1 // SPDX-License-Identifier: GPL-2.0
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
7 * Interactivity improvements by Mike Galbraith
10 * Various enhancements by Dmitry Adamushko.
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
17 * Scaled math optimizations by Thomas Gleixner
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 #include <linux/rbtree_augmented.h>
52 #include <asm/switch_to.h>
56 #include "autogroup.h"
59 * The initial- and re-scaling of tunables is configurable
63 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
64 * SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus)
65 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
67 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
69 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
72 * Minimal preemption granularity for CPU-bound tasks:
74 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
76 unsigned int sysctl_sched_base_slice = 750000ULL;
77 static unsigned int normalized_sysctl_sched_base_slice = 750000ULL;
79 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
81 static int __init setup_sched_thermal_decay_shift(char *str)
83 pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n");
86 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
90 * For asym packing, by default the lower numbered CPU has higher priority.
92 int __weak arch_asym_cpu_priority(int cpu)
98 * The margin used when comparing utilization with CPU capacity.
102 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
105 * The margin used when comparing CPU capacities.
106 * is 'cap1' noticeably greater than 'cap2'
110 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
113 #ifdef CONFIG_CFS_BANDWIDTH
115 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
116 * each time a cfs_rq requests quota.
118 * Note: in the case that the slice exceeds the runtime remaining (either due
119 * to consumption or the quota being specified to be smaller than the slice)
120 * we will always only issue the remaining available time.
122 * (default: 5 msec, units: microseconds)
124 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
127 #ifdef CONFIG_NUMA_BALANCING
128 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
129 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
133 static struct ctl_table sched_fair_sysctls[] = {
134 #ifdef CONFIG_CFS_BANDWIDTH
136 .procname = "sched_cfs_bandwidth_slice_us",
137 .data = &sysctl_sched_cfs_bandwidth_slice,
138 .maxlen = sizeof(unsigned int),
140 .proc_handler = proc_dointvec_minmax,
141 .extra1 = SYSCTL_ONE,
144 #ifdef CONFIG_NUMA_BALANCING
146 .procname = "numa_balancing_promote_rate_limit_MBps",
147 .data = &sysctl_numa_balancing_promote_rate_limit,
148 .maxlen = sizeof(unsigned int),
150 .proc_handler = proc_dointvec_minmax,
151 .extra1 = SYSCTL_ZERO,
153 #endif /* CONFIG_NUMA_BALANCING */
156 static int __init sched_fair_sysctl_init(void)
158 register_sysctl_init("kernel", sched_fair_sysctls);
161 late_initcall(sched_fair_sysctl_init);
164 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
170 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
176 static inline void update_load_set(struct load_weight *lw, unsigned long w)
183 * Increase the granularity value when there are more CPUs,
184 * because with more CPUs the 'effective latency' as visible
185 * to users decreases. But the relationship is not linear,
186 * so pick a second-best guess by going with the log2 of the
189 * This idea comes from the SD scheduler of Con Kolivas:
191 static unsigned int get_update_sysctl_factor(void)
193 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
196 switch (sysctl_sched_tunable_scaling) {
197 case SCHED_TUNABLESCALING_NONE:
200 case SCHED_TUNABLESCALING_LINEAR:
203 case SCHED_TUNABLESCALING_LOG:
205 factor = 1 + ilog2(cpus);
212 static void update_sysctl(void)
214 unsigned int factor = get_update_sysctl_factor();
216 #define SET_SYSCTL(name) \
217 (sysctl_##name = (factor) * normalized_sysctl_##name)
218 SET_SYSCTL(sched_base_slice);
222 void __init sched_init_granularity(void)
227 #define WMULT_CONST (~0U)
228 #define WMULT_SHIFT 32
230 static void __update_inv_weight(struct load_weight *lw)
234 if (likely(lw->inv_weight))
237 w = scale_load_down(lw->weight);
239 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
241 else if (unlikely(!w))
242 lw->inv_weight = WMULT_CONST;
244 lw->inv_weight = WMULT_CONST / w;
248 * delta_exec * weight / lw.weight
250 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
252 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
253 * we're guaranteed shift stays positive because inv_weight is guaranteed to
254 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
256 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
257 * weight/lw.weight <= 1, and therefore our shift will also be positive.
259 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
261 u64 fact = scale_load_down(weight);
262 u32 fact_hi = (u32)(fact >> 32);
263 int shift = WMULT_SHIFT;
266 __update_inv_weight(lw);
268 if (unlikely(fact_hi)) {
274 fact = mul_u32_u32(fact, lw->inv_weight);
276 fact_hi = (u32)(fact >> 32);
283 return mul_u64_u32_shr(delta_exec, fact, shift);
289 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
291 if (unlikely(se->load.weight != NICE_0_LOAD))
292 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
297 const struct sched_class fair_sched_class;
299 /**************************************************************
300 * CFS operations on generic schedulable entities:
303 #ifdef CONFIG_FAIR_GROUP_SCHED
305 /* Walk up scheduling entities hierarchy */
306 #define for_each_sched_entity(se) \
307 for (; se; se = se->parent)
309 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311 struct rq *rq = rq_of(cfs_rq);
312 int cpu = cpu_of(rq);
315 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
320 * Ensure we either appear before our parent (if already
321 * enqueued) or force our parent to appear after us when it is
322 * enqueued. The fact that we always enqueue bottom-up
323 * reduces this to two cases and a special case for the root
324 * cfs_rq. Furthermore, it also means that we will always reset
325 * tmp_alone_branch either when the branch is connected
326 * to a tree or when we reach the top of the tree
328 if (cfs_rq->tg->parent &&
329 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
331 * If parent is already on the list, we add the child
332 * just before. Thanks to circular linked property of
333 * the list, this means to put the child at the tail
334 * of the list that starts by parent.
336 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
337 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
339 * The branch is now connected to its tree so we can
340 * reset tmp_alone_branch to the beginning of the
343 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
347 if (!cfs_rq->tg->parent) {
349 * cfs rq without parent should be put
350 * at the tail of the list.
352 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
353 &rq->leaf_cfs_rq_list);
355 * We have reach the top of a tree so we can reset
356 * tmp_alone_branch to the beginning of the list.
358 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
363 * The parent has not already been added so we want to
364 * make sure that it will be put after us.
365 * tmp_alone_branch points to the begin of the branch
366 * where we will add parent.
368 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
370 * update tmp_alone_branch to points to the new begin
373 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
377 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
379 if (cfs_rq->on_list) {
380 struct rq *rq = rq_of(cfs_rq);
383 * With cfs_rq being unthrottled/throttled during an enqueue,
384 * it can happen the tmp_alone_branch points to the leaf that
385 * we finally want to delete. In this case, tmp_alone_branch moves
386 * to the prev element but it will point to rq->leaf_cfs_rq_list
387 * at the end of the enqueue.
389 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
390 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
392 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
397 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
399 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
402 /* Iterate through all leaf cfs_rq's on a runqueue */
403 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
404 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
407 /* Do the two (enqueued) entities belong to the same group ? */
408 static inline struct cfs_rq *
409 is_same_group(struct sched_entity *se, struct sched_entity *pse)
411 if (se->cfs_rq == pse->cfs_rq)
417 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
423 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425 int se_depth, pse_depth;
428 * preemption test can be made between sibling entities who are in the
429 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
430 * both tasks until we find their ancestors who are siblings of common
434 /* First walk up until both entities are at same depth */
435 se_depth = (*se)->depth;
436 pse_depth = (*pse)->depth;
438 while (se_depth > pse_depth) {
440 *se = parent_entity(*se);
443 while (pse_depth > se_depth) {
445 *pse = parent_entity(*pse);
448 while (!is_same_group(*se, *pse)) {
449 *se = parent_entity(*se);
450 *pse = parent_entity(*pse);
454 static int tg_is_idle(struct task_group *tg)
459 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
461 return cfs_rq->idle > 0;
464 static int se_is_idle(struct sched_entity *se)
466 if (entity_is_task(se))
467 return task_has_idle_policy(task_of(se));
468 return cfs_rq_is_idle(group_cfs_rq(se));
471 #else /* !CONFIG_FAIR_GROUP_SCHED */
473 #define for_each_sched_entity(se) \
474 for (; se; se = NULL)
476 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
481 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
485 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
489 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
490 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
492 static inline struct sched_entity *parent_entity(struct sched_entity *se)
498 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
502 static inline int tg_is_idle(struct task_group *tg)
507 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
512 static int se_is_idle(struct sched_entity *se)
514 return task_has_idle_policy(task_of(se));
517 #endif /* CONFIG_FAIR_GROUP_SCHED */
519 static __always_inline
520 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
522 /**************************************************************
523 * Scheduling class tree data structure manipulation methods:
526 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
528 s64 delta = (s64)(vruntime - max_vruntime);
530 max_vruntime = vruntime;
535 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
537 s64 delta = (s64)(vruntime - min_vruntime);
539 min_vruntime = vruntime;
544 static inline bool entity_before(const struct sched_entity *a,
545 const struct sched_entity *b)
548 * Tiebreak on vruntime seems unnecessary since it can
551 return (s64)(a->deadline - b->deadline) < 0;
554 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
556 return (s64)(se->vruntime - cfs_rq->min_vruntime);
559 #define __node_2_se(node) \
560 rb_entry((node), struct sched_entity, run_node)
563 * Compute virtual time from the per-task service numbers:
565 * Fair schedulers conserve lag:
569 * Where lag_i is given by:
571 * lag_i = S - s_i = w_i * (V - v_i)
573 * Where S is the ideal service time and V is it's virtual time counterpart.
577 * \Sum w_i * (V - v_i) = 0
578 * \Sum w_i * V - w_i * v_i = 0
580 * From which we can solve an expression for V in v_i (which we have in
583 * \Sum v_i * w_i \Sum v_i * w_i
584 * V = -------------- = --------------
587 * Specifically, this is the weighted average of all entity virtual runtimes.
589 * [[ NOTE: this is only equal to the ideal scheduler under the condition
590 * that join/leave operations happen at lag_i = 0, otherwise the
591 * virtual time has non-contiguous motion equivalent to:
595 * Also see the comment in place_entity() that deals with this. ]]
597 * However, since v_i is u64, and the multiplication could easily overflow
598 * transform it into a relative form that uses smaller quantities:
600 * Substitute: v_i == (v_i - v0) + v0
602 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i
603 * V = ---------------------------- = --------------------- + v0
606 * Which we track using:
608 * v0 := cfs_rq->min_vruntime
609 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
610 * \Sum w_i := cfs_rq->avg_load
612 * Since min_vruntime is a monotonic increasing variable that closely tracks
613 * the per-task service, these deltas: (v_i - v), will be in the order of the
614 * maximal (virtual) lag induced in the system due to quantisation.
616 * Also, we use scale_load_down() to reduce the size.
618 * As measured, the max (key * weight) value was ~44 bits for a kernel build.
621 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
623 unsigned long weight = scale_load_down(se->load.weight);
624 s64 key = entity_key(cfs_rq, se);
626 cfs_rq->avg_vruntime += key * weight;
627 cfs_rq->avg_load += weight;
631 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
633 unsigned long weight = scale_load_down(se->load.weight);
634 s64 key = entity_key(cfs_rq, se);
636 cfs_rq->avg_vruntime -= key * weight;
637 cfs_rq->avg_load -= weight;
641 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
644 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
646 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
650 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
651 * For this to be so, the result of this function must have a left bias.
653 u64 avg_vruntime(struct cfs_rq *cfs_rq)
655 struct sched_entity *curr = cfs_rq->curr;
656 s64 avg = cfs_rq->avg_vruntime;
657 long load = cfs_rq->avg_load;
659 if (curr && curr->on_rq) {
660 unsigned long weight = scale_load_down(curr->load.weight);
662 avg += entity_key(cfs_rq, curr) * weight;
667 /* sign flips effective floor / ceiling */
670 avg = div_s64(avg, load);
673 return cfs_rq->min_vruntime + avg;
677 * lag_i = S - s_i = w_i * (V - v_i)
679 * However, since V is approximated by the weighted average of all entities it
680 * is possible -- by addition/removal/reweight to the tree -- to move V around
681 * and end up with a larger lag than we started with.
683 * Limit this to either double the slice length with a minimum of TICK_NSEC
684 * since that is the timing granularity.
686 * EEVDF gives the following limit for a steady state system:
688 * -r_max < lag < max(r_max, q)
690 * XXX could add max_slice to the augmented data to track this.
692 static s64 entity_lag(u64 avruntime, struct sched_entity *se)
696 vlag = avruntime - se->vruntime;
697 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
699 return clamp(vlag, -limit, limit);
702 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
704 SCHED_WARN_ON(!se->on_rq);
706 se->vlag = entity_lag(avg_vruntime(cfs_rq), se);
710 * Entity is eligible once it received less service than it ought to have,
713 * lag_i = S - s_i = w_i*(V - v_i)
715 * lag_i >= 0 -> V >= v_i
718 * V = ------------------ + v
721 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
723 * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due
724 * to the loss in precision caused by the division.
726 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime)
728 struct sched_entity *curr = cfs_rq->curr;
729 s64 avg = cfs_rq->avg_vruntime;
730 long load = cfs_rq->avg_load;
732 if (curr && curr->on_rq) {
733 unsigned long weight = scale_load_down(curr->load.weight);
735 avg += entity_key(cfs_rq, curr) * weight;
739 return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load;
742 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
744 return vruntime_eligible(cfs_rq, se->vruntime);
747 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
749 u64 min_vruntime = cfs_rq->min_vruntime;
751 * open coded max_vruntime() to allow updating avg_vruntime
753 s64 delta = (s64)(vruntime - min_vruntime);
755 avg_vruntime_update(cfs_rq, delta);
756 min_vruntime = vruntime;
761 static void update_min_vruntime(struct cfs_rq *cfs_rq)
763 struct sched_entity *se = __pick_root_entity(cfs_rq);
764 struct sched_entity *curr = cfs_rq->curr;
765 u64 vruntime = cfs_rq->min_vruntime;
769 vruntime = curr->vruntime;
776 vruntime = se->min_vruntime;
778 vruntime = min_vruntime(vruntime, se->min_vruntime);
781 /* ensure we never gain time by being placed backwards. */
782 cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime);
785 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq)
787 struct sched_entity *root = __pick_root_entity(cfs_rq);
788 struct sched_entity *curr = cfs_rq->curr;
789 u64 min_slice = ~0ULL;
791 if (curr && curr->on_rq)
792 min_slice = curr->slice;
795 min_slice = min(min_slice, root->min_slice);
800 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
802 return entity_before(__node_2_se(a), __node_2_se(b));
805 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
807 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node)
810 struct sched_entity *rse = __node_2_se(node);
811 if (vruntime_gt(min_vruntime, se, rse))
812 se->min_vruntime = rse->min_vruntime;
816 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node)
819 struct sched_entity *rse = __node_2_se(node);
820 if (rse->min_slice < se->min_slice)
821 se->min_slice = rse->min_slice;
826 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
828 static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
830 u64 old_min_vruntime = se->min_vruntime;
831 u64 old_min_slice = se->min_slice;
832 struct rb_node *node = &se->run_node;
834 se->min_vruntime = se->vruntime;
835 __min_vruntime_update(se, node->rb_right);
836 __min_vruntime_update(se, node->rb_left);
838 se->min_slice = se->slice;
839 __min_slice_update(se, node->rb_right);
840 __min_slice_update(se, node->rb_left);
842 return se->min_vruntime == old_min_vruntime &&
843 se->min_slice == old_min_slice;
846 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
847 run_node, min_vruntime, min_vruntime_update);
850 * Enqueue an entity into the rb-tree:
852 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
854 avg_vruntime_add(cfs_rq, se);
855 se->min_vruntime = se->vruntime;
856 se->min_slice = se->slice;
857 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
858 __entity_less, &min_vruntime_cb);
861 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
863 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
865 avg_vruntime_sub(cfs_rq, se);
868 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq)
870 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node;
875 return __node_2_se(root);
878 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
880 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
885 return __node_2_se(left);
889 * Earliest Eligible Virtual Deadline First
891 * In order to provide latency guarantees for different request sizes
892 * EEVDF selects the best runnable task from two criteria:
894 * 1) the task must be eligible (must be owed service)
896 * 2) from those tasks that meet 1), we select the one
897 * with the earliest virtual deadline.
899 * We can do this in O(log n) time due to an augmented RB-tree. The
900 * tree keeps the entries sorted on deadline, but also functions as a
901 * heap based on the vruntime by keeping:
903 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime)
905 * Which allows tree pruning through eligibility.
907 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
909 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
910 struct sched_entity *se = __pick_first_entity(cfs_rq);
911 struct sched_entity *curr = cfs_rq->curr;
912 struct sched_entity *best = NULL;
915 * We can safely skip eligibility check if there is only one entity
916 * in this cfs_rq, saving some cycles.
918 if (cfs_rq->nr_running == 1)
919 return curr && curr->on_rq ? curr : se;
921 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
925 * Once selected, run a task until it either becomes non-eligible or
926 * until it gets a new slice. See the HACK in set_next_entity().
928 if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline)
931 /* Pick the leftmost entity if it's eligible */
932 if (se && entity_eligible(cfs_rq, se)) {
937 /* Heap search for the EEVD entity */
939 struct rb_node *left = node->rb_left;
942 * Eligible entities in left subtree are always better
943 * choices, since they have earlier deadlines.
945 if (left && vruntime_eligible(cfs_rq,
946 __node_2_se(left)->min_vruntime)) {
951 se = __node_2_se(node);
954 * The left subtree either is empty or has no eligible
955 * entity, so check the current node since it is the one
956 * with earliest deadline that might be eligible.
958 if (entity_eligible(cfs_rq, se)) {
963 node = node->rb_right;
966 if (!best || (curr && entity_before(curr, best)))
972 #ifdef CONFIG_SCHED_DEBUG
973 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
975 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
980 return __node_2_se(last);
983 /**************************************************************
984 * Scheduling class statistics methods:
987 int sched_update_scaling(void)
989 unsigned int factor = get_update_sysctl_factor();
991 #define WRT_SYSCTL(name) \
992 (normalized_sysctl_##name = sysctl_##name / (factor))
993 WRT_SYSCTL(sched_base_slice);
1001 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
1004 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
1005 * this is probably good enough.
1007 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
1009 if ((s64)(se->vruntime - se->deadline) < 0)
1013 * For EEVDF the virtual time slope is determined by w_i (iow.
1014 * nice) while the request time r_i is determined by
1015 * sysctl_sched_base_slice.
1017 if (!se->custom_slice)
1018 se->slice = sysctl_sched_base_slice;
1021 * EEVDF: vd_i = ve_i + r_i / w_i
1023 se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
1026 * The task has consumed its request, reschedule.
1034 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1035 static unsigned long task_h_load(struct task_struct *p);
1036 static unsigned long capacity_of(int cpu);
1038 /* Give new sched_entity start runnable values to heavy its load in infant time */
1039 void init_entity_runnable_average(struct sched_entity *se)
1041 struct sched_avg *sa = &se->avg;
1043 memset(sa, 0, sizeof(*sa));
1046 * Tasks are initialized with full load to be seen as heavy tasks until
1047 * they get a chance to stabilize to their real load level.
1048 * Group entities are initialized with zero load to reflect the fact that
1049 * nothing has been attached to the task group yet.
1051 if (entity_is_task(se))
1052 sa->load_avg = scale_load_down(se->load.weight);
1054 /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */
1058 * With new tasks being created, their initial util_avgs are extrapolated
1059 * based on the cfs_rq's current util_avg:
1061 * util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1)
1064 * However, in many cases, the above util_avg does not give a desired
1065 * value. Moreover, the sum of the util_avgs may be divergent, such
1066 * as when the series is a harmonic series.
1068 * To solve this problem, we also cap the util_avg of successive tasks to
1069 * only 1/2 of the left utilization budget:
1071 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1073 * where n denotes the nth task and cpu_scale the CPU capacity.
1075 * For example, for a CPU with 1024 of capacity, a simplest series from
1076 * the beginning would be like:
1078 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
1079 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1081 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1082 * if util_avg > util_avg_cap.
1084 void post_init_entity_util_avg(struct task_struct *p)
1086 struct sched_entity *se = &p->se;
1087 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1088 struct sched_avg *sa = &se->avg;
1089 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1090 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1092 if (p->sched_class != &fair_sched_class) {
1094 * For !fair tasks do:
1096 update_cfs_rq_load_avg(now, cfs_rq);
1097 attach_entity_load_avg(cfs_rq, se);
1098 switched_from_fair(rq, p);
1100 * such that the next switched_to_fair() has the
1103 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1108 if (cfs_rq->avg.util_avg != 0) {
1109 sa->util_avg = cfs_rq->avg.util_avg * se_weight(se);
1110 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1112 if (sa->util_avg > cap)
1119 sa->runnable_avg = sa->util_avg;
1122 #else /* !CONFIG_SMP */
1123 void init_entity_runnable_average(struct sched_entity *se)
1126 void post_init_entity_util_avg(struct task_struct *p)
1129 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1132 #endif /* CONFIG_SMP */
1134 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr)
1136 u64 now = rq_clock_task(rq);
1139 delta_exec = now - curr->exec_start;
1140 if (unlikely(delta_exec <= 0))
1143 curr->exec_start = now;
1144 curr->sum_exec_runtime += delta_exec;
1146 if (schedstat_enabled()) {
1147 struct sched_statistics *stats;
1149 stats = __schedstats_from_se(curr);
1150 __schedstat_set(stats->exec_max,
1151 max(delta_exec, stats->exec_max));
1157 static inline void update_curr_task(struct task_struct *p, s64 delta_exec)
1159 trace_sched_stat_runtime(p, delta_exec);
1160 account_group_exec_runtime(p, delta_exec);
1161 cgroup_account_cputime(p, delta_exec);
1163 dl_server_update(p->dl_server, delta_exec);
1166 static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1168 if (!sched_feat(PREEMPT_SHORT))
1171 if (curr->vlag == curr->deadline)
1174 return !entity_eligible(cfs_rq, curr);
1177 static inline bool do_preempt_short(struct cfs_rq *cfs_rq,
1178 struct sched_entity *pse, struct sched_entity *se)
1180 if (!sched_feat(PREEMPT_SHORT))
1183 if (pse->slice >= se->slice)
1186 if (!entity_eligible(cfs_rq, pse))
1189 if (entity_before(pse, se))
1192 if (!entity_eligible(cfs_rq, se))
1199 * Used by other classes to account runtime.
1201 s64 update_curr_common(struct rq *rq)
1203 struct task_struct *curr = rq->curr;
1206 delta_exec = update_curr_se(rq, &curr->se);
1207 if (likely(delta_exec > 0))
1208 update_curr_task(curr, delta_exec);
1214 * Update the current task's runtime statistics.
1216 static void update_curr(struct cfs_rq *cfs_rq)
1218 struct sched_entity *curr = cfs_rq->curr;
1219 struct rq *rq = rq_of(cfs_rq);
1223 if (unlikely(!curr))
1226 delta_exec = update_curr_se(rq, curr);
1227 if (unlikely(delta_exec <= 0))
1230 curr->vruntime += calc_delta_fair(delta_exec, curr);
1231 resched = update_deadline(cfs_rq, curr);
1232 update_min_vruntime(cfs_rq);
1234 if (entity_is_task(curr)) {
1235 struct task_struct *p = task_of(curr);
1237 update_curr_task(p, delta_exec);
1240 * Any fair task that runs outside of fair_server should
1241 * account against fair_server such that it can account for
1242 * this time and possibly avoid running this period.
1244 if (p->dl_server != &rq->fair_server)
1245 dl_server_update(&rq->fair_server, delta_exec);
1248 account_cfs_rq_runtime(cfs_rq, delta_exec);
1250 if (rq->nr_running == 1)
1253 if (resched || did_preempt_short(cfs_rq, curr)) {
1255 clear_buddies(cfs_rq, curr);
1259 static void update_curr_fair(struct rq *rq)
1261 update_curr(cfs_rq_of(&rq->curr->se));
1265 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1267 struct sched_statistics *stats;
1268 struct task_struct *p = NULL;
1270 if (!schedstat_enabled())
1273 stats = __schedstats_from_se(se);
1275 if (entity_is_task(se))
1278 __update_stats_wait_start(rq_of(cfs_rq), p, stats);
1282 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1284 struct sched_statistics *stats;
1285 struct task_struct *p = NULL;
1287 if (!schedstat_enabled())
1290 stats = __schedstats_from_se(se);
1293 * When the sched_schedstat changes from 0 to 1, some sched se
1294 * maybe already in the runqueue, the se->statistics.wait_start
1295 * will be 0.So it will let the delta wrong. We need to avoid this
1298 if (unlikely(!schedstat_val(stats->wait_start)))
1301 if (entity_is_task(se))
1304 __update_stats_wait_end(rq_of(cfs_rq), p, stats);
1308 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1310 struct sched_statistics *stats;
1311 struct task_struct *tsk = NULL;
1313 if (!schedstat_enabled())
1316 stats = __schedstats_from_se(se);
1318 if (entity_is_task(se))
1321 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1325 * Task is being enqueued - update stats:
1328 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1330 if (!schedstat_enabled())
1334 * Are we enqueueing a waiting task? (for current tasks
1335 * a dequeue/enqueue event is a NOP)
1337 if (se != cfs_rq->curr)
1338 update_stats_wait_start_fair(cfs_rq, se);
1340 if (flags & ENQUEUE_WAKEUP)
1341 update_stats_enqueue_sleeper_fair(cfs_rq, se);
1345 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1348 if (!schedstat_enabled())
1352 * Mark the end of the wait period if dequeueing a
1355 if (se != cfs_rq->curr)
1356 update_stats_wait_end_fair(cfs_rq, se);
1358 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1359 struct task_struct *tsk = task_of(se);
1362 /* XXX racy against TTWU */
1363 state = READ_ONCE(tsk->__state);
1364 if (state & TASK_INTERRUPTIBLE)
1365 __schedstat_set(tsk->stats.sleep_start,
1366 rq_clock(rq_of(cfs_rq)));
1367 if (state & TASK_UNINTERRUPTIBLE)
1368 __schedstat_set(tsk->stats.block_start,
1369 rq_clock(rq_of(cfs_rq)));
1374 * We are picking a new current task - update its stats:
1377 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1380 * We are starting a new run period:
1382 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1385 /**************************************************
1386 * Scheduling class queueing methods:
1389 static inline bool is_core_idle(int cpu)
1391 #ifdef CONFIG_SCHED_SMT
1394 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1398 if (!idle_cpu(sibling))
1407 #define NUMA_IMBALANCE_MIN 2
1410 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1413 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1414 * threshold. Above this threshold, individual tasks may be contending
1415 * for both memory bandwidth and any shared HT resources. This is an
1416 * approximation as the number of running tasks may not be related to
1417 * the number of busy CPUs due to sched_setaffinity.
1419 if (dst_running > imb_numa_nr)
1423 * Allow a small imbalance based on a simple pair of communicating
1424 * tasks that remain local when the destination is lightly loaded.
1426 if (imbalance <= NUMA_IMBALANCE_MIN)
1431 #endif /* CONFIG_NUMA */
1433 #ifdef CONFIG_NUMA_BALANCING
1435 * Approximate time to scan a full NUMA task in ms. The task scan period is
1436 * calculated based on the tasks virtual memory size and
1437 * numa_balancing_scan_size.
1439 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1440 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1442 /* Portion of address space to scan in MB */
1443 unsigned int sysctl_numa_balancing_scan_size = 256;
1445 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1446 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1448 /* The page with hint page fault latency < threshold in ms is considered hot */
1449 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1452 refcount_t refcount;
1454 spinlock_t lock; /* nr_tasks, tasks */
1459 struct rcu_head rcu;
1460 unsigned long total_faults;
1461 unsigned long max_faults_cpu;
1463 * faults[] array is split into two regions: faults_mem and faults_cpu.
1465 * Faults_cpu is used to decide whether memory should move
1466 * towards the CPU. As a consequence, these stats are weighted
1467 * more by CPU use than by memory faults.
1469 unsigned long faults[];
1473 * For functions that can be called in multiple contexts that permit reading
1474 * ->numa_group (see struct task_struct for locking rules).
1476 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1478 return rcu_dereference_check(p->numa_group, p == current ||
1479 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1482 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1484 return rcu_dereference_protected(p->numa_group, p == current);
1487 static inline unsigned long group_faults_priv(struct numa_group *ng);
1488 static inline unsigned long group_faults_shared(struct numa_group *ng);
1490 static unsigned int task_nr_scan_windows(struct task_struct *p)
1492 unsigned long rss = 0;
1493 unsigned long nr_scan_pages;
1496 * Calculations based on RSS as non-present and empty pages are skipped
1497 * by the PTE scanner and NUMA hinting faults should be trapped based
1500 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1501 rss = get_mm_rss(p->mm);
1503 rss = nr_scan_pages;
1505 rss = round_up(rss, nr_scan_pages);
1506 return rss / nr_scan_pages;
1509 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1510 #define MAX_SCAN_WINDOW 2560
1512 static unsigned int task_scan_min(struct task_struct *p)
1514 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1515 unsigned int scan, floor;
1516 unsigned int windows = 1;
1518 if (scan_size < MAX_SCAN_WINDOW)
1519 windows = MAX_SCAN_WINDOW / scan_size;
1520 floor = 1000 / windows;
1522 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1523 return max_t(unsigned int, floor, scan);
1526 static unsigned int task_scan_start(struct task_struct *p)
1528 unsigned long smin = task_scan_min(p);
1529 unsigned long period = smin;
1530 struct numa_group *ng;
1532 /* Scale the maximum scan period with the amount of shared memory. */
1534 ng = rcu_dereference(p->numa_group);
1536 unsigned long shared = group_faults_shared(ng);
1537 unsigned long private = group_faults_priv(ng);
1539 period *= refcount_read(&ng->refcount);
1540 period *= shared + 1;
1541 period /= private + shared + 1;
1545 return max(smin, period);
1548 static unsigned int task_scan_max(struct task_struct *p)
1550 unsigned long smin = task_scan_min(p);
1552 struct numa_group *ng;
1554 /* Watch for min being lower than max due to floor calculations */
1555 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1557 /* Scale the maximum scan period with the amount of shared memory. */
1558 ng = deref_curr_numa_group(p);
1560 unsigned long shared = group_faults_shared(ng);
1561 unsigned long private = group_faults_priv(ng);
1562 unsigned long period = smax;
1564 period *= refcount_read(&ng->refcount);
1565 period *= shared + 1;
1566 period /= private + shared + 1;
1568 smax = max(smax, period);
1571 return max(smin, smax);
1574 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1576 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1577 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1580 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1582 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1583 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1586 /* Shared or private faults. */
1587 #define NR_NUMA_HINT_FAULT_TYPES 2
1589 /* Memory and CPU locality */
1590 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1592 /* Averaged statistics, and temporary buffers. */
1593 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1595 pid_t task_numa_group_id(struct task_struct *p)
1597 struct numa_group *ng;
1601 ng = rcu_dereference(p->numa_group);
1610 * The averaged statistics, shared & private, memory & CPU,
1611 * occupy the first half of the array. The second half of the
1612 * array is for current counters, which are averaged into the
1613 * first set by task_numa_placement.
