]> Git Repo - linux.git/blob - drivers/gpu/drm/vc4/vc4_crtc.c
Merge remote-tracking branch 'airlied/drm-next' into drm-misc-next
[linux.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 /*
2  * Copyright (C) 2015 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8
9 /**
10  * DOC: VC4 CRTC module
11  *
12  * In VC4, the Pixel Valve is what most closely corresponds to the
13  * DRM's concept of a CRTC.  The PV generates video timings from the
14  * encoder's clock plus its configuration.  It pulls scaled pixels from
15  * the HVS at that timing, and feeds it to the encoder.
16  *
17  * However, the DRM CRTC also collects the configuration of all the
18  * DRM planes attached to it.  As a result, the CRTC is also
19  * responsible for writing the display list for the HVS channel that
20  * the CRTC will use.
21  *
22  * The 2835 has 3 different pixel valves.  pv0 in the audio power
23  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
24  * image domain can feed either HDMI or the SDTV controller.  The
25  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
26  * SDTV, etc.) according to which output type is chosen in the mux.
27  *
28  * For power management, the pixel valve's registers are all clocked
29  * by the AXI clock, while the timings and FIFOs make use of the
30  * output-specific clock.  Since the encoders also directly consume
31  * the CPRMAN clocks, and know what timings they need, they are the
32  * ones that set the clock.
33  */
34
35 #include "drm_atomic.h"
36 #include "drm_atomic_helper.h"
37 #include "drm_crtc_helper.h"
38 #include "linux/clk.h"
39 #include "drm_fb_cma_helper.h"
40 #include "linux/component.h"
41 #include "linux/of_device.h"
42 #include "vc4_drv.h"
43 #include "vc4_regs.h"
44
45 struct vc4_crtc {
46         struct drm_crtc base;
47         const struct vc4_crtc_data *data;
48         void __iomem *regs;
49
50         /* Timestamp at start of vblank irq - unaffected by lock delays. */
51         ktime_t t_vblank;
52
53         /* Which HVS channel we're using for our CRTC. */
54         int channel;
55
56         u8 lut_r[256];
57         u8 lut_g[256];
58         u8 lut_b[256];
59         /* Size in pixels of the COB memory allocated to this CRTC. */
60         u32 cob_size;
61
62         struct drm_pending_vblank_event *event;
63 };
64
65 struct vc4_crtc_state {
66         struct drm_crtc_state base;
67         /* Dlist area for this CRTC configuration. */
68         struct drm_mm_node mm;
69 };
70
71 static inline struct vc4_crtc *
72 to_vc4_crtc(struct drm_crtc *crtc)
73 {
74         return (struct vc4_crtc *)crtc;
75 }
76
77 static inline struct vc4_crtc_state *
78 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
79 {
80         return (struct vc4_crtc_state *)crtc_state;
81 }
82
83 struct vc4_crtc_data {
84         /* Which channel of the HVS this pixelvalve sources from. */
85         int hvs_channel;
86
87         enum vc4_encoder_type encoder_types[4];
88 };
89
90 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
91 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
92
93 #define CRTC_REG(reg) { reg, #reg }
94 static const struct {
95         u32 reg;
96         const char *name;
97 } crtc_regs[] = {
98         CRTC_REG(PV_CONTROL),
99         CRTC_REG(PV_V_CONTROL),
100         CRTC_REG(PV_VSYNCD_EVEN),
101         CRTC_REG(PV_HORZA),
102         CRTC_REG(PV_HORZB),
103         CRTC_REG(PV_VERTA),
104         CRTC_REG(PV_VERTB),
105         CRTC_REG(PV_VERTA_EVEN),
106         CRTC_REG(PV_VERTB_EVEN),
107         CRTC_REG(PV_INTEN),
108         CRTC_REG(PV_INTSTAT),
109         CRTC_REG(PV_STAT),
110         CRTC_REG(PV_HACT_ACT),
111 };
112
113 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
114 {
115         int i;
116
117         for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
118                 DRM_INFO("0x%04x (%s): 0x%08x\n",
119                          crtc_regs[i].reg, crtc_regs[i].name,
120                          CRTC_READ(crtc_regs[i].reg));
121         }
122 }
123
124 #ifdef CONFIG_DEBUG_FS
125 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
126 {
127         struct drm_info_node *node = (struct drm_info_node *)m->private;
128         struct drm_device *dev = node->minor->dev;
129         int crtc_index = (uintptr_t)node->info_ent->data;
130         struct drm_crtc *crtc;
131         struct vc4_crtc *vc4_crtc;
132         int i;
133
134         i = 0;
135         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
136                 if (i == crtc_index)
137                         break;
138                 i++;
139         }
140         if (!crtc)
141                 return 0;
142         vc4_crtc = to_vc4_crtc(crtc);
143
144         for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
145                 seq_printf(m, "%s (0x%04x): 0x%08x\n",
