1 // SPDX-License-Identifier: GPL-2.0-only
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
54 #include <asm/mmu_context.h>
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags) (0)
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
79 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
80 struct vm_area_struct *vma, struct vm_area_struct *prev,
81 struct vm_area_struct *next, unsigned long start,
82 unsigned long end, bool mm_wr_locked);
84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
86 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
90 void vma_set_page_prot(struct vm_area_struct *vma)
92 unsigned long vm_flags = vma->vm_flags;
93 pgprot_t vm_page_prot;
95 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96 if (vma_wants_writenotify(vma, vm_page_prot)) {
97 vm_flags &= ~VM_SHARED;
98 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
100 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
105 * Requires inode->i_mapping->i_mmap_rwsem
107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108 struct file *file, struct address_space *mapping)
110 if (vma->vm_flags & VM_SHARED)
111 mapping_unmap_writable(mapping);
113 flush_dcache_mmap_lock(mapping);
114 vma_interval_tree_remove(vma, &mapping->i_mmap);
115 flush_dcache_mmap_unlock(mapping);
119 * Unlink a file-based vm structure from its interval tree, to hide
120 * vma from rmap and vmtruncate before freeing its page tables.
122 void unlink_file_vma(struct vm_area_struct *vma)
124 struct file *file = vma->vm_file;
127 struct address_space *mapping = file->f_mapping;
128 i_mmap_lock_write(mapping);
129 __remove_shared_vm_struct(vma, file, mapping);
130 i_mmap_unlock_write(mapping);
135 * Close a vm structure and free it.
137 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
140 if (vma->vm_ops && vma->vm_ops->close)
141 vma->vm_ops->close(vma);
144 mpol_put(vma_policy(vma));
151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
154 return mas_prev(&vmi->mas, min);
157 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
158 unsigned long start, unsigned long end, gfp_t gfp)
160 vmi->mas.index = start;
161 vmi->mas.last = end - 1;
162 mas_store_gfp(&vmi->mas, NULL, gfp);
163 if (unlikely(mas_is_err(&vmi->mas)))
170 * check_brk_limits() - Use platform specific check of range & verify mlock
172 * @addr: The address to check
173 * @len: The size of increase.
175 * Return: 0 on success.
177 static int check_brk_limits(unsigned long addr, unsigned long len)
179 unsigned long mapped_addr;
181 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
182 if (IS_ERR_VALUE(mapped_addr))
185 return mlock_future_ok(current->mm, current->mm->def_flags, len)
188 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
189 unsigned long addr, unsigned long request, unsigned long flags);
190 SYSCALL_DEFINE1(brk, unsigned long, brk)
192 unsigned long newbrk, oldbrk, origbrk;
193 struct mm_struct *mm = current->mm;
194 struct vm_area_struct *brkvma, *next = NULL;
195 unsigned long min_brk;
196 bool populate = false;
198 struct vma_iterator vmi;
200 if (mmap_write_lock_killable(mm))
205 #ifdef CONFIG_COMPAT_BRK
207 * CONFIG_COMPAT_BRK can still be overridden by setting
208 * randomize_va_space to 2, which will still cause mm->start_brk
209 * to be arbitrarily shifted
211 if (current->brk_randomized)
212 min_brk = mm->start_brk;
214 min_brk = mm->end_data;
216 min_brk = mm->start_brk;
222 * Check against rlimit here. If this check is done later after the test
223 * of oldbrk with newbrk then it can escape the test and let the data
224 * segment grow beyond its set limit the in case where the limit is
225 * not page aligned -Ram Gupta
227 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
228 mm->end_data, mm->start_data))
231 newbrk = PAGE_ALIGN(brk);
232 oldbrk = PAGE_ALIGN(mm->brk);
233 if (oldbrk == newbrk) {
238 /* Always allow shrinking brk. */
239 if (brk <= mm->brk) {
240 /* Search one past newbrk */
241 vma_iter_init(&vmi, mm, newbrk);
242 brkvma = vma_find(&vmi, oldbrk);
243 if (!brkvma || brkvma->vm_start >= oldbrk)
244 goto out; /* mapping intersects with an existing non-brk vma. */
246 * mm->brk must be protected by write mmap_lock.
247 * do_vma_munmap() will drop the lock on success, so update it
248 * before calling do_vma_munmap().
251 if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
254 goto success_unlocked;
257 if (check_brk_limits(oldbrk, newbrk - oldbrk))
261 * Only check if the next VMA is within the stack_guard_gap of the
264 vma_iter_init(&vmi, mm, oldbrk);
265 next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
266 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
269 brkvma = vma_prev_limit(&vmi, mm->start_brk);
270 /* Ok, looks good - let it rip. */
271 if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
275 if (mm->def_flags & VM_LOCKED)
279 mmap_write_unlock(mm);
281 userfaultfd_unmap_complete(mm, &uf);
283 mm_populate(oldbrk, newbrk - oldbrk);
288 mmap_write_unlock(mm);
292 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
293 static void validate_mm(struct mm_struct *mm)
297 struct vm_area_struct *vma;
298 VMA_ITERATOR(vmi, mm, 0);
300 mt_validate(&mm->mm_mt);
301 for_each_vma(vmi, vma) {
302 #ifdef CONFIG_DEBUG_VM_RB
303 struct anon_vma *anon_vma = vma->anon_vma;
304 struct anon_vma_chain *avc;
306 unsigned long vmi_start, vmi_end;
309 vmi_start = vma_iter_addr(&vmi);
310 vmi_end = vma_iter_end(&vmi);
311 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
314 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
318 pr_emerg("issue in %s\n", current->comm);
321 pr_emerg("tree range: %px start %lx end %lx\n", vma,
322 vmi_start, vmi_end - 1);
323 vma_iter_dump_tree(&vmi);
326 #ifdef CONFIG_DEBUG_VM_RB
328 anon_vma_lock_read(anon_vma);
329 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
330 anon_vma_interval_tree_verify(avc);
331 anon_vma_unlock_read(anon_vma);
336 if (i != mm->map_count) {
337 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
340 VM_BUG_ON_MM(bug, mm);
343 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
344 #define validate_mm(mm) do { } while (0)
345 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
348 * vma has some anon_vma assigned, and is already inserted on that
349 * anon_vma's interval trees.
351 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
352 * vma must be removed from the anon_vma's interval trees using
353 * anon_vma_interval_tree_pre_update_vma().
355 * After the update, the vma will be reinserted using
356 * anon_vma_interval_tree_post_update_vma().
358 * The entire update must be protected by exclusive mmap_lock and by
359 * the root anon_vma's mutex.
362 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
364 struct anon_vma_chain *avc;
366 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
367 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
371 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
373 struct anon_vma_chain *avc;
375 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
376 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
379 static unsigned long count_vma_pages_range(struct mm_struct *mm,
380 unsigned long addr, unsigned long end)
382 VMA_ITERATOR(vmi, mm, addr);
383 struct vm_area_struct *vma;
384 unsigned long nr_pages = 0;
386 for_each_vma_range(vmi, vma, end) {
387 unsigned long vm_start = max(addr, vma->vm_start);
388 unsigned long vm_end = min(end, vma->vm_end);
390 nr_pages += PHYS_PFN(vm_end - vm_start);
396 static void __vma_link_file(struct vm_area_struct *vma,
397 struct address_space *mapping)
399 if (vma->vm_flags & VM_SHARED)
400 mapping_allow_writable(mapping);
402 flush_dcache_mmap_lock(mapping);
403 vma_interval_tree_insert(vma, &mapping->i_mmap);
404 flush_dcache_mmap_unlock(mapping);
407 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
409 VMA_ITERATOR(vmi, mm, 0);
410 struct address_space *mapping = NULL;
412 if (vma_iter_prealloc(&vmi))
415 vma_iter_store(&vmi, vma);
418 mapping = vma->vm_file->f_mapping;
419 i_mmap_lock_write(mapping);
420 __vma_link_file(vma, mapping);
421 i_mmap_unlock_write(mapping);
430 * init_multi_vma_prep() - Initializer for struct vma_prepare
431 * @vp: The vma_prepare struct
432 * @vma: The vma that will be altered once locked
433 * @next: The next vma if it is to be adjusted
434 * @remove: The first vma to be removed
435 * @remove2: The second vma to be removed
437 static inline void init_multi_vma_prep(struct vma_prepare *vp,
438 struct vm_area_struct *vma, struct vm_area_struct *next,
439 struct vm_area_struct *remove, struct vm_area_struct *remove2)
441 memset(vp, 0, sizeof(struct vma_prepare));
443 vp->anon_vma = vma->anon_vma;
445 vp->remove2 = remove2;
447 if (!vp->anon_vma && next)
448 vp->anon_vma = next->anon_vma;
450 vp->file = vma->vm_file;
452 vp->mapping = vma->vm_file->f_mapping;
457 * init_vma_prep() - Initializer wrapper for vma_prepare struct
458 * @vp: The vma_prepare struct
459 * @vma: The vma that will be altered once locked
461 static inline void init_vma_prep(struct vma_prepare *vp,
462 struct vm_area_struct *vma)
464 init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
469 * vma_prepare() - Helper function for handling locking VMAs prior to altering
470 * @vp: The initialized vma_prepare struct
472 static inline void vma_prepare(struct vma_prepare *vp)
474 vma_start_write(vp->vma);
476 vma_start_write(vp->adj_next);
477 /* vp->insert is always a newly created VMA, no need for locking */
479 vma_start_write(vp->remove);
481 vma_start_write(vp->remove2);
484 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
487 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
488 vp->adj_next->vm_end);
490 i_mmap_lock_write(vp->mapping);
491 if (vp->insert && vp->insert->vm_file) {
493 * Put into interval tree now, so instantiated pages
494 * are visible to arm/parisc __flush_dcache_page
495 * throughout; but we cannot insert into address
496 * space until vma start or end is updated.
498 __vma_link_file(vp->insert,
499 vp->insert->vm_file->f_mapping);
504 anon_vma_lock_write(vp->anon_vma);
505 anon_vma_interval_tree_pre_update_vma(vp->vma);
507 anon_vma_interval_tree_pre_update_vma(vp->adj_next);
511 flush_dcache_mmap_lock(vp->mapping);
512 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
514 vma_interval_tree_remove(vp->adj_next,
515 &vp->mapping->i_mmap);
521 * vma_complete- Helper function for handling the unlocking after altering VMAs,
522 * or for inserting a VMA.
524 * @vp: The vma_prepare struct
525 * @vmi: The vma iterator
528 static inline void vma_complete(struct vma_prepare *vp,
529 struct vma_iterator *vmi, struct mm_struct *mm)
533 vma_interval_tree_insert(vp->adj_next,
534 &vp->mapping->i_mmap);
535 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
536 flush_dcache_mmap_unlock(vp->mapping);
539 if (vp->remove && vp->file) {
540 __remove_shared_vm_struct(vp->remove, vp->file, vp->mapping);
542 __remove_shared_vm_struct(vp->remove2, vp->file,
544 } else if (vp->insert) {
546 * split_vma has split insert from vma, and needs
547 * us to insert it before dropping the locks
548 * (it may either follow vma or precede it).