1615 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1617 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1620 static inline unsigned long task_faults(struct task_struct *p, int nid)
1622 if (!p->numa_faults)
1625 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1626 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1629 static inline unsigned long group_faults(struct task_struct *p, int nid)
1631 struct numa_group *ng = deref_task_numa_group(p);
1636 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1637 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1640 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1642 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1643 group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1646 static inline unsigned long group_faults_priv(struct numa_group *ng)
1648 unsigned long faults = 0;
1651 for_each_online_node(node) {
1652 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1658 static inline unsigned long group_faults_shared(struct numa_group *ng)
1660 unsigned long faults = 0;
1663 for_each_online_node(node) {
1664 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1671 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1672 * considered part of a numa group's pseudo-interleaving set. Migrations
1673 * between these nodes are slowed down, to allow things to settle down.
1675 #define ACTIVE_NODE_FRACTION 3
1677 static bool numa_is_active_node(int nid, struct numa_group *ng)
1679 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1682 /* Handle placement on systems where not all nodes are directly connected. */
1683 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1684 int lim_dist, bool task)
1686 unsigned long score = 0;
1690 * All nodes are directly connected, and the same distance
1691 * from each other. No need for fancy placement algorithms.
1693 if (sched_numa_topology_type == NUMA_DIRECT)
1696 /* sched_max_numa_distance may be changed in parallel. */
1697 max_dist = READ_ONCE(sched_max_numa_distance);
1699 * This code is called for each node, introducing N^2 complexity,
1700 * which should be OK given the number of nodes rarely exceeds 8.
1702 for_each_online_node(node) {
1703 unsigned long faults;
1704 int dist = node_distance(nid, node);
1707 * The furthest away nodes in the system are not interesting
1708 * for placement; nid was already counted.
1710 if (dist >= max_dist || node == nid)
1714 * On systems with a backplane NUMA topology, compare groups
1715 * of nodes, and move tasks towards the group with the most
1716 * memory accesses. When comparing two nodes at distance
1717 * "hoplimit", only nodes closer by than "hoplimit" are part
1718 * of each group. Skip other nodes.
1720 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1723 /* Add up the faults from nearby nodes. */
1725 faults = task_faults(p, node);
1727 faults = group_faults(p, node);
1730 * On systems with a glueless mesh NUMA topology, there are
1731 * no fixed "groups of nodes". Instead, nodes that are not
1732 * directly connected bounce traffic through intermediate
1733 * nodes; a numa_group can occupy any set of nodes.
1734 * The further away a node is, the less the faults count.
1735 * This seems to result in good task placement.
1737 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1738 faults *= (max_dist - dist);
1739 faults /= (max_dist - LOCAL_DISTANCE);
1749 * These return the fraction of accesses done by a particular task, or
1750 * task group, on a particular numa node. The group weight is given a
1751 * larger multiplier, in order to group tasks together that are almost
1752 * evenly spread out between numa nodes.
1754 static inline unsigned long task_weight(struct task_struct *p, int nid,
1757 unsigned long faults, total_faults;
1759 if (!p->numa_faults)
1762 total_faults = p->total_numa_faults;
1767 faults = task_faults(p, nid);
1768 faults += score_nearby_nodes(p, nid, dist, true);
1770 return 1000 * faults / total_faults;
1773 static inline unsigned long group_weight(struct task_struct *p, int nid,
1776 struct numa_group *ng = deref_task_numa_group(p);
1777 unsigned long faults, total_faults;
1782 total_faults = ng->total_faults;
1787 faults = group_faults(p, nid);
1788 faults += score_nearby_nodes(p, nid, dist, false);
1790 return 1000 * faults / total_faults;
1794 * If memory tiering mode is enabled, cpupid of slow memory page is
1795 * used to record scan time instead of CPU and PID. When tiering mode
1796 * is disabled at run time, the scan time (in cpupid) will be
1797 * interpreted as CPU and PID. So CPU needs to be checked to avoid to
1798 * access out of array bound.
1800 static inline bool cpupid_valid(int cpupid)
1802 return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1806 * For memory tiering mode, if there are enough free pages (more than
1807 * enough watermark defined here) in fast memory node, to take full
1808 * advantage of fast memory capacity, all recently accessed slow
1809 * memory pages will be migrated to fast memory node without
1810 * considering hot threshold.
1812 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1815 unsigned long enough_wmark;
1817 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1818 pgdat->node_present_pages >> 4);
1819 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1820 struct zone *zone = pgdat->node_zones + z;
1822 if (!populated_zone(zone))
1825 if (zone_watermark_ok(zone, 0,
1826 promo_wmark_pages(zone) + enough_wmark,
1834 * For memory tiering mode, when page tables are scanned, the scan
1835 * time will be recorded in struct page in addition to make page
1836 * PROT_NONE for slow memory page. So when the page is accessed, in
1837 * hint page fault handler, the hint page fault latency is calculated
1840 * hint page fault latency = hint page fault time - scan time
1842 * The smaller the hint page fault latency, the higher the possibility
1843 * for the page to be hot.
1845 static int numa_hint_fault_latency(struct folio *folio)
1847 int last_time, time;
1849 time = jiffies_to_msecs(jiffies);
1850 last_time = folio_xchg_access_time(folio, time);
1852 return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1856 * For memory tiering mode, too high promotion/demotion throughput may
1857 * hurt application latency. So we provide a mechanism to rate limit
1858 * the number of pages that are tried to be promoted.
1860 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1861 unsigned long rate_limit, int nr)
1863 unsigned long nr_cand;
1864 unsigned int now, start;
1866 now = jiffies_to_msecs(jiffies);
1867 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1868 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1869 start = pgdat->nbp_rl_start;
1870 if (now - start > MSEC_PER_SEC &&
1871 cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1872 pgdat->nbp_rl_nr_cand = nr_cand;
1873 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1878 #define NUMA_MIGRATION_ADJUST_STEPS 16
1880 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1881 unsigned long rate_limit,
1882 unsigned int ref_th)
1884 unsigned int now, start, th_period, unit_th, th;
1885 unsigned long nr_cand, ref_cand, diff_cand;
1887 now = jiffies_to_msecs(jiffies);
1888 th_period = sysctl_numa_balancing_scan_period_max;
1889 start = pgdat->nbp_th_start;
1890 if (now - start > th_period &&
1891 cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1892 ref_cand = rate_limit *
1893 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1894 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1895 diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1896 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1897 th = pgdat->nbp_threshold ? : ref_th;
1898 if (diff_cand > ref_cand * 11 / 10)
1899 th = max(th - unit_th, unit_th);
1900 else if (diff_cand < ref_cand * 9 / 10)
1901 th = min(th + unit_th, ref_th * 2);
1902 pgdat->nbp_th_nr_cand = nr_cand;
1903 pgdat->nbp_threshold = th;
1907 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
1908 int src_nid, int dst_cpu)
1910 struct numa_group *ng = deref_curr_numa_group(p);
1911 int dst_nid = cpu_to_node(dst_cpu);
1912 int last_cpupid, this_cpupid;
1915 * Cannot migrate to memoryless nodes.
1917 if (!node_state(dst_nid, N_MEMORY))
1921 * The pages in slow memory node should be migrated according
1922 * to hot/cold instead of private/shared.
1924 if (folio_use_access_time(folio)) {
1925 struct pglist_data *pgdat;
1926 unsigned long rate_limit;
1927 unsigned int latency, th, def_th;
1929 pgdat = NODE_DATA(dst_nid);
1930 if (pgdat_free_space_enough(pgdat)) {
1931 /* workload changed, reset hot threshold */
1932 pgdat->nbp_threshold = 0;
1936 def_th = sysctl_numa_balancing_hot_threshold;
1937 rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1939 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1941 th = pgdat->nbp_threshold ? : def_th;
1942 latency = numa_hint_fault_latency(folio);
1946 return !numa_promotion_rate_limit(pgdat, rate_limit,
1947 folio_nr_pages(folio));
1950 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1951 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
1953 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1954 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1958 * Allow first faults or private faults to migrate immediately early in
1959 * the lifetime of a task. The magic number 4 is based on waiting for
1960 * two full passes of the "multi-stage node selection" test that is
1963 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1964 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1968 * Multi-stage node selection is used in conjunction with a periodic
1969 * migration fault to build a temporal task<->page relation. By using
1970 * a two-stage filter we remove short/unlikely relations.
1972 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1973 * a task's usage of a particular page (n_p) per total usage of this
1974 * page (n_t) (in a given time-span) to a probability.
1976 * Our periodic faults will sample this probability and getting the
1977 * same result twice in a row, given these samples are fully
1978 * independent, is then given by P(n)^2, provided our sample period
1979 * is sufficiently short compared to the usage pattern.
1981 * This quadric squishes small probabilities, making it less likely we
1982 * act on an unlikely task<->page relation.
1984 if (!cpupid_pid_unset(last_cpupid) &&
1985 cpupid_to_nid(last_cpupid) != dst_nid)
1988 /* Always allow migrate on private faults */
1989 if (cpupid_match_pid(p, last_cpupid))
1992 /* A shared fault, but p->numa_group has not been set up yet. */
1997 * Destination node is much more heavily used than the source
1998 * node? Allow migration.
2000 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
2001 ACTIVE_NODE_FRACTION)
2005 * Distribute memory according to CPU & memory use on each node,
2006 * with 3/4 hysteresis to avoid unnecessary memory migrations:
2008 * faults_cpu(dst) 3 faults_cpu(src)
2009 * --------------- * - > ---------------
2010 * faults_mem(dst) 4 faults_mem(src)
2012 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
2013 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
2017 * 'numa_type' describes the node at the moment of load balancing.
2020 /* The node has spare capacity that can be used to run more tasks. */
2023 * The node is fully used and the tasks don't compete for more CPU
2024 * cycles. Nevertheless, some tasks might wait before running.
2028 * The node is overloaded and can't provide expected CPU cycles to all
2034 /* Cached statistics for all CPUs within a node */
2037 unsigned long runnable;
2039 /* Total compute capacity of CPUs on a node */
2040 unsigned long compute_capacity;
2041 unsigned int nr_running;
2042 unsigned int weight;
2043 enum numa_type node_type;
2047 struct task_numa_env {
2048 struct task_struct *p;
2050 int src_cpu, src_nid;
2051 int dst_cpu, dst_nid;
2054 struct numa_stats src_stats, dst_stats;
2059 struct task_struct *best_task;
2064 static unsigned long cpu_load(struct rq *rq);
2065 static unsigned long cpu_runnable(struct rq *rq);
2068 numa_type numa_classify(unsigned int imbalance_pct,
2069 struct numa_stats *ns)
2071 if ((ns->nr_running > ns->weight) &&
2072 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
2073 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
2074 return node_overloaded;
2076 if ((ns->nr_running < ns->weight) ||
2077 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
2078 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
2079 return node_has_spare;
2081 return node_fully_busy;
2084 #ifdef CONFIG_SCHED_SMT
2085 /* Forward declarations of select_idle_sibling helpers */
2086 static inline bool test_idle_cores(int cpu);
2087 static inline int numa_idle_core(int idle_core, int cpu)
2089 if (!static_branch_likely(&sched_smt_present) ||
2090 idle_core >= 0 || !test_idle_cores(cpu))
2094 * Prefer cores instead of packing HT siblings
2095 * and triggering future load balancing.
2097 if (is_core_idle(cpu))
2103 static inline int numa_idle_core(int idle_core, int cpu)
2110 * Gather all necessary information to make NUMA balancing placement
2111 * decisions that are compatible with standard load balancer. This
2112 * borrows code and logic from update_sg_lb_stats but sharing a
2113 * common implementation is impractical.
2115 static void update_numa_stats(struct task_numa_env *env,
2116 struct numa_stats *ns, int nid,
2119 int cpu, idle_core = -1;
2121 memset(ns, 0, sizeof(*ns));
2125 for_each_cpu(cpu, cpumask_of_node(nid)) {
2126 struct rq *rq = cpu_rq(cpu);
2128 ns->load += cpu_load(rq);
2129 ns->runnable += cpu_runnable(rq);
2130 ns->util += cpu_util_cfs(cpu);
2131 ns->nr_running += rq->cfs.h_nr_running;
2132 ns->compute_capacity += capacity_of(cpu);
2134 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2135 if (READ_ONCE(rq->numa_migrate_on) ||
2136 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2139 if (ns->idle_cpu == -1)
2142 idle_core = numa_idle_core(idle_core, cpu);
2147 ns->weight = cpumask_weight(cpumask_of_node(nid));
2149 ns->node_type = numa_classify(env->imbalance_pct, ns);
2152 ns->idle_cpu = idle_core;
2155 static void task_numa_assign(struct task_numa_env *env,
2156 struct task_struct *p, long imp)
2158 struct rq *rq = cpu_rq(env->dst_cpu);
2160 /* Check if run-queue part of active NUMA balance. */
2161 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2163 int start = env->dst_cpu;
2165 /* Find alternative idle CPU. */
2166 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2167 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2168 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2173 rq = cpu_rq(env->dst_cpu);
2174 if (!xchg(&rq->numa_migrate_on, 1))
2178 /* Failed to find an alternative idle CPU */
2184 * Clear previous best_cpu/rq numa-migrate flag, since task now
2185 * found a better CPU to move/swap.
2187 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2188 rq = cpu_rq(env->best_cpu);
2189 WRITE_ONCE(rq->numa_migrate_on, 0);
2193 put_task_struct(env->best_task);
2198 env->best_imp = imp;
2199 env->best_cpu = env->dst_cpu;
2202 static bool load_too_imbalanced(long src_load, long dst_load,
2203 struct task_numa_env *env)
2206 long orig_src_load, orig_dst_load;
2207 long src_capacity, dst_capacity;
2210 * The load is corrected for the CPU capacity available on each node.
2213 * ------------ vs ---------
2214 * src_capacity dst_capacity
2216 src_capacity = env->src_stats.compute_capacity;
2217 dst_capacity = env->dst_stats.compute_capacity;
2219 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2221 orig_src_load = env->src_stats.load;
2222 orig_dst_load = env->dst_stats.load;
2224 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2226 /* Would this change make things worse? */
2227 return (imb > old_imb);
2231 * Maximum NUMA importance can be 1998 (2*999);
2232 * SMALLIMP @ 30 would be close to 1998/64.
2233 * Used to deter task migration.
2238 * This checks if the overall compute and NUMA accesses of the system would
2239 * be improved if the source tasks was migrated to the target dst_cpu taking
2240 * into account that it might be best if task running on the dst_cpu should
2241 * be exchanged with the source task
2243 static bool task_numa_compare(struct task_numa_env *env,
2244 long taskimp, long groupimp, bool maymove)
2246 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2247 struct rq *dst_rq = cpu_rq(env->dst_cpu);
2248 long imp = p_ng ? groupimp : taskimp;
2249 struct task_struct *cur;
2250 long src_load, dst_load;
2251 int dist = env->dist;
2254 bool stopsearch = false;
2256 if (READ_ONCE(dst_rq->numa_migrate_on))
2260 cur = rcu_dereference(dst_rq->curr);
2261 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2265 * Because we have preemption enabled we can get migrated around and
2266 * end try selecting ourselves (current == env->p) as a swap candidate.
2268 if (cur == env->p) {
2274 if (maymove && moveimp >= env->best_imp)
2280 /* Skip this swap candidate if cannot move to the source cpu. */
2281 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2285 * Skip this swap candidate if it is not moving to its preferred
2286 * node and the best task is.
2288 if (env->best_task &&
2289 env->best_task->numa_preferred_nid == env->src_nid &&
2290 cur->numa_preferred_nid != env->src_nid) {
2295 * "imp" is the fault differential for the source task between the
2296 * source and destination node. Calculate the total differential for
2297 * the source task and potential destination task. The more negative
2298 * the value is, the more remote accesses that would be expected to
2299 * be incurred if the tasks were swapped.
2301 * If dst and source tasks are in the same NUMA group, or not
2302 * in any group then look only at task weights.
2304 cur_ng = rcu_dereference(cur->numa_group);
2305 if (cur_ng == p_ng) {
2307 * Do not swap within a group or between tasks that have
2308 * no group if there is spare capacity. Swapping does
2309 * not address the load imbalance and helps one task at
2310 * the cost of punishing another.
2312 if (env->dst_stats.node_type == node_has_spare)
2315 imp = taskimp + task_weight(cur, env->src_nid, dist) -
2316 task_weight(cur, env->dst_nid, dist);
2318 * Add some hysteresis to prevent swapping the
2319 * tasks within a group over tiny differences.
2325 * Compare the group weights. If a task is all by itself
2326 * (not part of a group), use the task weight instead.
2329 imp += group_weight(cur, env->src_nid, dist) -
2330 group_weight(cur, env->dst_nid, dist);
2332 imp += task_weight(cur, env->src_nid, dist) -
2333 task_weight(cur, env->dst_nid, dist);
2336 /* Discourage picking a task already on its preferred node */
2337 if (cur->numa_preferred_nid == env->dst_nid)
2341 * Encourage picking a task that moves to its preferred node.
2342 * This potentially makes imp larger than it's maximum of
2343 * 1998 (see SMALLIMP and task_weight for why) but in this
2344 * case, it does not matter.
2346 if (cur->numa_preferred_nid == env->src_nid)
2349 if (maymove && moveimp > imp && moveimp > env->best_imp) {
2356 * Prefer swapping with a task moving to its preferred node over a
2359 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2360 env->best_task->numa_preferred_nid != env->src_nid) {
2365 * If the NUMA importance is less than SMALLIMP,
2366 * task migration might only result in ping pong
2367 * of tasks and also hurt performance due to cache
2370 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2374 * In the overloaded case, try and keep the load balanced.
2376 load = task_h_load(env->p) - task_h_load(cur);
2380 dst_load = env->dst_stats.load + load;
2381 src_load = env->src_stats.load - load;
2383 if (load_too_imbalanced(src_load, dst_load, env))
2387 /* Evaluate an idle CPU for a task numa move. */
2389 int cpu = env->dst_stats.idle_cpu;
2391 /* Nothing cached so current CPU went idle since the search. */
2396 * If the CPU is no longer truly idle and the previous best CPU
2397 * is, keep using it.
2399 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2400 idle_cpu(env->best_cpu)) {
2401 cpu = env->best_cpu;
2407 task_numa_assign(env, cur, imp);
2410 * If a move to idle is allowed because there is capacity or load
2411 * balance improves then stop the search. While a better swap
2412 * candidate may exist, a search is not free.
2414 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2418 * If a swap candidate must be identified and the current best task
2419 * moves its preferred node then stop the search.
2421 if (!maymove && env->best_task &&
2422 env->best_task->numa_preferred_nid == env->src_nid) {
2431 static void task_numa_find_cpu(struct task_numa_env *env,
2432 long taskimp, long groupimp)
2434 bool maymove = false;
2438 * If dst node has spare capacity, then check if there is an
2439 * imbalance that would be overruled by the load balancer.
2441 if (env->dst_stats.node_type == node_has_spare) {
2442 unsigned int imbalance;
2443 int src_running, dst_running;
2446 * Would movement cause an imbalance? Note that if src has
2447 * more running tasks that the imbalance is ignored as the
2448 * move improves the imbalance from the perspective of the
2449 * CPU load balancer.
2451 src_running = env->src_stats.nr_running - 1;
2452 dst_running = env->dst_stats.nr_running + 1;
2453 imbalance = max(0, dst_running - src_running);
2454 imbalance = adjust_numa_imbalance(imbalance, dst_running,
2457 /* Use idle CPU if there is no imbalance */
2460 if (env->dst_stats.idle_cpu >= 0) {
2461 env->dst_cpu = env->dst_stats.idle_cpu;
2462 task_numa_assign(env, NULL, 0);
2467 long src_load, dst_load, load;
2469 * If the improvement from just moving env->p direction is better
2470 * than swapping tasks around, check if a move is possible.
2472 load = task_h_load(env->p);
2473 dst_load = env->dst_stats.load + load;
2474 src_load = env->src_stats.load - load;
2475 maymove = !load_too_imbalanced(src_load, dst_load, env);
2478 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2479 /* Skip this CPU if the source task cannot migrate */
2480 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2484 if (task_numa_compare(env, taskimp, groupimp, maymove))
2489 static int task_numa_migrate(struct task_struct *p)
2491 struct task_numa_env env = {
2494 .src_cpu = task_cpu(p),
2495 .src_nid = task_node(p),
2497 .imbalance_pct = 112,
2503 unsigned long taskweight, groupweight;
2504 struct sched_domain *sd;
2505 long taskimp, groupimp;
2506 struct numa_group *ng;
2511 * Pick the lowest SD_NUMA domain, as that would have the smallest
2512 * imbalance and would be the first to start moving tasks about.
2514 * And we want to avoid any moving of tasks about, as that would create
2515 * random movement of tasks -- counter the numa conditions we're trying
2519 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2521 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2522 env.imb_numa_nr = sd->imb_numa_nr;
2527 * Cpusets can break the scheduler domain tree into smaller
2528 * balance domains, some of which do not cross NUMA boundaries.
2529 * Tasks that are "trapped" in such domains cannot be migrated
2530 * elsewhere, so there is no point in (re)trying.
2532 if (unlikely(!sd)) {
2533 sched_setnuma(p, task_node(p));
2537 env.dst_nid = p->numa_preferred_nid;
2538 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2539 taskweight = task_weight(p, env.src_nid, dist);
2540 groupweight = group_weight(p, env.src_nid, dist);
2541 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2542 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2543 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2544 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2546 /* Try to find a spot on the preferred nid. */
2547 task_numa_find_cpu(&env, taskimp, groupimp);
2550 * Look at other nodes in these cases:
2551 * - there is no space available on the preferred_nid
2552 * - the task is part of a numa_group that is interleaved across
2553 * multiple NUMA nodes; in order to better consolidate the group,
2554 * we need to check other locations.
2556 ng = deref_curr_numa_group(p);
2557 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2558 for_each_node_state(nid, N_CPU) {
2559 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2562 dist = node_distance(env.src_nid, env.dst_nid);
2563 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2565 taskweight = task_weight(p, env.src_nid, dist);
2566 groupweight = group_weight(p, env.src_nid, dist);
2569 /* Only consider nodes where both task and groups benefit */
2570 taskimp = task_weight(p, nid, dist) - taskweight;
2571 groupimp = group_weight(p, nid, dist) - groupweight;
2572 if (taskimp < 0 && groupimp < 0)
2577 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2578 task_numa_find_cpu(&env, taskimp, groupimp);
2583 * If the task is part of a workload that spans multiple NUMA nodes,
2584 * and is migrating into one of the workload's active nodes, remember
2585 * this node as the task's preferred numa node, so the workload can
2587 * A task that migrated to a second choice node will be better off
2588 * trying for a better one later. Do not set the preferred node here.
2591 if (env.best_cpu == -1)
2594 nid = cpu_to_node(env.best_cpu);
2596 if (nid != p->numa_preferred_nid)
2597 sched_setnuma(p, nid);
2600 /* No better CPU than the current one was found. */
2601 if (env.best_cpu == -1) {
2602 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2606 best_rq = cpu_rq(env.best_cpu);
2607 if (env.best_task == NULL) {
2608 ret = migrate_task_to(p, env.best_cpu);
2609 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2611 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2615 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2616 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2619 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2620 put_task_struct(env.best_task);
2624 /* Attempt to migrate a task to a CPU on the preferred node. */
2625 static void numa_migrate_preferred(struct task_struct *p)
2627 unsigned long interval = HZ;
2629 /* This task has no NUMA fault statistics yet */
2630 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2633 /* Periodically retry migrating the task to the preferred node */
2634 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2635 p->numa_migrate_retry = jiffies + interval;
2637 /* Success if task is already running on preferred CPU */
2638 if (task_node(p) == p->numa_preferred_nid)
2641 /* Otherwise, try migrate to a CPU on the preferred node */
2642 task_numa_migrate(p);
2646 * Find out how many nodes the workload is actively running on. Do this by
2647 * tracking the nodes from which NUMA hinting faults are triggered. This can
2648 * be different from the set of nodes where the workload's memory is currently
2651 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2653 unsigned long faults, max_faults = 0;
2654 int nid, active_nodes = 0;
2656 for_each_node_state(nid, N_CPU) {
2657 faults = group_faults_cpu(numa_group, nid);
2658 if (faults > max_faults)
2659 max_faults = faults;
2662 for_each_node_state(nid, N_CPU) {
2663 faults = group_faults_cpu(numa_group, nid);
2664 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2668 numa_group->max_faults_cpu = max_faults;
2669 numa_group->active_nodes = active_nodes;
2673 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2674 * increments. The more local the fault statistics are, the higher the scan
2675 * period will be for the next scan window. If local/(local+remote) ratio is
2676 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2677 * the scan period will decrease. Aim for 70% local accesses.
2679 #define NUMA_PERIOD_SLOTS 10
2680 #define NUMA_PERIOD_THRESHOLD 7
2683 * Increase the scan period (slow down scanning) if the majority of
2684 * our memory is already on our local node, or if the majority of
2685 * the page accesses are shared with other processes.
2686 * Otherwise, decrease the scan period.
2688 static void update_task_scan_period(struct task_struct *p,
2689 unsigned long shared, unsigned long private)
2691 unsigned int period_slot;
2692 int lr_ratio, ps_ratio;
2695 unsigned long remote = p->numa_faults_locality[0];
2696 unsigned long local = p->numa_faults_locality[1];
2699 * If there were no record hinting faults then either the task is
2700 * completely idle or all activity is in areas that are not of interest
2701 * to automatic numa balancing. Related to that, if there were failed
2702 * migration then it implies we are migrating too quickly or the local
2703 * node is overloaded. In either case, scan slower
2705 if (local + shared == 0 || p->numa_faults_locality[2]) {
2706 p->numa_scan_period = min(p->numa_scan_period_max,
2707 p->numa_scan_period << 1);
2709 p->mm->numa_next_scan = jiffies +
2710 msecs_to_jiffies(p->numa_scan_period);
2716 * Prepare to scale scan period relative to the current period.
2717 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2718 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2719 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2721 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2722 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2723 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2725 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2727 * Most memory accesses are local. There is no need to
2728 * do fast NUMA scanning, since memory is already local.
2730 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2733 diff = slot * period_slot;
2734 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2736 * Most memory accesses are shared with other tasks.
2737 * There is no point in continuing fast NUMA scanning,
2738 * since other tasks may just move the memory elsewhere.
2740 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2743 diff = slot * period_slot;
2746 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2747 * yet they are not on the local NUMA node. Speed up
2748 * NUMA scanning to get the memory moved over.
2750 int ratio = max(lr_ratio, ps_ratio);
2751 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2754 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2755 task_scan_min(p), task_scan_max(p));
2756 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2760 * Get the fraction of time the task has been running since the last
2761 * NUMA placement cycle. The scheduler keeps similar statistics, but
2762 * decays those on a 32ms period, which is orders of magnitude off
2763 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2764 * stats only if the task is so new there are no NUMA statistics yet.
2766 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2768 u64 runtime, delta, now;
2769 /* Use the start of this time slice to avoid calculations. */
2770 now = p->se.exec_start;
2771 runtime = p->se.sum_exec_runtime;
2773 if (p->last_task_numa_placement) {
2774 delta = runtime - p->last_sum_exec_runtime;
2775 *period = now - p->last_task_numa_placement;
2777 /* Avoid time going backwards, prevent potential divide error: */
2778 if (unlikely((s64)*period < 0))
2781 delta = p->se.avg.load_sum;
2782 *period = LOAD_AVG_MAX;
2785 p->last_sum_exec_runtime = runtime;
2786 p->last_task_numa_placement = now;
2792 * Determine the preferred nid for a task in a numa_group. This needs to
2793 * be done in a way that produces consistent results with group_weight,
2794 * otherwise workloads might not converge.
2796 static int preferred_group_nid(struct task_struct *p, int nid)
2801 /* Direct connections between all NUMA nodes. */
2802 if (sched_numa_topology_type == NUMA_DIRECT)
2806 * On a system with glueless mesh NUMA topology, group_weight
2807 * scores nodes according to the number of NUMA hinting faults on
2808 * both the node itself, and on nearby nodes.
2810 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2811 unsigned long score, max_score = 0;
2812 int node, max_node = nid;
2814 dist = sched_max_numa_distance;
2816 for_each_node_state(node, N_CPU) {
2817 score = group_weight(p, node, dist);
2818 if (score > max_score) {
2827 * Finding the preferred nid in a system with NUMA backplane
2828 * interconnect topology is more involved. The goal is to locate
2829 * tasks from numa_groups near each other in the system, and
2830 * untangle workloads from different sides of the system. This requires
2831 * searching down the hierarchy of node groups, recursively searching
2832 * inside the highest scoring group of nodes. The nodemask tricks
2833 * keep the complexity of the search down.
2835 nodes = node_states[N_CPU];
2836 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2837 unsigned long max_faults = 0;
2838 nodemask_t max_group = NODE_MASK_NONE;
2841 /* Are there nodes at this distance from each other? */
2842 if (!find_numa_distance(dist))
2845 for_each_node_mask(a, nodes) {
2846 unsigned long faults = 0;
2847 nodemask_t this_group;
2848 nodes_clear(this_group);
2850 /* Sum group's NUMA faults; includes a==b case. */
2851 for_each_node_mask(b, nodes) {
2852 if (node_distance(a, b) < dist) {
2853 faults += group_faults(p, b);
2854 node_set(b, this_group);
2855 node_clear(b, nodes);
2859 /* Remember the top group. */
2860 if (faults > max_faults) {
2861 max_faults = faults;
2862 max_group = this_group;
2864 * subtle: at the smallest distance there is
2865 * just one node left in each "group", the
2866 * winner is the preferred nid.
2871 /* Next round, evaluate the nodes within max_group. */
2879 static void task_numa_placement(struct task_struct *p)
2881 int seq, nid, max_nid = NUMA_NO_NODE;
2882 unsigned long max_faults = 0;
2883 unsigned long fault_types[2] = { 0, 0 };
2884 unsigned long total_faults;
2885 u64 runtime, period;
2886 spinlock_t *group_lock = NULL;
2887 struct numa_group *ng;
2890 * The p->mm->numa_scan_seq field gets updated without
2891 * exclusive access. Use READ_ONCE() here to ensure
2892 * that the field is read in a single access:
2894 seq = READ_ONCE(p->mm->numa_scan_seq);
2895 if (p->numa_scan_seq == seq)
2897 p->numa_scan_seq = seq;
2898 p->numa_scan_period_max = task_scan_max(p);
2900 total_faults = p->numa_faults_locality[0] +
2901 p->numa_faults_locality[1];
2902 runtime = numa_get_avg_runtime(p, &period);
2904 /* If the task is part of a group prevent parallel updates to group stats */
2905 ng = deref_curr_numa_group(p);
2907 group_lock = &ng->lock;
2908 spin_lock_irq(group_lock);
2911 /* Find the node with the highest number of faults */
2912 for_each_online_node(nid) {
2913 /* Keep track of the offsets in numa_faults array */
2914 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2915 unsigned long faults = 0, group_faults = 0;
2918 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2919 long diff, f_diff, f_weight;
2921 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2922 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2923 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2924 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2926 /* Decay existing window, copy faults since last scan */
2927 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2928 fault_types[priv] += p->numa_faults[membuf_idx];
2929 p->numa_faults[membuf_idx] = 0;
2932 * Normalize the faults_from, so all tasks in a group
2933 * count according to CPU use, instead of by the raw
2934 * number of faults. Tasks with little runtime have
2935 * little over-all impact on throughput, and thus their
2936 * faults are less important.
