1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/blkdev.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43 #include <linux/suspend.h>
44 #include <linux/zswap.h>
45 #include <linux/plist.h>
47 #include <asm/tlbflush.h>
48 #include <linux/swapops.h>
49 #include <linux/swap_cgroup.h>
53 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
55 static void free_swap_count_continuations(struct swap_info_struct *);
56 static void swap_entry_range_free(struct swap_info_struct *si, swp_entry_t entry,
57 unsigned int nr_pages);
58 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
59 unsigned int nr_entries);
60 static bool folio_swapcache_freeable(struct folio *folio);
61 static struct swap_cluster_info *lock_cluster_or_swap_info(
62 struct swap_info_struct *si, unsigned long offset);
63 static void unlock_cluster_or_swap_info(struct swap_info_struct *si,
64 struct swap_cluster_info *ci);
66 static DEFINE_SPINLOCK(swap_lock);
67 static unsigned int nr_swapfiles;
68 atomic_long_t nr_swap_pages;
70 * Some modules use swappable objects and may try to swap them out under
71 * memory pressure (via the shrinker). Before doing so, they may wish to
72 * check to see if any swap space is available.
74 EXPORT_SYMBOL_GPL(nr_swap_pages);
75 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
76 long total_swap_pages;
77 static int least_priority = -1;
78 unsigned long swapfile_maximum_size;
79 #ifdef CONFIG_MIGRATION
80 bool swap_migration_ad_supported;
81 #endif /* CONFIG_MIGRATION */
83 static const char Bad_file[] = "Bad swap file entry ";
84 static const char Unused_file[] = "Unused swap file entry ";
85 static const char Bad_offset[] = "Bad swap offset entry ";
86 static const char Unused_offset[] = "Unused swap offset entry ";
89 * all active swap_info_structs
90 * protected with swap_lock, and ordered by priority.
92 static PLIST_HEAD(swap_active_head);
95 * all available (active, not full) swap_info_structs
96 * protected with swap_avail_lock, ordered by priority.
97 * This is used by folio_alloc_swap() instead of swap_active_head
98 * because swap_active_head includes all swap_info_structs,
99 * but folio_alloc_swap() doesn't need to look at full ones.
100 * This uses its own lock instead of swap_lock because when a
101 * swap_info_struct changes between not-full/full, it needs to
102 * add/remove itself to/from this list, but the swap_info_struct->lock
103 * is held and the locking order requires swap_lock to be taken
104 * before any swap_info_struct->lock.
106 static struct plist_head *swap_avail_heads;
107 static DEFINE_SPINLOCK(swap_avail_lock);
109 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
111 static DEFINE_MUTEX(swapon_mutex);
113 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
114 /* Activity counter to indicate that a swapon or swapoff has occurred */
115 static atomic_t proc_poll_event = ATOMIC_INIT(0);
117 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
119 static struct swap_info_struct *swap_type_to_swap_info(int type)
121 if (type >= MAX_SWAPFILES)
124 return READ_ONCE(swap_info[type]); /* rcu_dereference() */
127 static inline unsigned char swap_count(unsigned char ent)
129 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
132 /* Reclaim the swap entry anyway if possible */
133 #define TTRS_ANYWAY 0x1
135 * Reclaim the swap entry if there are no more mappings of the
138 #define TTRS_UNMAPPED 0x2
139 /* Reclaim the swap entry if swap is getting full */
140 #define TTRS_FULL 0x4
141 /* Reclaim directly, bypass the slot cache and don't touch device lock */
142 #define TTRS_DIRECT 0x8
144 static bool swap_is_has_cache(struct swap_info_struct *si,
145 unsigned long offset, int nr_pages)
147 unsigned char *map = si->swap_map + offset;
148 unsigned char *map_end = map + nr_pages;
151 VM_BUG_ON(!(*map & SWAP_HAS_CACHE));
152 if (*map != SWAP_HAS_CACHE)
154 } while (++map < map_end);
159 static bool swap_is_last_map(struct swap_info_struct *si,
160 unsigned long offset, int nr_pages, bool *has_cache)
162 unsigned char *map = si->swap_map + offset;
163 unsigned char *map_end = map + nr_pages;
164 unsigned char count = *map;
166 if (swap_count(count) != 1)
169 while (++map < map_end) {
174 *has_cache = !!(count & SWAP_HAS_CACHE);
179 * returns number of pages in the folio that backs the swap entry. If positive,
180 * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no
181 * folio was associated with the swap entry.
183 static int __try_to_reclaim_swap(struct swap_info_struct *si,
184 unsigned long offset, unsigned long flags)
186 swp_entry_t entry = swp_entry(si->type, offset);
187 struct address_space *address_space = swap_address_space(entry);
188 struct swap_cluster_info *ci;
193 folio = filemap_get_folio(address_space, swap_cache_index(entry));
197 /* offset could point to the middle of a large folio */
199 offset = swp_offset(entry);
200 nr_pages = folio_nr_pages(folio);
204 * When this function is called from scan_swap_map_slots() and it's
205 * called by vmscan.c at reclaiming folios. So we hold a folio lock
206 * here. We have to use trylock for avoiding deadlock. This is a special
207 * case and you should use folio_free_swap() with explicit folio_lock()
208 * in usual operations.
210 if (!folio_trylock(folio))
213 need_reclaim = ((flags & TTRS_ANYWAY) ||
214 ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
215 ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)));
216 if (!need_reclaim || !folio_swapcache_freeable(folio))
220 * It's safe to delete the folio from swap cache only if the folio's
221 * swap_map is HAS_CACHE only, which means the slots have no page table
222 * reference or pending writeback, and can't be allocated to others.
224 ci = lock_cluster_or_swap_info(si, offset);
225 need_reclaim = swap_is_has_cache(si, offset, nr_pages);
226 unlock_cluster_or_swap_info(si, ci);
230 if (!(flags & TTRS_DIRECT)) {
231 /* Free through slot cache */
232 delete_from_swap_cache(folio);
233 folio_set_dirty(folio);
238 xa_lock_irq(&address_space->i_pages);
239 __delete_from_swap_cache(folio, entry, NULL);
240 xa_unlock_irq(&address_space->i_pages);
241 folio_ref_sub(folio, nr_pages);
242 folio_set_dirty(folio);
244 spin_lock(&si->lock);
245 /* Only sinple page folio can be backed by zswap */
247 zswap_invalidate(entry);
248 swap_entry_range_free(si, entry, nr_pages);
249 spin_unlock(&si->lock);
258 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
260 struct rb_node *rb = rb_first(&sis->swap_extent_root);
261 return rb_entry(rb, struct swap_extent, rb_node);
264 static inline struct swap_extent *next_se(struct swap_extent *se)
266 struct rb_node *rb = rb_next(&se->rb_node);
267 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
271 * swapon tell device that all the old swap contents can be discarded,
272 * to allow the swap device to optimize its wear-levelling.
274 static int discard_swap(struct swap_info_struct *si)
276 struct swap_extent *se;
277 sector_t start_block;
281 /* Do not discard the swap header page! */
283 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
284 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
286 err = blkdev_issue_discard(si->bdev, start_block,
287 nr_blocks, GFP_KERNEL);
293 for (se = next_se(se); se; se = next_se(se)) {
294 start_block = se->start_block << (PAGE_SHIFT - 9);
295 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
297 err = blkdev_issue_discard(si->bdev, start_block,
298 nr_blocks, GFP_KERNEL);
304 return err; /* That will often be -EOPNOTSUPP */
307 static struct swap_extent *
308 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
310 struct swap_extent *se;
313 rb = sis->swap_extent_root.rb_node;
315 se = rb_entry(rb, struct swap_extent, rb_node);
316 if (offset < se->start_page)
318 else if (offset >= se->start_page + se->nr_pages)
323 /* It *must* be present */
327 sector_t swap_folio_sector(struct folio *folio)
329 struct swap_info_struct *sis = swp_swap_info(folio->swap);
330 struct swap_extent *se;
334 offset = swp_offset(folio->swap);
335 se = offset_to_swap_extent(sis, offset);
336 sector = se->start_block + (offset - se->start_page);
337 return sector << (PAGE_SHIFT - 9);
341 * swap allocation tell device that a cluster of swap can now be discarded,
342 * to allow the swap device to optimize its wear-levelling.
344 static void discard_swap_cluster(struct swap_info_struct *si,
345 pgoff_t start_page, pgoff_t nr_pages)
347 struct swap_extent *se = offset_to_swap_extent(si, start_page);
350 pgoff_t offset = start_page - se->start_page;
351 sector_t start_block = se->start_block + offset;
352 sector_t nr_blocks = se->nr_pages - offset;
354 if (nr_blocks > nr_pages)
355 nr_blocks = nr_pages;
356 start_page += nr_blocks;
357 nr_pages -= nr_blocks;
359 start_block <<= PAGE_SHIFT - 9;
360 nr_blocks <<= PAGE_SHIFT - 9;
361 if (blkdev_issue_discard(si->bdev, start_block,
362 nr_blocks, GFP_NOIO))
369 #ifdef CONFIG_THP_SWAP
370 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
372 #define swap_entry_order(order) (order)
374 #define SWAPFILE_CLUSTER 256
377 * Define swap_entry_order() as constant to let compiler to optimize
378 * out some code if !CONFIG_THP_SWAP
380 #define swap_entry_order(order) 0
382 #define LATENCY_LIMIT 256
384 static inline bool cluster_is_free(struct swap_cluster_info *info)
386 return info->flags & CLUSTER_FLAG_FREE;
389 static inline unsigned int cluster_index(struct swap_info_struct *si,
390 struct swap_cluster_info *ci)
392 return ci - si->cluster_info;
395 static inline unsigned int cluster_offset(struct swap_info_struct *si,
396 struct swap_cluster_info *ci)
398 return cluster_index(si, ci) * SWAPFILE_CLUSTER;
401 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
402 unsigned long offset)
404 struct swap_cluster_info *ci;
406 ci = si->cluster_info;
408 ci += offset / SWAPFILE_CLUSTER;
409 spin_lock(&ci->lock);
414 static inline void unlock_cluster(struct swap_cluster_info *ci)
417 spin_unlock(&ci->lock);
421 * Determine the locking method in use for this device. Return
422 * swap_cluster_info if SSD-style cluster-based locking is in place.
424 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
425 struct swap_info_struct *si, unsigned long offset)
427 struct swap_cluster_info *ci;
429 /* Try to use fine-grained SSD-style locking if available: */
430 ci = lock_cluster(si, offset);
431 /* Otherwise, fall back to traditional, coarse locking: */
433 spin_lock(&si->lock);
438 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
439 struct swap_cluster_info *ci)
444 spin_unlock(&si->lock);
447 /* Add a cluster to discard list and schedule it to do discard */
448 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
449 struct swap_cluster_info *ci)
451 unsigned int idx = cluster_index(si, ci);
453 * If scan_swap_map_slots() can't find a free cluster, it will check
454 * si->swap_map directly. To make sure the discarding cluster isn't
455 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
456 * It will be cleared after discard
458 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
459 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
461 VM_BUG_ON(ci->flags & CLUSTER_FLAG_FREE);
462 list_move_tail(&ci->list, &si->discard_clusters);
464 schedule_work(&si->discard_work);
467 static void __free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
469 lockdep_assert_held(&si->lock);
470 lockdep_assert_held(&ci->lock);
473 list_move_tail(&ci->list, &si->free_clusters);
475 list_add_tail(&ci->list, &si->free_clusters);
476 ci->flags = CLUSTER_FLAG_FREE;
481 * Doing discard actually. After a cluster discard is finished, the cluster
482 * will be added to free cluster list. caller should hold si->lock.