550 vma_iter_store(vmi, vp->insert);
555 anon_vma_interval_tree_post_update_vma(vp->vma);
557 anon_vma_interval_tree_post_update_vma(vp->adj_next);
558 anon_vma_unlock_write(vp->anon_vma);
562 i_mmap_unlock_write(vp->mapping);
563 uprobe_mmap(vp->vma);
566 uprobe_mmap(vp->adj_next);
571 vma_mark_detached(vp->remove, true);
573 uprobe_munmap(vp->remove, vp->remove->vm_start,
577 if (vp->remove->anon_vma)
578 anon_vma_merge(vp->vma, vp->remove);
580 mpol_put(vma_policy(vp->remove));
582 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
583 vm_area_free(vp->remove);
586 * In mprotect's case 6 (see comments on vma_merge),
587 * we are removing both mid and next vmas
590 vp->remove = vp->remove2;
595 if (vp->insert && vp->file)
596 uprobe_mmap(vp->insert);
601 * dup_anon_vma() - Helper function to duplicate anon_vma
602 * @dst: The destination VMA
603 * @src: The source VMA
605 * Returns: 0 on success.
607 static inline int dup_anon_vma(struct vm_area_struct *dst,
608 struct vm_area_struct *src)
611 * Easily overlooked: when mprotect shifts the boundary, make sure the
612 * expanding vma has anon_vma set if the shrinking vma had, to cover any
613 * anon pages imported.
615 if (src->anon_vma && !dst->anon_vma) {
616 vma_start_write(dst);
617 dst->anon_vma = src->anon_vma;
618 return anon_vma_clone(dst, src);
625 * vma_expand - Expand an existing VMA
627 * @vmi: The vma iterator
628 * @vma: The vma to expand
629 * @start: The start of the vma
630 * @end: The exclusive end of the vma
631 * @pgoff: The page offset of vma
632 * @next: The current of next vma.
634 * Expand @vma to @start and @end. Can expand off the start and end. Will
635 * expand over @next if it's different from @vma and @end == @next->vm_end.
636 * Checking if the @vma can expand and merge with @next needs to be handled by
639 * Returns: 0 on success
641 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
642 unsigned long start, unsigned long end, pgoff_t pgoff,
643 struct vm_area_struct *next)
645 bool remove_next = false;
646 struct vma_prepare vp;
648 if (next && (vma != next) && (end == next->vm_end)) {
652 ret = dup_anon_vma(vma, next);
657 init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
658 /* Not merging but overwriting any part of next is not handled. */
659 VM_WARN_ON(next && !vp.remove &&
660 next != vma && end > next->vm_start);
661 /* Only handles expanding */
662 VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
664 if (vma_iter_prealloc(vmi))
668 vma_adjust_trans_huge(vma, start, end, 0);
669 /* VMA iterator points to previous, so set to start if necessary */
670 if (vma_iter_addr(vmi) != start)
671 vma_iter_set(vmi, start);
673 vma->vm_start = start;
675 vma->vm_pgoff = pgoff;
676 /* Note: mas must be pointing to the expanding VMA */
677 vma_iter_store(vmi, vma);
679 vma_complete(&vp, vmi, vma->vm_mm);
687 * vma_shrink() - Reduce an existing VMAs memory area
688 * @vmi: The vma iterator
689 * @vma: The VMA to modify
690 * @start: The new start
693 * Returns: 0 on success, -ENOMEM otherwise
695 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
696 unsigned long start, unsigned long end, pgoff_t pgoff)
698 struct vma_prepare vp;
700 WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
702 if (vma_iter_prealloc(vmi))
705 init_vma_prep(&vp, vma);
707 vma_adjust_trans_huge(vma, start, end, 0);
709 if (vma->vm_start < start)
710 vma_iter_clear(vmi, vma->vm_start, start);
712 if (vma->vm_end > end)
713 vma_iter_clear(vmi, end, vma->vm_end);
715 vma->vm_start = start;
717 vma->vm_pgoff = pgoff;
718 vma_complete(&vp, vmi, vma->vm_mm);
723 * If the vma has a ->close operation then the driver probably needs to release
724 * per-vma resources, so we don't attempt to merge those if the caller indicates
725 * the current vma may be removed as part of the merge.
727 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
728 struct file *file, unsigned long vm_flags,
729 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
730 struct anon_vma_name *anon_name, bool may_remove_vma)
733 * VM_SOFTDIRTY should not prevent from VMA merging, if we
734 * match the flags but dirty bit -- the caller should mark
735 * merged VMA as dirty. If dirty bit won't be excluded from
736 * comparison, we increase pressure on the memory system forcing
737 * the kernel to generate new VMAs when old one could be
740 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
742 if (vma->vm_file != file)
744 if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
746 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
748 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
753 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
754 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
757 * The list_is_singular() test is to avoid merging VMA cloned from
758 * parents. This can improve scalability caused by anon_vma lock.
760 if ((!anon_vma1 || !anon_vma2) && (!vma ||
761 list_is_singular(&vma->anon_vma_chain)))
763 return anon_vma1 == anon_vma2;
767 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
768 * in front of (at a lower virtual address and file offset than) the vma.
770 * We cannot merge two vmas if they have differently assigned (non-NULL)
771 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
773 * We don't check here for the merged mmap wrapping around the end of pagecache
774 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
775 * wrap, nor mmaps which cover the final page at index -1UL.
777 * We assume the vma may be removed as part of the merge.
780 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
781 struct anon_vma *anon_vma, struct file *file,
782 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
783 struct anon_vma_name *anon_name)
785 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
786 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
787 if (vma->vm_pgoff == vm_pgoff)
794 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
795 * beyond (at a higher virtual address and file offset than) the vma.
797 * We cannot merge two vmas if they have differently assigned (non-NULL)
798 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
800 * We assume that vma is not removed as part of the merge.
803 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
804 struct anon_vma *anon_vma, struct file *file,
805 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
806 struct anon_vma_name *anon_name)
808 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
809 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
811 vm_pglen = vma_pages(vma);
812 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
819 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
820 * figure out whether that can be merged with its predecessor or its
821 * successor. Or both (it neatly fills a hole).
823 * In most cases - when called for mmap, brk or mremap - [addr,end) is
824 * certain not to be mapped by the time vma_merge is called; but when
825 * called for mprotect, it is certain to be already mapped (either at
826 * an offset within prev, or at the start of next), and the flags of
827 * this area are about to be changed to vm_flags - and the no-change
828 * case has already been eliminated.
830 * The following mprotect cases have to be considered, where **** is
831 * the area passed down from mprotect_fixup, never extending beyond one
832 * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
833 * at the same address as **** and is of the same or larger span, and
834 * NNNN the next vma after ****:
837 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPCCCCCC
838 * cannot merge might become might become
839 * PPNNNNNNNNNN PPPPPPPPPPCC
840 * mmap, brk or case 4 below case 5 below
843 * PPPP NNNN PPPPCCCCNNNN
844 * might become might become
845 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
846 * PPPPPPPPNNNN 2 or PPPPPPPPNNNN 7 or
847 * PPPPNNNNNNNN 3 PPPPNNNNNNNN 8
849 * It is important for case 8 that the vma CCCC overlapping the
850 * region **** is never going to extended over NNNN. Instead NNNN must
851 * be extended in region **** and CCCC must be removed. This way in
852 * all cases where vma_merge succeeds, the moment vma_merge drops the
853 * rmap_locks, the properties of the merged vma will be already
854 * correct for the whole merged range. Some of those properties like
855 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
856 * be correct for the whole merged range immediately after the
857 * rmap_locks are released. Otherwise if NNNN would be removed and
858 * CCCC would be extended over the NNNN range, remove_migration_ptes
859 * or other rmap walkers (if working on addresses beyond the "end"
860 * parameter) may establish ptes with the wrong permissions of CCCC
861 * instead of the right permissions of NNNN.
864 * PPPP is represented by *prev
865 * CCCC is represented by *curr or not represented at all (NULL)
866 * NNNN is represented by *next or not represented at all (NULL)
867 * **** is not represented - it will be merged and the vma containing the
868 * area is returned, or the function will return NULL
870 struct vm_area_struct *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm,
871 struct vm_area_struct *prev, unsigned long addr,
872 unsigned long end, unsigned long vm_flags,
873 struct anon_vma *anon_vma, struct file *file,
874 pgoff_t pgoff, struct mempolicy *policy,
875 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
876 struct anon_vma_name *anon_name)
878 struct vm_area_struct *curr, *next, *res;
879 struct vm_area_struct *vma, *adjust, *remove, *remove2;
880 struct vma_prepare vp;
883 bool merge_prev = false;
884 bool merge_next = false;
885 bool vma_expanded = false;
886 unsigned long vma_start = addr;
887 unsigned long vma_end = end;
888 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
892 * We later require that vma->vm_flags == vm_flags,
893 * so this tests vma->vm_flags & VM_SPECIAL, too.
895 if (vm_flags & VM_SPECIAL)
898 /* Does the input range span an existing VMA? (cases 5 - 8) */
899 curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
901 if (!curr || /* cases 1 - 4 */
902 end == curr->vm_end) /* cases 6 - 8, adjacent VMA */
903 next = vma_lookup(mm, end);
905 next = NULL; /* case 5 */
908 vma_start = prev->vm_start;
909 vma_pgoff = prev->vm_pgoff;
911 /* Can we merge the predecessor? */
912 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
913 && can_vma_merge_after(prev, vm_flags, anon_vma, file,
914 pgoff, vm_userfaultfd_ctx, anon_name)) {
920 /* Can we merge the successor? */
921 if (next && mpol_equal(policy, vma_policy(next)) &&
922 can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
923 vm_userfaultfd_ctx, anon_name)) {
927 /* Verify some invariant that must be enforced by the caller. */
928 VM_WARN_ON(prev && addr <= prev->vm_start);
929 VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
930 VM_WARN_ON(addr >= end);
932 if (!merge_prev && !merge_next)
933 return NULL; /* Not mergeable. */
936 remove = remove2 = adjust = NULL;
938 /* Can we merge both the predecessor and the successor? */
939 if (merge_prev && merge_next &&
940 is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
941 remove = next; /* case 1 */
942 vma_end = next->vm_end;
943 err = dup_anon_vma(prev, next);
944 if (curr) { /* case 6 */
948 err = dup_anon_vma(prev, curr);
950 } else if (merge_prev) { /* case 2 */
952 err = dup_anon_vma(prev, curr);
953 if (end == curr->vm_end) { /* case 7 */
955 } else { /* case 5 */
957 adj_start = (end - curr->vm_start);
960 } else { /* merge_next */
962 if (prev && addr < prev->vm_end) { /* case 4 */
965 adj_start = -(prev->vm_end - addr);
966 err = dup_anon_vma(next, prev);
969 * Note that cases 3 and 8 are the ONLY ones where prev
970 * is permitted to be (but is not necessarily) NULL.
972 vma = next; /* case 3 */
974 vma_end = next->vm_end;
975 vma_pgoff = next->vm_pgoff - pglen;
976 if (curr) { /* case 8 */
977 vma_pgoff = curr->vm_pgoff;
979 err = dup_anon_vma(next, curr);
984 /* Error in anon_vma clone. */
988 if (vma_iter_prealloc(vmi))
991 init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
992 VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
993 vp.anon_vma != adjust->anon_vma);
996 vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
997 if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1000 vma->vm_start = vma_start;
1001 vma->vm_end = vma_end;
1002 vma->vm_pgoff = vma_pgoff;
1005 vma_iter_store(vmi, vma);
1008 adjust->vm_start += adj_start;
1009 adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1010 if (adj_start < 0) {
1011 WARN_ON(vma_expanded);
1012 vma_iter_store(vmi, next);
1016 vma_complete(&vp, vmi, mm);
1017 khugepaged_enter_vma(res, vm_flags);
1022 * Rough compatibility check to quickly see if it's even worth looking
1023 * at sharing an anon_vma.
