1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * NET3 Protocol independent device support routines.
5 * Derived from the non IP parts of dev.c 1.0.19
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
47 * Rudi Cilibrasi : Pass the right thing to
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
104 #include <net/dst_metadata.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
155 #include "net-sysfs.h"
158 static DEFINE_SPINLOCK(ptype_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly; /* Taps */
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164 struct netdev_notifier_info *info);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166 struct net_device *dev,
167 struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
171 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
174 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176 * Writers must hold the rtnl semaphore while they loop through the
177 * dev_base_head list, and hold dev_base_lock for writing when they do the
178 * actual updates. This allows pure readers to access the list even
179 * while a writer is preparing to update it.
181 * To put it another way, dev_base_lock is held for writing only to
182 * protect against pure readers; the rtnl semaphore provides the
183 * protection against other writers.
185 * See, for example usages, register_netdevice() and
186 * unregister_netdevice(), which must be called with the rtnl
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
192 static DEFINE_MUTEX(ifalias_mutex);
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200 static DECLARE_RWSEM(devnet_rename_sem);
202 static inline void dev_base_seq_inc(struct net *net)
204 while (++net->dev_base_seq == 0)
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221 unsigned long *flags)
223 if (IS_ENABLED(CONFIG_RPS))
224 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 local_irq_save(*flags);
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
231 if (IS_ENABLED(CONFIG_RPS))
232 spin_lock_irq(&sd->input_pkt_queue.lock);
233 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 unsigned long *flags)
240 if (IS_ENABLED(CONFIG_RPS))
241 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 local_irq_restore(*flags);
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
248 if (IS_ENABLED(CONFIG_RPS))
249 spin_unlock_irq(&sd->input_pkt_queue.lock);
250 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
257 struct netdev_name_node *name_node;
259 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
262 INIT_HLIST_NODE(&name_node->hlist);
263 name_node->dev = dev;
264 name_node->name = name;
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
271 struct netdev_name_node *name_node;
273 name_node = netdev_name_node_alloc(dev, dev->name);
276 INIT_LIST_HEAD(&name_node->list);
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
285 static void netdev_name_node_add(struct net *net,
286 struct netdev_name_node *name_node)
288 hlist_add_head_rcu(&name_node->hlist,
289 dev_name_hash(net, name_node->name));
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
294 hlist_del_rcu(&name_node->hlist);
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
300 struct hlist_head *head = dev_name_hash(net, name);
301 struct netdev_name_node *name_node;
303 hlist_for_each_entry(name_node, head, hlist)
304 if (!strcmp(name_node->name, name))
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
312 struct hlist_head *head = dev_name_hash(net, name);
313 struct netdev_name_node *name_node;
315 hlist_for_each_entry_rcu(name_node, head, hlist)
316 if (!strcmp(name_node->name, name))
321 bool netdev_name_in_use(struct net *net, const char *name)
323 return netdev_name_node_lookup(net, name);
325 EXPORT_SYMBOL(netdev_name_in_use);
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
329 struct netdev_name_node *name_node;
330 struct net *net = dev_net(dev);
332 name_node = netdev_name_node_lookup(net, name);
335 name_node = netdev_name_node_alloc(dev, name);
338 netdev_name_node_add(net, name_node);
339 /* The node that holds dev->name acts as a head of per-device list. */
340 list_add_tail(&name_node->list, &dev->name_node->list);
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
347 list_del(&name_node->list);
348 netdev_name_node_del(name_node);
349 kfree(name_node->name);
350 netdev_name_node_free(name_node);
353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
355 struct netdev_name_node *name_node;
356 struct net *net = dev_net(dev);
358 name_node = netdev_name_node_lookup(net, name);
361 /* lookup might have found our primary name or a name belonging
364 if (name_node == dev->name_node || name_node->dev != dev)
367 __netdev_name_node_alt_destroy(name_node);
372 static void netdev_name_node_alt_flush(struct net_device *dev)
374 struct netdev_name_node *name_node, *tmp;
376 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377 __netdev_name_node_alt_destroy(name_node);
380 /* Device list insertion */
381 static void list_netdevice(struct net_device *dev)
383 struct net *net = dev_net(dev);
387 write_lock(&dev_base_lock);
388 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
389 netdev_name_node_add(net, dev->name_node);
390 hlist_add_head_rcu(&dev->index_hlist,
391 dev_index_hash(net, dev->ifindex));
392 write_unlock(&dev_base_lock);
394 dev_base_seq_inc(net);
397 /* Device list removal
398 * caller must respect a RCU grace period before freeing/reusing dev
400 static void unlist_netdevice(struct net_device *dev, bool lock)
404 /* Unlink dev from the device chain */
406 write_lock(&dev_base_lock);
407 list_del_rcu(&dev->dev_list);
408 netdev_name_node_del(dev->name_node);
409 hlist_del_rcu(&dev->index_hlist);
411 write_unlock(&dev_base_lock);
413 dev_base_seq_inc(dev_net(dev));
420 static RAW_NOTIFIER_HEAD(netdev_chain);
423 * Device drivers call our routines to queue packets here. We empty the
424 * queue in the local softnet handler.
427 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
428 EXPORT_PER_CPU_SYMBOL(softnet_data);
430 #ifdef CONFIG_LOCKDEP
432 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
433 * according to dev->type
435 static const unsigned short netdev_lock_type[] = {
436 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
437 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
438 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
439 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
440 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
441 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
442 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
443 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
444 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
445 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
446 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
447 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
448 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
449 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
450 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
452 static const char *const netdev_lock_name[] = {
453 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
454 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
455 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
456 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
457 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
458 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
459 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
460 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
461 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
462 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
463 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
464 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
465 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
466 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
467 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
469 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
470 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
472 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
476 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
477 if (netdev_lock_type[i] == dev_type)
479 /* the last key is used by default */
480 return ARRAY_SIZE(netdev_lock_type) - 1;
483 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
484 unsigned short dev_type)
488 i = netdev_lock_pos(dev_type);
489 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
490 netdev_lock_name[i]);
493 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
497 i = netdev_lock_pos(dev->type);
498 lockdep_set_class_and_name(&dev->addr_list_lock,
499 &netdev_addr_lock_key[i],
500 netdev_lock_name[i]);
503 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
504 unsigned short dev_type)
508 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
513 /*******************************************************************************
515 * Protocol management and registration routines
517 *******************************************************************************/
521 * Add a protocol ID to the list. Now that the input handler is
522 * smarter we can dispense with all the messy stuff that used to be
525 * BEWARE!!! Protocol handlers, mangling input packets,
526 * MUST BE last in hash buckets and checking protocol handlers
527 * MUST start from promiscuous ptype_all chain in net_bh.
528 * It is true now, do not change it.
529 * Explanation follows: if protocol handler, mangling packet, will
530 * be the first on list, it is not able to sense, that packet
531 * is cloned and should be copied-on-write, so that it will
532 * change it and subsequent readers will get broken packet.
536 static inline struct list_head *ptype_head(const struct packet_type *pt)
538 if (pt->type == htons(ETH_P_ALL))
539 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
541 return pt->dev ? &pt->dev->ptype_specific :
542 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
546 * dev_add_pack - add packet handler
547 * @pt: packet type declaration
549 * Add a protocol handler to the networking stack. The passed &packet_type
550 * is linked into kernel lists and may not be freed until it has been
551 * removed from the kernel lists.
553 * This call does not sleep therefore it can not
554 * guarantee all CPU's that are in middle of receiving packets
555 * will see the new packet type (until the next received packet).
558 void dev_add_pack(struct packet_type *pt)
560 struct list_head *head = ptype_head(pt);
562 spin_lock(&ptype_lock);
563 list_add_rcu(&pt->list, head);
564 spin_unlock(&ptype_lock);
566 EXPORT_SYMBOL(dev_add_pack);
569 * __dev_remove_pack - remove packet handler
570 * @pt: packet type declaration
572 * Remove a protocol handler that was previously added to the kernel
573 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
574 * from the kernel lists and can be freed or reused once this function
577 * The packet type might still be in use by receivers
578 * and must not be freed until after all the CPU's have gone
579 * through a quiescent state.
581 void __dev_remove_pack(struct packet_type *pt)
583 struct list_head *head = ptype_head(pt);
584 struct packet_type *pt1;
586 spin_lock(&ptype_lock);
588 list_for_each_entry(pt1, head, list) {
590 list_del_rcu(&pt->list);
595 pr_warn("dev_remove_pack: %p not found\n", pt);
597 spin_unlock(&ptype_lock);
599 EXPORT_SYMBOL(__dev_remove_pack);
602 * dev_remove_pack - remove packet handler
603 * @pt: packet type declaration
605 * Remove a protocol handler that was previously added to the kernel
606 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
607 * from the kernel lists and can be freed or reused once this function
610 * This call sleeps to guarantee that no CPU is looking at the packet
613 void dev_remove_pack(struct packet_type *pt)
615 __dev_remove_pack(pt);
619 EXPORT_SYMBOL(dev_remove_pack);
622 /*******************************************************************************
624 * Device Interface Subroutines
626 *******************************************************************************/
629 * dev_get_iflink - get 'iflink' value of a interface
630 * @dev: targeted interface
632 * Indicates the ifindex the interface is linked to.
633 * Physical interfaces have the same 'ifindex' and 'iflink' values.
636 int dev_get_iflink(const struct net_device *dev)
638 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
639 return dev->netdev_ops->ndo_get_iflink(dev);
643 EXPORT_SYMBOL(dev_get_iflink);
646 * dev_fill_metadata_dst - Retrieve tunnel egress information.
647 * @dev: targeted interface
650 * For better visibility of tunnel traffic OVS needs to retrieve
651 * egress tunnel information for a packet. Following API allows
652 * user to get this info.
654 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
656 struct ip_tunnel_info *info;
658 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
661 info = skb_tunnel_info_unclone(skb);
664 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
667 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
669 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
671 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
673 int k = stack->num_paths++;
675 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
678 return &stack->path[k];
681 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
682 struct net_device_path_stack *stack)
684 const struct net_device *last_dev;
685 struct net_device_path_ctx ctx = {
688 struct net_device_path *path;
691 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
692 stack->num_paths = 0;
693 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
695 path = dev_fwd_path(stack);
699 memset(path, 0, sizeof(struct net_device_path));
700 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
704 if (WARN_ON_ONCE(last_dev == ctx.dev))
711 path = dev_fwd_path(stack);
714 path->type = DEV_PATH_ETHERNET;
719 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
722 * __dev_get_by_name - find a device by its name
723 * @net: the applicable net namespace
724 * @name: name to find
726 * Find an interface by name. Must be called under RTNL semaphore
727 * or @dev_base_lock. If the name is found a pointer to the device
728 * is returned. If the name is not found then %NULL is returned. The
729 * reference counters are not incremented so the caller must be
730 * careful with locks.
733 struct net_device *__dev_get_by_name(struct net *net, const char *name)
735 struct netdev_name_node *node_name;
737 node_name = netdev_name_node_lookup(net, name);
738 return node_name ? node_name->dev : NULL;
740 EXPORT_SYMBOL(__dev_get_by_name);
743 * dev_get_by_name_rcu - find a device by its name
744 * @net: the applicable net namespace
745 * @name: name to find
747 * Find an interface by name.
748 * If the name is found a pointer to the device is returned.
749 * If the name is not found then %NULL is returned.
750 * The reference counters are not incremented so the caller must be
751 * careful with locks. The caller must hold RCU lock.
754 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
756 struct netdev_name_node *node_name;
758 node_name = netdev_name_node_lookup_rcu(net, name);
759 return node_name ? node_name->dev : NULL;
761 EXPORT_SYMBOL(dev_get_by_name_rcu);
764 * dev_get_by_name - find a device by its name
765 * @net: the applicable net namespace
766 * @name: name to find
768 * Find an interface by name. This can be called from any
769 * context and does its own locking. The returned handle has
770 * the usage count incremented and the caller must use dev_put() to
771 * release it when it is no longer needed. %NULL is returned if no
772 * matching device is found.
775 struct net_device *dev_get_by_name(struct net *net, const char *name)
777 struct net_device *dev;
780 dev = dev_get_by_name_rcu(net, name);
785 EXPORT_SYMBOL(dev_get_by_name);
788 * __dev_get_by_index - find a device by its ifindex
789 * @net: the applicable net namespace
790 * @ifindex: index of device
792 * Search for an interface by index. Returns %NULL if the device
793 * is not found or a pointer to the device. The device has not
794 * had its reference counter increased so the caller must be careful
795 * about locking. The caller must hold either the RTNL semaphore
799 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
801 struct net_device *dev;
802 struct hlist_head *head = dev_index_hash(net, ifindex);
804 hlist_for_each_entry(dev, head, index_hlist)
805 if (dev->ifindex == ifindex)
810 EXPORT_SYMBOL(__dev_get_by_index);
813 * dev_get_by_index_rcu - find a device by its ifindex
814 * @net: the applicable net namespace
815 * @ifindex: index of device
817 * Search for an interface by index. Returns %NULL if the device
818 * is not found or a pointer to the device. The device has not
819 * had its reference counter increased so the caller must be careful
820 * about locking. The caller must hold RCU lock.
823 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
825 struct net_device *dev;
826 struct hlist_head *head = dev_index_hash(net, ifindex);
828 hlist_for_each_entry_rcu(dev, head, index_hlist)
829 if (dev->ifindex == ifindex)
834 EXPORT_SYMBOL(dev_get_by_index_rcu);
838 * dev_get_by_index - find a device by its ifindex
839 * @net: the applicable net namespace
840 * @ifindex: index of device
842 * Search for an interface by index. Returns NULL if the device
843 * is not found or a pointer to the device. The device returned has
844 * had a reference added and the pointer is safe until the user calls
845 * dev_put to indicate they have finished with it.
848 struct net_device *dev_get_by_index(struct net *net, int ifindex)
850 struct net_device *dev;
853 dev = dev_get_by_index_rcu(net, ifindex);
858 EXPORT_SYMBOL(dev_get_by_index);
861 * dev_get_by_napi_id - find a device by napi_id
862 * @napi_id: ID of the NAPI struct
864 * Search for an interface by NAPI ID. Returns %NULL if the device
865 * is not found or a pointer to the device. The device has not had
866 * its reference counter increased so the caller must be careful
867 * about locking. The caller must hold RCU lock.
870 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
872 struct napi_struct *napi;
874 WARN_ON_ONCE(!rcu_read_lock_held());
876 if (napi_id < MIN_NAPI_ID)
879 napi = napi_by_id(napi_id);
881 return napi ? napi->dev : NULL;
883 EXPORT_SYMBOL(dev_get_by_napi_id);
886 * netdev_get_name - get a netdevice name, knowing its ifindex.
887 * @net: network namespace
888 * @name: a pointer to the buffer where the name will be stored.
889 * @ifindex: the ifindex of the interface to get the name from.
891 int netdev_get_name(struct net *net, char *name, int ifindex)
893 struct net_device *dev;
896 down_read(&devnet_rename_sem);
899 dev = dev_get_by_index_rcu(net, ifindex);
905 strcpy(name, dev->name);
910 up_read(&devnet_rename_sem);
915 * dev_getbyhwaddr_rcu - find a device by its hardware address
916 * @net: the applicable net namespace
917 * @type: media type of device
918 * @ha: hardware address
920 * Search for an interface by MAC address. Returns NULL if the device
921 * is not found or a pointer to the device.
922 * The caller must hold RCU or RTNL.
923 * The returned device has not had its ref count increased
924 * and the caller must therefore be careful about locking
928 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
931 struct net_device *dev;
933 for_each_netdev_rcu(net, dev)
934 if (dev->type == type &&
935 !memcmp(dev->dev_addr, ha, dev->addr_len))
940 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
942 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
944 struct net_device *dev, *ret = NULL;
947 for_each_netdev_rcu(net, dev)
948 if (dev->type == type) {
956 EXPORT_SYMBOL(dev_getfirstbyhwtype);
959 * __dev_get_by_flags - find any device with given flags
960 * @net: the applicable net namespace
961 * @if_flags: IFF_* values
962 * @mask: bitmask of bits in if_flags to check
964 * Search for any interface with the given flags. Returns NULL if a device
965 * is not found or a pointer to the device. Must be called inside
966 * rtnl_lock(), and result refcount is unchanged.
969 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
972 struct net_device *dev, *ret;
977 for_each_netdev(net, dev) {
978 if (((dev->flags ^ if_flags) & mask) == 0) {
985 EXPORT_SYMBOL(__dev_get_by_flags);
988 * dev_valid_name - check if name is okay for network device
991 * Network device names need to be valid file names to
992 * allow sysfs to work. We also disallow any kind of
995 bool dev_valid_name(const char *name)
999 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1001 if (!strcmp(name, ".") || !strcmp(name, ".."))
1005 if (*name == '/' || *name == ':' || isspace(*name))
1011 EXPORT_SYMBOL(dev_valid_name);
1014 * __dev_alloc_name - allocate a name for a device
1015 * @net: network namespace to allocate the device name in
1016 * @name: name format string
1017 * @buf: scratch buffer and result name string
1019 * Passed a format string - eg "lt%d" it will try and find a suitable
1020 * id. It scans list of devices to build up a free map, then chooses
1021 * the first empty slot. The caller must hold the dev_base or rtnl lock
1022 * while allocating the name and adding the device in order to avoid
1024 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025 * Returns the number of the unit assigned or a negative errno code.
1028 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1032 const int max_netdevices = 8*PAGE_SIZE;
1033 unsigned long *inuse;
1034 struct net_device *d;
1036 if (!dev_valid_name(name))
1039 p = strchr(name, '%');
1042 * Verify the string as this thing may have come from
1043 * the user. There must be either one "%d" and no other "%"
1046 if (p[1] != 'd' || strchr(p + 2, '%'))
1049 /* Use one page as a bit array of possible slots */
1050 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1054 for_each_netdev(net, d) {
1055 struct netdev_name_node *name_node;
1056 list_for_each_entry(name_node, &d->name_node->list, list) {
1057 if (!sscanf(name_node->name, name, &i))
1059 if (i < 0 || i >= max_netdevices)
1062 /* avoid cases where sscanf is not exact inverse of printf */
1063 snprintf(buf, IFNAMSIZ, name, i);
1064 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1065 __set_bit(i, inuse);
1067 if (!sscanf(d->name, name, &i))
1069 if (i < 0 || i >= max_netdevices)
1072 /* avoid cases where sscanf is not exact inverse of printf */
1073 snprintf(buf, IFNAMSIZ, name, i);
1074 if (!strncmp(buf, d->name, IFNAMSIZ))
1075 __set_bit(i, inuse);
1078 i = find_first_zero_bit(inuse, max_netdevices);
1079 free_page((unsigned long) inuse);
1082 snprintf(buf, IFNAMSIZ, name, i);
1083 if (!netdev_name_in_use(net, buf))
1086 /* It is possible to run out of possible slots
1087 * when the name is long and there isn't enough space left
1088 * for the digits, or if all bits are used.
1093 static int dev_alloc_name_ns(struct net *net,
1094 struct net_device *dev,
1101 ret = __dev_alloc_name(net, name, buf);
1103 strscpy(dev->name, buf, IFNAMSIZ);
1108 * dev_alloc_name - allocate a name for a device
1110 * @name: name format string
1112 * Passed a format string - eg "lt%d" it will try and find a suitable
1113 * id. It scans list of devices to build up a free map, then chooses
1114 * the first empty slot. The caller must hold the dev_base or rtnl lock
1115 * while allocating the name and adding the device in order to avoid
1117 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1118 * Returns the number of the unit assigned or a negative errno code.
1121 int dev_alloc_name(struct net_device *dev, const char *name)
1123 return dev_alloc_name_ns(dev_net(dev), dev, name);
1125 EXPORT_SYMBOL(dev_alloc_name);
1127 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1132 if (!dev_valid_name(name))
1135 if (strchr(name, '%'))
1136 return dev_alloc_name_ns(net, dev, name);
1137 else if (netdev_name_in_use(net, name))
1139 else if (dev->name != name)
1140 strscpy(dev->name, name, IFNAMSIZ);
1146 * dev_change_name - change name of a device
1148 * @newname: name (or format string) must be at least IFNAMSIZ
1150 * Change name of a device, can pass format strings "eth%d".
1153 int dev_change_name(struct net_device *dev, const char *newname)
1155 unsigned char old_assign_type;
1156 char oldname[IFNAMSIZ];
1162 BUG_ON(!dev_net(dev));
1166 down_write(&devnet_rename_sem);
1168 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1169 up_write(&devnet_rename_sem);
1173 memcpy(oldname, dev->name, IFNAMSIZ);
1175 err = dev_get_valid_name(net, dev, newname);
1177 up_write(&devnet_rename_sem);
1181 if (oldname[0] && !strchr(oldname, '%'))
1182 netdev_info(dev, "renamed from %s%s\n", oldname,
1183 dev->flags & IFF_UP ? " (while UP)" : "");
1185 old_assign_type = dev->name_assign_type;
1186 dev->name_assign_type = NET_NAME_RENAMED;
1189 ret = device_rename(&dev->dev, dev->name);
1191 memcpy(dev->name, oldname, IFNAMSIZ);
1192 dev->name_assign_type = old_assign_type;
1193 up_write(&devnet_rename_sem);
1197 up_write(&devnet_rename_sem);
1199 netdev_adjacent_rename_links(dev, oldname);
1201 write_lock(&dev_base_lock);
1202 netdev_name_node_del(dev->name_node);
1203 write_unlock(&dev_base_lock);
1207 write_lock(&dev_base_lock);
1208 netdev_name_node_add(net, dev->name_node);
1209 write_unlock(&dev_base_lock);
1211 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1212 ret = notifier_to_errno(ret);
1215 /* err >= 0 after dev_alloc_name() or stores the first errno */
1218 down_write(&devnet_rename_sem);
1219 memcpy(dev->name, oldname, IFNAMSIZ);
1220 memcpy(oldname, newname, IFNAMSIZ);
1221 dev->name_assign_type = old_assign_type;
1222 old_assign_type = NET_NAME_RENAMED;
1225 netdev_err(dev, "name change rollback failed: %d\n",
1234 * dev_set_alias - change ifalias of a device
1236 * @alias: name up to IFALIASZ
1237 * @len: limit of bytes to copy from info
1239 * Set ifalias for a device,
1241 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1243 struct dev_ifalias *new_alias = NULL;
1245 if (len >= IFALIASZ)
1249 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1253 memcpy(new_alias->ifalias, alias, len);
1254 new_alias->ifalias[len] = 0;
1257 mutex_lock(&ifalias_mutex);
1258 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1259 mutex_is_locked(&ifalias_mutex));
1260 mutex_unlock(&ifalias_mutex);
1263 kfree_rcu(new_alias, rcuhead);
1267 EXPORT_SYMBOL(dev_set_alias);
1270 * dev_get_alias - get ifalias of a device
1272 * @name: buffer to store name of ifalias
1273 * @len: size of buffer
1275 * get ifalias for a device. Caller must make sure dev cannot go
1276 * away, e.g. rcu read lock or own a reference count to device.
1278 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1280 const struct dev_ifalias *alias;
1284 alias = rcu_dereference(dev->ifalias);
1286 ret = snprintf(name, len, "%s", alias->ifalias);
1293 * netdev_features_change - device changes features
1294 * @dev: device to cause notification
1296 * Called to indicate a device has changed features.
1298 void netdev_features_change(struct net_device *dev)
1300 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1302 EXPORT_SYMBOL(netdev_features_change);
1305 * netdev_state_change - device changes state
1306 * @dev: device to cause notification
1308 * Called to indicate a device has changed state. This function calls
1309 * the notifier chains for netdev_chain and sends a NEWLINK message
1310 * to the routing socket.
1312 void netdev_state_change(struct net_device *dev)
1314 if (dev->flags & IFF_UP) {
1315 struct netdev_notifier_change_info change_info = {
1319 call_netdevice_notifiers_info(NETDEV_CHANGE,
1321 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1324 EXPORT_SYMBOL(netdev_state_change);
1327 * __netdev_notify_peers - notify network peers about existence of @dev,
1328 * to be called when rtnl lock is already held.
1329 * @dev: network device
1331 * Generate traffic such that interested network peers are aware of
1332 * @dev, such as by generating a gratuitous ARP. This may be used when
1333 * a device wants to inform the rest of the network about some sort of
1334 * reconfiguration such as a failover event or virtual machine
1337 void __netdev_notify_peers(struct net_device *dev)
1340 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1341 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1343 EXPORT_SYMBOL(__netdev_notify_peers);
1346 * netdev_notify_peers - notify network peers about existence of @dev
1347 * @dev: network device
1349 * Generate traffic such that interested network peers are aware of
1350 * @dev, such as by generating a gratuitous ARP. This may be used when
1351 * a device wants to inform the rest of the network about some sort of
1352 * reconfiguration such as a failover event or virtual machine
1355 void netdev_notify_peers(struct net_device *dev)
1358 __netdev_notify_peers(dev);
1361 EXPORT_SYMBOL(netdev_notify_peers);
1363 static int napi_threaded_poll(void *data);
1365 static int napi_kthread_create(struct napi_struct *n)
1369 /* Create and wake up the kthread once to put it in
1370 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1371 * warning and work with loadavg.
1373 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1374 n->dev->name, n->napi_id);
1375 if (IS_ERR(n->thread)) {
1376 err = PTR_ERR(n->thread);
1377 pr_err("kthread_run failed with err %d\n", err);
1384 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1386 const struct net_device_ops *ops = dev->netdev_ops;
1390 dev_addr_check(dev);
1392 if (!netif_device_present(dev)) {
1393 /* may be detached because parent is runtime-suspended */
1394 if (dev->dev.parent)
1395 pm_runtime_resume(dev->dev.parent);
1396 if (!netif_device_present(dev))
1400 /* Block netpoll from trying to do any rx path servicing.
1401 * If we don't do this there is a chance ndo_poll_controller
1402 * or ndo_poll may be running while we open the device
1404 netpoll_poll_disable(dev);
1406 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1407 ret = notifier_to_errno(ret);
1411 set_bit(__LINK_STATE_START, &dev->state);
1413 if (ops->ndo_validate_addr)
1414 ret = ops->ndo_validate_addr(dev);
1416 if (!ret && ops->ndo_open)
1417 ret = ops->ndo_open(dev);
1419 netpoll_poll_enable(dev);
1422 clear_bit(__LINK_STATE_START, &dev->state);
1424 dev->flags |= IFF_UP;
1425 dev_set_rx_mode(dev);
1427 add_device_randomness(dev->dev_addr, dev->addr_len);
1434 * dev_open - prepare an interface for use.
1435 * @dev: device to open
1436 * @extack: netlink extended ack
1438 * Takes a device from down to up state. The device's private open
1439 * function is invoked and then the multicast lists are loaded. Finally
1440 * the device is moved into the up state and a %NETDEV_UP message is
1441 * sent to the netdev notifier chain.
1443 * Calling this function on an active interface is a nop. On a failure
1444 * a negative errno code is returned.
1446 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1450 if (dev->flags & IFF_UP)
1453 ret = __dev_open(dev, extack);
1457 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1458 call_netdevice_notifiers(NETDEV_UP, dev);
1462 EXPORT_SYMBOL(dev_open);
1464 static void __dev_close_many(struct list_head *head)
1466 struct net_device *dev;
1471 list_for_each_entry(dev, head, close_list) {
1472 /* Temporarily disable netpoll until the interface is down */
1473 netpoll_poll_disable(dev);
1475 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1477 clear_bit(__LINK_STATE_START, &dev->state);
1479 /* Synchronize to scheduled poll. We cannot touch poll list, it
1480 * can be even on different cpu. So just clear netif_running().
1482 * dev->stop() will invoke napi_disable() on all of it's
1483 * napi_struct instances on this device.
1485 smp_mb__after_atomic(); /* Commit netif_running(). */
1488 dev_deactivate_many(head);
1490 list_for_each_entry(dev, head, close_list) {
1491 const struct net_device_ops *ops = dev->netdev_ops;
1494 * Call the device specific close. This cannot fail.
1495 * Only if device is UP
1497 * We allow it to be called even after a DETACH hot-plug
1503 dev->flags &= ~IFF_UP;
1504 netpoll_poll_enable(dev);
1508 static void __dev_close(struct net_device *dev)
1512 list_add(&dev->close_list, &single);
1513 __dev_close_many(&single);
1517 void dev_close_many(struct list_head *head, bool unlink)
1519 struct net_device *dev, *tmp;
1521 /* Remove the devices that don't need to be closed */
1522 list_for_each_entry_safe(dev, tmp, head, close_list)
1523 if (!(dev->flags & IFF_UP))
1524 list_del_init(&dev->close_list);
1526 __dev_close_many(head);
1528 list_for_each_entry_safe(dev, tmp, head, close_list) {
1529 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1530 call_netdevice_notifiers(NETDEV_DOWN, dev);
1532 list_del_init(&dev->close_list);
1535 EXPORT_SYMBOL(dev_close_many);
1538 * dev_close - shutdown an interface.
1539 * @dev: device to shutdown
1541 * This function moves an active device into down state. A
1542 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1543 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1546 void dev_close(struct net_device *dev)
1548 if (dev->flags & IFF_UP) {
1551 list_add(&dev->close_list, &single);
1552 dev_close_many(&single, true);
1556 EXPORT_SYMBOL(dev_close);
1560 * dev_disable_lro - disable Large Receive Offload on a device
1563 * Disable Large Receive Offload (LRO) on a net device. Must be
1564 * called under RTNL. This is needed if received packets may be
1565 * forwarded to another interface.
