1 // SPDX-License-Identifier: GPL-2.0-or-later
6 * Generic memory allocators
9 #include <linux/slab.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dma-map-ops.h>
13 #include <linux/genalloc.h>
14 #include <linux/highmem.h>
15 #include <linux/vmalloc.h>
17 #include <asm/set_memory.h>
19 #include <sound/memalloc.h>
21 struct snd_malloc_ops {
22 void *(*alloc)(struct snd_dma_buffer *dmab, size_t size);
23 void (*free)(struct snd_dma_buffer *dmab);
24 dma_addr_t (*get_addr)(struct snd_dma_buffer *dmab, size_t offset);
25 struct page *(*get_page)(struct snd_dma_buffer *dmab, size_t offset);
26 unsigned int (*get_chunk_size)(struct snd_dma_buffer *dmab,
27 unsigned int ofs, unsigned int size);
28 int (*mmap)(struct snd_dma_buffer *dmab, struct vm_area_struct *area);
29 void (*sync)(struct snd_dma_buffer *dmab, enum snd_dma_sync_mode mode);
34 __GFP_RETRY_MAYFAIL | /* don't trigger OOM-killer */ \
35 __GFP_NOWARN) /* no stack trace print - this call is non-critical */
37 static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab);
39 static void *__snd_dma_alloc_pages(struct snd_dma_buffer *dmab, size_t size)
41 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
43 if (WARN_ON_ONCE(!ops || !ops->alloc))
45 return ops->alloc(dmab, size);
49 * snd_dma_alloc_dir_pages - allocate the buffer area according to the given
51 * @type: the DMA buffer type
52 * @device: the device pointer
54 * @size: the buffer size to allocate
55 * @dmab: buffer allocation record to store the allocated data
57 * Calls the memory-allocator function for the corresponding
60 * Return: Zero if the buffer with the given size is allocated successfully,
61 * otherwise a negative value on error.
63 int snd_dma_alloc_dir_pages(int type, struct device *device,
64 enum dma_data_direction dir, size_t size,
65 struct snd_dma_buffer *dmab)
72 size = PAGE_ALIGN(size);
73 dmab->dev.type = type;
74 dmab->dev.dev = device;
78 dmab->private_data = NULL;
79 dmab->area = __snd_dma_alloc_pages(dmab, size);
85 EXPORT_SYMBOL(snd_dma_alloc_dir_pages);
88 * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback
89 * @type: the DMA buffer type
90 * @device: the device pointer
91 * @size: the buffer size to allocate
92 * @dmab: buffer allocation record to store the allocated data
94 * Calls the memory-allocator function for the corresponding
95 * buffer type. When no space is left, this function reduces the size and
96 * tries to allocate again. The size actually allocated is stored in
99 * Return: Zero if the buffer with the given size is allocated successfully,
100 * otherwise a negative value on error.
102 int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size,
103 struct snd_dma_buffer *dmab)
107 while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) {
110 if (size <= PAGE_SIZE)
113 size = PAGE_SIZE << get_order(size);
119 EXPORT_SYMBOL(snd_dma_alloc_pages_fallback);
122 * snd_dma_free_pages - release the allocated buffer
123 * @dmab: the buffer allocation record to release
125 * Releases the allocated buffer via snd_dma_alloc_pages().
127 void snd_dma_free_pages(struct snd_dma_buffer *dmab)
129 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
131 if (ops && ops->free)
134 EXPORT_SYMBOL(snd_dma_free_pages);
136 /* called by devres */
137 static void __snd_release_pages(struct device *dev, void *res)
139 snd_dma_free_pages(res);
143 * snd_devm_alloc_dir_pages - allocate the buffer and manage with devres
144 * @dev: the device pointer
145 * @type: the DMA buffer type
146 * @dir: DMA direction
147 * @size: the buffer size to allocate
149 * Allocate buffer pages depending on the given type and manage using devres.
150 * The pages will be released automatically at the device removal.