1025 * They need to have the same vm_file, and the flags can only differ
1026 * in things that mprotect may change.
1028 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1029 * we can merge the two vma's. For example, we refuse to merge a vma if
1030 * there is a vm_ops->close() function, because that indicates that the
1031 * driver is doing some kind of reference counting. But that doesn't
1032 * really matter for the anon_vma sharing case.
1034 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1036 return a->vm_end == b->vm_start &&
1037 mpol_equal(vma_policy(a), vma_policy(b)) &&
1038 a->vm_file == b->vm_file &&
1039 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1040 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1044 * Do some basic sanity checking to see if we can re-use the anon_vma
1045 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1046 * the same as 'old', the other will be the new one that is trying
1047 * to share the anon_vma.
1049 * NOTE! This runs with mmap_lock held for reading, so it is possible that
1050 * the anon_vma of 'old' is concurrently in the process of being set up
1051 * by another page fault trying to merge _that_. But that's ok: if it
1052 * is being set up, that automatically means that it will be a singleton
1053 * acceptable for merging, so we can do all of this optimistically. But
1054 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1056 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1057 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1058 * is to return an anon_vma that is "complex" due to having gone through
1061 * We also make sure that the two vma's are compatible (adjacent,
1062 * and with the same memory policies). That's all stable, even with just
1063 * a read lock on the mmap_lock.
1065 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1067 if (anon_vma_compatible(a, b)) {
1068 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1070 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1077 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1078 * neighbouring vmas for a suitable anon_vma, before it goes off
1079 * to allocate a new anon_vma. It checks because a repetitive
1080 * sequence of mprotects and faults may otherwise lead to distinct
1081 * anon_vmas being allocated, preventing vma merge in subsequent
1084 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1086 MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1087 struct anon_vma *anon_vma = NULL;
1088 struct vm_area_struct *prev, *next;
1090 /* Try next first. */
1091 next = mas_walk(&mas);
1093 anon_vma = reusable_anon_vma(next, vma, next);
1098 prev = mas_prev(&mas, 0);
1099 VM_BUG_ON_VMA(prev != vma, vma);
1100 prev = mas_prev(&mas, 0);
1101 /* Try prev next. */
1103 anon_vma = reusable_anon_vma(prev, prev, vma);
1106 * We might reach here with anon_vma == NULL if we can't find
1107 * any reusable anon_vma.
1108 * There's no absolute need to look only at touching neighbours:
1109 * we could search further afield for "compatible" anon_vmas.
1110 * But it would probably just be a waste of time searching,
1111 * or lead to too many vmas hanging off the same anon_vma.
1112 * We're trying to allow mprotect remerging later on,
1113 * not trying to minimize memory used for anon_vmas.
1119 * If a hint addr is less than mmap_min_addr change hint to be as
1120 * low as possible but still greater than mmap_min_addr
1122 static inline unsigned long round_hint_to_min(unsigned long hint)
1125 if (((void *)hint != NULL) &&
1126 (hint < mmap_min_addr))
1127 return PAGE_ALIGN(mmap_min_addr);
1131 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1132 unsigned long bytes)
1134 unsigned long locked_pages, limit_pages;
1136 if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1139 locked_pages = bytes >> PAGE_SHIFT;
1140 locked_pages += mm->locked_vm;
1142 limit_pages = rlimit(RLIMIT_MEMLOCK);
1143 limit_pages >>= PAGE_SHIFT;
1145 return locked_pages <= limit_pages;
1148 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1150 if (S_ISREG(inode->i_mode))
1151 return MAX_LFS_FILESIZE;
1153 if (S_ISBLK(inode->i_mode))
1154 return MAX_LFS_FILESIZE;
1156 if (S_ISSOCK(inode->i_mode))
1157 return MAX_LFS_FILESIZE;
1159 /* Special "we do even unsigned file positions" case */
1160 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1163 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1167 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1168 unsigned long pgoff, unsigned long len)
1170 u64 maxsize = file_mmap_size_max(file, inode);
1172 if (maxsize && len > maxsize)
1175 if (pgoff > maxsize >> PAGE_SHIFT)
1181 * The caller must write-lock current->mm->mmap_lock.
1183 unsigned long do_mmap(struct file *file, unsigned long addr,
1184 unsigned long len, unsigned long prot,
1185 unsigned long flags, unsigned long pgoff,
1186 unsigned long *populate, struct list_head *uf)
1188 struct mm_struct *mm = current->mm;
1189 vm_flags_t vm_flags;
1198 * Does the application expect PROT_READ to imply PROT_EXEC?
1200 * (the exception is when the underlying filesystem is noexec
1201 * mounted, in which case we dont add PROT_EXEC.)
1203 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1204 if (!(file && path_noexec(&file->f_path)))
1207 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1208 if (flags & MAP_FIXED_NOREPLACE)
1211 if (!(flags & MAP_FIXED))
1212 addr = round_hint_to_min(addr);
1214 /* Careful about overflows.. */
1215 len = PAGE_ALIGN(len);
1219 /* offset overflow? */
1220 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1223 /* Too many mappings? */
1224 if (mm->map_count > sysctl_max_map_count)
1227 /* Obtain the address to map to. we verify (or select) it and ensure
1228 * that it represents a valid section of the address space.
1230 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1231 if (IS_ERR_VALUE(addr))
1234 if (flags & MAP_FIXED_NOREPLACE) {
1235 if (find_vma_intersection(mm, addr, addr + len))
1239 if (prot == PROT_EXEC) {
1240 pkey = execute_only_pkey(mm);
1245 /* Do simple checking here so the lower-level routines won't have
1246 * to. we assume access permissions have been handled by the open
1247 * of the memory object, so we don't do any here.
1249 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1250 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1252 if (flags & MAP_LOCKED)
1253 if (!can_do_mlock())
1256 if (!mlock_future_ok(mm, vm_flags, len))
1260 struct inode *inode = file_inode(file);
1261 unsigned long flags_mask;
1263 if (!file_mmap_ok(file, inode, pgoff, len))
1266 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1268 switch (flags & MAP_TYPE) {
1271 * Force use of MAP_SHARED_VALIDATE with non-legacy
1272 * flags. E.g. MAP_SYNC is dangerous to use with
1273 * MAP_SHARED as you don't know which consistency model
1274 * you will get. We silently ignore unsupported flags
1275 * with MAP_SHARED to preserve backward compatibility.
1277 flags &= LEGACY_MAP_MASK;
1279 case MAP_SHARED_VALIDATE:
1280 if (flags & ~flags_mask)
1282 if (prot & PROT_WRITE) {
1283 if (!(file->f_mode & FMODE_WRITE))
1285 if (IS_SWAPFILE(file->f_mapping->host))
1290 * Make sure we don't allow writing to an append-only
1293 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1296 vm_flags |= VM_SHARED | VM_MAYSHARE;
1297 if (!(file->f_mode & FMODE_WRITE))
1298 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1301 if (!(file->f_mode & FMODE_READ))
1303 if (path_noexec(&file->f_path)) {
1304 if (vm_flags & VM_EXEC)
1306 vm_flags &= ~VM_MAYEXEC;
1309 if (!file->f_op->mmap)
1311 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1319 switch (flags & MAP_TYPE) {
1321 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1327 vm_flags |= VM_SHARED | VM_MAYSHARE;
1331 * Set pgoff according to addr for anon_vma.
1333 pgoff = addr >> PAGE_SHIFT;
1341 * Set 'VM_NORESERVE' if we should not account for the
1342 * memory use of this mapping.
1344 if (flags & MAP_NORESERVE) {
1345 /* We honor MAP_NORESERVE if allowed to overcommit */
1346 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1347 vm_flags |= VM_NORESERVE;
1349 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1350 if (file && is_file_hugepages(file))
1351 vm_flags |= VM_NORESERVE;
1354 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1355 if (!IS_ERR_VALUE(addr) &&
1356 ((vm_flags & VM_LOCKED) ||
1357 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1362 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1363 unsigned long prot, unsigned long flags,
1364 unsigned long fd, unsigned long pgoff)
1366 struct file *file = NULL;
1367 unsigned long retval;
1369 if (!(flags & MAP_ANONYMOUS)) {
1370 audit_mmap_fd(fd, flags);
1374 if (is_file_hugepages(file)) {
1375 len = ALIGN(len, huge_page_size(hstate_file(file)));
1376 } else if (unlikely(flags & MAP_HUGETLB)) {
1380 } else if (flags & MAP_HUGETLB) {
1383 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1387 len = ALIGN(len, huge_page_size(hs));
1389 * VM_NORESERVE is used because the reservations will be
1390 * taken when vm_ops->mmap() is called
1392 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1394 HUGETLB_ANONHUGE_INODE,
1395 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1397 return PTR_ERR(file);
1400 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1407 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1408 unsigned long, prot, unsigned long, flags,
1409 unsigned long, fd, unsigned long, pgoff)
1411 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1414 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1415 struct mmap_arg_struct {
1419 unsigned long flags;
1421 unsigned long offset;
1424 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1426 struct mmap_arg_struct a;
1428 if (copy_from_user(&a, arg, sizeof(a)))
1430 if (offset_in_page(a.offset))
1433 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1434 a.offset >> PAGE_SHIFT);
1436 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1438 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1440 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1443 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1445 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1446 (VM_WRITE | VM_SHARED);
1449 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1451 /* No managed pages to writeback. */
1452 if (vma->vm_flags & VM_PFNMAP)
1455 return vma->vm_file && vma->vm_file->f_mapping &&
1456 mapping_can_writeback(vma->vm_file->f_mapping);
1460 * Does this VMA require the underlying folios to have their dirty state
1463 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1465 /* Only shared, writable VMAs require dirty tracking. */
1466 if (!vma_is_shared_writable(vma))
1469 /* Does the filesystem need to be notified? */
1470 if (vm_ops_needs_writenotify(vma->vm_ops))
1474 * Even if the filesystem doesn't indicate a need for writenotify, if it
1475 * can writeback, dirty tracking is still required.
1477 return vma_fs_can_writeback(vma);
1481 * Some shared mappings will want the pages marked read-only
1482 * to track write events. If so, we'll downgrade vm_page_prot
1483 * to the private version (using protection_map[] without the
1486 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1488 /* If it was private or non-writable, the write bit is already clear */
1489 if (!vma_is_shared_writable(vma))
1492 /* The backer wishes to know when pages are first written to? */
1493 if (vm_ops_needs_writenotify(vma->vm_ops))
1496 /* The open routine did something to the protections that pgprot_modify
1497 * won't preserve? */
1498 if (pgprot_val(vm_page_prot) !=
1499 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1503 * Do we need to track softdirty? hugetlb does not support softdirty
1506 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1509 /* Do we need write faults for uffd-wp tracking? */
1510 if (userfaultfd_wp(vma))
1513 /* Can the mapping track the dirty pages? */
1514 return vma_fs_can_writeback(vma);
1518 * We account for memory if it's a private writeable mapping,
1519 * not hugepages and VM_NORESERVE wasn't set.