146                            crtc_regs[i].name, crtc_regs[i].reg,
147                            CRTC_READ(crtc_regs[i].reg));
148         }
149
150         return 0;
151 }
152 #endif
153
154 bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
155                              bool in_vblank_irq, int *vpos, int *hpos,
156                              ktime_t *stime, ktime_t *etime,
157                              const struct drm_display_mode *mode)
158 {
159         struct vc4_dev *vc4 = to_vc4_dev(dev);
160         struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
161         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
162         u32 val;
163         int fifo_lines;
164         int vblank_lines;
165         bool ret = false;
166
167         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
168
169         /* Get optional system timestamp before query. */
170         if (stime)
171                 *stime = ktime_get();
172
173         /*
174          * Read vertical scanline which is currently composed for our
175          * pixelvalve by the HVS, and also the scaler status.
176          */
177         val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
178
179         /* Get optional system timestamp after query. */
180         if (etime)
181                 *etime = ktime_get();
182
183         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
184
185         /* Vertical position of hvs composed scanline. */
186         *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
187         *hpos = 0;
188
189         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
190                 *vpos /= 2;
191
192                 /* Use hpos to correct for field offset in interlaced mode. */
193                 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
194                         *hpos += mode->crtc_htotal / 2;
195         }
196
197         /* This is the offset we need for translating hvs -> pv scanout pos. */
198         fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
199
200         if (fifo_lines > 0)
201                 ret = true;
202
203         /* HVS more than fifo_lines into frame for compositing? */
204         if (*vpos > fifo_lines) {
205                 /*
206                  * We are in active scanout and can get some meaningful results
207                  * from HVS. The actual PV scanout can not trail behind more
208                  * than fifo_lines as that is the fifo's capacity. Assume that
209                  * in active scanout the HVS and PV work in lockstep wrt. HVS
210                  * refilling the fifo and PV consuming from the fifo, ie.
211                  * whenever the PV consumes and frees up a scanline in the
212                  * fifo, the HVS will immediately refill it, therefore
213                  * incrementing vpos. Therefore we choose HVS read position -
214                  * fifo size in scanlines as a estimate of the real scanout
215                  * position of the PV.
216                  */
217                 *vpos -= fifo_lines + 1;
218
219                 return ret;
220         }
221
222         /*
223          * Less: This happens when we are in vblank and the HVS, after getting
224          * the VSTART restart signal from the PV, just started refilling its
225          * fifo with new lines from the top-most lines of the new framebuffers.
226          * The PV does not scan out in vblank, so does not remove lines from
227          * the fifo, so the fifo will be full quickly and the HVS has to pause.
228          * We can't get meaningful readings wrt. scanline position of the PV
229          * and need to make things up in a approximative but consistent way.
230          */
231         vblank_lines = mode->vtotal - mode->vdisplay;
232
233         if (in_vblank_irq) {
234                 /*
235                  * Assume the irq handler got called close to first
236                  * line of vblank, so PV has about a full vblank
237                  * scanlines to go, and as a base timestamp use the
238                  * one taken at entry into vblank irq handler, so it
239                  * is not affected by random delays due to lock
240                  * contention on event_lock or vblank_time lock in
241                  * the core.
242                  */
243                 *vpos = -vblank_lines;
244
245                 if (stime)
246                         *stime = vc4_crtc->t_vblank;
247                 if (etime)
248                         *etime = vc4_crtc->t_vblank;
249
250                 /*
251                  * If the HVS fifo is not yet full then we know for certain
252                  * we are at the very beginning of vblank, as the hvs just
253                  * started refilling, and the stime and etime timestamps
254                  * truly correspond to start of vblank.