1567 void dev_disable_lro(struct net_device *dev)
1569 struct net_device *lower_dev;
1570 struct list_head *iter;
1572 dev->wanted_features &= ~NETIF_F_LRO;
1573 netdev_update_features(dev);
1575 if (unlikely(dev->features & NETIF_F_LRO))
1576 netdev_WARN(dev, "failed to disable LRO!\n");
1578 netdev_for_each_lower_dev(dev, lower_dev, iter)
1579 dev_disable_lro(lower_dev);
1581 EXPORT_SYMBOL(dev_disable_lro);
1584 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1587 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1588 * called under RTNL. This is needed if Generic XDP is installed on
1591 static void dev_disable_gro_hw(struct net_device *dev)
1593 dev->wanted_features &= ~NETIF_F_GRO_HW;
1594 netdev_update_features(dev);
1596 if (unlikely(dev->features & NETIF_F_GRO_HW))
1597 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1600 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1603 case NETDEV_##val: \
1604 return "NETDEV_" __stringify(val);
1606 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1607 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1608 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1609 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1610 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1611 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1612 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1613 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1614 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1615 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1616 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1619 return "UNKNOWN_NETDEV_EVENT";
1621 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1623 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1624 struct net_device *dev)
1626 struct netdev_notifier_info info = {
1630 return nb->notifier_call(nb, val, &info);
1633 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1634 struct net_device *dev)
1638 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1639 err = notifier_to_errno(err);
1643 if (!(dev->flags & IFF_UP))
1646 call_netdevice_notifier(nb, NETDEV_UP, dev);
1650 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1651 struct net_device *dev)
1653 if (dev->flags & IFF_UP) {
1654 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1656 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1658 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1661 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1664 struct net_device *dev;
1667 for_each_netdev(net, dev) {
1668 err = call_netdevice_register_notifiers(nb, dev);
1675 for_each_netdev_continue_reverse(net, dev)
1676 call_netdevice_unregister_notifiers(nb, dev);
1680 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1683 struct net_device *dev;
1685 for_each_netdev(net, dev)
1686 call_netdevice_unregister_notifiers(nb, dev);
1689 static int dev_boot_phase = 1;
1692 * register_netdevice_notifier - register a network notifier block
1695 * Register a notifier to be called when network device events occur.
1696 * The notifier passed is linked into the kernel structures and must
1697 * not be reused until it has been unregistered. A negative errno code
1698 * is returned on a failure.
1700 * When registered all registration and up events are replayed
1701 * to the new notifier to allow device to have a race free
1702 * view of the network device list.
1705 int register_netdevice_notifier(struct notifier_block *nb)
1710 /* Close race with setup_net() and cleanup_net() */
1711 down_write(&pernet_ops_rwsem);
1713 err = raw_notifier_chain_register(&netdev_chain, nb);
1719 err = call_netdevice_register_net_notifiers(nb, net);
1726 up_write(&pernet_ops_rwsem);
1730 for_each_net_continue_reverse(net)
1731 call_netdevice_unregister_net_notifiers(nb, net);
1733 raw_notifier_chain_unregister(&netdev_chain, nb);
1736 EXPORT_SYMBOL(register_netdevice_notifier);
1739 * unregister_netdevice_notifier - unregister a network notifier block
1742 * Unregister a notifier previously registered by
1743 * register_netdevice_notifier(). The notifier is unlinked into the
1744 * kernel structures and may then be reused. A negative errno code
1745 * is returned on a failure.
1747 * After unregistering unregister and down device events are synthesized
1748 * for all devices on the device list to the removed notifier to remove
1749 * the need for special case cleanup code.
1752 int unregister_netdevice_notifier(struct notifier_block *nb)
1757 /* Close race with setup_net() and cleanup_net() */
1758 down_write(&pernet_ops_rwsem);
1760 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1765 call_netdevice_unregister_net_notifiers(nb, net);
1769 up_write(&pernet_ops_rwsem);
1772 EXPORT_SYMBOL(unregister_netdevice_notifier);
1774 static int __register_netdevice_notifier_net(struct net *net,
1775 struct notifier_block *nb,
1776 bool ignore_call_fail)
1780 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1786 err = call_netdevice_register_net_notifiers(nb, net);
1787 if (err && !ignore_call_fail)
1788 goto chain_unregister;
1793 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1797 static int __unregister_netdevice_notifier_net(struct net *net,
1798 struct notifier_block *nb)
1802 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1806 call_netdevice_unregister_net_notifiers(nb, net);
1811 * register_netdevice_notifier_net - register a per-netns network notifier block
1812 * @net: network namespace
1815 * Register a notifier to be called when network device events occur.
1816 * The notifier passed is linked into the kernel structures and must
1817 * not be reused until it has been unregistered. A negative errno code
1818 * is returned on a failure.
1820 * When registered all registration and up events are replayed
1821 * to the new notifier to allow device to have a race free
1822 * view of the network device list.
1825 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1830 err = __register_netdevice_notifier_net(net, nb, false);
1834 EXPORT_SYMBOL(register_netdevice_notifier_net);
1837 * unregister_netdevice_notifier_net - unregister a per-netns
1838 * network notifier block
1839 * @net: network namespace
1842 * Unregister a notifier previously registered by
1843 * register_netdevice_notifier(). The notifier is unlinked into the
1844 * kernel structures and may then be reused. A negative errno code
1845 * is returned on a failure.
1847 * After unregistering unregister and down device events are synthesized
1848 * for all devices on the device list to the removed notifier to remove
1849 * the need for special case cleanup code.
1852 int unregister_netdevice_notifier_net(struct net *net,
1853 struct notifier_block *nb)
1858 err = __unregister_netdevice_notifier_net(net, nb);
1862 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1864 static void __move_netdevice_notifier_net(struct net *src_net,
1865 struct net *dst_net,
1866 struct notifier_block *nb)
1868 __unregister_netdevice_notifier_net(src_net, nb);
1869 __register_netdevice_notifier_net(dst_net, nb, true);
1872 void move_netdevice_notifier_net(struct net *src_net, struct net *dst_net,
1873 struct notifier_block *nb)
1876 __move_netdevice_notifier_net(src_net, dst_net, nb);
1880 int register_netdevice_notifier_dev_net(struct net_device *dev,
1881 struct notifier_block *nb,
1882 struct netdev_net_notifier *nn)
1887 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1890 list_add(&nn->list, &dev->net_notifier_list);
1895 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1897 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1898 struct notifier_block *nb,
1899 struct netdev_net_notifier *nn)
1904 list_del(&nn->list);
1905 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1909 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1911 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1914 struct netdev_net_notifier *nn;
1916 list_for_each_entry(nn, &dev->net_notifier_list, list)
1917 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1921 * call_netdevice_notifiers_info - call all network notifier blocks
1922 * @val: value passed unmodified to notifier function
1923 * @info: notifier information data
1925 * Call all network notifier blocks. Parameters and return value
1926 * are as for raw_notifier_call_chain().
1929 static int call_netdevice_notifiers_info(unsigned long val,
1930 struct netdev_notifier_info *info)
1932 struct net *net = dev_net(info->dev);
1937 /* Run per-netns notifier block chain first, then run the global one.
1938 * Hopefully, one day, the global one is going to be removed after
1939 * all notifier block registrators get converted to be per-netns.
1941 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1942 if (ret & NOTIFY_STOP_MASK)
1944 return raw_notifier_call_chain(&netdev_chain, val, info);
1948 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1949 * for and rollback on error
1950 * @val_up: value passed unmodified to notifier function
1951 * @val_down: value passed unmodified to the notifier function when
1952 * recovering from an error on @val_up
1953 * @info: notifier information data
1955 * Call all per-netns network notifier blocks, but not notifier blocks on
1956 * the global notifier chain. Parameters and return value are as for
1957 * raw_notifier_call_chain_robust().
1961 call_netdevice_notifiers_info_robust(unsigned long val_up,
1962 unsigned long val_down,
1963 struct netdev_notifier_info *info)
1965 struct net *net = dev_net(info->dev);
1969 return raw_notifier_call_chain_robust(&net->netdev_chain,
1970 val_up, val_down, info);
1973 static int call_netdevice_notifiers_extack(unsigned long val,
1974 struct net_device *dev,
1975 struct netlink_ext_ack *extack)
1977 struct netdev_notifier_info info = {
1982 return call_netdevice_notifiers_info(val, &info);
1986 * call_netdevice_notifiers - call all network notifier blocks
1987 * @val: value passed unmodified to notifier function
1988 * @dev: net_device pointer passed unmodified to notifier function
1990 * Call all network notifier blocks. Parameters and return value
1991 * are as for raw_notifier_call_chain().
1994 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1996 return call_netdevice_notifiers_extack(val, dev, NULL);
1998 EXPORT_SYMBOL(call_netdevice_notifiers);
2001 * call_netdevice_notifiers_mtu - call all network notifier blocks
2002 * @val: value passed unmodified to notifier function
2003 * @dev: net_device pointer passed unmodified to notifier function
2004 * @arg: additional u32 argument passed to the notifier function
2006 * Call all network notifier blocks. Parameters and return value
2007 * are as for raw_notifier_call_chain().
2009 static int call_netdevice_notifiers_mtu(unsigned long val,
2010 struct net_device *dev, u32 arg)
2012 struct netdev_notifier_info_ext info = {
2017 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2019 return call_netdevice_notifiers_info(val, &info.info);
2022 #ifdef CONFIG_NET_INGRESS
2023 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2025 void net_inc_ingress_queue(void)
2027 static_branch_inc(&ingress_needed_key);
2029 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2031 void net_dec_ingress_queue(void)
2033 static_branch_dec(&ingress_needed_key);
2035 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2038 #ifdef CONFIG_NET_EGRESS
2039 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2041 void net_inc_egress_queue(void)
2043 static_branch_inc(&egress_needed_key);
2045 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2047 void net_dec_egress_queue(void)
2049 static_branch_dec(&egress_needed_key);
2051 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2054 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2055 EXPORT_SYMBOL(netstamp_needed_key);
2056 #ifdef CONFIG_JUMP_LABEL
2057 static atomic_t netstamp_needed_deferred;
2058 static atomic_t netstamp_wanted;
2059 static void netstamp_clear(struct work_struct *work)
2061 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2064 wanted = atomic_add_return(deferred, &netstamp_wanted);
2066 static_branch_enable(&netstamp_needed_key);
2068 static_branch_disable(&netstamp_needed_key);
2070 static DECLARE_WORK(netstamp_work, netstamp_clear);
2073 void net_enable_timestamp(void)
2075 #ifdef CONFIG_JUMP_LABEL
2076 int wanted = atomic_read(&netstamp_wanted);
2078 while (wanted > 0) {
2079 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2082 atomic_inc(&netstamp_needed_deferred);
2083 schedule_work(&netstamp_work);
2085 static_branch_inc(&netstamp_needed_key);
2088 EXPORT_SYMBOL(net_enable_timestamp);
2090 void net_disable_timestamp(void)
2092 #ifdef CONFIG_JUMP_LABEL
2093 int wanted = atomic_read(&netstamp_wanted);
2095 while (wanted > 1) {
2096 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2099 atomic_dec(&netstamp_needed_deferred);
2100 schedule_work(&netstamp_work);
2102 static_branch_dec(&netstamp_needed_key);
2105 EXPORT_SYMBOL(net_disable_timestamp);
2107 static inline void net_timestamp_set(struct sk_buff *skb)
2110 skb->mono_delivery_time = 0;
2111 if (static_branch_unlikely(&netstamp_needed_key))
2112 skb->tstamp = ktime_get_real();
2115 #define net_timestamp_check(COND, SKB) \
2116 if (static_branch_unlikely(&netstamp_needed_key)) { \
2117 if ((COND) && !(SKB)->tstamp) \
2118 (SKB)->tstamp = ktime_get_real(); \
2121 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2123 return __is_skb_forwardable(dev, skb, true);
2125 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2127 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2130 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2133 skb->protocol = eth_type_trans(skb, dev);
2134 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2140 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2142 return __dev_forward_skb2(dev, skb, true);
2144 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2147 * dev_forward_skb - loopback an skb to another netif
2149 * @dev: destination network device
2150 * @skb: buffer to forward
2153 * NET_RX_SUCCESS (no congestion)
2154 * NET_RX_DROP (packet was dropped, but freed)
2156 * dev_forward_skb can be used for injecting an skb from the
2157 * start_xmit function of one device into the receive queue
2158 * of another device.
2160 * The receiving device may be in another namespace, so
2161 * we have to clear all information in the skb that could
2162 * impact namespace isolation.
2164 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2166 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2168 EXPORT_SYMBOL_GPL(dev_forward_skb);
2170 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2172 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2175 static inline int deliver_skb(struct sk_buff *skb,
2176 struct packet_type *pt_prev,
2177 struct net_device *orig_dev)
2179 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2181 refcount_inc(&skb->users);
2182 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2185 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2186 struct packet_type **pt,
2187 struct net_device *orig_dev,
2189 struct list_head *ptype_list)
2191 struct packet_type *ptype, *pt_prev = *pt;
2193 list_for_each_entry_rcu(ptype, ptype_list, list) {
2194 if (ptype->type != type)
2197 deliver_skb(skb, pt_prev, orig_dev);
2203 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2205 if (!ptype->af_packet_priv || !skb->sk)
2208 if (ptype->id_match)
2209 return ptype->id_match(ptype, skb->sk);
2210 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2217 * dev_nit_active - return true if any network interface taps are in use
2219 * @dev: network device to check for the presence of taps
2221 bool dev_nit_active(struct net_device *dev)
2223 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2225 EXPORT_SYMBOL_GPL(dev_nit_active);
2228 * Support routine. Sends outgoing frames to any network
2229 * taps currently in use.
2232 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2234 struct packet_type *ptype;
2235 struct sk_buff *skb2 = NULL;
2236 struct packet_type *pt_prev = NULL;
2237 struct list_head *ptype_list = &ptype_all;
2241 list_for_each_entry_rcu(ptype, ptype_list, list) {
2242 if (ptype->ignore_outgoing)
2245 /* Never send packets back to the socket
2248 if (skb_loop_sk(ptype, skb))
2252 deliver_skb(skb2, pt_prev, skb->dev);
2257 /* need to clone skb, done only once */
2258 skb2 = skb_clone(skb, GFP_ATOMIC);
2262 net_timestamp_set(skb2);
2264 /* skb->nh should be correctly
2265 * set by sender, so that the second statement is
2266 * just protection against buggy protocols.
2268 skb_reset_mac_header(skb2);
2270 if (skb_network_header(skb2) < skb2->data ||
2271 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2272 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2273 ntohs(skb2->protocol),
2275 skb_reset_network_header(skb2);
2278 skb2->transport_header = skb2->network_header;
2279 skb2->pkt_type = PACKET_OUTGOING;
2283 if (ptype_list == &ptype_all) {
2284 ptype_list = &dev->ptype_all;
2289 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2290 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2296 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2299 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2300 * @dev: Network device
2301 * @txq: number of queues available
2303 * If real_num_tx_queues is changed the tc mappings may no longer be
2304 * valid. To resolve this verify the tc mapping remains valid and if
2305 * not NULL the mapping. With no priorities mapping to this
2306 * offset/count pair it will no longer be used. In the worst case TC0
2307 * is invalid nothing can be done so disable priority mappings. If is
2308 * expected that drivers will fix this mapping if they can before
2309 * calling netif_set_real_num_tx_queues.
2311 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2314 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2316 /* If TC0 is invalidated disable TC mapping */
2317 if (tc->offset + tc->count > txq) {
2318 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2323 /* Invalidated prio to tc mappings set to TC0 */
2324 for (i = 1; i < TC_BITMASK + 1; i++) {
2325 int q = netdev_get_prio_tc_map(dev, i);
2327 tc = &dev->tc_to_txq[q];
2328 if (tc->offset + tc->count > txq) {
2329 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2331 netdev_set_prio_tc_map(dev, i, 0);
2336 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2339 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2342 /* walk through the TCs and see if it falls into any of them */
2343 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2344 if ((txq - tc->offset) < tc->count)
2348 /* didn't find it, just return -1 to indicate no match */
2354 EXPORT_SYMBOL(netdev_txq_to_tc);
2357 static struct static_key xps_needed __read_mostly;
2358 static struct static_key xps_rxqs_needed __read_mostly;
2359 static DEFINE_MUTEX(xps_map_mutex);
2360 #define xmap_dereference(P) \
2361 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2363 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2364 struct xps_dev_maps *old_maps, int tci, u16 index)
2366 struct xps_map *map = NULL;
2370 map = xmap_dereference(dev_maps->attr_map[tci]);
2374 for (pos = map->len; pos--;) {
2375 if (map->queues[pos] != index)
2379 map->queues[pos] = map->queues[--map->len];
2384 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2385 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2386 kfree_rcu(map, rcu);
2393 static bool remove_xps_queue_cpu(struct net_device *dev,
2394 struct xps_dev_maps *dev_maps,
2395 int cpu, u16 offset, u16 count)
2397 int num_tc = dev_maps->num_tc;
2398 bool active = false;
2401 for (tci = cpu * num_tc; num_tc--; tci++) {
2404 for (i = count, j = offset; i--; j++) {
2405 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2415 static void reset_xps_maps(struct net_device *dev,
2416 struct xps_dev_maps *dev_maps,
2417 enum xps_map_type type)
2419 static_key_slow_dec_cpuslocked(&xps_needed);
2420 if (type == XPS_RXQS)
2421 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2423 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2425 kfree_rcu(dev_maps, rcu);
2428 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2429 u16 offset, u16 count)
2431 struct xps_dev_maps *dev_maps;
2432 bool active = false;
2435 dev_maps = xmap_dereference(dev->xps_maps[type]);
2439 for (j = 0; j < dev_maps->nr_ids; j++)
2440 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2442 reset_xps_maps(dev, dev_maps, type);
2444 if (type == XPS_CPUS) {
2445 for (i = offset + (count - 1); count--; i--)
2446 netdev_queue_numa_node_write(
2447 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2451 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2454 if (!static_key_false(&xps_needed))
2458 mutex_lock(&xps_map_mutex);
2460 if (static_key_false(&xps_rxqs_needed))
2461 clean_xps_maps(dev, XPS_RXQS, offset, count);
2463 clean_xps_maps(dev, XPS_CPUS, offset, count);
2465 mutex_unlock(&xps_map_mutex);
2469 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2471 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2474 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2475 u16 index, bool is_rxqs_map)
2477 struct xps_map *new_map;
2478 int alloc_len = XPS_MIN_MAP_ALLOC;
2481 for (pos = 0; map && pos < map->len; pos++) {
2482 if (map->queues[pos] != index)
2487 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2489 if (pos < map->alloc_len)
2492 alloc_len = map->alloc_len * 2;
2495 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2499 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2501 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2502 cpu_to_node(attr_index));
2506 for (i = 0; i < pos; i++)
2507 new_map->queues[i] = map->queues[i];
2508 new_map->alloc_len = alloc_len;
2514 /* Copy xps maps at a given index */
2515 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2516 struct xps_dev_maps *new_dev_maps, int index,
2517 int tc, bool skip_tc)
2519 int i, tci = index * dev_maps->num_tc;
2520 struct xps_map *map;
2522 /* copy maps belonging to foreign traffic classes */
2523 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2524 if (i == tc && skip_tc)
2527 /* fill in the new device map from the old device map */
2528 map = xmap_dereference(dev_maps->attr_map[tci]);
2529 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2533 /* Must be called under cpus_read_lock */
2534 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2535 u16 index, enum xps_map_type type)
2537 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2538 const unsigned long *online_mask = NULL;
2539 bool active = false, copy = false;
2540 int i, j, tci, numa_node_id = -2;
2541 int maps_sz, num_tc = 1, tc = 0;
2542 struct xps_map *map, *new_map;
2543 unsigned int nr_ids;
2546 /* Do not allow XPS on subordinate device directly */
2547 num_tc = dev->num_tc;
2551 /* If queue belongs to subordinate dev use its map */
2552 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2554 tc = netdev_txq_to_tc(dev, index);
2559 mutex_lock(&xps_map_mutex);
2561 dev_maps = xmap_dereference(dev->xps_maps[type]);
2562 if (type == XPS_RXQS) {
2563 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2564 nr_ids = dev->num_rx_queues;
2566 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2567 if (num_possible_cpus() > 1)
2568 online_mask = cpumask_bits(cpu_online_mask);
2569 nr_ids = nr_cpu_ids;
2572 if (maps_sz < L1_CACHE_BYTES)
2573 maps_sz = L1_CACHE_BYTES;
2575 /* The old dev_maps could be larger or smaller than the one we're
2576 * setting up now, as dev->num_tc or nr_ids could have been updated in
2577 * between. We could try to be smart, but let's be safe instead and only
2578 * copy foreign traffic classes if the two map sizes match.
2581 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2584 /* allocate memory for queue storage */
2585 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2587 if (!new_dev_maps) {
2588 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2589 if (!new_dev_maps) {
2590 mutex_unlock(&xps_map_mutex);
2594 new_dev_maps->nr_ids = nr_ids;
2595 new_dev_maps->num_tc = num_tc;
2598 tci = j * num_tc + tc;
2599 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2601 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2605 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2609 goto out_no_new_maps;
2612 /* Increment static keys at most once per type */
2613 static_key_slow_inc_cpuslocked(&xps_needed);
2614 if (type == XPS_RXQS)
2615 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2618 for (j = 0; j < nr_ids; j++) {
2619 bool skip_tc = false;
2621 tci = j * num_tc + tc;
2622 if (netif_attr_test_mask(j, mask, nr_ids) &&
2623 netif_attr_test_online(j, online_mask, nr_ids)) {
2624 /* add tx-queue to CPU/rx-queue maps */
2629 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2630 while ((pos < map->len) && (map->queues[pos] != index))
2633 if (pos == map->len)
2634 map->queues[map->len++] = index;
2636 if (type == XPS_CPUS) {
2637 if (numa_node_id == -2)
2638 numa_node_id = cpu_to_node(j);
2639 else if (numa_node_id != cpu_to_node(j))
2646 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2650 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2652 /* Cleanup old maps */
2654 goto out_no_old_maps;
2656 for (j = 0; j < dev_maps->nr_ids; j++) {
2657 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2658 map = xmap_dereference(dev_maps->attr_map[tci]);
2663 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2668 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2669 kfree_rcu(map, rcu);
2673 old_dev_maps = dev_maps;
2676 dev_maps = new_dev_maps;
2680 if (type == XPS_CPUS)
2681 /* update Tx queue numa node */
2682 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2683 (numa_node_id >= 0) ?
2684 numa_node_id : NUMA_NO_NODE);
2689 /* removes tx-queue from unused CPUs/rx-queues */
2690 for (j = 0; j < dev_maps->nr_ids; j++) {
2691 tci = j * dev_maps->num_tc;
2693 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2695 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2696 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2699 active |= remove_xps_queue(dev_maps,
2700 copy ? old_dev_maps : NULL,
2706 kfree_rcu(old_dev_maps, rcu);
2708 /* free map if not active */
2710 reset_xps_maps(dev, dev_maps, type);
2713 mutex_unlock(&xps_map_mutex);
2717 /* remove any maps that we added */
2718 for (j = 0; j < nr_ids; j++) {
2719 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2720 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2722 xmap_dereference(dev_maps->attr_map[tci]) :
2724 if (new_map && new_map != map)
2729 mutex_unlock(&xps_map_mutex);
2731 kfree(new_dev_maps);
2734 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2736 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2742 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2747 EXPORT_SYMBOL(netif_set_xps_queue);
2750 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2752 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2754 /* Unbind any subordinate channels */
2755 while (txq-- != &dev->_tx[0]) {
2757 netdev_unbind_sb_channel(dev, txq->sb_dev);
2761 void netdev_reset_tc(struct net_device *dev)
2764 netif_reset_xps_queues_gt(dev, 0);
2766 netdev_unbind_all_sb_channels(dev);
2768 /* Reset TC configuration of device */
2770 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2771 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2773 EXPORT_SYMBOL(netdev_reset_tc);
2775 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2777 if (tc >= dev->num_tc)
2781 netif_reset_xps_queues(dev, offset, count);
2783 dev->tc_to_txq[tc].count = count;
2784 dev->tc_to_txq[tc].offset = offset;
2787 EXPORT_SYMBOL(netdev_set_tc_queue);
2789 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2791 if (num_tc > TC_MAX_QUEUE)
2795 netif_reset_xps_queues_gt(dev, 0);
2797 netdev_unbind_all_sb_channels(dev);
2799 dev->num_tc = num_tc;
2802 EXPORT_SYMBOL(netdev_set_num_tc);
2804 void netdev_unbind_sb_channel(struct net_device *dev,
2805 struct net_device *sb_dev)
2807 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2810 netif_reset_xps_queues_gt(sb_dev, 0);
2812 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2813 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2815 while (txq-- != &dev->_tx[0]) {
2816 if (txq->sb_dev == sb_dev)
2820 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2822 int netdev_bind_sb_channel_queue(struct net_device *dev,
2823 struct net_device *sb_dev,
2824 u8 tc, u16 count, u16 offset)
2826 /* Make certain the sb_dev and dev are already configured */
2827 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2830 /* We cannot hand out queues we don't have */
2831 if ((offset + count) > dev->real_num_tx_queues)
2834 /* Record the mapping */
2835 sb_dev->tc_to_txq[tc].count = count;
2836 sb_dev->tc_to_txq[tc].offset = offset;
2838 /* Provide a way for Tx queue to find the tc_to_txq map or
2839 * XPS map for itself.
2842 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2846 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2848 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2850 /* Do not use a multiqueue device to represent a subordinate channel */
2851 if (netif_is_multiqueue(dev))
2854 /* We allow channels 1 - 32767 to be used for subordinate channels.
2855 * Channel 0 is meant to be "native" mode and used only to represent
2856 * the main root device. We allow writing 0 to reset the device back
2857 * to normal mode after being used as a subordinate channel.
2859 if (channel > S16_MAX)
2862 dev->num_tc = -channel;
2866 EXPORT_SYMBOL(netdev_set_sb_channel);
2869 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2870 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2872 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2877 disabling = txq < dev->real_num_tx_queues;
2879 if (txq < 1 || txq > dev->num_tx_queues)
2882 if (dev->reg_state == NETREG_REGISTERED ||
2883 dev->reg_state == NETREG_UNREGISTERING) {
2886 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2892 netif_setup_tc(dev, txq);
2894 dev_qdisc_change_real_num_tx(dev, txq);
2896 dev->real_num_tx_queues = txq;
2900 qdisc_reset_all_tx_gt(dev, txq);
2902 netif_reset_xps_queues_gt(dev, txq);
2906 dev->real_num_tx_queues = txq;
2911 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2915 * netif_set_real_num_rx_queues - set actual number of RX queues used
2916 * @dev: Network device
2917 * @rxq: Actual number of RX queues
2919 * This must be called either with the rtnl_lock held or before
2920 * registration of the net device. Returns 0 on success, or a
2921 * negative error code. If called before registration, it always
2924 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2928 if (rxq < 1 || rxq > dev->num_rx_queues)
2931 if (dev->reg_state == NETREG_REGISTERED) {
2934 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2940 dev->real_num_rx_queues = rxq;
2943 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2947 * netif_set_real_num_queues - set actual number of RX and TX queues used
2948 * @dev: Network device
2949 * @txq: Actual number of TX queues
2950 * @rxq: Actual number of RX queues
2952 * Set the real number of both TX and RX queues.
2953 * Does nothing if the number of queues is already correct.
2955 int netif_set_real_num_queues(struct net_device *dev,
2956 unsigned int txq, unsigned int rxq)
2958 unsigned int old_rxq = dev->real_num_rx_queues;
2961 if (txq < 1 || txq > dev->num_tx_queues ||
2962 rxq < 1 || rxq > dev->num_rx_queues)
2965 /* Start from increases, so the error path only does decreases -
2966 * decreases can't fail.
2968 if (rxq > dev->real_num_rx_queues) {
2969 err = netif_set_real_num_rx_queues(dev, rxq);
2973 if (txq > dev->real_num_tx_queues) {
2974 err = netif_set_real_num_tx_queues(dev, txq);
2978 if (rxq < dev->real_num_rx_queues)
2979 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2980 if (txq < dev->real_num_tx_queues)
2981 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2985 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2988 EXPORT_SYMBOL(netif_set_real_num_queues);
2991 * netif_set_tso_max_size() - set the max size of TSO frames supported
2992 * @dev: netdev to update
2993 * @size: max skb->len of a TSO frame
2995 * Set the limit on the size of TSO super-frames the device can handle.
2996 * Unless explicitly set the stack will assume the value of
2997 * %GSO_LEGACY_MAX_SIZE.
2999 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3001 dev->tso_max_size = min(GSO_MAX_SIZE, size);
3002 if (size < READ_ONCE(dev->gso_max_size))
3003 netif_set_gso_max_size(dev, size);
3005 EXPORT_SYMBOL(netif_set_tso_max_size);
3008 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3009 * @dev: netdev to update
3010 * @segs: max number of TCP segments
3012 * Set the limit on the number of TCP segments the device can generate from
3013 * a single TSO super-frame.