484 static void swap_do_scheduled_discard(struct swap_info_struct *si)
486 struct swap_cluster_info *ci;
489 while (!list_empty(&si->discard_clusters)) {
490 ci = list_first_entry(&si->discard_clusters, struct swap_cluster_info, list);
492 idx = cluster_index(si, ci);
493 spin_unlock(&si->lock);
495 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
498 spin_lock(&si->lock);
499 spin_lock(&ci->lock);
500 __free_cluster(si, ci);
501 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
502 0, SWAPFILE_CLUSTER);
503 spin_unlock(&ci->lock);
507 static void swap_discard_work(struct work_struct *work)
509 struct swap_info_struct *si;
511 si = container_of(work, struct swap_info_struct, discard_work);
513 spin_lock(&si->lock);
514 swap_do_scheduled_discard(si);
515 spin_unlock(&si->lock);
518 static void swap_users_ref_free(struct percpu_ref *ref)
520 struct swap_info_struct *si;
522 si = container_of(ref, struct swap_info_struct, users);
526 static void free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
528 VM_BUG_ON(ci->count != 0);
529 lockdep_assert_held(&si->lock);
530 lockdep_assert_held(&ci->lock);
532 if (ci->flags & CLUSTER_FLAG_FRAG)
533 si->frag_cluster_nr[ci->order]--;
536 * If the swap is discardable, prepare discard the cluster
537 * instead of free it immediately. The cluster will be freed
540 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
541 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
542 swap_cluster_schedule_discard(si, ci);
546 __free_cluster(si, ci);
550 * The cluster corresponding to page_nr will be used. The cluster will not be
551 * added to free cluster list and its usage counter will be increased by 1.
552 * Only used for initialization.
554 static void inc_cluster_info_page(struct swap_info_struct *si,
555 struct swap_cluster_info *cluster_info, unsigned long page_nr)
557 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
558 struct swap_cluster_info *ci;
563 ci = cluster_info + idx;
566 VM_BUG_ON(ci->count > SWAPFILE_CLUSTER);
567 VM_BUG_ON(ci->flags);
571 * The cluster ci decreases @nr_pages usage. If the usage counter becomes 0,
572 * which means no page in the cluster is in use, we can optionally discard
573 * the cluster and add it to free cluster list.
575 static void dec_cluster_info_page(struct swap_info_struct *si,
576 struct swap_cluster_info *ci, int nr_pages)
578 if (!si->cluster_info)
581 VM_BUG_ON(ci->count < nr_pages);
582 VM_BUG_ON(cluster_is_free(ci));
583 lockdep_assert_held(&si->lock);
584 lockdep_assert_held(&ci->lock);
585 ci->count -= nr_pages;
588 free_cluster(si, ci);
592 if (!(ci->flags & CLUSTER_FLAG_NONFULL)) {
593 VM_BUG_ON(ci->flags & CLUSTER_FLAG_FREE);
594 if (ci->flags & CLUSTER_FLAG_FRAG)
595 si->frag_cluster_nr[ci->order]--;
596 list_move_tail(&ci->list, &si->nonfull_clusters[ci->order]);
597 ci->flags = CLUSTER_FLAG_NONFULL;
601 static bool cluster_reclaim_range(struct swap_info_struct *si,
602 struct swap_cluster_info *ci,
603 unsigned long start, unsigned long end)
605 unsigned char *map = si->swap_map;
606 unsigned long offset;
608 spin_unlock(&ci->lock);
609 spin_unlock(&si->lock);
611 for (offset = start; offset < end; offset++) {
612 switch (READ_ONCE(map[offset])) {
616 if (__try_to_reclaim_swap(si, offset, TTRS_ANYWAY | TTRS_DIRECT) > 0)
624 spin_lock(&si->lock);
625 spin_lock(&ci->lock);
628 * Recheck the range no matter reclaim succeeded or not, the slot
629 * could have been be freed while we are not holding the lock.
631 for (offset = start; offset < end; offset++)
632 if (READ_ONCE(map[offset]))
638 static bool cluster_scan_range(struct swap_info_struct *si,
639 struct swap_cluster_info *ci,
640 unsigned long start, unsigned int nr_pages)
642 unsigned long offset, end = start + nr_pages;
643 unsigned char *map = si->swap_map;
644 bool need_reclaim = false;
646 for (offset = start; offset < end; offset++) {
647 switch (READ_ONCE(map[offset])) {
661 return cluster_reclaim_range(si, ci, start, end);
666 static void cluster_alloc_range(struct swap_info_struct *si, struct swap_cluster_info *ci,
667 unsigned int start, unsigned char usage,
670 unsigned int nr_pages = 1 << order;
672 if (cluster_is_free(ci)) {
673 if (nr_pages < SWAPFILE_CLUSTER) {
674 list_move_tail(&ci->list, &si->nonfull_clusters[order]);
675 ci->flags = CLUSTER_FLAG_NONFULL;
680 memset(si->swap_map + start, usage, nr_pages);
681 swap_range_alloc(si, start, nr_pages);
682 ci->count += nr_pages;
684 if (ci->count == SWAPFILE_CLUSTER) {
685 VM_BUG_ON(!(ci->flags &
686 (CLUSTER_FLAG_FREE | CLUSTER_FLAG_NONFULL | CLUSTER_FLAG_FRAG)));
687 if (ci->flags & CLUSTER_FLAG_FRAG)
688 si->frag_cluster_nr[ci->order]--;
689 list_move_tail(&ci->list, &si->full_clusters);
690 ci->flags = CLUSTER_FLAG_FULL;
694 static unsigned int alloc_swap_scan_cluster(struct swap_info_struct *si, unsigned long offset,
695 unsigned int *foundp, unsigned int order,
698 unsigned long start = offset & ~(SWAPFILE_CLUSTER - 1);
699 unsigned long end = min(start + SWAPFILE_CLUSTER, si->max);
700 unsigned int nr_pages = 1 << order;
701 struct swap_cluster_info *ci;
704 return SWAP_NEXT_INVALID;
707 ci = lock_cluster(si, offset);
708 if (ci->count + nr_pages > SWAPFILE_CLUSTER) {
709 offset = SWAP_NEXT_INVALID;
713 while (offset <= end) {
714 if (cluster_scan_range(si, ci, offset, nr_pages)) {
715 cluster_alloc_range(si, ci, offset, usage, order);
717 if (ci->count == SWAPFILE_CLUSTER) {
718 offset = SWAP_NEXT_INVALID;
727 offset = SWAP_NEXT_INVALID;
733 static void swap_reclaim_full_clusters(struct swap_info_struct *si)
736 unsigned long offset, end;
737 struct swap_cluster_info *ci;
738 unsigned char *map = si->swap_map;
739 int nr_reclaim, total_reclaimed = 0;
741 if (atomic_long_read(&nr_swap_pages) <= SWAPFILE_CLUSTER)
742 to_scan = si->inuse_pages / SWAPFILE_CLUSTER;
744 while (!list_empty(&si->full_clusters)) {
745 ci = list_first_entry(&si->full_clusters, struct swap_cluster_info, list);
746 list_move_tail(&ci->list, &si->full_clusters);
747 offset = cluster_offset(si, ci);
748 end = min(si->max, offset + SWAPFILE_CLUSTER);
751 while (offset < end) {
752 if (READ_ONCE(map[offset]) == SWAP_HAS_CACHE) {
753 spin_unlock(&si->lock);
754 nr_reclaim = __try_to_reclaim_swap(si, offset,
755 TTRS_ANYWAY | TTRS_DIRECT);
756 spin_lock(&si->lock);
757 if (nr_reclaim > 0) {
758 offset += nr_reclaim;
759 total_reclaimed += nr_reclaim;
761 } else if (nr_reclaim < 0) {
762 offset += -nr_reclaim;
768 if (to_scan <= 0 || total_reclaimed)
774 * Try to get swap entries with specified order from current cpu's swap entry
775 * pool (a cluster). This might involve allocating a new cluster for current CPU
778 static unsigned long cluster_alloc_swap_entry(struct swap_info_struct *si, int order,
781 struct percpu_cluster *cluster;
782 struct swap_cluster_info *ci;
783 unsigned int offset, found = 0;
786 lockdep_assert_held(&si->lock);
787 cluster = this_cpu_ptr(si->percpu_cluster);
788 offset = cluster->next[order];
790 offset = alloc_swap_scan_cluster(si, offset, &found, order, usage);
795 if (!list_empty(&si->free_clusters)) {
796 ci = list_first_entry(&si->free_clusters, struct swap_cluster_info, list);
797 offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci), &found, order, usage);
802 if (order < PMD_ORDER) {
803 unsigned int frags = 0;
805 while (!list_empty(&si->nonfull_clusters[order])) {
806 ci = list_first_entry(&si->nonfull_clusters[order],
807 struct swap_cluster_info, list);
808 list_move_tail(&ci->list, &si->frag_clusters[order]);
809 ci->flags = CLUSTER_FLAG_FRAG;
810 si->frag_cluster_nr[order]++;
811 offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci),
812 &found, order, usage);
820 * Nonfull clusters are moved to frag tail if we reached
821 * here, count them too, don't over scan the frag list.
823 while (frags < si->frag_cluster_nr[order]) {
824 ci = list_first_entry(&si->frag_clusters[order],
825 struct swap_cluster_info, list);
827 * Rotate the frag list to iterate, they were all failing
828 * high order allocation or moved here due to per-CPU usage,
829 * this help keeping usable cluster ahead.
831 list_move_tail(&ci->list, &si->frag_clusters[order]);
832 offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci),
833 &found, order, usage);
844 if (!list_empty(&si->discard_clusters)) {
846 * we don't have free cluster but have some clusters in
847 * discarding, do discard now and reclaim them, then
848 * reread cluster_next_cpu since we dropped si->lock
850 swap_do_scheduled_discard(si);
857 /* Order 0 stealing from higher order */
858 for (int o = 1; o < SWAP_NR_ORDERS; o++) {
860 * Clusters here have at least one usable slots and can't fail order 0
861 * allocation, but reclaim may drop si->lock and race with another user.
863 while (!list_empty(&si->frag_clusters[o])) {
864 ci = list_first_entry(&si->frag_clusters[o],
865 struct swap_cluster_info, list);
866 offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci),
872 while (!list_empty(&si->nonfull_clusters[o])) {
873 ci = list_first_entry(&si->nonfull_clusters[o],
874 struct swap_cluster_info, list);
875 offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci),
883 /* Try reclaim from full clusters if device is nearfull */
884 if (vm_swap_full() && (!found || (si->pages - si->inuse_pages) < SWAPFILE_CLUSTER)) {
885 swap_reclaim_full_clusters(si);
886 if (!found && !order && si->pages != si->inuse_pages)
890 cluster->next[order] = offset;
894 static void __del_from_avail_list(struct swap_info_struct *si)
898 assert_spin_locked(&si->lock);
900 plist_del(&si->avail_lists[nid], &swap_avail_heads[nid]);
903 static void del_from_avail_list(struct swap_info_struct *si)
905 spin_lock(&swap_avail_lock);
906 __del_from_avail_list(si);
907 spin_unlock(&swap_avail_lock);
910 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
911 unsigned int nr_entries)
913 unsigned int end = offset + nr_entries - 1;
915 if (offset == si->lowest_bit)
916 si->lowest_bit += nr_entries;
917 if (end == si->highest_bit)
918 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
919 WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
920 if (si->inuse_pages == si->pages) {
921 si->lowest_bit = si->max;
923 del_from_avail_list(si);
927 static void add_to_avail_list(struct swap_info_struct *si)
931 spin_lock(&swap_avail_lock);
933 plist_add(&si->avail_lists[nid], &swap_avail_heads[nid]);
934 spin_unlock(&swap_avail_lock);
937 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
938 unsigned int nr_entries)
940 unsigned long begin = offset;
941 unsigned long end = offset + nr_entries - 1;
942 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
946 * Use atomic clear_bit operations only on zeromap instead of non-atomic
947 * bitmap_clear to prevent adjacent bits corruption due to simultaneous writes.
949 for (i = 0; i < nr_entries; i++)
950 clear_bit(offset + i, si->zeromap);
952 if (offset < si->lowest_bit)
953 si->lowest_bit = offset;
954 if (end > si->highest_bit) {
955 bool was_full = !si->highest_bit;
957 WRITE_ONCE(si->highest_bit, end);
958 if (was_full && (si->flags & SWP_WRITEOK))
959 add_to_avail_list(si);
961 if (si->flags & SWP_BLKDEV)
962 swap_slot_free_notify =
963 si->bdev->bd_disk->fops->swap_slot_free_notify;
965 swap_slot_free_notify = NULL;
966 while (offset <= end) {
967 arch_swap_invalidate_page(si->type, offset);
968 if (swap_slot_free_notify)
969 swap_slot_free_notify(si->bdev, offset);
972 clear_shadow_from_swap_cache(si->type, begin, end);
975 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0
976 * only after the above cleanups are done.