1521 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1524 * hugetlb has its own accounting separate from the core VM
1525 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1527 if (file && is_file_hugepages(file))
1530 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1534 * unmapped_area() - Find an area between the low_limit and the high_limit with
1535 * the correct alignment and offset, all from @info. Note: current->mm is used
1538 * @info: The unmapped area information including the range [low_limit -
1539 * high_limit), the alignment offset and mask.
1541 * Return: A memory address or -ENOMEM.
1543 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1545 unsigned long length, gap;
1546 unsigned long low_limit, high_limit;
1547 struct vm_area_struct *tmp;
1549 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0);
1551 /* Adjust search length to account for worst case alignment overhead */
1552 length = info->length + info->align_mask;
1553 if (length < info->length)
1556 low_limit = info->low_limit;
1557 if (low_limit < mmap_min_addr)
1558 low_limit = mmap_min_addr;
1559 high_limit = info->high_limit;
1561 if (mas_empty_area(&mas, low_limit, high_limit - 1, length))
1565 gap += (info->align_offset - gap) & info->align_mask;
1566 tmp = mas_next(&mas, ULONG_MAX);
1567 if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */
1568 if (vm_start_gap(tmp) < gap + length - 1) {
1569 low_limit = tmp->vm_end;
1574 tmp = mas_prev(&mas, 0);
1575 if (tmp && vm_end_gap(tmp) > gap) {
1576 low_limit = vm_end_gap(tmp);
1586 * unmapped_area_topdown() - Find an area between the low_limit and the
1587 * high_limit with the correct alignment and offset at the highest available
1588 * address, all from @info. Note: current->mm is used for the search.
1590 * @info: The unmapped area information including the range [low_limit -
1591 * high_limit), the alignment offset and mask.
1593 * Return: A memory address or -ENOMEM.
1595 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1597 unsigned long length, gap, gap_end;
1598 unsigned long low_limit, high_limit;
1599 struct vm_area_struct *tmp;
1601 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0);
1602 /* Adjust search length to account for worst case alignment overhead */
1603 length = info->length + info->align_mask;
1604 if (length < info->length)
1607 low_limit = info->low_limit;
1608 if (low_limit < mmap_min_addr)
1609 low_limit = mmap_min_addr;
1610 high_limit = info->high_limit;
1612 if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length))
1615 gap = mas.last + 1 - info->length;
1616 gap -= (gap - info->align_offset) & info->align_mask;
1618 tmp = mas_next(&mas, ULONG_MAX);
1619 if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */
1620 if (vm_start_gap(tmp) <= gap_end) {
1621 high_limit = vm_start_gap(tmp);
1626 tmp = mas_prev(&mas, 0);
1627 if (tmp && vm_end_gap(tmp) > gap) {
1628 high_limit = tmp->vm_start;
1638 * Search for an unmapped address range.
1640 * We are looking for a range that:
1641 * - does not intersect with any VMA;
1642 * - is contained within the [low_limit, high_limit) interval;
1643 * - is at least the desired size.
1644 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1646 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1650 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1651 addr = unmapped_area_topdown(info);
1653 addr = unmapped_area(info);
1655 trace_vm_unmapped_area(addr, info);
1659 /* Get an address range which is currently unmapped.
1660 * For shmat() with addr=0.
1662 * Ugly calling convention alert:
1663 * Return value with the low bits set means error value,
1665 * if (ret & ~PAGE_MASK)
1668 * This function "knows" that -ENOMEM has the bits set.
1671 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1672 unsigned long len, unsigned long pgoff,
1673 unsigned long flags)
1675 struct mm_struct *mm = current->mm;
1676 struct vm_area_struct *vma, *prev;
1677 struct vm_unmapped_area_info info;
1678 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1680 if (len > mmap_end - mmap_min_addr)
1683 if (flags & MAP_FIXED)
1687 addr = PAGE_ALIGN(addr);
1688 vma = find_vma_prev(mm, addr, &prev);
1689 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1690 (!vma || addr + len <= vm_start_gap(vma)) &&
1691 (!prev || addr >= vm_end_gap(prev)))
1697 info.low_limit = mm->mmap_base;
1698 info.high_limit = mmap_end;
1699 info.align_mask = 0;
1700 info.align_offset = 0;
1701 return vm_unmapped_area(&info);
1704 #ifndef HAVE_ARCH_UNMAPPED_AREA
1706 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1707 unsigned long len, unsigned long pgoff,
1708 unsigned long flags)
1710 return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1715 * This mmap-allocator allocates new areas top-down from below the
1716 * stack's low limit (the base):
1719 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1720 unsigned long len, unsigned long pgoff,
1721 unsigned long flags)
1723 struct vm_area_struct *vma, *prev;
1724 struct mm_struct *mm = current->mm;
1725 struct vm_unmapped_area_info info;
1726 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1728 /* requested length too big for entire address space */
1729 if (len > mmap_end - mmap_min_addr)
1732 if (flags & MAP_FIXED)
1735 /* requesting a specific address */
1737 addr = PAGE_ALIGN(addr);
1738 vma = find_vma_prev(mm, addr, &prev);
1739 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1740 (!vma || addr + len <= vm_start_gap(vma)) &&
1741 (!prev || addr >= vm_end_gap(prev)))
1745 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1747 info.low_limit = PAGE_SIZE;
1748 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1749 info.align_mask = 0;
1750 info.align_offset = 0;
1751 addr = vm_unmapped_area(&info);
1754 * A failed mmap() very likely causes application failure,
1755 * so fall back to the bottom-up function here. This scenario
1756 * can happen with large stack limits and large mmap()
1759 if (offset_in_page(addr)) {
1760 VM_BUG_ON(addr != -ENOMEM);
1762 info.low_limit = TASK_UNMAPPED_BASE;
1763 info.high_limit = mmap_end;
1764 addr = vm_unmapped_area(&info);
1770 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1772 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1773 unsigned long len, unsigned long pgoff,
1774 unsigned long flags)
1776 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1781 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1782 unsigned long pgoff, unsigned long flags)
1784 unsigned long (*get_area)(struct file *, unsigned long,
1785 unsigned long, unsigned long, unsigned long);
1787 unsigned long error = arch_mmap_check(addr, len, flags);
1791 /* Careful about overflows.. */
1792 if (len > TASK_SIZE)
1795 get_area = current->mm->get_unmapped_area;
1797 if (file->f_op->get_unmapped_area)
1798 get_area = file->f_op->get_unmapped_area;
1799 } else if (flags & MAP_SHARED) {
1801 * mmap_region() will call shmem_zero_setup() to create a file,
1802 * so use shmem's get_unmapped_area in case it can be huge.
1803 * do_mmap() will clear pgoff, so match alignment.
1806 get_area = shmem_get_unmapped_area;
1809 addr = get_area(file, addr, len, pgoff, flags);
1810 if (IS_ERR_VALUE(addr))
1813 if (addr > TASK_SIZE - len)
1815 if (offset_in_page(addr))
1818 error = security_mmap_addr(addr);
1819 return error ? error : addr;
1822 EXPORT_SYMBOL(get_unmapped_area);
1825 * find_vma_intersection() - Look up the first VMA which intersects the interval
1826 * @mm: The process address space.
1827 * @start_addr: The inclusive start user address.
1828 * @end_addr: The exclusive end user address.
1830 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
1831 * start_addr < end_addr.
1833 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1834 unsigned long start_addr,
1835 unsigned long end_addr)
1837 unsigned long index = start_addr;
1839 mmap_assert_locked(mm);
1840 return mt_find(&mm->mm_mt, &index, end_addr - 1);
1842 EXPORT_SYMBOL(find_vma_intersection);
1845 * find_vma() - Find the VMA for a given address, or the next VMA.
1846 * @mm: The mm_struct to check
1847 * @addr: The address
1849 * Returns: The VMA associated with addr, or the next VMA.
1850 * May return %NULL in the case of no VMA at addr or above.
1852 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1854 unsigned long index = addr;
1856 mmap_assert_locked(mm);
1857 return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1859 EXPORT_SYMBOL(find_vma);
1862 * find_vma_prev() - Find the VMA for a given address, or the next vma and
1863 * set %pprev to the previous VMA, if any.
1864 * @mm: The mm_struct to check
1865 * @addr: The address
1866 * @pprev: The pointer to set to the previous VMA
1868 * Note that RCU lock is missing here since the external mmap_lock() is used
1871 * Returns: The VMA associated with @addr, or the next vma.
1872 * May return %NULL in the case of no vma at addr or above.
1874 struct vm_area_struct *
1875 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1876 struct vm_area_struct **pprev)
1878 struct vm_area_struct *vma;
1879 MA_STATE(mas, &mm->mm_mt, addr, addr);
1881 vma = mas_walk(&mas);
1882 *pprev = mas_prev(&mas, 0);
1884 vma = mas_next(&mas, ULONG_MAX);
1889 * Verify that the stack growth is acceptable and
1890 * update accounting. This is shared with both the
1891 * grow-up and grow-down cases.
1893 static int acct_stack_growth(struct vm_area_struct *vma,
1894 unsigned long size, unsigned long grow)
1896 struct mm_struct *mm = vma->vm_mm;
1897 unsigned long new_start;
1899 /* address space limit tests */
1900 if (!may_expand_vm(mm, vma->vm_flags, grow))
1903 /* Stack limit test */
1904 if (size > rlimit(RLIMIT_STACK))
1907 /* mlock limit tests */
1908 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1911 /* Check to ensure the stack will not grow into a hugetlb-only region */
1912 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1914 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1918 * Overcommit.. This must be the final test, as it will
1919 * update security statistics.
1921 if (security_vm_enough_memory_mm(mm, grow))
1927 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1929 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1930 * vma is the last one with address > vma->vm_end. Have to extend vma.
1932 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1934 struct mm_struct *mm = vma->vm_mm;
1935 struct vm_area_struct *next;
1936 unsigned long gap_addr;
1938 MA_STATE(mas, &mm->mm_mt, 0, 0);
1940 if (!(vma->vm_flags & VM_GROWSUP))
1943 /* Guard against exceeding limits of the address space. */
1944 address &= PAGE_MASK;
1945 if (address >= (TASK_SIZE & PAGE_MASK))
1947 address += PAGE_SIZE;
1949 /* Enforce stack_guard_gap */
1950 gap_addr = address + stack_guard_gap;
1952 /* Guard against overflow */
1953 if (gap_addr < address || gap_addr > TASK_SIZE)
1954 gap_addr = TASK_SIZE;
1956 next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1957 if (next && vma_is_accessible(next)) {
1958 if (!(next->vm_flags & VM_GROWSUP))
1960 /* Check that both stack segments have the same anon_vma? */
1963 if (mas_preallocate(&mas, GFP_KERNEL))
1966 /* We must make sure the anon_vma is allocated. */
1967 if (unlikely(anon_vma_prepare(vma))) {
1972 /* Lock the VMA before expanding to prevent concurrent page faults */
1973 vma_start_write(vma);
1975 * vma->vm_start/vm_end cannot change under us because the caller
1976 * is required to hold the mmap_lock in read mode. We need the
1977 * anon_vma lock to serialize against concurrent expand_stacks.
1979 anon_vma_lock_write(vma->anon_vma);
1981 /* Somebody else might have raced and expanded it already */
1982 if (address > vma->vm_end) {
1983 unsigned long size, grow;
1985 size = address - vma->vm_start;
1986 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1989 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1990 error = acct_stack_growth(vma, size, grow);
1993 * We only hold a shared mmap_lock lock here, so
1994 * we need to protect against concurrent vma
1995 * expansions. anon_vma_lock_write() doesn't
1996 * help here, as we don't guarantee that all
1997 * growable vmas in a mm share the same root
1998 * anon vma. So, we reuse mm->page_table_lock
1999 * to guard against concurrent vma expansions.