3014 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3016 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3018 dev->tso_max_segs = segs;
3019 if (segs < READ_ONCE(dev->gso_max_segs))
3020 netif_set_gso_max_segs(dev, segs);
3022 EXPORT_SYMBOL(netif_set_tso_max_segs);
3025 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3026 * @to: netdev to update
3027 * @from: netdev from which to copy the limits
3029 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3031 netif_set_tso_max_size(to, from->tso_max_size);
3032 netif_set_tso_max_segs(to, from->tso_max_segs);
3034 EXPORT_SYMBOL(netif_inherit_tso_max);
3037 * netif_get_num_default_rss_queues - default number of RSS queues
3039 * Default value is the number of physical cores if there are only 1 or 2, or
3040 * divided by 2 if there are more.
3042 int netif_get_num_default_rss_queues(void)
3047 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3050 cpumask_copy(cpus, cpu_online_mask);
3051 for_each_cpu(cpu, cpus) {
3053 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3055 free_cpumask_var(cpus);
3057 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3059 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3061 static void __netif_reschedule(struct Qdisc *q)
3063 struct softnet_data *sd;
3064 unsigned long flags;
3066 local_irq_save(flags);
3067 sd = this_cpu_ptr(&softnet_data);
3068 q->next_sched = NULL;
3069 *sd->output_queue_tailp = q;
3070 sd->output_queue_tailp = &q->next_sched;
3071 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3072 local_irq_restore(flags);
3075 void __netif_schedule(struct Qdisc *q)
3077 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3078 __netif_reschedule(q);
3080 EXPORT_SYMBOL(__netif_schedule);
3082 struct dev_kfree_skb_cb {
3083 enum skb_free_reason reason;
3086 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3088 return (struct dev_kfree_skb_cb *)skb->cb;
3091 void netif_schedule_queue(struct netdev_queue *txq)
3094 if (!netif_xmit_stopped(txq)) {
3095 struct Qdisc *q = rcu_dereference(txq->qdisc);
3097 __netif_schedule(q);
3101 EXPORT_SYMBOL(netif_schedule_queue);
3103 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3105 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3109 q = rcu_dereference(dev_queue->qdisc);
3110 __netif_schedule(q);
3114 EXPORT_SYMBOL(netif_tx_wake_queue);
3116 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3118 unsigned long flags;
3123 if (likely(refcount_read(&skb->users) == 1)) {
3125 refcount_set(&skb->users, 0);
3126 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3129 get_kfree_skb_cb(skb)->reason = reason;
3130 local_irq_save(flags);
3131 skb->next = __this_cpu_read(softnet_data.completion_queue);
3132 __this_cpu_write(softnet_data.completion_queue, skb);
3133 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3134 local_irq_restore(flags);
3136 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3138 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3140 if (in_hardirq() || irqs_disabled())
3141 __dev_kfree_skb_irq(skb, reason);
3145 EXPORT_SYMBOL(__dev_kfree_skb_any);
3149 * netif_device_detach - mark device as removed
3150 * @dev: network device
3152 * Mark device as removed from system and therefore no longer available.
3154 void netif_device_detach(struct net_device *dev)
3156 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3157 netif_running(dev)) {
3158 netif_tx_stop_all_queues(dev);
3161 EXPORT_SYMBOL(netif_device_detach);
3164 * netif_device_attach - mark device as attached
3165 * @dev: network device
3167 * Mark device as attached from system and restart if needed.
3169 void netif_device_attach(struct net_device *dev)
3171 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3172 netif_running(dev)) {
3173 netif_tx_wake_all_queues(dev);
3174 __netdev_watchdog_up(dev);
3177 EXPORT_SYMBOL(netif_device_attach);
3180 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3181 * to be used as a distribution range.
3183 static u16 skb_tx_hash(const struct net_device *dev,
3184 const struct net_device *sb_dev,
3185 struct sk_buff *skb)
3189 u16 qcount = dev->real_num_tx_queues;
3192 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3194 qoffset = sb_dev->tc_to_txq[tc].offset;
3195 qcount = sb_dev->tc_to_txq[tc].count;
3196 if (unlikely(!qcount)) {
3197 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3198 sb_dev->name, qoffset, tc);
3200 qcount = dev->real_num_tx_queues;
3204 if (skb_rx_queue_recorded(skb)) {
3205 hash = skb_get_rx_queue(skb);
3206 if (hash >= qoffset)
3208 while (unlikely(hash >= qcount))
3210 return hash + qoffset;
3213 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3216 static void skb_warn_bad_offload(const struct sk_buff *skb)
3218 static const netdev_features_t null_features;
3219 struct net_device *dev = skb->dev;
3220 const char *name = "";
3222 if (!net_ratelimit())
3226 if (dev->dev.parent)
3227 name = dev_driver_string(dev->dev.parent);
3229 name = netdev_name(dev);
3231 skb_dump(KERN_WARNING, skb, false);
3232 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3233 name, dev ? &dev->features : &null_features,
3234 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3238 * Invalidate hardware checksum when packet is to be mangled, and
3239 * complete checksum manually on outgoing path.
3241 int skb_checksum_help(struct sk_buff *skb)
3244 int ret = 0, offset;
3246 if (skb->ip_summed == CHECKSUM_COMPLETE)
3247 goto out_set_summed;
3249 if (unlikely(skb_is_gso(skb))) {
3250 skb_warn_bad_offload(skb);
3254 /* Before computing a checksum, we should make sure no frag could
3255 * be modified by an external entity : checksum could be wrong.
3257 if (skb_has_shared_frag(skb)) {
3258 ret = __skb_linearize(skb);
3263 offset = skb_checksum_start_offset(skb);
3265 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3266 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3269 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3271 offset += skb->csum_offset;
3272 if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) {
3273 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3276 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3280 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3282 skb->ip_summed = CHECKSUM_NONE;
3286 EXPORT_SYMBOL(skb_checksum_help);
3288 int skb_crc32c_csum_help(struct sk_buff *skb)
3291 int ret = 0, offset, start;
3293 if (skb->ip_summed != CHECKSUM_PARTIAL)
3296 if (unlikely(skb_is_gso(skb)))
3299 /* Before computing a checksum, we should make sure no frag could
3300 * be modified by an external entity : checksum could be wrong.
3302 if (unlikely(skb_has_shared_frag(skb))) {
3303 ret = __skb_linearize(skb);
3307 start = skb_checksum_start_offset(skb);
3308 offset = start + offsetof(struct sctphdr, checksum);
3309 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3314 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3318 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3319 skb->len - start, ~(__u32)0,
3321 *(__le32 *)(skb->data + offset) = crc32c_csum;
3322 skb->ip_summed = CHECKSUM_NONE;
3323 skb->csum_not_inet = 0;
3328 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3330 __be16 type = skb->protocol;
3332 /* Tunnel gso handlers can set protocol to ethernet. */
3333 if (type == htons(ETH_P_TEB)) {
3336 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3339 eth = (struct ethhdr *)skb->data;
3340 type = eth->h_proto;
3343 return __vlan_get_protocol(skb, type, depth);
3346 /* openvswitch calls this on rx path, so we need a different check.
3348 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3351 return skb->ip_summed != CHECKSUM_PARTIAL &&
3352 skb->ip_summed != CHECKSUM_UNNECESSARY;
3354 return skb->ip_summed == CHECKSUM_NONE;
3358 * __skb_gso_segment - Perform segmentation on skb.
3359 * @skb: buffer to segment
3360 * @features: features for the output path (see dev->features)
3361 * @tx_path: whether it is called in TX path
3363 * This function segments the given skb and returns a list of segments.
3365 * It may return NULL if the skb requires no segmentation. This is
3366 * only possible when GSO is used for verifying header integrity.
3368 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3370 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3371 netdev_features_t features, bool tx_path)
3373 struct sk_buff *segs;
3375 if (unlikely(skb_needs_check(skb, tx_path))) {
3378 /* We're going to init ->check field in TCP or UDP header */
3379 err = skb_cow_head(skb, 0);
3381 return ERR_PTR(err);
3384 /* Only report GSO partial support if it will enable us to
3385 * support segmentation on this frame without needing additional
3388 if (features & NETIF_F_GSO_PARTIAL) {
3389 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3390 struct net_device *dev = skb->dev;
3392 partial_features |= dev->features & dev->gso_partial_features;
3393 if (!skb_gso_ok(skb, features | partial_features))
3394 features &= ~NETIF_F_GSO_PARTIAL;
3397 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3398 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3400 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3401 SKB_GSO_CB(skb)->encap_level = 0;
3403 skb_reset_mac_header(skb);
3404 skb_reset_mac_len(skb);
3406 segs = skb_mac_gso_segment(skb, features);
3408 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3409 skb_warn_bad_offload(skb);
3413 EXPORT_SYMBOL(__skb_gso_segment);
3415 /* Take action when hardware reception checksum errors are detected. */
3417 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3419 netdev_err(dev, "hw csum failure\n");
3420 skb_dump(KERN_ERR, skb, true);
3424 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3426 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3428 EXPORT_SYMBOL(netdev_rx_csum_fault);
3431 /* XXX: check that highmem exists at all on the given machine. */
3432 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3434 #ifdef CONFIG_HIGHMEM
3437 if (!(dev->features & NETIF_F_HIGHDMA)) {
3438 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3439 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3441 if (PageHighMem(skb_frag_page(frag)))
3449 /* If MPLS offload request, verify we are testing hardware MPLS features
3450 * instead of standard features for the netdev.
3452 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3453 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3454 netdev_features_t features,
3457 if (eth_p_mpls(type))
3458 features &= skb->dev->mpls_features;
3463 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3464 netdev_features_t features,
3471 static netdev_features_t harmonize_features(struct sk_buff *skb,
3472 netdev_features_t features)
3476 type = skb_network_protocol(skb, NULL);
3477 features = net_mpls_features(skb, features, type);
3479 if (skb->ip_summed != CHECKSUM_NONE &&
3480 !can_checksum_protocol(features, type)) {
3481 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3483 if (illegal_highdma(skb->dev, skb))
3484 features &= ~NETIF_F_SG;
3489 netdev_features_t passthru_features_check(struct sk_buff *skb,
3490 struct net_device *dev,
3491 netdev_features_t features)
3495 EXPORT_SYMBOL(passthru_features_check);
3497 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3498 struct net_device *dev,
3499 netdev_features_t features)
3501 return vlan_features_check(skb, features);
3504 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3505 struct net_device *dev,
3506 netdev_features_t features)
3508 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3510 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3511 return features & ~NETIF_F_GSO_MASK;
3513 if (!skb_shinfo(skb)->gso_type) {
3514 skb_warn_bad_offload(skb);
3515 return features & ~NETIF_F_GSO_MASK;
3518 /* Support for GSO partial features requires software
3519 * intervention before we can actually process the packets
3520 * so we need to strip support for any partial features now
3521 * and we can pull them back in after we have partially
3522 * segmented the frame.
3524 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3525 features &= ~dev->gso_partial_features;
3527 /* Make sure to clear the IPv4 ID mangling feature if the
3528 * IPv4 header has the potential to be fragmented.
3530 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3531 struct iphdr *iph = skb->encapsulation ?
3532 inner_ip_hdr(skb) : ip_hdr(skb);
3534 if (!(iph->frag_off & htons(IP_DF)))
3535 features &= ~NETIF_F_TSO_MANGLEID;
3541 netdev_features_t netif_skb_features(struct sk_buff *skb)
3543 struct net_device *dev = skb->dev;
3544 netdev_features_t features = dev->features;
3546 if (skb_is_gso(skb))
3547 features = gso_features_check(skb, dev, features);
3549 /* If encapsulation offload request, verify we are testing
3550 * hardware encapsulation features instead of standard
3551 * features for the netdev
3553 if (skb->encapsulation)
3554 features &= dev->hw_enc_features;
3556 if (skb_vlan_tagged(skb))
3557 features = netdev_intersect_features(features,
3558 dev->vlan_features |
3559 NETIF_F_HW_VLAN_CTAG_TX |
3560 NETIF_F_HW_VLAN_STAG_TX);
3562 if (dev->netdev_ops->ndo_features_check)
3563 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3566 features &= dflt_features_check(skb, dev, features);
3568 return harmonize_features(skb, features);
3570 EXPORT_SYMBOL(netif_skb_features);
3572 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3573 struct netdev_queue *txq, bool more)
3578 if (dev_nit_active(dev))
3579 dev_queue_xmit_nit(skb, dev);
3582 trace_net_dev_start_xmit(skb, dev);
3583 rc = netdev_start_xmit(skb, dev, txq, more);
3584 trace_net_dev_xmit(skb, rc, dev, len);
3589 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3590 struct netdev_queue *txq, int *ret)
3592 struct sk_buff *skb = first;
3593 int rc = NETDEV_TX_OK;
3596 struct sk_buff *next = skb->next;
3598 skb_mark_not_on_list(skb);
3599 rc = xmit_one(skb, dev, txq, next != NULL);
3600 if (unlikely(!dev_xmit_complete(rc))) {
3606 if (netif_tx_queue_stopped(txq) && skb) {
3607 rc = NETDEV_TX_BUSY;
3617 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3618 netdev_features_t features)
3620 if (skb_vlan_tag_present(skb) &&
3621 !vlan_hw_offload_capable(features, skb->vlan_proto))
3622 skb = __vlan_hwaccel_push_inside(skb);
3626 int skb_csum_hwoffload_help(struct sk_buff *skb,
3627 const netdev_features_t features)
3629 if (unlikely(skb_csum_is_sctp(skb)))
3630 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3631 skb_crc32c_csum_help(skb);
3633 if (features & NETIF_F_HW_CSUM)
3636 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3637 switch (skb->csum_offset) {
3638 case offsetof(struct tcphdr, check):
3639 case offsetof(struct udphdr, check):
3644 return skb_checksum_help(skb);
3646 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3648 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3650 netdev_features_t features;
3652 features = netif_skb_features(skb);
3653 skb = validate_xmit_vlan(skb, features);
3657 skb = sk_validate_xmit_skb(skb, dev);
3661 if (netif_needs_gso(skb, features)) {
3662 struct sk_buff *segs;
3664 segs = skb_gso_segment(skb, features);
3672 if (skb_needs_linearize(skb, features) &&
3673 __skb_linearize(skb))
3676 /* If packet is not checksummed and device does not
3677 * support checksumming for this protocol, complete
3678 * checksumming here.
3680 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3681 if (skb->encapsulation)
3682 skb_set_inner_transport_header(skb,
3683 skb_checksum_start_offset(skb));
3685 skb_set_transport_header(skb,
3686 skb_checksum_start_offset(skb));
3687 if (skb_csum_hwoffload_help(skb, features))
3692 skb = validate_xmit_xfrm(skb, features, again);
3699 dev_core_stats_tx_dropped_inc(dev);
3703 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3705 struct sk_buff *next, *head = NULL, *tail;
3707 for (; skb != NULL; skb = next) {
3709 skb_mark_not_on_list(skb);
3711 /* in case skb wont be segmented, point to itself */
3714 skb = validate_xmit_skb(skb, dev, again);
3722 /* If skb was segmented, skb->prev points to
3723 * the last segment. If not, it still contains skb.
3729 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3731 static void qdisc_pkt_len_init(struct sk_buff *skb)
3733 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3735 qdisc_skb_cb(skb)->pkt_len = skb->len;
3737 /* To get more precise estimation of bytes sent on wire,
3738 * we add to pkt_len the headers size of all segments
3740 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3741 unsigned int hdr_len;
3742 u16 gso_segs = shinfo->gso_segs;
3744 /* mac layer + network layer */
3745 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3747 /* + transport layer */
3748 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3749 const struct tcphdr *th;
3750 struct tcphdr _tcphdr;
3752 th = skb_header_pointer(skb, skb_transport_offset(skb),
3753 sizeof(_tcphdr), &_tcphdr);
3755 hdr_len += __tcp_hdrlen(th);
3757 struct udphdr _udphdr;
3759 if (skb_header_pointer(skb, skb_transport_offset(skb),
3760 sizeof(_udphdr), &_udphdr))
3761 hdr_len += sizeof(struct udphdr);
3764 if (shinfo->gso_type & SKB_GSO_DODGY)
3765 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3768 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3772 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3773 struct sk_buff **to_free,
3774 struct netdev_queue *txq)
3778 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3779 if (rc == NET_XMIT_SUCCESS)
3780 trace_qdisc_enqueue(q, txq, skb);
3784 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3785 struct net_device *dev,
3786 struct netdev_queue *txq)
3788 spinlock_t *root_lock = qdisc_lock(q);
3789 struct sk_buff *to_free = NULL;
3793 qdisc_calculate_pkt_len(skb, q);
3795 if (q->flags & TCQ_F_NOLOCK) {
3796 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3797 qdisc_run_begin(q)) {
3798 /* Retest nolock_qdisc_is_empty() within the protection
3799 * of q->seqlock to protect from racing with requeuing.
3801 if (unlikely(!nolock_qdisc_is_empty(q))) {
3802 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3809 qdisc_bstats_cpu_update(q, skb);
3810 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3811 !nolock_qdisc_is_empty(q))
3815 return NET_XMIT_SUCCESS;
3818 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3822 if (unlikely(to_free))
3823 kfree_skb_list_reason(to_free,
3824 SKB_DROP_REASON_QDISC_DROP);
3829 * Heuristic to force contended enqueues to serialize on a
3830 * separate lock before trying to get qdisc main lock.
3831 * This permits qdisc->running owner to get the lock more
3832 * often and dequeue packets faster.
3833 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3834 * and then other tasks will only enqueue packets. The packets will be
3835 * sent after the qdisc owner is scheduled again. To prevent this
3836 * scenario the task always serialize on the lock.
3838 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3839 if (unlikely(contended))
3840 spin_lock(&q->busylock);
3842 spin_lock(root_lock);
3843 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3844 __qdisc_drop(skb, &to_free);
3846 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3847 qdisc_run_begin(q)) {
3849 * This is a work-conserving queue; there are no old skbs
3850 * waiting to be sent out; and the qdisc is not running -
3851 * xmit the skb directly.
3854 qdisc_bstats_update(q, skb);
3856 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3857 if (unlikely(contended)) {
3858 spin_unlock(&q->busylock);
3865 rc = NET_XMIT_SUCCESS;
3867 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3868 if (qdisc_run_begin(q)) {
3869 if (unlikely(contended)) {
3870 spin_unlock(&q->busylock);
3877 spin_unlock(root_lock);
3878 if (unlikely(to_free))
3879 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3880 if (unlikely(contended))
3881 spin_unlock(&q->busylock);
3885 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3886 static void skb_update_prio(struct sk_buff *skb)
3888 const struct netprio_map *map;
3889 const struct sock *sk;
3890 unsigned int prioidx;
3894 map = rcu_dereference_bh(skb->dev->priomap);
3897 sk = skb_to_full_sk(skb);
3901 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3903 if (prioidx < map->priomap_len)
3904 skb->priority = map->priomap[prioidx];
3907 #define skb_update_prio(skb)
3911 * dev_loopback_xmit - loop back @skb
3912 * @net: network namespace this loopback is happening in
3913 * @sk: sk needed to be a netfilter okfn
3914 * @skb: buffer to transmit
3916 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3918 skb_reset_mac_header(skb);
3919 __skb_pull(skb, skb_network_offset(skb));
3920 skb->pkt_type = PACKET_LOOPBACK;
3921 if (skb->ip_summed == CHECKSUM_NONE)
3922 skb->ip_summed = CHECKSUM_UNNECESSARY;
3923 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3928 EXPORT_SYMBOL(dev_loopback_xmit);
3930 #ifdef CONFIG_NET_EGRESS
3931 static struct sk_buff *
3932 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3934 #ifdef CONFIG_NET_CLS_ACT
3935 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3936 struct tcf_result cl_res;
3941 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3942 tc_skb_cb(skb)->mru = 0;
3943 tc_skb_cb(skb)->post_ct = false;
3944 mini_qdisc_bstats_cpu_update(miniq, skb);
3946 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3948 case TC_ACT_RECLASSIFY:
3949 skb->tc_index = TC_H_MIN(cl_res.classid);
3952 mini_qdisc_qstats_cpu_drop(miniq);
3953 *ret = NET_XMIT_DROP;
3954 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3959 *ret = NET_XMIT_SUCCESS;
3962 case TC_ACT_REDIRECT:
3963 /* No need to push/pop skb's mac_header here on egress! */
3964 skb_do_redirect(skb);
3965 *ret = NET_XMIT_SUCCESS;
3970 #endif /* CONFIG_NET_CLS_ACT */
3975 static struct netdev_queue *
3976 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3978 int qm = skb_get_queue_mapping(skb);
3980 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3983 static bool netdev_xmit_txqueue_skipped(void)
3985 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3988 void netdev_xmit_skip_txqueue(bool skip)
3990 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3992 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3993 #endif /* CONFIG_NET_EGRESS */
3996 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3997 struct xps_dev_maps *dev_maps, unsigned int tci)
3999 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4000 struct xps_map *map;
4001 int queue_index = -1;
4003 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4006 tci *= dev_maps->num_tc;
4009 map = rcu_dereference(dev_maps->attr_map[tci]);
4012 queue_index = map->queues[0];
4014 queue_index = map->queues[reciprocal_scale(
4015 skb_get_hash(skb), map->len)];
4016 if (unlikely(queue_index >= dev->real_num_tx_queues))
4023 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4024 struct sk_buff *skb)
4027 struct xps_dev_maps *dev_maps;
4028 struct sock *sk = skb->sk;
4029 int queue_index = -1;
4031 if (!static_key_false(&xps_needed))
4035 if (!static_key_false(&xps_rxqs_needed))
4038 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4040 int tci = sk_rx_queue_get(sk);
4043 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4048 if (queue_index < 0) {
4049 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4051 unsigned int tci = skb->sender_cpu - 1;
4053 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4065 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4066 struct net_device *sb_dev)
4070 EXPORT_SYMBOL(dev_pick_tx_zero);
4072 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4073 struct net_device *sb_dev)
4075 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4077 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4079 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4080 struct net_device *sb_dev)
4082 struct sock *sk = skb->sk;
4083 int queue_index = sk_tx_queue_get(sk);
4085 sb_dev = sb_dev ? : dev;
4087 if (queue_index < 0 || skb->ooo_okay ||
4088 queue_index >= dev->real_num_tx_queues) {
4089 int new_index = get_xps_queue(dev, sb_dev, skb);
4092 new_index = skb_tx_hash(dev, sb_dev, skb);
4094 if (queue_index != new_index && sk &&
4096 rcu_access_pointer(sk->sk_dst_cache))
4097 sk_tx_queue_set(sk, new_index);
4099 queue_index = new_index;
4104 EXPORT_SYMBOL(netdev_pick_tx);
4106 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4107 struct sk_buff *skb,
4108 struct net_device *sb_dev)
4110 int queue_index = 0;
4113 u32 sender_cpu = skb->sender_cpu - 1;
4115 if (sender_cpu >= (u32)NR_CPUS)
4116 skb->sender_cpu = raw_smp_processor_id() + 1;
4119 if (dev->real_num_tx_queues != 1) {
4120 const struct net_device_ops *ops = dev->netdev_ops;
4122 if (ops->ndo_select_queue)
4123 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4125 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4127 queue_index = netdev_cap_txqueue(dev, queue_index);
4130 skb_set_queue_mapping(skb, queue_index);
4131 return netdev_get_tx_queue(dev, queue_index);
4135 * __dev_queue_xmit() - transmit a buffer
4136 * @skb: buffer to transmit
4137 * @sb_dev: suboordinate device used for L2 forwarding offload
4139 * Queue a buffer for transmission to a network device. The caller must
4140 * have set the device and priority and built the buffer before calling
4141 * this function. The function can be called from an interrupt.
4143 * When calling this method, interrupts MUST be enabled. This is because
4144 * the BH enable code must have IRQs enabled so that it will not deadlock.
4146 * Regardless of the return value, the skb is consumed, so it is currently
4147 * difficult to retry a send to this method. (You can bump the ref count
4148 * before sending to hold a reference for retry if you are careful.)
4151 * * 0 - buffer successfully transmitted
4152 * * positive qdisc return code - NET_XMIT_DROP etc.
4153 * * negative errno - other errors
4155 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4157 struct net_device *dev = skb->dev;
4158 struct netdev_queue *txq = NULL;
4163 skb_reset_mac_header(skb);
4164 skb_assert_len(skb);
4166 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4167 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4169 /* Disable soft irqs for various locks below. Also
4170 * stops preemption for RCU.
4174 skb_update_prio(skb);
4176 qdisc_pkt_len_init(skb);
4177 #ifdef CONFIG_NET_CLS_ACT
4178 skb->tc_at_ingress = 0;
4180 #ifdef CONFIG_NET_EGRESS
4181 if (static_branch_unlikely(&egress_needed_key)) {
4182 if (nf_hook_egress_active()) {
4183 skb = nf_hook_egress(skb, &rc, dev);
4188 netdev_xmit_skip_txqueue(false);
4190 nf_skip_egress(skb, true);
4191 skb = sch_handle_egress(skb, &rc, dev);
4194 nf_skip_egress(skb, false);
4196 if (netdev_xmit_txqueue_skipped())
4197 txq = netdev_tx_queue_mapping(dev, skb);
4200 /* If device/qdisc don't need skb->dst, release it right now while
4201 * its hot in this cpu cache.
4203 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4209 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4211 q = rcu_dereference_bh(txq->qdisc);
4213 trace_net_dev_queue(skb);
4215 rc = __dev_xmit_skb(skb, q, dev, txq);
4219 /* The device has no queue. Common case for software devices:
4220 * loopback, all the sorts of tunnels...
4222 * Really, it is unlikely that netif_tx_lock protection is necessary
4223 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4225 * However, it is possible, that they rely on protection
4228 * Check this and shot the lock. It is not prone from deadlocks.
4229 *Either shot noqueue qdisc, it is even simpler 8)
4231 if (dev->flags & IFF_UP) {
4232 int cpu = smp_processor_id(); /* ok because BHs are off */
4234 /* Other cpus might concurrently change txq->xmit_lock_owner
4235 * to -1 or to their cpu id, but not to our id.
4237 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4238 if (dev_xmit_recursion())
4239 goto recursion_alert;
4241 skb = validate_xmit_skb(skb, dev, &again);
4245 HARD_TX_LOCK(dev, txq, cpu);
4247 if (!netif_xmit_stopped(txq)) {
4248 dev_xmit_recursion_inc();
4249 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4250 dev_xmit_recursion_dec();
4251 if (dev_xmit_complete(rc)) {
4252 HARD_TX_UNLOCK(dev, txq);
4256 HARD_TX_UNLOCK(dev, txq);
4257 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4260 /* Recursion is detected! It is possible,
4264 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4270 rcu_read_unlock_bh();
4272 dev_core_stats_tx_dropped_inc(dev);
4273 kfree_skb_list(skb);
4276 rcu_read_unlock_bh();
4279 EXPORT_SYMBOL(__dev_queue_xmit);
4281 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4283 struct net_device *dev = skb->dev;
4284 struct sk_buff *orig_skb = skb;
4285 struct netdev_queue *txq;
4286 int ret = NETDEV_TX_BUSY;
4289 if (unlikely(!netif_running(dev) ||
4290 !netif_carrier_ok(dev)))
4293 skb = validate_xmit_skb_list(skb, dev, &again);
4294 if (skb != orig_skb)
4297 skb_set_queue_mapping(skb, queue_id);
4298 txq = skb_get_tx_queue(dev, skb);
4302 dev_xmit_recursion_inc();
4303 HARD_TX_LOCK(dev, txq, smp_processor_id());
4304 if (!netif_xmit_frozen_or_drv_stopped(txq))
4305 ret = netdev_start_xmit(skb, dev, txq, false);
4306 HARD_TX_UNLOCK(dev, txq);
4307 dev_xmit_recursion_dec();
4312 dev_core_stats_tx_dropped_inc(dev);
4313 kfree_skb_list(skb);
4314 return NET_XMIT_DROP;
4316 EXPORT_SYMBOL(__dev_direct_xmit);
4318 /*************************************************************************
4320 *************************************************************************/
4322 int netdev_max_backlog __read_mostly = 1000;
4323 EXPORT_SYMBOL(netdev_max_backlog);
4325 int netdev_tstamp_prequeue __read_mostly = 1;
4326 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4327 int netdev_budget __read_mostly = 300;
4328 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4329 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4330 int weight_p __read_mostly = 64; /* old backlog weight */
4331 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4332 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4333 int dev_rx_weight __read_mostly = 64;
4334 int dev_tx_weight __read_mostly = 64;
4336 /* Called with irq disabled */
4337 static inline void ____napi_schedule(struct softnet_data *sd,
4338 struct napi_struct *napi)
4340 struct task_struct *thread;
4342 lockdep_assert_irqs_disabled();
4344 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4345 /* Paired with smp_mb__before_atomic() in
4346 * napi_enable()/dev_set_threaded().
4347 * Use READ_ONCE() to guarantee a complete
4348 * read on napi->thread. Only call
4349 * wake_up_process() when it's not NULL.
4351 thread = READ_ONCE(napi->thread);
4353 /* Avoid doing set_bit() if the thread is in
4354 * INTERRUPTIBLE state, cause napi_thread_wait()
4355 * makes sure to proceed with napi polling
4356 * if the thread is explicitly woken from here.