979 atomic_long_add(nr_entries, &nr_swap_pages);
980 WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
983 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
987 if (!(si->flags & SWP_SOLIDSTATE)) {
988 si->cluster_next = next;
992 prev = this_cpu_read(*si->cluster_next_cpu);
994 * Cross the swap address space size aligned trunk, choose
995 * another trunk randomly to avoid lock contention on swap
996 * address space if possible.
998 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
999 (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
1000 /* No free swap slots available */
1001 if (si->highest_bit <= si->lowest_bit)
1003 next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
1004 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
1005 next = max_t(unsigned int, next, si->lowest_bit);
1007 this_cpu_write(*si->cluster_next_cpu, next);
1010 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
1011 unsigned long offset)
1013 if (data_race(!si->swap_map[offset])) {
1014 spin_lock(&si->lock);
1018 if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
1019 spin_lock(&si->lock);
1026 static int cluster_alloc_swap(struct swap_info_struct *si,
1027 unsigned char usage, int nr,
1028 swp_entry_t slots[], int order)
1032 VM_BUG_ON(!si->cluster_info);
1034 while (n_ret < nr) {
1035 unsigned long offset = cluster_alloc_swap_entry(si, order, usage);
1039 slots[n_ret++] = swp_entry(si->type, offset);
1045 static int scan_swap_map_slots(struct swap_info_struct *si,
1046 unsigned char usage, int nr,
1047 swp_entry_t slots[], int order)
1049 unsigned long offset;
1050 unsigned long scan_base;
1051 unsigned long last_in_cluster = 0;
1052 int latency_ration = LATENCY_LIMIT;
1053 unsigned int nr_pages = 1 << order;
1055 bool scanned_many = false;
1058 * We try to cluster swap pages by allocating them sequentially
1059 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
1060 * way, however, we resort to first-free allocation, starting
1061 * a new cluster. This prevents us from scattering swap pages
1062 * all over the entire swap partition, so that we reduce
1063 * overall disk seek times between swap pages. -- sct
1064 * But we do now try to find an empty cluster. -Andrea
1065 * And we let swap pages go all over an SSD partition. Hugh
1070 * Should not even be attempting large allocations when huge
1071 * page swap is disabled. Warn and fail the allocation.
1073 if (!IS_ENABLED(CONFIG_THP_SWAP) ||
1074 nr_pages > SWAPFILE_CLUSTER) {
1080 * Swapfile is not block device or not using clusters so unable
1081 * to allocate large entries.
1083 if (!(si->flags & SWP_BLKDEV) || !si->cluster_info)
1087 if (si->cluster_info)
1088 return cluster_alloc_swap(si, usage, nr, slots, order);
1090 si->flags += SWP_SCANNING;
1092 /* For HDD, sequential access is more important. */
1093 scan_base = si->cluster_next;
1096 if (unlikely(!si->cluster_nr--)) {
1097 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
1098 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1102 spin_unlock(&si->lock);
1105 * If seek is expensive, start searching for new cluster from
1106 * start of partition, to minimize the span of allocated swap.
1108 scan_base = offset = si->lowest_bit;
1109 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
1111 /* Locate the first empty (unaligned) cluster */
1112 for (; last_in_cluster <= READ_ONCE(si->highest_bit); offset++) {
1113 if (si->swap_map[offset])
1114 last_in_cluster = offset + SWAPFILE_CLUSTER;
1115 else if (offset == last_in_cluster) {
1116 spin_lock(&si->lock);
1117 offset -= SWAPFILE_CLUSTER - 1;
1118 si->cluster_next = offset;
1119 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1122 if (unlikely(--latency_ration < 0)) {
1124 latency_ration = LATENCY_LIMIT;
1129 spin_lock(&si->lock);
1130 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1134 if (!(si->flags & SWP_WRITEOK))
1136 if (!si->highest_bit)
1138 if (offset > si->highest_bit)
1139 scan_base = offset = si->lowest_bit;
1141 /* reuse swap entry of cache-only swap if not busy. */
1142 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
1144 spin_unlock(&si->lock);
1145 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY | TTRS_DIRECT);
1146 spin_lock(&si->lock);
1147 /* entry was freed successfully, try to use this again */
1148 if (swap_was_freed > 0)
1150 goto scan; /* check next one */
1153 if (si->swap_map[offset]) {
1159 memset(si->swap_map + offset, usage, nr_pages);
1161 swap_range_alloc(si, offset, nr_pages);
1162 slots[n_ret++] = swp_entry(si->type, offset);
1164 /* got enough slots or reach max slots? */
1165 if ((n_ret == nr) || (offset >= si->highest_bit))
1168 /* search for next available slot */
1170 /* time to take a break? */
1171 if (unlikely(--latency_ration < 0)) {
1174 spin_unlock(&si->lock);
1176 spin_lock(&si->lock);
1177 latency_ration = LATENCY_LIMIT;
1180 if (si->cluster_nr && !si->swap_map[++offset]) {
1181 /* non-ssd case, still more slots in cluster? */
1187 * Even if there's no free clusters available (fragmented),
1188 * try to scan a little more quickly with lock held unless we
1189 * have scanned too many slots already.
1191 if (!scanned_many) {
1192 unsigned long scan_limit;
1194 if (offset < scan_base)
1195 scan_limit = scan_base;
1197 scan_limit = si->highest_bit;
1198 for (; offset <= scan_limit && --latency_ration > 0;
1200 if (!si->swap_map[offset])
1207 set_cluster_next(si, offset + 1);
1208 si->flags -= SWP_SCANNING;
1212 VM_WARN_ON(order > 0);
1213 spin_unlock(&si->lock);
1214 while (++offset <= READ_ONCE(si->highest_bit)) {
1215 if (unlikely(--latency_ration < 0)) {
1217 latency_ration = LATENCY_LIMIT;
1218 scanned_many = true;
1220 if (swap_offset_available_and_locked(si, offset))
1223 offset = si->lowest_bit;
1224 while (offset < scan_base) {
1225 if (unlikely(--latency_ration < 0)) {
1227 latency_ration = LATENCY_LIMIT;
1228 scanned_many = true;
1230 if (swap_offset_available_and_locked(si, offset))
1234 spin_lock(&si->lock);
1237 si->flags -= SWP_SCANNING;
1241 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_order)
1243 int order = swap_entry_order(entry_order);
1244 unsigned long size = 1 << order;
1245 struct swap_info_struct *si, *next;
1250 spin_lock(&swap_avail_lock);
1252 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1253 if (avail_pgs <= 0) {
1254 spin_unlock(&swap_avail_lock);
1258 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1260 atomic_long_sub(n_goal * size, &nr_swap_pages);
1263 node = numa_node_id();
1264 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1265 /* requeue si to after same-priority siblings */
1266 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1267 spin_unlock(&swap_avail_lock);
1268 spin_lock(&si->lock);
1269 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1270 spin_lock(&swap_avail_lock);
1271 if (plist_node_empty(&si->avail_lists[node])) {
1272 spin_unlock(&si->lock);
1275 WARN(!si->highest_bit,
1276 "swap_info %d in list but !highest_bit\n",
1278 WARN(!(si->flags & SWP_WRITEOK),
1279 "swap_info %d in list but !SWP_WRITEOK\n",
1281 __del_from_avail_list(si);
1282 spin_unlock(&si->lock);
1285 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1286 n_goal, swp_entries, order);
1287 spin_unlock(&si->lock);
1288 if (n_ret || size > 1)
1292 spin_lock(&swap_avail_lock);
1295 * if we got here, it's likely that si was almost full before,
1296 * and since scan_swap_map_slots() can drop the si->lock,
1297 * multiple callers probably all tried to get a page from the
1298 * same si and it filled up before we could get one; or, the si
1299 * filled up between us dropping swap_avail_lock and taking
1300 * si->lock. Since we dropped the swap_avail_lock, the
1301 * swap_avail_head list may have been modified; so if next is
1302 * still in the swap_avail_head list then try it, otherwise
1303 * start over if we have not gotten any slots.
1305 if (plist_node_empty(&next->avail_lists[node]))
1309 spin_unlock(&swap_avail_lock);
1313 atomic_long_add((long)(n_goal - n_ret) * size,
1319 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1321 struct swap_info_struct *si;
1322 unsigned long offset;
1326 si = swp_swap_info(entry);
1329 if (data_race(!(si->flags & SWP_USED)))
1331 offset = swp_offset(entry);
1332 if (offset >= si->max)
1334 if (data_race(!si->swap_map[swp_offset(entry)]))
1339 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1342 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1345 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1348 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1353 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1354 struct swap_info_struct *q)
1356 struct swap_info_struct *p;
1358 p = _swap_info_get(entry);
1362 spin_unlock(&q->lock);
1364 spin_lock(&p->lock);
1369 static unsigned char __swap_entry_free_locked(struct swap_info_struct *si,
1370 unsigned long offset,
1371 unsigned char usage)
1373 unsigned char count;
1374 unsigned char has_cache;
1376 count = si->swap_map[offset];
1378 has_cache = count & SWAP_HAS_CACHE;
1379 count &= ~SWAP_HAS_CACHE;
1381 if (usage == SWAP_HAS_CACHE) {
1382 VM_BUG_ON(!has_cache);
1384 } else if (count == SWAP_MAP_SHMEM) {
1386 * Or we could insist on shmem.c using a special
1387 * swap_shmem_free() and free_shmem_swap_and_cache()...
1390 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1391 if (count == COUNT_CONTINUED) {
1392 if (swap_count_continued(si, offset, count))
1393 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1395 count = SWAP_MAP_MAX;
1400 usage = count | has_cache;
1402 WRITE_ONCE(si->swap_map[offset], usage);
1404 WRITE_ONCE(si->swap_map[offset], SWAP_HAS_CACHE);
1410 * When we get a swap entry, if there aren't some other ways to
1411 * prevent swapoff, such as the folio in swap cache is locked, RCU
1412 * reader side is locked, etc., the swap entry may become invalid
1413 * because of swapoff. Then, we need to enclose all swap related
1414 * functions with get_swap_device() and put_swap_device(), unless the
1415 * swap functions call get/put_swap_device() by themselves.
1417 * RCU reader side lock (including any spinlock) is sufficient to
1418 * prevent swapoff, because synchronize_rcu() is called in swapoff()
1419 * before freeing data structures.
1421 * Check whether swap entry is valid in the swap device. If so,
1422 * return pointer to swap_info_struct, and keep the swap entry valid
1423 * via preventing the swap device from being swapoff, until
1424 * put_swap_device() is called. Otherwise return NULL.
1426 * Notice that swapoff or swapoff+swapon can still happen before the
1427 * percpu_ref_tryget_live() in get_swap_device() or after the
1428 * percpu_ref_put() in put_swap_device() if there isn't any other way
1429 * to prevent swapoff. The caller must be prepared for that. For
1430 * example, the following situation is possible.
1434 * ... swapoff+swapon
1435 * __read_swap_cache_async()
1436 * swapcache_prepare()
1437 * __swap_duplicate()
1439 * // verify PTE not changed
1441 * In __swap_duplicate(), the swap_map need to be checked before
1442 * changing partly because the specified swap entry may be for another
1443 * swap device which has been swapoff. And in do_swap_page(), after
1444 * the page is read from the swap device, the PTE is verified not
1445 * changed with the page table locked to check whether the swap device
1446 * has been swapoff or swapoff+swapon.
1448 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1450 struct swap_info_struct *si;
1451 unsigned long offset;
1455 si = swp_swap_info(entry);
1458 if (!percpu_ref_tryget_live(&si->users))
1461 * Guarantee the si->users are checked before accessing other
1462 * fields of swap_info_struct.
1464 * Paired with the spin_unlock() after setup_swap_info() in
1465 * enable_swap_info().