2938 f_weight = div64_u64(runtime << 16, period + 1);
2939 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2941 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2942 p->numa_faults[cpubuf_idx] = 0;
2944 p->numa_faults[mem_idx] += diff;
2945 p->numa_faults[cpu_idx] += f_diff;
2946 faults += p->numa_faults[mem_idx];
2947 p->total_numa_faults += diff;
2950 * safe because we can only change our own group
2952 * mem_idx represents the offset for a given
2953 * nid and priv in a specific region because it
2954 * is at the beginning of the numa_faults array.
2956 ng->faults[mem_idx] += diff;
2957 ng->faults[cpu_idx] += f_diff;
2958 ng->total_faults += diff;
2959 group_faults += ng->faults[mem_idx];
2964 if (faults > max_faults) {
2965 max_faults = faults;
2968 } else if (group_faults > max_faults) {
2969 max_faults = group_faults;
2974 /* Cannot migrate task to CPU-less node */
2975 max_nid = numa_nearest_node(max_nid, N_CPU);
2978 numa_group_count_active_nodes(ng);
2979 spin_unlock_irq(group_lock);
2980 max_nid = preferred_group_nid(p, max_nid);
2984 /* Set the new preferred node */
2985 if (max_nid != p->numa_preferred_nid)
2986 sched_setnuma(p, max_nid);
2989 update_task_scan_period(p, fault_types[0], fault_types[1]);
2992 static inline int get_numa_group(struct numa_group *grp)
2994 return refcount_inc_not_zero(&grp->refcount);
2997 static inline void put_numa_group(struct numa_group *grp)
2999 if (refcount_dec_and_test(&grp->refcount))
3000 kfree_rcu(grp, rcu);
3003 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
3006 struct numa_group *grp, *my_grp;
3007 struct task_struct *tsk;
3009 int cpu = cpupid_to_cpu(cpupid);
3012 if (unlikely(!deref_curr_numa_group(p))) {
3013 unsigned int size = sizeof(struct numa_group) +
3014 NR_NUMA_HINT_FAULT_STATS *
3015 nr_node_ids * sizeof(unsigned long);
3017 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
3021 refcount_set(&grp->refcount, 1);
3022 grp->active_nodes = 1;
3023 grp->max_faults_cpu = 0;
3024 spin_lock_init(&grp->lock);
3027 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3028 grp->faults[i] = p->numa_faults[i];
3030 grp->total_faults = p->total_numa_faults;
3033 rcu_assign_pointer(p->numa_group, grp);
3037 tsk = READ_ONCE(cpu_rq(cpu)->curr);
3039 if (!cpupid_match_pid(tsk, cpupid))
3042 grp = rcu_dereference(tsk->numa_group);
3046 my_grp = deref_curr_numa_group(p);
3051 * Only join the other group if its bigger; if we're the bigger group,
3052 * the other task will join us.
3054 if (my_grp->nr_tasks > grp->nr_tasks)
3058 * Tie-break on the grp address.
3060 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3063 /* Always join threads in the same process. */
3064 if (tsk->mm == current->mm)
3067 /* Simple filter to avoid false positives due to PID collisions */
3068 if (flags & TNF_SHARED)
3071 /* Update priv based on whether false sharing was detected */
3074 if (join && !get_numa_group(grp))
3082 WARN_ON_ONCE(irqs_disabled());
3083 double_lock_irq(&my_grp->lock, &grp->lock);
3085 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3086 my_grp->faults[i] -= p->numa_faults[i];
3087 grp->faults[i] += p->numa_faults[i];
3089 my_grp->total_faults -= p->total_numa_faults;
3090 grp->total_faults += p->total_numa_faults;
3095 spin_unlock(&my_grp->lock);
3096 spin_unlock_irq(&grp->lock);
3098 rcu_assign_pointer(p->numa_group, grp);
3100 put_numa_group(my_grp);
3109 * Get rid of NUMA statistics associated with a task (either current or dead).
3110 * If @final is set, the task is dead and has reached refcount zero, so we can
3111 * safely free all relevant data structures. Otherwise, there might be
3112 * concurrent reads from places like load balancing and procfs, and we should
3113 * reset the data back to default state without freeing ->numa_faults.
3115 void task_numa_free(struct task_struct *p, bool final)
3117 /* safe: p either is current or is being freed by current */
3118 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3119 unsigned long *numa_faults = p->numa_faults;
3120 unsigned long flags;
3127 spin_lock_irqsave(&grp->lock, flags);
3128 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3129 grp->faults[i] -= p->numa_faults[i];
3130 grp->total_faults -= p->total_numa_faults;
3133 spin_unlock_irqrestore(&grp->lock, flags);
3134 RCU_INIT_POINTER(p->numa_group, NULL);
3135 put_numa_group(grp);
3139 p->numa_faults = NULL;
3142 p->total_numa_faults = 0;
3143 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3149 * Got a PROT_NONE fault for a page on @node.
3151 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3153 struct task_struct *p = current;
3154 bool migrated = flags & TNF_MIGRATED;
3155 int cpu_node = task_node(current);
3156 int local = !!(flags & TNF_FAULT_LOCAL);
3157 struct numa_group *ng;
3160 if (!static_branch_likely(&sched_numa_balancing))
3163 /* for example, ksmd faulting in a user's mm */
3168 * NUMA faults statistics are unnecessary for the slow memory
3169 * node for memory tiering mode.
3171 if (!node_is_toptier(mem_node) &&
3172 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3173 !cpupid_valid(last_cpupid)))
3176 /* Allocate buffer to track faults on a per-node basis */
3177 if (unlikely(!p->numa_faults)) {
3178 int size = sizeof(*p->numa_faults) *
3179 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3181 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3182 if (!p->numa_faults)
3185 p->total_numa_faults = 0;
3186 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3190 * First accesses are treated as private, otherwise consider accesses
3191 * to be private if the accessing pid has not changed
3193 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3196 priv = cpupid_match_pid(p, last_cpupid);
3197 if (!priv && !(flags & TNF_NO_GROUP))
3198 task_numa_group(p, last_cpupid, flags, &priv);
3202 * If a workload spans multiple NUMA nodes, a shared fault that
3203 * occurs wholly within the set of nodes that the workload is
3204 * actively using should be counted as local. This allows the
3205 * scan rate to slow down when a workload has settled down.
3207 ng = deref_curr_numa_group(p);
3208 if (!priv && !local && ng && ng->active_nodes > 1 &&
3209 numa_is_active_node(cpu_node, ng) &&
3210 numa_is_active_node(mem_node, ng))
3214 * Retry to migrate task to preferred node periodically, in case it
3215 * previously failed, or the scheduler moved us.
3217 if (time_after(jiffies, p->numa_migrate_retry)) {
3218 task_numa_placement(p);
3219 numa_migrate_preferred(p);
3223 p->numa_pages_migrated += pages;
3224 if (flags & TNF_MIGRATE_FAIL)
3225 p->numa_faults_locality[2] += pages;
3227 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3228 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3229 p->numa_faults_locality[local] += pages;
3232 static void reset_ptenuma_scan(struct task_struct *p)
3235 * We only did a read acquisition of the mmap sem, so
3236 * p->mm->numa_scan_seq is written to without exclusive access
3237 * and the update is not guaranteed to be atomic. That's not
3238 * much of an issue though, since this is just used for
3239 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3240 * expensive, to avoid any form of compiler optimizations:
3242 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3243 p->mm->numa_scan_offset = 0;
3246 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3250 * Allow unconditional access first two times, so that all the (pages)
3251 * of VMAs get prot_none fault introduced irrespective of accesses.
3252 * This is also done to avoid any side effect of task scanning
3253 * amplifying the unfairness of disjoint set of VMAs' access.
3255 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
3258 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3259 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3263 * Complete a scan that has already started regardless of PID access, or
3264 * some VMAs may never be scanned in multi-threaded applications:
3266 if (mm->numa_scan_offset > vma->vm_start) {
3267 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3272 * This vma has not been accessed for a while, and if the number
3273 * the threads in the same process is low, which means no other
3274 * threads can help scan this vma, force a vma scan.
3276 if (READ_ONCE(mm->numa_scan_seq) >
3277 (vma->numab_state->prev_scan_seq + get_nr_threads(current)))
3283 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3286 * The expensive part of numa migration is done from task_work context.
3287 * Triggered from task_tick_numa().
3289 static void task_numa_work(struct callback_head *work)
3291 unsigned long migrate, next_scan, now = jiffies;
3292 struct task_struct *p = current;
3293 struct mm_struct *mm = p->mm;
3294 u64 runtime = p->se.sum_exec_runtime;
3295 struct vm_area_struct *vma;
3296 unsigned long start, end;
3297 unsigned long nr_pte_updates = 0;
3298 long pages, virtpages;
3299 struct vma_iterator vmi;
3300 bool vma_pids_skipped;
3301 bool vma_pids_forced = false;
3303 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
3307 * Who cares about NUMA placement when they're dying.
3309 * NOTE: make sure not to dereference p->mm before this check,
3310 * exit_task_work() happens _after_ exit_mm() so we could be called
3311 * without p->mm even though we still had it when we enqueued this
3314 if (p->flags & PF_EXITING)
3317 if (!mm->numa_next_scan) {
3318 mm->numa_next_scan = now +
3319 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3323 * Enforce maximal scan/migration frequency..
3325 migrate = mm->numa_next_scan;
3326 if (time_before(now, migrate))
3329 if (p->numa_scan_period == 0) {
3330 p->numa_scan_period_max = task_scan_max(p);
3331 p->numa_scan_period = task_scan_start(p);
3334 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3335 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3339 * Delay this task enough that another task of this mm will likely win
3340 * the next time around.
3342 p->node_stamp += 2 * TICK_NSEC;
3344 pages = sysctl_numa_balancing_scan_size;
3345 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3346 virtpages = pages * 8; /* Scan up to this much virtual space */
3351 if (!mmap_read_trylock(mm))
3355 * VMAs are skipped if the current PID has not trapped a fault within
3356 * the VMA recently. Allow scanning to be forced if there is no
3357 * suitable VMA remaining.
3359 vma_pids_skipped = false;
3362 start = mm->numa_scan_offset;
3363 vma_iter_init(&vmi, mm, start);
3364 vma = vma_next(&vmi);
3366 reset_ptenuma_scan(p);
3368 vma_iter_set(&vmi, start);
3369 vma = vma_next(&vmi);
3373 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3374 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3375 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3380 * Shared library pages mapped by multiple processes are not
3381 * migrated as it is expected they are cache replicated. Avoid
3382 * hinting faults in read-only file-backed mappings or the vDSO
3383 * as migrating the pages will be of marginal benefit.
3386 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3387 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3392 * Skip inaccessible VMAs to avoid any confusion between
3393 * PROT_NONE and NUMA hinting PTEs
3395 if (!vma_is_accessible(vma)) {
3396 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3400 /* Initialise new per-VMA NUMAB state. */
3401 if (!vma->numab_state) {
3402 vma->numab_state = kzalloc(sizeof(struct vma_numab_state),
3404 if (!vma->numab_state)
3407 vma->numab_state->start_scan_seq = mm->numa_scan_seq;
3409 vma->numab_state->next_scan = now +
3410 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3412 /* Reset happens after 4 times scan delay of scan start */
3413 vma->numab_state->pids_active_reset = vma->numab_state->next_scan +
3414 msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3417 * Ensure prev_scan_seq does not match numa_scan_seq,
3418 * to prevent VMAs being skipped prematurely on the
3421 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3425 * Scanning the VMAs of short lived tasks add more overhead. So
3426 * delay the scan for new VMAs.
3428 if (mm->numa_scan_seq && time_before(jiffies,
3429 vma->numab_state->next_scan)) {
3430 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3434 /* RESET access PIDs regularly for old VMAs. */
3435 if (mm->numa_scan_seq &&
3436 time_after(jiffies, vma->numab_state->pids_active_reset)) {
3437 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3438 msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3439 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3440 vma->numab_state->pids_active[1] = 0;
3443 /* Do not rescan VMAs twice within the same sequence. */
3444 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3445 mm->numa_scan_offset = vma->vm_end;
3446 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3451 * Do not scan the VMA if task has not accessed it, unless no other
3452 * VMA candidate exists.
3454 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3455 vma_pids_skipped = true;
3456 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3461 start = max(start, vma->vm_start);
3462 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3463 end = min(end, vma->vm_end);
3464 nr_pte_updates = change_prot_numa(vma, start, end);
3467 * Try to scan sysctl_numa_balancing_size worth of
3468 * hpages that have at least one present PTE that
3469 * is not already PTE-numa. If the VMA contains
3470 * areas that are unused or already full of prot_numa
3471 * PTEs, scan up to virtpages, to skip through those
3475 pages -= (end - start) >> PAGE_SHIFT;
3476 virtpages -= (end - start) >> PAGE_SHIFT;
3479 if (pages <= 0 || virtpages <= 0)
3483 } while (end != vma->vm_end);
3485 /* VMA scan is complete, do not scan until next sequence. */
3486 vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3489 * Only force scan within one VMA at a time, to limit the
3490 * cost of scanning a potentially uninteresting VMA.
3492 if (vma_pids_forced)
3494 } for_each_vma(vmi, vma);
3497 * If no VMAs are remaining and VMAs were skipped due to the PID
3498 * not accessing the VMA previously, then force a scan to ensure
3501 if (!vma && !vma_pids_forced && vma_pids_skipped) {
3502 vma_pids_forced = true;
3508 * It is possible to reach the end of the VMA list but the last few
3509 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3510 * would find the !migratable VMA on the next scan but not reset the
3511 * scanner to the start so check it now.
3514 mm->numa_scan_offset = start;
3516 reset_ptenuma_scan(p);
3517 mmap_read_unlock(mm);
3520 * Make sure tasks use at least 32x as much time to run other code
3521 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3522 * Usually update_task_scan_period slows down scanning enough; on an
3523 * overloaded system we need to limit overhead on a per task basis.
3525 if (unlikely(p->se.sum_exec_runtime != runtime)) {
3526 u64 diff = p->se.sum_exec_runtime - runtime;
3527 p->node_stamp += 32 * diff;
3531 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3534 struct mm_struct *mm = p->mm;
3537 mm_users = atomic_read(&mm->mm_users);
3538 if (mm_users == 1) {
3539 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3540 mm->numa_scan_seq = 0;
3544 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
3545 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
3546 p->numa_migrate_retry = 0;
3547 /* Protect against double add, see task_tick_numa and task_numa_work */
3548 p->numa_work.next = &p->numa_work;
3549 p->numa_faults = NULL;
3550 p->numa_pages_migrated = 0;
3551 p->total_numa_faults = 0;
3552 RCU_INIT_POINTER(p->numa_group, NULL);
3553 p->last_task_numa_placement = 0;
3554 p->last_sum_exec_runtime = 0;
3556 init_task_work(&p->numa_work, task_numa_work);
3558 /* New address space, reset the preferred nid */
3559 if (!(clone_flags & CLONE_VM)) {
3560 p->numa_preferred_nid = NUMA_NO_NODE;
3565 * New thread, keep existing numa_preferred_nid which should be copied
3566 * already by arch_dup_task_struct but stagger when scans start.
3571 delay = min_t(unsigned int, task_scan_max(current),
3572 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3573 delay += 2 * TICK_NSEC;
3574 p->node_stamp = delay;
3579 * Drive the periodic memory faults..
3581 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3583 struct callback_head *work = &curr->numa_work;
3587 * We don't care about NUMA placement if we don't have memory.
3589 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3593 * Using runtime rather than walltime has the dual advantage that
3594 * we (mostly) drive the selection from busy threads and that the
3595 * task needs to have done some actual work before we bother with
3598 now = curr->se.sum_exec_runtime;
3599 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3601 if (now > curr->node_stamp + period) {
3602 if (!curr->node_stamp)
3603 curr->numa_scan_period = task_scan_start(curr);
3604 curr->node_stamp += period;
3606 if (!time_before(jiffies, curr->mm->numa_next_scan))
3607 task_work_add(curr, work, TWA_RESUME);
3611 static void update_scan_period(struct task_struct *p, int new_cpu)
3613 int src_nid = cpu_to_node(task_cpu(p));
3614 int dst_nid = cpu_to_node(new_cpu);
3616 if (!static_branch_likely(&sched_numa_balancing))
3619 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3622 if (src_nid == dst_nid)
3626 * Allow resets if faults have been trapped before one scan
3627 * has completed. This is most likely due to a new task that
3628 * is pulled cross-node due to wakeups or load balancing.
3630 if (p->numa_scan_seq) {
3632 * Avoid scan adjustments if moving to the preferred
3633 * node or if the task was not previously running on
3634 * the preferred node.
3636 if (dst_nid == p->numa_preferred_nid ||
3637 (p->numa_preferred_nid != NUMA_NO_NODE &&
3638 src_nid != p->numa_preferred_nid))
3642 p->numa_scan_period = task_scan_start(p);
3646 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3650 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3654 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3658 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3662 #endif /* CONFIG_NUMA_BALANCING */
3665 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3667 update_load_add(&cfs_rq->load, se->load.weight);
3669 if (entity_is_task(se)) {
3670 struct rq *rq = rq_of(cfs_rq);
3672 account_numa_enqueue(rq, task_of(se));
3673 list_add(&se->group_node, &rq->cfs_tasks);
3676 cfs_rq->nr_running++;
3678 cfs_rq->idle_nr_running++;
3682 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3684 update_load_sub(&cfs_rq->load, se->load.weight);
3686 if (entity_is_task(se)) {
3687 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3688 list_del_init(&se->group_node);
3691 cfs_rq->nr_running--;
3693 cfs_rq->idle_nr_running--;
3697 * Signed add and clamp on underflow.
3699 * Explicitly do a load-store to ensure the intermediate value never hits
3700 * memory. This allows lockless observations without ever seeing the negative
3703 #define add_positive(_ptr, _val) do { \
3704 typeof(_ptr) ptr = (_ptr); \
3705 typeof(_val) val = (_val); \
3706 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3710 if (val < 0 && res > var) \
3713 WRITE_ONCE(*ptr, res); \
3717 * Unsigned subtract and clamp on underflow.
3719 * Explicitly do a load-store to ensure the intermediate value never hits
3720 * memory. This allows lockless observations without ever seeing the negative
3723 #define sub_positive(_ptr, _val) do { \
3724 typeof(_ptr) ptr = (_ptr); \
3725 typeof(*ptr) val = (_val); \
3726 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3730 WRITE_ONCE(*ptr, res); \
3734 * Remove and clamp on negative, from a local variable.
3736 * A variant of sub_positive(), which does not use explicit load-store
3737 * and is thus optimized for local variable updates.
3739 #define lsub_positive(_ptr, _val) do { \
3740 typeof(_ptr) ptr = (_ptr); \
3741 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3746 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3748 cfs_rq->avg.load_avg += se->avg.load_avg;
3749 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3753 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3755 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3756 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3757 /* See update_cfs_rq_load_avg() */
3758 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3759 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3763 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3765 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3768 static void reweight_eevdf(struct sched_entity *se, u64 avruntime,
3769 unsigned long weight)
3771 unsigned long old_weight = se->load.weight;
3778 * COROLLARY #1: The virtual runtime of the entity needs to be
3779 * adjusted if re-weight at !0-lag point.
3781 * Proof: For contradiction assume this is not true, so we can
3782 * re-weight without changing vruntime at !0-lag point.
3784 * Weight VRuntime Avg-VRuntime
3788 * Since lag needs to be preserved through re-weight:
3790 * lag = (V - v)*w = (V'- v')*w', where v = v'
3791 * ==> V' = (V - v)*w/w' + v (1)
3793 * Let W be the total weight of the entities before reweight,
3794 * since V' is the new weighted average of entities:
3796 * V' = (WV + w'v - wv) / (W + w' - w) (2)
3798 * by using (1) & (2) we obtain:
3800 * (WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v
3801 * ==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v
3802 * ==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v
3803 * ==> (V - v)*W/(W + w' - w) = (V - v)*w/w' (3)
3805 * Since we are doing at !0-lag point which means V != v, we
3808 * ==> W / (W + w' - w) = w / w'
3809 * ==> Ww' = Ww + ww' - ww
3810 * ==> W * (w' - w) = w * (w' - w)
3811 * ==> W = w (re-weight indicates w' != w)
3813 * So the cfs_rq contains only one entity, hence vruntime of
3814 * the entity @v should always equal to the cfs_rq's weighted
3815 * average vruntime @V, which means we will always re-weight
3816 * at 0-lag point, thus breach assumption. Proof completed.
3819 * COROLLARY #2: Re-weight does NOT affect weighted average
3820 * vruntime of all the entities.
3822 * Proof: According to corollary #1, Eq. (1) should be:
3824 * (V - v)*w = (V' - v')*w'
3825 * ==> v' = V' - (V - v)*w/w' (4)
3827 * According to the weighted average formula, we have:
3829 * V' = (WV - wv + w'v') / (W - w + w')
3830 * = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w')
3831 * = (WV - wv + w'V' - Vw + wv) / (W - w + w')
3832 * = (WV + w'V' - Vw) / (W - w + w')
3834 * ==> V'*(W - w + w') = WV + w'V' - Vw
3835 * ==> V' * (W - w) = (W - w) * V (5)
3837 * If the entity is the only one in the cfs_rq, then reweight
3838 * always occurs at 0-lag point, so V won't change. Or else
3839 * there are other entities, hence W != w, then Eq. (5) turns
3840 * into V' = V. So V won't change in either case, proof done.
3843 * So according to corollary #1 & #2, the effect of re-weight
3844 * on vruntime should be:
3846 * v' = V' - (V - v) * w / w' (4)
3847 * = V - (V - v) * w / w'
3851 if (avruntime != se->vruntime) {
3852 vlag = entity_lag(avruntime, se);
3853 vlag = div_s64(vlag * old_weight, weight);
3854 se->vruntime = avruntime - vlag;
3861 * When the weight changes, the virtual time slope changes and
3862 * we should adjust the relative virtual deadline accordingly.
3864 * d' = v' + (d - v)*w/w'
3865 * = V' - (V - v)*w/w' + (d - v)*w/w'
3866 * = V - (V - v)*w/w' + (d - v)*w/w'
3867 * = V + (d - V)*w/w'
3869 vslice = (s64)(se->deadline - avruntime);
3870 vslice = div_s64(vslice * old_weight, weight);
3871 se->deadline = avruntime + vslice;
3874 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3875 unsigned long weight)
3877 bool curr = cfs_rq->curr == se;
3881 /* commit outstanding execution time */
3882 update_curr(cfs_rq);
3883 avruntime = avg_vruntime(cfs_rq);
3885 __dequeue_entity(cfs_rq, se);
3886 update_load_sub(&cfs_rq->load, se->load.weight);
3888 dequeue_load_avg(cfs_rq, se);
3891 reweight_eevdf(se, avruntime, weight);
3894 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3895 * we need to scale se->vlag when w_i changes.
3897 se->vlag = div_s64(se->vlag * se->load.weight, weight);
3900 update_load_set(&se->load, weight);
3904 u32 divider = get_pelt_divider(&se->avg);
3906 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3910 enqueue_load_avg(cfs_rq, se);
3912 update_load_add(&cfs_rq->load, se->load.weight);
3914 __enqueue_entity(cfs_rq, se);
3917 * The entity's vruntime has been adjusted, so let's check
3918 * whether the rq-wide min_vruntime needs updated too. Since
3919 * the calculations above require stable min_vruntime rather
3920 * than up-to-date one, we do the update at the end of the
3923 update_min_vruntime(cfs_rq);
3927 static void reweight_task_fair(struct rq *rq, struct task_struct *p,
3928 const struct load_weight *lw)
3930 struct sched_entity *se = &p->se;
3931 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3932 struct load_weight *load = &se->load;
3934 reweight_entity(cfs_rq, se, lw->weight);
3935 load->inv_weight = lw->inv_weight;
3938 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3940 #ifdef CONFIG_FAIR_GROUP_SCHED
3943 * All this does is approximate the hierarchical proportion which includes that
3944 * global sum we all love to hate.
3946 * That is, the weight of a group entity, is the proportional share of the
3947 * group weight based on the group runqueue weights. That is:
3949 * tg->weight * grq->load.weight
3950 * ge->load.weight = ----------------------------- (1)
3951 * \Sum grq->load.weight
3953 * Now, because computing that sum is prohibitively expensive to compute (been
3954 * there, done that) we approximate it with this average stuff. The average
3955 * moves slower and therefore the approximation is cheaper and more stable.
3957 * So instead of the above, we substitute:
3959 * grq->load.weight -> grq->avg.load_avg (2)
3961 * which yields the following:
3963 * tg->weight * grq->avg.load_avg
3964 * ge->load.weight = ------------------------------ (3)
3967 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3969 * That is shares_avg, and it is right (given the approximation (2)).
3971 * The problem with it is that because the average is slow -- it was designed
3972 * to be exactly that of course -- this leads to transients in boundary
3973 * conditions. In specific, the case where the group was idle and we start the
3974 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3975 * yielding bad latency etc..
3977 * Now, in that special case (1) reduces to:
3979 * tg->weight * grq->load.weight
3980 * ge->load.weight = ----------------------------- = tg->weight (4)
3983 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3985 * So what we do is modify our approximation (3) to approach (4) in the (near)
3990 * tg->weight * grq->load.weight
3991 * --------------------------------------------------- (5)
3992 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3994 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3995 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3998 * tg->weight * grq->load.weight
3999 * ge->load.weight = ----------------------------- (6)
4004 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
4005 * max(grq->load.weight, grq->avg.load_avg)
4007 * And that is shares_weight and is icky. In the (near) UP case it approaches
4008 * (4) while in the normal case it approaches (3). It consistently
4009 * overestimates the ge->load.weight and therefore:
4011 * \Sum ge->load.weight >= tg->weight
4015 static long calc_group_shares(struct cfs_rq *cfs_rq)
4017 long tg_weight, tg_shares, load, shares;
4018 struct task_group *tg = cfs_rq->tg;
4020 tg_shares = READ_ONCE(tg->shares);
4022 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
4024 tg_weight = atomic_long_read(&tg->load_avg);
4026 /* Ensure tg_weight >= load */
4027 tg_weight -= cfs_rq->tg_load_avg_contrib;
4030 shares = (tg_shares * load);
4032 shares /= tg_weight;
4035 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
4036 * of a group with small tg->shares value. It is a floor value which is
4037 * assigned as a minimum load.weight to the sched_entity representing
4038 * the group on a CPU.
4040 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
4041 * on an 8-core system with 8 tasks each runnable on one CPU shares has
4042 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
4043 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
4046 return clamp_t(long, shares, MIN_SHARES, tg_shares);
4048 #endif /* CONFIG_SMP */
4051 * Recomputes the group entity based on the current state of its group
4054 static void update_cfs_group(struct sched_entity *se)
4056 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4062 if (throttled_hierarchy(gcfs_rq))
4066 shares = READ_ONCE(gcfs_rq->tg->shares);
4068 shares = calc_group_shares(gcfs_rq);
4070 if (unlikely(se->load.weight != shares))
4071 reweight_entity(cfs_rq_of(se), se, shares);
4074 #else /* CONFIG_FAIR_GROUP_SCHED */
4075 static inline void update_cfs_group(struct sched_entity *se)
4078 #endif /* CONFIG_FAIR_GROUP_SCHED */
4080 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
4082 struct rq *rq = rq_of(cfs_rq);
4084 if (&rq->cfs == cfs_rq) {
4086 * There are a few boundary cases this might miss but it should
4087 * get called often enough that that should (hopefully) not be
4090 * It will not get called when we go idle, because the idle
4091 * thread is a different class (!fair), nor will the utilization
4092 * number include things like RT tasks.
4094 * As is, the util number is not freq-invariant (we'd have to
4095 * implement arch_scale_freq_capacity() for that).
4097 * See cpu_util_cfs().
4099 cpufreq_update_util(rq, flags);
4104 static inline bool load_avg_is_decayed(struct sched_avg *sa)
4112 if (sa->runnable_sum)
4116 * _avg must be null when _sum are null because _avg = _sum / divider
4117 * Make sure that rounding and/or propagation of PELT values never
4120 SCHED_WARN_ON(sa->load_avg ||
4127 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4129 return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4130 cfs_rq->last_update_time_copy);
4132 #ifdef CONFIG_FAIR_GROUP_SCHED
4134 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4135 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4136 * bottom-up, we only have to test whether the cfs_rq before us on the list
4138 * If cfs_rq is not on the list, test whether a child needs its to be added to
4139 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details).
4141 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4143 struct cfs_rq *prev_cfs_rq;
4144 struct list_head *prev;
4146 if (cfs_rq->on_list) {
4147 prev = cfs_rq->leaf_cfs_rq_list.prev;
4149 struct rq *rq = rq_of(cfs_rq);
4151 prev = rq->tmp_alone_branch;
4154 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4156 return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4159 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4161 if (cfs_rq->load.weight)
4164 if (!load_avg_is_decayed(&cfs_rq->avg))
4167 if (child_cfs_rq_on_list(cfs_rq))
4174 * update_tg_load_avg - update the tg's load avg
4175 * @cfs_rq: the cfs_rq whose avg changed
4177 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4178 * However, because tg->load_avg is a global value there are performance
4181 * In order to avoid having to look at the other cfs_rq's, we use a
4182 * differential update where we store the last value we propagated. This in
4183 * turn allows skipping updates if the differential is 'small'.
4185 * Updating tg's load_avg is necessary before update_cfs_share().
4187 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4193 * No need to update load_avg for root_task_group as it is not used.
4195 if (cfs_rq->tg == &root_task_group)
4198 /* rq has been offline and doesn't contribute to the share anymore: */
4199 if (!cpu_active(cpu_of(rq_of(cfs_rq))))
4203 * For migration heavy workloads, access to tg->load_avg can be
4204 * unbound. Limit the update rate to at most once per ms.
4206 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4207 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC)
4210 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4211 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4212 atomic_long_add(delta, &cfs_rq->tg->load_avg);
4213 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4214 cfs_rq->last_update_tg_load_avg = now;
4218 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq)
4224 * No need to update load_avg for root_task_group, as it is not used.
4226 if (cfs_rq->tg == &root_task_group)
4229 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4230 delta = 0 - cfs_rq->tg_load_avg_contrib;
4231 atomic_long_add(delta, &cfs_rq->tg->load_avg);
4232 cfs_rq->tg_load_avg_contrib = 0;
4233 cfs_rq->last_update_tg_load_avg = now;
4236 /* CPU offline callback: */
4237 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq)
4239 struct task_group *tg;
4241 lockdep_assert_rq_held(rq);
4244 * The rq clock has already been updated in
4245 * set_rq_offline(), so we should skip updating
4246 * the rq clock again in unthrottle_cfs_rq().
4248 rq_clock_start_loop_update(rq);
4251 list_for_each_entry_rcu(tg, &task_groups, list) {
4252 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4254 clear_tg_load_avg(cfs_rq);
4258 rq_clock_stop_loop_update(rq);
4262 * Called within set_task_rq() right before setting a task's CPU. The
4263 * caller only guarantees p->pi_lock is held; no other assumptions,
4264 * including the state of rq->lock, should be made.
4266 void set_task_rq_fair(struct sched_entity *se,
4267 struct cfs_rq *prev, struct cfs_rq *next)
4269 u64 p_last_update_time;
4270 u64 n_last_update_time;
4272 if (!sched_feat(ATTACH_AGE_LOAD))
4276 * We are supposed to update the task to "current" time, then its up to
4277 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4278 * getting what current time is, so simply throw away the out-of-date
4279 * time. This will result in the wakee task is less decayed, but giving
4280 * the wakee more load sounds not bad.