4358 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4359 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4360 wake_up_process(thread);
4365 list_add_tail(&napi->poll_list, &sd->poll_list);
4366 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4371 /* One global table that all flow-based protocols share. */
4372 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4373 EXPORT_SYMBOL(rps_sock_flow_table);
4374 u32 rps_cpu_mask __read_mostly;
4375 EXPORT_SYMBOL(rps_cpu_mask);
4377 struct static_key_false rps_needed __read_mostly;
4378 EXPORT_SYMBOL(rps_needed);
4379 struct static_key_false rfs_needed __read_mostly;
4380 EXPORT_SYMBOL(rfs_needed);
4382 static struct rps_dev_flow *
4383 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4384 struct rps_dev_flow *rflow, u16 next_cpu)
4386 if (next_cpu < nr_cpu_ids) {
4387 #ifdef CONFIG_RFS_ACCEL
4388 struct netdev_rx_queue *rxqueue;
4389 struct rps_dev_flow_table *flow_table;
4390 struct rps_dev_flow *old_rflow;
4395 /* Should we steer this flow to a different hardware queue? */
4396 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4397 !(dev->features & NETIF_F_NTUPLE))
4399 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4400 if (rxq_index == skb_get_rx_queue(skb))
4403 rxqueue = dev->_rx + rxq_index;
4404 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4407 flow_id = skb_get_hash(skb) & flow_table->mask;
4408 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4409 rxq_index, flow_id);
4413 rflow = &flow_table->flows[flow_id];
4415 if (old_rflow->filter == rflow->filter)
4416 old_rflow->filter = RPS_NO_FILTER;
4420 per_cpu(softnet_data, next_cpu).input_queue_head;
4423 rflow->cpu = next_cpu;
4428 * get_rps_cpu is called from netif_receive_skb and returns the target
4429 * CPU from the RPS map of the receiving queue for a given skb.
4430 * rcu_read_lock must be held on entry.
4432 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4433 struct rps_dev_flow **rflowp)
4435 const struct rps_sock_flow_table *sock_flow_table;
4436 struct netdev_rx_queue *rxqueue = dev->_rx;
4437 struct rps_dev_flow_table *flow_table;
4438 struct rps_map *map;
4443 if (skb_rx_queue_recorded(skb)) {
4444 u16 index = skb_get_rx_queue(skb);
4446 if (unlikely(index >= dev->real_num_rx_queues)) {
4447 WARN_ONCE(dev->real_num_rx_queues > 1,
4448 "%s received packet on queue %u, but number "
4449 "of RX queues is %u\n",
4450 dev->name, index, dev->real_num_rx_queues);
4456 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4458 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4459 map = rcu_dereference(rxqueue->rps_map);
4460 if (!flow_table && !map)
4463 skb_reset_network_header(skb);
4464 hash = skb_get_hash(skb);
4468 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4469 if (flow_table && sock_flow_table) {
4470 struct rps_dev_flow *rflow;
4474 /* First check into global flow table if there is a match */
4475 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4476 if ((ident ^ hash) & ~rps_cpu_mask)
4479 next_cpu = ident & rps_cpu_mask;
4481 /* OK, now we know there is a match,
4482 * we can look at the local (per receive queue) flow table
4484 rflow = &flow_table->flows[hash & flow_table->mask];
4488 * If the desired CPU (where last recvmsg was done) is
4489 * different from current CPU (one in the rx-queue flow
4490 * table entry), switch if one of the following holds:
4491 * - Current CPU is unset (>= nr_cpu_ids).
4492 * - Current CPU is offline.
4493 * - The current CPU's queue tail has advanced beyond the
4494 * last packet that was enqueued using this table entry.
4495 * This guarantees that all previous packets for the flow
4496 * have been dequeued, thus preserving in order delivery.
4498 if (unlikely(tcpu != next_cpu) &&
4499 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4500 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4501 rflow->last_qtail)) >= 0)) {
4503 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4506 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4516 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4517 if (cpu_online(tcpu)) {
4527 #ifdef CONFIG_RFS_ACCEL
4530 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4531 * @dev: Device on which the filter was set
4532 * @rxq_index: RX queue index
4533 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4534 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4536 * Drivers that implement ndo_rx_flow_steer() should periodically call
4537 * this function for each installed filter and remove the filters for
4538 * which it returns %true.
4540 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4541 u32 flow_id, u16 filter_id)
4543 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4544 struct rps_dev_flow_table *flow_table;
4545 struct rps_dev_flow *rflow;
4550 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4551 if (flow_table && flow_id <= flow_table->mask) {
4552 rflow = &flow_table->flows[flow_id];
4553 cpu = READ_ONCE(rflow->cpu);
4554 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4555 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4556 rflow->last_qtail) <
4557 (int)(10 * flow_table->mask)))
4563 EXPORT_SYMBOL(rps_may_expire_flow);
4565 #endif /* CONFIG_RFS_ACCEL */
4567 /* Called from hardirq (IPI) context */
4568 static void rps_trigger_softirq(void *data)
4570 struct softnet_data *sd = data;
4572 ____napi_schedule(sd, &sd->backlog);
4576 #endif /* CONFIG_RPS */
4578 /* Called from hardirq (IPI) context */
4579 static void trigger_rx_softirq(void *data)
4581 struct softnet_data *sd = data;
4583 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4584 smp_store_release(&sd->defer_ipi_scheduled, 0);
4588 * Check if this softnet_data structure is another cpu one
4589 * If yes, queue it to our IPI list and return 1
4592 static int napi_schedule_rps(struct softnet_data *sd)
4594 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4598 sd->rps_ipi_next = mysd->rps_ipi_list;
4599 mysd->rps_ipi_list = sd;
4601 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4604 #endif /* CONFIG_RPS */
4605 __napi_schedule_irqoff(&mysd->backlog);
4609 #ifdef CONFIG_NET_FLOW_LIMIT
4610 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4613 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4615 #ifdef CONFIG_NET_FLOW_LIMIT
4616 struct sd_flow_limit *fl;
4617 struct softnet_data *sd;
4618 unsigned int old_flow, new_flow;
4620 if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4623 sd = this_cpu_ptr(&softnet_data);
4626 fl = rcu_dereference(sd->flow_limit);
4628 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4629 old_flow = fl->history[fl->history_head];
4630 fl->history[fl->history_head] = new_flow;
4633 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4635 if (likely(fl->buckets[old_flow]))
4636 fl->buckets[old_flow]--;
4638 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4650 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4651 * queue (may be a remote CPU queue).
4653 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4654 unsigned int *qtail)
4656 enum skb_drop_reason reason;
4657 struct softnet_data *sd;
4658 unsigned long flags;
4661 reason = SKB_DROP_REASON_NOT_SPECIFIED;
4662 sd = &per_cpu(softnet_data, cpu);
4664 rps_lock_irqsave(sd, &flags);
4665 if (!netif_running(skb->dev))
4667 qlen = skb_queue_len(&sd->input_pkt_queue);
4668 if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4671 __skb_queue_tail(&sd->input_pkt_queue, skb);
4672 input_queue_tail_incr_save(sd, qtail);
4673 rps_unlock_irq_restore(sd, &flags);
4674 return NET_RX_SUCCESS;
4677 /* Schedule NAPI for backlog device
4678 * We can use non atomic operation since we own the queue lock
4680 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4681 napi_schedule_rps(sd);
4684 reason = SKB_DROP_REASON_CPU_BACKLOG;
4688 rps_unlock_irq_restore(sd, &flags);
4690 dev_core_stats_rx_dropped_inc(skb->dev);
4691 kfree_skb_reason(skb, reason);
4695 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4697 struct net_device *dev = skb->dev;
4698 struct netdev_rx_queue *rxqueue;
4702 if (skb_rx_queue_recorded(skb)) {
4703 u16 index = skb_get_rx_queue(skb);
4705 if (unlikely(index >= dev->real_num_rx_queues)) {
4706 WARN_ONCE(dev->real_num_rx_queues > 1,
4707 "%s received packet on queue %u, but number "
4708 "of RX queues is %u\n",
4709 dev->name, index, dev->real_num_rx_queues);
4711 return rxqueue; /* Return first rxqueue */
4718 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4719 struct bpf_prog *xdp_prog)
4721 void *orig_data, *orig_data_end, *hard_start;
4722 struct netdev_rx_queue *rxqueue;
4723 bool orig_bcast, orig_host;
4724 u32 mac_len, frame_sz;
4725 __be16 orig_eth_type;
4730 /* The XDP program wants to see the packet starting at the MAC
4733 mac_len = skb->data - skb_mac_header(skb);
4734 hard_start = skb->data - skb_headroom(skb);
4736 /* SKB "head" area always have tailroom for skb_shared_info */
4737 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4738 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4740 rxqueue = netif_get_rxqueue(skb);
4741 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4742 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4743 skb_headlen(skb) + mac_len, true);
4745 orig_data_end = xdp->data_end;
4746 orig_data = xdp->data;
4747 eth = (struct ethhdr *)xdp->data;
4748 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4749 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4750 orig_eth_type = eth->h_proto;
4752 act = bpf_prog_run_xdp(xdp_prog, xdp);
4754 /* check if bpf_xdp_adjust_head was used */
4755 off = xdp->data - orig_data;
4758 __skb_pull(skb, off);
4760 __skb_push(skb, -off);
4762 skb->mac_header += off;
4763 skb_reset_network_header(skb);
4766 /* check if bpf_xdp_adjust_tail was used */
4767 off = xdp->data_end - orig_data_end;
4769 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4770 skb->len += off; /* positive on grow, negative on shrink */
4773 /* check if XDP changed eth hdr such SKB needs update */
4774 eth = (struct ethhdr *)xdp->data;
4775 if ((orig_eth_type != eth->h_proto) ||
4776 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4777 skb->dev->dev_addr)) ||
4778 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4779 __skb_push(skb, ETH_HLEN);
4780 skb->pkt_type = PACKET_HOST;
4781 skb->protocol = eth_type_trans(skb, skb->dev);
4784 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4785 * before calling us again on redirect path. We do not call do_redirect
4786 * as we leave that up to the caller.
4788 * Caller is responsible for managing lifetime of skb (i.e. calling
4789 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4794 __skb_push(skb, mac_len);
4797 metalen = xdp->data - xdp->data_meta;
4799 skb_metadata_set(skb, metalen);
4806 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4807 struct xdp_buff *xdp,
4808 struct bpf_prog *xdp_prog)
4812 /* Reinjected packets coming from act_mirred or similar should
4813 * not get XDP generic processing.
4815 if (skb_is_redirected(skb))
4818 /* XDP packets must be linear and must have sufficient headroom
4819 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4820 * native XDP provides, thus we need to do it here as well.
4822 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4823 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4824 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4825 int troom = skb->tail + skb->data_len - skb->end;
4827 /* In case we have to go down the path and also linearize,
4828 * then lets do the pskb_expand_head() work just once here.
4830 if (pskb_expand_head(skb,
4831 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4832 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4834 if (skb_linearize(skb))
4838 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4845 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4848 trace_xdp_exception(skb->dev, xdp_prog, act);
4859 /* When doing generic XDP we have to bypass the qdisc layer and the
4860 * network taps in order to match in-driver-XDP behavior. This also means
4861 * that XDP packets are able to starve other packets going through a qdisc,
4862 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4863 * queues, so they do not have this starvation issue.
4865 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4867 struct net_device *dev = skb->dev;
4868 struct netdev_queue *txq;
4869 bool free_skb = true;
4872 txq = netdev_core_pick_tx(dev, skb, NULL);
4873 cpu = smp_processor_id();
4874 HARD_TX_LOCK(dev, txq, cpu);
4875 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4876 rc = netdev_start_xmit(skb, dev, txq, 0);
4877 if (dev_xmit_complete(rc))
4880 HARD_TX_UNLOCK(dev, txq);
4882 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4883 dev_core_stats_tx_dropped_inc(dev);
4888 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4890 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4893 struct xdp_buff xdp;
4897 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4898 if (act != XDP_PASS) {
4901 err = xdp_do_generic_redirect(skb->dev, skb,
4907 generic_xdp_tx(skb, xdp_prog);
4915 kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4918 EXPORT_SYMBOL_GPL(do_xdp_generic);
4920 static int netif_rx_internal(struct sk_buff *skb)
4924 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4926 trace_netif_rx(skb);
4929 if (static_branch_unlikely(&rps_needed)) {
4930 struct rps_dev_flow voidflow, *rflow = &voidflow;
4935 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4937 cpu = smp_processor_id();
4939 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4947 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4953 * __netif_rx - Slightly optimized version of netif_rx
4954 * @skb: buffer to post
4956 * This behaves as netif_rx except that it does not disable bottom halves.
4957 * As a result this function may only be invoked from the interrupt context
4958 * (either hard or soft interrupt).
4960 int __netif_rx(struct sk_buff *skb)
4964 lockdep_assert_once(hardirq_count() | softirq_count());
4966 trace_netif_rx_entry(skb);
4967 ret = netif_rx_internal(skb);
4968 trace_netif_rx_exit(ret);
4971 EXPORT_SYMBOL(__netif_rx);
4974 * netif_rx - post buffer to the network code
4975 * @skb: buffer to post
4977 * This function receives a packet from a device driver and queues it for
4978 * the upper (protocol) levels to process via the backlog NAPI device. It
4979 * always succeeds. The buffer may be dropped during processing for
4980 * congestion control or by the protocol layers.
4981 * The network buffer is passed via the backlog NAPI device. Modern NIC
4982 * driver should use NAPI and GRO.
4983 * This function can used from interrupt and from process context. The
4984 * caller from process context must not disable interrupts before invoking
4988 * NET_RX_SUCCESS (no congestion)
4989 * NET_RX_DROP (packet was dropped)
4992 int netif_rx(struct sk_buff *skb)
4994 bool need_bh_off = !(hardirq_count() | softirq_count());
4999 trace_netif_rx_entry(skb);
5000 ret = netif_rx_internal(skb);
5001 trace_netif_rx_exit(ret);
5006 EXPORT_SYMBOL(netif_rx);
5008 static __latent_entropy void net_tx_action(struct softirq_action *h)
5010 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5012 if (sd->completion_queue) {
5013 struct sk_buff *clist;
5015 local_irq_disable();
5016 clist = sd->completion_queue;
5017 sd->completion_queue = NULL;
5021 struct sk_buff *skb = clist;
5023 clist = clist->next;
5025 WARN_ON(refcount_read(&skb->users));
5026 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5027 trace_consume_skb(skb);
5029 trace_kfree_skb(skb, net_tx_action,
5030 SKB_DROP_REASON_NOT_SPECIFIED);
5032 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5035 __kfree_skb_defer(skb);
5039 if (sd->output_queue) {
5042 local_irq_disable();
5043 head = sd->output_queue;
5044 sd->output_queue = NULL;
5045 sd->output_queue_tailp = &sd->output_queue;
5051 struct Qdisc *q = head;
5052 spinlock_t *root_lock = NULL;
5054 head = head->next_sched;
5056 /* We need to make sure head->next_sched is read
5057 * before clearing __QDISC_STATE_SCHED
5059 smp_mb__before_atomic();
5061 if (!(q->flags & TCQ_F_NOLOCK)) {
5062 root_lock = qdisc_lock(q);
5063 spin_lock(root_lock);
5064 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5066 /* There is a synchronize_net() between
5067 * STATE_DEACTIVATED flag being set and
5068 * qdisc_reset()/some_qdisc_is_busy() in
5069 * dev_deactivate(), so we can safely bail out
5070 * early here to avoid data race between
5071 * qdisc_deactivate() and some_qdisc_is_busy()
5072 * for lockless qdisc.
5074 clear_bit(__QDISC_STATE_SCHED, &q->state);
5078 clear_bit(__QDISC_STATE_SCHED, &q->state);
5081 spin_unlock(root_lock);
5087 xfrm_dev_backlog(sd);
5090 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5091 /* This hook is defined here for ATM LANE */
5092 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5093 unsigned char *addr) __read_mostly;
5094 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5097 static inline struct sk_buff *
5098 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5099 struct net_device *orig_dev, bool *another)
5101 #ifdef CONFIG_NET_CLS_ACT
5102 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5103 struct tcf_result cl_res;
5105 /* If there's at least one ingress present somewhere (so
5106 * we get here via enabled static key), remaining devices
5107 * that are not configured with an ingress qdisc will bail
5114 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5118 qdisc_skb_cb(skb)->pkt_len = skb->len;
5119 tc_skb_cb(skb)->mru = 0;
5120 tc_skb_cb(skb)->post_ct = false;
5121 skb->tc_at_ingress = 1;
5122 mini_qdisc_bstats_cpu_update(miniq, skb);
5124 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5126 case TC_ACT_RECLASSIFY:
5127 skb->tc_index = TC_H_MIN(cl_res.classid);
5130 mini_qdisc_qstats_cpu_drop(miniq);
5131 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5138 *ret = NET_RX_SUCCESS;
5140 case TC_ACT_REDIRECT:
5141 /* skb_mac_header check was done by cls/act_bpf, so
5142 * we can safely push the L2 header back before
5143 * redirecting to another netdev
5145 __skb_push(skb, skb->mac_len);
5146 if (skb_do_redirect(skb) == -EAGAIN) {
5147 __skb_pull(skb, skb->mac_len);
5151 *ret = NET_RX_SUCCESS;
5153 case TC_ACT_CONSUMED:
5154 *ret = NET_RX_SUCCESS;
5159 #endif /* CONFIG_NET_CLS_ACT */
5164 * netdev_is_rx_handler_busy - check if receive handler is registered
5165 * @dev: device to check
5167 * Check if a receive handler is already registered for a given device.
5168 * Return true if there one.
5170 * The caller must hold the rtnl_mutex.
5172 bool netdev_is_rx_handler_busy(struct net_device *dev)
5175 return dev && rtnl_dereference(dev->rx_handler);
5177 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5180 * netdev_rx_handler_register - register receive handler
5181 * @dev: device to register a handler for
5182 * @rx_handler: receive handler to register
5183 * @rx_handler_data: data pointer that is used by rx handler
5185 * Register a receive handler for a device. This handler will then be
5186 * called from __netif_receive_skb. A negative errno code is returned
5189 * The caller must hold the rtnl_mutex.
5191 * For a general description of rx_handler, see enum rx_handler_result.
5193 int netdev_rx_handler_register(struct net_device *dev,
5194 rx_handler_func_t *rx_handler,
5195 void *rx_handler_data)
5197 if (netdev_is_rx_handler_busy(dev))
5200 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5203 /* Note: rx_handler_data must be set before rx_handler */
5204 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5205 rcu_assign_pointer(dev->rx_handler, rx_handler);
5209 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5212 * netdev_rx_handler_unregister - unregister receive handler
5213 * @dev: device to unregister a handler from
5215 * Unregister a receive handler from a device.
5217 * The caller must hold the rtnl_mutex.
5219 void netdev_rx_handler_unregister(struct net_device *dev)
5223 RCU_INIT_POINTER(dev->rx_handler, NULL);
5224 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5225 * section has a guarantee to see a non NULL rx_handler_data
5229 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5231 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5234 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5235 * the special handling of PFMEMALLOC skbs.
5237 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5239 switch (skb->protocol) {
5240 case htons(ETH_P_ARP):
5241 case htons(ETH_P_IP):
5242 case htons(ETH_P_IPV6):
5243 case htons(ETH_P_8021Q):
5244 case htons(ETH_P_8021AD):
5251 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5252 int *ret, struct net_device *orig_dev)
5254 if (nf_hook_ingress_active(skb)) {
5258 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5263 ingress_retval = nf_hook_ingress(skb);
5265 return ingress_retval;
5270 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5271 struct packet_type **ppt_prev)
5273 struct packet_type *ptype, *pt_prev;
5274 rx_handler_func_t *rx_handler;
5275 struct sk_buff *skb = *pskb;
5276 struct net_device *orig_dev;
5277 bool deliver_exact = false;
5278 int ret = NET_RX_DROP;
5281 net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5283 trace_netif_receive_skb(skb);
5285 orig_dev = skb->dev;
5287 skb_reset_network_header(skb);
5288 if (!skb_transport_header_was_set(skb))
5289 skb_reset_transport_header(skb);
5290 skb_reset_mac_len(skb);
5295 skb->skb_iif = skb->dev->ifindex;
5297 __this_cpu_inc(softnet_data.processed);
5299 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5303 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5306 if (ret2 != XDP_PASS) {
5312 if (eth_type_vlan(skb->protocol)) {
5313 skb = skb_vlan_untag(skb);
5318 if (skb_skip_tc_classify(skb))
5324 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5326 ret = deliver_skb(skb, pt_prev, orig_dev);
5330 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5332 ret = deliver_skb(skb, pt_prev, orig_dev);
5337 #ifdef CONFIG_NET_INGRESS
5338 if (static_branch_unlikely(&ingress_needed_key)) {
5339 bool another = false;
5341 nf_skip_egress(skb, true);
5342 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5349 nf_skip_egress(skb, false);
5350 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5354 skb_reset_redirect(skb);
5356 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5359 if (skb_vlan_tag_present(skb)) {
5361 ret = deliver_skb(skb, pt_prev, orig_dev);
5364 if (vlan_do_receive(&skb))
5366 else if (unlikely(!skb))
5370 rx_handler = rcu_dereference(skb->dev->rx_handler);
5373 ret = deliver_skb(skb, pt_prev, orig_dev);
5376 switch (rx_handler(&skb)) {
5377 case RX_HANDLER_CONSUMED:
5378 ret = NET_RX_SUCCESS;
5380 case RX_HANDLER_ANOTHER:
5382 case RX_HANDLER_EXACT:
5383 deliver_exact = true;
5385 case RX_HANDLER_PASS:
5392 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5394 if (skb_vlan_tag_get_id(skb)) {
5395 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5398 skb->pkt_type = PACKET_OTHERHOST;
5399 } else if (eth_type_vlan(skb->protocol)) {
5400 /* Outer header is 802.1P with vlan 0, inner header is
5401 * 802.1Q or 802.1AD and vlan_do_receive() above could
5402 * not find vlan dev for vlan id 0.
5404 __vlan_hwaccel_clear_tag(skb);
5405 skb = skb_vlan_untag(skb);
5408 if (vlan_do_receive(&skb))
5409 /* After stripping off 802.1P header with vlan 0
5410 * vlan dev is found for inner header.
5413 else if (unlikely(!skb))
5416 /* We have stripped outer 802.1P vlan 0 header.
5417 * But could not find vlan dev.
5418 * check again for vlan id to set OTHERHOST.
5422 /* Note: we might in the future use prio bits
5423 * and set skb->priority like in vlan_do_receive()
5424 * For the time being, just ignore Priority Code Point
5426 __vlan_hwaccel_clear_tag(skb);
5429 type = skb->protocol;
5431 /* deliver only exact match when indicated */
5432 if (likely(!deliver_exact)) {
5433 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5434 &ptype_base[ntohs(type) &
5438 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5439 &orig_dev->ptype_specific);
5441 if (unlikely(skb->dev != orig_dev)) {
5442 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5443 &skb->dev->ptype_specific);
5447 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5449 *ppt_prev = pt_prev;
5453 dev_core_stats_rx_dropped_inc(skb->dev);
5455 dev_core_stats_rx_nohandler_inc(skb->dev);
5456 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5457 /* Jamal, now you will not able to escape explaining
5458 * me how you were going to use this. :-)
5464 /* The invariant here is that if *ppt_prev is not NULL
5465 * then skb should also be non-NULL.
5467 * Apparently *ppt_prev assignment above holds this invariant due to
5468 * skb dereferencing near it.
5474 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5476 struct net_device *orig_dev = skb->dev;
5477 struct packet_type *pt_prev = NULL;
5480 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5482 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5483 skb->dev, pt_prev, orig_dev);
5488 * netif_receive_skb_core - special purpose version of netif_receive_skb
5489 * @skb: buffer to process
5491 * More direct receive version of netif_receive_skb(). It should
5492 * only be used by callers that have a need to skip RPS and Generic XDP.
5493 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5495 * This function may only be called from softirq context and interrupts
5496 * should be enabled.
5498 * Return values (usually ignored):
5499 * NET_RX_SUCCESS: no congestion
5500 * NET_RX_DROP: packet was dropped
5502 int netif_receive_skb_core(struct sk_buff *skb)
5507 ret = __netif_receive_skb_one_core(skb, false);
5512 EXPORT_SYMBOL(netif_receive_skb_core);
5514 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5515 struct packet_type *pt_prev,
5516 struct net_device *orig_dev)
5518 struct sk_buff *skb, *next;
5522 if (list_empty(head))
5524 if (pt_prev->list_func != NULL)
5525 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5526 ip_list_rcv, head, pt_prev, orig_dev);
5528 list_for_each_entry_safe(skb, next, head, list) {
5529 skb_list_del_init(skb);
5530 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5534 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5536 /* Fast-path assumptions:
5537 * - There is no RX handler.
5538 * - Only one packet_type matches.
5539 * If either of these fails, we will end up doing some per-packet
5540 * processing in-line, then handling the 'last ptype' for the whole
5541 * sublist. This can't cause out-of-order delivery to any single ptype,
5542 * because the 'last ptype' must be constant across the sublist, and all
5543 * other ptypes are handled per-packet.
5545 /* Current (common) ptype of sublist */
5546 struct packet_type *pt_curr = NULL;
5547 /* Current (common) orig_dev of sublist */
5548 struct net_device *od_curr = NULL;
5549 struct list_head sublist;
5550 struct sk_buff *skb, *next;
5552 INIT_LIST_HEAD(&sublist);
5553 list_for_each_entry_safe(skb, next, head, list) {
5554 struct net_device *orig_dev = skb->dev;
5555 struct packet_type *pt_prev = NULL;
5557 skb_list_del_init(skb);
5558 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5561 if (pt_curr != pt_prev || od_curr != orig_dev) {
5562 /* dispatch old sublist */
5563 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5564 /* start new sublist */
5565 INIT_LIST_HEAD(&sublist);
5569 list_add_tail(&skb->list, &sublist);
5572 /* dispatch final sublist */
5573 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5576 static int __netif_receive_skb(struct sk_buff *skb)
5580 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5581 unsigned int noreclaim_flag;
5584 * PFMEMALLOC skbs are special, they should
5585 * - be delivered to SOCK_MEMALLOC sockets only
5586 * - stay away from userspace
5587 * - have bounded memory usage
5589 * Use PF_MEMALLOC as this saves us from propagating the allocation
5590 * context down to all allocation sites.
5592 noreclaim_flag = memalloc_noreclaim_save();
5593 ret = __netif_receive_skb_one_core(skb, true);
5594 memalloc_noreclaim_restore(noreclaim_flag);
5596 ret = __netif_receive_skb_one_core(skb, false);
5601 static void __netif_receive_skb_list(struct list_head *head)
5603 unsigned long noreclaim_flag = 0;
5604 struct sk_buff *skb, *next;
5605 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5607 list_for_each_entry_safe(skb, next, head, list) {
5608 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5609 struct list_head sublist;
5611 /* Handle the previous sublist */
5612 list_cut_before(&sublist, head, &skb->list);
5613 if (!list_empty(&sublist))
5614 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5615 pfmemalloc = !pfmemalloc;
5616 /* See comments in __netif_receive_skb */
5618 noreclaim_flag = memalloc_noreclaim_save();
5620 memalloc_noreclaim_restore(noreclaim_flag);
5623 /* Handle the remaining sublist */
5624 if (!list_empty(head))
5625 __netif_receive_skb_list_core(head, pfmemalloc);
5626 /* Restore pflags */
5628 memalloc_noreclaim_restore(noreclaim_flag);
5631 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5633 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5634 struct bpf_prog *new = xdp->prog;
5637 switch (xdp->command) {
5638 case XDP_SETUP_PROG:
5639 rcu_assign_pointer(dev->xdp_prog, new);
5644 static_branch_dec(&generic_xdp_needed_key);
5645 } else if (new && !old) {
5646 static_branch_inc(&generic_xdp_needed_key);
5647 dev_disable_lro(dev);
5648 dev_disable_gro_hw(dev);
5660 static int netif_receive_skb_internal(struct sk_buff *skb)
5664 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5666 if (skb_defer_rx_timestamp(skb))
5667 return NET_RX_SUCCESS;
5671 if (static_branch_unlikely(&rps_needed)) {
5672 struct rps_dev_flow voidflow, *rflow = &voidflow;
5673 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5676 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5682 ret = __netif_receive_skb(skb);
5687 void netif_receive_skb_list_internal(struct list_head *head)
5689 struct sk_buff *skb, *next;
5690 struct list_head sublist;
5692 INIT_LIST_HEAD(&sublist);
5693 list_for_each_entry_safe(skb, next, head, list) {
5694 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5695 skb_list_del_init(skb);
5696 if (!skb_defer_rx_timestamp(skb))
5697 list_add_tail(&skb->list, &sublist);
5699 list_splice_init(&sublist, head);
5703 if (static_branch_unlikely(&rps_needed)) {
5704 list_for_each_entry_safe(skb, next, head, list) {
5705 struct rps_dev_flow voidflow, *rflow = &voidflow;
5706 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5709 /* Will be handled, remove from list */
5710 skb_list_del_init(skb);
5711 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5716 __netif_receive_skb_list(head);
5721 * netif_receive_skb - process receive buffer from network
5722 * @skb: buffer to process
5724 * netif_receive_skb() is the main receive data processing function.
5725 * It always succeeds. The buffer may be dropped during processing
5726 * for congestion control or by the protocol layers.
5728 * This function may only be called from softirq context and interrupts
5729 * should be enabled.