255                  *
256                  * Unfortunately there's no way to report this to upper levels
257                  * and make it more useful.
258                  */
259         } else {
260                 /*
261                  * No clue where we are inside vblank. Return a vpos of zero,
262                  * which will cause calling code to just return the etime
263                  * timestamp uncorrected. At least this is no worse than the
264                  * standard fallback.
265                  */
266                 *vpos = 0;
267         }
268
269         return ret;
270 }
271
272 static void vc4_crtc_destroy(struct drm_crtc *crtc)
273 {
274         drm_crtc_cleanup(crtc);
275 }
276
277 static void
278 vc4_crtc_lut_load(struct drm_crtc *crtc)
279 {
280         struct drm_device *dev = crtc->dev;
281         struct vc4_dev *vc4 = to_vc4_dev(dev);
282         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
283         u32 i;
284
285         /* The LUT memory is laid out with each HVS channel in order,
286          * each of which takes 256 writes for R, 256 for G, then 256
287          * for B.
288          */
289         HVS_WRITE(SCALER_GAMADDR,
290                   SCALER_GAMADDR_AUTOINC |
291                   (vc4_crtc->channel * 3 * crtc->gamma_size));
292
293         for (i = 0; i < crtc->gamma_size; i++)
294                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
295         for (i = 0; i < crtc->gamma_size; i++)
296                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
297         for (i = 0; i < crtc->gamma_size; i++)
298                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
299 }
300
301 static int
302 vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
303                    uint32_t size,
304                    struct drm_modeset_acquire_ctx *ctx)
305 {
306         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
307         u32 i;
308
309         for (i = 0; i < size; i++) {
310                 vc4_crtc->lut_r[i] = r[i] >> 8;
311                 vc4_crtc->lut_g[i] = g[i] >> 8;
312                 vc4_crtc->lut_b[i] = b[i] >> 8;
313         }
314
315         vc4_crtc_lut_load(crtc);
316
317         return 0;
318 }
319
320 static u32 vc4_get_fifo_full_level(u32 format)
321 {
322         static const u32 fifo_len_bytes = 64;
323         static const u32 hvs_latency_pix = 6;
324
325         switch (format) {
326         case PV_CONTROL_FORMAT_DSIV_16:
327         case PV_CONTROL_FORMAT_DSIC_16:
328                 return fifo_len_bytes - 2 * hvs_latency_pix;
329         case PV_CONTROL_FORMAT_DSIV_18:
330                 return fifo_len_bytes - 14;
331         case PV_CONTROL_FORMAT_24:
332         case PV_CONTROL_FORMAT_DSIV_24:
333         default:
334                 return fifo_len_bytes - 3 * hvs_latency_pix;
335         }
336 }
337
338 /*
339  * Returns the encoder attached to the CRTC.
340  *
341  * VC4 can only scan out to one encoder at a time, while the DRM core
342  * allows drivers to push pixels to more than one encoder from the
343  * same CRTC.
344  */
345 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
346 {
347         struct drm_connector *connector;
348
349         drm_for_each_connector(connector, crtc->dev) {
350                 if (connector->state->crtc == crtc) {
351                         return connector->encoder;
352                 }
353         }
354
355         return NULL;
356 }
357
358 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
359 {
360         struct drm_device *dev = crtc->dev;
361         struct vc4_dev *vc4 = to_vc4_dev(dev);
362         struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
363         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
364         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
365         struct drm_crtc_state *state = crtc->state;
366         struct drm_display_mode *mode = &state->adjusted_mode;
367         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
368         u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
369         bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
370                        vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
371         u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
372         bool debug_dump_regs = false;
373
374         if (debug_dump_regs) {
375                 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
376                 vc4_crtc_dump_regs(vc4_crtc);
377         }
378
379         /* Reset the PV fifo. */
380         CRTC_WRITE(PV_CONTROL, 0);
381         CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
382         CRTC_WRITE(PV_CONTROL, 0);
383
384         CRTC_WRITE(PV_HORZA,
385                    VC4_SET_FIELD((mode->htotal -
386                                   mode->hsync_end) * pixel_rep,
387                                  PV_HORZA_HBP) |
388                    VC4_SET_FIELD((mode->hsync_end -
389                                   mode->hsync_start) * pixel_rep,
390                                  PV_HORZA_HSYNC));
391         CRTC_WRITE(PV_HORZB,
392                    VC4_SET_FIELD((mode->hsync_start -