152 * Unlike snd_dma_alloc_pages(), this function requires the real device pointer,
153 * hence it can't work with SNDRV_DMA_TYPE_CONTINUOUS or
154 * SNDRV_DMA_TYPE_VMALLOC type.
156 * Return: the snd_dma_buffer object at success, or NULL if failed
158 struct snd_dma_buffer *
159 snd_devm_alloc_dir_pages(struct device *dev, int type,
160 enum dma_data_direction dir, size_t size)
162 struct snd_dma_buffer *dmab;
165 if (WARN_ON(type == SNDRV_DMA_TYPE_CONTINUOUS ||
166 type == SNDRV_DMA_TYPE_VMALLOC))
169 dmab = devres_alloc(__snd_release_pages, sizeof(*dmab), GFP_KERNEL);
173 err = snd_dma_alloc_dir_pages(type, dev, dir, size, dmab);
179 devres_add(dev, dmab);
182 EXPORT_SYMBOL_GPL(snd_devm_alloc_dir_pages);
185 * snd_dma_buffer_mmap - perform mmap of the given DMA buffer
186 * @dmab: buffer allocation information
187 * @area: VM area information
189 * Return: zero if successful, or a negative error code
191 int snd_dma_buffer_mmap(struct snd_dma_buffer *dmab,
192 struct vm_area_struct *area)
194 const struct snd_malloc_ops *ops;
198 ops = snd_dma_get_ops(dmab);
199 if (ops && ops->mmap)
200 return ops->mmap(dmab, area);
204 EXPORT_SYMBOL(snd_dma_buffer_mmap);
206 #ifdef CONFIG_HAS_DMA
208 * snd_dma_buffer_sync - sync DMA buffer between CPU and device
209 * @dmab: buffer allocation information
212 void snd_dma_buffer_sync(struct snd_dma_buffer *dmab,
213 enum snd_dma_sync_mode mode)
215 const struct snd_malloc_ops *ops;
217 if (!dmab || !dmab->dev.need_sync)
219 ops = snd_dma_get_ops(dmab);
220 if (ops && ops->sync)
221 ops->sync(dmab, mode);
223 EXPORT_SYMBOL_GPL(snd_dma_buffer_sync);
224 #endif /* CONFIG_HAS_DMA */
227 * snd_sgbuf_get_addr - return the physical address at the corresponding offset
228 * @dmab: buffer allocation information
229 * @offset: offset in the ring buffer
231 * Return: the physical address
233 dma_addr_t snd_sgbuf_get_addr(struct snd_dma_buffer *dmab, size_t offset)
235 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
237 if (ops && ops->get_addr)
238 return ops->get_addr(dmab, offset);
240 return dmab->addr + offset;
242 EXPORT_SYMBOL(snd_sgbuf_get_addr);
245 * snd_sgbuf_get_page - return the physical page at the corresponding offset
246 * @dmab: buffer allocation information
247 * @offset: offset in the ring buffer
249 * Return: the page pointer
251 struct page *snd_sgbuf_get_page(struct snd_dma_buffer *dmab, size_t offset)
253 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
255 if (ops && ops->get_page)
256 return ops->get_page(dmab, offset);
258 return virt_to_page(dmab->area + offset);
260 EXPORT_SYMBOL(snd_sgbuf_get_page);
263 * snd_sgbuf_get_chunk_size - compute the max chunk size with continuous pages
265 * @dmab: buffer allocation information
266 * @ofs: offset in the ring buffer
267 * @size: the requested size
269 * Return: the chunk size
271 unsigned int snd_sgbuf_get_chunk_size(struct snd_dma_buffer *dmab,
272 unsigned int ofs, unsigned int size)
274 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
276 if (ops && ops->get_chunk_size)
277 return ops->get_chunk_size(dmab, ofs, size);
281 EXPORT_SYMBOL(snd_sgbuf_get_chunk_size);
284 * Continuous pages allocator
286 static void *do_alloc_pages(struct device *dev, size_t size, dma_addr_t *addr,
