get_user(*(u64 *)dest, (u64 __user *)ea, Efault);
389 static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
393 if (is_kernel_addr(ea))
394 return __copy_mem_in(dest, ea, nb, regs);
396 if (user_read_access_begin((void __user *)ea, nb)) {
397 err = __copy_mem_in(dest, ea, nb, regs);
398 user_read_access_end();
407 static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
408 unsigned long ea, int nb,
409 struct pt_regs *regs)
413 u8 b[sizeof(unsigned long)];
419 i = IS_BE ? sizeof(unsigned long) - nb : 0;
420 err = copy_mem_in(&u.b[i], ea, nb, regs);
427 * Read memory at address ea for nb bytes, return 0 for success
428 * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8.
429 * If nb < sizeof(long), the result is right-justified on BE systems.
431 static int read_mem(unsigned long *dest, unsigned long ea, int nb,
432 struct pt_regs *regs)
434 if (!address_ok(regs, ea, nb))
436 if ((ea & (nb - 1)) == 0)
437 return read_mem_aligned(dest, ea, nb, regs);
438 return read_mem_unaligned(dest, ea, nb, regs);
440 NOKPROBE_SYMBOL(read_mem);
442 static __always_inline int
443 __write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs)
447 unsafe_put_user(val, (unsigned char __user *)ea, Efault);
450 unsafe_put_user(val, (unsigned short __user *)ea, Efault);
453 unsafe_put_user(val, (unsigned int __user *)ea, Efault);
457 unsafe_put_user(val, (unsigned long __user *)ea, Efault);
468 static nokprobe_inline int
469 write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs)
473 if (is_kernel_addr(ea))
474 return __write_mem_aligned(val, ea, nb, regs);
476 if (user_write_access_begin((void __user *)ea, nb)) {
477 err = __write_mem_aligned(val, ea, nb, regs);
478 user_write_access_end();
488 * Copy from a buffer to userspace, using the largest possible
489 * aligned accesses, up to sizeof(long).
491 static nokprobe_inline int __copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
495 for (; nb > 0; nb -= c) {
501 unsafe_put_user(*dest, (u8 __user *)ea, Efault);
504 unsafe_put_user(*(u16 *)dest, (u16 __user *)ea, Efault);
507 unsafe_put_user(*(u32 *)dest, (u32 __user *)ea, Efault);
511 unsafe_put_user(*(u64 *)dest, (u64 __user *)ea, Efault);
525 static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
529 if (is_kernel_addr(ea))
530 return __copy_mem_out(dest, ea, nb, regs);
532 if (user_write_access_begin((void __user *)ea, nb)) {
533 err = __copy_mem_out(dest, ea, nb, regs);
534 user_write_access_end();
543 static nokprobe_inline int write_mem_unaligned(unsigned long val,
544 unsigned long ea, int nb,
545 struct pt_regs *regs)
549 u8 b[sizeof(unsigned long)];
554 i = IS_BE ? sizeof(unsigned long) - nb : 0;
555 return copy_mem_out(&u.b[i], ea, nb, regs);
559 * Write memory at address ea for nb bytes, return 0 for success
560 * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8.
562 static int write_mem(unsigned long val, unsigned long ea, int nb,
563 struct pt_regs *regs)
565 if (!address_ok(regs, ea, nb))
567 if ((ea & (nb - 1)) == 0)
568 return write_mem_aligned(val, ea, nb, regs);
569 return write_mem_unaligned(val, ea, nb, regs);
571 NOKPROBE_SYMBOL(write_mem);
573 #ifdef CONFIG_PPC_FPU
575 * These access either the real FP register or the image in the
576 * thread_struct, depending on regs->msr & MSR_FP.
578 static int do_fp_load(struct instruction_op *op, unsigned long ea,
579 struct pt_regs *regs, bool cross_endian)
588 u8 b[2 * sizeof(double)];
591 nb = GETSIZE(op->type);
592 if (!address_ok(regs, ea, nb))
595 err = copy_mem_in(u.b, ea, nb, regs);
598 if (unlikely(cross_endian)) {
599 do_byte_reverse(u.b, min(nb, 8));
601 do_byte_reverse(&u.b[8], 8);
605 if (op->type & FPCONV)
606 conv_sp_to_dp(&u.f, &u.d[0]);
607 else if (op->type & SIGNEXT)
612 if (regs->msr & MSR_FP)
613 put_fpr(rn, &u.d[0]);
615 current->thread.TS_FPR(rn) = u.l[0];
619 if (regs->msr & MSR_FP)
620 put_fpr(rn, &u.d[1]);
622 current->thread.TS_FPR(rn) = u.l[1];
627 NOKPROBE_SYMBOL(do_fp_load);
629 static int do_fp_store(struct instruction_op *op, unsigned long ea,
630 struct pt_regs *regs, bool cross_endian)
638 u8 b[2 * sizeof(double)];
641 nb = GETSIZE(op->type);
642 if (!address_ok(regs, ea, nb))
646 if (regs->msr & MSR_FP)
647 get_fpr(rn, &u.d[0]);
649 u.l[0] = current->thread.TS_FPR(rn);
651 if (op->type & FPCONV)
652 conv_dp_to_sp(&u.d[0], &u.f);
658 if (regs->msr & MSR_FP)
659 get_fpr(rn, &u.d[1]);
661 u.l[1] = current->thread.TS_FPR(rn);
664 if (unlikely(cross_endian)) {
665 do_byte_reverse(u.b, min(nb, 8));
667 do_byte_reverse(&u.b[8], 8);
669 return copy_mem_out(u.b, ea, nb, regs);
671 NOKPROBE_SYMBOL(do_fp_store);
674 #ifdef CONFIG_ALTIVEC
675 /* For Altivec/VMX, no need to worry about alignment */
676 static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
677 int size, struct pt_regs *regs,
683 u8 b[sizeof(__vector128)];
686 if (!address_ok(regs, ea & ~0xfUL, 16))
688 /* align to multiple of size */
690 err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
693 if (unlikely(cross_endian))
694 do_byte_reverse(&u.b[ea & 0xf], size);
696 if (regs->msr & MSR_VEC)
699 current->thread.vr_state.vr[rn] = u.v;
704 static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
705 int size, struct pt_regs *regs,
710 u8 b[sizeof(__vector128)];
713 if (!address_ok(regs, ea & ~0xfUL, 16))
715 /* align to multiple of size */
719 if (regs->msr & MSR_VEC)
722 u.v = current->thread.vr_state.vr[rn];
724 if (unlikely(cross_endian))
725 do_byte_reverse(&u.b[ea & 0xf], size);
726 return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
728 #endif /* CONFIG_ALTIVEC */
731 static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
732 int reg, bool cross_endian)
736 if (!address_ok(regs, ea, 16))
738 /* if aligned, should be atomic */
739 if ((ea & 0xf) == 0) {
740 err = do_lq(ea, ®s->gpr[reg]);
742 err = read_mem(®s->gpr[reg + IS_LE], ea, 8, regs);
744 err = read_mem(®s->gpr[reg + IS_BE], ea + 8, 8, regs);
746 if (!err && unlikely(cross_endian))
747 do_byte_reverse(®s->gpr[reg], 16);
751 static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
752 int reg, bool cross_endian)
755 unsigned long vals[2];
757 if (!address_ok(regs, ea, 16))
759 vals[0] = regs->gpr[reg];
760 vals[1] = regs->gpr[reg + 1];
761 if (unlikely(cross_endian))
762 do_byte_reverse(vals, 16);
764 /* if aligned, should be atomic */
766 return do_stq(ea, vals[0], vals[1]);
768 err = write_mem(vals[IS_LE], ea, 8, regs);
770 err = write_mem(vals[IS_BE], ea + 8, 8, regs);
773 #endif /* __powerpc64 */
776 void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
777 const void *mem, bool rev)
781 const unsigned int *wp;
782 const unsigned short *hp;
783 const unsigned char *bp;
785 size = GETSIZE(op->type);
786 reg->d[0] = reg->d[1] = 0;
788 switch (op->element_size) {
792 /* whole vector; lxv[x] or lxvl[l] */
795 memcpy(reg, mem, size);
796 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
799 do_byte_reverse(reg, size);
802 /* scalar loads, lxvd2x, lxvdsx */
803 read_size = (size >= 8) ? 8 : size;
804 i = IS_LE ? 8 : 8 - read_size;
805 memcpy(®->b[i], mem, read_size);
807 do_byte_reverse(®->b[i], 8);
809 if (op->type & SIGNEXT) {
810 /* size == 4 is the only case here */
811 reg->d[IS_LE] = (signed int) reg->d[IS_LE];
812 } else if (op->vsx_flags & VSX_FPCONV) {
814 conv_sp_to_dp(®->fp[1 + IS_LE],
820 unsigned long v = *(unsigned long *)(mem + 8);
821 reg->d[IS_BE] = !rev ? v : byterev_8(v);
822 } else if (op->vsx_flags & VSX_SPLAT)
823 reg->d[IS_BE] = reg->d[IS_LE];
829 for (j = 0; j < size / 4; ++j) {
830 i = IS_LE ? 3 - j : j;
831 reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
833 if (op->vsx_flags & VSX_SPLAT) {
834 u32 val = reg->w[IS_LE ? 3 : 0];
836 i = IS_LE ? 3 - j : j;
844 for (j = 0; j < size / 2; ++j) {
845 i = IS_LE ? 7 - j : j;
846 reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
852 for (j = 0; j < size; ++j) {
853 i = IS_LE ? 15 - j : j;
859 EXPORT_SYMBOL_GPL(emulate_vsx_load);
860 NOKPROBE_SYMBOL(emulate_vsx_load);