393                                   mode->hdisplay) * pixel_rep,
394                                  PV_HORZB_HFP) |
395                    VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
396
397         CRTC_WRITE(PV_VERTA,
398                    VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
399                                  PV_VERTA_VBP) |
400                    VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
401                                  PV_VERTA_VSYNC));
402         CRTC_WRITE(PV_VERTB,
403                    VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
404                                  PV_VERTB_VFP) |
405                    VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
406
407         if (interlace) {
408                 CRTC_WRITE(PV_VERTA_EVEN,
409                            VC4_SET_FIELD(mode->crtc_vtotal -
410                                          mode->crtc_vsync_end - 1,
411                                          PV_VERTA_VBP) |
412                            VC4_SET_FIELD(mode->crtc_vsync_end -
413                                          mode->crtc_vsync_start,
414                                          PV_VERTA_VSYNC));
415                 CRTC_WRITE(PV_VERTB_EVEN,
416                            VC4_SET_FIELD(mode->crtc_vsync_start -
417                                          mode->crtc_vdisplay,
418                                          PV_VERTB_VFP) |
419                            VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
420
421                 /* We set up first field even mode for HDMI.  VEC's
422                  * NTSC mode would want first field odd instead, once
423                  * we support it (to do so, set ODD_FIRST and put the
424                  * delay in VSYNCD_EVEN instead).
425                  */
426                 CRTC_WRITE(PV_V_CONTROL,
427                            PV_VCONTROL_CONTINUOUS |
428                            (is_dsi ? PV_VCONTROL_DSI : 0) |
429                            PV_VCONTROL_INTERLACE |
430                            VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
431                                          PV_VCONTROL_ODD_DELAY));
432                 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
433         } else {
434                 CRTC_WRITE(PV_V_CONTROL,
435                            PV_VCONTROL_CONTINUOUS |
436                            (is_dsi ? PV_VCONTROL_DSI : 0));
437         }
438
439         CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
440
441         CRTC_WRITE(PV_CONTROL,
442                    VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
443                    VC4_SET_FIELD(vc4_get_fifo_full_level(format),
444                                  PV_CONTROL_FIFO_LEVEL) |
445                    VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
446                    PV_CONTROL_CLR_AT_START |
447                    PV_CONTROL_TRIGGER_UNDERFLOW |
448                    PV_CONTROL_WAIT_HSTART |
449                    VC4_SET_FIELD(vc4_encoder->clock_select,
450                                  PV_CONTROL_CLK_SELECT) |
451                    PV_CONTROL_FIFO_CLR |
452                    PV_CONTROL_EN);
453
454         HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
455                   SCALER_DISPBKGND_AUTOHS |
456                   SCALER_DISPBKGND_GAMMA |
457                   (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
458
459         /* Reload the LUT, since the SRAMs would have been disabled if
460          * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
461          */
462         vc4_crtc_lut_load(crtc);
463
464         if (debug_dump_regs) {
465                 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
466                 vc4_crtc_dump_regs(vc4_crtc);
467         }
468 }
469
470 static void require_hvs_enabled(struct drm_device *dev)
471 {
472         struct vc4_dev *vc4 = to_vc4_dev(dev);
473
474         WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
475                      SCALER_DISPCTRL_ENABLE);
476 }
477
478 static void vc4_crtc_disable(struct drm_crtc *crtc)
479 {
480         struct drm_device *dev = crtc->dev;
481         struct vc4_dev *vc4 = to_vc4_dev(dev);
482         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
483         u32 chan = vc4_crtc->channel;
484         int ret;
485         require_hvs_enabled(dev);
486
487         /* Disable vblank irq handling before crtc is disabled. */
488         drm_crtc_vblank_off(crtc);
489
490         CRTC_WRITE(PV_V_CONTROL,
491                    CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
492         ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
493         WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
494
495         if (HVS_READ(SCALER_DISPCTRLX(chan)) &
496             SCALER_DISPCTRLX_ENABLE) {
497                 HVS_WRITE(SCALER_DISPCTRLX(chan),
498                           SCALER_DISPCTRLX_RESET);
499
500                 /* While the docs say that reset is self-clearing, it
501                  * seems it doesn't actually.