1468 offset = swp_offset(entry);
1469 if (offset >= si->max)
1474 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1478 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1479 percpu_ref_put(&si->users);
1483 static unsigned char __swap_entry_free(struct swap_info_struct *si,
1486 struct swap_cluster_info *ci;
1487 unsigned long offset = swp_offset(entry);
1488 unsigned char usage;
1490 ci = lock_cluster_or_swap_info(si, offset);
1491 usage = __swap_entry_free_locked(si, offset, 1);
1492 unlock_cluster_or_swap_info(si, ci);
1494 free_swap_slot(entry);
1499 static bool __swap_entries_free(struct swap_info_struct *si,
1500 swp_entry_t entry, int nr)
1502 unsigned long offset = swp_offset(entry);
1503 unsigned int type = swp_type(entry);
1504 struct swap_cluster_info *ci;
1505 bool has_cache = false;
1506 unsigned char count;
1509 if (nr <= 1 || swap_count(data_race(si->swap_map[offset])) != 1)
1511 /* cross into another cluster */
1512 if (nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER)
1515 ci = lock_cluster_or_swap_info(si, offset);
1516 if (!swap_is_last_map(si, offset, nr, &has_cache)) {
1517 unlock_cluster_or_swap_info(si, ci);
1520 for (i = 0; i < nr; i++)
1521 WRITE_ONCE(si->swap_map[offset + i], SWAP_HAS_CACHE);
1522 unlock_cluster_or_swap_info(si, ci);
1525 for (i = 0; i < nr; i++)
1526 zswap_invalidate(swp_entry(si->type, offset + i));
1527 spin_lock(&si->lock);
1528 swap_entry_range_free(si, entry, nr);
1529 spin_unlock(&si->lock);
1534 for (i = 0; i < nr; i++) {
1535 if (data_race(si->swap_map[offset + i])) {
1536 count = __swap_entry_free(si, swp_entry(type, offset + i));
1537 if (count == SWAP_HAS_CACHE)
1547 * Drop the last HAS_CACHE flag of swap entries, caller have to
1548 * ensure all entries belong to the same cgroup.
1550 static void swap_entry_range_free(struct swap_info_struct *si, swp_entry_t entry,
1551 unsigned int nr_pages)
1553 unsigned long offset = swp_offset(entry);
1554 unsigned char *map = si->swap_map + offset;
1555 unsigned char *map_end = map + nr_pages;
1556 struct swap_cluster_info *ci;
1558 ci = lock_cluster(si, offset);
1560 VM_BUG_ON(*map != SWAP_HAS_CACHE);
1562 } while (++map < map_end);
1563 dec_cluster_info_page(si, ci, nr_pages);
1566 mem_cgroup_uncharge_swap(entry, nr_pages);
1567 swap_range_free(si, offset, nr_pages);
1570 static void cluster_swap_free_nr(struct swap_info_struct *si,
1571 unsigned long offset, int nr_pages,
1572 unsigned char usage)
1574 struct swap_cluster_info *ci;
1575 DECLARE_BITMAP(to_free, BITS_PER_LONG) = { 0 };
1578 ci = lock_cluster_or_swap_info(si, offset);
1580 nr = min(BITS_PER_LONG, nr_pages);
1581 for (i = 0; i < nr; i++) {
1582 if (!__swap_entry_free_locked(si, offset + i, usage))
1583 bitmap_set(to_free, i, 1);
1585 if (!bitmap_empty(to_free, BITS_PER_LONG)) {
1586 unlock_cluster_or_swap_info(si, ci);
1587 for_each_set_bit(i, to_free, BITS_PER_LONG)
1588 free_swap_slot(swp_entry(si->type, offset + i));
1591 bitmap_clear(to_free, 0, BITS_PER_LONG);
1592 ci = lock_cluster_or_swap_info(si, offset);
1597 unlock_cluster_or_swap_info(si, ci);
1601 * Caller has made sure that the swap device corresponding to entry
1602 * is still around or has not been recycled.
1604 void swap_free_nr(swp_entry_t entry, int nr_pages)
1607 struct swap_info_struct *sis;
1608 unsigned long offset = swp_offset(entry);
1610 sis = _swap_info_get(entry);
1615 nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
1616 cluster_swap_free_nr(sis, offset, nr, 1);
1623 * Called after dropping swapcache to decrease refcnt to swap entries.
1625 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1627 unsigned long offset = swp_offset(entry);
1628 struct swap_cluster_info *ci;
1629 struct swap_info_struct *si;
1630 int size = 1 << swap_entry_order(folio_order(folio));
1632 si = _swap_info_get(entry);
1636 ci = lock_cluster_or_swap_info(si, offset);
1637 if (size > 1 && swap_is_has_cache(si, offset, size)) {
1638 unlock_cluster_or_swap_info(si, ci);
1639 spin_lock(&si->lock);
1640 swap_entry_range_free(si, entry, size);
1641 spin_unlock(&si->lock);
1644 for (int i = 0; i < size; i++, entry.val++) {
1645 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1646 unlock_cluster_or_swap_info(si, ci);
1647 free_swap_slot(entry);
1650 lock_cluster_or_swap_info(si, offset);
1653 unlock_cluster_or_swap_info(si, ci);
1656 static int swp_entry_cmp(const void *ent1, const void *ent2)
1658 const swp_entry_t *e1 = ent1, *e2 = ent2;
1660 return (int)swp_type(*e1) - (int)swp_type(*e2);
1663 void swapcache_free_entries(swp_entry_t *entries, int n)
1665 struct swap_info_struct *p, *prev;
1675 * Sort swap entries by swap device, so each lock is only taken once.
1676 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1677 * so low that it isn't necessary to optimize further.
1679 if (nr_swapfiles > 1)
1680 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1681 for (i = 0; i < n; ++i) {
1682 p = swap_info_get_cont(entries[i], prev);
1684 swap_entry_range_free(p, entries[i], 1);
1688 spin_unlock(&p->lock);
1691 int __swap_count(swp_entry_t entry)
1693 struct swap_info_struct *si = swp_swap_info(entry);
1694 pgoff_t offset = swp_offset(entry);
1696 return swap_count(si->swap_map[offset]);
1700 * How many references to @entry are currently swapped out?
1701 * This does not give an exact answer when swap count is continued,
1702 * but does include the high COUNT_CONTINUED flag to allow for that.
1704 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1706 pgoff_t offset = swp_offset(entry);
1707 struct swap_cluster_info *ci;
1710 ci = lock_cluster_or_swap_info(si, offset);
1711 count = swap_count(si->swap_map[offset]);
1712 unlock_cluster_or_swap_info(si, ci);
1717 * How many references to @entry are currently swapped out?
1718 * This considers COUNT_CONTINUED so it returns exact answer.
1720 int swp_swapcount(swp_entry_t entry)
1722 int count, tmp_count, n;
1723 struct swap_info_struct *si;
1724 struct swap_cluster_info *ci;
1729 si = _swap_info_get(entry);
1733 offset = swp_offset(entry);
1735 ci = lock_cluster_or_swap_info(si, offset);
1737 count = swap_count(si->swap_map[offset]);
1738 if (!(count & COUNT_CONTINUED))
1741 count &= ~COUNT_CONTINUED;
1742 n = SWAP_MAP_MAX + 1;
1744 page = vmalloc_to_page(si->swap_map + offset);
1745 offset &= ~PAGE_MASK;
1746 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1749 page = list_next_entry(page, lru);
1750 map = kmap_local_page(page);
1751 tmp_count = map[offset];
1754 count += (tmp_count & ~COUNT_CONTINUED) * n;
1755 n *= (SWAP_CONT_MAX + 1);
1756 } while (tmp_count & COUNT_CONTINUED);
1758 unlock_cluster_or_swap_info(si, ci);
1762 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1763 swp_entry_t entry, int order)
1765 struct swap_cluster_info *ci;
1766 unsigned char *map = si->swap_map;
1767 unsigned int nr_pages = 1 << order;
1768 unsigned long roffset = swp_offset(entry);
1769 unsigned long offset = round_down(roffset, nr_pages);
1773 ci = lock_cluster_or_swap_info(si, offset);
1774 if (!ci || nr_pages == 1) {
1775 if (swap_count(map[roffset]))
1779 for (i = 0; i < nr_pages; i++) {
1780 if (swap_count(map[offset + i])) {
1786 unlock_cluster_or_swap_info(si, ci);
1790 static bool folio_swapped(struct folio *folio)
1792 swp_entry_t entry = folio->swap;
1793 struct swap_info_struct *si = _swap_info_get(entry);
1798 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1799 return swap_swapcount(si, entry) != 0;
1801 return swap_page_trans_huge_swapped(si, entry, folio_order(folio));
1804 static bool folio_swapcache_freeable(struct folio *folio)
1806 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1808 if (!folio_test_swapcache(folio))
1810 if (folio_test_writeback(folio))
1814 * Once hibernation has begun to create its image of memory,
1815 * there's a danger that one of the calls to folio_free_swap()
1816 * - most probably a call from __try_to_reclaim_swap() while
1817 * hibernation is allocating its own swap pages for the image,
1818 * but conceivably even a call from memory reclaim - will free
1819 * the swap from a folio which has already been recorded in the
1820 * image as a clean swapcache folio, and then reuse its swap for
1821 * another page of the image. On waking from hibernation, the
1822 * original folio might be freed under memory pressure, then
1823 * later read back in from swap, now with the wrong data.
1825 * Hibernation suspends storage while it is writing the image
1826 * to disk so check that here.
1828 if (pm_suspended_storage())
1835 * folio_free_swap() - Free the swap space used for this folio.
1836 * @folio: The folio to remove.
1838 * If swap is getting full, or if there are no more mappings of this folio,
1839 * then call folio_free_swap to free its swap space.
1841 * Return: true if we were able to release the swap space.
1843 bool folio_free_swap(struct folio *folio)
1845 if (!folio_swapcache_freeable(folio))
1847 if (folio_swapped(folio))
1850 delete_from_swap_cache(folio);
1851 folio_set_dirty(folio);
1856 * free_swap_and_cache_nr() - Release reference on range of swap entries and
1857 * reclaim their cache if no more references remain.
1858 * @entry: First entry of range.
1859 * @nr: Number of entries in range.
1861 * For each swap entry in the contiguous range, release a reference. If any swap
1862 * entries become free, try to reclaim their underlying folios, if present. The
1863 * offset range is defined by [entry.offset, entry.offset + nr).
1865 void free_swap_and_cache_nr(swp_entry_t entry, int nr)
1867 const unsigned long start_offset = swp_offset(entry);
1868 const unsigned long end_offset = start_offset + nr;
1869 struct swap_info_struct *si;
1870 bool any_only_cache = false;
1871 unsigned long offset;
1873 if (non_swap_entry(entry))
1876 si = get_swap_device(entry);
1880 if (WARN_ON(end_offset > si->max))
1884 * First free all entries in the range.
1886 any_only_cache = __swap_entries_free(si, entry, nr);
1889 * Short-circuit the below loop if none of the entries had their
1890 * reference drop to zero.
1892 if (!any_only_cache)
1896 * Now go back over the range trying to reclaim the swap cache. This is
1897 * more efficient for large folios because we will only try to reclaim
1898 * the swap once per folio in the common case. If we do
1899 * __swap_entry_free() and __try_to_reclaim_swap() in the same loop, the
1900 * latter will get a reference and lock the folio for every individual
1901 * page but will only succeed once the swap slot for every subpage is
1904 for (offset = start_offset; offset < end_offset; offset += nr) {
1906 if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
1908 * Folios are always naturally aligned in swap so
1909 * advance forward to the next boundary. Zero means no
1910 * folio was found for the swap entry, so advance by 1
1911 * in this case. Negative value means folio was found
1912 * but could not be reclaimed. Here we can still advance
1913 * to the next boundary.
1915 nr = __try_to_reclaim_swap(si, offset,
1916 TTRS_UNMAPPED | TTRS_FULL);
1921 nr = ALIGN(offset + 1, nr) - offset;
1926 put_swap_device(si);
1929 #ifdef CONFIG_HIBERNATION
1931 swp_entry_t get_swap_page_of_type(int type)
1933 struct swap_info_struct *si = swap_type_to_swap_info(type);
1934 swp_entry_t entry = {0};
1939 /* This is called for allocating swap entry, not cache */
1940 spin_lock(&si->lock);
1941 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry, 0))
1942 atomic_long_dec(&nr_swap_pages);
1943 spin_unlock(&si->lock);
1949 * Find the swap type that corresponds to given device (if any).
1951 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1952 * from 0, in which the swap header is expected to be located.
1954 * This is needed for the suspend to disk (aka swsusp).