862 void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
865 int size, write_size;
872 size = GETSIZE(op->type);
874 switch (op->element_size) {
880 /* reverse 32 bytes */
881 union vsx_reg buf32[2];
882 buf32[0].d[0] = byterev_8(reg[1].d[1]);
883 buf32[0].d[1] = byterev_8(reg[1].d[0]);
884 buf32[1].d[0] = byterev_8(reg[0].d[1]);
885 buf32[1].d[1] = byterev_8(reg[0].d[0]);
886 memcpy(mem, buf32, size);
888 memcpy(mem, reg, size);
892 /* stxv, stxvx, stxvl, stxvll */
895 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
898 /* reverse 16 bytes */
899 buf.d[0] = byterev_8(reg->d[1]);
900 buf.d[1] = byterev_8(reg->d[0]);
903 memcpy(mem, reg, size);
906 /* scalar stores, stxvd2x */
907 write_size = (size >= 8) ? 8 : size;
908 i = IS_LE ? 8 : 8 - write_size;
909 if (size < 8 && op->vsx_flags & VSX_FPCONV) {
910 buf.d[0] = buf.d[1] = 0;
912 conv_dp_to_sp(®->dp[IS_LE], &buf.fp[1 + IS_LE]);
916 memcpy(mem, ®->b[i], write_size);
918 memcpy(mem + 8, ®->d[IS_BE], 8);
920 do_byte_reverse(mem, write_size);
922 do_byte_reverse(mem + 8, 8);
928 for (j = 0; j < size / 4; ++j) {
929 i = IS_LE ? 3 - j : j;
930 *wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
936 for (j = 0; j < size / 2; ++j) {
937 i = IS_LE ? 7 - j : j;
938 *hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
944 for (j = 0; j < size; ++j) {
945 i = IS_LE ? 15 - j : j;
951 EXPORT_SYMBOL_GPL(emulate_vsx_store);
952 NOKPROBE_SYMBOL(emulate_vsx_store);
954 static nokprobe_inline int do_vsx_load(struct instruction_op *op,
955 unsigned long ea, struct pt_regs *regs,
959 int i, j, nr_vsx_regs;
961 union vsx_reg buf[2];
962 int size = GETSIZE(op->type);
964 if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
967 nr_vsx_regs = max(1ul, size / sizeof(__vector128));
968 emulate_vsx_load(op, buf, mem, cross_endian);
971 /* FP regs + extensions */
972 if (regs->msr & MSR_FP) {
973 for (i = 0; i < nr_vsx_regs; i++) {
974 j = IS_LE ? nr_vsx_regs - i - 1 : i;
975 load_vsrn(reg + i, &buf[j].v);
978 for (i = 0; i < nr_vsx_regs; i++) {
979 j = IS_LE ? nr_vsx_regs - i - 1 : i;
980 current->thread.fp_state.fpr[reg + i][0] = buf[j].d[0];
981 current->thread.fp_state.fpr[reg + i][1] = buf[j].d[1];
985 if (regs->msr & MSR_VEC) {
986 for (i = 0; i < nr_vsx_regs; i++) {
987 j = IS_LE ? nr_vsx_regs - i - 1 : i;
988 load_vsrn(reg + i, &buf[j].v);
991 for (i = 0; i < nr_vsx_regs; i++) {
992 j = IS_LE ? nr_vsx_regs - i - 1 : i;
993 current->thread.vr_state.vr[reg - 32 + i] = buf[j].v;
1001 static nokprobe_inline int do_vsx_store(struct instruction_op *op,
1002 unsigned long ea, struct pt_regs *regs,
1006 int i, j, nr_vsx_regs;
1008 union vsx_reg buf[2];
1009 int size = GETSIZE(op->type);
1011 if (!address_ok(regs, ea, size))
1014 nr_vsx_regs = max(1ul, size / sizeof(__vector128));
1017 /* FP regs + extensions */
1018 if (regs->msr & MSR_FP) {
1019 for (i = 0; i < nr_vsx_regs; i++) {
1020 j = IS_LE ? nr_vsx_regs - i - 1 : i;
1021 store_vsrn(reg + i, &buf[j].v);
1024 for (i = 0; i < nr_vsx_regs; i++) {
1025 j = IS_LE ? nr_vsx_regs - i - 1 : i;
1026 buf[j].d[0] = current->thread.fp_state.fpr[reg + i][0];
1027 buf[j].d[1] = current->thread.fp_state.fpr[reg + i][1];
1031 if (regs->msr & MSR_VEC) {
1032 for (i = 0; i < nr_vsx_regs; i++) {
1033 j = IS_LE ? nr_vsx_regs - i - 1 : i;
1034 store_vsrn(reg + i, &buf[j].v);
1037 for (i = 0; i < nr_vsx_regs; i++) {
1038 j = IS_LE ? nr_vsx_regs - i - 1 : i;
1039 buf[j].v = current->thread.vr_state.vr[reg - 32 + i];
1044 emulate_vsx_store(op, buf, mem, cross_endian);
1045 return copy_mem_out(mem, ea, size, regs);
1047 #endif /* CONFIG_VSX */
1049 static int __emulate_dcbz(unsigned long ea)
1052 unsigned long size = l1_dcache_bytes();
1054 for (i = 0; i < size; i += sizeof(long))
1055 unsafe_put_user(0, (unsigned long __user *)(ea + i), Efault);
1063 int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
1066 unsigned long size = l1_dcache_bytes();
1068 ea = truncate_if_32bit(regs->msr, ea);
1070 if (!address_ok(regs, ea, size))
1073 if (is_kernel_addr(ea)) {
1074 err = __emulate_dcbz(ea);
1075 } else if (user_write_access_begin((void __user *)ea, size)) {
1076 err = __emulate_dcbz(ea);
1077 user_write_access_end();
1088 NOKPROBE_SYMBOL(emulate_dcbz);
1090 #define __put_user_asmx(x, addr, err, op, cr) \
1091 __asm__ __volatile__( \
1093 ".machine power8\n" \
1094 "1: " op " %2,0,%3\n" \
1098 ".section .fixup,\"ax\"\n" \
1103 : "=r" (err), "=r" (cr) \
1104 : "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
1106 #define __get_user_asmx(x, addr, err, op) \
1107 __asm__ __volatile__( \
1109 ".machine power8\n" \
1110 "1: "op" %1,0,%2\n" \
1113 ".section .fixup,\"ax\"\n" \
1118 : "=r" (err), "=r" (x) \
1119 : "r" (addr), "i" (-EFAULT), "0" (err))
1121 #define __cacheop_user_asmx(addr, err, op) \
1122 __asm__ __volatile__( \
1125 ".section .fixup,\"ax\"\n" \
1131 : "r" (addr), "i" (-EFAULT), "0" (err))
1133 static nokprobe_inline void set_cr0(const struct pt_regs *regs,
1134 struct instruction_op *op)
1139 op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
1140 if (!(regs->msr & MSR_64BIT))
1143 op->ccval |= 0x80000000;
1145 op->ccval |= 0x40000000;
1147 op->ccval |= 0x20000000;
1150 static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
1152 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1154 op->xerval |= XER_CA32;
1156 op->xerval &= ~XER_CA32;
1160 static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
1161 struct instruction_op *op, int rd,
1162 unsigned long val1, unsigned long val2,
1163 unsigned long carry_in)
1165 unsigned long val = val1 + val2;
1169 op->type = COMPUTE + SETREG + SETXER;
1172 val = truncate_if_32bit(regs->msr, val);
1173 val1 = truncate_if_32bit(regs->msr, val1);
1174 op->xerval = regs->xer;
1175 if (val < val1 || (carry_in && val == val1))
1176 op->xerval |= XER_CA;
1178 op->xerval &= ~XER_CA;
1180 set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
1181 (carry_in && (unsigned int)val == (unsigned int)val1));
1184 static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
1185 struct instruction_op *op,
1186 long v1, long v2, int crfld)
1188 unsigned int crval, shift;
1190 op->type = COMPUTE + SETCC;
1191 crval = (regs->xer >> 31) & 1; /* get SO bit */
1198 shift = (7 - crfld) * 4;
1199 op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1202 static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
1203 struct instruction_op *op,
1205 unsigned long v2, int crfld)
1207 unsigned int crval, shift;
1209 op->type = COMPUTE + SETCC;
1210 crval = (regs->xer >> 31) & 1; /* get SO bit */
1217 shift = (7 - crfld) * 4;
1218 op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1221 static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
1222 struct instruction_op *op,
1223 unsigned long v1, unsigned long v2)
1225 unsigned long long out_val, mask;
1229 for (i = 0; i < 8; i++) {
1230 mask = 0xffUL << (i * 8);
1231 if ((v1 & mask) == (v2 & mask))
1238 * The size parameter is used to adjust the equivalent popcnt instruction.
1239 * popcntb = 8, popcntw = 32, popcntd = 64
1241 static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
1242 struct instruction_op *op,
1243 unsigned long v1, int size)
1245 unsigned long long out = v1;
1247 out -= (out >> 1) & 0x5555555555555555ULL;
1248 out = (0x3333333333333333ULL & out) +
1249 (0x3333333333333333ULL & (out >> 2));
1250 out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1252 if (size == 8) { /* popcntb */
1258 if (size == 32) { /* popcntw */
1259 op->val = out & 0x0000003f0000003fULL;
1263 out = (out + (out >> 32)) & 0x7f;
1264 op->val = out; /* popcntd */
1268 static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
1269 struct instruction_op *op,
1270 unsigned long v1, unsigned long v2)
1272 unsigned char perm, idx;
1276 for (i = 0; i < 8; i++) {
1277 idx = (v1 >> (i * 8)) & 0xff;
1279 if (v2 & PPC_BIT(idx))
1284 #endif /* CONFIG_PPC64 */
1286 * The size parameter adjusts the equivalent prty instruction.