2001 spin_lock(&mm->page_table_lock);
2002 if (vma->vm_flags & VM_LOCKED)
2003 mm->locked_vm += grow;
2004 vm_stat_account(mm, vma->vm_flags, grow);
2005 anon_vma_interval_tree_pre_update_vma(vma);
2006 vma->vm_end = address;
2007 /* Overwrite old entry in mtree. */
2008 mas_set_range(&mas, vma->vm_start, address - 1);
2009 mas_store_prealloc(&mas, vma);
2010 anon_vma_interval_tree_post_update_vma(vma);
2011 spin_unlock(&mm->page_table_lock);
2013 perf_event_mmap(vma);
2017 anon_vma_unlock_write(vma->anon_vma);
2018 khugepaged_enter_vma(vma, vma->vm_flags);
2023 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2026 * vma is the first one with address < vma->vm_start. Have to extend vma.
2027 * mmap_lock held for writing.
2029 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2031 struct mm_struct *mm = vma->vm_mm;
2032 MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2033 struct vm_area_struct *prev;
2036 if (!(vma->vm_flags & VM_GROWSDOWN))
2039 address &= PAGE_MASK;
2040 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2043 /* Enforce stack_guard_gap */
2044 prev = mas_prev(&mas, 0);
2045 /* Check that both stack segments have the same anon_vma? */
2047 if (!(prev->vm_flags & VM_GROWSDOWN) &&
2048 vma_is_accessible(prev) &&
2049 (address - prev->vm_end < stack_guard_gap))
2053 if (mas_preallocate(&mas, GFP_KERNEL))
2056 /* We must make sure the anon_vma is allocated. */
2057 if (unlikely(anon_vma_prepare(vma))) {
2062 /* Lock the VMA before expanding to prevent concurrent page faults */
2063 vma_start_write(vma);
2065 * vma->vm_start/vm_end cannot change under us because the caller
2066 * is required to hold the mmap_lock in read mode. We need the
2067 * anon_vma lock to serialize against concurrent expand_stacks.
2069 anon_vma_lock_write(vma->anon_vma);
2071 /* Somebody else might have raced and expanded it already */
2072 if (address < vma->vm_start) {
2073 unsigned long size, grow;
2075 size = vma->vm_end - address;
2076 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2079 if (grow <= vma->vm_pgoff) {
2080 error = acct_stack_growth(vma, size, grow);
2083 * We only hold a shared mmap_lock lock here, so
2084 * we need to protect against concurrent vma
2085 * expansions. anon_vma_lock_write() doesn't
2086 * help here, as we don't guarantee that all
2087 * growable vmas in a mm share the same root
2088 * anon vma. So, we reuse mm->page_table_lock
2089 * to guard against concurrent vma expansions.
2091 spin_lock(&mm->page_table_lock);
2092 if (vma->vm_flags & VM_LOCKED)
2093 mm->locked_vm += grow;
2094 vm_stat_account(mm, vma->vm_flags, grow);
2095 anon_vma_interval_tree_pre_update_vma(vma);
2096 vma->vm_start = address;
2097 vma->vm_pgoff -= grow;
2098 /* Overwrite old entry in mtree. */
2099 mas_set_range(&mas, address, vma->vm_end - 1);
2100 mas_store_prealloc(&mas, vma);
2101 anon_vma_interval_tree_post_update_vma(vma);
2102 spin_unlock(&mm->page_table_lock);
2104 perf_event_mmap(vma);
2108 anon_vma_unlock_write(vma->anon_vma);
2109 khugepaged_enter_vma(vma, vma->vm_flags);
2115 /* enforced gap between the expanding stack and other mappings. */
2116 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2118 static int __init cmdline_parse_stack_guard_gap(char *p)
2123 val = simple_strtoul(p, &endptr, 10);
2125 stack_guard_gap = val << PAGE_SHIFT;
2129 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2131 #ifdef CONFIG_STACK_GROWSUP
2132 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2134 return expand_upwards(vma, address);
2137 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2139 struct vm_area_struct *vma, *prev;
2142 vma = find_vma_prev(mm, addr, &prev);
2143 if (vma && (vma->vm_start <= addr))
2147 if (expand_stack_locked(prev, addr))
2149 if (prev->vm_flags & VM_LOCKED)
2150 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2154 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2156 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
2158 return expand_downwards(vma, address);
2161 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2163 struct vm_area_struct *vma;
2164 unsigned long start;
2167 vma = find_vma(mm, addr);
2170 if (vma->vm_start <= addr)
2172 start = vma->vm_start;
2173 if (expand_stack_locked(vma, addr))
2175 if (vma->vm_flags & VM_LOCKED)
2176 populate_vma_page_range(vma, addr, start, NULL);
2182 * IA64 has some horrid mapping rules: it can expand both up and down,
2183 * but with various special rules.
2185 * We'll get rid of this architecture eventually, so the ugliness is
2189 static inline bool vma_expand_ok(struct vm_area_struct *vma, unsigned long addr)
2191 return REGION_NUMBER(addr) == REGION_NUMBER(vma->vm_start) &&
2192 REGION_OFFSET(addr) < RGN_MAP_LIMIT;
2196 * IA64 stacks grow down, but there's a special register backing store
2197 * that can grow up. Only sequentially, though, so the new address must
2200 static inline int vma_expand_up(struct vm_area_struct *vma, unsigned long addr)
2202 if (!vma_expand_ok(vma, addr))
2204 if (vma->vm_end != (addr & PAGE_MASK))
2206 return expand_upwards(vma, addr);
2209 static inline bool vma_expand_down(struct vm_area_struct *vma, unsigned long addr)
2211 if (!vma_expand_ok(vma, addr))
2213 return expand_downwards(vma, addr);
2216 #elif defined(CONFIG_STACK_GROWSUP)
2218 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2219 #define vma_expand_down(vma, addr) (-EFAULT)
2223 #define vma_expand_up(vma,addr) (-EFAULT)
2224 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2229 * expand_stack(): legacy interface for page faulting. Don't use unless
2232 * This is called with the mm locked for reading, drops the lock, takes
2233 * the lock for writing, tries to look up a vma again, expands it if
2234 * necessary, and downgrades the lock to reading again.
2236 * If no vma is found or it can't be expanded, it returns NULL and has
2239 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2241 struct vm_area_struct *vma, *prev;
2243 mmap_read_unlock(mm);
2244 if (mmap_write_lock_killable(mm))
2247 vma = find_vma_prev(mm, addr, &prev);
2248 if (vma && vma->vm_start <= addr)
2251 if (prev && !vma_expand_up(prev, addr)) {
2256 if (vma && !vma_expand_down(vma, addr))
2259 mmap_write_unlock(mm);
2263 mmap_write_downgrade(mm);
2268 * Ok - we have the memory areas we should free on a maple tree so release them,
2269 * and do the vma updates.
2271 * Called with the mm semaphore held.
2273 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2275 unsigned long nr_accounted = 0;
2276 struct vm_area_struct *vma;
2278 /* Update high watermark before we lower total_vm */
2279 update_hiwater_vm(mm);
2280 mas_for_each(mas, vma, ULONG_MAX) {
2281 long nrpages = vma_pages(vma);
2283 if (vma->vm_flags & VM_ACCOUNT)
2284 nr_accounted += nrpages;
2285 vm_stat_account(mm, vma->vm_flags, -nrpages);
2286 remove_vma(vma, false);
2288 vm_unacct_memory(nr_accounted);
2292 * Get rid of page table information in the indicated region.
2294 * Called with the mm semaphore held.
2296 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
2297 struct vm_area_struct *vma, struct vm_area_struct *prev,
2298 struct vm_area_struct *next,
2299 unsigned long start, unsigned long end, bool mm_wr_locked)
2301 struct mmu_gather tlb;
2304 tlb_gather_mmu(&tlb, mm);
2305 update_hiwater_rss(mm);
2306 unmap_vmas(&tlb, mt, vma, start, end, mm_wr_locked);
2307 free_pgtables(&tlb, mt, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2308 next ? next->vm_start : USER_PGTABLES_CEILING,
2310 tlb_finish_mmu(&tlb);
2314 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2315 * has already been checked or doesn't make sense to fail.
2316 * VMA Iterator will point to the end VMA.
2318 int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2319 unsigned long addr, int new_below)
2321 struct vma_prepare vp;
2322 struct vm_area_struct *new;
2325 WARN_ON(vma->vm_start >= addr);
2326 WARN_ON(vma->vm_end <= addr);
2328 if (vma->vm_ops && vma->vm_ops->may_split) {
2329 err = vma->vm_ops->may_split(vma, addr);
2334 new = vm_area_dup(vma);
2339 if (vma_iter_prealloc(vmi))
2345 new->vm_start = addr;
2346 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2349 err = vma_dup_policy(vma, new);
2353 err = anon_vma_clone(new, vma);
2358 get_file(new->vm_file);
2360 if (new->vm_ops && new->vm_ops->open)
2361 new->vm_ops->open(new);
2363 init_vma_prep(&vp, vma);
2366 vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2369 vma->vm_start = addr;
2370 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2375 /* vma_complete stores the new vma */
2376 vma_complete(&vp, vmi, vma->vm_mm);
2384 mpol_put(vma_policy(new));
2393 * Split a vma into two pieces at address 'addr', a new vma is allocated
2394 * either for the first part or the tail.
2396 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2397 unsigned long addr, int new_below)
2399 if (vma->vm_mm->map_count >= sysctl_max_map_count)
2402 return __split_vma(vmi, vma, addr, new_below);
2406 * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2407 * @vmi: The vma iterator
2408 * @vma: The starting vm_area_struct
2409 * @mm: The mm_struct
2410 * @start: The aligned start address to munmap.
2411 * @end: The aligned end address to munmap.
2412 * @uf: The userfaultfd list_head
2413 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on
2416 * Return: 0 on success and drops the lock if so directed, error and leaves the
2417 * lock held otherwise.
2420 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2421 struct mm_struct *mm, unsigned long start,
2422 unsigned long end, struct list_head *uf, bool unlock)
2424 struct vm_area_struct *prev, *next = NULL;
2425 struct maple_tree mt_detach;
2427 int error = -ENOMEM;
2428 unsigned long locked_vm = 0;
2429 MA_STATE(mas_detach, &mt_detach, 0, 0);
2430 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2431 mt_on_stack(mt_detach);
2434 * If we need to split any vma, do it now to save pain later.
2436 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2437 * unmapped vm_area_struct will remain in use: so lower split_vma
2438 * places tmp vma above, and higher split_vma places tmp vma below.
2441 /* Does it split the first one? */
2442 if (start > vma->vm_start) {
2445 * Make sure that map_count on return from munmap() will
2446 * not exceed its limit; but let map_count go just above
2447 * its limit temporarily, to help free resources as expected.
2449 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2450 goto map_count_exceeded;
2452 error = __split_vma(vmi, vma, start, 0);
2454 goto start_split_failed;
2456 vma = vma_iter_load(vmi);
2459 prev = vma_prev(vmi);
2460 if (unlikely((!prev)))
2461 vma_iter_set(vmi, start);
2464 * Detach a range of VMAs from the mm. Using next as a temp variable as
2465 * it is always overwritten.