4282 if (!(se->avg.last_update_time && prev))
4285 p_last_update_time = cfs_rq_last_update_time(prev);
4286 n_last_update_time = cfs_rq_last_update_time(next);
4288 __update_load_avg_blocked_se(p_last_update_time, se);
4289 se->avg.last_update_time = n_last_update_time;
4293 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4294 * propagate its contribution. The key to this propagation is the invariant
4295 * that for each group:
4297 * ge->avg == grq->avg (1)
4299 * _IFF_ we look at the pure running and runnable sums. Because they
4300 * represent the very same entity, just at different points in the hierarchy.
4302 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4303 * and simply copies the running/runnable sum over (but still wrong, because
4304 * the group entity and group rq do not have their PELT windows aligned).
4306 * However, update_tg_cfs_load() is more complex. So we have:
4308 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
4310 * And since, like util, the runnable part should be directly transferable,
4311 * the following would _appear_ to be the straight forward approach:
4313 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
4315 * And per (1) we have:
4317 * ge->avg.runnable_avg == grq->avg.runnable_avg
4321 * ge->load.weight * grq->avg.load_avg
4322 * ge->avg.load_avg = ----------------------------------- (4)
4325 * Except that is wrong!
4327 * Because while for entities historical weight is not important and we
4328 * really only care about our future and therefore can consider a pure
4329 * runnable sum, runqueues can NOT do this.
4331 * We specifically want runqueues to have a load_avg that includes
4332 * historical weights. Those represent the blocked load, the load we expect
4333 * to (shortly) return to us. This only works by keeping the weights as
4334 * integral part of the sum. We therefore cannot decompose as per (3).
4336 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4337 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4338 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4339 * runnable section of these tasks overlap (or not). If they were to perfectly
4340 * align the rq as a whole would be runnable 2/3 of the time. If however we
4341 * always have at least 1 runnable task, the rq as a whole is always runnable.
4343 * So we'll have to approximate.. :/
4345 * Given the constraint:
4347 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4349 * We can construct a rule that adds runnable to a rq by assuming minimal
4352 * On removal, we'll assume each task is equally runnable; which yields:
4354 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4356 * XXX: only do this for the part of runnable > running ?
4360 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4362 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4363 u32 new_sum, divider;
4365 /* Nothing to update */
4370 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4371 * See ___update_load_avg() for details.
4373 divider = get_pelt_divider(&cfs_rq->avg);
4376 /* Set new sched_entity's utilization */
4377 se->avg.util_avg = gcfs_rq->avg.util_avg;
4378 new_sum = se->avg.util_avg * divider;
4379 delta_sum = (long)new_sum - (long)se->avg.util_sum;
4380 se->avg.util_sum = new_sum;
4382 /* Update parent cfs_rq utilization */
4383 add_positive(&cfs_rq->avg.util_avg, delta_avg);
4384 add_positive(&cfs_rq->avg.util_sum, delta_sum);
4386 /* See update_cfs_rq_load_avg() */
4387 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4388 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4392 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4394 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4395 u32 new_sum, divider;
4397 /* Nothing to update */
4402 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4403 * See ___update_load_avg() for details.
4405 divider = get_pelt_divider(&cfs_rq->avg);
4407 /* Set new sched_entity's runnable */
4408 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4409 new_sum = se->avg.runnable_avg * divider;
4410 delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4411 se->avg.runnable_sum = new_sum;
4413 /* Update parent cfs_rq runnable */
4414 add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4415 add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4416 /* See update_cfs_rq_load_avg() */
4417 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4418 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4422 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4424 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4425 unsigned long load_avg;
4433 gcfs_rq->prop_runnable_sum = 0;
4436 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4437 * See ___update_load_avg() for details.
4439 divider = get_pelt_divider(&cfs_rq->avg);
4441 if (runnable_sum >= 0) {
4443 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4444 * the CPU is saturated running == runnable.
4446 runnable_sum += se->avg.load_sum;
4447 runnable_sum = min_t(long, runnable_sum, divider);
4450 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4451 * assuming all tasks are equally runnable.
4453 if (scale_load_down(gcfs_rq->load.weight)) {
4454 load_sum = div_u64(gcfs_rq->avg.load_sum,
4455 scale_load_down(gcfs_rq->load.weight));
4458 /* But make sure to not inflate se's runnable */
4459 runnable_sum = min(se->avg.load_sum, load_sum);
4463 * runnable_sum can't be lower than running_sum
4464 * Rescale running sum to be in the same range as runnable sum
4465 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
4466 * runnable_sum is in [0 : LOAD_AVG_MAX]
4468 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4469 runnable_sum = max(runnable_sum, running_sum);
4471 load_sum = se_weight(se) * runnable_sum;
4472 load_avg = div_u64(load_sum, divider);
4474 delta_avg = load_avg - se->avg.load_avg;
4478 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4480 se->avg.load_sum = runnable_sum;
4481 se->avg.load_avg = load_avg;
4482 add_positive(&cfs_rq->avg.load_avg, delta_avg);
4483 add_positive(&cfs_rq->avg.load_sum, delta_sum);
4484 /* See update_cfs_rq_load_avg() */
4485 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4486 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4489 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4491 cfs_rq->propagate = 1;
4492 cfs_rq->prop_runnable_sum += runnable_sum;
4495 /* Update task and its cfs_rq load average */
4496 static inline int propagate_entity_load_avg(struct sched_entity *se)
4498 struct cfs_rq *cfs_rq, *gcfs_rq;
4500 if (entity_is_task(se))
4503 gcfs_rq = group_cfs_rq(se);
4504 if (!gcfs_rq->propagate)
4507 gcfs_rq->propagate = 0;
4509 cfs_rq = cfs_rq_of(se);
4511 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4513 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4514 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4515 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4517 trace_pelt_cfs_tp(cfs_rq);
4518 trace_pelt_se_tp(se);
4524 * Check if we need to update the load and the utilization of a blocked
4527 static inline bool skip_blocked_update(struct sched_entity *se)
4529 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4532 * If sched_entity still have not zero load or utilization, we have to
4535 if (se->avg.load_avg || se->avg.util_avg)
4539 * If there is a pending propagation, we have to update the load and
4540 * the utilization of the sched_entity:
4542 if (gcfs_rq->propagate)
4546 * Otherwise, the load and the utilization of the sched_entity is
4547 * already zero and there is no pending propagation, so it will be a
4548 * waste of time to try to decay it:
4553 #else /* CONFIG_FAIR_GROUP_SCHED */
4555 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4557 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {}
4559 static inline int propagate_entity_load_avg(struct sched_entity *se)
4564 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4566 #endif /* CONFIG_FAIR_GROUP_SCHED */
4568 #ifdef CONFIG_NO_HZ_COMMON
4569 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4571 u64 throttled = 0, now, lut;
4572 struct cfs_rq *cfs_rq;
4576 if (load_avg_is_decayed(&se->avg))
4579 cfs_rq = cfs_rq_of(se);
4583 is_idle = is_idle_task(rcu_dereference(rq->curr));
4587 * The lag estimation comes with a cost we don't want to pay all the
4588 * time. Hence, limiting to the case where the source CPU is idle and
4589 * we know we are at the greatest risk to have an outdated clock.
4595 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4597 * last_update_time (the cfs_rq's last_update_time)
4598 * = cfs_rq_clock_pelt()@cfs_rq_idle
4599 * = rq_clock_pelt()@cfs_rq_idle
4600 * - cfs->throttled_clock_pelt_time@cfs_rq_idle
4602 * cfs_idle_lag (delta between rq's update and cfs_rq's update)
4603 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4605 * rq_idle_lag (delta between now and rq's update)
4606 * = sched_clock_cpu() - rq_clock()@rq_idle
4608 * We can then write:
4610 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4611 * sched_clock_cpu() - rq_clock()@rq_idle
4613 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4614 * rq_clock()@rq_idle is rq->clock_idle
4615 * cfs->throttled_clock_pelt_time@cfs_rq_idle
4616 * is cfs_rq->throttled_pelt_idle
4619 #ifdef CONFIG_CFS_BANDWIDTH
4620 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4621 /* The clock has been stopped for throttling */
4622 if (throttled == U64_MAX)
4625 now = u64_u32_load(rq->clock_pelt_idle);
4627 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4628 * is observed the old clock_pelt_idle value and the new clock_idle,
4629 * which lead to an underestimation. The opposite would lead to an
4633 lut = cfs_rq_last_update_time(cfs_rq);
4638 * cfs_rq->avg.last_update_time is more recent than our
4639 * estimation, let's use it.
4643 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4645 __update_load_avg_blocked_se(now, se);
4648 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4652 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4653 * @now: current time, as per cfs_rq_clock_pelt()
4654 * @cfs_rq: cfs_rq to update
4656 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4657 * avg. The immediate corollary is that all (fair) tasks must be attached.
4659 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4661 * Return: true if the load decayed or we removed load.
4663 * Since both these conditions indicate a changed cfs_rq->avg.load we should
4664 * call update_tg_load_avg() when this function returns true.
4667 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4669 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4670 struct sched_avg *sa = &cfs_rq->avg;
4673 if (cfs_rq->removed.nr) {
4675 u32 divider = get_pelt_divider(&cfs_rq->avg);
4677 raw_spin_lock(&cfs_rq->removed.lock);
4678 swap(cfs_rq->removed.util_avg, removed_util);
4679 swap(cfs_rq->removed.load_avg, removed_load);
4680 swap(cfs_rq->removed.runnable_avg, removed_runnable);
4681 cfs_rq->removed.nr = 0;
4682 raw_spin_unlock(&cfs_rq->removed.lock);
4685 sub_positive(&sa->load_avg, r);
4686 sub_positive(&sa->load_sum, r * divider);
4687 /* See sa->util_sum below */
4688 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4691 sub_positive(&sa->util_avg, r);
4692 sub_positive(&sa->util_sum, r * divider);
4694 * Because of rounding, se->util_sum might ends up being +1 more than
4695 * cfs->util_sum. Although this is not a problem by itself, detaching
4696 * a lot of tasks with the rounding problem between 2 updates of
4697 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4698 * cfs_util_avg is not.
4699 * Check that util_sum is still above its lower bound for the new
4700 * util_avg. Given that period_contrib might have moved since the last
4701 * sync, we are only sure that util_sum must be above or equal to
4702 * util_avg * minimum possible divider
4704 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4706 r = removed_runnable;
4707 sub_positive(&sa->runnable_avg, r);
4708 sub_positive(&sa->runnable_sum, r * divider);
4709 /* See sa->util_sum above */
4710 sa->runnable_sum = max_t(u32, sa->runnable_sum,
4711 sa->runnable_avg * PELT_MIN_DIVIDER);
4714 * removed_runnable is the unweighted version of removed_load so we
4715 * can use it to estimate removed_load_sum.
4717 add_tg_cfs_propagate(cfs_rq,
4718 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4723 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4724 u64_u32_store_copy(sa->last_update_time,
4725 cfs_rq->last_update_time_copy,
4726 sa->last_update_time);
4731 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4732 * @cfs_rq: cfs_rq to attach to
4733 * @se: sched_entity to attach
4735 * Must call update_cfs_rq_load_avg() before this, since we rely on
4736 * cfs_rq->avg.last_update_time being current.
4738 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4741 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4742 * See ___update_load_avg() for details.
4744 u32 divider = get_pelt_divider(&cfs_rq->avg);
4747 * When we attach the @se to the @cfs_rq, we must align the decay
4748 * window because without that, really weird and wonderful things can
4753 se->avg.last_update_time = cfs_rq->avg.last_update_time;
4754 se->avg.period_contrib = cfs_rq->avg.period_contrib;
4757 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4758 * period_contrib. This isn't strictly correct, but since we're
4759 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4762 se->avg.util_sum = se->avg.util_avg * divider;
4764 se->avg.runnable_sum = se->avg.runnable_avg * divider;
4766 se->avg.load_sum = se->avg.load_avg * divider;
4767 if (se_weight(se) < se->avg.load_sum)
4768 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4770 se->avg.load_sum = 1;
4772 enqueue_load_avg(cfs_rq, se);
4773 cfs_rq->avg.util_avg += se->avg.util_avg;
4774 cfs_rq->avg.util_sum += se->avg.util_sum;
4775 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4776 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4778 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4780 cfs_rq_util_change(cfs_rq, 0);
4782 trace_pelt_cfs_tp(cfs_rq);
4786 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4787 * @cfs_rq: cfs_rq to detach from
4788 * @se: sched_entity to detach
4790 * Must call update_cfs_rq_load_avg() before this, since we rely on
4791 * cfs_rq->avg.last_update_time being current.
4793 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4795 dequeue_load_avg(cfs_rq, se);
4796 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4797 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4798 /* See update_cfs_rq_load_avg() */
4799 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4800 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4802 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4803 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4804 /* See update_cfs_rq_load_avg() */
4805 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4806 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4808 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4810 cfs_rq_util_change(cfs_rq, 0);
4812 trace_pelt_cfs_tp(cfs_rq);
4816 * Optional action to be done while updating the load average
4818 #define UPDATE_TG 0x1
4819 #define SKIP_AGE_LOAD 0x2
4820 #define DO_ATTACH 0x4
4821 #define DO_DETACH 0x8
4823 /* Update task and its cfs_rq load average */
4824 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4826 u64 now = cfs_rq_clock_pelt(cfs_rq);
4830 * Track task load average for carrying it to new CPU after migrated, and
4831 * track group sched_entity load average for task_h_load calculation in migration
4833 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4834 __update_load_avg_se(now, cfs_rq, se);
4836 decayed = update_cfs_rq_load_avg(now, cfs_rq);
4837 decayed |= propagate_entity_load_avg(se);
4839 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4842 * DO_ATTACH means we're here from enqueue_entity().
4843 * !last_update_time means we've passed through
4844 * migrate_task_rq_fair() indicating we migrated.
4846 * IOW we're enqueueing a task on a new CPU.
4848 attach_entity_load_avg(cfs_rq, se);
4849 update_tg_load_avg(cfs_rq);
4851 } else if (flags & DO_DETACH) {
4853 * DO_DETACH means we're here from dequeue_entity()
4854 * and we are migrating task out of the CPU.
4856 detach_entity_load_avg(cfs_rq, se);
4857 update_tg_load_avg(cfs_rq);
4858 } else if (decayed) {
4859 cfs_rq_util_change(cfs_rq, 0);
4861 if (flags & UPDATE_TG)
4862 update_tg_load_avg(cfs_rq);
4867 * Synchronize entity load avg of dequeued entity without locking
4870 static void sync_entity_load_avg(struct sched_entity *se)
4872 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4873 u64 last_update_time;
4875 last_update_time = cfs_rq_last_update_time(cfs_rq);
4876 __update_load_avg_blocked_se(last_update_time, se);
4880 * Task first catches up with cfs_rq, and then subtract
4881 * itself from the cfs_rq (task must be off the queue now).
4883 static void remove_entity_load_avg(struct sched_entity *se)
4885 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4886 unsigned long flags;
4889 * tasks cannot exit without having gone through wake_up_new_task() ->
4890 * enqueue_task_fair() which will have added things to the cfs_rq,
4891 * so we can remove unconditionally.
4894 sync_entity_load_avg(se);
4896 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4897 ++cfs_rq->removed.nr;
4898 cfs_rq->removed.util_avg += se->avg.util_avg;
4899 cfs_rq->removed.load_avg += se->avg.load_avg;
4900 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
4901 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4904 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4906 return cfs_rq->avg.runnable_avg;
4909 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4911 return cfs_rq->avg.load_avg;
4914 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf);
4916 static inline unsigned long task_util(struct task_struct *p)
4918 return READ_ONCE(p->se.avg.util_avg);
4921 static inline unsigned long task_runnable(struct task_struct *p)
4923 return READ_ONCE(p->se.avg.runnable_avg);
4926 static inline unsigned long _task_util_est(struct task_struct *p)
4928 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED;
4931 static inline unsigned long task_util_est(struct task_struct *p)
4933 return max(task_util(p), _task_util_est(p));
4936 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4937 struct task_struct *p)
4939 unsigned int enqueued;
4941 if (!sched_feat(UTIL_EST))
4944 /* Update root cfs_rq's estimated utilization */
4945 enqueued = cfs_rq->avg.util_est;
4946 enqueued += _task_util_est(p);
4947 WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4949 trace_sched_util_est_cfs_tp(cfs_rq);
4952 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4953 struct task_struct *p)
4955 unsigned int enqueued;
4957 if (!sched_feat(UTIL_EST))
4960 /* Update root cfs_rq's estimated utilization */
4961 enqueued = cfs_rq->avg.util_est;
4962 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4963 WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4965 trace_sched_util_est_cfs_tp(cfs_rq);
4968 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4970 static inline void util_est_update(struct cfs_rq *cfs_rq,
4971 struct task_struct *p,
4974 unsigned int ewma, dequeued, last_ewma_diff;
4976 if (!sched_feat(UTIL_EST))
4980 * Skip update of task's estimated utilization when the task has not
4981 * yet completed an activation, e.g. being migrated.
4986 /* Get current estimate of utilization */
4987 ewma = READ_ONCE(p->se.avg.util_est);
4990 * If the PELT values haven't changed since enqueue time,
4991 * skip the util_est update.
4993 if (ewma & UTIL_AVG_UNCHANGED)
4996 /* Get utilization at dequeue */
4997 dequeued = task_util(p);
5000 * Reset EWMA on utilization increases, the moving average is used only
5001 * to smooth utilization decreases.
5003 if (ewma <= dequeued) {
5009 * Skip update of task's estimated utilization when its members are
5010 * already ~1% close to its last activation value.
5012 last_ewma_diff = ewma - dequeued;
5013 if (last_ewma_diff < UTIL_EST_MARGIN)
5017 * To avoid overestimation of actual task utilization, skip updates if
5018 * we cannot grant there is idle time in this CPU.
5020 if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))))
5024 * To avoid underestimate of task utilization, skip updates of EWMA if
5025 * we cannot grant that thread got all CPU time it wanted.
5027 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p))
5032 * Update Task's estimated utilization
5034 * When *p completes an activation we can consolidate another sample
5035 * of the task size. This is done by using this value to update the
5036 * Exponential Weighted Moving Average (EWMA):
5038 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
5039 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
5040 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
5041 * = w * ( -last_ewma_diff ) + ewma(t-1)
5042 * = w * (-last_ewma_diff + ewma(t-1) / w)
5044 * Where 'w' is the weight of new samples, which is configured to be
5045 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
5047 ewma <<= UTIL_EST_WEIGHT_SHIFT;
5048 ewma -= last_ewma_diff;
5049 ewma >>= UTIL_EST_WEIGHT_SHIFT;
5051 ewma |= UTIL_AVG_UNCHANGED;
5052 WRITE_ONCE(p->se.avg.util_est, ewma);
5054 trace_sched_util_est_se_tp(&p->se);
5057 static inline unsigned long get_actual_cpu_capacity(int cpu)
5059 unsigned long capacity = arch_scale_cpu_capacity(cpu);
5061 capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu));
5066 static inline int util_fits_cpu(unsigned long util,
5067 unsigned long uclamp_min,
5068 unsigned long uclamp_max,
5071 unsigned long capacity = capacity_of(cpu);
5072 unsigned long capacity_orig;
5073 bool fits, uclamp_max_fits;
5076 * Check if the real util fits without any uclamp boost/cap applied.
5078 fits = fits_capacity(util, capacity);
5080 if (!uclamp_is_used())
5084 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and
5085 * uclamp_max. We only care about capacity pressure (by using
5086 * capacity_of()) for comparing against the real util.
5088 * If a task is boosted to 1024 for example, we don't want a tiny
5089 * pressure to skew the check whether it fits a CPU or not.
5091 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
5092 * should fit a little cpu even if there's some pressure.
5094 * Only exception is for HW or cpufreq pressure since it has a direct impact
5095 * on available OPP of the system.
5097 * We honour it for uclamp_min only as a drop in performance level
5098 * could result in not getting the requested minimum performance level.
5100 * For uclamp_max, we can tolerate a drop in performance level as the
5101 * goal is to cap the task. So it's okay if it's getting less.
5103 capacity_orig = arch_scale_cpu_capacity(cpu);
5106 * We want to force a task to fit a cpu as implied by uclamp_max.
5107 * But we do have some corner cases to cater for..
5113 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5116 * | | | | | | | (util somewhere in this region)
5119 * +----------------------------------------
5122 * In the above example if a task is capped to a specific performance
5123 * point, y, then when:
5125 * * util = 80% of x then it does not fit on CPU0 and should migrate
5127 * * util = 80% of y then it is forced to fit on CPU1 to honour
5128 * uclamp_max request.
5130 * which is what we're enforcing here. A task always fits if
5131 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5132 * the normal upmigration rules should withhold still.
5134 * Only exception is when we are on max capacity, then we need to be
5135 * careful not to block overutilized state. This is so because:
5137 * 1. There's no concept of capping at max_capacity! We can't go
5138 * beyond this performance level anyway.
5139 * 2. The system is being saturated when we're operating near
5140 * max capacity, it doesn't make sense to block overutilized.
5142 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5143 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5144 fits = fits || uclamp_max_fits;
5149 * | ___ (region a, capped, util >= uclamp_max)
5151 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5153 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max)
5154 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5156 * | | | | | | | (region c, boosted, util < uclamp_min)
5157 * +----------------------------------------
5160 * a) If util > uclamp_max, then we're capped, we don't care about
5161 * actual fitness value here. We only care if uclamp_max fits
5162 * capacity without taking margin/pressure into account.
5163 * See comment above.
5165 * b) If uclamp_min <= util <= uclamp_max, then the normal
5166 * fits_capacity() rules apply. Except we need to ensure that we
5167 * enforce we remain within uclamp_max, see comment above.
5169 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5170 * need to take into account the boosted value fits the CPU without
5171 * taking margin/pressure into account.
5173 * Cases (a) and (b) are handled in the 'fits' variable already. We
5174 * just need to consider an extra check for case (c) after ensuring we
5175 * handle the case uclamp_min > uclamp_max.
5177 uclamp_min = min(uclamp_min, uclamp_max);
5178 if (fits && (util < uclamp_min) &&
5179 (uclamp_min > get_actual_cpu_capacity(cpu)))
5185 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5187 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5188 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5189 unsigned long util = task_util_est(p);
5191 * Return true only if the cpu fully fits the task requirements, which
5192 * include the utilization but also the performance hints.
5194 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5197 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5199 int cpu = cpu_of(rq);
5201 if (!sched_asym_cpucap_active())
5205 * Affinity allows us to go somewhere higher? Or are we on biggest
5206 * available CPU already? Or do we fit into this CPU ?
5208 if (!p || (p->nr_cpus_allowed == 1) ||
5209 (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) ||
5210 task_fits_cpu(p, cpu)) {
5212 rq->misfit_task_load = 0;
5217 * Make sure that misfit_task_load will not be null even if
5218 * task_h_load() returns 0.
5220 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5223 #else /* CONFIG_SMP */
5225 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5227 return !cfs_rq->nr_running;
5230 #define UPDATE_TG 0x0
5231 #define SKIP_AGE_LOAD 0x0
5232 #define DO_ATTACH 0x0
5233 #define DO_DETACH 0x0
5235 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
5237 cfs_rq_util_change(cfs_rq, 0);
5240 static inline void remove_entity_load_avg(struct sched_entity *se) {}
5243 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5245 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5247 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf)
5253 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5256 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5259 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5261 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
5263 #endif /* CONFIG_SMP */
5266 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5268 u64 vslice, vruntime = avg_vruntime(cfs_rq);
5271 if (!se->custom_slice)
5272 se->slice = sysctl_sched_base_slice;
5273 vslice = calc_delta_fair(se->slice, se);
5276 * Due to how V is constructed as the weighted average of entities,
5277 * adding tasks with positive lag, or removing tasks with negative lag
5278 * will move 'time' backwards, this can screw around with the lag of
5281 * EEVDF: placement strategy #1 / #2
5283 if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) {
5284 struct sched_entity *curr = cfs_rq->curr;
5290 * If we want to place a task and preserve lag, we have to
5291 * consider the effect of the new entity on the weighted
5292 * average and compensate for this, otherwise lag can quickly
5295 * Lag is defined as:
5297 * lag_i = S - s_i = w_i * (V - v_i)
5299 * To avoid the 'w_i' term all over the place, we only track
5302 * vl_i = V - v_i <=> v_i = V - vl_i
5304 * And we take V to be the weighted average of all v:
5306 * V = (\Sum w_j*v_j) / W
5308 * Where W is: \Sum w_j
5310 * Then, the weighted average after adding an entity with lag
5313 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5314 * = (W*V + w_i*(V - vl_i)) / (W + w_i)
5315 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5316 * = (V*(W + w_i) - w_i*l) / (W + w_i)
5317 * = V - w_i*vl_i / (W + w_i)
5319 * And the actual lag after adding an entity with vl_i is:
5322 * = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5323 * = vl_i - w_i*vl_i / (W + w_i)
5325 * Which is strictly less than vl_i. So in order to preserve lag
5326 * we should inflate the lag before placement such that the
5327 * effective lag after placement comes out right.
5329 * As such, invert the above relation for vl'_i to get the vl_i
5330 * we need to use such that the lag after placement is the lag
5331 * we computed before dequeue.
5333 * vl'_i = vl_i - w_i*vl_i / (W + w_i)
5334 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5336 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5339 * vl_i = (W + w_i)*vl'_i / W
5341 load = cfs_rq->avg_load;
5342 if (curr && curr->on_rq)
5343 load += scale_load_down(curr->load.weight);
5345 lag *= load + scale_load_down(se->load.weight);
5346 if (WARN_ON_ONCE(!load))
5348 lag = div_s64(lag, load);
5351 se->vruntime = vruntime - lag;
5353 if (sched_feat(PLACE_REL_DEADLINE) && se->rel_deadline) {
5354 se->deadline += se->vruntime;
5355 se->rel_deadline = 0;
5360 * When joining the competition; the existing tasks will be,
5361 * on average, halfway through their slice, as such start tasks
5362 * off with half a slice to ease into the competition.
5364 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5368 * EEVDF: vd_i = ve_i + r_i/w_i
5370 se->deadline = se->vruntime + vslice;
5373 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5374 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5376 static inline bool cfs_bandwidth_used(void);
5379 requeue_delayed_entity(struct sched_entity *se);
5382 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5384 bool curr = cfs_rq->curr == se;
5387 * If we're the current task, we must renormalise before calling
5391 place_entity(cfs_rq, se, flags);
5393 update_curr(cfs_rq);
5396 * When enqueuing a sched_entity, we must:
5397 * - Update loads to have both entity and cfs_rq synced with now.
5398 * - For group_entity, update its runnable_weight to reflect the new
5399 * h_nr_running of its group cfs_rq.
5400 * - For group_entity, update its weight to reflect the new share of
5402 * - Add its new weight to cfs_rq->load.weight
5404 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5405 se_update_runnable(se);
5407 * XXX update_load_avg() above will have attached us to the pelt sum;
5408 * but update_cfs_group() here will re-adjust the weight and have to
5409 * undo/redo all that. Seems wasteful.
5411 update_cfs_group(se);
5414 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5415 * we can place the entity.
5418 place_entity(cfs_rq, se, flags);
5420 account_entity_enqueue(cfs_rq, se);
5422 /* Entity has migrated, no longer consider this task hot */
5423 if (flags & ENQUEUE_MIGRATED)
5426 check_schedstat_required();
5427 update_stats_enqueue_fair(cfs_rq, se, flags);
5429 __enqueue_entity(cfs_rq, se);
5432 if (cfs_rq->nr_running == 1) {
5433 check_enqueue_throttle(cfs_rq);
5434 if (!throttled_hierarchy(cfs_rq)) {
5435 list_add_leaf_cfs_rq(cfs_rq);
5437 #ifdef CONFIG_CFS_BANDWIDTH
5438 struct rq *rq = rq_of(cfs_rq);
5440 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5441 cfs_rq->throttled_clock = rq_clock(rq);
5442 if (!cfs_rq->throttled_clock_self)
5443 cfs_rq->throttled_clock_self = rq_clock(rq);
5449 static void __clear_buddies_next(struct sched_entity *se)
5451 for_each_sched_entity(se) {
5452 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5453 if (cfs_rq->next != se)
5456 cfs_rq->next = NULL;
5460 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5462 if (cfs_rq->next == se)
5463 __clear_buddies_next(se);
5466 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5468 static inline void finish_delayed_dequeue_entity(struct sched_entity *se)
5470 se->sched_delayed = 0;
5471 if (sched_feat(DELAY_ZERO) && se->vlag > 0)
5476 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5478 bool sleep = flags & DEQUEUE_SLEEP;
5480 update_curr(cfs_rq);
5482 if (flags & DEQUEUE_DELAYED) {
5483 SCHED_WARN_ON(!se->sched_delayed);
5487 * DELAY_DEQUEUE relies on spurious wakeups, special task
5488 * states must not suffer spurious wakeups, excempt them.
5490 if (flags & DEQUEUE_SPECIAL)
5493 SCHED_WARN_ON(delay && se->sched_delayed);
5495 if (sched_feat(DELAY_DEQUEUE) && delay &&
5496 !entity_eligible(cfs_rq, se)) {
5497 if (cfs_rq->next == se)
5498 cfs_rq->next = NULL;
5499 update_load_avg(cfs_rq, se, 0);
5500 se->sched_delayed = 1;
5505 int action = UPDATE_TG;
5506 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5507 action |= DO_DETACH;
5510 * When dequeuing a sched_entity, we must:
5511 * - Update loads to have both entity and cfs_rq synced with now.
5512 * - For group_entity, update its runnable_weight to reflect the new
5513 * h_nr_running of its group cfs_rq.
5514 * - Subtract its previous weight from cfs_rq->load.weight.
5515 * - For group entity, update its weight to reflect the new share
5516 * of its group cfs_rq.
5518 update_load_avg(cfs_rq, se, action);
5519 se_update_runnable(se);
5521 update_stats_dequeue_fair(cfs_rq, se, flags);
5523 clear_buddies(cfs_rq, se);
5525 update_entity_lag(cfs_rq, se);
5526 if (sched_feat(PLACE_REL_DEADLINE) && !sleep) {
5527 se->deadline -= se->vruntime;
5528 se->rel_deadline = 1;
5531 if (se != cfs_rq->curr)
5532 __dequeue_entity(cfs_rq, se);
5534 account_entity_dequeue(cfs_rq, se);
5536 /* return excess runtime on last dequeue */
5537 return_cfs_rq_runtime(cfs_rq);
5539 update_cfs_group(se);
5542 * Now advance min_vruntime if @se was the entity holding it back,
5543 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5544 * put back on, and if we advance min_vruntime, we'll be placed back
5545 * further than we started -- i.e. we'll be penalized.
5547 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5548 update_min_vruntime(cfs_rq);
5550 if (flags & DEQUEUE_DELAYED)
5551 finish_delayed_dequeue_entity(se);
5553 if (cfs_rq->nr_running == 0)
5554 update_idle_cfs_rq_clock_pelt(cfs_rq);
5560 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5562 clear_buddies(cfs_rq, se);
5564 /* 'current' is not kept within the tree. */
5567 * Any task has to be enqueued before it get to execute on
5568 * a CPU. So account for the time it spent waiting on the
5571 update_stats_wait_end_fair(cfs_rq, se);
5572 __dequeue_entity(cfs_rq, se);
5573 update_load_avg(cfs_rq, se, UPDATE_TG);
5575 * HACK, stash a copy of deadline at the point of pick in vlag,
5576 * which isn't used until dequeue.