290 gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
293 p = alloc_pages_exact(size, gfp);
296 *addr = page_to_phys(virt_to_page(p));
299 if ((*addr + size - 1) & ~dev->coherent_dma_mask) {
300 if (IS_ENABLED(CONFIG_ZONE_DMA32) && !(gfp & GFP_DMA32)) {
304 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
305 gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
311 set_memory_wc((unsigned long)(p), size >> PAGE_SHIFT);
316 static void do_free_pages(void *p, size_t size, bool wc)
320 set_memory_wb((unsigned long)(p), size >> PAGE_SHIFT);
322 free_pages_exact(p, size);
326 static void *snd_dma_continuous_alloc(struct snd_dma_buffer *dmab, size_t size)
328 return do_alloc_pages(dmab->dev.dev, size, &dmab->addr, false);
331 static void snd_dma_continuous_free(struct snd_dma_buffer *dmab)
333 do_free_pages(dmab->area, dmab->bytes, false);
336 static int snd_dma_continuous_mmap(struct snd_dma_buffer *dmab,
337 struct vm_area_struct *area)
339 return remap_pfn_range(area, area->vm_start,
340 dmab->addr >> PAGE_SHIFT,
341 area->vm_end - area->vm_start,
345 static const struct snd_malloc_ops snd_dma_continuous_ops = {
346 .alloc = snd_dma_continuous_alloc,
347 .free = snd_dma_continuous_free,
348 .mmap = snd_dma_continuous_mmap,
354 static void *snd_dma_vmalloc_alloc(struct snd_dma_buffer *dmab, size_t size)
356 return vmalloc(size);
359 static void snd_dma_vmalloc_free(struct snd_dma_buffer *dmab)
364 static int snd_dma_vmalloc_mmap(struct snd_dma_buffer *dmab,
365 struct vm_area_struct *area)
367 return remap_vmalloc_range(area, dmab->area, 0);
370 #define get_vmalloc_page_addr(dmab, offset) \
371 page_to_phys(vmalloc_to_page((dmab)->area + (offset)))
373 static dma_addr_t snd_dma_vmalloc_get_addr(struct snd_dma_buffer *dmab,
376 return get_vmalloc_page_addr(dmab, offset) + offset % PAGE_SIZE;
379 static struct page *snd_dma_vmalloc_get_page(struct snd_dma_buffer *dmab,
382 return vmalloc_to_page(dmab->area + offset);
386 snd_dma_vmalloc_get_chunk_size(struct snd_dma_buffer *dmab,
387 unsigned int ofs, unsigned int size)
389 unsigned int start, end;
392 start = ALIGN_DOWN(ofs, PAGE_SIZE);
393 end = ofs + size - 1; /* the last byte address */
394 /* check page continuity */
395 addr = get_vmalloc_page_addr(dmab, start);
401 if (get_vmalloc_page_addr(dmab, start) != addr)
404 /* ok, all on continuous pages */
408 static const struct snd_malloc_ops snd_dma_vmalloc_ops = {
409 .alloc = snd_dma_vmalloc_alloc,
410 .free = snd_dma_vmalloc_free,
411 .mmap = snd_dma_vmalloc_mmap,
412 .get_addr = snd_dma_vmalloc_get_addr,
413 .get_page = snd_dma_vmalloc_get_page,
414 .get_chunk_size = snd_dma_vmalloc_get_chunk_size,
417 #ifdef CONFIG_HAS_DMA
421 #ifdef CONFIG_GENERIC_ALLOCATOR
422 static void *snd_dma_iram_alloc(struct snd_dma_buffer *dmab, size_t size)
424 struct device *dev = dmab->dev.dev;
425 struct gen_pool *pool;
429 pool = of_gen_pool_get(dev->of_node, "iram", 0);
430 /* Assign the pool into private_data field */
431 dmab->private_data = pool;
433 p = gen_pool_dma_alloc_align(pool, size, &dmab->addr, PAGE_SIZE);
438 /* Internal memory might have limited size and no enough space,
439 * so if we fail to malloc, try to fetch memory traditionally.