2467 for_each_vma_range(*vmi, next, end) {
2468 /* Does it split the end? */
2469 if (next->vm_end > end) {
2470 error = __split_vma(vmi, next, end, 0);
2472 goto end_split_failed;
2474 vma_start_write(next);
2475 mas_set_range(&mas_detach, next->vm_start, next->vm_end - 1);
2476 error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2478 goto munmap_gather_failed;
2479 vma_mark_detached(next, true);
2480 if (next->vm_flags & VM_LOCKED)
2481 locked_vm += vma_pages(next);
2486 * If userfaultfd_unmap_prep returns an error the vmas
2487 * will remain split, but userland will get a
2488 * highly unexpected error anyway. This is no
2489 * different than the case where the first of the two
2490 * __split_vma fails, but we don't undo the first
2491 * split, despite we could. This is unlikely enough
2492 * failure that it's not worth optimizing it for.
2494 error = userfaultfd_unmap_prep(next, start, end, uf);
2497 goto userfaultfd_error;
2499 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2500 BUG_ON(next->vm_start < start);
2501 BUG_ON(next->vm_start > end);
2505 if (vma_iter_end(vmi) > end)
2506 next = vma_iter_load(vmi);
2509 next = vma_next(vmi);
2511 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2512 /* Make sure no VMAs are about to be lost. */
2514 MA_STATE(test, &mt_detach, start, end - 1);
2515 struct vm_area_struct *vma_mas, *vma_test;
2518 vma_iter_set(vmi, start);
2520 vma_test = mas_find(&test, end - 1);
2521 for_each_vma_range(*vmi, vma_mas, end) {
2522 BUG_ON(vma_mas != vma_test);
2524 vma_test = mas_next(&test, end - 1);
2527 BUG_ON(count != test_count);
2530 vma_iter_set(vmi, start);
2531 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2533 goto clear_tree_failed;
2535 /* Point of no return */
2536 mm->locked_vm -= locked_vm;
2537 mm->map_count -= count;
2539 mmap_write_downgrade(mm);
2542 * We can free page tables without write-locking mmap_lock because VMAs
2543 * were isolated before we downgraded mmap_lock.
2545 unmap_region(mm, &mt_detach, vma, prev, next, start, end, !unlock);
2546 /* Statistics and freeing VMAs */
2547 mas_set(&mas_detach, start);
2548 remove_mt(mm, &mas_detach);
2551 mmap_read_unlock(mm);
2553 __mt_destroy(&mt_detach);
2558 munmap_gather_failed:
2560 mas_set(&mas_detach, 0);
2561 mas_for_each(&mas_detach, next, end)
2562 vma_mark_detached(next, false);
2564 __mt_destroy(&mt_detach);
2572 * do_vmi_munmap() - munmap a given range.
2573 * @vmi: The vma iterator
2574 * @mm: The mm_struct
2575 * @start: The start address to munmap
2576 * @len: The length of the range to munmap
2577 * @uf: The userfaultfd list_head
2578 * @unlock: set to true if the user wants to drop the mmap_lock on success
2580 * This function takes a @mas that is either pointing to the previous VMA or set
2581 * to MA_START and sets it up to remove the mapping(s). The @len will be
2582 * aligned and any arch_unmap work will be preformed.
2584 * Return: 0 on success and drops the lock if so directed, error and leaves the
2585 * lock held otherwise.
2587 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2588 unsigned long start, size_t len, struct list_head *uf,
2592 struct vm_area_struct *vma;
2594 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2597 end = start + PAGE_ALIGN(len);
2601 /* arch_unmap() might do unmaps itself. */
2602 arch_unmap(mm, start, end);
2604 /* Find the first overlapping VMA */
2605 vma = vma_find(vmi, end);
2608 mmap_write_unlock(mm);
2612 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2615 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2616 * @mm: The mm_struct
2617 * @start: The start address to munmap
2618 * @len: The length to be munmapped.
2619 * @uf: The userfaultfd list_head
2621 * Return: 0 on success, error otherwise.
2623 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2624 struct list_head *uf)
2626 VMA_ITERATOR(vmi, mm, start);
2628 return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2631 unsigned long mmap_region(struct file *file, unsigned long addr,
2632 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2633 struct list_head *uf)
2635 struct mm_struct *mm = current->mm;
2636 struct vm_area_struct *vma = NULL;
2637 struct vm_area_struct *next, *prev, *merge;
2638 pgoff_t pglen = len >> PAGE_SHIFT;
2639 unsigned long charged = 0;
2640 unsigned long end = addr + len;
2641 unsigned long merge_start = addr, merge_end = end;
2644 VMA_ITERATOR(vmi, mm, addr);
2646 /* Check against address space limit. */
2647 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2648 unsigned long nr_pages;
2651 * MAP_FIXED may remove pages of mappings that intersects with
2652 * requested mapping. Account for the pages it would unmap.
2654 nr_pages = count_vma_pages_range(mm, addr, end);
2656 if (!may_expand_vm(mm, vm_flags,
2657 (len >> PAGE_SHIFT) - nr_pages))
2661 /* Unmap any existing mapping in the area */
2662 if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2666 * Private writable mapping: check memory availability
2668 if (accountable_mapping(file, vm_flags)) {
2669 charged = len >> PAGE_SHIFT;
2670 if (security_vm_enough_memory_mm(mm, charged))
2672 vm_flags |= VM_ACCOUNT;
2675 next = vma_next(&vmi);
2676 prev = vma_prev(&vmi);
2677 if (vm_flags & VM_SPECIAL)
2680 /* Attempt to expand an old mapping */
2682 if (next && next->vm_start == end && !vma_policy(next) &&
2683 can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2684 NULL_VM_UFFD_CTX, NULL)) {
2685 merge_end = next->vm_end;
2687 vm_pgoff = next->vm_pgoff - pglen;
2691 if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2692 (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2693 pgoff, vma->vm_userfaultfd_ctx, NULL) :
2694 can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2695 NULL_VM_UFFD_CTX, NULL))) {
2696 merge_start = prev->vm_start;
2698 vm_pgoff = prev->vm_pgoff;
2702 /* Actually expand, if possible */
2704 !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2705 khugepaged_enter_vma(vma, vm_flags);
2711 vma_iter_next_range(&vmi);
2714 * Determine the object being mapped and call the appropriate
2715 * specific mapper. the address has already been validated, but
2716 * not unmapped, but the maps are removed from the list.
2718 vma = vm_area_alloc(mm);
2724 vma_iter_set(&vmi, addr);
2725 vma->vm_start = addr;
2727 vm_flags_init(vma, vm_flags);
2728 vma->vm_page_prot = vm_get_page_prot(vm_flags);
2729 vma->vm_pgoff = pgoff;
2732 if (vm_flags & VM_SHARED) {
2733 error = mapping_map_writable(file->f_mapping);
2738 vma->vm_file = get_file(file);
2739 error = call_mmap(file, vma);
2741 goto unmap_and_free_vma;
2744 * Expansion is handled above, merging is handled below.
2745 * Drivers should not alter the address of the VMA.
2748 if (WARN_ON((addr != vma->vm_start)))
2749 goto close_and_free_vma;
2751 vma_iter_set(&vmi, addr);
2753 * If vm_flags changed after call_mmap(), we should try merge
2754 * vma again as we may succeed this time.
2756 if (unlikely(vm_flags != vma->vm_flags && prev)) {
2757 merge = vma_merge(&vmi, mm, prev, vma->vm_start,
2758 vma->vm_end, vma->vm_flags, NULL,
2759 vma->vm_file, vma->vm_pgoff, NULL,
2760 NULL_VM_UFFD_CTX, NULL);
2763 * ->mmap() can change vma->vm_file and fput
2764 * the original file. So fput the vma->vm_file
2765 * here or we would add an extra fput for file
2766 * and cause general protection fault
2772 /* Update vm_flags to pick up the change. */
2773 vm_flags = vma->vm_flags;
2774 goto unmap_writable;
2778 vm_flags = vma->vm_flags;
2779 } else if (vm_flags & VM_SHARED) {
2780 error = shmem_zero_setup(vma);
2784 vma_set_anonymous(vma);
2787 if (map_deny_write_exec(vma, vma->vm_flags)) {
2789 goto close_and_free_vma;
2792 /* Allow architectures to sanity-check the vm_flags */
2794 if (!arch_validate_flags(vma->vm_flags))
2795 goto close_and_free_vma;
2798 if (vma_iter_prealloc(&vmi))
2799 goto close_and_free_vma;
2801 /* Lock the VMA since it is modified after insertion into VMA tree */
2802 vma_start_write(vma);
2803 vma_iter_store(&vmi, vma);
2806 i_mmap_lock_write(vma->vm_file->f_mapping);
2807 if (vma->vm_flags & VM_SHARED)
2808 mapping_allow_writable(vma->vm_file->f_mapping);
2810 flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2811 vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2812 flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2813 i_mmap_unlock_write(vma->vm_file->f_mapping);
2817 * vma_merge() calls khugepaged_enter_vma() either, the below
2818 * call covers the non-merge case.
2820 khugepaged_enter_vma(vma, vma->vm_flags);
2822 /* Once vma denies write, undo our temporary denial count */
2824 if (file && vm_flags & VM_SHARED)
2825 mapping_unmap_writable(file->f_mapping);
2826 file = vma->vm_file;
2829 perf_event_mmap(vma);
2831 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2832 if (vm_flags & VM_LOCKED) {
2833 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2834 is_vm_hugetlb_page(vma) ||
2835 vma == get_gate_vma(current->mm))
2836 vm_flags_clear(vma, VM_LOCKED_MASK);
2838 mm->locked_vm += (len >> PAGE_SHIFT);
2845 * New (or expanded) vma always get soft dirty status.
2846 * Otherwise user-space soft-dirty page tracker won't
2847 * be able to distinguish situation when vma area unmapped,
2848 * then new mapped in-place (which must be aimed as
2849 * a completely new data area).
2851 vm_flags_set(vma, VM_SOFTDIRTY);
2853 vma_set_page_prot(vma);
2859 if (file && vma->vm_ops && vma->vm_ops->close)
2860 vma->vm_ops->close(vma);
2862 if (file || vma->vm_file) {
2865 vma->vm_file = NULL;
2867 /* Undo any partial mapping done by a device driver. */
2868 unmap_region(mm, &mm->mm_mt, vma, prev, next, vma->vm_start,
2871 if (file && (vm_flags & VM_SHARED))
2872 mapping_unmap_writable(file->f_mapping);
2877 vm_unacct_memory(charged);
2882 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
2885 struct mm_struct *mm = current->mm;
2887 VMA_ITERATOR(vmi, mm, start);
2889 if (mmap_write_lock_killable(mm))
2892 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
2894 mmap_write_unlock(mm);
2896 userfaultfd_unmap_complete(mm, &uf);
2900 int vm_munmap(unsigned long start, size_t len)
2902 return __vm_munmap(start, len, false);
2904 EXPORT_SYMBOL(vm_munmap);
2906 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2908 addr = untagged_addr(addr);
2909 return __vm_munmap(addr, len, true);
2914 * Emulation of deprecated remap_file_pages() syscall.