1287 * prtyw = 32, prtyd = 64
1289 static nokprobe_inline void do_prty(const struct pt_regs *regs,
1290 struct instruction_op *op,
1291 unsigned long v, int size)
1293 unsigned long long res = v ^ (v >> 8);
1296 if (size == 32) { /* prtyw */
1297 op->val = res & 0x0000000100000001ULL;
1302 op->val = res & 1; /*prtyd */
1305 static nokprobe_inline int trap_compare(long v1, long v2)
1315 if ((unsigned long)v1 < (unsigned long)v2)
1317 else if ((unsigned long)v1 > (unsigned long)v2)
1323 * Elements of 32-bit rotate and mask instructions.
1325 #define MASK32(mb, me) ((0xffffffffUL >> (mb)) + \
1326 ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
1327 #ifdef __powerpc64__
1328 #define MASK64_L(mb) (~0UL >> (mb))
1329 #define MASK64_R(me) ((signed long)-0x8000000000000000L >> (me))
1330 #define MASK64(mb, me) (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
1331 #define DATA32(x) (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
1333 #define DATA32(x) (x)
1335 #define ROTATE(x, n) ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
1338 * Decode an instruction, and return information about it in *op
1339 * without changing *regs.
1340 * Integer arithmetic and logical instructions, branches, and barrier
1341 * instructions can be emulated just using the information in *op.
1343 * Return value is 1 if the instruction can be emulated just by
1344 * updating *regs with the information in *op, -1 if we need the
1345 * GPRs but *regs doesn't contain the full register set, or 0
1348 int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
1352 unsigned int suffixopcode, prefixtype, prefix_r;
1354 unsigned int opcode, ra, rb, rc, rd, spr, u;
1355 unsigned long int imm;
1356 unsigned long int val, val2;
1357 unsigned int mb, me, sh;
1358 unsigned int word, suffix;
1361 word = ppc_inst_val(instr);
1362 suffix = ppc_inst_suffix(instr);
1366 opcode = ppc_inst_primary_opcode(instr);
1370 imm = (signed short)(word & 0xfffc);
1371 if ((word & 2) == 0)
1373 op->val = truncate_if_32bit(regs->msr, imm);
1376 if (branch_taken(word, regs, op))
1377 op->type |= BRTAKEN;
1381 if ((word & 0xfe2) == 2)
1383 else if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) &&
1384 (word & 0xfe3) == 1) { /* scv */
1385 op->type = SYSCALL_VECTORED_0;
1386 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1387 goto unknown_opcode;
1393 op->type = BRANCH | BRTAKEN;
1394 imm = word & 0x03fffffc;
1395 if (imm & 0x02000000)
1397 if ((word & 2) == 0)
1399 op->val = truncate_if_32bit(regs->msr, imm);
1404 switch ((word >> 1) & 0x3ff) {
1406 op->type = COMPUTE + SETCC;
1407 rd = 7 - ((word >> 23) & 0x7);
1408 ra = 7 - ((word >> 18) & 0x7);
1411 val = (regs->ccr >> ra) & 0xf;
1412 op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
1416 case 528: /* bcctr */
1418 imm = (word & 0x400)? regs->ctr: regs->link;
1419 op->val = truncate_if_32bit(regs->msr, imm);
1422 if (branch_taken(word, regs, op))
1423 op->type |= BRTAKEN;
1426 case 18: /* rfid, scary */
1427 if (regs->msr & MSR_PR)
1432 case 150: /* isync */
1433 op->type = BARRIER | BARRIER_ISYNC;
1436 case 33: /* crnor */
1437 case 129: /* crandc */
1438 case 193: /* crxor */
1439 case 225: /* crnand */
1440 case 257: /* crand */
1441 case 289: /* creqv */
1442 case 417: /* crorc */
1443 case 449: /* cror */
1444 op->type = COMPUTE + SETCC;
1445 ra = (word >> 16) & 0x1f;
1446 rb = (word >> 11) & 0x1f;
1447 rd = (word >> 21) & 0x1f;
1448 ra = (regs->ccr >> (31 - ra)) & 1;
1449 rb = (regs->ccr >> (31 - rb)) & 1;
1450 val = (word >> (6 + ra * 2 + rb)) & 1;
1451 op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
1457 switch ((word >> 1) & 0x3ff) {
1458 case 598: /* sync */
1459 op->type = BARRIER + BARRIER_SYNC;
1460 #ifdef __powerpc64__
1461 switch ((word >> 21) & 3) {
1462 case 1: /* lwsync */
1463 op->type = BARRIER + BARRIER_LWSYNC;
1465 case 2: /* ptesync */
1466 op->type = BARRIER + BARRIER_PTESYNC;
1472 case 854: /* eieio */
1473 op->type = BARRIER + BARRIER_EIEIO;
1479 rd = (word >> 21) & 0x1f;
1480 ra = (word >> 16) & 0x1f;
1481 rb = (word >> 11) & 0x1f;
1482 rc = (word >> 6) & 0x1f;
1485 #ifdef __powerpc64__
1487 if (!cpu_has_feature(CPU_FTR_ARCH_31))
1488 goto unknown_opcode;
1490 prefix_r = GET_PREFIX_R(word);
1491 ra = GET_PREFIX_RA(suffix);
1492 rd = (suffix >> 21) & 0x1f;
1494 op->val = regs->gpr[rd];
1495 suffixopcode = get_op(suffix);
1496 prefixtype = (word >> 24) & 0x3;
1497 switch (prefixtype) {
1501 switch (suffixopcode) {
1502 case 14: /* paddi */
1503 op->type = COMPUTE | PREFIXED;
1504 op->val = mlsd_8lsd_ea(word, suffix, regs);
1510 if (rd & trap_compare(regs->gpr[ra], (short) word))
1515 if (rd & trap_compare((int)regs->gpr[ra], (short) word))
1519 #ifdef __powerpc64__
1522 * There are very many instructions with this primary opcode
1523 * introduced in the ISA as early as v2.03. However, the ones
1524 * we currently emulate were all introduced with ISA 3.0
1526 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1527 goto unknown_opcode;
1529 switch (word & 0x3f) {
1530 case 48: /* maddhd */
1531 asm volatile(PPC_MADDHD(%0, %1, %2, %3) :
1532 "=r" (op->val) : "r" (regs->gpr[ra]),
1533 "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1536 case 49: /* maddhdu */
1537 asm volatile(PPC_MADDHDU(%0, %1, %2, %3) :
1538 "=r" (op->val) : "r" (regs->gpr[ra]),
1539 "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1542 case 51: /* maddld */
1543 asm volatile(PPC_MADDLD(%0, %1, %2, %3) :
1544 "=r" (op->val) : "r" (regs->gpr[ra]),
1545 "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1550 * There are other instructions from ISA 3.0 with the same
1551 * primary opcode which do not have emulation support yet.
1553 goto unknown_opcode;
1557 op->val = regs->gpr[ra] * (short) word;
1560 case 8: /* subfic */
1562 add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
1565 case 10: /* cmpli */
1566 imm = (unsigned short) word;
1567 val = regs->gpr[ra];
1568 #ifdef __powerpc64__
1570 val = (unsigned int) val;
1572 do_cmp_unsigned(regs, op, val, imm, rd >> 2);
1577 val = regs->gpr[ra];
1578 #ifdef __powerpc64__
1582 do_cmp_signed(regs, op, val, imm, rd >> 2);
1585 case 12: /* addic */
1587 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1590 case 13: /* addic. */
1592 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1599 imm += regs->gpr[ra];
1603 case 15: /* addis */
1604 imm = ((short) word) << 16;
1606 imm += regs->gpr[ra];
1611 if (((word >> 1) & 0x1f) == 2) {
1613 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1614 goto unknown_opcode;
1615 imm = (short) (word & 0xffc1); /* d0 + d2 fields */
1616 imm |= (word >> 15) & 0x3e; /* d1 field */
1617 op->val = regs->nip + (imm << 16) + 4;
1623 case 20: /* rlwimi */
1624 mb = (word >> 6) & 0x1f;
1625 me = (word >> 1) & 0x1f;
1626 val = DATA32(regs->gpr[rd]);
1627 imm = MASK32(mb, me);
1628 op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
1631 case 21: /* rlwinm */
1632 mb = (word >> 6) & 0x1f;
1633 me = (word >> 1) & 0x1f;
1634 val = DATA32(regs->gpr[rd]);
1635 op->val = ROTATE(val, rb) & MASK32(mb, me);
1638 case 23: /* rlwnm */
1639 mb = (word >> 6) & 0x1f;
1640 me = (word >> 1) & 0x1f;
1641 rb = regs->gpr[rb] & 0x1f;
1642 val = DATA32(regs->gpr[rd]);
1643 op->val = ROTATE(val, rb) & MASK32(mb, me);
1647 op->val = regs->gpr[rd] | (unsigned short) word;
1648 goto logical_done_nocc;
1651 imm = (unsigned short) word;
1652 op->val = regs->gpr[rd] | (imm << 16);
1653 goto logical_done_nocc;
1656 op->val = regs->gpr[rd] ^ (unsigned short) word;
1657 goto logical_done_nocc;
1659 case 27: /* xoris */
1660 imm = (unsigned short) word;
1661 op->val = regs->gpr[rd] ^ (imm << 16);
1662 goto logical_done_nocc;
1664 case 28: /* andi. */
1665 op->val = regs->gpr[rd] & (unsigned short) word;
1667 goto logical_done_nocc;
1669 case 29: /* andis. */
1670 imm = (unsigned short) word;
1671 op->val = regs->gpr[rd] & (imm << 16);
1673 goto logical_done_nocc;
1675 #ifdef __powerpc64__
1677 mb = ((word >> 6) & 0x1f) | (word & 0x20);
1678 val = regs->gpr[rd];
1679 if ((word & 0x10) == 0) {
1680 sh = rb | ((word & 2) << 4);
1681 val = ROTATE(val, sh);
1682 switch ((word >> 2) & 3) {
1683 case 0: /* rldicl */
1684 val &= MASK64_L(mb);
1686 case 1: /* rldicr */
1687 val &= MASK64_R(mb);
1690 val &= MASK64(mb, 63 - sh);
1692 case 3: /* rldimi */
1693 imm = MASK64(mb, 63 - sh);
1694 val = (regs->gpr[ra] & ~imm) |
1700 sh = regs->gpr[rb] & 0x3f;
1701 val = ROTATE(val, sh);
1702 switch ((word >> 1) & 7) {
1704 op->val = val & MASK64_L(mb);
1707 op->val = val & MASK64_R(mb);
1712 op->type = UNKNOWN; /* illegal instruction */
1716 /* isel occupies 32 minor opcodes */
1717 if (((word >> 1) & 0x1f) == 15) {
1718 mb = (word >> 6) & 0x1f; /* bc field */
1719 val = (regs->ccr >> (31 - mb)) & 1;
1720 val2 = (ra) ? regs->gpr[ra] : 0;
1722 op->val = (val) ? val2 : regs->gpr[rb];
1726 switch ((word >> 1) & 0x3ff) {
1729 (rd & trap_compare((int)regs->gpr[ra],
1730 (int)regs->gpr[rb])))
1733 #ifdef __powerpc64__
1735 if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
1739 case 83: /* mfmsr */
1740 if (regs->msr & MSR_PR)
1745 case 146: /* mtmsr */
1746 if (regs->msr & MSR_PR)
1750 op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
1753 case 178: /* mtmsrd */
1754 if (regs->msr & MSR_PR)
1758 /* only MSR_EE and MSR_RI get changed if bit 15 set */
1759 /* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
1760 imm = (word & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
1767 if ((word >> 20) & 1) {
1769 for (sh = 0; sh < 8; ++sh) {
1770 if (word & (0x80000 >> sh))
1775 op->val = regs->ccr & imm;
1778 case 128: /* setb */
1779 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1780 goto unknown_opcode;
1782 * 'ra' encodes the CR field number (bfa) in the top 3 bits.