5578 se->vlag = se->deadline;
5581 update_stats_curr_start(cfs_rq, se);
5582 SCHED_WARN_ON(cfs_rq->curr);
5586 * Track our maximum slice length, if the CPU's load is at
5587 * least twice that of our own weight (i.e. don't track it
5588 * when there are only lesser-weight tasks around):
5590 if (schedstat_enabled() &&
5591 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5592 struct sched_statistics *stats;
5594 stats = __schedstats_from_se(se);
5595 __schedstat_set(stats->slice_max,
5596 max((u64)stats->slice_max,
5597 se->sum_exec_runtime - se->prev_sum_exec_runtime));
5600 se->prev_sum_exec_runtime = se->sum_exec_runtime;
5603 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags);
5606 * Pick the next process, keeping these things in mind, in this order:
5607 * 1) keep things fair between processes/task groups
5608 * 2) pick the "next" process, since someone really wants that to run
5609 * 3) pick the "last" process, for cache locality
5610 * 4) do not run the "skip" process, if something else is available
5612 static struct sched_entity *
5613 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq)
5616 * Enabling NEXT_BUDDY will affect latency but not fairness.
5618 if (sched_feat(NEXT_BUDDY) &&
5619 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) {
5620 /* ->next will never be delayed */
5621 SCHED_WARN_ON(cfs_rq->next->sched_delayed);
5622 return cfs_rq->next;
5625 struct sched_entity *se = pick_eevdf(cfs_rq);
5626 if (se->sched_delayed) {
5627 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
5628 SCHED_WARN_ON(se->sched_delayed);
5629 SCHED_WARN_ON(se->on_rq);
5635 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5637 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5640 * If still on the runqueue then deactivate_task()
5641 * was not called and update_curr() has to be done:
5644 update_curr(cfs_rq);
5646 /* throttle cfs_rqs exceeding runtime */
5647 check_cfs_rq_runtime(cfs_rq);
5650 update_stats_wait_start_fair(cfs_rq, prev);
5651 /* Put 'current' back into the tree. */
5652 __enqueue_entity(cfs_rq, prev);
5653 /* in !on_rq case, update occurred at dequeue */
5654 update_load_avg(cfs_rq, prev, 0);
5656 SCHED_WARN_ON(cfs_rq->curr != prev);
5657 cfs_rq->curr = NULL;
5661 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5664 * Update run-time statistics of the 'current'.
5666 update_curr(cfs_rq);
5669 * Ensure that runnable average is periodically updated.
5671 update_load_avg(cfs_rq, curr, UPDATE_TG);
5672 update_cfs_group(curr);
5674 #ifdef CONFIG_SCHED_HRTICK
5676 * queued ticks are scheduled to match the slice, so don't bother
5677 * validating it and just reschedule.
5680 resched_curr(rq_of(cfs_rq));
5684 * don't let the period tick interfere with the hrtick preemption
5686 if (!sched_feat(DOUBLE_TICK) &&
5687 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
5693 /**************************************************
5694 * CFS bandwidth control machinery
5697 #ifdef CONFIG_CFS_BANDWIDTH
5699 #ifdef CONFIG_JUMP_LABEL
5700 static struct static_key __cfs_bandwidth_used;
5702 static inline bool cfs_bandwidth_used(void)
5704 return static_key_false(&__cfs_bandwidth_used);
5707 void cfs_bandwidth_usage_inc(void)
5709 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5712 void cfs_bandwidth_usage_dec(void)
5714 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5716 #else /* CONFIG_JUMP_LABEL */
5717 static bool cfs_bandwidth_used(void)
5722 void cfs_bandwidth_usage_inc(void) {}
5723 void cfs_bandwidth_usage_dec(void) {}
5724 #endif /* CONFIG_JUMP_LABEL */
5727 * default period for cfs group bandwidth.
5728 * default: 0.1s, units: nanoseconds
5730 static inline u64 default_cfs_period(void)
5732 return 100000000ULL;
5735 static inline u64 sched_cfs_bandwidth_slice(void)
5737 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5741 * Replenish runtime according to assigned quota. We use sched_clock_cpu
5742 * directly instead of rq->clock to avoid adding additional synchronization
5745 * requires cfs_b->lock
5747 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5751 if (unlikely(cfs_b->quota == RUNTIME_INF))
5754 cfs_b->runtime += cfs_b->quota;
5755 runtime = cfs_b->runtime_snap - cfs_b->runtime;
5757 cfs_b->burst_time += runtime;
5761 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5762 cfs_b->runtime_snap = cfs_b->runtime;
5765 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5767 return &tg->cfs_bandwidth;
5770 /* returns 0 on failure to allocate runtime */
5771 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5772 struct cfs_rq *cfs_rq, u64 target_runtime)
5774 u64 min_amount, amount = 0;
5776 lockdep_assert_held(&cfs_b->lock);
5778 /* note: this is a positive sum as runtime_remaining <= 0 */
5779 min_amount = target_runtime - cfs_rq->runtime_remaining;
5781 if (cfs_b->quota == RUNTIME_INF)
5782 amount = min_amount;
5784 start_cfs_bandwidth(cfs_b);
5786 if (cfs_b->runtime > 0) {
5787 amount = min(cfs_b->runtime, min_amount);
5788 cfs_b->runtime -= amount;
5793 cfs_rq->runtime_remaining += amount;
5795 return cfs_rq->runtime_remaining > 0;
5798 /* returns 0 on failure to allocate runtime */
5799 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5801 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5804 raw_spin_lock(&cfs_b->lock);
5805 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5806 raw_spin_unlock(&cfs_b->lock);
5811 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5813 /* dock delta_exec before expiring quota (as it could span periods) */
5814 cfs_rq->runtime_remaining -= delta_exec;
5816 if (likely(cfs_rq->runtime_remaining > 0))
5819 if (cfs_rq->throttled)
5822 * if we're unable to extend our runtime we resched so that the active
5823 * hierarchy can be throttled
5825 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5826 resched_curr(rq_of(cfs_rq));
5829 static __always_inline
5830 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5832 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5835 __account_cfs_rq_runtime(cfs_rq, delta_exec);
5838 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5840 return cfs_bandwidth_used() && cfs_rq->throttled;
5843 /* check whether cfs_rq, or any parent, is throttled */
5844 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5846 return cfs_bandwidth_used() && cfs_rq->throttle_count;
5850 * Ensure that neither of the group entities corresponding to src_cpu or
5851 * dest_cpu are members of a throttled hierarchy when performing group
5852 * load-balance operations.
5854 static inline int throttled_lb_pair(struct task_group *tg,
5855 int src_cpu, int dest_cpu)
5857 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5859 src_cfs_rq = tg->cfs_rq[src_cpu];
5860 dest_cfs_rq = tg->cfs_rq[dest_cpu];
5862 return throttled_hierarchy(src_cfs_rq) ||
5863 throttled_hierarchy(dest_cfs_rq);
5866 static int tg_unthrottle_up(struct task_group *tg, void *data)
5868 struct rq *rq = data;
5869 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5871 cfs_rq->throttle_count--;
5872 if (!cfs_rq->throttle_count) {
5873 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5874 cfs_rq->throttled_clock_pelt;
5876 /* Add cfs_rq with load or one or more already running entities to the list */
5877 if (!cfs_rq_is_decayed(cfs_rq))
5878 list_add_leaf_cfs_rq(cfs_rq);
5880 if (cfs_rq->throttled_clock_self) {
5881 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5883 cfs_rq->throttled_clock_self = 0;
5885 if (SCHED_WARN_ON((s64)delta < 0))
5888 cfs_rq->throttled_clock_self_time += delta;
5895 static int tg_throttle_down(struct task_group *tg, void *data)
5897 struct rq *rq = data;
5898 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5900 /* group is entering throttled state, stop time */
5901 if (!cfs_rq->throttle_count) {
5902 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5903 list_del_leaf_cfs_rq(cfs_rq);
5905 SCHED_WARN_ON(cfs_rq->throttled_clock_self);
5906 if (cfs_rq->nr_running)
5907 cfs_rq->throttled_clock_self = rq_clock(rq);
5909 cfs_rq->throttle_count++;
5914 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5916 struct rq *rq = rq_of(cfs_rq);
5917 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5918 struct sched_entity *se;
5919 long task_delta, idle_task_delta, dequeue = 1;
5920 long rq_h_nr_running = rq->cfs.h_nr_running;
5922 raw_spin_lock(&cfs_b->lock);
5923 /* This will start the period timer if necessary */
5924 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5926 * We have raced with bandwidth becoming available, and if we
5927 * actually throttled the timer might not unthrottle us for an
5928 * entire period. We additionally needed to make sure that any
5929 * subsequent check_cfs_rq_runtime calls agree not to throttle
5930 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5931 * for 1ns of runtime rather than just check cfs_b.
5935 list_add_tail_rcu(&cfs_rq->throttled_list,
5936 &cfs_b->throttled_cfs_rq);
5938 raw_spin_unlock(&cfs_b->lock);
5941 return false; /* Throttle no longer required. */
5943 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5945 /* freeze hierarchy runnable averages while throttled */
5947 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5950 task_delta = cfs_rq->h_nr_running;
5951 idle_task_delta = cfs_rq->idle_h_nr_running;
5952 for_each_sched_entity(se) {
5953 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5956 /* throttled entity or throttle-on-deactivate */
5961 * Abuse SPECIAL to avoid delayed dequeue in this instance.
5962 * This avoids teaching dequeue_entities() about throttled
5963 * entities and keeps things relatively simple.
5965 flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL;
5966 if (se->sched_delayed)
5967 flags |= DEQUEUE_DELAYED;
5968 dequeue_entity(qcfs_rq, se, flags);
5970 if (cfs_rq_is_idle(group_cfs_rq(se)))
5971 idle_task_delta = cfs_rq->h_nr_running;
5973 qcfs_rq->h_nr_running -= task_delta;
5974 qcfs_rq->idle_h_nr_running -= idle_task_delta;
5976 if (qcfs_rq->load.weight) {
5977 /* Avoid re-evaluating load for this entity: */
5978 se = parent_entity(se);
5983 for_each_sched_entity(se) {
5984 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5985 /* throttled entity or throttle-on-deactivate */
5989 update_load_avg(qcfs_rq, se, 0);
5990 se_update_runnable(se);
5992 if (cfs_rq_is_idle(group_cfs_rq(se)))
5993 idle_task_delta = cfs_rq->h_nr_running;
5995 qcfs_rq->h_nr_running -= task_delta;
5996 qcfs_rq->idle_h_nr_running -= idle_task_delta;
5999 /* At this point se is NULL and we are at root level*/
6000 sub_nr_running(rq, task_delta);
6002 /* Stop the fair server if throttling resulted in no runnable tasks */
6003 if (rq_h_nr_running && !rq->cfs.h_nr_running)
6004 dl_server_stop(&rq->fair_server);
6007 * Note: distribution will already see us throttled via the
6008 * throttled-list. rq->lock protects completion.
6010 cfs_rq->throttled = 1;
6011 SCHED_WARN_ON(cfs_rq->throttled_clock);
6012 if (cfs_rq->nr_running)
6013 cfs_rq->throttled_clock = rq_clock(rq);
6017 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
6019 struct rq *rq = rq_of(cfs_rq);
6020 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6021 struct sched_entity *se;
6022 long task_delta, idle_task_delta;
6023 long rq_h_nr_running = rq->cfs.h_nr_running;
6025 se = cfs_rq->tg->se[cpu_of(rq)];
6027 cfs_rq->throttled = 0;
6029 update_rq_clock(rq);
6031 raw_spin_lock(&cfs_b->lock);
6032 if (cfs_rq->throttled_clock) {
6033 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
6034 cfs_rq->throttled_clock = 0;
6036 list_del_rcu(&cfs_rq->throttled_list);
6037 raw_spin_unlock(&cfs_b->lock);
6039 /* update hierarchical throttle state */
6040 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
6042 if (!cfs_rq->load.weight) {
6043 if (!cfs_rq->on_list)
6046 * Nothing to run but something to decay (on_list)?
6047 * Complete the branch.
6049 for_each_sched_entity(se) {
6050 if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
6053 goto unthrottle_throttle;
6056 task_delta = cfs_rq->h_nr_running;
6057 idle_task_delta = cfs_rq->idle_h_nr_running;
6058 for_each_sched_entity(se) {
6059 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6062 SCHED_WARN_ON(se->sched_delayed);
6065 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
6067 if (cfs_rq_is_idle(group_cfs_rq(se)))
6068 idle_task_delta = cfs_rq->h_nr_running;
6070 qcfs_rq->h_nr_running += task_delta;
6071 qcfs_rq->idle_h_nr_running += idle_task_delta;
6073 /* end evaluation on encountering a throttled cfs_rq */
6074 if (cfs_rq_throttled(qcfs_rq))
6075 goto unthrottle_throttle;
6078 for_each_sched_entity(se) {
6079 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6081 update_load_avg(qcfs_rq, se, UPDATE_TG);
6082 se_update_runnable(se);
6084 if (cfs_rq_is_idle(group_cfs_rq(se)))
6085 idle_task_delta = cfs_rq->h_nr_running;
6087 qcfs_rq->h_nr_running += task_delta;
6088 qcfs_rq->idle_h_nr_running += idle_task_delta;
6090 /* end evaluation on encountering a throttled cfs_rq */
6091 if (cfs_rq_throttled(qcfs_rq))
6092 goto unthrottle_throttle;
6095 /* Start the fair server if un-throttling resulted in new runnable tasks */
6096 if (!rq_h_nr_running && rq->cfs.h_nr_running)
6097 dl_server_start(&rq->fair_server);
6099 /* At this point se is NULL and we are at root level*/
6100 add_nr_running(rq, task_delta);
6102 unthrottle_throttle:
6103 assert_list_leaf_cfs_rq(rq);
6105 /* Determine whether we need to wake up potentially idle CPU: */
6106 if (rq->curr == rq->idle && rq->cfs.nr_running)
6111 static void __cfsb_csd_unthrottle(void *arg)
6113 struct cfs_rq *cursor, *tmp;
6114 struct rq *rq = arg;
6120 * Iterating over the list can trigger several call to
6121 * update_rq_clock() in unthrottle_cfs_rq().
6122 * Do it once and skip the potential next ones.
6124 update_rq_clock(rq);
6125 rq_clock_start_loop_update(rq);
6128 * Since we hold rq lock we're safe from concurrent manipulation of
6129 * the CSD list. However, this RCU critical section annotates the
6130 * fact that we pair with sched_free_group_rcu(), so that we cannot
6131 * race with group being freed in the window between removing it
6132 * from the list and advancing to the next entry in the list.
6136 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
6137 throttled_csd_list) {
6138 list_del_init(&cursor->throttled_csd_list);
6140 if (cfs_rq_throttled(cursor))
6141 unthrottle_cfs_rq(cursor);
6146 rq_clock_stop_loop_update(rq);
6150 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6152 struct rq *rq = rq_of(cfs_rq);
6155 if (rq == this_rq()) {
6156 unthrottle_cfs_rq(cfs_rq);
6160 /* Already enqueued */
6161 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
6164 first = list_empty(&rq->cfsb_csd_list);
6165 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
6167 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
6170 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6172 unthrottle_cfs_rq(cfs_rq);
6176 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6178 lockdep_assert_rq_held(rq_of(cfs_rq));
6180 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
6181 cfs_rq->runtime_remaining <= 0))
6184 __unthrottle_cfs_rq_async(cfs_rq);
6187 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
6189 int this_cpu = smp_processor_id();
6190 u64 runtime, remaining = 1;
6191 bool throttled = false;
6192 struct cfs_rq *cfs_rq, *tmp;
6195 LIST_HEAD(local_unthrottle);
6198 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
6207 rq_lock_irqsave(rq, &rf);
6208 if (!cfs_rq_throttled(cfs_rq))
6211 /* Already queued for async unthrottle */
6212 if (!list_empty(&cfs_rq->throttled_csd_list))
6215 /* By the above checks, this should never be true */
6216 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
6218 raw_spin_lock(&cfs_b->lock);
6219 runtime = -cfs_rq->runtime_remaining + 1;
6220 if (runtime > cfs_b->runtime)
6221 runtime = cfs_b->runtime;
6222 cfs_b->runtime -= runtime;
6223 remaining = cfs_b->runtime;
6224 raw_spin_unlock(&cfs_b->lock);
6226 cfs_rq->runtime_remaining += runtime;
6228 /* we check whether we're throttled above */
6229 if (cfs_rq->runtime_remaining > 0) {
6230 if (cpu_of(rq) != this_cpu) {
6231 unthrottle_cfs_rq_async(cfs_rq);
6234 * We currently only expect to be unthrottling
6235 * a single cfs_rq locally.
6237 SCHED_WARN_ON(!list_empty(&local_unthrottle));
6238 list_add_tail(&cfs_rq->throttled_csd_list,
6246 rq_unlock_irqrestore(rq, &rf);
6249 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle,
6250 throttled_csd_list) {
6251 struct rq *rq = rq_of(cfs_rq);
6253 rq_lock_irqsave(rq, &rf);
6255 list_del_init(&cfs_rq->throttled_csd_list);
6257 if (cfs_rq_throttled(cfs_rq))
6258 unthrottle_cfs_rq(cfs_rq);
6260 rq_unlock_irqrestore(rq, &rf);
6262 SCHED_WARN_ON(!list_empty(&local_unthrottle));
6270 * Responsible for refilling a task_group's bandwidth and unthrottling its
6271 * cfs_rqs as appropriate. If there has been no activity within the last
6272 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6273 * used to track this state.
6275 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6279 /* no need to continue the timer with no bandwidth constraint */
6280 if (cfs_b->quota == RUNTIME_INF)
6281 goto out_deactivate;
6283 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6284 cfs_b->nr_periods += overrun;
6286 /* Refill extra burst quota even if cfs_b->idle */
6287 __refill_cfs_bandwidth_runtime(cfs_b);
6290 * idle depends on !throttled (for the case of a large deficit), and if
6291 * we're going inactive then everything else can be deferred
6293 if (cfs_b->idle && !throttled)
6294 goto out_deactivate;
6297 /* mark as potentially idle for the upcoming period */
6302 /* account preceding periods in which throttling occurred */
6303 cfs_b->nr_throttled += overrun;
6306 * This check is repeated as we release cfs_b->lock while we unthrottle.
6308 while (throttled && cfs_b->runtime > 0) {
6309 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6310 /* we can't nest cfs_b->lock while distributing bandwidth */
6311 throttled = distribute_cfs_runtime(cfs_b);
6312 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6316 * While we are ensured activity in the period following an
6317 * unthrottle, this also covers the case in which the new bandwidth is
6318 * insufficient to cover the existing bandwidth deficit. (Forcing the
6319 * timer to remain active while there are any throttled entities.)
6329 /* a cfs_rq won't donate quota below this amount */
6330 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6331 /* minimum remaining period time to redistribute slack quota */
6332 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6333 /* how long we wait to gather additional slack before distributing */
6334 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6337 * Are we near the end of the current quota period?
6339 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6340 * hrtimer base being cleared by hrtimer_start. In the case of
6341 * migrate_hrtimers, base is never cleared, so we are fine.
6343 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6345 struct hrtimer *refresh_timer = &cfs_b->period_timer;
6348 /* if the call-back is running a quota refresh is already occurring */
6349 if (hrtimer_callback_running(refresh_timer))
6352 /* is a quota refresh about to occur? */
6353 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6354 if (remaining < (s64)min_expire)
6360 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6362 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6364 /* if there's a quota refresh soon don't bother with slack */
6365 if (runtime_refresh_within(cfs_b, min_left))
6368 /* don't push forwards an existing deferred unthrottle */
6369 if (cfs_b->slack_started)
6371 cfs_b->slack_started = true;
6373 hrtimer_start(&cfs_b->slack_timer,
6374 ns_to_ktime(cfs_bandwidth_slack_period),
6378 /* we know any runtime found here is valid as update_curr() precedes return */
6379 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6381 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6382 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6384 if (slack_runtime <= 0)
6387 raw_spin_lock(&cfs_b->lock);
6388 if (cfs_b->quota != RUNTIME_INF) {
6389 cfs_b->runtime += slack_runtime;
6391 /* we are under rq->lock, defer unthrottling using a timer */
6392 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6393 !list_empty(&cfs_b->throttled_cfs_rq))
6394 start_cfs_slack_bandwidth(cfs_b);
6396 raw_spin_unlock(&cfs_b->lock);
6398 /* even if it's not valid for return we don't want to try again */
6399 cfs_rq->runtime_remaining -= slack_runtime;
6402 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6404 if (!cfs_bandwidth_used())
6407 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
6410 __return_cfs_rq_runtime(cfs_rq);
6414 * This is done with a timer (instead of inline with bandwidth return) since
6415 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6417 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6419 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6420 unsigned long flags;
6422 /* confirm we're still not at a refresh boundary */
6423 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6424 cfs_b->slack_started = false;
6426 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6427 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6431 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6432 runtime = cfs_b->runtime;
6434 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6439 distribute_cfs_runtime(cfs_b);
6443 * When a group wakes up we want to make sure that its quota is not already
6444 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6445 * runtime as update_curr() throttling can not trigger until it's on-rq.
6447 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6449 if (!cfs_bandwidth_used())
6452 /* an active group must be handled by the update_curr()->put() path */
6453 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6456 /* ensure the group is not already throttled */
6457 if (cfs_rq_throttled(cfs_rq))
6460 /* update runtime allocation */
6461 account_cfs_rq_runtime(cfs_rq, 0);
6462 if (cfs_rq->runtime_remaining <= 0)
6463 throttle_cfs_rq(cfs_rq);
6466 static void sync_throttle(struct task_group *tg, int cpu)
6468 struct cfs_rq *pcfs_rq, *cfs_rq;
6470 if (!cfs_bandwidth_used())
6476 cfs_rq = tg->cfs_rq[cpu];
6477 pcfs_rq = tg->parent->cfs_rq[cpu];
6479 cfs_rq->throttle_count = pcfs_rq->throttle_count;
6480 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6483 /* conditionally throttle active cfs_rq's from put_prev_entity() */
6484 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6486 if (!cfs_bandwidth_used())
6489 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6493 * it's possible for a throttled entity to be forced into a running
6494 * state (e.g. set_curr_task), in this case we're finished.
6496 if (cfs_rq_throttled(cfs_rq))
6499 return throttle_cfs_rq(cfs_rq);
6502 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6504 struct cfs_bandwidth *cfs_b =
6505 container_of(timer, struct cfs_bandwidth, slack_timer);
6507 do_sched_cfs_slack_timer(cfs_b);
6509 return HRTIMER_NORESTART;
6512 extern const u64 max_cfs_quota_period;
6514 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6516 struct cfs_bandwidth *cfs_b =
6517 container_of(timer, struct cfs_bandwidth, period_timer);
6518 unsigned long flags;
6523 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6525 overrun = hrtimer_forward_now(timer, cfs_b->period);
6529 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6532 u64 new, old = ktime_to_ns(cfs_b->period);
6535 * Grow period by a factor of 2 to avoid losing precision.
6536 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6540 if (new < max_cfs_quota_period) {
6541 cfs_b->period = ns_to_ktime(new);
6545 pr_warn_ratelimited(
6546 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6548 div_u64(new, NSEC_PER_USEC),
6549 div_u64(cfs_b->quota, NSEC_PER_USEC));
6551 pr_warn_ratelimited(
6552 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6554 div_u64(old, NSEC_PER_USEC),
6555 div_u64(cfs_b->quota, NSEC_PER_USEC));
6558 /* reset count so we don't come right back in here */
6563 cfs_b->period_active = 0;
6564 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6566 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6569 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6571 raw_spin_lock_init(&cfs_b->lock);
6573 cfs_b->quota = RUNTIME_INF;
6574 cfs_b->period = ns_to_ktime(default_cfs_period());
6576 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6578 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6579 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6580 cfs_b->period_timer.function = sched_cfs_period_timer;
6582 /* Add a random offset so that timers interleave */
6583 hrtimer_set_expires(&cfs_b->period_timer,
6584 get_random_u32_below(cfs_b->period));
6585 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6586 cfs_b->slack_timer.function = sched_cfs_slack_timer;
6587 cfs_b->slack_started = false;
6590 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6592 cfs_rq->runtime_enabled = 0;
6593 INIT_LIST_HEAD(&cfs_rq->throttled_list);
6594 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6597 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6599 lockdep_assert_held(&cfs_b->lock);
6601 if (cfs_b->period_active)
6604 cfs_b->period_active = 1;
6605 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6606 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6609 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6611 int __maybe_unused i;
6613 /* init_cfs_bandwidth() was not called */
6614 if (!cfs_b->throttled_cfs_rq.next)
6617 hrtimer_cancel(&cfs_b->period_timer);
6618 hrtimer_cancel(&cfs_b->slack_timer);
6621 * It is possible that we still have some cfs_rq's pending on a CSD
6622 * list, though this race is very rare. In order for this to occur, we
6623 * must have raced with the last task leaving the group while there
6624 * exist throttled cfs_rq(s), and the period_timer must have queued the
6625 * CSD item but the remote cpu has not yet processed it. To handle this,
6626 * we can simply flush all pending CSD work inline here. We're
6627 * guaranteed at this point that no additional cfs_rq of this group can
6631 for_each_possible_cpu(i) {
6632 struct rq *rq = cpu_rq(i);
6633 unsigned long flags;
6635 if (list_empty(&rq->cfsb_csd_list))
6638 local_irq_save(flags);
6639 __cfsb_csd_unthrottle(rq);
6640 local_irq_restore(flags);
6646 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6648 * The race is harmless, since modifying bandwidth settings of unhooked group
6649 * bits doesn't do much.
6652 /* cpu online callback */
6653 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6655 struct task_group *tg;
6657 lockdep_assert_rq_held(rq);
6660 list_for_each_entry_rcu(tg, &task_groups, list) {
6661 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6662 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6664 raw_spin_lock(&cfs_b->lock);
6665 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6666 raw_spin_unlock(&cfs_b->lock);
6671 /* cpu offline callback */
6672 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6674 struct task_group *tg;
6676 lockdep_assert_rq_held(rq);
6679 * The rq clock has already been updated in the
6680 * set_rq_offline(), so we should skip updating
6681 * the rq clock again in unthrottle_cfs_rq().
6683 rq_clock_start_loop_update(rq);
6686 list_for_each_entry_rcu(tg, &task_groups, list) {
6687 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6689 if (!cfs_rq->runtime_enabled)
6693 * clock_task is not advancing so we just need to make sure
6694 * there's some valid quota amount
6696 cfs_rq->runtime_remaining = 1;
6698 * Offline rq is schedulable till CPU is completely disabled
6699 * in take_cpu_down(), so we prevent new cfs throttling here.
6701 cfs_rq->runtime_enabled = 0;
6703 if (cfs_rq_throttled(cfs_rq))
6704 unthrottle_cfs_rq(cfs_rq);
6708 rq_clock_stop_loop_update(rq);
6711 bool cfs_task_bw_constrained(struct task_struct *p)
6713 struct cfs_rq *cfs_rq = task_cfs_rq(p);
6715 if (!cfs_bandwidth_used())
6718 if (cfs_rq->runtime_enabled ||
6719 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6725 #ifdef CONFIG_NO_HZ_FULL
6726 /* called from pick_next_task_fair() */
6727 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6729 int cpu = cpu_of(rq);
6731 if (!cfs_bandwidth_used())
6734 if (!tick_nohz_full_cpu(cpu))
6737 if (rq->nr_running != 1)
6741 * We know there is only one task runnable and we've just picked it. The
6742 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6743 * be otherwise able to stop the tick. Just need to check if we are using
6744 * bandwidth control.
6746 if (cfs_task_bw_constrained(p))
6747 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6751 #else /* CONFIG_CFS_BANDWIDTH */
6753 static inline bool cfs_bandwidth_used(void)
6758 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
6759 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
6760 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6761 static inline void sync_throttle(struct task_group *tg, int cpu) {}
6762 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6764 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6769 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6774 static inline int throttled_lb_pair(struct task_group *tg,
6775 int src_cpu, int dest_cpu)
6780 #ifdef CONFIG_FAIR_GROUP_SCHED
6781 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
6782 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6785 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6789 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
6790 static inline void update_runtime_enabled(struct rq *rq) {}
6791 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6792 #ifdef CONFIG_CGROUP_SCHED
6793 bool cfs_task_bw_constrained(struct task_struct *p)
6798 #endif /* CONFIG_CFS_BANDWIDTH */
6800 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
6801 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6804 /**************************************************
6805 * CFS operations on tasks:
6808 #ifdef CONFIG_SCHED_HRTICK
6809 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6811 struct sched_entity *se = &p->se;
6813 SCHED_WARN_ON(task_rq(p) != rq);
6815 if (rq->cfs.h_nr_running > 1) {
6816 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6817 u64 slice = se->slice;
6818 s64 delta = slice - ran;
6821 if (task_current(rq, p))
6825 hrtick_start(rq, delta);
6830 * called from enqueue/dequeue and updates the hrtick when the
6831 * current task is from our class and nr_running is low enough
6834 static void hrtick_update(struct rq *rq)
6836 struct task_struct *curr = rq->curr;
6838 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
6841 hrtick_start_fair(rq, curr);
6843 #else /* !CONFIG_SCHED_HRTICK */
6845 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6849 static inline void hrtick_update(struct rq *rq)
6855 static inline bool cpu_overutilized(int cpu)
6857 unsigned long rq_util_min, rq_util_max;
6859 if (!sched_energy_enabled())
6862 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6863 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6865 /* Return true only if the utilization doesn't fit CPU's capacity */
6866 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6870 * overutilized value make sense only if EAS is enabled
6872 static inline bool is_rd_overutilized(struct root_domain *rd)
6874 return !sched_energy_enabled() || READ_ONCE(rd->overutilized);
6877 static inline void set_rd_overutilized(struct root_domain *rd, bool flag)
6879 if (!sched_energy_enabled())
6882 WRITE_ONCE(rd->overutilized, flag);
6883 trace_sched_overutilized_tp(rd, flag);
6886 static inline void check_update_overutilized_status(struct rq *rq)
6889 * overutilized field is used for load balancing decisions only
6890 * if energy aware scheduler is being used
6893 if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu))
6894 set_rd_overutilized(rq->rd, 1);
6897 static inline void check_update_overutilized_status(struct rq *rq) { }
6900 /* Runqueue only has SCHED_IDLE tasks enqueued */
6901 static int sched_idle_rq(struct rq *rq)
6903 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6908 static int sched_idle_cpu(int cpu)
6910 return sched_idle_rq(cpu_rq(cpu));
6915 requeue_delayed_entity(struct sched_entity *se)
6917 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6920 * se->sched_delayed should imply: se->on_rq == 1.
6921 * Because a delayed entity is one that is still on
6922 * the runqueue competing until elegibility.