2916 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2917 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2920 struct mm_struct *mm = current->mm;
2921 struct vm_area_struct *vma;
2922 unsigned long populate = 0;
2923 unsigned long ret = -EINVAL;
2926 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
2927 current->comm, current->pid);
2931 start = start & PAGE_MASK;
2932 size = size & PAGE_MASK;
2934 if (start + size <= start)
2937 /* Does pgoff wrap? */
2938 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2941 if (mmap_write_lock_killable(mm))
2944 vma = vma_lookup(mm, start);
2946 if (!vma || !(vma->vm_flags & VM_SHARED))
2949 if (start + size > vma->vm_end) {
2950 VMA_ITERATOR(vmi, mm, vma->vm_end);
2951 struct vm_area_struct *next, *prev = vma;
2953 for_each_vma_range(vmi, next, start + size) {
2954 /* hole between vmas ? */
2955 if (next->vm_start != prev->vm_end)
2958 if (next->vm_file != vma->vm_file)
2961 if (next->vm_flags != vma->vm_flags)
2964 if (start + size <= next->vm_end)
2974 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2975 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2976 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2978 flags &= MAP_NONBLOCK;
2979 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2980 if (vma->vm_flags & VM_LOCKED)
2981 flags |= MAP_LOCKED;
2983 file = get_file(vma->vm_file);
2984 ret = do_mmap(vma->vm_file, start, size,
2985 prot, flags, pgoff, &populate, NULL);
2988 mmap_write_unlock(mm);
2990 mm_populate(ret, populate);
2991 if (!IS_ERR_VALUE(ret))
2997 * do_vma_munmap() - Unmap a full or partial vma.
2998 * @vmi: The vma iterator pointing at the vma
2999 * @vma: The first vma to be munmapped
3000 * @start: the start of the address to unmap
3001 * @end: The end of the address to unmap
3002 * @uf: The userfaultfd list_head
3003 * @unlock: Drop the lock on success
3005 * unmaps a VMA mapping when the vma iterator is already in position.
3006 * Does not handle alignment.
3008 * Return: 0 on success drops the lock of so directed, error on failure and will
3009 * still hold the lock.
3011 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3012 unsigned long start, unsigned long end, struct list_head *uf,
3015 struct mm_struct *mm = vma->vm_mm;
3017 arch_unmap(mm, start, end);
3018 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3022 * do_brk_flags() - Increase the brk vma if the flags match.
3023 * @vmi: The vma iterator
3024 * @addr: The start address
3025 * @len: The length of the increase
3027 * @flags: The VMA Flags
3029 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags
3030 * do not match then create a new anonymous VMA. Eventually we may be able to
3031 * do some brk-specific accounting here.
3033 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3034 unsigned long addr, unsigned long len, unsigned long flags)
3036 struct mm_struct *mm = current->mm;
3037 struct vma_prepare vp;
3040 * Check against address space limits by the changed size
3041 * Note: This happens *after* clearing old mappings in some code paths.
3043 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3044 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3047 if (mm->map_count > sysctl_max_map_count)
3050 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3054 * Expand the existing vma if possible; Note that singular lists do not
3055 * occur after forking, so the expand will only happen on new VMAs.
3057 if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3058 can_vma_merge_after(vma, flags, NULL, NULL,
3059 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3060 if (vma_iter_prealloc(vmi))
3063 init_vma_prep(&vp, vma);
3065 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3066 vma->vm_end = addr + len;
3067 vm_flags_set(vma, VM_SOFTDIRTY);
3068 vma_iter_store(vmi, vma);
3070 vma_complete(&vp, vmi, mm);
3071 khugepaged_enter_vma(vma, flags);
3075 /* create a vma struct for an anonymous mapping */
3076 vma = vm_area_alloc(mm);
3080 vma_set_anonymous(vma);
3081 vma->vm_start = addr;
3082 vma->vm_end = addr + len;
3083 vma->vm_pgoff = addr >> PAGE_SHIFT;
3084 vm_flags_init(vma, flags);
3085 vma->vm_page_prot = vm_get_page_prot(flags);
3086 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3087 goto mas_store_fail;
3093 perf_event_mmap(vma);
3094 mm->total_vm += len >> PAGE_SHIFT;
3095 mm->data_vm += len >> PAGE_SHIFT;
3096 if (flags & VM_LOCKED)
3097 mm->locked_vm += (len >> PAGE_SHIFT);
3098 vm_flags_set(vma, VM_SOFTDIRTY);
3104 vm_unacct_memory(len >> PAGE_SHIFT);
3108 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3110 struct mm_struct *mm = current->mm;
3111 struct vm_area_struct *vma = NULL;
3116 VMA_ITERATOR(vmi, mm, addr);
3118 len = PAGE_ALIGN(request);
3124 if (mmap_write_lock_killable(mm))
3127 /* Until we need other flags, refuse anything except VM_EXEC. */
3128 if ((flags & (~VM_EXEC)) != 0)
3131 ret = check_brk_limits(addr, len);
3135 ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3139 vma = vma_prev(&vmi);
3140 ret = do_brk_flags(&vmi, vma, addr, len, flags);
3141 populate = ((mm->def_flags & VM_LOCKED) != 0);
3142 mmap_write_unlock(mm);
3143 userfaultfd_unmap_complete(mm, &uf);
3144 if (populate && !ret)
3145 mm_populate(addr, len);
3150 mmap_write_unlock(mm);
3153 EXPORT_SYMBOL(vm_brk_flags);
3155 int vm_brk(unsigned long addr, unsigned long len)
3157 return vm_brk_flags(addr, len, 0);
3159 EXPORT_SYMBOL(vm_brk);
3161 /* Release all mmaps. */
3162 void exit_mmap(struct mm_struct *mm)
3164 struct mmu_gather tlb;
3165 struct vm_area_struct *vma;
3166 unsigned long nr_accounted = 0;
3167 MA_STATE(mas, &mm->mm_mt, 0, 0);
3170 /* mm's last user has gone, and its about to be pulled down */
3171 mmu_notifier_release(mm);
3176 vma = mas_find(&mas, ULONG_MAX);
3178 /* Can happen if dup_mmap() received an OOM */
3179 mmap_read_unlock(mm);
3185 tlb_gather_mmu_fullmm(&tlb, mm);
3186 /* update_hiwater_rss(mm) here? but nobody should be looking */
3187 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3188 unmap_vmas(&tlb, &mm->mm_mt, vma, 0, ULONG_MAX, false);
3189 mmap_read_unlock(mm);
3192 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3193 * because the memory has been already freed.
3195 set_bit(MMF_OOM_SKIP, &mm->flags);
3196 mmap_write_lock(mm);
3197 mt_clear_in_rcu(&mm->mm_mt);
3198 free_pgtables(&tlb, &mm->mm_mt, vma, FIRST_USER_ADDRESS,
3199 USER_PGTABLES_CEILING, true);
3200 tlb_finish_mmu(&tlb);
3203 * Walk the list again, actually closing and freeing it, with preemption
3204 * enabled, without holding any MM locks besides the unreachable
3208 if (vma->vm_flags & VM_ACCOUNT)
3209 nr_accounted += vma_pages(vma);
3210 remove_vma(vma, true);
3213 } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
3215 BUG_ON(count != mm->map_count);
3217 trace_exit_mmap(mm);
3218 __mt_destroy(&mm->mm_mt);
3219 mmap_write_unlock(mm);
3220 vm_unacct_memory(nr_accounted);
3223 /* Insert vm structure into process list sorted by address
3224 * and into the inode's i_mmap tree. If vm_file is non-NULL
3225 * then i_mmap_rwsem is taken here.
3227 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3229 unsigned long charged = vma_pages(vma);
3232 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3235 if ((vma->vm_flags & VM_ACCOUNT) &&
3236 security_vm_enough_memory_mm(mm, charged))
3240 * The vm_pgoff of a purely anonymous vma should be irrelevant
3241 * until its first write fault, when page's anon_vma and index
3242 * are set. But now set the vm_pgoff it will almost certainly
3243 * end up with (unless mremap moves it elsewhere before that
3244 * first wfault), so /proc/pid/maps tells a consistent story.
3246 * By setting it to reflect the virtual start address of the
3247 * vma, merges and splits can happen in a seamless way, just
3248 * using the existing file pgoff checks and manipulations.
3249 * Similarly in do_mmap and in do_brk_flags.
3251 if (vma_is_anonymous(vma)) {
3252 BUG_ON(vma->anon_vma);
3253 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3256 if (vma_link(mm, vma)) {
3257 vm_unacct_memory(charged);
3265 * Copy the vma structure to a new location in the same mm,
3266 * prior to moving page table entries, to effect an mremap move.
3268 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3269 unsigned long addr, unsigned long len, pgoff_t pgoff,
3270 bool *need_rmap_locks)
3272 struct vm_area_struct *vma = *vmap;
3273 unsigned long vma_start = vma->vm_start;
3274 struct mm_struct *mm = vma->vm_mm;
3275 struct vm_area_struct *new_vma, *prev;
3276 bool faulted_in_anon_vma = true;
3277 VMA_ITERATOR(vmi, mm, addr);
3280 * If anonymous vma has not yet been faulted, update new pgoff
3281 * to match new location, to increase its chance of merging.
3283 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3284 pgoff = addr >> PAGE_SHIFT;
3285 faulted_in_anon_vma = false;
3288 new_vma = find_vma_prev(mm, addr, &prev);
3289 if (new_vma && new_vma->vm_start < addr + len)
3290 return NULL; /* should never get here */
3292 new_vma = vma_merge(&vmi, mm, prev, addr, addr + len, vma->vm_flags,
3293 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3294 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3297 * Source vma may have been merged into new_vma
3299 if (unlikely(vma_start >= new_vma->vm_start &&
3300 vma_start < new_vma->vm_end)) {
3302 * The only way we can get a vma_merge with
3303 * self during an mremap is if the vma hasn't
3304 * been faulted in yet and we were allowed to
3305 * reset the dst vma->vm_pgoff to the
3306 * destination address of the mremap to allow
3307 * the merge to happen. mremap must change the
3308 * vm_pgoff linearity between src and dst vmas
3309 * (in turn preventing a vma_merge) to be
3310 * safe. It is only safe to keep the vm_pgoff
3311 * linear if there are no pages mapped yet.
3313 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3314 *vmap = vma = new_vma;
3316 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3318 new_vma = vm_area_dup(vma);
3321 new_vma->vm_start = addr;
3322 new_vma->vm_end = addr + len;
3323 new_vma->vm_pgoff = pgoff;
3324 if (vma_dup_policy(vma, new_vma))
3326 if (anon_vma_clone(new_vma, vma))
3327 goto out_free_mempol;
3328 if (new_vma->vm_file)
3329 get_file(new_vma->vm_file);
3330 if (new_vma->vm_ops && new_vma->vm_ops->open)
3331 new_vma->vm_ops->open(new_vma);
3332 vma_start_write(new_vma);
3333 if (vma_link(mm, new_vma))
3335 *need_rmap_locks = false;
3340 if (new_vma->vm_ops && new_vma->vm_ops->close)
3341 new_vma->vm_ops->close(new_vma);
3343 if (new_vma->vm_file)
3344 fput(new_vma->vm_file);
3346 unlink_anon_vmas(new_vma);
3348 mpol_put(vma_policy(new_vma));
3350 vm_area_free(new_vma);
3356 * Return true if the calling process may expand its vm space by the passed
3359 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3361 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3364 if (is_data_mapping(flags) &&
3365 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3366 /* Workaround for Valgrind */
3367 if (rlimit(RLIMIT_DATA) == 0 &&
3368 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3371 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3372 current->comm, current->pid,
3373 (mm->data_vm + npages) << PAGE_SHIFT,
3374 rlimit(RLIMIT_DATA),
3375 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3377 if (!ignore_rlimit_data)
3384 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3386 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3388 if (is_exec_mapping(flags))
3389 mm->exec_vm += npages;
3390 else if (is_stack_mapping(flags))
3391 mm->stack_vm += npages;
3392 else if (is_data_mapping(flags))
3393 mm->data_vm += npages;
3396 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3399 * Having a close hook prevents vma merging regardless of flags.