502                  */
503                 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
504         }
505
506         /* Once we leave, the scaler should be disabled and its fifo empty. */
507
508         WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
509
510         WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
511                                    SCALER_DISPSTATX_MODE) !=
512                      SCALER_DISPSTATX_MODE_DISABLED);
513
514         WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
515                       (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
516                      SCALER_DISPSTATX_EMPTY);
517 }
518
519 static void vc4_crtc_enable(struct drm_crtc *crtc)
520 {
521         struct drm_device *dev = crtc->dev;
522         struct vc4_dev *vc4 = to_vc4_dev(dev);
523         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
524         struct drm_crtc_state *state = crtc->state;
525         struct drm_display_mode *mode = &state->adjusted_mode;
526
527         require_hvs_enabled(dev);
528
529         /* Turn on the scaler, which will wait for vstart to start
530          * compositing.
531          */
532         HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
533                   VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
534                   VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
535                   SCALER_DISPCTRLX_ENABLE);
536
537         /* Turn on the pixel valve, which will emit the vstart signal. */
538         CRTC_WRITE(PV_V_CONTROL,
539                    CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
540
541         /* Enable vblank irq handling after crtc is started. */
542         drm_crtc_vblank_on(crtc);
543 }
544
545 static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc,
546                                 const struct drm_display_mode *mode,
547                                 struct drm_display_mode *adjusted_mode)
548 {
549         /* Do not allow doublescan modes from user space */
550         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) {
551                 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
552                               crtc->base.id);
553                 return false;
554         }
555
556         return true;
557 }
558
559 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
560                                  struct drm_crtc_state *state)
561 {
562         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
563         struct drm_device *dev = crtc->dev;
564         struct vc4_dev *vc4 = to_vc4_dev(dev);
565         struct drm_plane *plane;
566         unsigned long flags;
567         const struct drm_plane_state *plane_state;
568         u32 dlist_count = 0;
569         int ret;
570
571         /* The pixelvalve can only feed one encoder (and encoders are
572          * 1:1 with connectors.)
573          */
574         if (hweight32(state->connector_mask) > 1)
575                 return -EINVAL;
576
577         drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
578                 dlist_count += vc4_plane_dlist_size(plane_state);
579
580         dlist_count++; /* Account for SCALER_CTL0_END. */
581
582         spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
583         ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
584                                  dlist_count);
585         spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
586         if (ret)
587                 return ret;
588
589         return 0;
590 }
591
592 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
593                                   struct drm_crtc_state *old_state)
594 {
595         struct drm_device *dev = crtc->dev;
596         struct vc4_dev *vc4 = to_vc4_dev(dev);
597         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
598         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
599         struct drm_plane *plane;
600         bool debug_dump_regs = false;
601         u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
602         u32 __iomem *dlist_next = dlist_start;
603
604         if (debug_dump_regs) {
605                 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
606                 vc4_hvs_dump_state(dev);
607         }
608
609         /* Copy all the active planes' dlist contents to the hardware dlist. */
610         drm_atomic_crtc_for_each_plane(plane, crtc) {
611                 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
612         }
613
614         writel(SCALER_CTL0_END, dlist_next);
615         dlist_next++;
616
617         WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
618
619         if (crtc->state->event) {
620                 unsigned long flags;
621
622                 crtc->state->event->pipe = drm_crtc_index(crtc);
623
624                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
625
626                 spin_lock_irqsave(&dev->event_lock, flags);
627                 vc4_crtc->event = crtc->state->event;
628                 crtc->state->event = NULL;
629
630                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
631                           vc4_state->mm.start);
632
633                 spin_unlock_irqrestore(&dev->event_lock, flags);
634         } else {