1956 int swap_type_of(dev_t device, sector_t offset)
1963 spin_lock(&swap_lock);
1964 for (type = 0; type < nr_swapfiles; type++) {
1965 struct swap_info_struct *sis = swap_info[type];
1967 if (!(sis->flags & SWP_WRITEOK))
1970 if (device == sis->bdev->bd_dev) {
1971 struct swap_extent *se = first_se(sis);
1973 if (se->start_block == offset) {
1974 spin_unlock(&swap_lock);
1979 spin_unlock(&swap_lock);
1983 int find_first_swap(dev_t *device)
1987 spin_lock(&swap_lock);
1988 for (type = 0; type < nr_swapfiles; type++) {
1989 struct swap_info_struct *sis = swap_info[type];
1991 if (!(sis->flags & SWP_WRITEOK))
1993 *device = sis->bdev->bd_dev;
1994 spin_unlock(&swap_lock);
1997 spin_unlock(&swap_lock);
2002 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
2003 * corresponding to given index in swap_info (swap type).
2005 sector_t swapdev_block(int type, pgoff_t offset)
2007 struct swap_info_struct *si = swap_type_to_swap_info(type);
2008 struct swap_extent *se;
2010 if (!si || !(si->flags & SWP_WRITEOK))
2012 se = offset_to_swap_extent(si, offset);
2013 return se->start_block + (offset - se->start_page);
2017 * Return either the total number of swap pages of given type, or the number
2018 * of free pages of that type (depending on @free)
2020 * This is needed for software suspend
2022 unsigned int count_swap_pages(int type, int free)
2026 spin_lock(&swap_lock);
2027 if ((unsigned int)type < nr_swapfiles) {
2028 struct swap_info_struct *sis = swap_info[type];
2030 spin_lock(&sis->lock);
2031 if (sis->flags & SWP_WRITEOK) {
2034 n -= sis->inuse_pages;
2036 spin_unlock(&sis->lock);
2038 spin_unlock(&swap_lock);
2041 #endif /* CONFIG_HIBERNATION */
2043 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
2045 return pte_same(pte_swp_clear_flags(pte), swp_pte);
2049 * No need to decide whether this PTE shares the swap entry with others,
2050 * just let do_wp_page work it out if a write is requested later - to
2051 * force COW, vm_page_prot omits write permission from any private vma.
2053 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
2054 unsigned long addr, swp_entry_t entry, struct folio *folio)
2057 struct folio *swapcache;
2059 pte_t *pte, new_pte, old_pte;
2060 bool hwpoisoned = false;
2064 folio = ksm_might_need_to_copy(folio, vma, addr);
2065 if (unlikely(!folio))
2067 else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
2072 page = folio_file_page(folio, swp_offset(entry));
2073 if (PageHWPoison(page))
2076 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
2077 if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
2078 swp_entry_to_pte(entry)))) {
2083 old_pte = ptep_get(pte);
2085 if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
2086 swp_entry_t swp_entry;
2088 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2090 swp_entry = make_hwpoison_entry(page);
2092 swp_entry = make_poisoned_swp_entry();
2094 new_pte = swp_entry_to_pte(swp_entry);
2100 * Some architectures may have to restore extra metadata to the page
2101 * when reading from swap. This metadata may be indexed by swap entry
2102 * so this must be called before swap_free().
2104 arch_swap_restore(folio_swap(entry, folio), folio);
2106 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2107 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
2109 if (folio == swapcache) {
2110 rmap_t rmap_flags = RMAP_NONE;
2113 * See do_swap_page(): writeback would be problematic.
2114 * However, we do a folio_wait_writeback() just before this
2115 * call and have the folio locked.
2117 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
2118 if (pte_swp_exclusive(old_pte))
2119 rmap_flags |= RMAP_EXCLUSIVE;
2121 * We currently only expect small !anon folios, which are either
2122 * fully exclusive or fully shared. If we ever get large folios
2123 * here, we have to be careful.
2125 if (!folio_test_anon(folio)) {
2126 VM_WARN_ON_ONCE(folio_test_large(folio));
2127 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
2128 folio_add_new_anon_rmap(folio, vma, addr, rmap_flags);
2130 folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
2132 } else { /* ksm created a completely new copy */
2133 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
2134 folio_add_lru_vma(folio, vma);
2136 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
2137 if (pte_swp_soft_dirty(old_pte))
2138 new_pte = pte_mksoft_dirty(new_pte);
2139 if (pte_swp_uffd_wp(old_pte))
2140 new_pte = pte_mkuffd_wp(new_pte);
2142 set_pte_at(vma->vm_mm, addr, pte, new_pte);
2146 pte_unmap_unlock(pte, ptl);
2147 if (folio != swapcache) {
2148 folio_unlock(folio);
2154 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
2155 unsigned long addr, unsigned long end,
2159 struct swap_info_struct *si;
2161 si = swap_info[type];
2163 struct folio *folio;
2164 unsigned long offset;
2165 unsigned char swp_count;
2171 pte = pte_offset_map(pmd, addr);
2176 ptent = ptep_get_lockless(pte);
2178 if (!is_swap_pte(ptent))
2181 entry = pte_to_swp_entry(ptent);
2182 if (swp_type(entry) != type)
2185 offset = swp_offset(entry);
2189 folio = swap_cache_get_folio(entry, vma, addr);
2191 struct vm_fault vmf = {
2194 .real_address = addr,
2198 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2202 swp_count = READ_ONCE(si->swap_map[offset]);
2203 if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
2209 folio_wait_writeback(folio);
2210 ret = unuse_pte(vma, pmd, addr, entry, folio);
2212 folio_unlock(folio);
2217 folio_free_swap(folio);
2218 folio_unlock(folio);
2220 } while (addr += PAGE_SIZE, addr != end);
2227 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2228 unsigned long addr, unsigned long end,
2235 pmd = pmd_offset(pud, addr);
2238 next = pmd_addr_end(addr, end);
2239 ret = unuse_pte_range(vma, pmd, addr, next, type);
2242 } while (pmd++, addr = next, addr != end);
2246 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2247 unsigned long addr, unsigned long end,
2254 pud = pud_offset(p4d, addr);
2256 next = pud_addr_end(addr, end);
2257 if (pud_none_or_clear_bad(pud))
2259 ret = unuse_pmd_range(vma, pud, addr, next, type);
2262 } while (pud++, addr = next, addr != end);
2266 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2267 unsigned long addr, unsigned long end,
2274 p4d = p4d_offset(pgd, addr);
2276 next = p4d_addr_end(addr, end);
2277 if (p4d_none_or_clear_bad(p4d))
2279 ret = unuse_pud_range(vma, p4d, addr, next, type);
2282 } while (p4d++, addr = next, addr != end);
2286 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
2289 unsigned long addr, end, next;
2292 addr = vma->vm_start;
2295 pgd = pgd_offset(vma->vm_mm, addr);
2297 next = pgd_addr_end(addr, end);
2298 if (pgd_none_or_clear_bad(pgd))
2300 ret = unuse_p4d_range(vma, pgd, addr, next, type);
2303 } while (pgd++, addr = next, addr != end);
2307 static int unuse_mm(struct mm_struct *mm, unsigned int type)
2309 struct vm_area_struct *vma;
2311 VMA_ITERATOR(vmi, mm, 0);
2314 for_each_vma(vmi, vma) {
2315 if (vma->anon_vma) {
2316 ret = unuse_vma(vma, type);
2323 mmap_read_unlock(mm);
2328 * Scan swap_map from current position to next entry still in use.
2329 * Return 0 if there are no inuse entries after prev till end of
2332 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2336 unsigned char count;
2339 * No need for swap_lock here: we're just looking
2340 * for whether an entry is in use, not modifying it; false
2341 * hits are okay, and sys_swapoff() has already prevented new
2342 * allocations from this area (while holding swap_lock).
2344 for (i = prev + 1; i < si->max; i++) {
2345 count = READ_ONCE(si->swap_map[i]);
2346 if (count && swap_count(count) != SWAP_MAP_BAD)
2348 if ((i % LATENCY_LIMIT) == 0)
2358 static int try_to_unuse(unsigned int type)
2360 struct mm_struct *prev_mm;
2361 struct mm_struct *mm;
2362 struct list_head *p;
2364 struct swap_info_struct *si = swap_info[type];
2365 struct folio *folio;
2369 if (!READ_ONCE(si->inuse_pages))
2373 retval = shmem_unuse(type);
2380 spin_lock(&mmlist_lock);
2381 p = &init_mm.mmlist;
2382 while (READ_ONCE(si->inuse_pages) &&
2383 !signal_pending(current) &&
2384 (p = p->next) != &init_mm.mmlist) {
2386 mm = list_entry(p, struct mm_struct, mmlist);
2387 if (!mmget_not_zero(mm))
2389 spin_unlock(&mmlist_lock);
2392 retval = unuse_mm(mm, type);
2399 * Make sure that we aren't completely killing
2400 * interactive performance.
2403 spin_lock(&mmlist_lock);
2405 spin_unlock(&mmlist_lock);
2410 while (READ_ONCE(si->inuse_pages) &&
2411 !signal_pending(current) &&
2412 (i = find_next_to_unuse(si, i)) != 0) {
2414 entry = swp_entry(type, i);
2415 folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry));
2420 * It is conceivable that a racing task removed this folio from
2421 * swap cache just before we acquired the page lock. The folio
2422 * might even be back in swap cache on another swap area. But
2423 * that is okay, folio_free_swap() only removes stale folios.
2426 folio_wait_writeback(folio);
2427 folio_free_swap(folio);
2428 folio_unlock(folio);
2433 * Lets check again to see if there are still swap entries in the map.
2434 * If yes, we would need to do retry the unuse logic again.
2435 * Under global memory pressure, swap entries can be reinserted back
2436 * into process space after the mmlist loop above passes over them.
2438 * Limit the number of retries? No: when mmget_not_zero()
2439 * above fails, that mm is likely to be freeing swap from
2440 * exit_mmap(), which proceeds at its own independent pace;
2441 * and even shmem_writepage() could have been preempted after
2442 * folio_alloc_swap(), temporarily hiding that swap. It's easy
2443 * and robust (though cpu-intensive) just to keep retrying.
2445 if (READ_ONCE(si->inuse_pages)) {
2446 if (!signal_pending(current))
2453 * Make sure that further cleanups after try_to_unuse() returns happen
2454 * after swap_range_free() reduces si->inuse_pages to 0.
2461 * After a successful try_to_unuse, if no swap is now in use, we know
2462 * we can empty the mmlist. swap_lock must be held on entry and exit.
2463 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2464 * added to the mmlist just after page_duplicate - before would be racy.
2466 static void drain_mmlist(void)
2468 struct list_head *p, *next;
2471 for (type = 0; type < nr_swapfiles; type++)
2472 if (swap_info[type]->inuse_pages)
2474 spin_lock(&mmlist_lock);
2475 list_for_each_safe(p, next, &init_mm.mmlist)
2477 spin_unlock(&mmlist_lock);
2481 * Free all of a swapdev's extent information
2483 static void destroy_swap_extents(struct swap_info_struct *sis)
2485 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2486 struct rb_node *rb = sis->swap_extent_root.rb_node;
2487 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2489 rb_erase(rb, &sis->swap_extent_root);
2493 if (sis->flags & SWP_ACTIVATED) {
2494 struct file *swap_file = sis->swap_file;
2495 struct address_space *mapping = swap_file->f_mapping;
2497 sis->flags &= ~SWP_ACTIVATED;
2498 if (mapping->a_ops->swap_deactivate)
2499 mapping->a_ops->swap_deactivate(swap_file);
2504 * Add a block range (and the corresponding page range) into this swapdev's
2507 * This function rather assumes that it is called in ascending page order.
2510 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2511 unsigned long nr_pages, sector_t start_block)
2513 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2514 struct swap_extent *se;
2515 struct swap_extent *new_se;
2518 * place the new node at the right most since the
2519 * function is called in ascending page order.
2523 link = &parent->rb_right;
2527 se = rb_entry(parent, struct swap_extent, rb_node);
2528 BUG_ON(se->start_page + se->nr_pages != start_page);
2529 if (se->start_block + se->nr_pages == start_block) {
2531 se->nr_pages += nr_pages;
2536 /* No merge, insert a new extent. */
2537 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2540 new_se->start_page = start_page;
2541 new_se->nr_pages = nr_pages;
2542 new_se->start_block = start_block;
2544 rb_link_node(&new_se->rb_node, parent, link);
2545 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2548 EXPORT_SYMBOL_GPL(add_swap_extent);
2551 * A `swap extent' is a simple thing which maps a contiguous range of pages
2552 * onto a contiguous range of disk blocks. A rbtree of swap extents is
2553 * built at swapon time and is then used at swap_writepage/swap_read_folio
2554 * time for locating where on disk a page belongs.