441 dmab->dev.type = SNDRV_DMA_TYPE_DEV;
442 return __snd_dma_alloc_pages(dmab, size);
445 static void snd_dma_iram_free(struct snd_dma_buffer *dmab)
447 struct gen_pool *pool = dmab->private_data;
449 if (pool && dmab->area)
450 gen_pool_free(pool, (unsigned long)dmab->area, dmab->bytes);
453 static int snd_dma_iram_mmap(struct snd_dma_buffer *dmab,
454 struct vm_area_struct *area)
456 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
457 return remap_pfn_range(area, area->vm_start,
458 dmab->addr >> PAGE_SHIFT,
459 area->vm_end - area->vm_start,
463 static const struct snd_malloc_ops snd_dma_iram_ops = {
464 .alloc = snd_dma_iram_alloc,
465 .free = snd_dma_iram_free,
466 .mmap = snd_dma_iram_mmap,
468 #endif /* CONFIG_GENERIC_ALLOCATOR */
471 * Coherent device pages allocator
473 static void *snd_dma_dev_alloc(struct snd_dma_buffer *dmab, size_t size)
475 return dma_alloc_coherent(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP);
478 static void snd_dma_dev_free(struct snd_dma_buffer *dmab)
480 dma_free_coherent(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
483 static int snd_dma_dev_mmap(struct snd_dma_buffer *dmab,
484 struct vm_area_struct *area)
486 return dma_mmap_coherent(dmab->dev.dev, area,
487 dmab->area, dmab->addr, dmab->bytes);
490 static const struct snd_malloc_ops snd_dma_dev_ops = {
491 .alloc = snd_dma_dev_alloc,
492 .free = snd_dma_dev_free,
493 .mmap = snd_dma_dev_mmap,
497 * Write-combined pages
499 #ifdef CONFIG_SND_DMA_SGBUF
500 /* x86-specific allocations */
501 static void *snd_dma_wc_alloc(struct snd_dma_buffer *dmab, size_t size)
503 void *p = do_alloc_pages(dmab->dev.dev, size, &dmab->addr, true);
507 dmab->addr = dma_map_single(dmab->dev.dev, p, size, DMA_BIDIRECTIONAL);
508 if (dmab->addr == DMA_MAPPING_ERROR) {
509 do_free_pages(dmab->area, size, true);
515 static void snd_dma_wc_free(struct snd_dma_buffer *dmab)
517 dma_unmap_single(dmab->dev.dev, dmab->addr, dmab->bytes,
519 do_free_pages(dmab->area, dmab->bytes, true);
522 static int snd_dma_wc_mmap(struct snd_dma_buffer *dmab,
523 struct vm_area_struct *area)
525 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
526 return dma_mmap_coherent(dmab->dev.dev, area,
527 dmab->area, dmab->addr, dmab->bytes);
530 static void *snd_dma_wc_alloc(struct snd_dma_buffer *dmab, size_t size)
532 return dma_alloc_wc(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP);
535 static void snd_dma_wc_free(struct snd_dma_buffer *dmab)
537 dma_free_wc(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
540 static int snd_dma_wc_mmap(struct snd_dma_buffer *dmab,
541 struct vm_area_struct *area)
543 return dma_mmap_wc(dmab->dev.dev, area,
544 dmab->area, dmab->addr, dmab->bytes);
548 static const struct snd_malloc_ops snd_dma_wc_ops = {
549 .alloc = snd_dma_wc_alloc,
550 .free = snd_dma_wc_free,
551 .mmap = snd_dma_wc_mmap,
555 * Non-contiguous pages allocator
557 static void *snd_dma_noncontig_alloc(struct snd_dma_buffer *dmab, size_t size)