635                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
636                           vc4_state->mm.start);
637         }
638
639         if (debug_dump_regs) {
640                 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
641                 vc4_hvs_dump_state(dev);
642         }
643 }
644
645 static int vc4_enable_vblank(struct drm_crtc *crtc)
646 {
647         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
648
649         CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
650
651         return 0;
652 }
653
654 static void vc4_disable_vblank(struct drm_crtc *crtc)
655 {
656         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
657
658         CRTC_WRITE(PV_INTEN, 0);
659 }
660
661 /* Must be called with the event lock held */
662 bool vc4_event_pending(struct drm_crtc *crtc)
663 {
664         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
665
666         return !!vc4_crtc->event;
667 }
668
669 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
670 {
671         struct drm_crtc *crtc = &vc4_crtc->base;
672         struct drm_device *dev = crtc->dev;
673         struct vc4_dev *vc4 = to_vc4_dev(dev);
674         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
675         u32 chan = vc4_crtc->channel;
676         unsigned long flags;
677
678         spin_lock_irqsave(&dev->event_lock, flags);
679         if (vc4_crtc->event &&
680             (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
681                 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
682                 vc4_crtc->event = NULL;
683                 drm_crtc_vblank_put(crtc);
684         }
685         spin_unlock_irqrestore(&dev->event_lock, flags);
686 }
687
688 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
689 {
690         struct vc4_crtc *vc4_crtc = data;
691         u32 stat = CRTC_READ(PV_INTSTAT);
692         irqreturn_t ret = IRQ_NONE;
693
694         if (stat & PV_INT_VFP_START) {
695                 vc4_crtc->t_vblank = ktime_get();
696                 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
697                 drm_crtc_handle_vblank(&vc4_crtc->base);
698                 vc4_crtc_handle_page_flip(vc4_crtc);
699                 ret = IRQ_HANDLED;
700         }
701
702         return ret;
703 }
704
705 struct vc4_async_flip_state {
706         struct drm_crtc *crtc;
707         struct drm_framebuffer *fb;
708         struct drm_pending_vblank_event *event;
709
710         struct vc4_seqno_cb cb;
711 };
712
713 /* Called when the V3D execution for the BO being flipped to is done, so that
714  * we can actually update the plane's address to point to it.
715  */
716 static void
717 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
718 {
719         struct vc4_async_flip_state *flip_state =
720                 container_of(cb, struct vc4_async_flip_state, cb);
721         struct drm_crtc *crtc = flip_state->crtc;
722         struct drm_device *dev = crtc->dev;
723         struct vc4_dev *vc4 = to_vc4_dev(dev);
724         struct drm_plane *plane = crtc->primary;
725
726         vc4_plane_async_set_fb(plane, flip_state->fb);
727         if (flip_state->event) {
728                 unsigned long flags;
729
730                 spin_lock_irqsave(&dev->event_lock, flags);
731                 drm_crtc_send_vblank_event(crtc, flip_state->event);
732                 spin_unlock_irqrestore(&dev->event_lock, flags);
733         }
734
735         drm_crtc_vblank_put(crtc);
736         drm_framebuffer_unreference(flip_state->fb);
737         kfree(flip_state);
738
739         up(&vc4->async_modeset);
740 }
741
742 /* Implements async (non-vblank-synced) page flips.
743  *
744  * The page flip ioctl needs to return immediately, so we grab the
745  * modeset semaphore on the pipe, and queue the address update for
746  * when V3D is done with the BO being flipped to.
747  */
748 static int vc4_async_page_flip(struct drm_crtc *crtc,
749                                struct drm_framebuffer *fb,
750                                struct drm_pending_vblank_event *event,
751                                uint32_t flags)
752 {
753         struct drm_device *dev = crtc->dev;
754         struct vc4_dev *vc4 = to_vc4_dev(dev);
755         struct drm_plane *plane = crtc->primary;
756         int ret = 0;
757         struct vc4_async_flip_state *flip_state;
758         struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
759         struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
760
761         flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
762         if (!flip_state)
763                 return -ENOMEM;
764
765         drm_framebuffer_reference(fb);
766         flip_state->fb = fb;
767         flip_state->crtc = crtc;
768         flip_state->event = event;
769
770         /* Make sure all other async modesetes have landed. */
771         ret = down_interruptible(&vc4->async_modeset);
772         if (ret) {
773                 drm_framebuffer_unreference(fb);
774                 kfree(flip_state);
775                 return ret;
776         }
777
778         WARN_ON(drm_crtc_vblank_get(crtc) != 0);
779
780         /* Immediately update the plane's legacy fb pointer, so that later
781          * modeset prep sees the state that will be present when the semaphore
782          * is released.