2556 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2557 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2558 * swap files identically.
2560 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2561 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2562 * swapfiles are handled *identically* after swapon time.
2564 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2565 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray
2566 * blocks are found which do not fall within the PAGE_SIZE alignment
2567 * requirements, they are simply tossed out - we will never use those blocks
2570 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2571 * prevents users from writing to the swap device, which will corrupt memory.
2573 * The amount of disk space which a single swap extent represents varies.
2574 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2575 * extents in the rbtree. - akpm.
2577 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2579 struct file *swap_file = sis->swap_file;
2580 struct address_space *mapping = swap_file->f_mapping;
2581 struct inode *inode = mapping->host;
2584 if (S_ISBLK(inode->i_mode)) {
2585 ret = add_swap_extent(sis, 0, sis->max, 0);
2590 if (mapping->a_ops->swap_activate) {
2591 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2594 sis->flags |= SWP_ACTIVATED;
2595 if ((sis->flags & SWP_FS_OPS) &&
2596 sio_pool_init() != 0) {
2597 destroy_swap_extents(sis);
2603 return generic_swapfile_activate(sis, swap_file, span);
2606 static int swap_node(struct swap_info_struct *si)
2608 struct block_device *bdev;
2613 bdev = si->swap_file->f_inode->i_sb->s_bdev;
2615 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2618 static void setup_swap_info(struct swap_info_struct *si, int prio,
2619 unsigned char *swap_map,
2620 struct swap_cluster_info *cluster_info,
2621 unsigned long *zeromap)
2628 si->prio = --least_priority;
2630 * the plist prio is negated because plist ordering is
2631 * low-to-high, while swap ordering is high-to-low
2633 si->list.prio = -si->prio;
2636 si->avail_lists[i].prio = -si->prio;
2638 if (swap_node(si) == i)
2639 si->avail_lists[i].prio = 1;
2641 si->avail_lists[i].prio = -si->prio;
2644 si->swap_map = swap_map;
2645 si->cluster_info = cluster_info;
2646 si->zeromap = zeromap;
2649 static void _enable_swap_info(struct swap_info_struct *si)
2651 si->flags |= SWP_WRITEOK;
2652 atomic_long_add(si->pages, &nr_swap_pages);
2653 total_swap_pages += si->pages;
2655 assert_spin_locked(&swap_lock);
2657 * both lists are plists, and thus priority ordered.
2658 * swap_active_head needs to be priority ordered for swapoff(),
2659 * which on removal of any swap_info_struct with an auto-assigned
2660 * (i.e. negative) priority increments the auto-assigned priority
2661 * of any lower-priority swap_info_structs.
2662 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2663 * which allocates swap pages from the highest available priority
2666 plist_add(&si->list, &swap_active_head);
2668 /* add to available list iff swap device is not full */
2669 if (si->highest_bit)
2670 add_to_avail_list(si);
2673 static void enable_swap_info(struct swap_info_struct *si, int prio,
2674 unsigned char *swap_map,
2675 struct swap_cluster_info *cluster_info,
2676 unsigned long *zeromap)
2678 spin_lock(&swap_lock);
2679 spin_lock(&si->lock);
2680 setup_swap_info(si, prio, swap_map, cluster_info, zeromap);
2681 spin_unlock(&si->lock);
2682 spin_unlock(&swap_lock);
2684 * Finished initializing swap device, now it's safe to reference it.
2686 percpu_ref_resurrect(&si->users);
2687 spin_lock(&swap_lock);
2688 spin_lock(&si->lock);
2689 _enable_swap_info(si);
2690 spin_unlock(&si->lock);
2691 spin_unlock(&swap_lock);
2694 static void reinsert_swap_info(struct swap_info_struct *si)
2696 spin_lock(&swap_lock);
2697 spin_lock(&si->lock);
2698 setup_swap_info(si, si->prio, si->swap_map, si->cluster_info, si->zeromap);
2699 _enable_swap_info(si);
2700 spin_unlock(&si->lock);
2701 spin_unlock(&swap_lock);
2704 static bool __has_usable_swap(void)
2706 return !plist_head_empty(&swap_active_head);
2709 bool has_usable_swap(void)
2713 spin_lock(&swap_lock);
2714 ret = __has_usable_swap();
2715 spin_unlock(&swap_lock);
2719 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2721 struct swap_info_struct *p = NULL;
2722 unsigned char *swap_map;
2723 unsigned long *zeromap;
2724 struct swap_cluster_info *cluster_info;
2725 struct file *swap_file, *victim;
2726 struct address_space *mapping;
2727 struct inode *inode;
2728 struct filename *pathname;
2731 if (!capable(CAP_SYS_ADMIN))
2734 BUG_ON(!current->mm);
2736 pathname = getname(specialfile);
2737 if (IS_ERR(pathname))
2738 return PTR_ERR(pathname);
2740 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2741 err = PTR_ERR(victim);
2745 mapping = victim->f_mapping;
2746 spin_lock(&swap_lock);
2747 plist_for_each_entry(p, &swap_active_head, list) {
2748 if (p->flags & SWP_WRITEOK) {
2749 if (p->swap_file->f_mapping == mapping) {
2757 spin_unlock(&swap_lock);
2760 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2761 vm_unacct_memory(p->pages);
2764 spin_unlock(&swap_lock);
2767 spin_lock(&p->lock);
2768 del_from_avail_list(p);
2770 struct swap_info_struct *si = p;
2773 plist_for_each_entry_continue(si, &swap_active_head, list) {
2776 for_each_node(nid) {
2777 if (si->avail_lists[nid].prio != 1)
2778 si->avail_lists[nid].prio--;
2783 plist_del(&p->list, &swap_active_head);
2784 atomic_long_sub(p->pages, &nr_swap_pages);
2785 total_swap_pages -= p->pages;
2786 p->flags &= ~SWP_WRITEOK;
2787 spin_unlock(&p->lock);
2788 spin_unlock(&swap_lock);
2790 disable_swap_slots_cache_lock();
2792 set_current_oom_origin();
2793 err = try_to_unuse(p->type);
2794 clear_current_oom_origin();
2797 /* re-insert swap space back into swap_list */
2798 reinsert_swap_info(p);
2799 reenable_swap_slots_cache_unlock();
2803 reenable_swap_slots_cache_unlock();
2806 * Wait for swap operations protected by get/put_swap_device()
2807 * to complete. Because of synchronize_rcu() here, all swap
2808 * operations protected by RCU reader side lock (including any
2809 * spinlock) will be waited too. This makes it easy to
2810 * prevent folio_test_swapcache() and the following swap cache
2811 * operations from racing with swapoff.
2813 percpu_ref_kill(&p->users);
2815 wait_for_completion(&p->comp);
2817 flush_work(&p->discard_work);
2819 destroy_swap_extents(p);
2820 if (p->flags & SWP_CONTINUED)
2821 free_swap_count_continuations(p);
2823 if (!p->bdev || !bdev_nonrot(p->bdev))
2824 atomic_dec(&nr_rotate_swap);
2826 mutex_lock(&swapon_mutex);
2827 spin_lock(&swap_lock);
2828 spin_lock(&p->lock);
2831 /* wait for anyone still in scan_swap_map_slots */
2832 p->highest_bit = 0; /* cuts scans short */
2833 while (p->flags >= SWP_SCANNING) {
2834 spin_unlock(&p->lock);
2835 spin_unlock(&swap_lock);
2836 schedule_timeout_uninterruptible(1);
2837 spin_lock(&swap_lock);
2838 spin_lock(&p->lock);
2841 swap_file = p->swap_file;
2842 p->swap_file = NULL;
2844 swap_map = p->swap_map;
2846 zeromap = p->zeromap;
2848 cluster_info = p->cluster_info;
2849 p->cluster_info = NULL;
2850 spin_unlock(&p->lock);
2851 spin_unlock(&swap_lock);
2852 arch_swap_invalidate_area(p->type);
2853 zswap_swapoff(p->type);
2854 mutex_unlock(&swapon_mutex);
2855 free_percpu(p->percpu_cluster);
2856 p->percpu_cluster = NULL;
2857 free_percpu(p->cluster_next_cpu);
2858 p->cluster_next_cpu = NULL;
2861 kvfree(cluster_info);
2862 /* Destroy swap account information */
2863 swap_cgroup_swapoff(p->type);
2864 exit_swap_address_space(p->type);
2866 inode = mapping->host;
2869 inode->i_flags &= ~S_SWAPFILE;
2870 inode_unlock(inode);
2871 filp_close(swap_file, NULL);
2874 * Clear the SWP_USED flag after all resources are freed so that swapon
2875 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2876 * not hold p->lock after we cleared its SWP_WRITEOK.
2878 spin_lock(&swap_lock);
2880 spin_unlock(&swap_lock);
2883 atomic_inc(&proc_poll_event);
2884 wake_up_interruptible(&proc_poll_wait);
2887 filp_close(victim, NULL);
2893 #ifdef CONFIG_PROC_FS
2894 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2896 struct seq_file *seq = file->private_data;
2898 poll_wait(file, &proc_poll_wait, wait);
2900 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2901 seq->poll_event = atomic_read(&proc_poll_event);
2902 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2905 return EPOLLIN | EPOLLRDNORM;
2909 static void *swap_start(struct seq_file *swap, loff_t *pos)
2911 struct swap_info_struct *si;
2915 mutex_lock(&swapon_mutex);
2918 return SEQ_START_TOKEN;
2920 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2921 if (!(si->flags & SWP_USED) || !si->swap_map)
2930 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2932 struct swap_info_struct *si = v;
2935 if (v == SEQ_START_TOKEN)
2938 type = si->type + 1;
2941 for (; (si = swap_type_to_swap_info(type)); type++) {
2942 if (!(si->flags & SWP_USED) || !si->swap_map)
2950 static void swap_stop(struct seq_file *swap, void *v)
2952 mutex_unlock(&swapon_mutex);
2955 static int swap_show(struct seq_file *swap, void *v)
2957 struct swap_info_struct *si = v;
2960 unsigned long bytes, inuse;
2962 if (si == SEQ_START_TOKEN) {
2963 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2967 bytes = K(si->pages);
2968 inuse = K(READ_ONCE(si->inuse_pages));
2970 file = si->swap_file;
2971 len = seq_file_path(swap, file, " \t\n\\");
2972 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2973 len < 40 ? 40 - len : 1, " ",
2974 S_ISBLK(file_inode(file)->i_mode) ?
2975 "partition" : "file\t",
2976 bytes, bytes < 10000000 ? "\t" : "",
2977 inuse, inuse < 10000000 ? "\t" : "",
2982 static const struct seq_operations swaps_op = {
2983 .start = swap_start,
2989 static int swaps_open(struct inode *inode, struct file *file)
2991 struct seq_file *seq;
2994 ret = seq_open(file, &swaps_op);
2998 seq = file->private_data;
2999 seq->poll_event = atomic_read(&proc_poll_event);
3003 static const struct proc_ops swaps_proc_ops = {
3004 .proc_flags = PROC_ENTRY_PERMANENT,
3005 .proc_open = swaps_open,
3006 .proc_read = seq_read,
3007 .proc_lseek = seq_lseek,
3008 .proc_release = seq_release,
3009 .proc_poll = swaps_poll,
3012 static int __init procswaps_init(void)
3014 proc_create("swaps", 0, NULL, &swaps_proc_ops);
3017 __initcall(procswaps_init);
3018 #endif /* CONFIG_PROC_FS */
3020 #ifdef MAX_SWAPFILES_CHECK
3021 static int __init max_swapfiles_check(void)
3023 MAX_SWAPFILES_CHECK();
3026 late_initcall(max_swapfiles_check);
3029 static struct swap_info_struct *alloc_swap_info(void)
3031 struct swap_info_struct *p;
3032 struct swap_info_struct *defer = NULL;
3036 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
3038 return ERR_PTR(-ENOMEM);
3040 if (percpu_ref_init(&p->users, swap_users_ref_free,
3041 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
3043 return ERR_PTR(-ENOMEM);
3046 spin_lock(&swap_lock);
3047 for (type = 0; type < nr_swapfiles; type++) {
3048 if (!(swap_info[type]->flags & SWP_USED))
3051 if (type >= MAX_SWAPFILES) {
3052 spin_unlock(&swap_lock);
3053 percpu_ref_exit(&p->users);
3055 return ERR_PTR(-EPERM);
3057 if (type >= nr_swapfiles) {
3060 * Publish the swap_info_struct after initializing it.