5731 * Return values (usually ignored):
5732 * NET_RX_SUCCESS: no congestion
5733 * NET_RX_DROP: packet was dropped
5735 int netif_receive_skb(struct sk_buff *skb)
5739 trace_netif_receive_skb_entry(skb);
5741 ret = netif_receive_skb_internal(skb);
5742 trace_netif_receive_skb_exit(ret);
5746 EXPORT_SYMBOL(netif_receive_skb);
5749 * netif_receive_skb_list - process many receive buffers from network
5750 * @head: list of skbs to process.
5752 * Since return value of netif_receive_skb() is normally ignored, and
5753 * wouldn't be meaningful for a list, this function returns void.
5755 * This function may only be called from softirq context and interrupts
5756 * should be enabled.
5758 void netif_receive_skb_list(struct list_head *head)
5760 struct sk_buff *skb;
5762 if (list_empty(head))
5764 if (trace_netif_receive_skb_list_entry_enabled()) {
5765 list_for_each_entry(skb, head, list)
5766 trace_netif_receive_skb_list_entry(skb);
5768 netif_receive_skb_list_internal(head);
5769 trace_netif_receive_skb_list_exit(0);
5771 EXPORT_SYMBOL(netif_receive_skb_list);
5773 static DEFINE_PER_CPU(struct work_struct, flush_works);
5775 /* Network device is going away, flush any packets still pending */
5776 static void flush_backlog(struct work_struct *work)
5778 struct sk_buff *skb, *tmp;
5779 struct softnet_data *sd;
5782 sd = this_cpu_ptr(&softnet_data);
5784 rps_lock_irq_disable(sd);
5785 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5786 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5787 __skb_unlink(skb, &sd->input_pkt_queue);
5788 dev_kfree_skb_irq(skb);
5789 input_queue_head_incr(sd);
5792 rps_unlock_irq_enable(sd);
5794 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5795 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5796 __skb_unlink(skb, &sd->process_queue);
5798 input_queue_head_incr(sd);
5804 static bool flush_required(int cpu)
5806 #if IS_ENABLED(CONFIG_RPS)
5807 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5810 rps_lock_irq_disable(sd);
5812 /* as insertion into process_queue happens with the rps lock held,
5813 * process_queue access may race only with dequeue
5815 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5816 !skb_queue_empty_lockless(&sd->process_queue);
5817 rps_unlock_irq_enable(sd);
5821 /* without RPS we can't safely check input_pkt_queue: during a
5822 * concurrent remote skb_queue_splice() we can detect as empty both
5823 * input_pkt_queue and process_queue even if the latter could end-up
5824 * containing a lot of packets.
5829 static void flush_all_backlogs(void)
5831 static cpumask_t flush_cpus;
5834 /* since we are under rtnl lock protection we can use static data
5835 * for the cpumask and avoid allocating on stack the possibly
5842 cpumask_clear(&flush_cpus);
5843 for_each_online_cpu(cpu) {
5844 if (flush_required(cpu)) {
5845 queue_work_on(cpu, system_highpri_wq,
5846 per_cpu_ptr(&flush_works, cpu));
5847 cpumask_set_cpu(cpu, &flush_cpus);
5851 /* we can have in flight packet[s] on the cpus we are not flushing,
5852 * synchronize_net() in unregister_netdevice_many() will take care of
5855 for_each_cpu(cpu, &flush_cpus)
5856 flush_work(per_cpu_ptr(&flush_works, cpu));
5861 static void net_rps_send_ipi(struct softnet_data *remsd)
5865 struct softnet_data *next = remsd->rps_ipi_next;
5867 if (cpu_online(remsd->cpu))
5868 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5875 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5876 * Note: called with local irq disabled, but exits with local irq enabled.
5878 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5881 struct softnet_data *remsd = sd->rps_ipi_list;
5884 sd->rps_ipi_list = NULL;
5888 /* Send pending IPI's to kick RPS processing on remote cpus. */
5889 net_rps_send_ipi(remsd);
5895 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5898 return sd->rps_ipi_list != NULL;
5904 static int process_backlog(struct napi_struct *napi, int quota)
5906 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5910 /* Check if we have pending ipi, its better to send them now,
5911 * not waiting net_rx_action() end.
5913 if (sd_has_rps_ipi_waiting(sd)) {
5914 local_irq_disable();
5915 net_rps_action_and_irq_enable(sd);
5918 napi->weight = READ_ONCE(dev_rx_weight);
5920 struct sk_buff *skb;
5922 while ((skb = __skb_dequeue(&sd->process_queue))) {
5924 __netif_receive_skb(skb);
5926 input_queue_head_incr(sd);
5927 if (++work >= quota)
5932 rps_lock_irq_disable(sd);
5933 if (skb_queue_empty(&sd->input_pkt_queue)) {
5935 * Inline a custom version of __napi_complete().
5936 * only current cpu owns and manipulates this napi,
5937 * and NAPI_STATE_SCHED is the only possible flag set
5939 * We can use a plain write instead of clear_bit(),
5940 * and we dont need an smp_mb() memory barrier.
5945 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5946 &sd->process_queue);
5948 rps_unlock_irq_enable(sd);
5955 * __napi_schedule - schedule for receive
5956 * @n: entry to schedule
5958 * The entry's receive function will be scheduled to run.
5959 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5961 void __napi_schedule(struct napi_struct *n)
5963 unsigned long flags;
5965 local_irq_save(flags);
5966 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5967 local_irq_restore(flags);
5969 EXPORT_SYMBOL(__napi_schedule);
5972 * napi_schedule_prep - check if napi can be scheduled
5975 * Test if NAPI routine is already running, and if not mark
5976 * it as running. This is used as a condition variable to
5977 * insure only one NAPI poll instance runs. We also make
5978 * sure there is no pending NAPI disable.
5980 bool napi_schedule_prep(struct napi_struct *n)
5982 unsigned long new, val = READ_ONCE(n->state);
5985 if (unlikely(val & NAPIF_STATE_DISABLE))
5987 new = val | NAPIF_STATE_SCHED;
5989 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5990 * This was suggested by Alexander Duyck, as compiler
5991 * emits better code than :
5992 * if (val & NAPIF_STATE_SCHED)
5993 * new |= NAPIF_STATE_MISSED;
5995 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5997 } while (!try_cmpxchg(&n->state, &val, new));
5999 return !(val & NAPIF_STATE_SCHED);
6001 EXPORT_SYMBOL(napi_schedule_prep);
6004 * __napi_schedule_irqoff - schedule for receive
6005 * @n: entry to schedule
6007 * Variant of __napi_schedule() assuming hard irqs are masked.
6009 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6010 * because the interrupt disabled assumption might not be true
6011 * due to force-threaded interrupts and spinlock substitution.
6013 void __napi_schedule_irqoff(struct napi_struct *n)
6015 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6016 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6020 EXPORT_SYMBOL(__napi_schedule_irqoff);
6022 bool napi_complete_done(struct napi_struct *n, int work_done)
6024 unsigned long flags, val, new, timeout = 0;
6028 * 1) Don't let napi dequeue from the cpu poll list
6029 * just in case its running on a different cpu.
6030 * 2) If we are busy polling, do nothing here, we have
6031 * the guarantee we will be called later.
6033 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6034 NAPIF_STATE_IN_BUSY_POLL)))
6039 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6040 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6042 if (n->defer_hard_irqs_count > 0) {
6043 n->defer_hard_irqs_count--;
6044 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6048 if (n->gro_bitmask) {
6049 /* When the NAPI instance uses a timeout and keeps postponing
6050 * it, we need to bound somehow the time packets are kept in
6053 napi_gro_flush(n, !!timeout);
6058 if (unlikely(!list_empty(&n->poll_list))) {
6059 /* If n->poll_list is not empty, we need to mask irqs */
6060 local_irq_save(flags);
6061 list_del_init(&n->poll_list);
6062 local_irq_restore(flags);
6065 val = READ_ONCE(n->state);
6067 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6069 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6070 NAPIF_STATE_SCHED_THREADED |
6071 NAPIF_STATE_PREFER_BUSY_POLL);
6073 /* If STATE_MISSED was set, leave STATE_SCHED set,
6074 * because we will call napi->poll() one more time.
6075 * This C code was suggested by Alexander Duyck to help gcc.
6077 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6079 } while (!try_cmpxchg(&n->state, &val, new));
6081 if (unlikely(val & NAPIF_STATE_MISSED)) {
6087 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6088 HRTIMER_MODE_REL_PINNED);
6091 EXPORT_SYMBOL(napi_complete_done);
6093 /* must be called under rcu_read_lock(), as we dont take a reference */
6094 static struct napi_struct *napi_by_id(unsigned int napi_id)
6096 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6097 struct napi_struct *napi;
6099 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6100 if (napi->napi_id == napi_id)
6106 #if defined(CONFIG_NET_RX_BUSY_POLL)
6108 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6110 if (!skip_schedule) {
6111 gro_normal_list(napi);
6112 __napi_schedule(napi);
6116 if (napi->gro_bitmask) {
6117 /* flush too old packets
6118 * If HZ < 1000, flush all packets.
6120 napi_gro_flush(napi, HZ >= 1000);
6123 gro_normal_list(napi);
6124 clear_bit(NAPI_STATE_SCHED, &napi->state);
6127 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6130 bool skip_schedule = false;
6131 unsigned long timeout;
6134 /* Busy polling means there is a high chance device driver hard irq
6135 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6136 * set in napi_schedule_prep().
6137 * Since we are about to call napi->poll() once more, we can safely
6138 * clear NAPI_STATE_MISSED.
6140 * Note: x86 could use a single "lock and ..." instruction
6141 * to perform these two clear_bit()
6143 clear_bit(NAPI_STATE_MISSED, &napi->state);
6144 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6148 if (prefer_busy_poll) {
6149 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6150 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6151 if (napi->defer_hard_irqs_count && timeout) {
6152 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6153 skip_schedule = true;
6157 /* All we really want here is to re-enable device interrupts.
6158 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6160 rc = napi->poll(napi, budget);
6161 /* We can't gro_normal_list() here, because napi->poll() might have
6162 * rearmed the napi (napi_complete_done()) in which case it could
6163 * already be running on another CPU.
6165 trace_napi_poll(napi, rc, budget);
6166 netpoll_poll_unlock(have_poll_lock);
6168 __busy_poll_stop(napi, skip_schedule);
6172 void napi_busy_loop(unsigned int napi_id,
6173 bool (*loop_end)(void *, unsigned long),
6174 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6176 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6177 int (*napi_poll)(struct napi_struct *napi, int budget);
6178 void *have_poll_lock = NULL;
6179 struct napi_struct *napi;
6186 napi = napi_by_id(napi_id);
6196 unsigned long val = READ_ONCE(napi->state);
6198 /* If multiple threads are competing for this napi,
6199 * we avoid dirtying napi->state as much as we can.
6201 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6202 NAPIF_STATE_IN_BUSY_POLL)) {
6203 if (prefer_busy_poll)
6204 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6207 if (cmpxchg(&napi->state, val,
6208 val | NAPIF_STATE_IN_BUSY_POLL |
6209 NAPIF_STATE_SCHED) != val) {
6210 if (prefer_busy_poll)
6211 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6214 have_poll_lock = netpoll_poll_lock(napi);
6215 napi_poll = napi->poll;
6217 work = napi_poll(napi, budget);
6218 trace_napi_poll(napi, work, budget);
6219 gro_normal_list(napi);
6222 __NET_ADD_STATS(dev_net(napi->dev),
6223 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6226 if (!loop_end || loop_end(loop_end_arg, start_time))
6229 if (unlikely(need_resched())) {
6231 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6235 if (loop_end(loop_end_arg, start_time))
6242 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6247 EXPORT_SYMBOL(napi_busy_loop);
6249 #endif /* CONFIG_NET_RX_BUSY_POLL */
6251 static void napi_hash_add(struct napi_struct *napi)
6253 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6256 spin_lock(&napi_hash_lock);
6258 /* 0..NR_CPUS range is reserved for sender_cpu use */
6260 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6261 napi_gen_id = MIN_NAPI_ID;
6262 } while (napi_by_id(napi_gen_id));
6263 napi->napi_id = napi_gen_id;
6265 hlist_add_head_rcu(&napi->napi_hash_node,
6266 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6268 spin_unlock(&napi_hash_lock);
6271 /* Warning : caller is responsible to make sure rcu grace period
6272 * is respected before freeing memory containing @napi
6274 static void napi_hash_del(struct napi_struct *napi)
6276 spin_lock(&napi_hash_lock);
6278 hlist_del_init_rcu(&napi->napi_hash_node);
6280 spin_unlock(&napi_hash_lock);
6283 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6285 struct napi_struct *napi;
6287 napi = container_of(timer, struct napi_struct, timer);
6289 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6290 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6292 if (!napi_disable_pending(napi) &&
6293 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6294 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6295 __napi_schedule_irqoff(napi);
6298 return HRTIMER_NORESTART;
6301 static void init_gro_hash(struct napi_struct *napi)
6305 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6306 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6307 napi->gro_hash[i].count = 0;
6309 napi->gro_bitmask = 0;
6312 int dev_set_threaded(struct net_device *dev, bool threaded)
6314 struct napi_struct *napi;
6317 if (dev->threaded == threaded)
6321 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6322 if (!napi->thread) {
6323 err = napi_kthread_create(napi);
6332 dev->threaded = threaded;
6334 /* Make sure kthread is created before THREADED bit
6337 smp_mb__before_atomic();
6339 /* Setting/unsetting threaded mode on a napi might not immediately
6340 * take effect, if the current napi instance is actively being
6341 * polled. In this case, the switch between threaded mode and
6342 * softirq mode will happen in the next round of napi_schedule().
6343 * This should not cause hiccups/stalls to the live traffic.
6345 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6347 set_bit(NAPI_STATE_THREADED, &napi->state);
6349 clear_bit(NAPI_STATE_THREADED, &napi->state);
6354 EXPORT_SYMBOL(dev_set_threaded);
6356 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6357 int (*poll)(struct napi_struct *, int), int weight)
6359 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6362 INIT_LIST_HEAD(&napi->poll_list);
6363 INIT_HLIST_NODE(&napi->napi_hash_node);
6364 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6365 napi->timer.function = napi_watchdog;
6366 init_gro_hash(napi);
6368 INIT_LIST_HEAD(&napi->rx_list);
6371 if (weight > NAPI_POLL_WEIGHT)
6372 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6374 napi->weight = weight;
6376 #ifdef CONFIG_NETPOLL
6377 napi->poll_owner = -1;
6379 set_bit(NAPI_STATE_SCHED, &napi->state);
6380 set_bit(NAPI_STATE_NPSVC, &napi->state);
6381 list_add_rcu(&napi->dev_list, &dev->napi_list);
6382 napi_hash_add(napi);
6383 napi_get_frags_check(napi);
6384 /* Create kthread for this napi if dev->threaded is set.
6385 * Clear dev->threaded if kthread creation failed so that
6386 * threaded mode will not be enabled in napi_enable().
6388 if (dev->threaded && napi_kthread_create(napi))
6391 EXPORT_SYMBOL(netif_napi_add_weight);
6393 void napi_disable(struct napi_struct *n)
6395 unsigned long val, new;
6398 set_bit(NAPI_STATE_DISABLE, &n->state);
6400 val = READ_ONCE(n->state);
6402 if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6403 usleep_range(20, 200);
6407 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6408 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6409 } while (!try_cmpxchg(&n->state, &val, new));
6411 hrtimer_cancel(&n->timer);
6413 clear_bit(NAPI_STATE_DISABLE, &n->state);
6415 EXPORT_SYMBOL(napi_disable);
6418 * napi_enable - enable NAPI scheduling
6421 * Resume NAPI from being scheduled on this context.
6422 * Must be paired with napi_disable.
6424 void napi_enable(struct napi_struct *n)
6426 unsigned long new, val = READ_ONCE(n->state);
6429 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6431 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6432 if (n->dev->threaded && n->thread)
6433 new |= NAPIF_STATE_THREADED;
6434 } while (!try_cmpxchg(&n->state, &val, new));
6436 EXPORT_SYMBOL(napi_enable);
6438 static void flush_gro_hash(struct napi_struct *napi)
6442 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6443 struct sk_buff *skb, *n;
6445 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6447 napi->gro_hash[i].count = 0;
6451 /* Must be called in process context */
6452 void __netif_napi_del(struct napi_struct *napi)
6454 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6457 napi_hash_del(napi);
6458 list_del_rcu(&napi->dev_list);
6459 napi_free_frags(napi);
6461 flush_gro_hash(napi);
6462 napi->gro_bitmask = 0;
6465 kthread_stop(napi->thread);
6466 napi->thread = NULL;
6469 EXPORT_SYMBOL(__netif_napi_del);
6471 static int __napi_poll(struct napi_struct *n, bool *repoll)
6477 /* This NAPI_STATE_SCHED test is for avoiding a race
6478 * with netpoll's poll_napi(). Only the entity which
6479 * obtains the lock and sees NAPI_STATE_SCHED set will
6480 * actually make the ->poll() call. Therefore we avoid
6481 * accidentally calling ->poll() when NAPI is not scheduled.
6484 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6485 work = n->poll(n, weight);
6486 trace_napi_poll(n, work, weight);
6489 if (unlikely(work > weight))
6490 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6491 n->poll, work, weight);
6493 if (likely(work < weight))
6496 /* Drivers must not modify the NAPI state if they
6497 * consume the entire weight. In such cases this code
6498 * still "owns" the NAPI instance and therefore can
6499 * move the instance around on the list at-will.
6501 if (unlikely(napi_disable_pending(n))) {
6506 /* The NAPI context has more processing work, but busy-polling
6507 * is preferred. Exit early.
6509 if (napi_prefer_busy_poll(n)) {
6510 if (napi_complete_done(n, work)) {
6511 /* If timeout is not set, we need to make sure
6512 * that the NAPI is re-scheduled.
6519 if (n->gro_bitmask) {
6520 /* flush too old packets
6521 * If HZ < 1000, flush all packets.
6523 napi_gro_flush(n, HZ >= 1000);
6528 /* Some drivers may have called napi_schedule
6529 * prior to exhausting their budget.
6531 if (unlikely(!list_empty(&n->poll_list))) {
6532 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6533 n->dev ? n->dev->name : "backlog");
6542 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6544 bool do_repoll = false;
6548 list_del_init(&n->poll_list);
6550 have = netpoll_poll_lock(n);
6552 work = __napi_poll(n, &do_repoll);
6555 list_add_tail(&n->poll_list, repoll);
6557 netpoll_poll_unlock(have);
6562 static int napi_thread_wait(struct napi_struct *napi)
6566 set_current_state(TASK_INTERRUPTIBLE);
6568 while (!kthread_should_stop()) {
6569 /* Testing SCHED_THREADED bit here to make sure the current
6570 * kthread owns this napi and could poll on this napi.
6571 * Testing SCHED bit is not enough because SCHED bit might be
6572 * set by some other busy poll thread or by napi_disable().
6574 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6575 WARN_ON(!list_empty(&napi->poll_list));
6576 __set_current_state(TASK_RUNNING);
6581 /* woken being true indicates this thread owns this napi. */
6583 set_current_state(TASK_INTERRUPTIBLE);
6585 __set_current_state(TASK_RUNNING);
6590 static int napi_threaded_poll(void *data)
6592 struct napi_struct *napi = data;
6595 while (!napi_thread_wait(napi)) {
6597 bool repoll = false;
6601 have = netpoll_poll_lock(napi);
6602 __napi_poll(napi, &repoll);
6603 netpoll_poll_unlock(have);
6616 static void skb_defer_free_flush(struct softnet_data *sd)
6618 struct sk_buff *skb, *next;
6619 unsigned long flags;
6621 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6622 if (!READ_ONCE(sd->defer_list))
6625 spin_lock_irqsave(&sd->defer_lock, flags);
6626 skb = sd->defer_list;
6627 sd->defer_list = NULL;
6628 sd->defer_count = 0;
6629 spin_unlock_irqrestore(&sd->defer_lock, flags);
6631 while (skb != NULL) {
6633 napi_consume_skb(skb, 1);
6638 static __latent_entropy void net_rx_action(struct softirq_action *h)
6640 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6641 unsigned long time_limit = jiffies +
6642 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6643 int budget = READ_ONCE(netdev_budget);
6647 local_irq_disable();
6648 list_splice_init(&sd->poll_list, &list);
6652 struct napi_struct *n;
6654 skb_defer_free_flush(sd);
6656 if (list_empty(&list)) {
6657 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6662 n = list_first_entry(&list, struct napi_struct, poll_list);
6663 budget -= napi_poll(n, &repoll);
6665 /* If softirq window is exhausted then punt.
6666 * Allow this to run for 2 jiffies since which will allow
6667 * an average latency of 1.5/HZ.
6669 if (unlikely(budget <= 0 ||
6670 time_after_eq(jiffies, time_limit))) {
6676 local_irq_disable();
6678 list_splice_tail_init(&sd->poll_list, &list);
6679 list_splice_tail(&repoll, &list);
6680 list_splice(&list, &sd->poll_list);
6681 if (!list_empty(&sd->poll_list))
6682 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6684 net_rps_action_and_irq_enable(sd);
6688 struct netdev_adjacent {
6689 struct net_device *dev;
6690 netdevice_tracker dev_tracker;
6692 /* upper master flag, there can only be one master device per list */
6695 /* lookup ignore flag */
6698 /* counter for the number of times this device was added to us */
6701 /* private field for the users */
6704 struct list_head list;
6705 struct rcu_head rcu;
6708 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6709 struct list_head *adj_list)
6711 struct netdev_adjacent *adj;
6713 list_for_each_entry(adj, adj_list, list) {
6714 if (adj->dev == adj_dev)
6720 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6721 struct netdev_nested_priv *priv)
6723 struct net_device *dev = (struct net_device *)priv->data;
6725 return upper_dev == dev;
6729 * netdev_has_upper_dev - Check if device is linked to an upper device
6731 * @upper_dev: upper device to check
6733 * Find out if a device is linked to specified upper device and return true
6734 * in case it is. Note that this checks only immediate upper device,
6735 * not through a complete stack of devices. The caller must hold the RTNL lock.
6737 bool netdev_has_upper_dev(struct net_device *dev,
6738 struct net_device *upper_dev)
6740 struct netdev_nested_priv priv = {
6741 .data = (void *)upper_dev,
6746 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6749 EXPORT_SYMBOL(netdev_has_upper_dev);
6752 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6754 * @upper_dev: upper device to check
6756 * Find out if a device is linked to specified upper device and return true
6757 * in case it is. Note that this checks the entire upper device chain.
6758 * The caller must hold rcu lock.
6761 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6762 struct net_device *upper_dev)
6764 struct netdev_nested_priv priv = {
6765 .data = (void *)upper_dev,
6768 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6771 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6774 * netdev_has_any_upper_dev - Check if device is linked to some device
6777 * Find out if a device is linked to an upper device and return true in case
6778 * it is. The caller must hold the RTNL lock.
6780 bool netdev_has_any_upper_dev(struct net_device *dev)
6784 return !list_empty(&dev->adj_list.upper);
6786 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6789 * netdev_master_upper_dev_get - Get master upper device
6792 * Find a master upper device and return pointer to it or NULL in case
6793 * it's not there. The caller must hold the RTNL lock.
6795 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6797 struct netdev_adjacent *upper;
6801 if (list_empty(&dev->adj_list.upper))
6804 upper = list_first_entry(&dev->adj_list.upper,
6805 struct netdev_adjacent, list);
6806 if (likely(upper->master))
6810 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6812 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6814 struct netdev_adjacent *upper;
6818 if (list_empty(&dev->adj_list.upper))
6821 upper = list_first_entry(&dev->adj_list.upper,
6822 struct netdev_adjacent, list);
6823 if (likely(upper->master) && !upper->ignore)
6829 * netdev_has_any_lower_dev - Check if device is linked to some device
6832 * Find out if a device is linked to a lower device and return true in case
6833 * it is. The caller must hold the RTNL lock.
6835 static bool netdev_has_any_lower_dev(struct net_device *dev)
6839 return !list_empty(&dev->adj_list.lower);
6842 void *netdev_adjacent_get_private(struct list_head *adj_list)
6844 struct netdev_adjacent *adj;
6846 adj = list_entry(adj_list, struct netdev_adjacent, list);
6848 return adj->private;
6850 EXPORT_SYMBOL(netdev_adjacent_get_private);
6853 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6855 * @iter: list_head ** of the current position
6857 * Gets the next device from the dev's upper list, starting from iter
6858 * position. The caller must hold RCU read lock.
6860 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6861 struct list_head **iter)
6863 struct netdev_adjacent *upper;
6865 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6867 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6869 if (&upper->list == &dev->adj_list.upper)
6872 *iter = &upper->list;
6876 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6878 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6879 struct list_head **iter,
6882 struct netdev_adjacent *upper;
6884 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6886 if (&upper->list == &dev->adj_list.upper)
6889 *iter = &upper->list;
6890 *ignore = upper->ignore;
6895 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6896 struct list_head **iter)
6898 struct netdev_adjacent *upper;
6900 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6902 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6904 if (&upper->list == &dev->adj_list.upper)
6907 *iter = &upper->list;
6912 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6913 int (*fn)(struct net_device *dev,
6914 struct netdev_nested_priv *priv),
6915 struct netdev_nested_priv *priv)
6917 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6918 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6923 iter = &dev->adj_list.upper;
6927 ret = fn(now, priv);
6934 udev = __netdev_next_upper_dev(now, &iter, &ignore);
6941 niter = &udev->adj_list.upper;
6942 dev_stack[cur] = now;
6943 iter_stack[cur++] = iter;
6950 next = dev_stack[--cur];
6951 niter = iter_stack[cur];
6961 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6962 int (*fn)(struct net_device *dev,
6963 struct netdev_nested_priv *priv),
6964 struct netdev_nested_priv *priv)
6966 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6967 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6971 iter = &dev->adj_list.upper;
6975 ret = fn(now, priv);
6982 udev = netdev_next_upper_dev_rcu(now, &iter);
6987 niter = &udev->adj_list.upper;
6988 dev_stack[cur] = now;
6989 iter_stack[cur++] = iter;
6996 next = dev_stack[--cur];
6997 niter = iter_stack[cur];
7006 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7008 static bool __netdev_has_upper_dev(struct net_device *dev,
7009 struct net_device *upper_dev)
7011 struct netdev_nested_priv priv = {
7013 .data = (void *)upper_dev,
7018 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7023 * netdev_lower_get_next_private - Get the next ->private from the
7024 * lower neighbour list
7026 * @iter: list_head ** of the current position
7028 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7029 * list, starting from iter position. The caller must hold either hold the
7030 * RTNL lock or its own locking that guarantees that the neighbour lower
7031 * list will remain unchanged.
7033 void *netdev_lower_get_next_private(struct net_device *dev,
7034 struct list_head **iter)
7036 struct netdev_adjacent *lower;
7038 lower = list_entry(*iter, struct netdev_adjacent, list);
7040 if (&lower->list == &dev->adj_list.lower)
7043 *iter = lower->list.next;
7045 return lower->private;
7047 EXPORT_SYMBOL(netdev_lower_get_next_private);
7050 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7051 * lower neighbour list, RCU
7054 * @iter: list_head ** of the current position
7056 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7057 * list, starting from iter position. The caller must hold RCU read lock.
7059 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7060 struct list_head **iter)
7062 struct netdev_adjacent *lower;
7064 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7066 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7068 if (&lower->list == &dev->adj_list.lower)
7071 *iter = &lower->list;
7073 return lower->private;
7075 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7078 * netdev_lower_get_next - Get the next device from the lower neighbour
7081 * @iter: list_head ** of the current position
7083 * Gets the next netdev_adjacent from the dev's lower neighbour
7084 * list, starting from iter position. The caller must hold RTNL lock or
7085 * its own locking that guarantees that the neighbour lower
7086 * list will remain unchanged.