559 struct sg_table *sgt;
562 sgt = dma_alloc_noncontiguous(dmab->dev.dev, size, dmab->dev.dir,
567 dmab->dev.need_sync = dma_need_sync(dmab->dev.dev,
568 sg_dma_address(sgt->sgl));
569 p = dma_vmap_noncontiguous(dmab->dev.dev, size, sgt);
571 dmab->private_data = sgt;
572 /* store the first page address for convenience */
573 dmab->addr = snd_sgbuf_get_addr(dmab, 0);
575 dma_free_noncontiguous(dmab->dev.dev, size, sgt, dmab->dev.dir);
580 static void snd_dma_noncontig_free(struct snd_dma_buffer *dmab)
582 dma_vunmap_noncontiguous(dmab->dev.dev, dmab->area);
583 dma_free_noncontiguous(dmab->dev.dev, dmab->bytes, dmab->private_data,
587 static int snd_dma_noncontig_mmap(struct snd_dma_buffer *dmab,
588 struct vm_area_struct *area)
590 return dma_mmap_noncontiguous(dmab->dev.dev, area,
591 dmab->bytes, dmab->private_data);
594 static void snd_dma_noncontig_sync(struct snd_dma_buffer *dmab,
595 enum snd_dma_sync_mode mode)
597 if (mode == SNDRV_DMA_SYNC_CPU) {
598 if (dmab->dev.dir == DMA_TO_DEVICE)
600 invalidate_kernel_vmap_range(dmab->area, dmab->bytes);
601 dma_sync_sgtable_for_cpu(dmab->dev.dev, dmab->private_data,
604 if (dmab->dev.dir == DMA_FROM_DEVICE)
606 flush_kernel_vmap_range(dmab->area, dmab->bytes);
607 dma_sync_sgtable_for_device(dmab->dev.dev, dmab->private_data,
612 static inline void snd_dma_noncontig_iter_set(struct snd_dma_buffer *dmab,
613 struct sg_page_iter *piter,
616 struct sg_table *sgt = dmab->private_data;
618 __sg_page_iter_start(piter, sgt->sgl, sgt->orig_nents,
619 offset >> PAGE_SHIFT);
622 static dma_addr_t snd_dma_noncontig_get_addr(struct snd_dma_buffer *dmab,
625 struct sg_dma_page_iter iter;
627 snd_dma_noncontig_iter_set(dmab, &iter.base, offset);
628 __sg_page_iter_dma_next(&iter);
629 return sg_page_iter_dma_address(&iter) + offset % PAGE_SIZE;
632 static struct page *snd_dma_noncontig_get_page(struct snd_dma_buffer *dmab,
635 struct sg_page_iter iter;
637 snd_dma_noncontig_iter_set(dmab, &iter, offset);
638 __sg_page_iter_next(&iter);
639 return sg_page_iter_page(&iter);
643 snd_dma_noncontig_get_chunk_size(struct snd_dma_buffer *dmab,
644 unsigned int ofs, unsigned int size)
646 struct sg_dma_page_iter iter;
647 unsigned int start, end;
650 start = ALIGN_DOWN(ofs, PAGE_SIZE);
651 end = ofs + size - 1; /* the last byte address */
652 snd_dma_noncontig_iter_set(dmab, &iter.base, start);
653 if (!__sg_page_iter_dma_next(&iter))
655 /* check page continuity */
656 addr = sg_page_iter_dma_address(&iter);
662 if (!__sg_page_iter_dma_next(&iter) ||
663 sg_page_iter_dma_address(&iter) != addr)
666 /* ok, all on continuous pages */
670 static const struct snd_malloc_ops snd_dma_noncontig_ops = {
671 .alloc = snd_dma_noncontig_alloc,
672 .free = snd_dma_noncontig_free,
673 .mmap = snd_dma_noncontig_mmap,
674 .sync = snd_dma_noncontig_sync,
675 .get_addr = snd_dma_noncontig_get_addr,
676 .get_page = snd_dma_noncontig_get_page,