1783 * Since each CR field is 4 bits,
1784 * we can simply mask off the bottom two bits (bfa * 4)
1785 * to yield the first bit in the CR field.
1788 /* 'val' stores bits of the CR field (bfa) */
1789 val = regs->ccr >> (CR0_SHIFT - ra);
1790 /* checks if the LT bit of CR field (bfa) is set */
1793 /* checks if the GT bit of CR field (bfa) is set */
1800 case 144: /* mtcrf */
1801 op->type = COMPUTE + SETCC;
1803 val = regs->gpr[rd];
1804 op->ccval = regs->ccr;
1805 for (sh = 0; sh < 8; ++sh) {
1806 if (word & (0x80000 >> sh))
1807 op->ccval = (op->ccval & ~imm) |
1813 case 339: /* mfspr */
1814 spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1818 if (spr == SPRN_XER || spr == SPRN_LR ||
1823 case 467: /* mtspr */
1824 spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1826 op->val = regs->gpr[rd];
1828 if (spr == SPRN_XER || spr == SPRN_LR ||
1834 * Compare instructions
1837 val = regs->gpr[ra];
1838 val2 = regs->gpr[rb];
1839 #ifdef __powerpc64__
1840 if ((rd & 1) == 0) {
1841 /* word (32-bit) compare */
1846 do_cmp_signed(regs, op, val, val2, rd >> 2);
1850 val = regs->gpr[ra];
1851 val2 = regs->gpr[rb];
1852 #ifdef __powerpc64__
1853 if ((rd & 1) == 0) {
1854 /* word (32-bit) compare */
1855 val = (unsigned int) val;
1856 val2 = (unsigned int) val2;
1859 do_cmp_unsigned(regs, op, val, val2, rd >> 2);
1862 case 508: /* cmpb */
1863 do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
1864 goto logical_done_nocc;
1867 * Arithmetic instructions
1870 add_with_carry(regs, op, rd, ~regs->gpr[ra],
1873 #ifdef __powerpc64__
1874 case 9: /* mulhdu */
1875 asm("mulhdu %0,%1,%2" : "=r" (op->val) :
1876 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1880 add_with_carry(regs, op, rd, regs->gpr[ra],
1884 case 11: /* mulhwu */
1885 asm("mulhwu %0,%1,%2" : "=r" (op->val) :
1886 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1890 op->val = regs->gpr[rb] - regs->gpr[ra];
1892 #ifdef __powerpc64__
1893 case 73: /* mulhd */
1894 asm("mulhd %0,%1,%2" : "=r" (op->val) :
1895 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1898 case 75: /* mulhw */
1899 asm("mulhw %0,%1,%2" : "=r" (op->val) :
1900 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1904 op->val = -regs->gpr[ra];
1907 case 136: /* subfe */
1908 add_with_carry(regs, op, rd, ~regs->gpr[ra],
1909 regs->gpr[rb], regs->xer & XER_CA);
1912 case 138: /* adde */
1913 add_with_carry(regs, op, rd, regs->gpr[ra],
1914 regs->gpr[rb], regs->xer & XER_CA);
1917 case 200: /* subfze */
1918 add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
1919 regs->xer & XER_CA);
1922 case 202: /* addze */
1923 add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
1924 regs->xer & XER_CA);
1927 case 232: /* subfme */
1928 add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
1929 regs->xer & XER_CA);
1931 #ifdef __powerpc64__
1932 case 233: /* mulld */
1933 op->val = regs->gpr[ra] * regs->gpr[rb];
1936 case 234: /* addme */
1937 add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
1938 regs->xer & XER_CA);
1941 case 235: /* mullw */
1942 op->val = (long)(int) regs->gpr[ra] *
1943 (int) regs->gpr[rb];
1946 #ifdef __powerpc64__
1947 case 265: /* modud */
1948 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1949 goto unknown_opcode;
1950 op->val = regs->gpr[ra] % regs->gpr[rb];
1954 op->val = regs->gpr[ra] + regs->gpr[rb];
1957 case 267: /* moduw */
1958 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1959 goto unknown_opcode;
1960 op->val = (unsigned int) regs->gpr[ra] %
1961 (unsigned int) regs->gpr[rb];
1963 #ifdef __powerpc64__
1964 case 457: /* divdu */
1965 op->val = regs->gpr[ra] / regs->gpr[rb];
1968 case 459: /* divwu */
1969 op->val = (unsigned int) regs->gpr[ra] /
1970 (unsigned int) regs->gpr[rb];
1972 #ifdef __powerpc64__
1973 case 489: /* divd */
1974 op->val = (long int) regs->gpr[ra] /
1975 (long int) regs->gpr[rb];
1978 case 491: /* divw */
1979 op->val = (int) regs->gpr[ra] /
1980 (int) regs->gpr[rb];
1982 #ifdef __powerpc64__
1983 case 425: /* divde[.] */
1984 asm volatile(PPC_DIVDE(%0, %1, %2) :
1985 "=r" (op->val) : "r" (regs->gpr[ra]),
1986 "r" (regs->gpr[rb]));
1988 case 393: /* divdeu[.] */
1989 asm volatile(PPC_DIVDEU(%0, %1, %2) :
1990 "=r" (op->val) : "r" (regs->gpr[ra]),
1991 "r" (regs->gpr[rb]));
1994 case 755: /* darn */
1995 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1996 goto unknown_opcode;
1999 /* 32-bit conditioned */
2000 asm volatile(PPC_DARN(%0, 0) : "=r" (op->val));
2004 /* 64-bit conditioned */
2005 asm volatile(PPC_DARN(%0, 1) : "=r" (op->val));
2010 asm volatile(PPC_DARN(%0, 2) : "=r" (op->val));
2014 goto unknown_opcode;
2015 #ifdef __powerpc64__
2016 case 777: /* modsd */
2017 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2018 goto unknown_opcode;
2019 op->val = (long int) regs->gpr[ra] %
2020 (long int) regs->gpr[rb];
2023 case 779: /* modsw */
2024 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2025 goto unknown_opcode;
2026 op->val = (int) regs->gpr[ra] %
2027 (int) regs->gpr[rb];
2032 * Logical instructions
2034 case 26: /* cntlzw */
2035 val = (unsigned int) regs->gpr[rd];
2036 op->val = ( val ? __builtin_clz(val) : 32 );
2038 #ifdef __powerpc64__
2039 case 58: /* cntlzd */
2040 val = regs->gpr[rd];
2041 op->val = ( val ? __builtin_clzl(val) : 64 );
2045 op->val = regs->gpr[rd] & regs->gpr[rb];
2049 op->val = regs->gpr[rd] & ~regs->gpr[rb];
2052 case 122: /* popcntb */
2053 do_popcnt(regs, op, regs->gpr[rd], 8);
2054 goto logical_done_nocc;
2057 op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
2060 case 154: /* prtyw */
2061 do_prty(regs, op, regs->gpr[rd], 32);
2062 goto logical_done_nocc;
2064 case 186: /* prtyd */
2065 do_prty(regs, op, regs->gpr[rd], 64);
2066 goto logical_done_nocc;
2068 case 252: /* bpermd */
2069 do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
2070 goto logical_done_nocc;
2073 op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
2077 op->val = regs->gpr[rd] ^ regs->gpr[rb];
2080 case 378: /* popcntw */
2081 do_popcnt(regs, op, regs->gpr[rd], 32);
2082 goto logical_done_nocc;
2085 op->val = regs->gpr[rd] | ~regs->gpr[rb];
2089 op->val = regs->gpr[rd] | regs->gpr[rb];
2092 case 476: /* nand */
2093 op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
2096 case 506: /* popcntd */
2097 do_popcnt(regs, op, regs->gpr[rd], 64);
2098 goto logical_done_nocc;
2100 case 538: /* cnttzw */
2101 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2102 goto unknown_opcode;
2103 val = (unsigned int) regs->gpr[rd];
2104 op->val = (val ? __builtin_ctz(val) : 32);
2106 #ifdef __powerpc64__
2107 case 570: /* cnttzd */
2108 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2109 goto unknown_opcode;
2110 val = regs->gpr[rd];
2111 op->val = (val ? __builtin_ctzl(val) : 64);
2114 case 922: /* extsh */
2115 op->val = (signed short) regs->gpr[rd];
2118 case 954: /* extsb */
2119 op->val = (signed char) regs->gpr[rd];
2121 #ifdef __powerpc64__
2122 case 986: /* extsw */