6924 SCHED_WARN_ON(!se->sched_delayed);
6925 SCHED_WARN_ON(!se->on_rq);
6927 if (sched_feat(DELAY_ZERO)) {
6928 update_entity_lag(cfs_rq, se);
6930 cfs_rq->nr_running--;
6931 if (se != cfs_rq->curr)
6932 __dequeue_entity(cfs_rq, se);
6934 place_entity(cfs_rq, se, 0);
6935 if (se != cfs_rq->curr)
6936 __enqueue_entity(cfs_rq, se);
6937 cfs_rq->nr_running++;
6941 update_load_avg(cfs_rq, se, 0);
6942 se->sched_delayed = 0;
6946 * The enqueue_task method is called before nr_running is
6947 * increased. Here we update the fair scheduling stats and
6948 * then put the task into the rbtree:
6951 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6953 struct cfs_rq *cfs_rq;
6954 struct sched_entity *se = &p->se;
6955 int idle_h_nr_running = task_has_idle_policy(p);
6956 int task_new = !(flags & ENQUEUE_WAKEUP);
6957 int rq_h_nr_running = rq->cfs.h_nr_running;
6961 * The code below (indirectly) updates schedutil which looks at
6962 * the cfs_rq utilization to select a frequency.
6963 * Let's add the task's estimated utilization to the cfs_rq's
6964 * estimated utilization, before we update schedutil.
6966 if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & ENQUEUE_RESTORE))))
6967 util_est_enqueue(&rq->cfs, p);
6969 if (flags & ENQUEUE_DELAYED) {
6970 requeue_delayed_entity(se);
6975 * If in_iowait is set, the code below may not trigger any cpufreq
6976 * utilization updates, so do it here explicitly with the IOWAIT flag
6980 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6982 for_each_sched_entity(se) {
6984 if (se->sched_delayed)
6985 requeue_delayed_entity(se);
6988 cfs_rq = cfs_rq_of(se);
6991 * Basically set the slice of group entries to the min_slice of
6992 * their respective cfs_rq. This ensures the group can service
6993 * its entities in the desired time-frame.
6997 se->custom_slice = 1;
6999 enqueue_entity(cfs_rq, se, flags);
7000 slice = cfs_rq_min_slice(cfs_rq);
7002 cfs_rq->h_nr_running++;
7003 cfs_rq->idle_h_nr_running += idle_h_nr_running;
7005 if (cfs_rq_is_idle(cfs_rq))
7006 idle_h_nr_running = 1;
7008 /* end evaluation on encountering a throttled cfs_rq */
7009 if (cfs_rq_throttled(cfs_rq))
7010 goto enqueue_throttle;
7012 flags = ENQUEUE_WAKEUP;
7015 for_each_sched_entity(se) {
7016 cfs_rq = cfs_rq_of(se);
7018 update_load_avg(cfs_rq, se, UPDATE_TG);
7019 se_update_runnable(se);
7020 update_cfs_group(se);
7023 slice = cfs_rq_min_slice(cfs_rq);
7025 cfs_rq->h_nr_running++;
7026 cfs_rq->idle_h_nr_running += idle_h_nr_running;
7028 if (cfs_rq_is_idle(cfs_rq))
7029 idle_h_nr_running = 1;
7031 /* end evaluation on encountering a throttled cfs_rq */
7032 if (cfs_rq_throttled(cfs_rq))
7033 goto enqueue_throttle;
7036 if (!rq_h_nr_running && rq->cfs.h_nr_running) {
7037 /* Account for idle runtime */
7038 if (!rq->nr_running)
7039 dl_server_update_idle_time(rq, rq->curr);
7040 dl_server_start(&rq->fair_server);
7043 /* At this point se is NULL and we are at root level*/
7044 add_nr_running(rq, 1);
7047 * Since new tasks are assigned an initial util_avg equal to
7048 * half of the spare capacity of their CPU, tiny tasks have the
7049 * ability to cross the overutilized threshold, which will
7050 * result in the load balancer ruining all the task placement
7051 * done by EAS. As a way to mitigate that effect, do not account
7052 * for the first enqueue operation of new tasks during the
7053 * overutilized flag detection.
7055 * A better way of solving this problem would be to wait for
7056 * the PELT signals of tasks to converge before taking them
7057 * into account, but that is not straightforward to implement,
7058 * and the following generally works well enough in practice.
7061 check_update_overutilized_status(rq);
7064 assert_list_leaf_cfs_rq(rq);
7069 static void set_next_buddy(struct sched_entity *se);
7072 * Basically dequeue_task_fair(), except it can deal with dequeue_entity()
7073 * failing half-way through and resume the dequeue later.
7076 * -1 - dequeue delayed
7077 * 0 - dequeue throttled
7078 * 1 - dequeue complete
7080 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags)
7082 bool was_sched_idle = sched_idle_rq(rq);
7083 int rq_h_nr_running = rq->cfs.h_nr_running;
7084 bool task_sleep = flags & DEQUEUE_SLEEP;
7085 bool task_delayed = flags & DEQUEUE_DELAYED;
7086 struct task_struct *p = NULL;
7087 int idle_h_nr_running = 0;
7088 int h_nr_running = 0;
7089 struct cfs_rq *cfs_rq;
7092 if (entity_is_task(se)) {
7095 idle_h_nr_running = task_has_idle_policy(p);
7097 cfs_rq = group_cfs_rq(se);
7098 slice = cfs_rq_min_slice(cfs_rq);
7101 for_each_sched_entity(se) {
7102 cfs_rq = cfs_rq_of(se);
7104 if (!dequeue_entity(cfs_rq, se, flags)) {
7105 if (p && &p->se == se)
7111 cfs_rq->h_nr_running -= h_nr_running;
7112 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
7114 if (cfs_rq_is_idle(cfs_rq))
7115 idle_h_nr_running = h_nr_running;
7117 /* end evaluation on encountering a throttled cfs_rq */
7118 if (cfs_rq_throttled(cfs_rq))
7121 /* Don't dequeue parent if it has other entities besides us */
7122 if (cfs_rq->load.weight) {
7123 slice = cfs_rq_min_slice(cfs_rq);
7125 /* Avoid re-evaluating load for this entity: */
7126 se = parent_entity(se);
7128 * Bias pick_next to pick a task from this cfs_rq, as
7129 * p is sleeping when it is within its sched_slice.
7131 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
7135 flags |= DEQUEUE_SLEEP;
7136 flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL);
7139 for_each_sched_entity(se) {
7140 cfs_rq = cfs_rq_of(se);
7142 update_load_avg(cfs_rq, se, UPDATE_TG);
7143 se_update_runnable(se);
7144 update_cfs_group(se);
7147 slice = cfs_rq_min_slice(cfs_rq);
7149 cfs_rq->h_nr_running -= h_nr_running;
7150 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
7152 if (cfs_rq_is_idle(cfs_rq))
7153 idle_h_nr_running = h_nr_running;
7155 /* end evaluation on encountering a throttled cfs_rq */
7156 if (cfs_rq_throttled(cfs_rq))
7160 sub_nr_running(rq, h_nr_running);
7162 if (rq_h_nr_running && !rq->cfs.h_nr_running)
7163 dl_server_stop(&rq->fair_server);
7165 /* balance early to pull high priority tasks */
7166 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
7167 rq->next_balance = jiffies;
7169 if (p && task_delayed) {
7170 SCHED_WARN_ON(!task_sleep);
7171 SCHED_WARN_ON(p->on_rq != 1);
7173 /* Fix-up what dequeue_task_fair() skipped */
7176 /* Fix-up what block_task() skipped. */
7177 __block_task(rq, p);
7184 * The dequeue_task method is called before nr_running is
7185 * decreased. We remove the task from the rbtree and
7186 * update the fair scheduling stats:
7188 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
7190 if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & DEQUEUE_SAVE))))
7191 util_est_dequeue(&rq->cfs, p);
7193 if (dequeue_entities(rq, &p->se, flags) < 0) {
7194 util_est_update(&rq->cfs, p, DEQUEUE_SLEEP);
7198 util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP);
7205 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */
7206 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7207 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
7208 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
7210 #ifdef CONFIG_NO_HZ_COMMON
7213 cpumask_var_t idle_cpus_mask;
7215 int has_blocked; /* Idle CPUS has blocked load */
7216 int needs_update; /* Newly idle CPUs need their next_balance collated */
7217 unsigned long next_balance; /* in jiffy units */
7218 unsigned long next_blocked; /* Next update of blocked load in jiffies */
7219 } nohz ____cacheline_aligned;
7221 #endif /* CONFIG_NO_HZ_COMMON */
7223 static unsigned long cpu_load(struct rq *rq)
7225 return cfs_rq_load_avg(&rq->cfs);
7229 * cpu_load_without - compute CPU load without any contributions from *p
7230 * @cpu: the CPU which load is requested
7231 * @p: the task which load should be discounted
7233 * The load of a CPU is defined by the load of tasks currently enqueued on that
7234 * CPU as well as tasks which are currently sleeping after an execution on that
7237 * This method returns the load of the specified CPU by discounting the load of
7238 * the specified task, whenever the task is currently contributing to the CPU
7241 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
7243 struct cfs_rq *cfs_rq;
7246 /* Task has no contribution or is new */
7247 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7248 return cpu_load(rq);
7251 load = READ_ONCE(cfs_rq->avg.load_avg);
7253 /* Discount task's util from CPU's util */
7254 lsub_positive(&load, task_h_load(p));
7259 static unsigned long cpu_runnable(struct rq *rq)
7261 return cfs_rq_runnable_avg(&rq->cfs);
7264 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
7266 struct cfs_rq *cfs_rq;
7267 unsigned int runnable;
7269 /* Task has no contribution or is new */
7270 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7271 return cpu_runnable(rq);
7274 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7276 /* Discount task's runnable from CPU's runnable */
7277 lsub_positive(&runnable, p->se.avg.runnable_avg);
7282 static unsigned long capacity_of(int cpu)
7284 return cpu_rq(cpu)->cpu_capacity;
7287 static void record_wakee(struct task_struct *p)
7290 * Only decay a single time; tasks that have less then 1 wakeup per
7291 * jiffy will not have built up many flips.
7293 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
7294 current->wakee_flips >>= 1;
7295 current->wakee_flip_decay_ts = jiffies;
7298 if (current->last_wakee != p) {
7299 current->last_wakee = p;
7300 current->wakee_flips++;
7305 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
7307 * A waker of many should wake a different task than the one last awakened
7308 * at a frequency roughly N times higher than one of its wakees.
7310 * In order to determine whether we should let the load spread vs consolidating
7311 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
7312 * partner, and a factor of lls_size higher frequency in the other.
7314 * With both conditions met, we can be relatively sure that the relationship is
7315 * non-monogamous, with partner count exceeding socket size.
7317 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
7318 * whatever is irrelevant, spread criteria is apparent partner count exceeds
7321 static int wake_wide(struct task_struct *p)
7323 unsigned int master = current->wakee_flips;
7324 unsigned int slave = p->wakee_flips;
7325 int factor = __this_cpu_read(sd_llc_size);
7328 swap(master, slave);
7329 if (slave < factor || master < slave * factor)
7335 * The purpose of wake_affine() is to quickly determine on which CPU we can run
7336 * soonest. For the purpose of speed we only consider the waking and previous
7339 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7340 * cache-affine and is (or will be) idle.
7342 * wake_affine_weight() - considers the weight to reflect the average
7343 * scheduling latency of the CPUs. This seems to work
7344 * for the overloaded case.
7347 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7350 * If this_cpu is idle, it implies the wakeup is from interrupt
7351 * context. Only allow the move if cache is shared. Otherwise an
7352 * interrupt intensive workload could force all tasks onto one
7353 * node depending on the IO topology or IRQ affinity settings.
7355 * If the prev_cpu is idle and cache affine then avoid a migration.
7356 * There is no guarantee that the cache hot data from an interrupt
7357 * is more important than cache hot data on the prev_cpu and from
7358 * a cpufreq perspective, it's better to have higher utilisation
7361 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7362 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7364 if (sync && cpu_rq(this_cpu)->nr_running == 1)
7367 if (available_idle_cpu(prev_cpu))
7370 return nr_cpumask_bits;
7374 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7375 int this_cpu, int prev_cpu, int sync)
7377 s64 this_eff_load, prev_eff_load;
7378 unsigned long task_load;
7380 this_eff_load = cpu_load(cpu_rq(this_cpu));
7383 unsigned long current_load = task_h_load(current);
7385 if (current_load > this_eff_load)
7388 this_eff_load -= current_load;
7391 task_load = task_h_load(p);
7393 this_eff_load += task_load;
7394 if (sched_feat(WA_BIAS))
7395 this_eff_load *= 100;
7396 this_eff_load *= capacity_of(prev_cpu);
7398 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7399 prev_eff_load -= task_load;
7400 if (sched_feat(WA_BIAS))
7401 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7402 prev_eff_load *= capacity_of(this_cpu);
7405 * If sync, adjust the weight of prev_eff_load such that if
7406 * prev_eff == this_eff that select_idle_sibling() will consider
7407 * stacking the wakee on top of the waker if no other CPU is
7413 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7416 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7417 int this_cpu, int prev_cpu, int sync)
7419 int target = nr_cpumask_bits;
7421 if (sched_feat(WA_IDLE))
7422 target = wake_affine_idle(this_cpu, prev_cpu, sync);
7424 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7425 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7427 schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7428 if (target != this_cpu)
7431 schedstat_inc(sd->ttwu_move_affine);
7432 schedstat_inc(p->stats.nr_wakeups_affine);
7436 static struct sched_group *
7437 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7440 * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group.
7443 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7445 unsigned long load, min_load = ULONG_MAX;
7446 unsigned int min_exit_latency = UINT_MAX;
7447 u64 latest_idle_timestamp = 0;
7448 int least_loaded_cpu = this_cpu;
7449 int shallowest_idle_cpu = -1;
7452 /* Check if we have any choice: */
7453 if (group->group_weight == 1)
7454 return cpumask_first(sched_group_span(group));
7456 /* Traverse only the allowed CPUs */
7457 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7458 struct rq *rq = cpu_rq(i);
7460 if (!sched_core_cookie_match(rq, p))
7463 if (sched_idle_cpu(i))
7466 if (available_idle_cpu(i)) {
7467 struct cpuidle_state *idle = idle_get_state(rq);
7468 if (idle && idle->exit_latency < min_exit_latency) {
7470 * We give priority to a CPU whose idle state
7471 * has the smallest exit latency irrespective
7472 * of any idle timestamp.
7474 min_exit_latency = idle->exit_latency;
7475 latest_idle_timestamp = rq->idle_stamp;
7476 shallowest_idle_cpu = i;
7477 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
7478 rq->idle_stamp > latest_idle_timestamp) {
7480 * If equal or no active idle state, then
7481 * the most recently idled CPU might have
7484 latest_idle_timestamp = rq->idle_stamp;
7485 shallowest_idle_cpu = i;
7487 } else if (shallowest_idle_cpu == -1) {
7488 load = cpu_load(cpu_rq(i));
7489 if (load < min_load) {
7491 least_loaded_cpu = i;
7496 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7499 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p,
7500 int cpu, int prev_cpu, int sd_flag)
7504 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7508 * We need task's util for cpu_util_without, sync it up to
7509 * prev_cpu's last_update_time.
7511 if (!(sd_flag & SD_BALANCE_FORK))
7512 sync_entity_load_avg(&p->se);
7515 struct sched_group *group;
7516 struct sched_domain *tmp;
7519 if (!(sd->flags & sd_flag)) {
7524 group = sched_balance_find_dst_group(sd, p, cpu);
7530 new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu);
7531 if (new_cpu == cpu) {
7532 /* Now try balancing at a lower domain level of 'cpu': */
7537 /* Now try balancing at a lower domain level of 'new_cpu': */
7539 weight = sd->span_weight;
7541 for_each_domain(cpu, tmp) {
7542 if (weight <= tmp->span_weight)
7544 if (tmp->flags & sd_flag)
7552 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7554 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7555 sched_cpu_cookie_match(cpu_rq(cpu), p))
7561 #ifdef CONFIG_SCHED_SMT
7562 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7563 EXPORT_SYMBOL_GPL(sched_smt_present);
7565 static inline void set_idle_cores(int cpu, int val)
7567 struct sched_domain_shared *sds;
7569 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7571 WRITE_ONCE(sds->has_idle_cores, val);
7574 static inline bool test_idle_cores(int cpu)
7576 struct sched_domain_shared *sds;
7578 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7580 return READ_ONCE(sds->has_idle_cores);
7586 * Scans the local SMT mask to see if the entire core is idle, and records this
7587 * information in sd_llc_shared->has_idle_cores.
7589 * Since SMT siblings share all cache levels, inspecting this limited remote
7590 * state should be fairly cheap.
7592 void __update_idle_core(struct rq *rq)
7594 int core = cpu_of(rq);
7598 if (test_idle_cores(core))
7601 for_each_cpu(cpu, cpu_smt_mask(core)) {
7605 if (!available_idle_cpu(cpu))
7609 set_idle_cores(core, 1);
7615 * Scan the entire LLC domain for idle cores; this dynamically switches off if
7616 * there are no idle cores left in the system; tracked through
7617 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7619 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7624 for_each_cpu(cpu, cpu_smt_mask(core)) {
7625 if (!available_idle_cpu(cpu)) {
7627 if (*idle_cpu == -1) {
7628 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7636 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7643 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7648 * Scan the local SMT mask for idle CPUs.
7650 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7654 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7658 * Check if the CPU is in the LLC scheduling domain of @target.
7659 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7661 if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7663 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7670 #else /* CONFIG_SCHED_SMT */
7672 static inline void set_idle_cores(int cpu, int val)
7676 static inline bool test_idle_cores(int cpu)
7681 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7683 return __select_idle_cpu(core, p);
7686 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7691 #endif /* CONFIG_SCHED_SMT */
7694 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7695 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7696 * average idle time for this rq (as found in rq->avg_idle).
7698 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7700 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7701 int i, cpu, idle_cpu = -1, nr = INT_MAX;
7702 struct sched_domain_shared *sd_share;
7704 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7706 if (sched_feat(SIS_UTIL)) {
7707 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7709 /* because !--nr is the condition to stop scan */
7710 nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7711 /* overloaded LLC is unlikely to have idle cpu/core */
7717 if (static_branch_unlikely(&sched_cluster_active)) {
7718 struct sched_group *sg = sd->groups;
7720 if (sg->flags & SD_CLUSTER) {
7721 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) {
7722 if (!cpumask_test_cpu(cpu, cpus))
7725 if (has_idle_core) {
7726 i = select_idle_core(p, cpu, cpus, &idle_cpu);
7727 if ((unsigned int)i < nr_cpumask_bits)
7732 idle_cpu = __select_idle_cpu(cpu, p);
7733 if ((unsigned int)idle_cpu < nr_cpumask_bits)
7737 cpumask_andnot(cpus, cpus, sched_group_span(sg));
7741 for_each_cpu_wrap(cpu, cpus, target + 1) {
7742 if (has_idle_core) {
7743 i = select_idle_core(p, cpu, cpus, &idle_cpu);
7744 if ((unsigned int)i < nr_cpumask_bits)
7750 idle_cpu = __select_idle_cpu(cpu, p);
7751 if ((unsigned int)idle_cpu < nr_cpumask_bits)
7757 set_idle_cores(target, false);
7763 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7764 * the task fits. If no CPU is big enough, but there are idle ones, try to
7765 * maximize capacity.
7768 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7770 unsigned long task_util, util_min, util_max, best_cap = 0;
7771 int fits, best_fits = 0;
7772 int cpu, best_cpu = -1;
7773 struct cpumask *cpus;
7775 cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7776 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7778 task_util = task_util_est(p);
7779 util_min = uclamp_eff_value(p, UCLAMP_MIN);
7780 util_max = uclamp_eff_value(p, UCLAMP_MAX);
7782 for_each_cpu_wrap(cpu, cpus, target) {
7783 unsigned long cpu_cap = capacity_of(cpu);
7785 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7788 fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7790 /* This CPU fits with all requirements */
7794 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7795 * Look for the CPU with best capacity.
7798 cpu_cap = get_actual_cpu_capacity(cpu);
7801 * First, select CPU which fits better (-1 being better than 0).
7802 * Then, select the one with best capacity at same level.
7804 if ((fits < best_fits) ||
7805 ((fits == best_fits) && (cpu_cap > best_cap))) {
7815 static inline bool asym_fits_cpu(unsigned long util,
7816 unsigned long util_min,
7817 unsigned long util_max,
7820 if (sched_asym_cpucap_active())
7822 * Return true only if the cpu fully fits the task requirements
7823 * which include the utilization and the performance hints.
7825 return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7831 * Try and locate an idle core/thread in the LLC cache domain.
7833 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7835 bool has_idle_core = false;
7836 struct sched_domain *sd;
7837 unsigned long task_util, util_min, util_max;
7838 int i, recent_used_cpu, prev_aff = -1;
7841 * On asymmetric system, update task utilization because we will check
7842 * that the task fits with CPU's capacity.
7844 if (sched_asym_cpucap_active()) {
7845 sync_entity_load_avg(&p->se);
7846 task_util = task_util_est(p);
7847 util_min = uclamp_eff_value(p, UCLAMP_MIN);
7848 util_max = uclamp_eff_value(p, UCLAMP_MAX);
7852 * per-cpu select_rq_mask usage
7854 lockdep_assert_irqs_disabled();
7856 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7857 asym_fits_cpu(task_util, util_min, util_max, target))
7861 * If the previous CPU is cache affine and idle, don't be stupid:
7863 if (prev != target && cpus_share_cache(prev, target) &&
7864 (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7865 asym_fits_cpu(task_util, util_min, util_max, prev)) {
7867 if (!static_branch_unlikely(&sched_cluster_active) ||
7868 cpus_share_resources(prev, target))
7875 * Allow a per-cpu kthread to stack with the wakee if the
7876 * kworker thread and the tasks previous CPUs are the same.
7877 * The assumption is that the wakee queued work for the
7878 * per-cpu kthread that is now complete and the wakeup is
7879 * essentially a sync wakeup. An obvious example of this
7880 * pattern is IO completions.
7882 if (is_per_cpu_kthread(current) &&
7884 prev == smp_processor_id() &&
7885 this_rq()->nr_running <= 1 &&
7886 asym_fits_cpu(task_util, util_min, util_max, prev)) {
7890 /* Check a recently used CPU as a potential idle candidate: */
7891 recent_used_cpu = p->recent_used_cpu;
7892 p->recent_used_cpu = prev;
7893 if (recent_used_cpu != prev &&
7894 recent_used_cpu != target &&
7895 cpus_share_cache(recent_used_cpu, target) &&
7896 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7897 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7898 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7900 if (!static_branch_unlikely(&sched_cluster_active) ||
7901 cpus_share_resources(recent_used_cpu, target))
7902 return recent_used_cpu;
7905 recent_used_cpu = -1;
7909 * For asymmetric CPU capacity systems, our domain of interest is
7910 * sd_asym_cpucapacity rather than sd_llc.
7912 if (sched_asym_cpucap_active()) {
7913 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7915 * On an asymmetric CPU capacity system where an exclusive
7916 * cpuset defines a symmetric island (i.e. one unique
7917 * capacity_orig value through the cpuset), the key will be set
7918 * but the CPUs within that cpuset will not have a domain with
7919 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7923 i = select_idle_capacity(p, sd, target);
7924 return ((unsigned)i < nr_cpumask_bits) ? i : target;
7928 sd = rcu_dereference(per_cpu(sd_llc, target));
7932 if (sched_smt_active()) {
7933 has_idle_core = test_idle_cores(target);
7935 if (!has_idle_core && cpus_share_cache(prev, target)) {
7936 i = select_idle_smt(p, sd, prev);
7937 if ((unsigned int)i < nr_cpumask_bits)
7942 i = select_idle_cpu(p, sd, has_idle_core, target);
7943 if ((unsigned)i < nr_cpumask_bits)
7947 * For cluster machines which have lower sharing cache like L2 or
7948 * LLC Tag, we tend to find an idle CPU in the target's cluster
7949 * first. But prev_cpu or recent_used_cpu may also be a good candidate,
7950 * use them if possible when no idle CPU found in select_idle_cpu().
7952 if ((unsigned int)prev_aff < nr_cpumask_bits)
7954 if ((unsigned int)recent_used_cpu < nr_cpumask_bits)
7955 return recent_used_cpu;
7961 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7962 * @cpu: the CPU to get the utilization for
7963 * @p: task for which the CPU utilization should be predicted or NULL
7964 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7965 * @boost: 1 to enable boosting, otherwise 0
7967 * The unit of the return value must be the same as the one of CPU capacity
7968 * so that CPU utilization can be compared with CPU capacity.
7970 * CPU utilization is the sum of running time of runnable tasks plus the
7971 * recent utilization of currently non-runnable tasks on that CPU.
7972 * It represents the amount of CPU capacity currently used by CFS tasks in
7973 * the range [0..max CPU capacity] with max CPU capacity being the CPU
7974 * capacity at f_max.
7976 * The estimated CPU utilization is defined as the maximum between CPU
7977 * utilization and sum of the estimated utilization of the currently
7978 * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7979 * previously-executed tasks, which helps better deduce how busy a CPU will
7980 * be when a long-sleeping task wakes up. The contribution to CPU utilization
7981 * of such a task would be significantly decayed at this point of time.
7983 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7984 * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7985 * utilization. Boosting is implemented in cpu_util() so that internal
7986 * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7987 * latter via cpu_util_cfs_boost().
7989 * CPU utilization can be higher than the current CPU capacity
7990 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7991 * of rounding errors as well as task migrations or wakeups of new tasks.
7992 * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7993 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7994 * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7995 * capacity. CPU utilization is allowed to overshoot current CPU capacity
7996 * though since this is useful for predicting the CPU capacity required
7997 * after task migrations (scheduler-driven DVFS).
7999 * Return: (Boosted) (estimated) utilization for the specified CPU.
8001 static unsigned long
8002 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
8004 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
8005 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
8006 unsigned long runnable;
8009 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
8010 util = max(util, runnable);
8014 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
8015 * contribution. If @p migrates from another CPU to @cpu add its
8016 * contribution. In all the other cases @cpu is not impacted by the
8017 * migration so its util_avg is already correct.
8019 if (p && task_cpu(p) == cpu && dst_cpu != cpu)
8020 lsub_positive(&util, task_util(p));
8021 else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
8022 util += task_util(p);
8024 if (sched_feat(UTIL_EST)) {
8025 unsigned long util_est;
8027 util_est = READ_ONCE(cfs_rq->avg.util_est);
8030 * During wake-up @p isn't enqueued yet and doesn't contribute
8031 * to any cpu_rq(cpu)->cfs.avg.util_est.
8032 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
8033 * has been enqueued.
8035 * During exec (@dst_cpu = -1) @p is enqueued and does
8036 * contribute to cpu_rq(cpu)->cfs.util_est.
8037 * Remove it to "simulate" cpu_util without @p's contribution.
8039 * Despite the task_on_rq_queued(@p) check there is still a
8040 * small window for a possible race when an exec
8041 * select_task_rq_fair() races with LB's detach_task().
8045 * p->on_rq = TASK_ON_RQ_MIGRATING;
8046 * -------------------------------- A
8048 * dequeue_task_fair() + Race Time
8049 * util_est_dequeue() /
8050 * -------------------------------- B
8052 * The additional check "current == p" is required to further
8053 * reduce the race window.
8056 util_est += _task_util_est(p);
8057 else if (p && unlikely(task_on_rq_queued(p) || current == p))
8058 lsub_positive(&util_est, _task_util_est(p));
8060 util = max(util, util_est);
8063 return min(util, arch_scale_cpu_capacity(cpu));
8066 unsigned long cpu_util_cfs(int cpu)
8068 return cpu_util(cpu, NULL, -1, 0);
8071 unsigned long cpu_util_cfs_boost(int cpu)
8073 return cpu_util(cpu, NULL, -1, 1);
8077 * cpu_util_without: compute cpu utilization without any contributions from *p
8078 * @cpu: the CPU which utilization is requested
8079 * @p: the task which utilization should be discounted
8081 * The utilization of a CPU is defined by the utilization of tasks currently
8082 * enqueued on that CPU as well as tasks which are currently sleeping after an
8083 * execution on that CPU.
8085 * This method returns the utilization of the specified CPU by discounting the
8086 * utilization of the specified task, whenever the task is currently
8087 * contributing to the CPU utilization.
8089 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
8091 /* Task has no contribution or is new */
8092 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8095 return cpu_util(cpu, p, -1, 0);
8099 * This function computes an effective utilization for the given CPU, to be
8100 * used for frequency selection given the linear relation: f = u * f_max.
8102 * The scheduler tracks the following metrics:
8104 * cpu_util_{cfs,rt,dl,irq}()
8107 * Where the cfs,rt and dl util numbers are tracked with the same metric and
8108 * synchronized windows and are thus directly comparable.
8110 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
8111 * which excludes things like IRQ and steal-time. These latter are then accrued
8112 * in the IRQ utilization.
8114 * The DL bandwidth number OTOH is not a measured metric but a value computed
8115 * based on the task model parameters and gives the minimal utilization
8116 * required to meet deadlines.
8118 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
8122 unsigned long util, irq, scale;
8123 struct rq *rq = cpu_rq(cpu);
8125 scale = arch_scale_cpu_capacity(cpu);
8128 * Early check to see if IRQ/steal time saturates the CPU, can be
8129 * because of inaccuracies in how we track these -- see
8130 * update_irq_load_avg().
8132 irq = cpu_util_irq(rq);
8133 if (unlikely(irq >= scale)) {
8143 * The minimum utilization returns the highest level between:
8144 * - the computed DL bandwidth needed with the IRQ pressure which
8145 * steals time to the deadline task.
8146 * - The minimum performance requirement for CFS and/or RT.
8148 *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
8151 * When an RT task is runnable and uclamp is not used, we must
8152 * ensure that the task will run at maximum compute capacity.
8154 if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
8155 *min = max(*min, scale);
8159 * Because the time spend on RT/DL tasks is visible as 'lost' time to
8160 * CFS tasks and we use the same metric to track the effective
8161 * utilization (PELT windows are synchronized) we can directly add them
8162 * to obtain the CPU's actual utilization.
8164 util = util_cfs + cpu_util_rt(rq);
8165 util += cpu_util_dl(rq);
8168 * The maximum hint is a soft bandwidth requirement, which can be lower
8169 * than the actual utilization because of uclamp_max requirements.
8172 *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
8178 * There is still idle time; further improve the number by using the
8179 * IRQ metric. Because IRQ/steal time is hidden from the task clock we
8180 * need to scale the task numbers:
8183 * U' = irq + --------- * U
8186 util = scale_irq_capacity(util, irq, scale);
8189 return min(scale, util);
8192 unsigned long sched_cpu_util(int cpu)
8194 return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
8198 * energy_env - Utilization landscape for energy estimation.
8199 * @task_busy_time: Utilization contribution by the task for which we test the
8200 * placement. Given by eenv_task_busy_time().
8201 * @pd_busy_time: Utilization of the whole perf domain without the task
8202 * contribution. Given by eenv_pd_busy_time().
8203 * @cpu_cap: Maximum CPU capacity for the perf domain.
8204 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
8207 unsigned long task_busy_time;
8208 unsigned long pd_busy_time;
8209 unsigned long cpu_cap;
8210 unsigned long pd_cap;
8214 * Compute the task busy time for compute_energy(). This time cannot be
8215 * injected directly into effective_cpu_util() because of the IRQ scaling.