3061 * Note that kvzalloc() above zeroes all its fields.
3063 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
3067 p = swap_info[type];
3069 * Do not memset this entry: a racing procfs swap_next()
3070 * would be relying on p->type to remain valid.
3073 p->swap_extent_root = RB_ROOT;
3074 plist_node_init(&p->list, 0);
3076 plist_node_init(&p->avail_lists[i], 0);
3077 p->flags = SWP_USED;
3078 spin_unlock(&swap_lock);
3080 percpu_ref_exit(&defer->users);
3083 spin_lock_init(&p->lock);
3084 spin_lock_init(&p->cont_lock);
3085 init_completion(&p->comp);
3090 static int claim_swapfile(struct swap_info_struct *si, struct inode *inode)
3092 if (S_ISBLK(inode->i_mode)) {
3093 si->bdev = I_BDEV(inode);
3095 * Zoned block devices contain zones that have a sequential
3096 * write only restriction. Hence zoned block devices are not
3097 * suitable for swapping. Disallow them here.
3099 if (bdev_is_zoned(si->bdev))
3101 si->flags |= SWP_BLKDEV;
3102 } else if (S_ISREG(inode->i_mode)) {
3103 si->bdev = inode->i_sb->s_bdev;
3111 * Find out how many pages are allowed for a single swap device. There
3112 * are two limiting factors:
3113 * 1) the number of bits for the swap offset in the swp_entry_t type, and
3114 * 2) the number of bits in the swap pte, as defined by the different
3117 * In order to find the largest possible bit mask, a swap entry with
3118 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
3119 * decoded to a swp_entry_t again, and finally the swap offset is
3122 * This will mask all the bits from the initial ~0UL mask that can't
3123 * be encoded in either the swp_entry_t or the architecture definition
3126 unsigned long generic_max_swapfile_size(void)
3128 return swp_offset(pte_to_swp_entry(
3129 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
3132 /* Can be overridden by an architecture for additional checks. */
3133 __weak unsigned long arch_max_swapfile_size(void)
3135 return generic_max_swapfile_size();
3138 static unsigned long read_swap_header(struct swap_info_struct *si,
3139 union swap_header *swap_header,
3140 struct inode *inode)
3143 unsigned long maxpages;
3144 unsigned long swapfilepages;
3145 unsigned long last_page;
3147 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
3148 pr_err("Unable to find swap-space signature\n");
3152 /* swap partition endianness hack... */
3153 if (swab32(swap_header->info.version) == 1) {
3154 swab32s(&swap_header->info.version);
3155 swab32s(&swap_header->info.last_page);
3156 swab32s(&swap_header->info.nr_badpages);
3157 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3159 for (i = 0; i < swap_header->info.nr_badpages; i++)
3160 swab32s(&swap_header->info.badpages[i]);
3162 /* Check the swap header's sub-version */
3163 if (swap_header->info.version != 1) {
3164 pr_warn("Unable to handle swap header version %d\n",
3165 swap_header->info.version);
3170 si->cluster_next = 1;
3173 maxpages = swapfile_maximum_size;
3174 last_page = swap_header->info.last_page;
3176 pr_warn("Empty swap-file\n");
3179 if (last_page > maxpages) {
3180 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3181 K(maxpages), K(last_page));
3183 if (maxpages > last_page) {
3184 maxpages = last_page + 1;
3185 /* p->max is an unsigned int: don't overflow it */
3186 if ((unsigned int)maxpages == 0)
3187 maxpages = UINT_MAX;
3189 si->highest_bit = maxpages - 1;
3193 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3194 if (swapfilepages && maxpages > swapfilepages) {
3195 pr_warn("Swap area shorter than signature indicates\n");
3198 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3200 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3206 #define SWAP_CLUSTER_INFO_COLS \
3207 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3208 #define SWAP_CLUSTER_SPACE_COLS \
3209 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3210 #define SWAP_CLUSTER_COLS \
3211 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3213 static int setup_swap_map_and_extents(struct swap_info_struct *si,
3214 union swap_header *swap_header,
3215 unsigned char *swap_map,
3216 unsigned long maxpages,
3219 unsigned int nr_good_pages;
3223 nr_good_pages = maxpages - 1; /* omit header page */
3225 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3226 unsigned int page_nr = swap_header->info.badpages[i];
3227 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3229 if (page_nr < maxpages) {
3230 swap_map[page_nr] = SWAP_MAP_BAD;
3235 if (nr_good_pages) {
3236 swap_map[0] = SWAP_MAP_BAD;
3238 si->pages = nr_good_pages;
3239 nr_extents = setup_swap_extents(si, span);
3242 nr_good_pages = si->pages;
3244 if (!nr_good_pages) {
3245 pr_warn("Empty swap-file\n");
3252 static struct swap_cluster_info *setup_clusters(struct swap_info_struct *si,
3253 union swap_header *swap_header,
3254 unsigned long maxpages)
3256 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3257 unsigned long col = si->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3258 struct swap_cluster_info *cluster_info;
3259 unsigned long i, j, k, idx;
3260 int cpu, err = -ENOMEM;
3262 cluster_info = kvcalloc(nr_clusters, sizeof(*cluster_info), GFP_KERNEL);
3266 for (i = 0; i < nr_clusters; i++)
3267 spin_lock_init(&cluster_info[i].lock);
3269 si->cluster_next_cpu = alloc_percpu(unsigned int);
3270 if (!si->cluster_next_cpu)
3273 /* Random start position to help with wear leveling */
3274 for_each_possible_cpu(cpu)
3275 per_cpu(*si->cluster_next_cpu, cpu) =
3276 get_random_u32_inclusive(1, si->highest_bit);
3278 si->percpu_cluster = alloc_percpu(struct percpu_cluster);
3279 if (!si->percpu_cluster)
3282 for_each_possible_cpu(cpu) {
3283 struct percpu_cluster *cluster;
3285 cluster = per_cpu_ptr(si->percpu_cluster, cpu);
3286 for (i = 0; i < SWAP_NR_ORDERS; i++)
3287 cluster->next[i] = SWAP_NEXT_INVALID;
3291 * Mark unusable pages as unavailable. The clusters aren't
3292 * marked free yet, so no list operations are involved yet.
3294 * See setup_swap_map_and_extents(): header page, bad pages,
3295 * and the EOF part of the last cluster.
3297 inc_cluster_info_page(si, cluster_info, 0);
3298 for (i = 0; i < swap_header->info.nr_badpages; i++)
3299 inc_cluster_info_page(si, cluster_info,
3300 swap_header->info.badpages[i]);
3301 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3302 inc_cluster_info_page(si, cluster_info, i);
3304 INIT_LIST_HEAD(&si->free_clusters);
3305 INIT_LIST_HEAD(&si->full_clusters);
3306 INIT_LIST_HEAD(&si->discard_clusters);
3308 for (i = 0; i < SWAP_NR_ORDERS; i++) {
3309 INIT_LIST_HEAD(&si->nonfull_clusters[i]);
3310 INIT_LIST_HEAD(&si->frag_clusters[i]);
3311 si->frag_cluster_nr[i] = 0;
3315 * Reduce false cache line sharing between cluster_info and
3316 * sharing same address space.
3318 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3319 j = (k + col) % SWAP_CLUSTER_COLS;
3320 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3321 struct swap_cluster_info *ci;
3322 idx = i * SWAP_CLUSTER_COLS + j;
3323 ci = cluster_info + idx;
3324 if (idx >= nr_clusters)
3327 ci->flags = CLUSTER_FLAG_NONFULL;
3328 list_add_tail(&ci->list, &si->nonfull_clusters[0]);
3331 ci->flags = CLUSTER_FLAG_FREE;
3332 list_add_tail(&ci->list, &si->free_clusters);
3336 return cluster_info;
3339 kvfree(cluster_info);
3341 return ERR_PTR(err);
3344 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3346 struct swap_info_struct *si;
3347 struct filename *name;
3348 struct file *swap_file = NULL;
3349 struct address_space *mapping;
3350 struct dentry *dentry;
3353 union swap_header *swap_header;
3356 unsigned long maxpages;
3357 unsigned char *swap_map = NULL;
3358 unsigned long *zeromap = NULL;
3359 struct swap_cluster_info *cluster_info = NULL;
3360 struct folio *folio = NULL;
3361 struct inode *inode = NULL;
3362 bool inced_nr_rotate_swap = false;
3364 if (swap_flags & ~SWAP_FLAGS_VALID)
3367 if (!capable(CAP_SYS_ADMIN))
3370 if (!swap_avail_heads)
3373 si = alloc_swap_info();
3377 INIT_WORK(&si->discard_work, swap_discard_work);
3379 name = getname(specialfile);
3381 error = PTR_ERR(name);
3385 swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0);
3386 if (IS_ERR(swap_file)) {
3387 error = PTR_ERR(swap_file);
3392 si->swap_file = swap_file;
3393 mapping = swap_file->f_mapping;
3394 dentry = swap_file->f_path.dentry;
3395 inode = mapping->host;
3397 error = claim_swapfile(si, inode);
3398 if (unlikely(error))
3402 if (d_unlinked(dentry) || cant_mount(dentry)) {
3404 goto bad_swap_unlock_inode;
3406 if (IS_SWAPFILE(inode)) {
3408 goto bad_swap_unlock_inode;
3412 * Read the swap header.
3414 if (!mapping->a_ops->read_folio) {
3416 goto bad_swap_unlock_inode;
3418 folio = read_mapping_folio(mapping, 0, swap_file);
3419 if (IS_ERR(folio)) {
3420 error = PTR_ERR(folio);
3421 goto bad_swap_unlock_inode;
3423 swap_header = kmap_local_folio(folio, 0);
3425 maxpages = read_swap_header(si, swap_header, inode);
3426 if (unlikely(!maxpages)) {
3428 goto bad_swap_unlock_inode;
3431 /* OK, set up the swap map and apply the bad block list */
3432 swap_map = vzalloc(maxpages);
3435 goto bad_swap_unlock_inode;
3438 error = swap_cgroup_swapon(si->type, maxpages);
3440 goto bad_swap_unlock_inode;
3442 nr_extents = setup_swap_map_and_extents(si, swap_header, swap_map,
3444 if (unlikely(nr_extents < 0)) {
3446 goto bad_swap_unlock_inode;
3450 * Use kvmalloc_array instead of bitmap_zalloc as the allocation order might
3451 * be above MAX_PAGE_ORDER incase of a large swap file.
3453 zeromap = kvmalloc_array(BITS_TO_LONGS(maxpages), sizeof(long),
3454 GFP_KERNEL | __GFP_ZERO);
3457 goto bad_swap_unlock_inode;
3460 if (si->bdev && bdev_stable_writes(si->bdev))
3461 si->flags |= SWP_STABLE_WRITES;
3463 if (si->bdev && bdev_synchronous(si->bdev))
3464 si->flags |= SWP_SYNCHRONOUS_IO;
3466 if (si->bdev && bdev_nonrot(si->bdev)) {
3467 si->flags |= SWP_SOLIDSTATE;
3469 cluster_info = setup_clusters(si, swap_header, maxpages);
3470 if (IS_ERR(cluster_info)) {
3471 error = PTR_ERR(cluster_info);
3472 cluster_info = NULL;
3473 goto bad_swap_unlock_inode;
3476 atomic_inc(&nr_rotate_swap);
3477 inced_nr_rotate_swap = true;
3480 if ((swap_flags & SWAP_FLAG_DISCARD) &&
3481 si->bdev && bdev_max_discard_sectors(si->bdev)) {
3483 * When discard is enabled for swap with no particular
3484 * policy flagged, we set all swap discard flags here in
3485 * order to sustain backward compatibility with older
3486 * swapon(8) releases.
3488 si->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3492 * By flagging sys_swapon, a sysadmin can tell us to
3493 * either do single-time area discards only, or to just
3494 * perform discards for released swap page-clusters.
3495 * Now it's time to adjust the p->flags accordingly.