2123 op->val = (signed int) regs->gpr[rd];
2128 * Shift instructions
2131 sh = regs->gpr[rb] & 0x3f;
2133 op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
2139 sh = regs->gpr[rb] & 0x3f;
2141 op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
2146 case 792: /* sraw */
2147 op->type = COMPUTE + SETREG + SETXER;
2148 sh = regs->gpr[rb] & 0x3f;
2149 ival = (signed int) regs->gpr[rd];
2150 op->val = ival >> (sh < 32 ? sh : 31);
2151 op->xerval = regs->xer;
2152 if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
2153 op->xerval |= XER_CA;
2155 op->xerval &= ~XER_CA;
2156 set_ca32(op, op->xerval & XER_CA);
2159 case 824: /* srawi */
2160 op->type = COMPUTE + SETREG + SETXER;
2162 ival = (signed int) regs->gpr[rd];
2163 op->val = ival >> sh;
2164 op->xerval = regs->xer;
2165 if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2166 op->xerval |= XER_CA;
2168 op->xerval &= ~XER_CA;
2169 set_ca32(op, op->xerval & XER_CA);
2172 #ifdef __powerpc64__
2174 sh = regs->gpr[rb] & 0x7f;
2176 op->val = regs->gpr[rd] << sh;
2182 sh = regs->gpr[rb] & 0x7f;
2184 op->val = regs->gpr[rd] >> sh;
2189 case 794: /* srad */
2190 op->type = COMPUTE + SETREG + SETXER;
2191 sh = regs->gpr[rb] & 0x7f;
2192 ival = (signed long int) regs->gpr[rd];
2193 op->val = ival >> (sh < 64 ? sh : 63);
2194 op->xerval = regs->xer;
2195 if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
2196 op->xerval |= XER_CA;
2198 op->xerval &= ~XER_CA;
2199 set_ca32(op, op->xerval & XER_CA);
2202 case 826: /* sradi with sh_5 = 0 */
2203 case 827: /* sradi with sh_5 = 1 */
2204 op->type = COMPUTE + SETREG + SETXER;
2205 sh = rb | ((word & 2) << 4);
2206 ival = (signed long int) regs->gpr[rd];
2207 op->val = ival >> sh;
2208 op->xerval = regs->xer;
2209 if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2210 op->xerval |= XER_CA;
2212 op->xerval &= ~XER_CA;
2213 set_ca32(op, op->xerval & XER_CA);
2216 case 890: /* extswsli with sh_5 = 0 */
2217 case 891: /* extswsli with sh_5 = 1 */
2218 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2219 goto unknown_opcode;
2220 op->type = COMPUTE + SETREG;
2221 sh = rb | ((word & 2) << 4);
2222 val = (signed int) regs->gpr[rd];
2224 op->val = ROTATE(val, sh) & MASK64(0, 63 - sh);
2229 #endif /* __powerpc64__ */
2232 * Cache instructions
2234 case 54: /* dcbst */
2235 op->type = MKOP(CACHEOP, DCBST, 0);
2236 op->ea = xform_ea(word, regs);
2240 op->type = MKOP(CACHEOP, DCBF, 0);
2241 op->ea = xform_ea(word, regs);
2244 case 246: /* dcbtst */
2245 op->type = MKOP(CACHEOP, DCBTST, 0);
2246 op->ea = xform_ea(word, regs);
2250 case 278: /* dcbt */
2251 op->type = MKOP(CACHEOP, DCBTST, 0);
2252 op->ea = xform_ea(word, regs);
2256 case 982: /* icbi */
2257 op->type = MKOP(CACHEOP, ICBI, 0);
2258 op->ea = xform_ea(word, regs);
2261 case 1014: /* dcbz */
2262 op->type = MKOP(CACHEOP, DCBZ, 0);
2263 op->ea = xform_ea(word, regs);
2273 op->update_reg = ra;
2275 op->val = regs->gpr[rd];
2276 u = (word >> 20) & UPDATE;
2282 op->ea = xform_ea(word, regs);
2283 switch ((word >> 1) & 0x3ff) {
2284 case 20: /* lwarx */
2285 op->type = MKOP(LARX, 0, 4);
2288 case 150: /* stwcx. */
2289 op->type = MKOP(STCX, 0, 4);
2292 #ifdef __powerpc64__
2293 case 84: /* ldarx */
2294 op->type = MKOP(LARX, 0, 8);
2297 case 214: /* stdcx. */
2298 op->type = MKOP(STCX, 0, 8);
2301 case 52: /* lbarx */
2302 op->type = MKOP(LARX, 0, 1);
2305 case 694: /* stbcx. */
2306 op->type = MKOP(STCX, 0, 1);
2309 case 116: /* lharx */
2310 op->type = MKOP(LARX, 0, 2);
2313 case 726: /* sthcx. */
2314 op->type = MKOP(STCX, 0, 2);
2317 case 276: /* lqarx */
2318 if (!((rd & 1) || rd == ra || rd == rb))
2319 op->type = MKOP(LARX, 0, 16);
2322 case 182: /* stqcx. */
2324 op->type = MKOP(STCX, 0, 16);
2329 case 55: /* lwzux */
2330 op->type = MKOP(LOAD, u, 4);
2334 case 119: /* lbzux */
2335 op->type = MKOP(LOAD, u, 1);
2338 #ifdef CONFIG_ALTIVEC
2340 * Note: for the load/store vector element instructions,
2341 * bits of the EA say which field of the VMX register to use.
2344 op->type = MKOP(LOAD_VMX, 0, 1);
2345 op->element_size = 1;
2348 case 39: /* lvehx */
2349 op->type = MKOP(LOAD_VMX, 0, 2);
2350 op->element_size = 2;
2353 case 71: /* lvewx */
2354 op->type = MKOP(LOAD_VMX, 0, 4);
2355 op->element_size = 4;
2359 case 359: /* lvxl */
2360 op->type = MKOP(LOAD_VMX, 0, 16);
2361 op->element_size = 16;
2364 case 135: /* stvebx */
2365 op->type = MKOP(STORE_VMX, 0, 1);
2366 op->element_size = 1;
2369 case 167: /* stvehx */
2370 op->type = MKOP(STORE_VMX, 0, 2);
2371 op->element_size = 2;
2374 case 199: /* stvewx */
2375 op->type = MKOP(STORE_VMX, 0, 4);
2376 op->element_size = 4;
2379 case 231: /* stvx */
2380 case 487: /* stvxl */
2381 op->type = MKOP(STORE_VMX, 0, 16);
2383 #endif /* CONFIG_ALTIVEC */
2385 #ifdef __powerpc64__
2388 op->type = MKOP(LOAD, u, 8);
2391 case 149: /* stdx */
2392 case 181: /* stdux */
2393 op->type = MKOP(STORE, u, 8);
2397 case 151: /* stwx */
2398 case 183: /* stwux */
2399 op->type = MKOP(STORE, u, 4);
2402 case 215: /* stbx */
2403 case 247: /* stbux */
2404 op->type = MKOP(STORE, u, 1);
2407 case 279: /* lhzx */
2408 case 311: /* lhzux */
2409 op->type = MKOP(LOAD, u, 2);
2412 #ifdef __powerpc64__
2413 case 341: /* lwax */
2414 case 373: /* lwaux */
2415 op->type = MKOP(LOAD, SIGNEXT | u, 4);
2419 case 343: /* lhax */
2420 case 375: /* lhaux */
2421 op->type = MKOP(LOAD, SIGNEXT | u, 2);
2424 case 407: /* sthx */
2425 case 439: /* sthux */
2426 op->type = MKOP(STORE, u, 2);
2429 #ifdef __powerpc64__
2430 case 532: /* ldbrx */
2431 op->type = MKOP(LOAD, BYTEREV, 8);
2435 case 533: /* lswx */
2436 op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
2439 case 534: /* lwbrx */
2440 op->type = MKOP(LOAD, BYTEREV, 4);
2443 case 597: /* lswi */
2445 rb = 32; /* # bytes to load */
2446 op->type = MKOP(LOAD_MULTI, 0, rb);
2447 op->ea = ra ? regs->gpr[ra] : 0;
2450 #ifdef CONFIG_PPC_FPU
2451 case 535: /* lfsx */
2452 case 567: /* lfsux */
2453 op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2456 case 599: /* lfdx */
2457 case 631: /* lfdux */
2458 op->type = MKOP(LOAD_FP, u, 8);
2461 case 663: /* stfsx */
2462 case 695: /* stfsux */
2463 op->type = MKOP(STORE_FP, u | FPCONV, 4);
2466 case 727: /* stfdx */
2467 case 759: /* stfdux */
2468 op->type = MKOP(STORE_FP, u, 8);
2471 #ifdef __powerpc64__
2472 case 791: /* lfdpx */
2473 op->type = MKOP(LOAD_FP, 0, 16);
2476 case 855: /* lfiwax */
2477 op->type = MKOP(LOAD_FP, SIGNEXT, 4);
2480 case 887: /* lfiwzx */
2481 op->type = MKOP(LOAD_FP, 0, 4);
2484 case 919: /* stfdpx */
2485 op->type = MKOP(STORE_FP, 0, 16);
2488 case 983: /* stfiwx */
2489 op->type = MKOP(STORE_FP, 0, 4);
2491 #endif /* __powerpc64 */
2492 #endif /* CONFIG_PPC_FPU */
2494 #ifdef __powerpc64__
2495 case 660: /* stdbrx */
2496 op->type = MKOP(STORE, BYTEREV, 8);
2497 op->val = byterev_8(regs->gpr[rd]);
2501 case 661: /* stswx */
2502 op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
2505 case 662: /* stwbrx */