8216 * The latter only makes sense with the most recent CPUs where the task has
8219 static inline void eenv_task_busy_time(struct energy_env *eenv,
8220 struct task_struct *p, int prev_cpu)
8222 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
8223 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
8225 if (unlikely(irq >= max_cap))
8226 busy_time = max_cap;
8228 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
8230 eenv->task_busy_time = busy_time;
8234 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
8235 * utilization for each @pd_cpus, it however doesn't take into account
8236 * clamping since the ratio (utilization / cpu_capacity) is already enough to
8237 * scale the EM reported power consumption at the (eventually clamped)
8240 * The contribution of the task @p for which we want to estimate the
8241 * energy cost is removed (by cpu_util()) and must be calculated
8242 * separately (see eenv_task_busy_time). This ensures:
8244 * - A stable PD utilization, no matter which CPU of that PD we want to place
8247 * - A fair comparison between CPUs as the task contribution (task_util())
8248 * will always be the same no matter which CPU utilization we rely on
8249 * (util_avg or util_est).
8251 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
8252 * exceed @eenv->pd_cap.
8254 static inline void eenv_pd_busy_time(struct energy_env *eenv,
8255 struct cpumask *pd_cpus,
8256 struct task_struct *p)
8258 unsigned long busy_time = 0;
8261 for_each_cpu(cpu, pd_cpus) {
8262 unsigned long util = cpu_util(cpu, p, -1, 0);
8264 busy_time += effective_cpu_util(cpu, util, NULL, NULL);
8267 eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
8271 * Compute the maximum utilization for compute_energy() when the task @p
8272 * is placed on the cpu @dst_cpu.
8274 * Returns the maximum utilization among @eenv->cpus. This utilization can't
8275 * exceed @eenv->cpu_cap.
8277 static inline unsigned long
8278 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
8279 struct task_struct *p, int dst_cpu)
8281 unsigned long max_util = 0;
8284 for_each_cpu(cpu, pd_cpus) {
8285 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
8286 unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
8287 unsigned long eff_util, min, max;
8290 * Performance domain frequency: utilization clamping
8291 * must be considered since it affects the selection
8292 * of the performance domain frequency.
8293 * NOTE: in case RT tasks are running, by default the min
8294 * utilization can be max OPP.
8296 eff_util = effective_cpu_util(cpu, util, &min, &max);
8298 /* Task's uclamp can modify min and max value */
8299 if (tsk && uclamp_is_used()) {
8300 min = max(min, uclamp_eff_value(p, UCLAMP_MIN));
8303 * If there is no active max uclamp constraint,
8304 * directly use task's one, otherwise keep max.
8306 if (uclamp_rq_is_idle(cpu_rq(cpu)))
8307 max = uclamp_eff_value(p, UCLAMP_MAX);
8309 max = max(max, uclamp_eff_value(p, UCLAMP_MAX));
8312 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max);
8313 max_util = max(max_util, eff_util);
8316 return min(max_util, eenv->cpu_cap);
8320 * compute_energy(): Use the Energy Model to estimate the energy that @pd would
8321 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
8322 * contribution is ignored.
8324 static inline unsigned long
8325 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
8326 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
8328 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
8329 unsigned long busy_time = eenv->pd_busy_time;
8330 unsigned long energy;
8333 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
8335 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
8337 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time);
8343 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
8344 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
8345 * spare capacity in each performance domain and uses it as a potential
8346 * candidate to execute the task. Then, it uses the Energy Model to figure
8347 * out which of the CPU candidates is the most energy-efficient.
8349 * The rationale for this heuristic is as follows. In a performance domain,
8350 * all the most energy efficient CPU candidates (according to the Energy
8351 * Model) are those for which we'll request a low frequency. When there are
8352 * several CPUs for which the frequency request will be the same, we don't
8353 * have enough data to break the tie between them, because the Energy Model
8354 * only includes active power costs. With this model, if we assume that
8355 * frequency requests follow utilization (e.g. using schedutil), the CPU with
8356 * the maximum spare capacity in a performance domain is guaranteed to be among
8357 * the best candidates of the performance domain.
8359 * In practice, it could be preferable from an energy standpoint to pack
8360 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
8361 * but that could also hurt our chances to go cluster idle, and we have no
8362 * ways to tell with the current Energy Model if this is actually a good
8363 * idea or not. So, find_energy_efficient_cpu() basically favors
8364 * cluster-packing, and spreading inside a cluster. That should at least be
8365 * a good thing for latency, and this is consistent with the idea that most
8366 * of the energy savings of EAS come from the asymmetry of the system, and
8367 * not so much from breaking the tie between identical CPUs. That's also the
8368 * reason why EAS is enabled in the topology code only for systems where
8369 * SD_ASYM_CPUCAPACITY is set.
8371 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
8372 * they don't have any useful utilization data yet and it's not possible to
8373 * forecast their impact on energy consumption. Consequently, they will be
8374 * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out
8375 * to be energy-inefficient in some use-cases. The alternative would be to
8376 * bias new tasks towards specific types of CPUs first, or to try to infer
8377 * their util_avg from the parent task, but those heuristics could hurt
8378 * other use-cases too. So, until someone finds a better way to solve this,
8379 * let's keep things simple by re-using the existing slow path.
8381 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
8383 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
8384 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
8385 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
8386 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
8387 struct root_domain *rd = this_rq()->rd;
8388 int cpu, best_energy_cpu, target = -1;
8389 int prev_fits = -1, best_fits = -1;
8390 unsigned long best_actual_cap = 0;
8391 unsigned long prev_actual_cap = 0;
8392 struct sched_domain *sd;
8393 struct perf_domain *pd;
8394 struct energy_env eenv;
8397 pd = rcu_dereference(rd->pd);
8402 * Energy-aware wake-up happens on the lowest sched_domain starting
8403 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
8405 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
8406 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
8413 sync_entity_load_avg(&p->se);
8414 if (!task_util_est(p) && p_util_min == 0)
8417 eenv_task_busy_time(&eenv, p, prev_cpu);
8419 for (; pd; pd = pd->next) {
8420 unsigned long util_min = p_util_min, util_max = p_util_max;
8421 unsigned long cpu_cap, cpu_actual_cap, util;
8422 long prev_spare_cap = -1, max_spare_cap = -1;
8423 unsigned long rq_util_min, rq_util_max;
8424 unsigned long cur_delta, base_energy;
8425 int max_spare_cap_cpu = -1;
8426 int fits, max_fits = -1;
8428 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
8430 if (cpumask_empty(cpus))
8433 /* Account external pressure for the energy estimation */
8434 cpu = cpumask_first(cpus);
8435 cpu_actual_cap = get_actual_cpu_capacity(cpu);
8437 eenv.cpu_cap = cpu_actual_cap;
8440 for_each_cpu(cpu, cpus) {
8441 struct rq *rq = cpu_rq(cpu);
8443 eenv.pd_cap += cpu_actual_cap;
8445 if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
8448 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
8451 util = cpu_util(cpu, p, cpu, 0);
8452 cpu_cap = capacity_of(cpu);
8455 * Skip CPUs that cannot satisfy the capacity request.
8456 * IOW, placing the task there would make the CPU
8457 * overutilized. Take uclamp into account to see how
8458 * much capacity we can get out of the CPU; this is
8459 * aligned with sched_cpu_util().
8461 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8463 * Open code uclamp_rq_util_with() except for
8464 * the clamp() part. I.e.: apply max aggregation
8465 * only. util_fits_cpu() logic requires to
8466 * operate on non clamped util but must use the
8467 * max-aggregated uclamp_{min, max}.
8469 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8470 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8472 util_min = max(rq_util_min, p_util_min);
8473 util_max = max(rq_util_max, p_util_max);
8476 fits = util_fits_cpu(util, util_min, util_max, cpu);
8480 lsub_positive(&cpu_cap, util);
8482 if (cpu == prev_cpu) {
8483 /* Always use prev_cpu as a candidate. */
8484 prev_spare_cap = cpu_cap;
8486 } else if ((fits > max_fits) ||
8487 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8489 * Find the CPU with the maximum spare capacity
8490 * among the remaining CPUs in the performance
8493 max_spare_cap = cpu_cap;
8494 max_spare_cap_cpu = cpu;
8499 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8502 eenv_pd_busy_time(&eenv, cpus, p);
8503 /* Compute the 'base' energy of the pd, without @p */
8504 base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8506 /* Evaluate the energy impact of using prev_cpu. */
8507 if (prev_spare_cap > -1) {
8508 prev_delta = compute_energy(&eenv, pd, cpus, p,
8510 /* CPU utilization has changed */
8511 if (prev_delta < base_energy)
8513 prev_delta -= base_energy;
8514 prev_actual_cap = cpu_actual_cap;
8515 best_delta = min(best_delta, prev_delta);
8518 /* Evaluate the energy impact of using max_spare_cap_cpu. */
8519 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8520 /* Current best energy cpu fits better */
8521 if (max_fits < best_fits)
8525 * Both don't fit performance hint (i.e. uclamp_min)
8526 * but best energy cpu has better capacity.
8528 if ((max_fits < 0) &&
8529 (cpu_actual_cap <= best_actual_cap))
8532 cur_delta = compute_energy(&eenv, pd, cpus, p,
8534 /* CPU utilization has changed */
8535 if (cur_delta < base_energy)
8537 cur_delta -= base_energy;
8540 * Both fit for the task but best energy cpu has lower
8543 if ((max_fits > 0) && (best_fits > 0) &&
8544 (cur_delta >= best_delta))
8547 best_delta = cur_delta;
8548 best_energy_cpu = max_spare_cap_cpu;
8549 best_fits = max_fits;
8550 best_actual_cap = cpu_actual_cap;
8555 if ((best_fits > prev_fits) ||
8556 ((best_fits > 0) && (best_delta < prev_delta)) ||
8557 ((best_fits < 0) && (best_actual_cap > prev_actual_cap)))
8558 target = best_energy_cpu;
8569 * select_task_rq_fair: Select target runqueue for the waking task in domains
8570 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8571 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8573 * Balances load by selecting the idlest CPU in the idlest group, or under
8574 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8576 * Returns the target CPU number.
8579 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8581 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8582 struct sched_domain *tmp, *sd = NULL;
8583 int cpu = smp_processor_id();
8584 int new_cpu = prev_cpu;
8585 int want_affine = 0;
8586 /* SD_flags and WF_flags share the first nibble */
8587 int sd_flag = wake_flags & 0xF;
8590 * required for stable ->cpus_allowed
8592 lockdep_assert_held(&p->pi_lock);
8593 if (wake_flags & WF_TTWU) {
8596 if ((wake_flags & WF_CURRENT_CPU) &&
8597 cpumask_test_cpu(cpu, p->cpus_ptr))
8600 if (!is_rd_overutilized(this_rq()->rd)) {
8601 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8607 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8611 for_each_domain(cpu, tmp) {
8613 * If both 'cpu' and 'prev_cpu' are part of this domain,
8614 * cpu is a valid SD_WAKE_AFFINE target.
8616 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8617 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8618 if (cpu != prev_cpu)
8619 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8621 sd = NULL; /* Prefer wake_affine over balance flags */
8626 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8627 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8628 * will usually go to the fast path.
8630 if (tmp->flags & sd_flag)
8632 else if (!want_affine)
8638 new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag);
8639 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
8641 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8649 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8650 * cfs_rq_of(p) references at time of call are still valid and identify the
8651 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8653 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8655 struct sched_entity *se = &p->se;
8657 if (!task_on_rq_migrating(p)) {
8658 remove_entity_load_avg(se);
8661 * Here, the task's PELT values have been updated according to
8662 * the current rq's clock. But if that clock hasn't been
8663 * updated in a while, a substantial idle time will be missed,
8664 * leading to an inflation after wake-up on the new rq.
8666 * Estimate the missing time from the cfs_rq last_update_time
8667 * and update sched_avg to improve the PELT continuity after
8670 migrate_se_pelt_lag(se);
8673 /* Tell new CPU we are migrated */
8674 se->avg.last_update_time = 0;
8676 update_scan_period(p, new_cpu);
8679 static void task_dead_fair(struct task_struct *p)
8681 struct sched_entity *se = &p->se;
8683 if (se->sched_delayed) {
8687 rq = task_rq_lock(p, &rf);
8688 if (se->sched_delayed) {
8689 update_rq_clock(rq);
8690 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
8692 task_rq_unlock(rq, p, &rf);
8695 remove_entity_load_avg(se);
8699 * Set the max capacity the task is allowed to run at for misfit detection.
8701 static void set_task_max_allowed_capacity(struct task_struct *p)
8703 struct asym_cap_data *entry;
8705 if (!sched_asym_cpucap_active())
8709 list_for_each_entry_rcu(entry, &asym_cap_list, link) {
8712 cpumask = cpu_capacity_span(entry);
8713 if (!cpumask_intersects(p->cpus_ptr, cpumask))
8716 p->max_allowed_capacity = entry->capacity;
8722 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx)
8724 set_cpus_allowed_common(p, ctx);
8725 set_task_max_allowed_capacity(p);
8729 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8731 if (sched_fair_runnable(rq))
8734 return sched_balance_newidle(rq, rf) != 0;
8737 static inline void set_task_max_allowed_capacity(struct task_struct *p) {}
8738 #endif /* CONFIG_SMP */
8740 static void set_next_buddy(struct sched_entity *se)
8742 for_each_sched_entity(se) {
8743 if (SCHED_WARN_ON(!se->on_rq))
8747 cfs_rq_of(se)->next = se;
8752 * Preempt the current task with a newly woken task if needed:
8754 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
8756 struct task_struct *curr = rq->curr;
8757 struct sched_entity *se = &curr->se, *pse = &p->se;
8758 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8759 int cse_is_idle, pse_is_idle;
8761 if (unlikely(se == pse))
8765 * This is possible from callers such as attach_tasks(), in which we
8766 * unconditionally wakeup_preempt() after an enqueue (which may have
8767 * lead to a throttle). This both saves work and prevents false
8768 * next-buddy nomination below.
8770 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8773 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) {
8774 set_next_buddy(pse);
8778 * We can come here with TIF_NEED_RESCHED already set from new task
8781 * Note: this also catches the edge-case of curr being in a throttled
8782 * group (e.g. via set_curr_task), since update_curr() (in the
8783 * enqueue of curr) will have resulted in resched being set. This
8784 * prevents us from potentially nominating it as a false LAST_BUDDY
8787 if (test_tsk_need_resched(curr))
8790 if (!sched_feat(WAKEUP_PREEMPTION))
8793 find_matching_se(&se, &pse);
8796 cse_is_idle = se_is_idle(se);
8797 pse_is_idle = se_is_idle(pse);
8800 * Preempt an idle entity in favor of a non-idle entity (and don't preempt
8801 * in the inverse case).
8803 if (cse_is_idle && !pse_is_idle)
8805 if (cse_is_idle != pse_is_idle)
8809 * BATCH and IDLE tasks do not preempt others.
8811 if (unlikely(!normal_policy(p->policy)))
8814 cfs_rq = cfs_rq_of(se);
8815 update_curr(cfs_rq);
8817 * If @p has a shorter slice than current and @p is eligible, override
8818 * current's slice protection in order to allow preemption.
8820 * Note that even if @p does not turn out to be the most eligible
8821 * task at this moment, current's slice protection will be lost.
8823 if (do_preempt_short(cfs_rq, pse, se) && se->vlag == se->deadline)
8824 se->vlag = se->deadline + 1;
8827 * If @p has become the most eligible task, force preemption.
8829 if (pick_eevdf(cfs_rq) == pse)
8838 static struct task_struct *pick_task_fair(struct rq *rq)
8840 struct sched_entity *se;
8841 struct cfs_rq *cfs_rq;
8845 if (!cfs_rq->nr_running)
8849 /* Might not have done put_prev_entity() */
8850 if (cfs_rq->curr && cfs_rq->curr->on_rq)
8851 update_curr(cfs_rq);
8853 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8856 se = pick_next_entity(rq, cfs_rq);
8859 cfs_rq = group_cfs_rq(se);
8865 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8866 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8868 struct task_struct *
8869 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8871 struct sched_entity *se;
8872 struct task_struct *p;
8876 p = pick_task_fair(rq);
8881 #ifdef CONFIG_FAIR_GROUP_SCHED
8882 if (prev->sched_class != &fair_sched_class)
8885 __put_prev_set_next_dl_server(rq, prev, p);
8888 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8889 * likely that a next task is from the same cgroup as the current.
8891 * Therefore attempt to avoid putting and setting the entire cgroup
8892 * hierarchy, only change the part that actually changes.
8894 * Since we haven't yet done put_prev_entity and if the selected task
8895 * is a different task than we started out with, try and touch the
8896 * least amount of cfs_rqs.
8899 struct sched_entity *pse = &prev->se;
8900 struct cfs_rq *cfs_rq;
8902 while (!(cfs_rq = is_same_group(se, pse))) {
8903 int se_depth = se->depth;
8904 int pse_depth = pse->depth;
8906 if (se_depth <= pse_depth) {
8907 put_prev_entity(cfs_rq_of(pse), pse);
8908 pse = parent_entity(pse);
8910 if (se_depth >= pse_depth) {
8911 set_next_entity(cfs_rq_of(se), se);
8912 se = parent_entity(se);
8916 put_prev_entity(cfs_rq, pse);
8917 set_next_entity(cfs_rq, se);
8919 __set_next_task_fair(rq, p, true);
8926 put_prev_set_next_task(rq, prev, p);
8933 new_tasks = sched_balance_newidle(rq, rf);
8936 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is
8937 * possible for any higher priority task to appear. In that case we
8938 * must re-start the pick_next_entity() loop.
8947 * rq is about to be idle, check if we need to update the
8948 * lost_idle_time of clock_pelt
8950 update_idle_rq_clock_pelt(rq);
8955 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev)
8957 return pick_next_task_fair(rq, prev, NULL);
8960 static bool fair_server_has_tasks(struct sched_dl_entity *dl_se)
8962 return !!dl_se->rq->cfs.nr_running;
8965 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se)
8967 return pick_task_fair(dl_se->rq);
8970 void fair_server_init(struct rq *rq)
8972 struct sched_dl_entity *dl_se = &rq->fair_server;
8974 init_dl_entity(dl_se);
8976 dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task);
8980 * Account for a descheduled task:
8982 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next)
8984 struct sched_entity *se = &prev->se;
8985 struct cfs_rq *cfs_rq;
8987 for_each_sched_entity(se) {
8988 cfs_rq = cfs_rq_of(se);
8989 put_prev_entity(cfs_rq, se);
8994 * sched_yield() is very simple
8996 static void yield_task_fair(struct rq *rq)
8998 struct task_struct *curr = rq->curr;
8999 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
9000 struct sched_entity *se = &curr->se;
9003 * Are we the only task in the tree?
9005 if (unlikely(rq->nr_running == 1))
9008 clear_buddies(cfs_rq, se);
9010 update_rq_clock(rq);
9012 * Update run-time statistics of the 'current'.
9014 update_curr(cfs_rq);
9016 * Tell update_rq_clock() that we've just updated,
9017 * so we don't do microscopic update in schedule()
9018 * and double the fastpath cost.
9020 rq_clock_skip_update(rq);
9022 se->deadline += calc_delta_fair(se->slice, se);
9025 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
9027 struct sched_entity *se = &p->se;
9029 /* throttled hierarchies are not runnable */
9030 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
9033 /* Tell the scheduler that we'd really like se to run next. */
9036 yield_task_fair(rq);
9042 /**************************************************
9043 * Fair scheduling class load-balancing methods.
9047 * The purpose of load-balancing is to achieve the same basic fairness the
9048 * per-CPU scheduler provides, namely provide a proportional amount of compute
9049 * time to each task. This is expressed in the following equation:
9051 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
9053 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
9054 * W_i,0 is defined as:
9056 * W_i,0 = \Sum_j w_i,j (2)
9058 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
9059 * is derived from the nice value as per sched_prio_to_weight[].
9061 * The weight average is an exponential decay average of the instantaneous
9064 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
9066 * C_i is the compute capacity of CPU i, typically it is the
9067 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
9068 * can also include other factors [XXX].
9070 * To achieve this balance we define a measure of imbalance which follows
9071 * directly from (1):
9073 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
9075 * We them move tasks around to minimize the imbalance. In the continuous
9076 * function space it is obvious this converges, in the discrete case we get
9077 * a few fun cases generally called infeasible weight scenarios.
9080 * - infeasible weights;
9081 * - local vs global optima in the discrete case. ]
9086 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
9087 * for all i,j solution, we create a tree of CPUs that follows the hardware
9088 * topology where each level pairs two lower groups (or better). This results
9089 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
9090 * tree to only the first of the previous level and we decrease the frequency
9091 * of load-balance at each level inversely proportional to the number of CPUs in
9097 * \Sum { --- * --- * 2^i } = O(n) (5)
9099 * `- size of each group
9100 * | | `- number of CPUs doing load-balance
9102 * `- sum over all levels
9104 * Coupled with a limit on how many tasks we can migrate every balance pass,
9105 * this makes (5) the runtime complexity of the balancer.
9107 * An important property here is that each CPU is still (indirectly) connected
9108 * to every other CPU in at most O(log n) steps:
9110 * The adjacency matrix of the resulting graph is given by:
9113 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
9116 * And you'll find that:
9118 * A^(log_2 n)_i,j != 0 for all i,j (7)
9120 * Showing there's indeed a path between every CPU in at most O(log n) steps.
9121 * The task movement gives a factor of O(m), giving a convergence complexity
9124 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
9129 * In order to avoid CPUs going idle while there's still work to do, new idle
9130 * balancing is more aggressive and has the newly idle CPU iterate up the domain
9131 * tree itself instead of relying on other CPUs to bring it work.
9133 * This adds some complexity to both (5) and (8) but it reduces the total idle
9141 * Cgroups make a horror show out of (2), instead of a simple sum we get:
9144 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
9149 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
9151 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
9153 * The big problem is S_k, its a global sum needed to compute a local (W_i)
9156 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
9157 * rewrite all of this once again.]
9160 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
9162 enum fbq_type { regular, remote, all };
9165 * 'group_type' describes the group of CPUs at the moment of load balancing.
9167 * The enum is ordered by pulling priority, with the group with lowest priority
9168 * first so the group_type can simply be compared when selecting the busiest
9169 * group. See update_sd_pick_busiest().
9172 /* The group has spare capacity that can be used to run more tasks. */
9173 group_has_spare = 0,
9175 * The group is fully used and the tasks don't compete for more CPU
9176 * cycles. Nevertheless, some tasks might wait before running.
9180 * One task doesn't fit with CPU's capacity and must be migrated to a
9181 * more powerful CPU.
9185 * Balance SMT group that's fully busy. Can benefit from migration
9186 * a task on SMT with busy sibling to another CPU on idle core.
9190 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
9191 * and the task should be migrated to it instead of running on the
9196 * The tasks' affinity constraints previously prevented the scheduler
9197 * from balancing the load across the system.
9201 * The CPU is overloaded and can't provide expected CPU cycles to all
9207 enum migration_type {
9214 #define LBF_ALL_PINNED 0x01
9215 #define LBF_NEED_BREAK 0x02
9216 #define LBF_DST_PINNED 0x04
9217 #define LBF_SOME_PINNED 0x08
9218 #define LBF_ACTIVE_LB 0x10
9221 struct sched_domain *sd;
9229 struct cpumask *dst_grpmask;
9231 enum cpu_idle_type idle;
9233 /* The set of CPUs under consideration for load-balancing */
9234 struct cpumask *cpus;
9239 unsigned int loop_break;
9240 unsigned int loop_max;
9242 enum fbq_type fbq_type;
9243 enum migration_type migration_type;
9244 struct list_head tasks;
9248 * Is this task likely cache-hot:
9250 static int task_hot(struct task_struct *p, struct lb_env *env)
9254 lockdep_assert_rq_held(env->src_rq);
9256 if (p->sched_class != &fair_sched_class)
9259 if (unlikely(task_has_idle_policy(p)))
9262 /* SMT siblings share cache */
9263 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
9267 * Buddy candidates are cache hot:
9269 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
9270 (&p->se == cfs_rq_of(&p->se)->next))
9273 if (sysctl_sched_migration_cost == -1)
9277 * Don't migrate task if the task's cookie does not match
9278 * with the destination CPU's core cookie.
9280 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
9283 if (sysctl_sched_migration_cost == 0)
9286 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
9288 return delta < (s64)sysctl_sched_migration_cost;
9291 #ifdef CONFIG_NUMA_BALANCING
9293 * Returns 1, if task migration degrades locality
9294 * Returns 0, if task migration improves locality i.e migration preferred.
9295 * Returns -1, if task migration is not affected by locality.
9297 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
9299 struct numa_group *numa_group = rcu_dereference(p->numa_group);
9300 unsigned long src_weight, dst_weight;
9301 int src_nid, dst_nid, dist;
9303 if (!static_branch_likely(&sched_numa_balancing))
9306 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
9309 src_nid = cpu_to_node(env->src_cpu);
9310 dst_nid = cpu_to_node(env->dst_cpu);
9312 if (src_nid == dst_nid)
9315 /* Migrating away from the preferred node is always bad. */
9316 if (src_nid == p->numa_preferred_nid) {
9317 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
9323 /* Encourage migration to the preferred node. */
9324 if (dst_nid == p->numa_preferred_nid)
9327 /* Leaving a core idle is often worse than degrading locality. */
9328 if (env->idle == CPU_IDLE)
9331 dist = node_distance(src_nid, dst_nid);
9333 src_weight = group_weight(p, src_nid, dist);
9334 dst_weight = group_weight(p, dst_nid, dist);
9336 src_weight = task_weight(p, src_nid, dist);
9337 dst_weight = task_weight(p, dst_nid, dist);
9340 return dst_weight < src_weight;
9344 static inline int migrate_degrades_locality(struct task_struct *p,
9352 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
9355 int can_migrate_task(struct task_struct *p, struct lb_env *env)
9359 lockdep_assert_rq_held(env->src_rq);
9362 * We do not migrate tasks that are:
9363 * 1) throttled_lb_pair, or
9364 * 2) cannot be migrated to this CPU due to cpus_ptr, or
9365 * 3) running (obviously), or
9366 * 4) are cache-hot on their current CPU.
9368 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
9371 /* Disregard percpu kthreads; they are where they need to be. */
9372 if (kthread_is_per_cpu(p))
9375 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
9378 schedstat_inc(p->stats.nr_failed_migrations_affine);
9380 env->flags |= LBF_SOME_PINNED;
9383 * Remember if this task can be migrated to any other CPU in
9384 * our sched_group. We may want to revisit it if we couldn't
9385 * meet load balance goals by pulling other tasks on src_cpu.
9387 * Avoid computing new_dst_cpu
9389 * - if we have already computed one in current iteration
9390 * - if it's an active balance
9392 if (env->idle == CPU_NEWLY_IDLE ||
9393 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
9396 /* Prevent to re-select dst_cpu via env's CPUs: */
9397 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
9398 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
9399 env->flags |= LBF_DST_PINNED;
9400 env->new_dst_cpu = cpu;
9408 /* Record that we found at least one task that could run on dst_cpu */
9409 env->flags &= ~LBF_ALL_PINNED;
9411 if (task_on_cpu(env->src_rq, p)) {
9412 schedstat_inc(p->stats.nr_failed_migrations_running);
9417 * Aggressive migration if:
9419 * 2) destination numa is preferred
9420 * 3) task is cache cold, or
9421 * 4) too many balance attempts have failed.
9423 if (env->flags & LBF_ACTIVE_LB)
9426 tsk_cache_hot = migrate_degrades_locality(p, env);
9427 if (tsk_cache_hot == -1)
9428 tsk_cache_hot = task_hot(p, env);
9430 if (tsk_cache_hot <= 0 ||
9431 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
9432 if (tsk_cache_hot == 1) {
9433 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
9434 schedstat_inc(p->stats.nr_forced_migrations);
9439 schedstat_inc(p->stats.nr_failed_migrations_hot);
9444 * detach_task() -- detach the task for the migration specified in env
9446 static void detach_task(struct task_struct *p, struct lb_env *env)
9448 lockdep_assert_rq_held(env->src_rq);
9450 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
9451 set_task_cpu(p, env->dst_cpu);
9455 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9456 * part of active balancing operations within "domain".
9458 * Returns a task if successful and NULL otherwise.
9460 static struct task_struct *detach_one_task(struct lb_env *env)
9462 struct task_struct *p;
9464 lockdep_assert_rq_held(env->src_rq);
9466 list_for_each_entry_reverse(p,
9467 &env->src_rq->cfs_tasks, se.group_node) {
9468 if (!can_migrate_task(p, env))
9471 detach_task(p, env);
9474 * Right now, this is only the second place where
9475 * lb_gained[env->idle] is updated (other is detach_tasks)
9476 * so we can safely collect stats here rather than
9477 * inside detach_tasks().
9479 schedstat_inc(env->sd->lb_gained[env->idle]);
9486 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9487 * busiest_rq, as part of a balancing operation within domain "sd".
9489 * Returns number of detached tasks if successful and 0 otherwise.
9491 static int detach_tasks(struct lb_env *env)
9493 struct list_head *tasks = &env->src_rq->cfs_tasks;
9494 unsigned long util, load;
9495 struct task_struct *p;
9498 lockdep_assert_rq_held(env->src_rq);
9501 * Source run queue has been emptied by another CPU, clear
9502 * LBF_ALL_PINNED flag as we will not test any task.
9504 if (env->src_rq->nr_running <= 1) {
9505 env->flags &= ~LBF_ALL_PINNED;
9509 if (env->imbalance <= 0)
9512 while (!list_empty(tasks)) {
9514 * We don't want to steal all, otherwise we may be treated likewise,
9515 * which could at worst lead to a livelock crash.
9517 if (env->idle && env->src_rq->nr_running <= 1)
9521 /* We've more or less seen every task there is, call it quits */
9522 if (env->loop > env->loop_max)
9525 /* take a breather every nr_migrate tasks */
9526 if (env->loop > env->loop_break) {
9527 env->loop_break += SCHED_NR_MIGRATE_BREAK;
9528 env->flags |= LBF_NEED_BREAK;
9532 p = list_last_entry(tasks, struct task_struct, se.group_node);
9534 if (!can_migrate_task(p, env))
9537 switch (env->migration_type) {
9540 * Depending of the number of CPUs and tasks and the
9541 * cgroup hierarchy, task_h_load() can return a null
9542 * value. Make sure that env->imbalance decreases
9543 * otherwise detach_tasks() will stop only after
9544 * detaching up to loop_max tasks.
9546 load = max_t(unsigned long, task_h_load(p), 1);
9548 if (sched_feat(LB_MIN) &&
9549 load < 16 && !env->sd->nr_balance_failed)
9553 * Make sure that we don't migrate too much load.
9554 * Nevertheless, let relax the constraint if
9555 * scheduler fails to find a good waiting task to
9558 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9561 env->imbalance -= load;
9565 util = task_util_est(p);
9567 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance)
9570 env->imbalance -= util;
9577 case migrate_misfit:
9578 /* This is not a misfit task */
9579 if (task_fits_cpu(p, env->src_cpu))
9586 detach_task(p, env);
9587 list_add(&p->se.group_node, &env->tasks);
9591 #ifdef CONFIG_PREEMPTION
9593 * NEWIDLE balancing is a source of latency, so preemptible
9594 * kernels will stop after the first task is detached to minimize
9595 * the critical section.