3401 static void special_mapping_close(struct vm_area_struct *vma)
3405 static const char *special_mapping_name(struct vm_area_struct *vma)
3407 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3410 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3412 struct vm_special_mapping *sm = new_vma->vm_private_data;
3414 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3418 return sm->mremap(sm, new_vma);
3423 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3426 * Forbid splitting special mappings - kernel has expectations over
3427 * the number of pages in mapping. Together with VM_DONTEXPAND
3428 * the size of vma should stay the same over the special mapping's
3434 static const struct vm_operations_struct special_mapping_vmops = {
3435 .close = special_mapping_close,
3436 .fault = special_mapping_fault,
3437 .mremap = special_mapping_mremap,
3438 .name = special_mapping_name,
3439 /* vDSO code relies that VVAR can't be accessed remotely */
3441 .may_split = special_mapping_split,
3444 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3445 .close = special_mapping_close,
3446 .fault = special_mapping_fault,
3449 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3451 struct vm_area_struct *vma = vmf->vma;
3453 struct page **pages;
3455 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3456 pages = vma->vm_private_data;
3458 struct vm_special_mapping *sm = vma->vm_private_data;
3461 return sm->fault(sm, vmf->vma, vmf);
3466 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3470 struct page *page = *pages;
3476 return VM_FAULT_SIGBUS;
3479 static struct vm_area_struct *__install_special_mapping(
3480 struct mm_struct *mm,
3481 unsigned long addr, unsigned long len,
3482 unsigned long vm_flags, void *priv,
3483 const struct vm_operations_struct *ops)
3486 struct vm_area_struct *vma;
3488 vma = vm_area_alloc(mm);
3489 if (unlikely(vma == NULL))
3490 return ERR_PTR(-ENOMEM);
3492 vma->vm_start = addr;
3493 vma->vm_end = addr + len;
3495 vm_flags_init(vma, (vm_flags | mm->def_flags |
3496 VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3497 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3500 vma->vm_private_data = priv;
3502 ret = insert_vm_struct(mm, vma);
3506 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3508 perf_event_mmap(vma);
3514 return ERR_PTR(ret);
3517 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3518 const struct vm_special_mapping *sm)
3520 return vma->vm_private_data == sm &&
3521 (vma->vm_ops == &special_mapping_vmops ||
3522 vma->vm_ops == &legacy_special_mapping_vmops);
3526 * Called with mm->mmap_lock held for writing.
3527 * Insert a new vma covering the given region, with the given flags.
3528 * Its pages are supplied by the given array of struct page *.
3529 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3530 * The region past the last page supplied will always produce SIGBUS.
3531 * The array pointer and the pages it points to are assumed to stay alive
3532 * for as long as this mapping might exist.
3534 struct vm_area_struct *_install_special_mapping(
3535 struct mm_struct *mm,
3536 unsigned long addr, unsigned long len,
3537 unsigned long vm_flags, const struct vm_special_mapping *spec)
3539 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3540 &special_mapping_vmops);
3543 int install_special_mapping(struct mm_struct *mm,
3544 unsigned long addr, unsigned long len,
3545 unsigned long vm_flags, struct page **pages)
3547 struct vm_area_struct *vma = __install_special_mapping(
3548 mm, addr, len, vm_flags, (void *)pages,
3549 &legacy_special_mapping_vmops);
3551 return PTR_ERR_OR_ZERO(vma);
3554 static DEFINE_MUTEX(mm_all_locks_mutex);
3556 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3558 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3560 * The LSB of head.next can't change from under us
3561 * because we hold the mm_all_locks_mutex.
3563 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3565 * We can safely modify head.next after taking the
3566 * anon_vma->root->rwsem. If some other vma in this mm shares
3567 * the same anon_vma we won't take it again.
3569 * No need of atomic instructions here, head.next
3570 * can't change from under us thanks to the
3571 * anon_vma->root->rwsem.
3573 if (__test_and_set_bit(0, (unsigned long *)
3574 &anon_vma->root->rb_root.rb_root.rb_node))
3579 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3581 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3583 * AS_MM_ALL_LOCKS can't change from under us because
3584 * we hold the mm_all_locks_mutex.
3586 * Operations on ->flags have to be atomic because
3587 * even if AS_MM_ALL_LOCKS is stable thanks to the
3588 * mm_all_locks_mutex, there may be other cpus
3589 * changing other bitflags in parallel to us.
3591 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3593 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3598 * This operation locks against the VM for all pte/vma/mm related
3599 * operations that could ever happen on a certain mm. This includes
3600 * vmtruncate, try_to_unmap, and all page faults.
3602 * The caller must take the mmap_lock in write mode before calling
3603 * mm_take_all_locks(). The caller isn't allowed to release the
3604 * mmap_lock until mm_drop_all_locks() returns.
3606 * mmap_lock in write mode is required in order to block all operations
3607 * that could modify pagetables and free pages without need of
3608 * altering the vma layout. It's also needed in write mode to avoid new
3609 * anon_vmas to be associated with existing vmas.
3611 * A single task can't take more than one mm_take_all_locks() in a row
3612 * or it would deadlock.
3614 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3615 * mapping->flags avoid to take the same lock twice, if more than one
3616 * vma in this mm is backed by the same anon_vma or address_space.
3618 * We take locks in following order, accordingly to comment at beginning
3620 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3622 * - all vmas marked locked
3623 * - all i_mmap_rwsem locks;
3624 * - all anon_vma->rwseml
3626 * We can take all locks within these types randomly because the VM code
3627 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3628 * mm_all_locks_mutex.
3630 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3631 * that may have to take thousand of locks.
3633 * mm_take_all_locks() can fail if it's interrupted by signals.
3635 int mm_take_all_locks(struct mm_struct *mm)
3637 struct vm_area_struct *vma;
3638 struct anon_vma_chain *avc;
3639 MA_STATE(mas, &mm->mm_mt, 0, 0);
3641 mmap_assert_write_locked(mm);
3643 mutex_lock(&mm_all_locks_mutex);
3645 mas_for_each(&mas, vma, ULONG_MAX) {
3646 if (signal_pending(current))
3648 vma_start_write(vma);
3652 mas_for_each(&mas, vma, ULONG_MAX) {
3653 if (signal_pending(current))
3655 if (vma->vm_file && vma->vm_file->f_mapping &&
3656 is_vm_hugetlb_page(vma))
3657 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3661 mas_for_each(&mas, vma, ULONG_MAX) {
3662 if (signal_pending(current))
3664 if (vma->vm_file && vma->vm_file->f_mapping &&
3665 !is_vm_hugetlb_page(vma))
3666 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3670 mas_for_each(&mas, vma, ULONG_MAX) {
3671 if (signal_pending(current))
3674 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3675 vm_lock_anon_vma(mm, avc->anon_vma);
3681 mm_drop_all_locks(mm);
3685 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3687 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3689 * The LSB of head.next can't change to 0 from under
3690 * us because we hold the mm_all_locks_mutex.
3692 * We must however clear the bitflag before unlocking
3693 * the vma so the users using the anon_vma->rb_root will
3694 * never see our bitflag.
3696 * No need of atomic instructions here, head.next
3697 * can't change from under us until we release the
3698 * anon_vma->root->rwsem.
3700 if (!__test_and_clear_bit(0, (unsigned long *)
3701 &anon_vma->root->rb_root.rb_root.rb_node))
3703 anon_vma_unlock_write(anon_vma);
3707 static void vm_unlock_mapping(struct address_space *mapping)
3709 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3711 * AS_MM_ALL_LOCKS can't change to 0 from under us
3712 * because we hold the mm_all_locks_mutex.
3714 i_mmap_unlock_write(mapping);
3715 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3722 * The mmap_lock cannot be released by the caller until
3723 * mm_drop_all_locks() returns.
3725 void mm_drop_all_locks(struct mm_struct *mm)
3727 struct vm_area_struct *vma;
3728 struct anon_vma_chain *avc;
3729 MA_STATE(mas, &mm->mm_mt, 0, 0);
3731 mmap_assert_write_locked(mm);
3732 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3734 mas_for_each(&mas, vma, ULONG_MAX) {
3736 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3737 vm_unlock_anon_vma(avc->anon_vma);
3738 if (vma->vm_file && vma->vm_file->f_mapping)
3739 vm_unlock_mapping(vma->vm_file->f_mapping);
3741 vma_end_write_all(mm);
3743 mutex_unlock(&mm_all_locks_mutex);
3747 * initialise the percpu counter for VM
3749 void __init mmap_init(void)
3753 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3758 * Initialise sysctl_user_reserve_kbytes.
3760 * This is intended to prevent a user from starting a single memory hogging
3761 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3764 * The default value is min(3% of free memory, 128MB)
3765 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3767 static int init_user_reserve(void)
3769 unsigned long free_kbytes;
3771 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3773 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3776 subsys_initcall(init_user_reserve);
3779 * Initialise sysctl_admin_reserve_kbytes.
3781 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3782 * to log in and kill a memory hogging process.
3784 * Systems with more than 256MB will reserve 8MB, enough to recover
3785 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3786 * only reserve 3% of free pages by default.
3788 static int init_admin_reserve(void)
3790 unsigned long free_kbytes;
3792 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3794 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3797 subsys_initcall(init_admin_reserve);
3800 * Reinititalise user and admin reserves if memory is added or removed.
3802 * The default user reserve max is 128MB, and the default max for the
3803 * admin reserve is 8MB. These are usually, but not always, enough to
3804 * enable recovery from a memory hogging process using login/sshd, a shell,
3805 * and tools like top. It may make sense to increase or even disable the
3806 * reserve depending on the existence of swap or variations in the recovery
3807 * tools. So, the admin may have changed them.
3809 * If memory is added and the reserves have been eliminated or increased above
3810 * the default max, then we'll trust the admin.
3812 * If memory is removed and there isn't enough free memory, then we
3813 * need to reset the reserves.
3815 * Otherwise keep the reserve set by the admin.
3817 static int reserve_mem_notifier(struct notifier_block *nb,
3818 unsigned long action, void *data)
3820 unsigned long tmp, free_kbytes;
3824 /* Default max is 128MB. Leave alone if modified by operator. */
3825 tmp = sysctl_user_reserve_kbytes;
3826 if (0 < tmp && tmp < (1UL << 17))
3827 init_user_reserve();
3829 /* Default max is 8MB. Leave alone if modified by operator. */
3830 tmp = sysctl_admin_reserve_kbytes;
3831 if (0 < tmp && tmp < (1UL << 13))
3832 init_admin_reserve();
3836 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3838 if (sysctl_user_reserve_kbytes > free_kbytes) {
3839 init_user_reserve();
3840 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3841 sysctl_user_reserve_kbytes);
3844 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3845 init_admin_reserve();
3846 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3847 sysctl_admin_reserve_kbytes);
3856 static int __meminit init_reserve_notifier(void)
3858 if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3859 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3863 subsys_initcall(init_reserve_notifier);