2506 op->type = MKOP(STORE, BYTEREV, 4);
2507 op->val = byterev_4(regs->gpr[rd]);
2510 case 725: /* stswi */
2512 rb = 32; /* # bytes to store */
2513 op->type = MKOP(STORE_MULTI, 0, rb);
2514 op->ea = ra ? regs->gpr[ra] : 0;
2517 case 790: /* lhbrx */
2518 op->type = MKOP(LOAD, BYTEREV, 2);
2521 case 918: /* sthbrx */
2522 op->type = MKOP(STORE, BYTEREV, 2);
2523 op->val = byterev_2(regs->gpr[rd]);
2527 case 12: /* lxsiwzx */
2528 op->reg = rd | ((word & 1) << 5);
2529 op->type = MKOP(LOAD_VSX, 0, 4);
2530 op->element_size = 8;
2533 case 76: /* lxsiwax */
2534 op->reg = rd | ((word & 1) << 5);
2535 op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
2536 op->element_size = 8;
2539 case 140: /* stxsiwx */
2540 op->reg = rd | ((word & 1) << 5);
2541 op->type = MKOP(STORE_VSX, 0, 4);
2542 op->element_size = 8;
2545 case 268: /* lxvx */
2546 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2547 goto unknown_opcode;
2548 op->reg = rd | ((word & 1) << 5);
2549 op->type = MKOP(LOAD_VSX, 0, 16);
2550 op->element_size = 16;
2551 op->vsx_flags = VSX_CHECK_VEC;
2554 case 269: /* lxvl */
2555 case 301: { /* lxvll */
2557 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2558 goto unknown_opcode;
2559 op->reg = rd | ((word & 1) << 5);
2560 op->ea = ra ? regs->gpr[ra] : 0;
2561 nb = regs->gpr[rb] & 0xff;
2564 op->type = MKOP(LOAD_VSX, 0, nb);
2565 op->element_size = 16;
2566 op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2570 case 332: /* lxvdsx */
2571 op->reg = rd | ((word & 1) << 5);
2572 op->type = MKOP(LOAD_VSX, 0, 8);
2573 op->element_size = 8;
2574 op->vsx_flags = VSX_SPLAT;
2577 case 333: /* lxvpx */
2578 if (!cpu_has_feature(CPU_FTR_ARCH_31))
2579 goto unknown_opcode;
2580 op->reg = VSX_REGISTER_XTP(rd);
2581 op->type = MKOP(LOAD_VSX, 0, 32);
2582 op->element_size = 32;
2585 case 364: /* lxvwsx */
2586 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2587 goto unknown_opcode;
2588 op->reg = rd | ((word & 1) << 5);
2589 op->type = MKOP(LOAD_VSX, 0, 4);
2590 op->element_size = 4;
2591 op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
2594 case 396: /* stxvx */
2595 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2596 goto unknown_opcode;
2597 op->reg = rd | ((word & 1) << 5);
2598 op->type = MKOP(STORE_VSX, 0, 16);
2599 op->element_size = 16;
2600 op->vsx_flags = VSX_CHECK_VEC;
2603 case 397: /* stxvl */
2604 case 429: { /* stxvll */
2606 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2607 goto unknown_opcode;
2608 op->reg = rd | ((word & 1) << 5);
2609 op->ea = ra ? regs->gpr[ra] : 0;
2610 nb = regs->gpr[rb] & 0xff;
2613 op->type = MKOP(STORE_VSX, 0, nb);
2614 op->element_size = 16;
2615 op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2619 case 461: /* stxvpx */
2620 if (!cpu_has_feature(CPU_FTR_ARCH_31))
2621 goto unknown_opcode;
2622 op->reg = VSX_REGISTER_XTP(rd);
2623 op->type = MKOP(STORE_VSX, 0, 32);
2624 op->element_size = 32;
2626 case 524: /* lxsspx */
2627 op->reg = rd | ((word & 1) << 5);
2628 op->type = MKOP(LOAD_VSX, 0, 4);
2629 op->element_size = 8;
2630 op->vsx_flags = VSX_FPCONV;
2633 case 588: /* lxsdx */
2634 op->reg = rd | ((word & 1) << 5);
2635 op->type = MKOP(LOAD_VSX, 0, 8);
2636 op->element_size = 8;
2639 case 652: /* stxsspx */
2640 op->reg = rd | ((word & 1) << 5);
2641 op->type = MKOP(STORE_VSX, 0, 4);
2642 op->element_size = 8;
2643 op->vsx_flags = VSX_FPCONV;
2646 case 716: /* stxsdx */
2647 op->reg = rd | ((word & 1) << 5);
2648 op->type = MKOP(STORE_VSX, 0, 8);
2649 op->element_size = 8;
2652 case 780: /* lxvw4x */
2653 op->reg = rd | ((word & 1) << 5);
2654 op->type = MKOP(LOAD_VSX, 0, 16);
2655 op->element_size = 4;
2658 case 781: /* lxsibzx */
2659 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2660 goto unknown_opcode;
2661 op->reg = rd | ((word & 1) << 5);
2662 op->type = MKOP(LOAD_VSX, 0, 1);
2663 op->element_size = 8;
2664 op->vsx_flags = VSX_CHECK_VEC;
2667 case 812: /* lxvh8x */
2668 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2669 goto unknown_opcode;
2670 op->reg = rd | ((word & 1) << 5);
2671 op->type = MKOP(LOAD_VSX, 0, 16);
2672 op->element_size = 2;
2673 op->vsx_flags = VSX_CHECK_VEC;
2676 case 813: /* lxsihzx */
2677 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2678 goto unknown_opcode;
2679 op->reg = rd | ((word & 1) << 5);
2680 op->type = MKOP(LOAD_VSX, 0, 2);
2681 op->element_size = 8;
2682 op->vsx_flags = VSX_CHECK_VEC;
2685 case 844: /* lxvd2x */
2686 op->reg = rd | ((word & 1) << 5);
2687 op->type = MKOP(LOAD_VSX, 0, 16);
2688 op->element_size = 8;
2691 case 876: /* lxvb16x */
2692 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2693 goto unknown_opcode;
2694 op->reg = rd | ((word & 1) << 5);
2695 op->type = MKOP(LOAD_VSX, 0, 16);
2696 op->element_size = 1;
2697 op->vsx_flags = VSX_CHECK_VEC;
2700 case 908: /* stxvw4x */
2701 op->reg = rd | ((word & 1) << 5);
2702 op->type = MKOP(STORE_VSX, 0, 16);
2703 op->element_size = 4;
2706 case 909: /* stxsibx */
2707 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2708 goto unknown_opcode;
2709 op->reg = rd | ((word & 1) << 5);
2710 op->type = MKOP(STORE_VSX, 0, 1);
2711 op->element_size = 8;
2712 op->vsx_flags = VSX_CHECK_VEC;
2715 case 940: /* stxvh8x */
2716 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2717 goto unknown_opcode;
2718 op->reg = rd | ((word & 1) << 5);
2719 op->type = MKOP(STORE_VSX, 0, 16);
2720 op->element_size = 2;
2721 op->vsx_flags = VSX_CHECK_VEC;
2724 case 941: /* stxsihx */
2725 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2726 goto unknown_opcode;
2727 op->reg = rd | ((word & 1) << 5);
2728 op->type = MKOP(STORE_VSX, 0, 2);
2729 op->element_size = 8;
2730 op->vsx_flags = VSX_CHECK_VEC;
2733 case 972: /* stxvd2x */
2734 op->reg = rd | ((word & 1) << 5);
2735 op->type = MKOP(STORE_VSX, 0, 16);
2736 op->element_size = 8;
2739 case 1004: /* stxvb16x */
2740 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2741 goto unknown_opcode;
2742 op->reg = rd | ((word & 1) << 5);
2743 op->type = MKOP(STORE_VSX, 0, 16);
2744 op->element_size = 1;
2745 op->vsx_flags = VSX_CHECK_VEC;
2748 #endif /* CONFIG_VSX */
2754 op->type = MKOP(LOAD, u, 4);
2755 op->ea = dform_ea(word, regs);
2760 op->type = MKOP(LOAD, u, 1);
2761 op->ea = dform_ea(word, regs);
2766 op->type = MKOP(STORE, u, 4);
2767 op->ea = dform_ea(word, regs);
2772 op->type = MKOP(STORE, u, 1);
2773 op->ea = dform_ea(word, regs);
2778 op->type = MKOP(LOAD, u, 2);
2779 op->ea = dform_ea(word, regs);
2784 op->type = MKOP(LOAD, SIGNEXT | u, 2);
2785 op->ea = dform_ea(word, regs);
2790 op->type = MKOP(STORE, u, 2);
2791 op->ea = dform_ea(word, regs);
2796 break; /* invalid form, ra in range to load */
2797 op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
2798 op->ea = dform_ea(word, regs);
2802 op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
2803 op->ea = dform_ea(word, regs);
2806 #ifdef CONFIG_PPC_FPU
2809 op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2810 op->ea = dform_ea(word, regs);