677 .get_chunk_size = snd_dma_noncontig_get_chunk_size,
680 #ifdef CONFIG_SND_DMA_SGBUF
681 /* Fallback SG-buffer allocations for x86 */
682 struct snd_dma_sg_fallback {
683 struct sg_table sgt; /* used by get_addr - must be the first item */
686 unsigned int *npages;
689 static void __snd_dma_sg_fallback_free(struct snd_dma_buffer *dmab,
690 struct snd_dma_sg_fallback *sgbuf)
692 bool wc = dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG;
695 if (sgbuf->pages && sgbuf->npages) {
697 while (i < sgbuf->count) {
698 size = sgbuf->npages[i];
701 do_free_pages(page_address(sgbuf->pages[i]),
702 size << PAGE_SHIFT, wc);
706 kvfree(sgbuf->pages);
707 kvfree(sgbuf->npages);
711 /* fallback manual S/G buffer allocations */
712 static void *snd_dma_sg_fallback_alloc(struct snd_dma_buffer *dmab, size_t size)
714 bool wc = dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG;
715 struct snd_dma_sg_fallback *sgbuf;
716 struct page **pagep, *curp;
719 unsigned int idx, npages;
722 sgbuf = kzalloc(sizeof(*sgbuf), GFP_KERNEL);
725 size = PAGE_ALIGN(size);
726 sgbuf->count = size >> PAGE_SHIFT;
727 sgbuf->pages = kvcalloc(sgbuf->count, sizeof(*sgbuf->pages), GFP_KERNEL);
728 sgbuf->npages = kvcalloc(sgbuf->count, sizeof(*sgbuf->npages), GFP_KERNEL);
729 if (!sgbuf->pages || !sgbuf->npages)
732 pagep = sgbuf->pages;
736 chunk = min(size, chunk);
737 p = do_alloc_pages(dmab->dev.dev, chunk, &addr, wc);
739 if (chunk <= PAGE_SIZE)
742 chunk = PAGE_SIZE << get_order(chunk);
748 npages = chunk >> PAGE_SHIFT;
749 sgbuf->npages[idx] = npages;
751 curp = virt_to_page(p);
756 if (sg_alloc_table_from_pages(&sgbuf->sgt, sgbuf->pages, sgbuf->count,
757 0, sgbuf->count << PAGE_SHIFT, GFP_KERNEL))
760 if (dma_map_sgtable(dmab->dev.dev, &sgbuf->sgt, DMA_BIDIRECTIONAL, 0))
763 p = vmap(sgbuf->pages, sgbuf->count, VM_MAP, PAGE_KERNEL);
767 dmab->private_data = sgbuf;
768 /* store the first page address for convenience */
769 dmab->addr = snd_sgbuf_get_addr(dmab, 0);
773 dma_unmap_sgtable(dmab->dev.dev, &sgbuf->sgt, DMA_BIDIRECTIONAL, 0);
775 sg_free_table(&sgbuf->sgt);
777 __snd_dma_sg_fallback_free(dmab, sgbuf);
781 static void snd_dma_sg_fallback_free(struct snd_dma_buffer *dmab)
783 struct snd_dma_sg_fallback *sgbuf = dmab->private_data;
786 dma_unmap_sgtable(dmab->dev.dev, &sgbuf->sgt, DMA_BIDIRECTIONAL, 0);
787 sg_free_table(&sgbuf->sgt);
788 __snd_dma_sg_fallback_free(dmab, dmab->private_data);
791 static int snd_dma_sg_fallback_mmap(struct snd_dma_buffer *dmab,
792 struct vm_area_struct *area)
794 struct snd_dma_sg_fallback *sgbuf = dmab->private_data;
796 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG)
797 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
798 return vm_map_pages(area, sgbuf->pages, sgbuf->count);
801 static void *snd_dma_sg_alloc(struct snd_dma_buffer *dmab, size_t size)
803 int type = dmab->dev.type;
806 /* try the standard DMA API allocation at first */
807 if (type == SNDRV_DMA_TYPE_DEV_WC_SG)