7088 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7090 struct netdev_adjacent *lower;
7092 lower = list_entry(*iter, struct netdev_adjacent, list);
7094 if (&lower->list == &dev->adj_list.lower)
7097 *iter = lower->list.next;
7101 EXPORT_SYMBOL(netdev_lower_get_next);
7103 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7104 struct list_head **iter)
7106 struct netdev_adjacent *lower;
7108 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7110 if (&lower->list == &dev->adj_list.lower)
7113 *iter = &lower->list;
7118 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7119 struct list_head **iter,
7122 struct netdev_adjacent *lower;
7124 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7126 if (&lower->list == &dev->adj_list.lower)
7129 *iter = &lower->list;
7130 *ignore = lower->ignore;
7135 int netdev_walk_all_lower_dev(struct net_device *dev,
7136 int (*fn)(struct net_device *dev,
7137 struct netdev_nested_priv *priv),
7138 struct netdev_nested_priv *priv)
7140 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7141 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7145 iter = &dev->adj_list.lower;
7149 ret = fn(now, priv);
7156 ldev = netdev_next_lower_dev(now, &iter);
7161 niter = &ldev->adj_list.lower;
7162 dev_stack[cur] = now;
7163 iter_stack[cur++] = iter;
7170 next = dev_stack[--cur];
7171 niter = iter_stack[cur];
7180 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7182 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7183 int (*fn)(struct net_device *dev,
7184 struct netdev_nested_priv *priv),
7185 struct netdev_nested_priv *priv)
7187 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7188 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7193 iter = &dev->adj_list.lower;
7197 ret = fn(now, priv);
7204 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7211 niter = &ldev->adj_list.lower;
7212 dev_stack[cur] = now;
7213 iter_stack[cur++] = iter;
7220 next = dev_stack[--cur];
7221 niter = iter_stack[cur];
7231 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7232 struct list_head **iter)
7234 struct netdev_adjacent *lower;
7236 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7237 if (&lower->list == &dev->adj_list.lower)
7240 *iter = &lower->list;
7244 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7246 static u8 __netdev_upper_depth(struct net_device *dev)
7248 struct net_device *udev;
7249 struct list_head *iter;
7253 for (iter = &dev->adj_list.upper,
7254 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7256 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7259 if (max_depth < udev->upper_level)
7260 max_depth = udev->upper_level;
7266 static u8 __netdev_lower_depth(struct net_device *dev)
7268 struct net_device *ldev;
7269 struct list_head *iter;
7273 for (iter = &dev->adj_list.lower,
7274 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7276 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7279 if (max_depth < ldev->lower_level)
7280 max_depth = ldev->lower_level;
7286 static int __netdev_update_upper_level(struct net_device *dev,
7287 struct netdev_nested_priv *__unused)
7289 dev->upper_level = __netdev_upper_depth(dev) + 1;
7293 #ifdef CONFIG_LOCKDEP
7294 static LIST_HEAD(net_unlink_list);
7296 static void net_unlink_todo(struct net_device *dev)
7298 if (list_empty(&dev->unlink_list))
7299 list_add_tail(&dev->unlink_list, &net_unlink_list);
7303 static int __netdev_update_lower_level(struct net_device *dev,
7304 struct netdev_nested_priv *priv)
7306 dev->lower_level = __netdev_lower_depth(dev) + 1;
7308 #ifdef CONFIG_LOCKDEP
7312 if (priv->flags & NESTED_SYNC_IMM)
7313 dev->nested_level = dev->lower_level - 1;
7314 if (priv->flags & NESTED_SYNC_TODO)
7315 net_unlink_todo(dev);
7320 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7321 int (*fn)(struct net_device *dev,
7322 struct netdev_nested_priv *priv),
7323 struct netdev_nested_priv *priv)
7325 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7326 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7330 iter = &dev->adj_list.lower;
7334 ret = fn(now, priv);
7341 ldev = netdev_next_lower_dev_rcu(now, &iter);
7346 niter = &ldev->adj_list.lower;
7347 dev_stack[cur] = now;
7348 iter_stack[cur++] = iter;
7355 next = dev_stack[--cur];
7356 niter = iter_stack[cur];
7365 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7368 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7369 * lower neighbour list, RCU
7373 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7374 * list. The caller must hold RCU read lock.
7376 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7378 struct netdev_adjacent *lower;
7380 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7381 struct netdev_adjacent, list);
7383 return lower->private;
7386 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7389 * netdev_master_upper_dev_get_rcu - Get master upper device
7392 * Find a master upper device and return pointer to it or NULL in case
7393 * it's not there. The caller must hold the RCU read lock.
7395 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7397 struct netdev_adjacent *upper;
7399 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7400 struct netdev_adjacent, list);
7401 if (upper && likely(upper->master))
7405 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7407 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7408 struct net_device *adj_dev,
7409 struct list_head *dev_list)
7411 char linkname[IFNAMSIZ+7];
7413 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7414 "upper_%s" : "lower_%s", adj_dev->name);
7415 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7418 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7420 struct list_head *dev_list)
7422 char linkname[IFNAMSIZ+7];
7424 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7425 "upper_%s" : "lower_%s", name);
7426 sysfs_remove_link(&(dev->dev.kobj), linkname);
7429 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7430 struct net_device *adj_dev,
7431 struct list_head *dev_list)
7433 return (dev_list == &dev->adj_list.upper ||
7434 dev_list == &dev->adj_list.lower) &&
7435 net_eq(dev_net(dev), dev_net(adj_dev));
7438 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7439 struct net_device *adj_dev,
7440 struct list_head *dev_list,
7441 void *private, bool master)
7443 struct netdev_adjacent *adj;
7446 adj = __netdev_find_adj(adj_dev, dev_list);
7450 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7451 dev->name, adj_dev->name, adj->ref_nr);
7456 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7461 adj->master = master;
7463 adj->private = private;
7464 adj->ignore = false;
7465 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7467 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7468 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7470 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7471 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7476 /* Ensure that master link is always the first item in list. */
7478 ret = sysfs_create_link(&(dev->dev.kobj),
7479 &(adj_dev->dev.kobj), "master");
7481 goto remove_symlinks;
7483 list_add_rcu(&adj->list, dev_list);
7485 list_add_tail_rcu(&adj->list, dev_list);
7491 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7492 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7494 netdev_put(adj_dev, &adj->dev_tracker);
7500 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7501 struct net_device *adj_dev,
7503 struct list_head *dev_list)
7505 struct netdev_adjacent *adj;
7507 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7508 dev->name, adj_dev->name, ref_nr);
7510 adj = __netdev_find_adj(adj_dev, dev_list);
7513 pr_err("Adjacency does not exist for device %s from %s\n",
7514 dev->name, adj_dev->name);
7519 if (adj->ref_nr > ref_nr) {
7520 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7521 dev->name, adj_dev->name, ref_nr,
7522 adj->ref_nr - ref_nr);
7523 adj->ref_nr -= ref_nr;
7528 sysfs_remove_link(&(dev->dev.kobj), "master");
7530 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7531 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7533 list_del_rcu(&adj->list);
7534 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7535 adj_dev->name, dev->name, adj_dev->name);
7536 netdev_put(adj_dev, &adj->dev_tracker);
7537 kfree_rcu(adj, rcu);
7540 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7541 struct net_device *upper_dev,
7542 struct list_head *up_list,
7543 struct list_head *down_list,
7544 void *private, bool master)
7548 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7553 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7556 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7563 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7564 struct net_device *upper_dev,
7566 struct list_head *up_list,
7567 struct list_head *down_list)
7569 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7570 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7573 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7574 struct net_device *upper_dev,
7575 void *private, bool master)
7577 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7578 &dev->adj_list.upper,
7579 &upper_dev->adj_list.lower,
7583 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7584 struct net_device *upper_dev)
7586 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7587 &dev->adj_list.upper,
7588 &upper_dev->adj_list.lower);
7591 static int __netdev_upper_dev_link(struct net_device *dev,
7592 struct net_device *upper_dev, bool master,
7593 void *upper_priv, void *upper_info,
7594 struct netdev_nested_priv *priv,
7595 struct netlink_ext_ack *extack)
7597 struct netdev_notifier_changeupper_info changeupper_info = {
7602 .upper_dev = upper_dev,
7605 .upper_info = upper_info,
7607 struct net_device *master_dev;
7612 if (dev == upper_dev)
7615 /* To prevent loops, check if dev is not upper device to upper_dev. */
7616 if (__netdev_has_upper_dev(upper_dev, dev))
7619 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7623 if (__netdev_has_upper_dev(dev, upper_dev))
7626 master_dev = __netdev_master_upper_dev_get(dev);
7628 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7631 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7632 &changeupper_info.info);
7633 ret = notifier_to_errno(ret);
7637 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7642 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7643 &changeupper_info.info);
7644 ret = notifier_to_errno(ret);
7648 __netdev_update_upper_level(dev, NULL);
7649 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7651 __netdev_update_lower_level(upper_dev, priv);
7652 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7658 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7664 * netdev_upper_dev_link - Add a link to the upper device
7666 * @upper_dev: new upper device
7667 * @extack: netlink extended ack
7669 * Adds a link to device which is upper to this one. The caller must hold
7670 * the RTNL lock. On a failure a negative errno code is returned.
7671 * On success the reference counts are adjusted and the function
7674 int netdev_upper_dev_link(struct net_device *dev,
7675 struct net_device *upper_dev,
7676 struct netlink_ext_ack *extack)
7678 struct netdev_nested_priv priv = {
7679 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7683 return __netdev_upper_dev_link(dev, upper_dev, false,
7684 NULL, NULL, &priv, extack);
7686 EXPORT_SYMBOL(netdev_upper_dev_link);
7689 * netdev_master_upper_dev_link - Add a master link to the upper device
7691 * @upper_dev: new upper device
7692 * @upper_priv: upper device private
7693 * @upper_info: upper info to be passed down via notifier
7694 * @extack: netlink extended ack
7696 * Adds a link to device which is upper to this one. In this case, only
7697 * one master upper device can be linked, although other non-master devices
7698 * might be linked as well. The caller must hold the RTNL lock.
7699 * On a failure a negative errno code is returned. On success the reference
7700 * counts are adjusted and the function returns zero.
7702 int netdev_master_upper_dev_link(struct net_device *dev,
7703 struct net_device *upper_dev,
7704 void *upper_priv, void *upper_info,
7705 struct netlink_ext_ack *extack)
7707 struct netdev_nested_priv priv = {
7708 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7712 return __netdev_upper_dev_link(dev, upper_dev, true,
7713 upper_priv, upper_info, &priv, extack);
7715 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7717 static void __netdev_upper_dev_unlink(struct net_device *dev,
7718 struct net_device *upper_dev,
7719 struct netdev_nested_priv *priv)
7721 struct netdev_notifier_changeupper_info changeupper_info = {
7725 .upper_dev = upper_dev,
7731 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7733 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7734 &changeupper_info.info);
7736 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7738 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7739 &changeupper_info.info);
7741 __netdev_update_upper_level(dev, NULL);
7742 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7744 __netdev_update_lower_level(upper_dev, priv);
7745 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7750 * netdev_upper_dev_unlink - Removes a link to upper device
7752 * @upper_dev: new upper device
7754 * Removes a link to device which is upper to this one. The caller must hold
7757 void netdev_upper_dev_unlink(struct net_device *dev,
7758 struct net_device *upper_dev)
7760 struct netdev_nested_priv priv = {
7761 .flags = NESTED_SYNC_TODO,
7765 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7767 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7769 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7770 struct net_device *lower_dev,
7773 struct netdev_adjacent *adj;
7775 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7779 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7784 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7785 struct net_device *lower_dev)
7787 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7790 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7791 struct net_device *lower_dev)
7793 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7796 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7797 struct net_device *new_dev,
7798 struct net_device *dev,
7799 struct netlink_ext_ack *extack)
7801 struct netdev_nested_priv priv = {
7810 if (old_dev && new_dev != old_dev)
7811 netdev_adjacent_dev_disable(dev, old_dev);
7812 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7815 if (old_dev && new_dev != old_dev)
7816 netdev_adjacent_dev_enable(dev, old_dev);
7822 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7824 void netdev_adjacent_change_commit(struct net_device *old_dev,
7825 struct net_device *new_dev,
7826 struct net_device *dev)
7828 struct netdev_nested_priv priv = {
7829 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7833 if (!new_dev || !old_dev)
7836 if (new_dev == old_dev)
7839 netdev_adjacent_dev_enable(dev, old_dev);
7840 __netdev_upper_dev_unlink(old_dev, dev, &priv);
7842 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7844 void netdev_adjacent_change_abort(struct net_device *old_dev,
7845 struct net_device *new_dev,
7846 struct net_device *dev)
7848 struct netdev_nested_priv priv = {
7856 if (old_dev && new_dev != old_dev)
7857 netdev_adjacent_dev_enable(dev, old_dev);
7859 __netdev_upper_dev_unlink(new_dev, dev, &priv);
7861 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7864 * netdev_bonding_info_change - Dispatch event about slave change
7866 * @bonding_info: info to dispatch
7868 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7869 * The caller must hold the RTNL lock.
7871 void netdev_bonding_info_change(struct net_device *dev,
7872 struct netdev_bonding_info *bonding_info)
7874 struct netdev_notifier_bonding_info info = {
7878 memcpy(&info.bonding_info, bonding_info,
7879 sizeof(struct netdev_bonding_info));
7880 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7883 EXPORT_SYMBOL(netdev_bonding_info_change);
7885 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7886 struct netlink_ext_ack *extack)
7888 struct netdev_notifier_offload_xstats_info info = {
7890 .info.extack = extack,
7891 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7896 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7898 if (!dev->offload_xstats_l3)
7901 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7902 NETDEV_OFFLOAD_XSTATS_DISABLE,
7904 err = notifier_to_errno(rc);
7911 kfree(dev->offload_xstats_l3);
7912 dev->offload_xstats_l3 = NULL;
7916 int netdev_offload_xstats_enable(struct net_device *dev,
7917 enum netdev_offload_xstats_type type,
7918 struct netlink_ext_ack *extack)
7922 if (netdev_offload_xstats_enabled(dev, type))
7926 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7927 return netdev_offload_xstats_enable_l3(dev, extack);
7933 EXPORT_SYMBOL(netdev_offload_xstats_enable);
7935 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7937 struct netdev_notifier_offload_xstats_info info = {
7939 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7942 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7944 kfree(dev->offload_xstats_l3);
7945 dev->offload_xstats_l3 = NULL;
7948 int netdev_offload_xstats_disable(struct net_device *dev,
7949 enum netdev_offload_xstats_type type)
7953 if (!netdev_offload_xstats_enabled(dev, type))
7957 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7958 netdev_offload_xstats_disable_l3(dev);
7965 EXPORT_SYMBOL(netdev_offload_xstats_disable);
7967 static void netdev_offload_xstats_disable_all(struct net_device *dev)
7969 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
7972 static struct rtnl_hw_stats64 *
7973 netdev_offload_xstats_get_ptr(const struct net_device *dev,
7974 enum netdev_offload_xstats_type type)
7977 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7978 return dev->offload_xstats_l3;
7985 bool netdev_offload_xstats_enabled(const struct net_device *dev,
7986 enum netdev_offload_xstats_type type)
7990 return netdev_offload_xstats_get_ptr(dev, type);
7992 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
7994 struct netdev_notifier_offload_xstats_ru {
7998 struct netdev_notifier_offload_xstats_rd {
7999 struct rtnl_hw_stats64 stats;
8003 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8004 const struct rtnl_hw_stats64 *src)
8006 dest->rx_packets += src->rx_packets;
8007 dest->tx_packets += src->tx_packets;
8008 dest->rx_bytes += src->rx_bytes;
8009 dest->tx_bytes += src->tx_bytes;
8010 dest->rx_errors += src->rx_errors;
8011 dest->tx_errors += src->tx_errors;
8012 dest->rx_dropped += src->rx_dropped;
8013 dest->tx_dropped += src->tx_dropped;
8014 dest->multicast += src->multicast;
8017 static int netdev_offload_xstats_get_used(struct net_device *dev,
8018 enum netdev_offload_xstats_type type,
8020 struct netlink_ext_ack *extack)
8022 struct netdev_notifier_offload_xstats_ru report_used = {};
8023 struct netdev_notifier_offload_xstats_info info = {
8025 .info.extack = extack,
8027 .report_used = &report_used,
8031 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8032 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8034 *p_used = report_used.used;
8035 return notifier_to_errno(rc);
8038 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8039 enum netdev_offload_xstats_type type,
8040 struct rtnl_hw_stats64 *p_stats,
8042 struct netlink_ext_ack *extack)
8044 struct netdev_notifier_offload_xstats_rd report_delta = {};
8045 struct netdev_notifier_offload_xstats_info info = {
8047 .info.extack = extack,
8049 .report_delta = &report_delta,
8051 struct rtnl_hw_stats64 *stats;
8054 stats = netdev_offload_xstats_get_ptr(dev, type);
8055 if (WARN_ON(!stats))
8058 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8061 /* Cache whatever we got, even if there was an error, otherwise the
8062 * successful stats retrievals would get lost.
8064 netdev_hw_stats64_add(stats, &report_delta.stats);
8068 *p_used = report_delta.used;
8070 return notifier_to_errno(rc);
8073 int netdev_offload_xstats_get(struct net_device *dev,
8074 enum netdev_offload_xstats_type type,
8075 struct rtnl_hw_stats64 *p_stats, bool *p_used,
8076 struct netlink_ext_ack *extack)
8081 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8084 return netdev_offload_xstats_get_used(dev, type, p_used,
8087 EXPORT_SYMBOL(netdev_offload_xstats_get);
8090 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8091 const struct rtnl_hw_stats64 *stats)
8093 report_delta->used = true;
8094 netdev_hw_stats64_add(&report_delta->stats, stats);
8096 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8099 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8101 report_used->used = true;
8103 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8105 void netdev_offload_xstats_push_delta(struct net_device *dev,
8106 enum netdev_offload_xstats_type type,
8107 const struct rtnl_hw_stats64 *p_stats)
8109 struct rtnl_hw_stats64 *stats;
8113 stats = netdev_offload_xstats_get_ptr(dev, type);
8114 if (WARN_ON(!stats))
8117 netdev_hw_stats64_add(stats, p_stats);
8119 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8122 * netdev_get_xmit_slave - Get the xmit slave of master device
8125 * @all_slaves: assume all the slaves are active
8127 * The reference counters are not incremented so the caller must be
8128 * careful with locks. The caller must hold RCU lock.
8129 * %NULL is returned if no slave is found.
8132 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8133 struct sk_buff *skb,
8136 const struct net_device_ops *ops = dev->netdev_ops;
8138 if (!ops->ndo_get_xmit_slave)
8140 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8142 EXPORT_SYMBOL(netdev_get_xmit_slave);
8144 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8147 const struct net_device_ops *ops = dev->netdev_ops;
8149 if (!ops->ndo_sk_get_lower_dev)
8151 return ops->ndo_sk_get_lower_dev(dev, sk);
8155 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8159 * %NULL is returned if no lower device is found.
8162 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8165 struct net_device *lower;
8167 lower = netdev_sk_get_lower_dev(dev, sk);
8170 lower = netdev_sk_get_lower_dev(dev, sk);
8175 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8177 static void netdev_adjacent_add_links(struct net_device *dev)
8179 struct netdev_adjacent *iter;
8181 struct net *net = dev_net(dev);
8183 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8184 if (!net_eq(net, dev_net(iter->dev)))
8186 netdev_adjacent_sysfs_add(iter->dev, dev,
8187 &iter->dev->adj_list.lower);
8188 netdev_adjacent_sysfs_add(dev, iter->dev,
8189 &dev->adj_list.upper);
8192 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8193 if (!net_eq(net, dev_net(iter->dev)))
8195 netdev_adjacent_sysfs_add(iter->dev, dev,
8196 &iter->dev->adj_list.upper);
8197 netdev_adjacent_sysfs_add(dev, iter->dev,
8198 &dev->adj_list.lower);
8202 static void netdev_adjacent_del_links(struct net_device *dev)
8204 struct netdev_adjacent *iter;
8206 struct net *net = dev_net(dev);
8208 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8209 if (!net_eq(net, dev_net(iter->dev)))
8211 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8212 &iter->dev->adj_list.lower);
8213 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8214 &dev->adj_list.upper);
8217 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8218 if (!net_eq(net, dev_net(iter->dev)))
8220 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8221 &iter->dev->adj_list.upper);
8222 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8223 &dev->adj_list.lower);
8227 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8229 struct netdev_adjacent *iter;
8231 struct net *net = dev_net(dev);
8233 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8234 if (!net_eq(net, dev_net(iter->dev)))
8236 netdev_adjacent_sysfs_del(iter->dev, oldname,
8237 &iter->dev->adj_list.lower);
8238 netdev_adjacent_sysfs_add(iter->dev, dev,
8239 &iter->dev->adj_list.lower);
8242 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8243 if (!net_eq(net, dev_net(iter->dev)))
8245 netdev_adjacent_sysfs_del(iter->dev, oldname,
8246 &iter->dev->adj_list.upper);
8247 netdev_adjacent_sysfs_add(iter->dev, dev,
8248 &iter->dev->adj_list.upper);
8252 void *netdev_lower_dev_get_private(struct net_device *dev,
8253 struct net_device *lower_dev)
8255 struct netdev_adjacent *lower;
8259 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8263 return lower->private;
8265 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8269 * netdev_lower_state_changed - Dispatch event about lower device state change
8270 * @lower_dev: device
8271 * @lower_state_info: state to dispatch
8273 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8274 * The caller must hold the RTNL lock.
8276 void netdev_lower_state_changed(struct net_device *lower_dev,
8277 void *lower_state_info)
8279 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8280 .info.dev = lower_dev,
8284 changelowerstate_info.lower_state_info = lower_state_info;
8285 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8286 &changelowerstate_info.info);
8288 EXPORT_SYMBOL(netdev_lower_state_changed);
8290 static void dev_change_rx_flags(struct net_device *dev, int flags)
8292 const struct net_device_ops *ops = dev->netdev_ops;
8294 if (ops->ndo_change_rx_flags)
8295 ops->ndo_change_rx_flags(dev, flags);
8298 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8300 unsigned int old_flags = dev->flags;
8306 dev->flags |= IFF_PROMISC;
8307 dev->promiscuity += inc;
8308 if (dev->promiscuity == 0) {
8311 * If inc causes overflow, untouch promisc and return error.
8314 dev->flags &= ~IFF_PROMISC;
8316 dev->promiscuity -= inc;
8317 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8321 if (dev->flags != old_flags) {
8322 pr_info("device %s %s promiscuous mode\n",
8324 dev->flags & IFF_PROMISC ? "entered" : "left");
8325 if (audit_enabled) {
8326 current_uid_gid(&uid, &gid);
8327 audit_log(audit_context(), GFP_ATOMIC,
8328 AUDIT_ANOM_PROMISCUOUS,
8329 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8330 dev->name, (dev->flags & IFF_PROMISC),
8331 (old_flags & IFF_PROMISC),
8332 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8333 from_kuid(&init_user_ns, uid),
8334 from_kgid(&init_user_ns, gid),
8335 audit_get_sessionid(current));
8338 dev_change_rx_flags(dev, IFF_PROMISC);
8341 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8346 * dev_set_promiscuity - update promiscuity count on a device
8350 * Add or remove promiscuity from a device. While the count in the device
8351 * remains above zero the interface remains promiscuous. Once it hits zero
8352 * the device reverts back to normal filtering operation. A negative inc
8353 * value is used to drop promiscuity on the device.
8354 * Return 0 if successful or a negative errno code on error.
8356 int dev_set_promiscuity(struct net_device *dev, int inc)
8358 unsigned int old_flags = dev->flags;
8361 err = __dev_set_promiscuity(dev, inc, true);
8364 if (dev->flags != old_flags)
8365 dev_set_rx_mode(dev);
8368 EXPORT_SYMBOL(dev_set_promiscuity);
8370 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8372 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8376 dev->flags |= IFF_ALLMULTI;
8377 dev->allmulti += inc;
8378 if (dev->allmulti == 0) {
8381 * If inc causes overflow, untouch allmulti and return error.
8384 dev->flags &= ~IFF_ALLMULTI;
8386 dev->allmulti -= inc;
8387 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8391 if (dev->flags ^ old_flags) {
8392 dev_change_rx_flags(dev, IFF_ALLMULTI);
8393 dev_set_rx_mode(dev);
8395 __dev_notify_flags(dev, old_flags,
8396 dev->gflags ^ old_gflags, 0, NULL);
8402 * dev_set_allmulti - update allmulti count on a device
8406 * Add or remove reception of all multicast frames to a device. While the
8407 * count in the device remains above zero the interface remains listening
8408 * to all interfaces. Once it hits zero the device reverts back to normal
8409 * filtering operation. A negative @inc value is used to drop the counter
8410 * when releasing a resource needing all multicasts.
8411 * Return 0 if successful or a negative errno code on error.
8414 int dev_set_allmulti(struct net_device *dev, int inc)
8416 return __dev_set_allmulti(dev, inc, true);
8418 EXPORT_SYMBOL(dev_set_allmulti);
8421 * Upload unicast and multicast address lists to device and
8422 * configure RX filtering. When the device doesn't support unicast
8423 * filtering it is put in promiscuous mode while unicast addresses
8426 void __dev_set_rx_mode(struct net_device *dev)
8428 const struct net_device_ops *ops = dev->netdev_ops;
8430 /* dev_open will call this function so the list will stay sane. */
8431 if (!(dev->flags&IFF_UP))
8434 if (!netif_device_present(dev))
8437 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8438 /* Unicast addresses changes may only happen under the rtnl,
8439 * therefore calling __dev_set_promiscuity here is safe.
8441 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8442 __dev_set_promiscuity(dev, 1, false);
8443 dev->uc_promisc = true;
8444 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8445 __dev_set_promiscuity(dev, -1, false);
8446 dev->uc_promisc = false;
8450 if (ops->ndo_set_rx_mode)
8451 ops->ndo_set_rx_mode(dev);
8454 void dev_set_rx_mode(struct net_device *dev)
8456 netif_addr_lock_bh(dev);
8457 __dev_set_rx_mode(dev);
8458 netif_addr_unlock_bh(dev);
8462 * dev_get_flags - get flags reported to userspace
8465 * Get the combination of flag bits exported through APIs to userspace.
8467 unsigned int dev_get_flags(const struct net_device *dev)
8471 flags = (dev->flags & ~(IFF_PROMISC |
8476 (dev->gflags & (IFF_PROMISC |
8479 if (netif_running(dev)) {
8480 if (netif_oper_up(dev))
8481 flags |= IFF_RUNNING;
8482 if (netif_carrier_ok(dev))
8483 flags |= IFF_LOWER_UP;
8484 if (netif_dormant(dev))
8485 flags |= IFF_DORMANT;
8490 EXPORT_SYMBOL(dev_get_flags);
8492 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8493 struct netlink_ext_ack *extack)
8495 unsigned int old_flags = dev->flags;
8501 * Set the flags on our device.
8504 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8505 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8507 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8511 * Load in the correct multicast list now the flags have changed.
8514 if ((old_flags ^ flags) & IFF_MULTICAST)
8515 dev_change_rx_flags(dev, IFF_MULTICAST);
8517 dev_set_rx_mode(dev);
8520 * Have we downed the interface. We handle IFF_UP ourselves
8521 * according to user attempts to set it, rather than blindly
8526 if ((old_flags ^ flags) & IFF_UP) {
8527 if (old_flags & IFF_UP)
8530 ret = __dev_open(dev, extack);
8533 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8534 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8535 unsigned int old_flags = dev->flags;
8537 dev->gflags ^= IFF_PROMISC;
8539 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8540 if (dev->flags != old_flags)
8541 dev_set_rx_mode(dev);
8544 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8545 * is important. Some (broken) drivers set IFF_PROMISC, when
8546 * IFF_ALLMULTI is requested not asking us and not reporting.
8548 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8549 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8551 dev->gflags ^= IFF_ALLMULTI;
8552 __dev_set_allmulti(dev, inc, false);
8558 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8559 unsigned int gchanges, u32 portid,
8560 const struct nlmsghdr *nlh)
8562 unsigned int changes = dev->flags ^ old_flags;
8565 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8567 if (changes & IFF_UP) {
8568 if (dev->flags & IFF_UP)
8569 call_netdevice_notifiers(NETDEV_UP, dev);
8571 call_netdevice_notifiers(NETDEV_DOWN, dev);
8574 if (dev->flags & IFF_UP &&
8575 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8576 struct netdev_notifier_change_info change_info = {
8580 .flags_changed = changes,
8583 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8588 * dev_change_flags - change device settings
8590 * @flags: device state flags
8591 * @extack: netlink extended ack
8593 * Change settings on device based state flags. The flags are
8594 * in the userspace exported format.
8596 int dev_change_flags(struct net_device *dev, unsigned int flags,
8597 struct netlink_ext_ack *extack)
8600 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8602 ret = __dev_change_flags(dev, flags, extack);
8606 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8607 __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8610 EXPORT_SYMBOL(dev_change_flags);
8612 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8614 const struct net_device_ops *ops = dev->netdev_ops;
8616 if (ops->ndo_change_mtu)
8617 return ops->ndo_change_mtu(dev, new_mtu);
8619 /* Pairs with all the lockless reads of dev->mtu in the stack */
8620 WRITE_ONCE(dev->mtu, new_mtu);
8623 EXPORT_SYMBOL(__dev_set_mtu);
8625 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8626 struct netlink_ext_ack *extack)
8628 /* MTU must be positive, and in range */
8629 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8630 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8634 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8635 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8642 * dev_set_mtu_ext - Change maximum transfer unit
8644 * @new_mtu: new transfer unit
8645 * @extack: netlink extended ack
8647 * Change the maximum transfer size of the network device.
8649 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8650 struct netlink_ext_ack *extack)
8654 if (new_mtu == dev->mtu)
8657 err = dev_validate_mtu(dev, new_mtu, extack);
8661 if (!netif_device_present(dev))
8664 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8665 err = notifier_to_errno(err);
8669 orig_mtu = dev->mtu;
8670 err = __dev_set_mtu(dev, new_mtu);
8673 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8675 err = notifier_to_errno(err);
8677 /* setting mtu back and notifying everyone again,
8678 * so that they have a chance to revert changes.