2815 op->type = MKOP(LOAD_FP, u, 8);
2816 op->ea = dform_ea(word, regs);
2820 case 53: /* stfsu */
2821 op->type = MKOP(STORE_FP, u | FPCONV, 4);
2822 op->ea = dform_ea(word, regs);
2826 case 55: /* stfdu */
2827 op->type = MKOP(STORE_FP, u, 8);
2828 op->ea = dform_ea(word, regs);
2832 #ifdef __powerpc64__
2834 if (!((rd & 1) || (rd == ra)))
2835 op->type = MKOP(LOAD, 0, 16);
2836 op->ea = dqform_ea(word, regs);
2841 case 57: /* lfdp, lxsd, lxssp */
2842 op->ea = dsform_ea(word, regs);
2846 break; /* reg must be even */
2847 op->type = MKOP(LOAD_FP, 0, 16);
2850 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2851 goto unknown_opcode;
2853 op->type = MKOP(LOAD_VSX, 0, 8);
2854 op->element_size = 8;
2855 op->vsx_flags = VSX_CHECK_VEC;
2858 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2859 goto unknown_opcode;
2861 op->type = MKOP(LOAD_VSX, 0, 4);
2862 op->element_size = 8;
2863 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2867 #endif /* CONFIG_VSX */
2869 #ifdef __powerpc64__
2870 case 58: /* ld[u], lwa */
2871 op->ea = dsform_ea(word, regs);
2874 op->type = MKOP(LOAD, 0, 8);
2877 op->type = MKOP(LOAD, UPDATE, 8);
2880 op->type = MKOP(LOAD, SIGNEXT, 4);
2888 if (!cpu_has_feature(CPU_FTR_ARCH_31))
2889 goto unknown_opcode;
2890 op->ea = dqform_ea(word, regs);
2891 op->reg = VSX_REGISTER_XTP(rd);
2892 op->element_size = 32;
2893 switch (word & 0xf) {
2895 op->type = MKOP(LOAD_VSX, 0, 32);
2898 op->type = MKOP(STORE_VSX, 0, 32);
2903 case 61: /* stfdp, lxv, stxsd, stxssp, stxv */
2905 case 0: /* stfdp with LSB of DS field = 0 */
2906 case 4: /* stfdp with LSB of DS field = 1 */
2907 op->ea = dsform_ea(word, regs);
2908 op->type = MKOP(STORE_FP, 0, 16);
2912 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2913 goto unknown_opcode;
2914 op->ea = dqform_ea(word, regs);
2917 op->type = MKOP(LOAD_VSX, 0, 16);
2918 op->element_size = 16;
2919 op->vsx_flags = VSX_CHECK_VEC;
2922 case 2: /* stxsd with LSB of DS field = 0 */
2923 case 6: /* stxsd with LSB of DS field = 1 */
2924 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2925 goto unknown_opcode;
2926 op->ea = dsform_ea(word, regs);
2928 op->type = MKOP(STORE_VSX, 0, 8);
2929 op->element_size = 8;
2930 op->vsx_flags = VSX_CHECK_VEC;
2933 case 3: /* stxssp with LSB of DS field = 0 */
2934 case 7: /* stxssp with LSB of DS field = 1 */
2935 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2936 goto unknown_opcode;
2937 op->ea = dsform_ea(word, regs);
2939 op->type = MKOP(STORE_VSX, 0, 4);
2940 op->element_size = 8;
2941 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2945 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2946 goto unknown_opcode;
2947 op->ea = dqform_ea(word, regs);
2950 op->type = MKOP(STORE_VSX, 0, 16);
2951 op->element_size = 16;
2952 op->vsx_flags = VSX_CHECK_VEC;
2956 #endif /* CONFIG_VSX */
2958 #ifdef __powerpc64__
2959 case 62: /* std[u] */
2960 op->ea = dsform_ea(word, regs);
2963 op->type = MKOP(STORE, 0, 8);
2966 op->type = MKOP(STORE, UPDATE, 8);
2970 op->type = MKOP(STORE, 0, 16);
2974 case 1: /* Prefixed instructions */
2975 if (!cpu_has_feature(CPU_FTR_ARCH_31))
2976 goto unknown_opcode;
2978 prefix_r = GET_PREFIX_R(word);
2979 ra = GET_PREFIX_RA(suffix);
2980 op->update_reg = ra;
2981 rd = (suffix >> 21) & 0x1f;
2983 op->val = regs->gpr[rd];
2985 suffixopcode = get_op(suffix);
2986 prefixtype = (word >> 24) & 0x3;
2987 switch (prefixtype) {
2988 case 0: /* Type 00 Eight-Byte Load/Store */
2991 op->ea = mlsd_8lsd_ea(word, suffix, regs);
2992 switch (suffixopcode) {
2994 op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 4);
2997 case 42: /* plxsd */
2999 op->type = MKOP(LOAD_VSX, PREFIXED, 8);
3000 op->element_size = 8;
3001 op->vsx_flags = VSX_CHECK_VEC;
3003 case 43: /* plxssp */
3005 op->type = MKOP(LOAD_VSX, PREFIXED, 4);
3006 op->element_size = 8;
3007 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
3009 case 46: /* pstxsd */
3011 op->type = MKOP(STORE_VSX, PREFIXED, 8);
3012 op->element_size = 8;
3013 op->vsx_flags = VSX_CHECK_VEC;
3015 case 47: /* pstxssp */
3017 op->type = MKOP(STORE_VSX, PREFIXED, 4);
3018 op->element_size = 8;
3019 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
3021 case 51: /* plxv1 */
3024 case 50: /* plxv0 */
3025 op->type = MKOP(LOAD_VSX, PREFIXED, 16);
3026 op->element_size = 16;
3027 op->vsx_flags = VSX_CHECK_VEC;
3029 case 55: /* pstxv1 */
3032 case 54: /* pstxv0 */
3033 op->type = MKOP(STORE_VSX, PREFIXED, 16);
3034 op->element_size = 16;
3035 op->vsx_flags = VSX_CHECK_VEC;
3037 #endif /* CONFIG_VSX */
3039 op->type = MKOP(LOAD, PREFIXED, 16);
3042 op->type = MKOP(LOAD, PREFIXED, 8);
3045 case 58: /* plxvp */
3046 op->reg = VSX_REGISTER_XTP(rd);
3047 op->type = MKOP(LOAD_VSX, PREFIXED, 32);
3048 op->element_size = 32;
3050 #endif /* CONFIG_VSX */
3052 op->type = MKOP(STORE, PREFIXED, 16);
3055 op->type = MKOP(STORE, PREFIXED, 8);
3058 case 62: /* pstxvp */
3059 op->reg = VSX_REGISTER_XTP(rd);
3060 op->type = MKOP(STORE_VSX, PREFIXED, 32);
3061 op->element_size = 32;
3063 #endif /* CONFIG_VSX */
3066 case 1: /* Type 01 Eight-Byte Register-to-Register */
3068 case 2: /* Type 10 Modified Load/Store */
3071 op->ea = mlsd_8lsd_ea(word, suffix, regs);
3072 switch (suffixopcode) {
3074 op->type = MKOP(LOAD, PREFIXED, 4);
3077 op->type = MKOP(LOAD, PREFIXED, 1);
3080 op->type = MKOP(STORE, PREFIXED, 4);
3083 op->type = MKOP(STORE, PREFIXED, 1);
3086 op->type = MKOP(LOAD, PREFIXED, 2);
3089 op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 2);
3092 op->type = MKOP(STORE, PREFIXED, 2);
3095 op->type = MKOP(LOAD_FP, PREFIXED | FPCONV, 4);
3098 op->type = MKOP(LOAD_FP, PREFIXED, 8);
3100 case 52: /* pstfs */
3101 op->type = MKOP(STORE_FP, PREFIXED | FPCONV, 4);
3103 case 54: /* pstfd */
3104 op->type = MKOP(STORE_FP, PREFIXED, 8);
3108 case 3: /* Type 11 Modified Register-to-Register */
3111 #endif /* __powerpc64__ */
3115 if (OP_IS_LOAD_STORE(op->type) && (op->type & UPDATE)) {
3116 switch (GETTYPE(op->type)) {
3119 goto unknown_opcode;
3125 goto unknown_opcode;
3130 if ((GETTYPE(op->type) == LOAD_VSX ||
3131 GETTYPE(op->type) == STORE_VSX) &&
3132 !cpu_has_feature(CPU_FTR_VSX)) {
3135 #endif /* CONFIG_VSX */
3160 op->type = INTERRUPT | 0x700;
3161 op->val = SRR1_PROGPRIV;
3165 op->type = INTERRUPT | 0x700;
3166 op->val = SRR1_PROGTRAP;
3169 EXPORT_SYMBOL_GPL(analyse_instr);
3170 NOKPROBE_SYMBOL(analyse_instr);
3173 * For PPC32 we always use stwu with r1 to change the stack pointer.
3174 * So this emulated store may corrupt the exception frame, now we
3175 * have to provide the exception frame trampoline, which is pushed
3176 * below the kprobed function stack. So we only update gpr[1] but
3177 * don't emulate the real store operation. We will do real store
3178 * operation safely in exception return code by checking this flag.
3180 static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
3183 * Check if we already set since that means we'll
3184 * lose the previous value.