808 dmab->dev.type = SNDRV_DMA_TYPE_DEV_WC;
810 dmab->dev.type = SNDRV_DMA_TYPE_DEV;
811 p = __snd_dma_alloc_pages(dmab, size);
815 dmab->dev.type = type; /* restore the type */
816 return snd_dma_sg_fallback_alloc(dmab, size);
819 static const struct snd_malloc_ops snd_dma_sg_ops = {
820 .alloc = snd_dma_sg_alloc,
821 .free = snd_dma_sg_fallback_free,
822 .mmap = snd_dma_sg_fallback_mmap,
823 /* reuse noncontig helper */
824 .get_addr = snd_dma_noncontig_get_addr,
825 /* reuse vmalloc helpers */
826 .get_page = snd_dma_vmalloc_get_page,
827 .get_chunk_size = snd_dma_vmalloc_get_chunk_size,
829 #endif /* CONFIG_SND_DMA_SGBUF */
832 * Non-coherent pages allocator
834 static void *snd_dma_noncoherent_alloc(struct snd_dma_buffer *dmab, size_t size)
838 p = dma_alloc_noncoherent(dmab->dev.dev, size, &dmab->addr,
839 dmab->dev.dir, DEFAULT_GFP);
841 dmab->dev.need_sync = dma_need_sync(dmab->dev.dev, dmab->addr);
845 static void snd_dma_noncoherent_free(struct snd_dma_buffer *dmab)
847 dma_free_noncoherent(dmab->dev.dev, dmab->bytes, dmab->area,
848 dmab->addr, dmab->dev.dir);
851 static int snd_dma_noncoherent_mmap(struct snd_dma_buffer *dmab,
852 struct vm_area_struct *area)
854 area->vm_page_prot = vm_get_page_prot(area->vm_flags);
855 return dma_mmap_pages(dmab->dev.dev, area,
856 area->vm_end - area->vm_start,
857 virt_to_page(dmab->area));
860 static void snd_dma_noncoherent_sync(struct snd_dma_buffer *dmab,
861 enum snd_dma_sync_mode mode)
863 if (mode == SNDRV_DMA_SYNC_CPU) {
864 if (dmab->dev.dir != DMA_TO_DEVICE)
865 dma_sync_single_for_cpu(dmab->dev.dev, dmab->addr,
866 dmab->bytes, dmab->dev.dir);
868 if (dmab->dev.dir != DMA_FROM_DEVICE)
869 dma_sync_single_for_device(dmab->dev.dev, dmab->addr,
870 dmab->bytes, dmab->dev.dir);
874 static const struct snd_malloc_ops snd_dma_noncoherent_ops = {
875 .alloc = snd_dma_noncoherent_alloc,
876 .free = snd_dma_noncoherent_free,
877 .mmap = snd_dma_noncoherent_mmap,
878 .sync = snd_dma_noncoherent_sync,
881 #endif /* CONFIG_HAS_DMA */
886 static const struct snd_malloc_ops *snd_dma_ops[] = {
887 [SNDRV_DMA_TYPE_CONTINUOUS] = &snd_dma_continuous_ops,
888 [SNDRV_DMA_TYPE_VMALLOC] = &snd_dma_vmalloc_ops,
889 #ifdef CONFIG_HAS_DMA
890 [SNDRV_DMA_TYPE_DEV] = &snd_dma_dev_ops,
891 [SNDRV_DMA_TYPE_DEV_WC] = &snd_dma_wc_ops,
892 [SNDRV_DMA_TYPE_NONCONTIG] = &snd_dma_noncontig_ops,
893 [SNDRV_DMA_TYPE_NONCOHERENT] = &snd_dma_noncoherent_ops,
894 #ifdef CONFIG_SND_DMA_SGBUF
895 [SNDRV_DMA_TYPE_DEV_SG] = &snd_dma_sg_ops,
896 [SNDRV_DMA_TYPE_DEV_WC_SG] = &snd_dma_sg_ops,
898 #ifdef CONFIG_GENERIC_ALLOCATOR
899 [SNDRV_DMA_TYPE_DEV_IRAM] = &snd_dma_iram_ops,
900 #endif /* CONFIG_GENERIC_ALLOCATOR */
901 #endif /* CONFIG_HAS_DMA */
904 static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab)
906 if (WARN_ON_ONCE(!dmab))
908 if (WARN_ON_ONCE(dmab->dev.type <= SNDRV_DMA_TYPE_UNKNOWN ||
909 dmab->dev.type >= ARRAY_SIZE(snd_dma_ops)))
911 return snd_dma_ops[dmab->dev.type];