8680 __dev_set_mtu(dev, orig_mtu);
8681 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8688 int dev_set_mtu(struct net_device *dev, int new_mtu)
8690 struct netlink_ext_ack extack;
8693 memset(&extack, 0, sizeof(extack));
8694 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8695 if (err && extack._msg)
8696 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8699 EXPORT_SYMBOL(dev_set_mtu);
8702 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8704 * @new_len: new tx queue length
8706 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8708 unsigned int orig_len = dev->tx_queue_len;
8711 if (new_len != (unsigned int)new_len)
8714 if (new_len != orig_len) {
8715 dev->tx_queue_len = new_len;
8716 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8717 res = notifier_to_errno(res);
8720 res = dev_qdisc_change_tx_queue_len(dev);
8728 netdev_err(dev, "refused to change device tx_queue_len\n");
8729 dev->tx_queue_len = orig_len;
8734 * dev_set_group - Change group this device belongs to
8736 * @new_group: group this device should belong to
8738 void dev_set_group(struct net_device *dev, int new_group)
8740 dev->group = new_group;
8744 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8746 * @addr: new address
8747 * @extack: netlink extended ack
8749 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8750 struct netlink_ext_ack *extack)
8752 struct netdev_notifier_pre_changeaddr_info info = {
8754 .info.extack = extack,
8759 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8760 return notifier_to_errno(rc);
8762 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8765 * dev_set_mac_address - Change Media Access Control Address
8768 * @extack: netlink extended ack
8770 * Change the hardware (MAC) address of the device
8772 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8773 struct netlink_ext_ack *extack)
8775 const struct net_device_ops *ops = dev->netdev_ops;
8778 if (!ops->ndo_set_mac_address)
8780 if (sa->sa_family != dev->type)
8782 if (!netif_device_present(dev))
8784 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8787 err = ops->ndo_set_mac_address(dev, sa);
8790 dev->addr_assign_type = NET_ADDR_SET;
8791 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8792 add_device_randomness(dev->dev_addr, dev->addr_len);
8795 EXPORT_SYMBOL(dev_set_mac_address);
8797 static DECLARE_RWSEM(dev_addr_sem);
8799 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8800 struct netlink_ext_ack *extack)
8804 down_write(&dev_addr_sem);
8805 ret = dev_set_mac_address(dev, sa, extack);
8806 up_write(&dev_addr_sem);
8809 EXPORT_SYMBOL(dev_set_mac_address_user);
8811 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8813 size_t size = sizeof(sa->sa_data_min);
8814 struct net_device *dev;
8817 down_read(&dev_addr_sem);
8820 dev = dev_get_by_name_rcu(net, dev_name);
8826 memset(sa->sa_data, 0, size);
8828 memcpy(sa->sa_data, dev->dev_addr,
8829 min_t(size_t, size, dev->addr_len));
8830 sa->sa_family = dev->type;
8834 up_read(&dev_addr_sem);
8837 EXPORT_SYMBOL(dev_get_mac_address);
8840 * dev_change_carrier - Change device carrier
8842 * @new_carrier: new value
8844 * Change device carrier
8846 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8848 const struct net_device_ops *ops = dev->netdev_ops;
8850 if (!ops->ndo_change_carrier)
8852 if (!netif_device_present(dev))
8854 return ops->ndo_change_carrier(dev, new_carrier);
8858 * dev_get_phys_port_id - Get device physical port ID
8862 * Get device physical port ID
8864 int dev_get_phys_port_id(struct net_device *dev,
8865 struct netdev_phys_item_id *ppid)
8867 const struct net_device_ops *ops = dev->netdev_ops;
8869 if (!ops->ndo_get_phys_port_id)
8871 return ops->ndo_get_phys_port_id(dev, ppid);
8875 * dev_get_phys_port_name - Get device physical port name
8878 * @len: limit of bytes to copy to name
8880 * Get device physical port name
8882 int dev_get_phys_port_name(struct net_device *dev,
8883 char *name, size_t len)
8885 const struct net_device_ops *ops = dev->netdev_ops;
8888 if (ops->ndo_get_phys_port_name) {
8889 err = ops->ndo_get_phys_port_name(dev, name, len);
8890 if (err != -EOPNOTSUPP)
8893 return devlink_compat_phys_port_name_get(dev, name, len);
8897 * dev_get_port_parent_id - Get the device's port parent identifier
8898 * @dev: network device
8899 * @ppid: pointer to a storage for the port's parent identifier
8900 * @recurse: allow/disallow recursion to lower devices
8902 * Get the devices's port parent identifier
8904 int dev_get_port_parent_id(struct net_device *dev,
8905 struct netdev_phys_item_id *ppid,
8908 const struct net_device_ops *ops = dev->netdev_ops;
8909 struct netdev_phys_item_id first = { };
8910 struct net_device *lower_dev;
8911 struct list_head *iter;
8914 if (ops->ndo_get_port_parent_id) {
8915 err = ops->ndo_get_port_parent_id(dev, ppid);
8916 if (err != -EOPNOTSUPP)
8920 err = devlink_compat_switch_id_get(dev, ppid);
8921 if (!recurse || err != -EOPNOTSUPP)
8924 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8925 err = dev_get_port_parent_id(lower_dev, ppid, true);
8930 else if (memcmp(&first, ppid, sizeof(*ppid)))
8936 EXPORT_SYMBOL(dev_get_port_parent_id);
8939 * netdev_port_same_parent_id - Indicate if two network devices have
8940 * the same port parent identifier
8941 * @a: first network device
8942 * @b: second network device
8944 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8946 struct netdev_phys_item_id a_id = { };
8947 struct netdev_phys_item_id b_id = { };
8949 if (dev_get_port_parent_id(a, &a_id, true) ||
8950 dev_get_port_parent_id(b, &b_id, true))
8953 return netdev_phys_item_id_same(&a_id, &b_id);
8955 EXPORT_SYMBOL(netdev_port_same_parent_id);
8958 * dev_change_proto_down - set carrier according to proto_down.
8961 * @proto_down: new value
8963 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8965 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8967 if (!netif_device_present(dev))
8970 netif_carrier_off(dev);
8972 netif_carrier_on(dev);
8973 dev->proto_down = proto_down;
8978 * dev_change_proto_down_reason - proto down reason
8981 * @mask: proto down mask
8982 * @value: proto down value
8984 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8990 dev->proto_down_reason = value;
8992 for_each_set_bit(b, &mask, 32) {
8993 if (value & (1 << b))
8994 dev->proto_down_reason |= BIT(b);
8996 dev->proto_down_reason &= ~BIT(b);
9001 struct bpf_xdp_link {
9002 struct bpf_link link;
9003 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9007 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9009 if (flags & XDP_FLAGS_HW_MODE)
9011 if (flags & XDP_FLAGS_DRV_MODE)
9012 return XDP_MODE_DRV;
9013 if (flags & XDP_FLAGS_SKB_MODE)
9014 return XDP_MODE_SKB;
9015 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9018 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9022 return generic_xdp_install;
9025 return dev->netdev_ops->ndo_bpf;
9031 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9032 enum bpf_xdp_mode mode)
9034 return dev->xdp_state[mode].link;
9037 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9038 enum bpf_xdp_mode mode)
9040 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9043 return link->link.prog;
9044 return dev->xdp_state[mode].prog;
9047 u8 dev_xdp_prog_count(struct net_device *dev)
9052 for (i = 0; i < __MAX_XDP_MODE; i++)
9053 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9057 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9059 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9061 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9063 return prog ? prog->aux->id : 0;
9066 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9067 struct bpf_xdp_link *link)
9069 dev->xdp_state[mode].link = link;
9070 dev->xdp_state[mode].prog = NULL;
9073 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9074 struct bpf_prog *prog)
9076 dev->xdp_state[mode].link = NULL;
9077 dev->xdp_state[mode].prog = prog;
9080 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9081 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9082 u32 flags, struct bpf_prog *prog)
9084 struct netdev_bpf xdp;
9087 memset(&xdp, 0, sizeof(xdp));
9088 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9089 xdp.extack = extack;
9093 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9094 * "moved" into driver), so they don't increment it on their own, but
9095 * they do decrement refcnt when program is detached or replaced.
9096 * Given net_device also owns link/prog, we need to bump refcnt here
9097 * to prevent drivers from underflowing it.
9101 err = bpf_op(dev, &xdp);
9108 if (mode != XDP_MODE_HW)
9109 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9114 static void dev_xdp_uninstall(struct net_device *dev)
9116 struct bpf_xdp_link *link;
9117 struct bpf_prog *prog;
9118 enum bpf_xdp_mode mode;
9123 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9124 prog = dev_xdp_prog(dev, mode);
9128 bpf_op = dev_xdp_bpf_op(dev, mode);
9132 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9134 /* auto-detach link from net device */
9135 link = dev_xdp_link(dev, mode);
9141 dev_xdp_set_link(dev, mode, NULL);
9145 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9146 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9147 struct bpf_prog *old_prog, u32 flags)
9149 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9150 struct bpf_prog *cur_prog;
9151 struct net_device *upper;
9152 struct list_head *iter;
9153 enum bpf_xdp_mode mode;
9159 /* either link or prog attachment, never both */
9160 if (link && (new_prog || old_prog))
9162 /* link supports only XDP mode flags */
9163 if (link && (flags & ~XDP_FLAGS_MODES)) {
9164 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9167 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9168 if (num_modes > 1) {
9169 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9172 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9173 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9174 NL_SET_ERR_MSG(extack,
9175 "More than one program loaded, unset mode is ambiguous");
9178 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9179 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9180 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9184 mode = dev_xdp_mode(dev, flags);
9185 /* can't replace attached link */
9186 if (dev_xdp_link(dev, mode)) {
9187 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9191 /* don't allow if an upper device already has a program */
9192 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9193 if (dev_xdp_prog_count(upper) > 0) {
9194 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9199 cur_prog = dev_xdp_prog(dev, mode);
9200 /* can't replace attached prog with link */
9201 if (link && cur_prog) {
9202 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9205 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9206 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9210 /* put effective new program into new_prog */
9212 new_prog = link->link.prog;
9215 bool offload = mode == XDP_MODE_HW;
9216 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9217 ? XDP_MODE_DRV : XDP_MODE_SKB;
9219 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9220 NL_SET_ERR_MSG(extack, "XDP program already attached");
9223 if (!offload && dev_xdp_prog(dev, other_mode)) {
9224 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9227 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9228 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9231 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9232 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9235 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9236 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9241 /* don't call drivers if the effective program didn't change */
9242 if (new_prog != cur_prog) {
9243 bpf_op = dev_xdp_bpf_op(dev, mode);
9245 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9249 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9255 dev_xdp_set_link(dev, mode, link);
9257 dev_xdp_set_prog(dev, mode, new_prog);
9259 bpf_prog_put(cur_prog);
9264 static int dev_xdp_attach_link(struct net_device *dev,
9265 struct netlink_ext_ack *extack,
9266 struct bpf_xdp_link *link)
9268 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9271 static int dev_xdp_detach_link(struct net_device *dev,
9272 struct netlink_ext_ack *extack,
9273 struct bpf_xdp_link *link)
9275 enum bpf_xdp_mode mode;
9280 mode = dev_xdp_mode(dev, link->flags);
9281 if (dev_xdp_link(dev, mode) != link)
9284 bpf_op = dev_xdp_bpf_op(dev, mode);
9285 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9286 dev_xdp_set_link(dev, mode, NULL);
9290 static void bpf_xdp_link_release(struct bpf_link *link)
9292 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9296 /* if racing with net_device's tear down, xdp_link->dev might be
9297 * already NULL, in which case link was already auto-detached
9299 if (xdp_link->dev) {
9300 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9301 xdp_link->dev = NULL;
9307 static int bpf_xdp_link_detach(struct bpf_link *link)
9309 bpf_xdp_link_release(link);
9313 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9315 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9320 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9321 struct seq_file *seq)
9323 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9328 ifindex = xdp_link->dev->ifindex;
9331 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9334 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9335 struct bpf_link_info *info)
9337 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9342 ifindex = xdp_link->dev->ifindex;
9345 info->xdp.ifindex = ifindex;
9349 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9350 struct bpf_prog *old_prog)
9352 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9353 enum bpf_xdp_mode mode;
9359 /* link might have been auto-released already, so fail */
9360 if (!xdp_link->dev) {
9365 if (old_prog && link->prog != old_prog) {
9369 old_prog = link->prog;
9370 if (old_prog->type != new_prog->type ||
9371 old_prog->expected_attach_type != new_prog->expected_attach_type) {
9376 if (old_prog == new_prog) {
9377 /* no-op, don't disturb drivers */
9378 bpf_prog_put(new_prog);
9382 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9383 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9384 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9385 xdp_link->flags, new_prog);
9389 old_prog = xchg(&link->prog, new_prog);
9390 bpf_prog_put(old_prog);
9397 static const struct bpf_link_ops bpf_xdp_link_lops = {
9398 .release = bpf_xdp_link_release,
9399 .dealloc = bpf_xdp_link_dealloc,
9400 .detach = bpf_xdp_link_detach,
9401 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9402 .fill_link_info = bpf_xdp_link_fill_link_info,
9403 .update_prog = bpf_xdp_link_update,
9406 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9408 struct net *net = current->nsproxy->net_ns;
9409 struct bpf_link_primer link_primer;
9410 struct bpf_xdp_link *link;
9411 struct net_device *dev;
9415 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9421 link = kzalloc(sizeof(*link), GFP_USER);
9427 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9429 link->flags = attr->link_create.flags;
9431 err = bpf_link_prime(&link->link, &link_primer);
9437 err = dev_xdp_attach_link(dev, NULL, link);
9442 bpf_link_cleanup(&link_primer);
9446 fd = bpf_link_settle(&link_primer);
9447 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9460 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9462 * @extack: netlink extended ack
9463 * @fd: new program fd or negative value to clear
9464 * @expected_fd: old program fd that userspace expects to replace or clear
9465 * @flags: xdp-related flags
9467 * Set or clear a bpf program for a device
9469 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9470 int fd, int expected_fd, u32 flags)
9472 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9473 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9479 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9480 mode != XDP_MODE_SKB);
9481 if (IS_ERR(new_prog))
9482 return PTR_ERR(new_prog);
9485 if (expected_fd >= 0) {
9486 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9487 mode != XDP_MODE_SKB);
9488 if (IS_ERR(old_prog)) {
9489 err = PTR_ERR(old_prog);
9495 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9498 if (err && new_prog)
9499 bpf_prog_put(new_prog);
9501 bpf_prog_put(old_prog);
9506 * dev_new_index - allocate an ifindex
9507 * @net: the applicable net namespace
9509 * Returns a suitable unique value for a new device interface
9510 * number. The caller must hold the rtnl semaphore or the
9511 * dev_base_lock to be sure it remains unique.
9513 static int dev_new_index(struct net *net)
9515 int ifindex = net->ifindex;
9520 if (!__dev_get_by_index(net, ifindex))
9521 return net->ifindex = ifindex;
9525 /* Delayed registration/unregisteration */
9526 LIST_HEAD(net_todo_list);
9527 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9529 static void net_set_todo(struct net_device *dev)
9531 list_add_tail(&dev->todo_list, &net_todo_list);
9532 atomic_inc(&dev_net(dev)->dev_unreg_count);
9535 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9536 struct net_device *upper, netdev_features_t features)
9538 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9539 netdev_features_t feature;
9542 for_each_netdev_feature(upper_disables, feature_bit) {
9543 feature = __NETIF_F_BIT(feature_bit);
9544 if (!(upper->wanted_features & feature)
9545 && (features & feature)) {
9546 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9547 &feature, upper->name);
9548 features &= ~feature;
9555 static void netdev_sync_lower_features(struct net_device *upper,
9556 struct net_device *lower, netdev_features_t features)
9558 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9559 netdev_features_t feature;
9562 for_each_netdev_feature(upper_disables, feature_bit) {
9563 feature = __NETIF_F_BIT(feature_bit);
9564 if (!(features & feature) && (lower->features & feature)) {
9565 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9566 &feature, lower->name);
9567 lower->wanted_features &= ~feature;
9568 __netdev_update_features(lower);
9570 if (unlikely(lower->features & feature))
9571 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9572 &feature, lower->name);
9574 netdev_features_change(lower);
9579 static netdev_features_t netdev_fix_features(struct net_device *dev,
9580 netdev_features_t features)
9582 /* Fix illegal checksum combinations */
9583 if ((features & NETIF_F_HW_CSUM) &&
9584 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9585 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9586 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9589 /* TSO requires that SG is present as well. */
9590 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9591 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9592 features &= ~NETIF_F_ALL_TSO;
9595 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9596 !(features & NETIF_F_IP_CSUM)) {
9597 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9598 features &= ~NETIF_F_TSO;
9599 features &= ~NETIF_F_TSO_ECN;
9602 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9603 !(features & NETIF_F_IPV6_CSUM)) {
9604 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9605 features &= ~NETIF_F_TSO6;
9608 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9609 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9610 features &= ~NETIF_F_TSO_MANGLEID;
9612 /* TSO ECN requires that TSO is present as well. */
9613 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9614 features &= ~NETIF_F_TSO_ECN;
9616 /* Software GSO depends on SG. */
9617 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9618 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9619 features &= ~NETIF_F_GSO;
9622 /* GSO partial features require GSO partial be set */
9623 if ((features & dev->gso_partial_features) &&
9624 !(features & NETIF_F_GSO_PARTIAL)) {
9626 "Dropping partially supported GSO features since no GSO partial.\n");
9627 features &= ~dev->gso_partial_features;
9630 if (!(features & NETIF_F_RXCSUM)) {
9631 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9632 * successfully merged by hardware must also have the
9633 * checksum verified by hardware. If the user does not
9634 * want to enable RXCSUM, logically, we should disable GRO_HW.
9636 if (features & NETIF_F_GRO_HW) {
9637 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9638 features &= ~NETIF_F_GRO_HW;
9642 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9643 if (features & NETIF_F_RXFCS) {
9644 if (features & NETIF_F_LRO) {
9645 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9646 features &= ~NETIF_F_LRO;
9649 if (features & NETIF_F_GRO_HW) {
9650 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9651 features &= ~NETIF_F_GRO_HW;
9655 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9656 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9657 features &= ~NETIF_F_LRO;
9660 if (features & NETIF_F_HW_TLS_TX) {
9661 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9662 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9663 bool hw_csum = features & NETIF_F_HW_CSUM;
9665 if (!ip_csum && !hw_csum) {
9666 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9667 features &= ~NETIF_F_HW_TLS_TX;
9671 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9672 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9673 features &= ~NETIF_F_HW_TLS_RX;
9679 int __netdev_update_features(struct net_device *dev)
9681 struct net_device *upper, *lower;
9682 netdev_features_t features;
9683 struct list_head *iter;
9688 features = netdev_get_wanted_features(dev);
9690 if (dev->netdev_ops->ndo_fix_features)
9691 features = dev->netdev_ops->ndo_fix_features(dev, features);
9693 /* driver might be less strict about feature dependencies */
9694 features = netdev_fix_features(dev, features);
9696 /* some features can't be enabled if they're off on an upper device */
9697 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9698 features = netdev_sync_upper_features(dev, upper, features);
9700 if (dev->features == features)
9703 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9704 &dev->features, &features);
9706 if (dev->netdev_ops->ndo_set_features)
9707 err = dev->netdev_ops->ndo_set_features(dev, features);
9711 if (unlikely(err < 0)) {
9713 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9714 err, &features, &dev->features);
9715 /* return non-0 since some features might have changed and
9716 * it's better to fire a spurious notification than miss it
9722 /* some features must be disabled on lower devices when disabled
9723 * on an upper device (think: bonding master or bridge)
9725 netdev_for_each_lower_dev(dev, lower, iter)
9726 netdev_sync_lower_features(dev, lower, features);
9729 netdev_features_t diff = features ^ dev->features;
9731 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9732 /* udp_tunnel_{get,drop}_rx_info both need
9733 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9734 * device, or they won't do anything.
9735 * Thus we need to update dev->features
9736 * *before* calling udp_tunnel_get_rx_info,
9737 * but *after* calling udp_tunnel_drop_rx_info.
9739 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9740 dev->features = features;
9741 udp_tunnel_get_rx_info(dev);
9743 udp_tunnel_drop_rx_info(dev);
9747 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9748 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9749 dev->features = features;
9750 err |= vlan_get_rx_ctag_filter_info(dev);
9752 vlan_drop_rx_ctag_filter_info(dev);
9756 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9757 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9758 dev->features = features;
9759 err |= vlan_get_rx_stag_filter_info(dev);
9761 vlan_drop_rx_stag_filter_info(dev);
9765 dev->features = features;
9768 return err < 0 ? 0 : 1;
9772 * netdev_update_features - recalculate device features
9773 * @dev: the device to check
9775 * Recalculate dev->features set and send notifications if it
9776 * has changed. Should be called after driver or hardware dependent
9777 * conditions might have changed that influence the features.
9779 void netdev_update_features(struct net_device *dev)
9781 if (__netdev_update_features(dev))
9782 netdev_features_change(dev);
9784 EXPORT_SYMBOL(netdev_update_features);
9787 * netdev_change_features - recalculate device features
9788 * @dev: the device to check
9790 * Recalculate dev->features set and send notifications even
9791 * if they have not changed. Should be called instead of
9792 * netdev_update_features() if also dev->vlan_features might
9793 * have changed to allow the changes to be propagated to stacked
9796 void netdev_change_features(struct net_device *dev)
9798 __netdev_update_features(dev);
9799 netdev_features_change(dev);
9801 EXPORT_SYMBOL(netdev_change_features);
9804 * netif_stacked_transfer_operstate - transfer operstate
9805 * @rootdev: the root or lower level device to transfer state from
9806 * @dev: the device to transfer operstate to
9808 * Transfer operational state from root to device. This is normally
9809 * called when a stacking relationship exists between the root
9810 * device and the device(a leaf device).
9812 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9813 struct net_device *dev)
9815 if (rootdev->operstate == IF_OPER_DORMANT)
9816 netif_dormant_on(dev);
9818 netif_dormant_off(dev);
9820 if (rootdev->operstate == IF_OPER_TESTING)
9821 netif_testing_on(dev);
9823 netif_testing_off(dev);
9825 if (netif_carrier_ok(rootdev))
9826 netif_carrier_on(dev);
9828 netif_carrier_off(dev);
9830 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9832 static int netif_alloc_rx_queues(struct net_device *dev)
9834 unsigned int i, count = dev->num_rx_queues;
9835 struct netdev_rx_queue *rx;
9836 size_t sz = count * sizeof(*rx);
9841 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9847 for (i = 0; i < count; i++) {
9850 /* XDP RX-queue setup */
9851 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9858 /* Rollback successful reg's and free other resources */
9860 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9866 static void netif_free_rx_queues(struct net_device *dev)
9868 unsigned int i, count = dev->num_rx_queues;
9870 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9874 for (i = 0; i < count; i++)
9875 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9880 static void netdev_init_one_queue(struct net_device *dev,
9881 struct netdev_queue *queue, void *_unused)
9883 /* Initialize queue lock */
9884 spin_lock_init(&queue->_xmit_lock);
9885 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9886 queue->xmit_lock_owner = -1;
9887 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9890 dql_init(&queue->dql, HZ);
9894 static void netif_free_tx_queues(struct net_device *dev)
9899 static int netif_alloc_netdev_queues(struct net_device *dev)
9901 unsigned int count = dev->num_tx_queues;
9902 struct netdev_queue *tx;
9903 size_t sz = count * sizeof(*tx);
9905 if (count < 1 || count > 0xffff)
9908 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9914 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9915 spin_lock_init(&dev->tx_global_lock);
9920 void netif_tx_stop_all_queues(struct net_device *dev)
9924 for (i = 0; i < dev->num_tx_queues; i++) {
9925 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9927 netif_tx_stop_queue(txq);
9930 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9933 * register_netdevice() - register a network device
9934 * @dev: device to register
9936 * Take a prepared network device structure and make it externally accessible.
9937 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
9938 * Callers must hold the rtnl lock - you may want register_netdev()
9941 int register_netdevice(struct net_device *dev)
9944 struct net *net = dev_net(dev);
9946 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9947 NETDEV_FEATURE_COUNT);
9948 BUG_ON(dev_boot_phase);
9953 /* When net_device's are persistent, this will be fatal. */
9954 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9957 ret = ethtool_check_ops(dev->ethtool_ops);
9961 spin_lock_init(&dev->addr_list_lock);
9962 netdev_set_addr_lockdep_class(dev);
9964 ret = dev_get_valid_name(net, dev, dev->name);
9969 dev->name_node = netdev_name_node_head_alloc(dev);
9970 if (!dev->name_node)
9973 /* Init, if this function is available */
9974 if (dev->netdev_ops->ndo_init) {
9975 ret = dev->netdev_ops->ndo_init(dev);
9983 if (((dev->hw_features | dev->features) &
9984 NETIF_F_HW_VLAN_CTAG_FILTER) &&
9985 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9986 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9987 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9994 dev->ifindex = dev_new_index(net);
9995 else if (__dev_get_by_index(net, dev->ifindex))
9998 /* Transfer changeable features to wanted_features and enable
9999 * software offloads (GSO and GRO).
10001 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10002 dev->features |= NETIF_F_SOFT_FEATURES;
10004 if (dev->udp_tunnel_nic_info) {
10005 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10006 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10009 dev->wanted_features = dev->features & dev->hw_features;
10011 if (!(dev->flags & IFF_LOOPBACK))
10012 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10014 /* If IPv4 TCP segmentation offload is supported we should also
10015 * allow the device to enable segmenting the frame with the option
10016 * of ignoring a static IP ID value. This doesn't enable the
10017 * feature itself but allows the user to enable it later.
10019 if (dev->hw_features & NETIF_F_TSO)
10020 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10021 if (dev->vlan_features & NETIF_F_TSO)
10022 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10023 if (dev->mpls_features & NETIF_F_TSO)
10024 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10025 if (dev->hw_enc_features & NETIF_F_TSO)
10026 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10028 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10030 dev->vlan_features |= NETIF_F_HIGHDMA;
10032 /* Make NETIF_F_SG inheritable to tunnel devices.
10034 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10036 /* Make NETIF_F_SG inheritable to MPLS.
10038 dev->mpls_features |= NETIF_F_SG;
10040 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10041 ret = notifier_to_errno(ret);
10045 ret = netdev_register_kobject(dev);
10046 write_lock(&dev_base_lock);
10047 dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10048 write_unlock(&dev_base_lock);
10050 goto err_uninit_notify;
10052 __netdev_update_features(dev);
10055 * Default initial state at registry is that the
10056 * device is present.
10059 set_bit(__LINK_STATE_PRESENT, &dev->state);
10061 linkwatch_init_dev(dev);
10063 dev_init_scheduler(dev);
10065 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10066 list_netdevice(dev);
10068 add_device_randomness(dev->dev_addr, dev->addr_len);
10070 /* If the device has permanent device address, driver should
10071 * set dev_addr and also addr_assign_type should be set to
10072 * NET_ADDR_PERM (default value).
10074 if (dev->addr_assign_type == NET_ADDR_PERM)
10075 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10077 /* Notify protocols, that a new device appeared. */
10078 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10079 ret = notifier_to_errno(ret);
10081 /* Expect explicit free_netdev() on failure */
10082 dev->needs_free_netdev = false;
10083 unregister_netdevice_queue(dev, NULL);
10087 * Prevent userspace races by waiting until the network
10088 * device is fully setup before sending notifications.
10090 if (!dev->rtnl_link_ops ||
10091 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10092 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10098 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10100 if (dev->netdev_ops->ndo_uninit)
10101 dev->netdev_ops->ndo_uninit(dev);
10102 if (dev->priv_destructor)
10103 dev->priv_destructor(dev);
10105 netdev_name_node_free(dev->name_node);
10108 EXPORT_SYMBOL(register_netdevice);
10111 * init_dummy_netdev - init a dummy network device for NAPI
10112 * @dev: device to init
10114 * This takes a network device structure and initialize the minimum
10115 * amount of fields so it can be used to schedule NAPI polls without
10116 * registering a full blown interface. This is to be used by drivers
10117 * that need to tie several hardware interfaces to a single NAPI
10118 * poll scheduler due to HW limitations.
10120 int init_dummy_netdev(struct net_device *dev)
10122 /* Clear everything. Note we don't initialize spinlocks
10123 * are they aren't supposed to be taken by any of the
10124 * NAPI code and this dummy netdev is supposed to be
10125 * only ever used for NAPI polls
10127 memset(dev, 0, sizeof(struct net_device));
10129 /* make sure we BUG if trying to hit standard
10130 * register/unregister code path
10132 dev->reg_state = NETREG_DUMMY;
10134 /* NAPI wants this */
10135 INIT_LIST_HEAD(&dev->napi_list);
10137 /* a dummy interface is started by default */
10138 set_bit(__LINK_STATE_PRESENT, &dev->state);
10139 set_bit(__LINK_STATE_START, &dev->state);
10141 /* napi_busy_loop stats accounting wants this */
10142 dev_net_set(dev, &init_net);
10144 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10145 * because users of this 'device' dont need to change
10151 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10155 * register_netdev - register a network device
10156 * @dev: device to register
10158 * Take a completed network device structure and add it to the kernel
10159 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10160 * chain. 0 is returned on success. A negative errno code is returned
10161 * on a failure to set up the device, or if the name is a duplicate.
10163 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10164 * and expands the device name if you passed a format string to
10167 int register_netdev(struct net_device *dev)
10171 if (rtnl_lock_killable())
10173 err = register_netdevice(dev);
10177 EXPORT_SYMBOL(register_netdev);
10179 int netdev_refcnt_read(const struct net_device *dev)
10181 #ifdef CONFIG_PCPU_DEV_REFCNT
10184 for_each_possible_cpu(i)
10185 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10188 return refcount_read(&dev->dev_refcnt);
10191 EXPORT_SYMBOL(netdev_refcnt_read);
10193 int netdev_unregister_timeout_secs __read_mostly = 10;
10195 #define WAIT_REFS_MIN_MSECS 1
10196 #define WAIT_REFS_MAX_MSECS 250
10198 * netdev_wait_allrefs_any - wait until all references are gone.