3186 WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
3187 set_thread_flag(TIF_EMULATE_STACK_STORE);
3191 static nokprobe_inline void do_signext(unsigned long *valp, int size)
3195 *valp = (signed short) *valp;
3198 *valp = (signed int) *valp;
3203 static nokprobe_inline void do_byterev(unsigned long *valp, int size)
3207 *valp = byterev_2(*valp);
3210 *valp = byterev_4(*valp);
3212 #ifdef __powerpc64__
3214 *valp = byterev_8(*valp);
3221 * Emulate an instruction that can be executed just by updating
3224 void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
3226 unsigned long next_pc;
3228 next_pc = truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op->type));
3229 switch (GETTYPE(op->type)) {
3231 if (op->type & SETREG)
3232 regs->gpr[op->reg] = op->val;
3233 if (op->type & SETCC)
3234 regs->ccr = op->ccval;
3235 if (op->type & SETXER)
3236 regs->xer = op->xerval;
3240 if (op->type & SETLK)
3241 regs->link = next_pc;
3242 if (op->type & BRTAKEN)
3244 if (op->type & DECCTR)
3249 switch (op->type & BARRIER_MASK) {
3260 case BARRIER_LWSYNC:
3261 asm volatile("lwsync" : : : "memory");
3263 case BARRIER_PTESYNC:
3264 asm volatile("ptesync" : : : "memory");
3273 regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
3276 regs->gpr[op->reg] = regs->link;
3279 regs->gpr[op->reg] = regs->ctr;
3289 regs->xer = op->val & 0xffffffffUL;
3292 regs->link = op->val;
3295 regs->ctr = op->val;
3305 regs_set_return_ip(regs, next_pc);
3307 NOKPROBE_SYMBOL(emulate_update_regs);
3310 * Emulate a previously-analysed load or store instruction.
3311 * Return values are:
3312 * 0 = instruction emulated successfully
3313 * -EFAULT = address out of range or access faulted (regs->dar
3314 * contains the faulting address)
3315 * -EACCES = misaligned access, instruction requires alignment
3316 * -EINVAL = unknown operation in *op
3318 int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
3320 int err, size, type;
3328 size = GETSIZE(op->type);
3329 type = GETTYPE(op->type);
3330 cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
3331 ea = truncate_if_32bit(regs->msr, op->ea);
3335 if (ea & (size - 1))
3336 return -EACCES; /* can't handle misaligned */
3337 if (!address_ok(regs, ea, size))
3342 #ifdef __powerpc64__
3344 __get_user_asmx(val, ea, err, "lbarx");
3347 __get_user_asmx(val, ea, err, "lharx");
3351 __get_user_asmx(val, ea, err, "lwarx");
3353 #ifdef __powerpc64__
3355 __get_user_asmx(val, ea, err, "ldarx");
3358 err = do_lqarx(ea, ®s->gpr[op->reg]);
3369 regs->gpr[op->reg] = val;
3373 if (ea & (size - 1))
3374 return -EACCES; /* can't handle misaligned */
3375 if (!address_ok(regs, ea, size))
3379 #ifdef __powerpc64__
3381 __put_user_asmx(op->val, ea, err, "stbcx.", cr);
3384 __put_user_asmx(op->val, ea, err, "sthcx.", cr);
3388 __put_user_asmx(op->val, ea, err, "stwcx.", cr);
3390 #ifdef __powerpc64__
3392 __put_user_asmx(op->val, ea, err, "stdcx.", cr);
3395 err = do_stqcx(ea, regs->gpr[op->reg],
3396 regs->gpr[op->reg + 1], &cr);
3403 regs->ccr = (regs->ccr & 0x0fffffff) |
3405 ((regs->xer >> 3) & 0x10000000);
3411 #ifdef __powerpc64__
3413 err = emulate_lq(regs, ea, op->reg, cross_endian);
3417 err = read_mem(®s->gpr[op->reg], ea, size, regs);
3419 if (op->type & SIGNEXT)
3420 do_signext(®s->gpr[op->reg], size);
3421 if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
3422 do_byterev(®s->gpr[op->reg], size);
3426 #ifdef CONFIG_PPC_FPU
3429 * If the instruction is in userspace, we can emulate it even
3430 * if the VMX state is not live, because we have the state
3431 * stored in the thread_struct. If the instruction is in
3432 * the kernel, we must not touch the state in the thread_struct.
3434 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3436 err = do_fp_load(op, ea, regs, cross_endian);
3439 #ifdef CONFIG_ALTIVEC
3441 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3443 err = do_vec_load(op->reg, ea, size, regs, cross_endian);
3448 unsigned long msrbit = MSR_VSX;
3451 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3452 * when the target of the instruction is a vector register.
3454 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3456 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3458 err = do_vsx_load(op, ea, regs, cross_endian);
3463 if (!address_ok(regs, ea, size))
3466 for (i = 0; i < size; i += 4) {
3467 unsigned int v32 = 0;
3472 err = copy_mem_in((u8 *) &v32, ea, nb, regs);
3475 if (unlikely(cross_endian))
3476 v32 = byterev_4(v32);
3477 regs->gpr[rd] = v32;
3479 /* reg number wraps from 31 to 0 for lsw[ix] */
3480 rd = (rd + 1) & 0x1f;
3485 #ifdef __powerpc64__
3487 err = emulate_stq(regs, ea, op->reg, cross_endian);
3491 if ((op->type & UPDATE) && size == sizeof(long) &&
3492 op->reg == 1 && op->update_reg == 1 &&
3493 !(regs->msr & MSR_PR) &&
3494 ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
3495 err = handle_stack_update(ea, regs);
3498 if (unlikely(cross_endian))
3499 do_byterev(&op->val, size);
3500 err = write_mem(op->val, ea, size, regs);
3503 #ifdef CONFIG_PPC_FPU
3505 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3507 err = do_fp_store(op, ea, regs, cross_endian);
3510 #ifdef CONFIG_ALTIVEC
3512 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3514 err = do_vec_store(op->reg, ea, size, regs, cross_endian);
3519 unsigned long msrbit = MSR_VSX;
3522 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3523 * when the target of the instruction is a vector register.
3525 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3527 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3529 err = do_vsx_store(op, ea, regs, cross_endian);
3534 if (!address_ok(regs, ea, size))
3537 for (i = 0; i < size; i += 4) {
3538 unsigned int v32 = regs->gpr[rd];
3543 if (unlikely(cross_endian))
3544 v32 = byterev_4(v32);
3545 err = copy_mem_out((u8 *) &v32, ea, nb, regs);
3549 /* reg number wraps from 31 to 0 for stsw[ix] */
3550 rd = (rd + 1) & 0x1f;
3561 if (op->type & UPDATE)
3562 regs->gpr[op->update_reg] = op->ea;
3566 NOKPROBE_SYMBOL(emulate_loadstore);
3569 * Emulate instructions that cause a transfer of control,
3570 * loads and stores, and a few other instructions.
3571 * Returns 1 if the step was emulated, 0 if not,
3572 * or -1 if the instruction is one that should not be stepped,
3573 * such as an rfid, or a mtmsrd that would clear MSR_RI.
3575 int emulate_step(struct pt_regs *regs, ppc_inst_t instr)
3577 struct instruction_op op;
3582 r = analyse_instr(&op, regs, instr);
3586 emulate_update_regs(regs, &op);
3591 type = GETTYPE(op.type);
3593 if (OP_IS_LOAD_STORE(type)) {
3594 err = emulate_loadstore(regs, &op);
3602 ea = truncate_if_32bit(regs->msr, op.ea);
3603 if (!address_ok(regs, ea, 8))
3605 switch (op.type & CACHEOP_MASK) {
3607 __cacheop_user_asmx(ea, err, "dcbst");
3610 __cacheop_user_asmx(ea, err, "dcbf");
3614 prefetchw((void *) ea);
3618 prefetch((void *) ea);
3621 __cacheop_user_asmx(ea, err, "icbi");
3624 err = emulate_dcbz(ea, regs);
3634 regs->gpr[op.reg] = regs->msr & MSR_MASK;
3638 val = regs->gpr[op.reg];
3639 if ((val & MSR_RI) == 0)
3640 /* can't step mtmsr[d] that would clear MSR_RI */
3642 /* here op.val is the mask of bits to change */
3643 regs_set_return_msr(regs, (regs->msr & ~op.val) | (val & op.val));
3647 case SYSCALL: /* sc */
3649 * N.B. this uses knowledge about how the syscall
3650 * entry code works. If that is changed, this will
3651 * need to be changed also.
3653 if (IS_ENABLED(CONFIG_PPC_FAST_ENDIAN_SWITCH) &&
3654 cpu_has_feature(CPU_FTR_REAL_LE) &&
3655 regs->gpr[0] == 0x1ebe) {
3656 regs_set_return_msr(regs, regs->msr ^ MSR_LE);
3659 regs->gpr[9] = regs->gpr[13];
3660 regs->gpr[10] = MSR_KERNEL;
3661 regs->gpr[11] = regs->nip + 4;
3662 regs->gpr[12] = regs->msr & MSR_MASK;
3663 regs->gpr[13] = (unsigned long) get_paca();
3664 regs_set_return_ip(regs, (unsigned long) &system_call_common);
3665 regs_set_return_msr(regs, MSR_KERNEL);
3668 #ifdef CONFIG_PPC_BOOK3S_64
3669 case SYSCALL_VECTORED_0: /* scv 0 */
3670 regs->gpr[9] = regs->gpr[13];
3671 regs->gpr[10] = MSR_KERNEL;
3672 regs->gpr[11] = regs->nip + 4;
3673 regs->gpr[12] = regs->msr & MSR_MASK;
3674 regs->gpr[13] = (unsigned long) get_paca();
3675 regs_set_return_ip(regs, (unsigned long) &system_call_vectored_emulate);
3676 regs_set_return_msr(regs, MSR_KERNEL);
3687 regs_set_return_ip(regs,
3688 truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op.type)));
3691 NOKPROBE_SYMBOL(emulate_step);