783          */
784         drm_atomic_set_fb_for_plane(plane->state, fb);
785         plane->fb = fb;
786
787         vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
788                            vc4_async_page_flip_complete);
789
790         /* Driver takes ownership of state on successful async commit. */
791         return 0;
792 }
793
794 static int vc4_page_flip(struct drm_crtc *crtc,
795                          struct drm_framebuffer *fb,
796                          struct drm_pending_vblank_event *event,
797                          uint32_t flags,
798                          struct drm_modeset_acquire_ctx *ctx)
799 {
800         if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
801                 return vc4_async_page_flip(crtc, fb, event, flags);
802         else
803                 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
804 }
805
806 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
807 {
808         struct vc4_crtc_state *vc4_state;
809
810         vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
811         if (!vc4_state)
812                 return NULL;
813
814         __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
815         return &vc4_state->base;
816 }
817
818 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
819                                    struct drm_crtc_state *state)
820 {
821         struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
822         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
823
824         if (vc4_state->mm.allocated) {
825                 unsigned long flags;
826
827                 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
828                 drm_mm_remove_node(&vc4_state->mm);
829                 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
830
831         }
832
833         drm_atomic_helper_crtc_destroy_state(crtc, state);
834 }
835
836 static void
837 vc4_crtc_reset(struct drm_crtc *crtc)
838 {
839         if (crtc->state)
840                 __drm_atomic_helper_crtc_destroy_state(crtc->state);
841
842         crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
843         if (crtc->state)
844                 crtc->state->crtc = crtc;
845 }
846
847 static const struct drm_crtc_funcs vc4_crtc_funcs = {
848         .set_config = drm_atomic_helper_set_config,
849         .destroy = vc4_crtc_destroy,
850         .page_flip = vc4_page_flip,
851         .set_property = NULL,
852         .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
853         .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
854         .reset = vc4_crtc_reset,
855         .atomic_duplicate_state = vc4_crtc_duplicate_state,
856         .atomic_destroy_state = vc4_crtc_destroy_state,
857         .gamma_set = vc4_crtc_gamma_set,
858         .enable_vblank = vc4_enable_vblank,
859         .disable_vblank = vc4_disable_vblank,
860 };
861
862 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
863         .mode_set_nofb = vc4_crtc_mode_set_nofb,
864         .disable = vc4_crtc_disable,
865         .enable = vc4_crtc_enable,
866         .mode_fixup = vc4_crtc_mode_fixup,
867         .atomic_check = vc4_crtc_atomic_check,
868         .atomic_flush = vc4_crtc_atomic_flush,
869 };
870
871 static const struct vc4_crtc_data pv0_data = {
872         .hvs_channel = 0,
873         .encoder_types = {
874                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
875                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
876         },
877 };
878
879 static const struct vc4_crtc_data pv1_data = {
880         .hvs_channel = 2,
881         .encoder_types = {
882                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
883                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
884         },
885 };
886
887 static const struct vc4_crtc_data pv2_data = {
888         .hvs_channel = 1,
889         .encoder_types = {
890                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
891                 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
892         },
893 };
894
895 static const struct of_device_id vc4_crtc_dt_match[] = {
896         { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
897         { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
898         { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
899         {}
900 };
901
902 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
903                                         struct drm_crtc *crtc)
904 {
905         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
906         const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
907         const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
908         struct drm_encoder *encoder;
909
910         drm_for_each_encoder(encoder, drm) {
911                 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
912                 int i;
913
914                 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
915                         if (vc4_encoder->type == encoder_types[i]) {
916                                 vc4_encoder->clock_select = i;
917                                 encoder->possible_crtcs |= drm_crtc_mask(crtc);
918                                 break;
919                         }
920                 }
921         }
922 }
923
924 static void
925 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
926 {
927         struct drm_device *drm = vc4_crtc->base.dev;
928         struct vc4_dev *vc4 = to_vc4_dev(drm);
929         u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
930         /* Top/base are supposed to be 4-pixel aligned, but the
931          * Raspberry Pi firmware fills the low bits (which are
932          * presumably ignored).