10199 * @list: list of net_devices to wait on
10201 * This is called when unregistering network devices.
10203 * Any protocol or device that holds a reference should register
10204 * for netdevice notification, and cleanup and put back the
10205 * reference if they receive an UNREGISTER event.
10206 * We can get stuck here if buggy protocols don't correctly
10209 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10211 unsigned long rebroadcast_time, warning_time;
10212 struct net_device *dev;
10215 rebroadcast_time = warning_time = jiffies;
10217 list_for_each_entry(dev, list, todo_list)
10218 if (netdev_refcnt_read(dev) == 1)
10222 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10225 /* Rebroadcast unregister notification */
10226 list_for_each_entry(dev, list, todo_list)
10227 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10233 list_for_each_entry(dev, list, todo_list)
10234 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10236 /* We must not have linkwatch events
10237 * pending on unregister. If this
10238 * happens, we simply run the queue
10239 * unscheduled, resulting in a noop
10242 linkwatch_run_queue();
10248 rebroadcast_time = jiffies;
10253 wait = WAIT_REFS_MIN_MSECS;
10256 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10259 list_for_each_entry(dev, list, todo_list)
10260 if (netdev_refcnt_read(dev) == 1)
10263 if (time_after(jiffies, warning_time +
10264 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10265 list_for_each_entry(dev, list, todo_list) {
10266 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10267 dev->name, netdev_refcnt_read(dev));
10268 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10271 warning_time = jiffies;
10276 /* The sequence is:
10280 * register_netdevice(x1);
10281 * register_netdevice(x2);
10283 * unregister_netdevice(y1);
10284 * unregister_netdevice(y2);
10290 * We are invoked by rtnl_unlock().
10291 * This allows us to deal with problems:
10292 * 1) We can delete sysfs objects which invoke hotplug
10293 * without deadlocking with linkwatch via keventd.
10294 * 2) Since we run with the RTNL semaphore not held, we can sleep
10295 * safely in order to wait for the netdev refcnt to drop to zero.
10297 * We must not return until all unregister events added during
10298 * the interval the lock was held have been completed.
10300 void netdev_run_todo(void)
10302 struct net_device *dev, *tmp;
10303 struct list_head list;
10304 #ifdef CONFIG_LOCKDEP
10305 struct list_head unlink_list;
10307 list_replace_init(&net_unlink_list, &unlink_list);
10309 while (!list_empty(&unlink_list)) {
10310 struct net_device *dev = list_first_entry(&unlink_list,
10313 list_del_init(&dev->unlink_list);
10314 dev->nested_level = dev->lower_level - 1;
10318 /* Snapshot list, allow later requests */
10319 list_replace_init(&net_todo_list, &list);
10323 /* Wait for rcu callbacks to finish before next phase */
10324 if (!list_empty(&list))
10327 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10328 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10329 netdev_WARN(dev, "run_todo but not unregistering\n");
10330 list_del(&dev->todo_list);
10334 write_lock(&dev_base_lock);
10335 dev->reg_state = NETREG_UNREGISTERED;
10336 write_unlock(&dev_base_lock);
10337 linkwatch_forget_dev(dev);
10340 while (!list_empty(&list)) {
10341 dev = netdev_wait_allrefs_any(&list);
10342 list_del(&dev->todo_list);
10345 BUG_ON(netdev_refcnt_read(dev) != 1);
10346 BUG_ON(!list_empty(&dev->ptype_all));
10347 BUG_ON(!list_empty(&dev->ptype_specific));
10348 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10349 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10351 if (dev->priv_destructor)
10352 dev->priv_destructor(dev);
10353 if (dev->needs_free_netdev)
10356 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10357 wake_up(&netdev_unregistering_wq);
10359 /* Free network device */
10360 kobject_put(&dev->dev.kobj);
10364 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10365 * all the same fields in the same order as net_device_stats, with only
10366 * the type differing, but rtnl_link_stats64 may have additional fields
10367 * at the end for newer counters.
10369 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10370 const struct net_device_stats *netdev_stats)
10372 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10373 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10374 u64 *dst = (u64 *)stats64;
10376 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10377 for (i = 0; i < n; i++)
10378 dst[i] = atomic_long_read(&src[i]);
10379 /* zero out counters that only exist in rtnl_link_stats64 */
10380 memset((char *)stats64 + n * sizeof(u64), 0,
10381 sizeof(*stats64) - n * sizeof(u64));
10383 EXPORT_SYMBOL(netdev_stats_to_stats64);
10385 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10387 struct net_device_core_stats __percpu *p;
10389 p = alloc_percpu_gfp(struct net_device_core_stats,
10390 GFP_ATOMIC | __GFP_NOWARN);
10392 if (p && cmpxchg(&dev->core_stats, NULL, p))
10395 /* This READ_ONCE() pairs with the cmpxchg() above */
10396 return READ_ONCE(dev->core_stats);
10398 EXPORT_SYMBOL(netdev_core_stats_alloc);
10401 * dev_get_stats - get network device statistics
10402 * @dev: device to get statistics from
10403 * @storage: place to store stats
10405 * Get network statistics from device. Return @storage.
10406 * The device driver may provide its own method by setting
10407 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10408 * otherwise the internal statistics structure is used.
10410 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10411 struct rtnl_link_stats64 *storage)
10413 const struct net_device_ops *ops = dev->netdev_ops;
10414 const struct net_device_core_stats __percpu *p;
10416 if (ops->ndo_get_stats64) {
10417 memset(storage, 0, sizeof(*storage));
10418 ops->ndo_get_stats64(dev, storage);
10419 } else if (ops->ndo_get_stats) {
10420 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10422 netdev_stats_to_stats64(storage, &dev->stats);
10425 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10426 p = READ_ONCE(dev->core_stats);
10428 const struct net_device_core_stats *core_stats;
10431 for_each_possible_cpu(i) {
10432 core_stats = per_cpu_ptr(p, i);
10433 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10434 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10435 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10436 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10441 EXPORT_SYMBOL(dev_get_stats);
10444 * dev_fetch_sw_netstats - get per-cpu network device statistics
10445 * @s: place to store stats
10446 * @netstats: per-cpu network stats to read from
10448 * Read per-cpu network statistics and populate the related fields in @s.
10450 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10451 const struct pcpu_sw_netstats __percpu *netstats)
10455 for_each_possible_cpu(cpu) {
10456 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10457 const struct pcpu_sw_netstats *stats;
10458 unsigned int start;
10460 stats = per_cpu_ptr(netstats, cpu);
10462 start = u64_stats_fetch_begin(&stats->syncp);
10463 rx_packets = u64_stats_read(&stats->rx_packets);
10464 rx_bytes = u64_stats_read(&stats->rx_bytes);
10465 tx_packets = u64_stats_read(&stats->tx_packets);
10466 tx_bytes = u64_stats_read(&stats->tx_bytes);
10467 } while (u64_stats_fetch_retry(&stats->syncp, start));
10469 s->rx_packets += rx_packets;
10470 s->rx_bytes += rx_bytes;
10471 s->tx_packets += tx_packets;
10472 s->tx_bytes += tx_bytes;
10475 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10478 * dev_get_tstats64 - ndo_get_stats64 implementation
10479 * @dev: device to get statistics from
10480 * @s: place to store stats
10482 * Populate @s from dev->stats and dev->tstats. Can be used as
10483 * ndo_get_stats64() callback.
10485 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10487 netdev_stats_to_stats64(s, &dev->stats);
10488 dev_fetch_sw_netstats(s, dev->tstats);
10490 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10492 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10494 struct netdev_queue *queue = dev_ingress_queue(dev);
10496 #ifdef CONFIG_NET_CLS_ACT
10499 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10502 netdev_init_one_queue(dev, queue, NULL);
10503 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10504 queue->qdisc_sleeping = &noop_qdisc;
10505 rcu_assign_pointer(dev->ingress_queue, queue);
10510 static const struct ethtool_ops default_ethtool_ops;
10512 void netdev_set_default_ethtool_ops(struct net_device *dev,
10513 const struct ethtool_ops *ops)
10515 if (dev->ethtool_ops == &default_ethtool_ops)
10516 dev->ethtool_ops = ops;
10518 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10520 void netdev_freemem(struct net_device *dev)
10522 char *addr = (char *)dev - dev->padded;
10528 * alloc_netdev_mqs - allocate network device
10529 * @sizeof_priv: size of private data to allocate space for
10530 * @name: device name format string
10531 * @name_assign_type: origin of device name
10532 * @setup: callback to initialize device
10533 * @txqs: the number of TX subqueues to allocate
10534 * @rxqs: the number of RX subqueues to allocate
10536 * Allocates a struct net_device with private data area for driver use
10537 * and performs basic initialization. Also allocates subqueue structs
10538 * for each queue on the device.
10540 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10541 unsigned char name_assign_type,
10542 void (*setup)(struct net_device *),
10543 unsigned int txqs, unsigned int rxqs)
10545 struct net_device *dev;
10546 unsigned int alloc_size;
10547 struct net_device *p;
10549 BUG_ON(strlen(name) >= sizeof(dev->name));
10552 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10557 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10561 alloc_size = sizeof(struct net_device);
10563 /* ensure 32-byte alignment of private area */
10564 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10565 alloc_size += sizeof_priv;
10567 /* ensure 32-byte alignment of whole construct */
10568 alloc_size += NETDEV_ALIGN - 1;
10570 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10574 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10575 dev->padded = (char *)dev - (char *)p;
10577 ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10578 #ifdef CONFIG_PCPU_DEV_REFCNT
10579 dev->pcpu_refcnt = alloc_percpu(int);
10580 if (!dev->pcpu_refcnt)
10584 refcount_set(&dev->dev_refcnt, 1);
10587 if (dev_addr_init(dev))
10593 dev_net_set(dev, &init_net);
10595 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10596 dev->gso_max_segs = GSO_MAX_SEGS;
10597 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10598 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10599 dev->tso_max_segs = TSO_MAX_SEGS;
10600 dev->upper_level = 1;
10601 dev->lower_level = 1;
10602 #ifdef CONFIG_LOCKDEP
10603 dev->nested_level = 0;
10604 INIT_LIST_HEAD(&dev->unlink_list);
10607 INIT_LIST_HEAD(&dev->napi_list);
10608 INIT_LIST_HEAD(&dev->unreg_list);
10609 INIT_LIST_HEAD(&dev->close_list);
10610 INIT_LIST_HEAD(&dev->link_watch_list);
10611 INIT_LIST_HEAD(&dev->adj_list.upper);
10612 INIT_LIST_HEAD(&dev->adj_list.lower);
10613 INIT_LIST_HEAD(&dev->ptype_all);
10614 INIT_LIST_HEAD(&dev->ptype_specific);
10615 INIT_LIST_HEAD(&dev->net_notifier_list);
10616 #ifdef CONFIG_NET_SCHED
10617 hash_init(dev->qdisc_hash);
10619 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10622 if (!dev->tx_queue_len) {
10623 dev->priv_flags |= IFF_NO_QUEUE;
10624 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10627 dev->num_tx_queues = txqs;
10628 dev->real_num_tx_queues = txqs;
10629 if (netif_alloc_netdev_queues(dev))
10632 dev->num_rx_queues = rxqs;
10633 dev->real_num_rx_queues = rxqs;
10634 if (netif_alloc_rx_queues(dev))
10637 strcpy(dev->name, name);
10638 dev->name_assign_type = name_assign_type;
10639 dev->group = INIT_NETDEV_GROUP;
10640 if (!dev->ethtool_ops)
10641 dev->ethtool_ops = &default_ethtool_ops;
10643 nf_hook_netdev_init(dev);
10652 #ifdef CONFIG_PCPU_DEV_REFCNT
10653 free_percpu(dev->pcpu_refcnt);
10656 netdev_freemem(dev);
10659 EXPORT_SYMBOL(alloc_netdev_mqs);
10662 * free_netdev - free network device
10665 * This function does the last stage of destroying an allocated device
10666 * interface. The reference to the device object is released. If this
10667 * is the last reference then it will be freed.Must be called in process
10670 void free_netdev(struct net_device *dev)
10672 struct napi_struct *p, *n;
10676 /* When called immediately after register_netdevice() failed the unwind
10677 * handling may still be dismantling the device. Handle that case by
10678 * deferring the free.
10680 if (dev->reg_state == NETREG_UNREGISTERING) {
10682 dev->needs_free_netdev = true;
10686 netif_free_tx_queues(dev);
10687 netif_free_rx_queues(dev);
10689 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10691 /* Flush device addresses */
10692 dev_addr_flush(dev);
10694 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10697 ref_tracker_dir_exit(&dev->refcnt_tracker);
10698 #ifdef CONFIG_PCPU_DEV_REFCNT
10699 free_percpu(dev->pcpu_refcnt);
10700 dev->pcpu_refcnt = NULL;
10702 free_percpu(dev->core_stats);
10703 dev->core_stats = NULL;
10704 free_percpu(dev->xdp_bulkq);
10705 dev->xdp_bulkq = NULL;
10707 /* Compatibility with error handling in drivers */
10708 if (dev->reg_state == NETREG_UNINITIALIZED) {
10709 netdev_freemem(dev);
10713 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10714 dev->reg_state = NETREG_RELEASED;
10716 /* will free via device release */
10717 put_device(&dev->dev);
10719 EXPORT_SYMBOL(free_netdev);
10722 * synchronize_net - Synchronize with packet receive processing
10724 * Wait for packets currently being received to be done.
10725 * Does not block later packets from starting.
10727 void synchronize_net(void)
10730 if (rtnl_is_locked())
10731 synchronize_rcu_expedited();
10735 EXPORT_SYMBOL(synchronize_net);
10738 * unregister_netdevice_queue - remove device from the kernel
10742 * This function shuts down a device interface and removes it
10743 * from the kernel tables.
10744 * If head not NULL, device is queued to be unregistered later.
10746 * Callers must hold the rtnl semaphore. You may want
10747 * unregister_netdev() instead of this.
10750 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10755 list_move_tail(&dev->unreg_list, head);
10759 list_add(&dev->unreg_list, &single);
10760 unregister_netdevice_many(&single);
10763 EXPORT_SYMBOL(unregister_netdevice_queue);
10765 void unregister_netdevice_many_notify(struct list_head *head,
10766 u32 portid, const struct nlmsghdr *nlh)
10768 struct net_device *dev, *tmp;
10769 LIST_HEAD(close_head);
10771 BUG_ON(dev_boot_phase);
10774 if (list_empty(head))
10777 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10778 /* Some devices call without registering
10779 * for initialization unwind. Remove those
10780 * devices and proceed with the remaining.
10782 if (dev->reg_state == NETREG_UNINITIALIZED) {
10783 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10787 list_del(&dev->unreg_list);
10790 dev->dismantle = true;
10791 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10794 /* If device is running, close it first. */
10795 list_for_each_entry(dev, head, unreg_list)
10796 list_add_tail(&dev->close_list, &close_head);
10797 dev_close_many(&close_head, true);
10799 list_for_each_entry(dev, head, unreg_list) {
10800 /* And unlink it from device chain. */
10801 write_lock(&dev_base_lock);
10802 unlist_netdevice(dev, false);
10803 dev->reg_state = NETREG_UNREGISTERING;
10804 write_unlock(&dev_base_lock);
10806 flush_all_backlogs();
10810 list_for_each_entry(dev, head, unreg_list) {
10811 struct sk_buff *skb = NULL;
10813 /* Shutdown queueing discipline. */
10816 dev_xdp_uninstall(dev);
10818 netdev_offload_xstats_disable_all(dev);
10820 /* Notify protocols, that we are about to destroy
10821 * this device. They should clean all the things.
10823 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10825 if (!dev->rtnl_link_ops ||
10826 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10827 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10828 GFP_KERNEL, NULL, 0,
10829 portid, nlmsg_seq(nlh));
10832 * Flush the unicast and multicast chains
10837 netdev_name_node_alt_flush(dev);
10838 netdev_name_node_free(dev->name_node);
10840 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10842 if (dev->netdev_ops->ndo_uninit)
10843 dev->netdev_ops->ndo_uninit(dev);
10846 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
10848 /* Notifier chain MUST detach us all upper devices. */
10849 WARN_ON(netdev_has_any_upper_dev(dev));
10850 WARN_ON(netdev_has_any_lower_dev(dev));
10852 /* Remove entries from kobject tree */
10853 netdev_unregister_kobject(dev);
10855 /* Remove XPS queueing entries */
10856 netif_reset_xps_queues_gt(dev, 0);
10862 list_for_each_entry(dev, head, unreg_list) {
10863 netdev_put(dev, &dev->dev_registered_tracker);
10871 * unregister_netdevice_many - unregister many devices
10872 * @head: list of devices
10874 * Note: As most callers use a stack allocated list_head,
10875 * we force a list_del() to make sure stack wont be corrupted later.
10877 void unregister_netdevice_many(struct list_head *head)
10879 unregister_netdevice_many_notify(head, 0, NULL);
10881 EXPORT_SYMBOL(unregister_netdevice_many);
10884 * unregister_netdev - remove device from the kernel
10887 * This function shuts down a device interface and removes it
10888 * from the kernel tables.
10890 * This is just a wrapper for unregister_netdevice that takes
10891 * the rtnl semaphore. In general you want to use this and not
10892 * unregister_netdevice.
10894 void unregister_netdev(struct net_device *dev)
10897 unregister_netdevice(dev);
10900 EXPORT_SYMBOL(unregister_netdev);
10903 * __dev_change_net_namespace - move device to different nethost namespace
10905 * @net: network namespace
10906 * @pat: If not NULL name pattern to try if the current device name
10907 * is already taken in the destination network namespace.
10908 * @new_ifindex: If not zero, specifies device index in the target
10911 * This function shuts down a device interface and moves it
10912 * to a new network namespace. On success 0 is returned, on
10913 * a failure a netagive errno code is returned.
10915 * Callers must hold the rtnl semaphore.
10918 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10919 const char *pat, int new_ifindex)
10921 struct net *net_old = dev_net(dev);
10926 /* Don't allow namespace local devices to be moved. */
10928 if (dev->features & NETIF_F_NETNS_LOCAL)
10931 /* Ensure the device has been registrered */
10932 if (dev->reg_state != NETREG_REGISTERED)
10935 /* Get out if there is nothing todo */
10937 if (net_eq(net_old, net))
10940 /* Pick the destination device name, and ensure
10941 * we can use it in the destination network namespace.
10944 if (netdev_name_in_use(net, dev->name)) {
10945 /* We get here if we can't use the current device name */
10948 err = dev_get_valid_name(net, dev, pat);
10953 /* Check that new_ifindex isn't used yet. */
10955 if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10959 * And now a mini version of register_netdevice unregister_netdevice.
10962 /* If device is running close it first. */
10965 /* And unlink it from device chain */
10966 unlist_netdevice(dev, true);
10970 /* Shutdown queueing discipline. */
10973 /* Notify protocols, that we are about to destroy
10974 * this device. They should clean all the things.
10976 * Note that dev->reg_state stays at NETREG_REGISTERED.
10977 * This is wanted because this way 8021q and macvlan know
10978 * the device is just moving and can keep their slaves up.
10980 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10983 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10984 /* If there is an ifindex conflict assign a new one */
10985 if (!new_ifindex) {
10986 if (__dev_get_by_index(net, dev->ifindex))
10987 new_ifindex = dev_new_index(net);
10989 new_ifindex = dev->ifindex;
10992 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10996 * Flush the unicast and multicast chains
11001 /* Send a netdev-removed uevent to the old namespace */
11002 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11003 netdev_adjacent_del_links(dev);
11005 /* Move per-net netdevice notifiers that are following the netdevice */
11006 move_netdevice_notifiers_dev_net(dev, net);
11008 /* Actually switch the network namespace */
11009 dev_net_set(dev, net);
11010 dev->ifindex = new_ifindex;
11012 /* Send a netdev-add uevent to the new namespace */
11013 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11014 netdev_adjacent_add_links(dev);
11016 /* Fixup kobjects */
11017 err = device_rename(&dev->dev, dev->name);
11020 /* Adapt owner in case owning user namespace of target network
11021 * namespace is different from the original one.
11023 err = netdev_change_owner(dev, net_old, net);
11026 /* Add the device back in the hashes */
11027 list_netdevice(dev);
11029 /* Notify protocols, that a new device appeared. */
11030 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11033 * Prevent userspace races by waiting until the network
11034 * device is fully setup before sending notifications.
11036 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11043 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11045 static int dev_cpu_dead(unsigned int oldcpu)
11047 struct sk_buff **list_skb;
11048 struct sk_buff *skb;
11050 struct softnet_data *sd, *oldsd, *remsd = NULL;
11052 local_irq_disable();
11053 cpu = smp_processor_id();
11054 sd = &per_cpu(softnet_data, cpu);
11055 oldsd = &per_cpu(softnet_data, oldcpu);
11057 /* Find end of our completion_queue. */
11058 list_skb = &sd->completion_queue;
11060 list_skb = &(*list_skb)->next;
11061 /* Append completion queue from offline CPU. */
11062 *list_skb = oldsd->completion_queue;
11063 oldsd->completion_queue = NULL;
11065 /* Append output queue from offline CPU. */
11066 if (oldsd->output_queue) {
11067 *sd->output_queue_tailp = oldsd->output_queue;
11068 sd->output_queue_tailp = oldsd->output_queue_tailp;
11069 oldsd->output_queue = NULL;
11070 oldsd->output_queue_tailp = &oldsd->output_queue;
11072 /* Append NAPI poll list from offline CPU, with one exception :
11073 * process_backlog() must be called by cpu owning percpu backlog.
11074 * We properly handle process_queue & input_pkt_queue later.
11076 while (!list_empty(&oldsd->poll_list)) {
11077 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11078 struct napi_struct,
11081 list_del_init(&napi->poll_list);
11082 if (napi->poll == process_backlog)
11085 ____napi_schedule(sd, napi);
11088 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11089 local_irq_enable();
11092 remsd = oldsd->rps_ipi_list;
11093 oldsd->rps_ipi_list = NULL;
11095 /* send out pending IPI's on offline CPU */
11096 net_rps_send_ipi(remsd);
11098 /* Process offline CPU's input_pkt_queue */
11099 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11101 input_queue_head_incr(oldsd);
11103 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11105 input_queue_head_incr(oldsd);
11112 * netdev_increment_features - increment feature set by one
11113 * @all: current feature set
11114 * @one: new feature set
11115 * @mask: mask feature set
11117 * Computes a new feature set after adding a device with feature set
11118 * @one to the master device with current feature set @all. Will not
11119 * enable anything that is off in @mask. Returns the new feature set.
11121 netdev_features_t netdev_increment_features(netdev_features_t all,
11122 netdev_features_t one, netdev_features_t mask)
11124 if (mask & NETIF_F_HW_CSUM)
11125 mask |= NETIF_F_CSUM_MASK;
11126 mask |= NETIF_F_VLAN_CHALLENGED;
11128 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11129 all &= one | ~NETIF_F_ALL_FOR_ALL;
11131 /* If one device supports hw checksumming, set for all. */
11132 if (all & NETIF_F_HW_CSUM)
11133 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11137 EXPORT_SYMBOL(netdev_increment_features);
11139 static struct hlist_head * __net_init netdev_create_hash(void)
11142 struct hlist_head *hash;
11144 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11146 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11147 INIT_HLIST_HEAD(&hash[i]);
11152 /* Initialize per network namespace state */
11153 static int __net_init netdev_init(struct net *net)
11155 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11156 8 * sizeof_field(struct napi_struct, gro_bitmask));
11158 INIT_LIST_HEAD(&net->dev_base_head);
11160 net->dev_name_head = netdev_create_hash();
11161 if (net->dev_name_head == NULL)
11164 net->dev_index_head = netdev_create_hash();
11165 if (net->dev_index_head == NULL)
11168 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11173 kfree(net->dev_name_head);
11179 * netdev_drivername - network driver for the device
11180 * @dev: network device
11182 * Determine network driver for device.
11184 const char *netdev_drivername(const struct net_device *dev)
11186 const struct device_driver *driver;
11187 const struct device *parent;
11188 const char *empty = "";
11190 parent = dev->dev.parent;
11194 driver = parent->driver;
11195 if (driver && driver->name)
11196 return driver->name;
11200 static void __netdev_printk(const char *level, const struct net_device *dev,
11201 struct va_format *vaf)
11203 if (dev && dev->dev.parent) {
11204 dev_printk_emit(level[1] - '0',
11207 dev_driver_string(dev->dev.parent),
11208 dev_name(dev->dev.parent),
11209 netdev_name(dev), netdev_reg_state(dev),
11212 printk("%s%s%s: %pV",
11213 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11215 printk("%s(NULL net_device): %pV", level, vaf);
11219 void netdev_printk(const char *level, const struct net_device *dev,
11220 const char *format, ...)
11222 struct va_format vaf;
11225 va_start(args, format);
11230 __netdev_printk(level, dev, &vaf);
11234 EXPORT_SYMBOL(netdev_printk);
11236 #define define_netdev_printk_level(func, level) \
11237 void func(const struct net_device *dev, const char *fmt, ...) \
11239 struct va_format vaf; \
11242 va_start(args, fmt); \
11247 __netdev_printk(level, dev, &vaf); \
11251 EXPORT_SYMBOL(func);
11253 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11254 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11255 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11256 define_netdev_printk_level(netdev_err, KERN_ERR);
11257 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11258 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11259 define_netdev_printk_level(netdev_info, KERN_INFO);
11261 static void __net_exit netdev_exit(struct net *net)
11263 kfree(net->dev_name_head);
11264 kfree(net->dev_index_head);
11265 if (net != &init_net)
11266 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11269 static struct pernet_operations __net_initdata netdev_net_ops = {
11270 .init = netdev_init,
11271 .exit = netdev_exit,
11274 static void __net_exit default_device_exit_net(struct net *net)
11276 struct net_device *dev, *aux;
11278 * Push all migratable network devices back to the
11279 * initial network namespace
11282 for_each_netdev_safe(net, dev, aux) {
11284 char fb_name[IFNAMSIZ];
11286 /* Ignore unmoveable devices (i.e. loopback) */
11287 if (dev->features & NETIF_F_NETNS_LOCAL)
11290 /* Leave virtual devices for the generic cleanup */
11291 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11294 /* Push remaining network devices to init_net */
11295 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11296 if (netdev_name_in_use(&init_net, fb_name))
11297 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11298 err = dev_change_net_namespace(dev, &init_net, fb_name);
11300 pr_emerg("%s: failed to move %s to init_net: %d\n",
11301 __func__, dev->name, err);
11307 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11309 /* At exit all network devices most be removed from a network
11310 * namespace. Do this in the reverse order of registration.
11311 * Do this across as many network namespaces as possible to
11312 * improve batching efficiency.
11314 struct net_device *dev;
11316 LIST_HEAD(dev_kill_list);
11319 list_for_each_entry(net, net_list, exit_list) {
11320 default_device_exit_net(net);
11324 list_for_each_entry(net, net_list, exit_list) {
11325 for_each_netdev_reverse(net, dev) {
11326 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11327 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11329 unregister_netdevice_queue(dev, &dev_kill_list);
11332 unregister_netdevice_many(&dev_kill_list);
11336 static struct pernet_operations __net_initdata default_device_ops = {
11337 .exit_batch = default_device_exit_batch,
11341 * Initialize the DEV module. At boot time this walks the device list and
11342 * unhooks any devices that fail to initialise (normally hardware not
11343 * present) and leaves us with a valid list of present and active devices.
11348 * This is called single threaded during boot, so no need
11349 * to take the rtnl semaphore.
11351 static int __init net_dev_init(void)
11353 int i, rc = -ENOMEM;
11355 BUG_ON(!dev_boot_phase);
11357 if (dev_proc_init())
11360 if (netdev_kobject_init())
11363 INIT_LIST_HEAD(&ptype_all);
11364 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11365 INIT_LIST_HEAD(&ptype_base[i]);
11367 if (register_pernet_subsys(&netdev_net_ops))
11371 * Initialise the packet receive queues.
11374 for_each_possible_cpu(i) {
11375 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11376 struct softnet_data *sd = &per_cpu(softnet_data, i);
11378 INIT_WORK(flush, flush_backlog);
11380 skb_queue_head_init(&sd->input_pkt_queue);
11381 skb_queue_head_init(&sd->process_queue);
11382 #ifdef CONFIG_XFRM_OFFLOAD
11383 skb_queue_head_init(&sd->xfrm_backlog);
11385 INIT_LIST_HEAD(&sd->poll_list);
11386 sd->output_queue_tailp = &sd->output_queue;
11388 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11391 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11392 spin_lock_init(&sd->defer_lock);
11394 init_gro_hash(&sd->backlog);
11395 sd->backlog.poll = process_backlog;
11396 sd->backlog.weight = weight_p;
11399 dev_boot_phase = 0;
11401 /* The loopback device is special if any other network devices
11402 * is present in a network namespace the loopback device must
11403 * be present. Since we now dynamically allocate and free the
11404 * loopback device ensure this invariant is maintained by
11405 * keeping the loopback device as the first device on the
11406 * list of network devices. Ensuring the loopback devices
11407 * is the first device that appears and the last network device
11410 if (register_pernet_device(&loopback_net_ops))
11413 if (register_pernet_device(&default_device_ops))
11416 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11417 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11419 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11420 NULL, dev_cpu_dead);
11427 subsys_initcall(net_dev_init);