3497 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3498 si->flags &= ~SWP_PAGE_DISCARD;
3499 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3500 si->flags &= ~SWP_AREA_DISCARD;
3502 /* issue a swapon-time discard if it's still required */
3503 if (si->flags & SWP_AREA_DISCARD) {
3504 int err = discard_swap(si);
3506 pr_err("swapon: discard_swap(%p): %d\n",
3511 error = init_swap_address_space(si->type, maxpages);
3513 goto bad_swap_unlock_inode;
3515 error = zswap_swapon(si->type, maxpages);
3517 goto free_swap_address_space;
3520 * Flush any pending IO and dirty mappings before we start using this
3523 inode->i_flags |= S_SWAPFILE;
3524 error = inode_drain_writes(inode);
3526 inode->i_flags &= ~S_SWAPFILE;
3527 goto free_swap_zswap;
3530 mutex_lock(&swapon_mutex);
3532 if (swap_flags & SWAP_FLAG_PREFER)
3534 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3535 enable_swap_info(si, prio, swap_map, cluster_info, zeromap);
3537 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3538 K(si->pages), name->name, si->prio, nr_extents,
3539 K((unsigned long long)span),
3540 (si->flags & SWP_SOLIDSTATE) ? "SS" : "",
3541 (si->flags & SWP_DISCARDABLE) ? "D" : "",
3542 (si->flags & SWP_AREA_DISCARD) ? "s" : "",
3543 (si->flags & SWP_PAGE_DISCARD) ? "c" : "");
3545 mutex_unlock(&swapon_mutex);
3546 atomic_inc(&proc_poll_event);
3547 wake_up_interruptible(&proc_poll_wait);
3552 zswap_swapoff(si->type);
3553 free_swap_address_space:
3554 exit_swap_address_space(si->type);
3555 bad_swap_unlock_inode:
3556 inode_unlock(inode);
3558 free_percpu(si->percpu_cluster);
3559 si->percpu_cluster = NULL;
3560 free_percpu(si->cluster_next_cpu);
3561 si->cluster_next_cpu = NULL;
3563 destroy_swap_extents(si);
3564 swap_cgroup_swapoff(si->type);
3565 spin_lock(&swap_lock);
3566 si->swap_file = NULL;
3568 spin_unlock(&swap_lock);
3571 kvfree(cluster_info);
3572 if (inced_nr_rotate_swap)
3573 atomic_dec(&nr_rotate_swap);
3575 filp_close(swap_file, NULL);
3577 if (!IS_ERR_OR_NULL(folio))
3578 folio_release_kmap(folio, swap_header);
3582 inode_unlock(inode);
3584 enable_swap_slots_cache();
3588 void si_swapinfo(struct sysinfo *val)
3591 unsigned long nr_to_be_unused = 0;
3593 spin_lock(&swap_lock);
3594 for (type = 0; type < nr_swapfiles; type++) {
3595 struct swap_info_struct *si = swap_info[type];
3597 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3598 nr_to_be_unused += READ_ONCE(si->inuse_pages);
3600 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3601 val->totalswap = total_swap_pages + nr_to_be_unused;
3602 spin_unlock(&swap_lock);
3606 * Verify that nr swap entries are valid and increment their swap map counts.
3608 * Returns error code in following case.
3610 * - swp_entry is invalid -> EINVAL
3611 * - swp_entry is migration entry -> EINVAL
3612 * - swap-cache reference is requested but there is already one. -> EEXIST
3613 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3614 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3616 static int __swap_duplicate(swp_entry_t entry, unsigned char usage, int nr)
3618 struct swap_info_struct *si;
3619 struct swap_cluster_info *ci;
3620 unsigned long offset;
3621 unsigned char count;
3622 unsigned char has_cache;
3625 si = swp_swap_info(entry);
3627 offset = swp_offset(entry);
3628 VM_WARN_ON(nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
3629 VM_WARN_ON(usage == 1 && nr > 1);
3630 ci = lock_cluster_or_swap_info(si, offset);
3633 for (i = 0; i < nr; i++) {
3634 count = si->swap_map[offset + i];
3637 * swapin_readahead() doesn't check if a swap entry is valid, so the
3638 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3640 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3645 has_cache = count & SWAP_HAS_CACHE;
3646 count &= ~SWAP_HAS_CACHE;
3648 if (!count && !has_cache) {
3650 } else if (usage == SWAP_HAS_CACHE) {
3653 } else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) {
3661 for (i = 0; i < nr; i++) {
3662 count = si->swap_map[offset + i];
3663 has_cache = count & SWAP_HAS_CACHE;
3664 count &= ~SWAP_HAS_CACHE;
3666 if (usage == SWAP_HAS_CACHE)
3667 has_cache = SWAP_HAS_CACHE;
3668 else if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3670 else if (swap_count_continued(si, offset + i, count))
3671 count = COUNT_CONTINUED;
3674 * Don't need to rollback changes, because if
3675 * usage == 1, there must be nr == 1.
3681 WRITE_ONCE(si->swap_map[offset + i], count | has_cache);
3685 unlock_cluster_or_swap_info(si, ci);
3690 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3691 * (in which case its reference count is never incremented).
3693 void swap_shmem_alloc(swp_entry_t entry, int nr)
3695 __swap_duplicate(entry, SWAP_MAP_SHMEM, nr);
3699 * Increase reference count of swap entry by 1.
3700 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3701 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3702 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3703 * might occur if a page table entry has got corrupted.
3705 int swap_duplicate(swp_entry_t entry)
3709 while (!err && __swap_duplicate(entry, 1, 1) == -ENOMEM)
3710 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3715 * @entry: first swap entry from which we allocate nr swap cache.
3717 * Called when allocating swap cache for existing swap entries,
3718 * This can return error codes. Returns 0 at success.
3719 * -EEXIST means there is a swap cache.
3720 * Note: return code is different from swap_duplicate().
3722 int swapcache_prepare(swp_entry_t entry, int nr)
3724 return __swap_duplicate(entry, SWAP_HAS_CACHE, nr);
3727 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr)
3729 unsigned long offset = swp_offset(entry);
3731 cluster_swap_free_nr(si, offset, nr, SWAP_HAS_CACHE);
3734 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3736 return swap_type_to_swap_info(swp_type(entry));
3740 * out-of-line methods to avoid include hell.
3742 struct address_space *swapcache_mapping(struct folio *folio)
3744 return swp_swap_info(folio->swap)->swap_file->f_mapping;
3746 EXPORT_SYMBOL_GPL(swapcache_mapping);
3748 pgoff_t __folio_swap_cache_index(struct folio *folio)
3750 return swap_cache_index(folio->swap);
3752 EXPORT_SYMBOL_GPL(__folio_swap_cache_index);
3755 * add_swap_count_continuation - called when a swap count is duplicated
3756 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3757 * page of the original vmalloc'ed swap_map, to hold the continuation count
3758 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3759 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3761 * These continuation pages are seldom referenced: the common paths all work
3762 * on the original swap_map, only referring to a continuation page when the
3763 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3765 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3766 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3767 * can be called after dropping locks.
3769 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3771 struct swap_info_struct *si;
3772 struct swap_cluster_info *ci;
3775 struct page *list_page;
3777 unsigned char count;
3781 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3782 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3784 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3786 si = get_swap_device(entry);
3789 * An acceptable race has occurred since the failing
3790 * __swap_duplicate(): the swap device may be swapoff
3794 spin_lock(&si->lock);
3796 offset = swp_offset(entry);
3798 ci = lock_cluster(si, offset);
3800 count = swap_count(si->swap_map[offset]);
3802 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3804 * The higher the swap count, the more likely it is that tasks
3805 * will race to add swap count continuation: we need to avoid
3806 * over-provisioning.
3816 head = vmalloc_to_page(si->swap_map + offset);
3817 offset &= ~PAGE_MASK;
3819 spin_lock(&si->cont_lock);
3821 * Page allocation does not initialize the page's lru field,
3822 * but it does always reset its private field.
3824 if (!page_private(head)) {
3825 BUG_ON(count & COUNT_CONTINUED);
3826 INIT_LIST_HEAD(&head->lru);
3827 set_page_private(head, SWP_CONTINUED);
3828 si->flags |= SWP_CONTINUED;
3831 list_for_each_entry(list_page, &head->lru, lru) {
3835 * If the previous map said no continuation, but we've found
3836 * a continuation page, free our allocation and use this one.
3838 if (!(count & COUNT_CONTINUED))
3839 goto out_unlock_cont;
3841 map = kmap_local_page(list_page) + offset;
3846 * If this continuation count now has some space in it,
3847 * free our allocation and use this one.
3849 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3850 goto out_unlock_cont;
3853 list_add_tail(&page->lru, &head->lru);
3854 page = NULL; /* now it's attached, don't free it */
3856 spin_unlock(&si->cont_lock);
3859 spin_unlock(&si->lock);
3860 put_swap_device(si);
3868 * swap_count_continued - when the original swap_map count is incremented
3869 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3870 * into, carry if so, or else fail until a new continuation page is allocated;
3871 * when the original swap_map count is decremented from 0 with continuation,
3872 * borrow from the continuation and report whether it still holds more.
3873 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3876 static bool swap_count_continued(struct swap_info_struct *si,
3877 pgoff_t offset, unsigned char count)
3884 head = vmalloc_to_page(si->swap_map + offset);
3885 if (page_private(head) != SWP_CONTINUED) {
3886 BUG_ON(count & COUNT_CONTINUED);
3887 return false; /* need to add count continuation */
3890 spin_lock(&si->cont_lock);
3891 offset &= ~PAGE_MASK;
3892 page = list_next_entry(head, lru);
3893 map = kmap_local_page(page) + offset;
3895 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3896 goto init_map; /* jump over SWAP_CONT_MAX checks */
3898 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3900 * Think of how you add 1 to 999
3902 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3904 page = list_next_entry(page, lru);
3905 BUG_ON(page == head);
3906 map = kmap_local_page(page) + offset;
3908 if (*map == SWAP_CONT_MAX) {
3910 page = list_next_entry(page, lru);
3912 ret = false; /* add count continuation */
3915 map = kmap_local_page(page) + offset;
3916 init_map: *map = 0; /* we didn't zero the page */
3920 while ((page = list_prev_entry(page, lru)) != head) {
3921 map = kmap_local_page(page) + offset;
3922 *map = COUNT_CONTINUED;
3925 ret = true; /* incremented */
3927 } else { /* decrementing */
3929 * Think of how you subtract 1 from 1000
3931 BUG_ON(count != COUNT_CONTINUED);
3932 while (*map == COUNT_CONTINUED) {
3934 page = list_next_entry(page, lru);
3935 BUG_ON(page == head);
3936 map = kmap_local_page(page) + offset;
3943 while ((page = list_prev_entry(page, lru)) != head) {
3944 map = kmap_local_page(page) + offset;
3945 *map = SWAP_CONT_MAX | count;
3946 count = COUNT_CONTINUED;
3949 ret = count == COUNT_CONTINUED;
3952 spin_unlock(&si->cont_lock);
3957 * free_swap_count_continuations - swapoff free all the continuation pages
3958 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3960 static void free_swap_count_continuations(struct swap_info_struct *si)
3964 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3966 head = vmalloc_to_page(si->swap_map + offset);
3967 if (page_private(head)) {
3968 struct page *page, *next;
3970 list_for_each_entry_safe(page, next, &head->lru, lru) {
3971 list_del(&page->lru);
3978 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3979 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3981 struct swap_info_struct *si, *next;
3982 int nid = folio_nid(folio);
3984 if (!(gfp & __GFP_IO))
3987 if (!__has_usable_swap())
3990 if (!blk_cgroup_congested())
3994 * We've already scheduled a throttle, avoid taking the global swap
3997 if (current->throttle_disk)
4000 spin_lock(&swap_avail_lock);
4001 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
4004 blkcg_schedule_throttle(si->bdev->bd_disk, true);
4008 spin_unlock(&swap_avail_lock);
4012 static int __init swapfile_init(void)
4016 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
4018 if (!swap_avail_heads) {
4019 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
4024 plist_head_init(&swap_avail_heads[nid]);
4026 swapfile_maximum_size = arch_max_swapfile_size();
4028 #ifdef CONFIG_MIGRATION
4029 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
4030 swap_migration_ad_supported = true;
4031 #endif /* CONFIG_MIGRATION */
4035 subsys_initcall(swapfile_init);