933          */
934         u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
935         u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
936
937         vc4_crtc->cob_size = top - base + 4;
938 }
939
940 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
941 {
942         struct platform_device *pdev = to_platform_device(dev);
943         struct drm_device *drm = dev_get_drvdata(master);
944         struct vc4_crtc *vc4_crtc;
945         struct drm_crtc *crtc;
946         struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
947         const struct of_device_id *match;
948         int ret, i;
949
950         vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
951         if (!vc4_crtc)
952                 return -ENOMEM;
953         crtc = &vc4_crtc->base;
954
955         match = of_match_device(vc4_crtc_dt_match, dev);
956         if (!match)
957                 return -ENODEV;
958         vc4_crtc->data = match->data;
959
960         vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
961         if (IS_ERR(vc4_crtc->regs))
962                 return PTR_ERR(vc4_crtc->regs);
963
964         /* For now, we create just the primary and the legacy cursor
965          * planes.  We should be able to stack more planes on easily,
966          * but to do that we would need to compute the bandwidth
967          * requirement of the plane configuration, and reject ones
968          * that will take too much.
969          */
970         primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
971         if (IS_ERR(primary_plane)) {
972                 dev_err(dev, "failed to construct primary plane\n");
973                 ret = PTR_ERR(primary_plane);
974                 goto err;
975         }
976
977         drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
978                                   &vc4_crtc_funcs, NULL);
979         drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
980         primary_plane->crtc = crtc;
981         vc4_crtc->channel = vc4_crtc->data->hvs_channel;
982         drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
983
984         /* Set up some arbitrary number of planes.  We're not limited
985          * by a set number of physical registers, just the space in
986          * the HVS (16k) and how small an plane can be (28 bytes).
987          * However, each plane we set up takes up some memory, and
988          * increases the cost of looping over planes, which atomic
989          * modesetting does quite a bit.  As a result, we pick a
990          * modest number of planes to expose, that should hopefully
991          * still cover any sane usecase.
992          */
993         for (i = 0; i < 8; i++) {
994                 struct drm_plane *plane =
995                         vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
996
997                 if (IS_ERR(plane))
998                         continue;
999
1000                 plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1001         }
1002
1003         /* Set up the legacy cursor after overlay initialization,
1004          * since we overlay planes on the CRTC in the order they were
1005          * initialized.
1006          */
1007         cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1008         if (!IS_ERR(cursor_plane)) {
1009                 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1010                 cursor_plane->crtc = crtc;
1011                 crtc->cursor = cursor_plane;
1012         }
1013
1014         vc4_crtc_get_cob_allocation(vc4_crtc);
1015
1016         CRTC_WRITE(PV_INTEN, 0);
1017         CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1018         ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1019                                vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1020         if (ret)
1021                 goto err_destroy_planes;
1022
1023         vc4_set_crtc_possible_masks(drm, crtc);
1024
1025         for (i = 0; i < crtc->gamma_size; i++) {
1026                 vc4_crtc->lut_r[i] = i;
1027                 vc4_crtc->lut_g[i] = i;
1028                 vc4_crtc->lut_b[i] = i;
1029         }
1030
1031         platform_set_drvdata(pdev, vc4_crtc);
1032
1033         return 0;
1034
1035 err_destroy_planes:
1036         list_for_each_entry_safe(destroy_plane, temp,
1037                                  &drm->mode_config.plane_list, head) {
1038                 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
1039                     destroy_plane->funcs->destroy(destroy_plane);
1040         }
1041 err:
1042         return ret;
1043 }
1044
1045 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1046                             void *data)
1047 {
1048         struct platform_device *pdev = to_platform_device(dev);
1049         struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1050
1051         vc4_crtc_destroy(&vc4_crtc->base);
1052
1053         CRTC_WRITE(PV_INTEN, 0);
1054
1055         platform_set_drvdata(pdev, NULL);
1056 }
1057
1058 static const struct component_ops vc4_crtc_ops = {
1059         .bind   = vc4_crtc_bind,
1060         .unbind = vc4_crtc_unbind,
1061 };
1062
1063 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1064 {
1065         return component_add(&pdev->dev, &vc4_crtc_ops);
1066 }
1067
1068 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1069 {
1070         component_del(&pdev->dev, &vc4_crtc_ops);
1071         return 0;
1072 }
1073
1074 struct platform_driver vc4_crtc_driver = {
1075         .probe = vc4_crtc_dev_probe,
1076         .remove = vc4_crtc_dev_remove,
1077         .driver = {
1078                 .name = "vc4_crtc",
1079                 .of_match_table = vc4_crtc_dt_match,
1080         },
1081 };
This page took 0.100597 seconds and 4 git commands to generate.