9597 if (env->idle == CPU_NEWLY_IDLE)
9602 * We only want to steal up to the prescribed amount of
9605 if (env->imbalance <= 0)
9610 list_move(&p->se.group_node, tasks);
9614 * Right now, this is one of only two places we collect this stat
9615 * so we can safely collect detach_one_task() stats here rather
9616 * than inside detach_one_task().
9618 schedstat_add(env->sd->lb_gained[env->idle], detached);
9624 * attach_task() -- attach the task detached by detach_task() to its new rq.
9626 static void attach_task(struct rq *rq, struct task_struct *p)
9628 lockdep_assert_rq_held(rq);
9630 WARN_ON_ONCE(task_rq(p) != rq);
9631 activate_task(rq, p, ENQUEUE_NOCLOCK);
9632 wakeup_preempt(rq, p, 0);
9636 * attach_one_task() -- attaches the task returned from detach_one_task() to
9639 static void attach_one_task(struct rq *rq, struct task_struct *p)
9644 update_rq_clock(rq);
9650 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9653 static void attach_tasks(struct lb_env *env)
9655 struct list_head *tasks = &env->tasks;
9656 struct task_struct *p;
9659 rq_lock(env->dst_rq, &rf);
9660 update_rq_clock(env->dst_rq);
9662 while (!list_empty(tasks)) {
9663 p = list_first_entry(tasks, struct task_struct, se.group_node);
9664 list_del_init(&p->se.group_node);
9666 attach_task(env->dst_rq, p);
9669 rq_unlock(env->dst_rq, &rf);
9672 #ifdef CONFIG_NO_HZ_COMMON
9673 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9675 if (cfs_rq->avg.load_avg)
9678 if (cfs_rq->avg.util_avg)
9684 static inline bool others_have_blocked(struct rq *rq)
9686 if (cpu_util_rt(rq))
9689 if (cpu_util_dl(rq))
9692 if (hw_load_avg(rq))
9695 if (cpu_util_irq(rq))
9701 static inline void update_blocked_load_tick(struct rq *rq)
9703 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9706 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9709 rq->has_blocked_load = 0;
9712 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
9713 static inline bool others_have_blocked(struct rq *rq) { return false; }
9714 static inline void update_blocked_load_tick(struct rq *rq) {}
9715 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9718 static bool __update_blocked_others(struct rq *rq, bool *done)
9723 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9724 * DL and IRQ signals have been updated before updating CFS.
9726 updated = update_other_load_avgs(rq);
9728 if (others_have_blocked(rq))
9734 #ifdef CONFIG_FAIR_GROUP_SCHED
9736 static bool __update_blocked_fair(struct rq *rq, bool *done)
9738 struct cfs_rq *cfs_rq, *pos;
9739 bool decayed = false;
9740 int cpu = cpu_of(rq);
9743 * Iterates the task_group tree in a bottom up fashion, see
9744 * list_add_leaf_cfs_rq() for details.
9746 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9747 struct sched_entity *se;
9749 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9750 update_tg_load_avg(cfs_rq);
9752 if (cfs_rq->nr_running == 0)
9753 update_idle_cfs_rq_clock_pelt(cfs_rq);
9755 if (cfs_rq == &rq->cfs)
9759 /* Propagate pending load changes to the parent, if any: */
9760 se = cfs_rq->tg->se[cpu];
9761 if (se && !skip_blocked_update(se))
9762 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9765 * There can be a lot of idle CPU cgroups. Don't let fully
9766 * decayed cfs_rqs linger on the list.
9768 if (cfs_rq_is_decayed(cfs_rq))
9769 list_del_leaf_cfs_rq(cfs_rq);
9771 /* Don't need periodic decay once load/util_avg are null */
9772 if (cfs_rq_has_blocked(cfs_rq))
9780 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9781 * This needs to be done in a top-down fashion because the load of a child
9782 * group is a fraction of its parents load.
9784 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9786 struct rq *rq = rq_of(cfs_rq);
9787 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9788 unsigned long now = jiffies;
9791 if (cfs_rq->last_h_load_update == now)
9794 WRITE_ONCE(cfs_rq->h_load_next, NULL);
9795 for_each_sched_entity(se) {
9796 cfs_rq = cfs_rq_of(se);
9797 WRITE_ONCE(cfs_rq->h_load_next, se);
9798 if (cfs_rq->last_h_load_update == now)
9803 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9804 cfs_rq->last_h_load_update = now;
9807 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9808 load = cfs_rq->h_load;
9809 load = div64_ul(load * se->avg.load_avg,
9810 cfs_rq_load_avg(cfs_rq) + 1);
9811 cfs_rq = group_cfs_rq(se);
9812 cfs_rq->h_load = load;
9813 cfs_rq->last_h_load_update = now;
9817 static unsigned long task_h_load(struct task_struct *p)
9819 struct cfs_rq *cfs_rq = task_cfs_rq(p);
9821 update_cfs_rq_h_load(cfs_rq);
9822 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9823 cfs_rq_load_avg(cfs_rq) + 1);
9826 static bool __update_blocked_fair(struct rq *rq, bool *done)
9828 struct cfs_rq *cfs_rq = &rq->cfs;
9831 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9832 if (cfs_rq_has_blocked(cfs_rq))
9838 static unsigned long task_h_load(struct task_struct *p)
9840 return p->se.avg.load_avg;
9844 static void sched_balance_update_blocked_averages(int cpu)
9846 bool decayed = false, done = true;
9847 struct rq *rq = cpu_rq(cpu);
9850 rq_lock_irqsave(rq, &rf);
9851 update_blocked_load_tick(rq);
9852 update_rq_clock(rq);
9854 decayed |= __update_blocked_others(rq, &done);
9855 decayed |= __update_blocked_fair(rq, &done);
9857 update_blocked_load_status(rq, !done);
9859 cpufreq_update_util(rq, 0);
9860 rq_unlock_irqrestore(rq, &rf);
9863 /********** Helpers for sched_balance_find_src_group ************************/
9866 * sg_lb_stats - stats of a sched_group required for load-balancing:
9868 struct sg_lb_stats {
9869 unsigned long avg_load; /* Avg load over the CPUs of the group */
9870 unsigned long group_load; /* Total load over the CPUs of the group */
9871 unsigned long group_capacity; /* Capacity over the CPUs of the group */
9872 unsigned long group_util; /* Total utilization over the CPUs of the group */
9873 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
9874 unsigned int sum_nr_running; /* Nr of all tasks running in the group */
9875 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
9876 unsigned int idle_cpus; /* Nr of idle CPUs in the group */
9877 unsigned int group_weight;
9878 enum group_type group_type;
9879 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
9880 unsigned int group_smt_balance; /* Task on busy SMT be moved */
9881 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
9882 #ifdef CONFIG_NUMA_BALANCING
9883 unsigned int nr_numa_running;
9884 unsigned int nr_preferred_running;
9889 * sd_lb_stats - stats of a sched_domain required for load-balancing:
9891 struct sd_lb_stats {
9892 struct sched_group *busiest; /* Busiest group in this sd */
9893 struct sched_group *local; /* Local group in this sd */
9894 unsigned long total_load; /* Total load of all groups in sd */
9895 unsigned long total_capacity; /* Total capacity of all groups in sd */
9896 unsigned long avg_load; /* Average load across all groups in sd */
9897 unsigned int prefer_sibling; /* Tasks should go to sibling first */
9899 struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */
9900 struct sg_lb_stats local_stat; /* Statistics of the local group */
9903 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9906 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9907 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9908 * We must however set busiest_stat::group_type and
9909 * busiest_stat::idle_cpus to the worst busiest group because
9910 * update_sd_pick_busiest() reads these before assignment.
9912 *sds = (struct sd_lb_stats){
9916 .total_capacity = 0UL,
9918 .idle_cpus = UINT_MAX,
9919 .group_type = group_has_spare,
9924 static unsigned long scale_rt_capacity(int cpu)
9926 unsigned long max = get_actual_cpu_capacity(cpu);
9927 struct rq *rq = cpu_rq(cpu);
9928 unsigned long used, free;
9931 irq = cpu_util_irq(rq);
9933 if (unlikely(irq >= max))
9937 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9938 * (running and not running) with weights 0 and 1024 respectively.
9940 used = cpu_util_rt(rq);
9941 used += cpu_util_dl(rq);
9943 if (unlikely(used >= max))
9948 return scale_irq_capacity(free, irq, max);
9951 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9953 unsigned long capacity = scale_rt_capacity(cpu);
9954 struct sched_group *sdg = sd->groups;
9959 cpu_rq(cpu)->cpu_capacity = capacity;
9960 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
9962 sdg->sgc->capacity = capacity;
9963 sdg->sgc->min_capacity = capacity;
9964 sdg->sgc->max_capacity = capacity;
9967 void update_group_capacity(struct sched_domain *sd, int cpu)
9969 struct sched_domain *child = sd->child;
9970 struct sched_group *group, *sdg = sd->groups;
9971 unsigned long capacity, min_capacity, max_capacity;
9972 unsigned long interval;
9974 interval = msecs_to_jiffies(sd->balance_interval);
9975 interval = clamp(interval, 1UL, max_load_balance_interval);
9976 sdg->sgc->next_update = jiffies + interval;
9979 update_cpu_capacity(sd, cpu);
9984 min_capacity = ULONG_MAX;
9987 if (child->flags & SD_OVERLAP) {
9989 * SD_OVERLAP domains cannot assume that child groups
9990 * span the current group.
9993 for_each_cpu(cpu, sched_group_span(sdg)) {
9994 unsigned long cpu_cap = capacity_of(cpu);
9996 capacity += cpu_cap;
9997 min_capacity = min(cpu_cap, min_capacity);
9998 max_capacity = max(cpu_cap, max_capacity);
10002 * !SD_OVERLAP domains can assume that child groups
10003 * span the current group.
10006 group = child->groups;
10008 struct sched_group_capacity *sgc = group->sgc;
10010 capacity += sgc->capacity;
10011 min_capacity = min(sgc->min_capacity, min_capacity);
10012 max_capacity = max(sgc->max_capacity, max_capacity);
10013 group = group->next;
10014 } while (group != child->groups);
10017 sdg->sgc->capacity = capacity;
10018 sdg->sgc->min_capacity = min_capacity;
10019 sdg->sgc->max_capacity = max_capacity;
10023 * Check whether the capacity of the rq has been noticeably reduced by side
10024 * activity. The imbalance_pct is used for the threshold.
10025 * Return true is the capacity is reduced
10028 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
10030 return ((rq->cpu_capacity * sd->imbalance_pct) <
10031 (arch_scale_cpu_capacity(cpu_of(rq)) * 100));
10034 /* Check if the rq has a misfit task */
10035 static inline bool check_misfit_status(struct rq *rq)
10037 return rq->misfit_task_load;
10041 * Group imbalance indicates (and tries to solve) the problem where balancing
10042 * groups is inadequate due to ->cpus_ptr constraints.
10044 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
10045 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
10048 * { 0 1 2 3 } { 4 5 6 7 }
10051 * If we were to balance group-wise we'd place two tasks in the first group and
10052 * two tasks in the second group. Clearly this is undesired as it will overload
10053 * cpu 3 and leave one of the CPUs in the second group unused.
10055 * The current solution to this issue is detecting the skew in the first group
10056 * by noticing the lower domain failed to reach balance and had difficulty
10057 * moving tasks due to affinity constraints.
10059 * When this is so detected; this group becomes a candidate for busiest; see
10060 * update_sd_pick_busiest(). And calculate_imbalance() and
10061 * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it
10062 * to create an effective group imbalance.
10064 * This is a somewhat tricky proposition since the next run might not find the
10065 * group imbalance and decide the groups need to be balanced again. A most
10066 * subtle and fragile situation.
10069 static inline int sg_imbalanced(struct sched_group *group)
10071 return group->sgc->imbalance;
10075 * group_has_capacity returns true if the group has spare capacity that could
10076 * be used by some tasks.
10077 * We consider that a group has spare capacity if the number of task is
10078 * smaller than the number of CPUs or if the utilization is lower than the
10079 * available capacity for CFS tasks.
10080 * For the latter, we use a threshold to stabilize the state, to take into
10081 * account the variance of the tasks' load and to return true if the available
10082 * capacity in meaningful for the load balancer.
10083 * As an example, an available capacity of 1% can appear but it doesn't make
10084 * any benefit for the load balance.
10087 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10089 if (sgs->sum_nr_running < sgs->group_weight)
10092 if ((sgs->group_capacity * imbalance_pct) <
10093 (sgs->group_runnable * 100))
10096 if ((sgs->group_capacity * 100) >
10097 (sgs->group_util * imbalance_pct))
10104 * group_is_overloaded returns true if the group has more tasks than it can
10106 * group_is_overloaded is not equals to !group_has_capacity because a group
10107 * with the exact right number of tasks, has no more spare capacity but is not
10108 * overloaded so both group_has_capacity and group_is_overloaded return
10112 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10114 if (sgs->sum_nr_running <= sgs->group_weight)
10117 if ((sgs->group_capacity * 100) <
10118 (sgs->group_util * imbalance_pct))
10121 if ((sgs->group_capacity * imbalance_pct) <
10122 (sgs->group_runnable * 100))
10129 group_type group_classify(unsigned int imbalance_pct,
10130 struct sched_group *group,
10131 struct sg_lb_stats *sgs)
10133 if (group_is_overloaded(imbalance_pct, sgs))
10134 return group_overloaded;
10136 if (sg_imbalanced(group))
10137 return group_imbalanced;
10139 if (sgs->group_asym_packing)
10140 return group_asym_packing;
10142 if (sgs->group_smt_balance)
10143 return group_smt_balance;
10145 if (sgs->group_misfit_task_load)
10146 return group_misfit_task;
10148 if (!group_has_capacity(imbalance_pct, sgs))
10149 return group_fully_busy;
10151 return group_has_spare;
10155 * sched_use_asym_prio - Check whether asym_packing priority must be used
10156 * @sd: The scheduling domain of the load balancing
10159 * Always use CPU priority when balancing load between SMT siblings. When
10160 * balancing load between cores, it is not sufficient that @cpu is idle. Only
10161 * use CPU priority if the whole core is idle.
10163 * Returns: True if the priority of @cpu must be followed. False otherwise.
10165 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
10167 if (!(sd->flags & SD_ASYM_PACKING))
10170 if (!sched_smt_active())
10173 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
10176 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu)
10179 * First check if @dst_cpu can do asym_packing load balance. Only do it
10180 * if it has higher priority than @src_cpu.
10182 return sched_use_asym_prio(sd, dst_cpu) &&
10183 sched_asym_prefer(dst_cpu, src_cpu);
10187 * sched_group_asym - Check if the destination CPU can do asym_packing balance
10188 * @env: The load balancing environment
10189 * @sgs: Load-balancing statistics of the candidate busiest group
10190 * @group: The candidate busiest group
10192 * @env::dst_cpu can do asym_packing if it has higher priority than the
10193 * preferred CPU of @group.
10195 * Return: true if @env::dst_cpu can do with asym_packing load balance. False
10199 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group)
10202 * CPU priorities do not make sense for SMT cores with more than one
10205 if ((group->flags & SD_SHARE_CPUCAPACITY) &&
10206 (sgs->group_weight - sgs->idle_cpus != 1))
10209 return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu);
10212 /* One group has more than one SMT CPU while the other group does not */
10213 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
10214 struct sched_group *sg2)
10219 return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
10220 (sg2->flags & SD_SHARE_CPUCAPACITY);
10223 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
10224 struct sched_group *group)
10230 * For SMT source group, it is better to move a task
10231 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
10232 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
10235 if (group->flags & SD_SHARE_CPUCAPACITY &&
10236 sgs->sum_h_nr_running > 1)
10242 static inline long sibling_imbalance(struct lb_env *env,
10243 struct sd_lb_stats *sds,
10244 struct sg_lb_stats *busiest,
10245 struct sg_lb_stats *local)
10247 int ncores_busiest, ncores_local;
10250 if (!env->idle || !busiest->sum_nr_running)
10253 ncores_busiest = sds->busiest->cores;
10254 ncores_local = sds->local->cores;
10256 if (ncores_busiest == ncores_local) {
10257 imbalance = busiest->sum_nr_running;
10258 lsub_positive(&imbalance, local->sum_nr_running);
10262 /* Balance such that nr_running/ncores ratio are same on both groups */
10263 imbalance = ncores_local * busiest->sum_nr_running;
10264 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
10265 /* Normalize imbalance and do rounding on normalization */
10266 imbalance = 2 * imbalance + ncores_local + ncores_busiest;
10267 imbalance /= ncores_local + ncores_busiest;
10269 /* Take advantage of resource in an empty sched group */
10270 if (imbalance <= 1 && local->sum_nr_running == 0 &&
10271 busiest->sum_nr_running > 1)
10278 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
10281 * When there is more than 1 task, the group_overloaded case already
10282 * takes care of cpu with reduced capacity
10284 if (rq->cfs.h_nr_running != 1)
10287 return check_cpu_capacity(rq, sd);
10291 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
10292 * @env: The load balancing environment.
10293 * @sds: Load-balancing data with statistics of the local group.
10294 * @group: sched_group whose statistics are to be updated.
10295 * @sgs: variable to hold the statistics for this group.
10296 * @sg_overloaded: sched_group is overloaded
10297 * @sg_overutilized: sched_group is overutilized
10299 static inline void update_sg_lb_stats(struct lb_env *env,
10300 struct sd_lb_stats *sds,
10301 struct sched_group *group,
10302 struct sg_lb_stats *sgs,
10303 bool *sg_overloaded,
10304 bool *sg_overutilized)
10306 int i, nr_running, local_group;
10308 memset(sgs, 0, sizeof(*sgs));
10310 local_group = group == sds->local;
10312 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10313 struct rq *rq = cpu_rq(i);
10314 unsigned long load = cpu_load(rq);
10316 sgs->group_load += load;
10317 sgs->group_util += cpu_util_cfs(i);
10318 sgs->group_runnable += cpu_runnable(rq);
10319 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
10321 nr_running = rq->nr_running;
10322 sgs->sum_nr_running += nr_running;
10324 if (nr_running > 1)
10325 *sg_overloaded = 1;
10327 if (cpu_overutilized(i))
10328 *sg_overutilized = 1;
10330 #ifdef CONFIG_NUMA_BALANCING
10331 sgs->nr_numa_running += rq->nr_numa_running;
10332 sgs->nr_preferred_running += rq->nr_preferred_running;
10335 * No need to call idle_cpu() if nr_running is not 0
10337 if (!nr_running && idle_cpu(i)) {
10339 /* Idle cpu can't have misfit task */
10346 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10347 /* Check for a misfit task on the cpu */
10348 if (sgs->group_misfit_task_load < rq->misfit_task_load) {
10349 sgs->group_misfit_task_load = rq->misfit_task_load;
10350 *sg_overloaded = 1;
10352 } else if (env->idle && sched_reduced_capacity(rq, env->sd)) {
10353 /* Check for a task running on a CPU with reduced capacity */
10354 if (sgs->group_misfit_task_load < load)
10355 sgs->group_misfit_task_load = load;
10359 sgs->group_capacity = group->sgc->capacity;
10361 sgs->group_weight = group->group_weight;
10363 /* Check if dst CPU is idle and preferred to this group */
10364 if (!local_group && env->idle && sgs->sum_h_nr_running &&
10365 sched_group_asym(env, sgs, group))
10366 sgs->group_asym_packing = 1;
10368 /* Check for loaded SMT group to be balanced to dst CPU */
10369 if (!local_group && smt_balance(env, sgs, group))
10370 sgs->group_smt_balance = 1;
10372 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
10374 /* Computing avg_load makes sense only when group is overloaded */
10375 if (sgs->group_type == group_overloaded)
10376 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10377 sgs->group_capacity;
10381 * update_sd_pick_busiest - return 1 on busiest group
10382 * @env: The load balancing environment.
10383 * @sds: sched_domain statistics
10384 * @sg: sched_group candidate to be checked for being the busiest
10385 * @sgs: sched_group statistics
10387 * Determine if @sg is a busier group than the previously selected
10390 * Return: %true if @sg is a busier group than the previously selected
10391 * busiest group. %false otherwise.
10393 static bool update_sd_pick_busiest(struct lb_env *env,
10394 struct sd_lb_stats *sds,
10395 struct sched_group *sg,
10396 struct sg_lb_stats *sgs)
10398 struct sg_lb_stats *busiest = &sds->busiest_stat;
10400 /* Make sure that there is at least one task to pull */
10401 if (!sgs->sum_h_nr_running)
10405 * Don't try to pull misfit tasks we can't help.
10406 * We can use max_capacity here as reduction in capacity on some
10407 * CPUs in the group should either be possible to resolve
10408 * internally or be covered by avg_load imbalance (eventually).
10410 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10411 (sgs->group_type == group_misfit_task) &&
10412 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
10413 sds->local_stat.group_type != group_has_spare))
10416 if (sgs->group_type > busiest->group_type)
10419 if (sgs->group_type < busiest->group_type)
10423 * The candidate and the current busiest group are the same type of
10424 * group. Let check which one is the busiest according to the type.
10427 switch (sgs->group_type) {
10428 case group_overloaded:
10429 /* Select the overloaded group with highest avg_load. */
10430 return sgs->avg_load > busiest->avg_load;
10432 case group_imbalanced:
10434 * Select the 1st imbalanced group as we don't have any way to
10435 * choose one more than another.
10439 case group_asym_packing:
10440 /* Prefer to move from lowest priority CPU's work */
10441 return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu);
10443 case group_misfit_task:
10445 * If we have more than one misfit sg go with the biggest
10448 return sgs->group_misfit_task_load > busiest->group_misfit_task_load;
10450 case group_smt_balance:
10452 * Check if we have spare CPUs on either SMT group to
10453 * choose has spare or fully busy handling.
10455 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10460 case group_fully_busy:
10462 * Select the fully busy group with highest avg_load. In
10463 * theory, there is no need to pull task from such kind of
10464 * group because tasks have all compute capacity that they need
10465 * but we can still improve the overall throughput by reducing
10466 * contention when accessing shared HW resources.
10468 * XXX for now avg_load is not computed and always 0 so we
10469 * select the 1st one, except if @sg is composed of SMT
10473 if (sgs->avg_load < busiest->avg_load)
10476 if (sgs->avg_load == busiest->avg_load) {
10478 * SMT sched groups need more help than non-SMT groups.
10479 * If @sg happens to also be SMT, either choice is good.
10481 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10487 case group_has_spare:
10489 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10490 * as we do not want to pull task off SMT core with one task
10491 * and make the core idle.
10493 if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10494 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10502 * Select not overloaded group with lowest number of idle CPUs
10503 * and highest number of running tasks. We could also compare
10504 * the spare capacity which is more stable but it can end up
10505 * that the group has less spare capacity but finally more idle
10506 * CPUs which means less opportunity to pull tasks.
10508 if (sgs->idle_cpus > busiest->idle_cpus)
10510 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10511 (sgs->sum_nr_running <= busiest->sum_nr_running))
10518 * Candidate sg has no more than one task per CPU and has higher
10519 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10520 * throughput. Maximize throughput, power/energy consequences are not
10523 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10524 (sgs->group_type <= group_fully_busy) &&
10525 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10531 #ifdef CONFIG_NUMA_BALANCING
10532 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10534 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10536 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10541 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10543 if (rq->nr_running > rq->nr_numa_running)
10545 if (rq->nr_running > rq->nr_preferred_running)
10550 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10555 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10559 #endif /* CONFIG_NUMA_BALANCING */
10562 struct sg_lb_stats;
10565 * task_running_on_cpu - return 1 if @p is running on @cpu.
10568 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10570 /* Task has no contribution or is new */
10571 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10574 if (task_on_rq_queued(p))
10581 * idle_cpu_without - would a given CPU be idle without p ?
10582 * @cpu: the processor on which idleness is tested.
10583 * @p: task which should be ignored.
10585 * Return: 1 if the CPU would be idle. 0 otherwise.
10587 static int idle_cpu_without(int cpu, struct task_struct *p)
10589 struct rq *rq = cpu_rq(cpu);
10591 if (rq->curr != rq->idle && rq->curr != p)
10595 * rq->nr_running can't be used but an updated version without the
10596 * impact of p on cpu must be used instead. The updated nr_running
10597 * be computed and tested before calling idle_cpu_without().
10600 if (rq->ttwu_pending)
10607 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10608 * @sd: The sched_domain level to look for idlest group.
10609 * @group: sched_group whose statistics are to be updated.
10610 * @sgs: variable to hold the statistics for this group.
10611 * @p: The task for which we look for the idlest group/CPU.
10613 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10614 struct sched_group *group,
10615 struct sg_lb_stats *sgs,
10616 struct task_struct *p)
10620 memset(sgs, 0, sizeof(*sgs));
10622 /* Assume that task can't fit any CPU of the group */
10623 if (sd->flags & SD_ASYM_CPUCAPACITY)
10624 sgs->group_misfit_task_load = 1;
10626 for_each_cpu(i, sched_group_span(group)) {
10627 struct rq *rq = cpu_rq(i);
10628 unsigned int local;
10630 sgs->group_load += cpu_load_without(rq, p);
10631 sgs->group_util += cpu_util_without(i, p);
10632 sgs->group_runnable += cpu_runnable_without(rq, p);
10633 local = task_running_on_cpu(i, p);
10634 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
10636 nr_running = rq->nr_running - local;
10637 sgs->sum_nr_running += nr_running;
10640 * No need to call idle_cpu_without() if nr_running is not 0
10642 if (!nr_running && idle_cpu_without(i, p))
10645 /* Check if task fits in the CPU */
10646 if (sd->flags & SD_ASYM_CPUCAPACITY &&
10647 sgs->group_misfit_task_load &&
10648 task_fits_cpu(p, i))
10649 sgs->group_misfit_task_load = 0;
10653 sgs->group_capacity = group->sgc->capacity;
10655 sgs->group_weight = group->group_weight;
10657 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10660 * Computing avg_load makes sense only when group is fully busy or
10663 if (sgs->group_type == group_fully_busy ||
10664 sgs->group_type == group_overloaded)
10665 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10666 sgs->group_capacity;
10669 static bool update_pick_idlest(struct sched_group *idlest,
10670 struct sg_lb_stats *idlest_sgs,
10671 struct sched_group *group,
10672 struct sg_lb_stats *sgs)
10674 if (sgs->group_type < idlest_sgs->group_type)
10677 if (sgs->group_type > idlest_sgs->group_type)
10681 * The candidate and the current idlest group are the same type of
10682 * group. Let check which one is the idlest according to the type.
10685 switch (sgs->group_type) {
10686 case group_overloaded:
10687 case group_fully_busy:
10688 /* Select the group with lowest avg_load. */
10689 if (idlest_sgs->avg_load <= sgs->avg_load)
10693 case group_imbalanced:
10694 case group_asym_packing:
10695 case group_smt_balance:
10696 /* Those types are not used in the slow wakeup path */
10699 case group_misfit_task:
10700 /* Select group with the highest max capacity */
10701 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10705 case group_has_spare:
10706 /* Select group with most idle CPUs */
10707 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10710 /* Select group with lowest group_util */
10711 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10712 idlest_sgs->group_util <= sgs->group_util)
10722 * sched_balance_find_dst_group() finds and returns the least busy CPU group within the
10725 * Assumes p is allowed on at least one CPU in sd.
10727 static struct sched_group *
10728 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10730 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10731 struct sg_lb_stats local_sgs, tmp_sgs;
10732 struct sg_lb_stats *sgs;
10733 unsigned long imbalance;
10734 struct sg_lb_stats idlest_sgs = {
10735 .avg_load = UINT_MAX,
10736 .group_type = group_overloaded,
10742 /* Skip over this group if it has no CPUs allowed */
10743 if (!cpumask_intersects(sched_group_span(group),
10747 /* Skip over this group if no cookie matched */
10748 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10751 local_group = cpumask_test_cpu(this_cpu,
10752 sched_group_span(group));
10761 update_sg_wakeup_stats(sd, group, sgs, p);
10763 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10768 } while (group = group->next, group != sd->groups);
10771 /* There is no idlest group to push tasks to */
10775 /* The local group has been skipped because of CPU affinity */
10780 * If the local group is idler than the selected idlest group
10781 * don't try and push the task.
10783 if (local_sgs.group_type < idlest_sgs.group_type)
10787 * If the local group is busier than the selected idlest group
10788 * try and push the task.
10790 if (local_sgs.group_type > idlest_sgs.group_type)
10793 switch (local_sgs.group_type) {
10794 case group_overloaded:
10795 case group_fully_busy:
10797 /* Calculate allowed imbalance based on load */
10798 imbalance = scale_load_down(NICE_0_LOAD) *
10799 (sd->imbalance_pct-100) / 100;
10802 * When comparing groups across NUMA domains, it's possible for
10803 * the local domain to be very lightly loaded relative to the
10804 * remote domains but "imbalance" skews the comparison making
10805 * remote CPUs look much more favourable. When considering
10806 * cross-domain, add imbalance to the load on the remote node
10807 * and consider staying local.
10810 if ((sd->flags & SD_NUMA) &&
10811 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10815 * If the local group is less loaded than the selected
10816 * idlest group don't try and push any tasks.
10818 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10821 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10825 case group_imbalanced:
10826 case group_asym_packing:
10827 case group_smt_balance:
10828 /* Those type are not used in the slow wakeup path */
10831 case group_misfit_task:
10832 /* Select group with the highest max capacity */
10833 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10837 case group_has_spare:
10839 if (sd->flags & SD_NUMA) {
10840 int imb_numa_nr = sd->imb_numa_nr;
10841 #ifdef CONFIG_NUMA_BALANCING
10844 * If there is spare capacity at NUMA, try to select
10845 * the preferred node
10847 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10850 idlest_cpu = cpumask_first(sched_group_span(idlest));
10851 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10853 #endif /* CONFIG_NUMA_BALANCING */
10855 * Otherwise, keep the task close to the wakeup source
10856 * and improve locality if the number of running tasks
10857 * would remain below threshold where an imbalance is
10858 * allowed while accounting for the possibility the
10859 * task is pinned to a subset of CPUs. If there is a
10860 * real need of migration, periodic load balance will
10863 if (p->nr_cpus_allowed != NR_CPUS) {
10864 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10866 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10867 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10870 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10871 if (!adjust_numa_imbalance(imbalance,
10872 local_sgs.sum_nr_running + 1,
10877 #endif /* CONFIG_NUMA */
10880 * Select group with highest number of idle CPUs. We could also
10881 * compare the utilization which is more stable but it can end
10882 * up that the group has less spare capacity but finally more
10883 * idle CPUs which means more opportunity to run task.
10885 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10893 static void update_idle_cpu_scan(struct lb_env *env,
10894 unsigned long sum_util)
10896 struct sched_domain_shared *sd_share;
10897 int llc_weight, pct;
10900 * Update the number of CPUs to scan in LLC domain, which could
10901 * be used as a hint in select_idle_cpu(). The update of sd_share
10902 * could be expensive because it is within a shared cache line.
10903 * So the write of this hint only occurs during periodic load
10904 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10905 * can fire way more frequently than the former.
10907 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10910 llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10911 if (env->sd->span_weight != llc_weight)
10914 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10919 * The number of CPUs to search drops as sum_util increases, when
10920 * sum_util hits 85% or above, the scan stops.
10921 * The reason to choose 85% as the threshold is because this is the
10922 * imbalance_pct(117) when a LLC sched group is overloaded.
10924 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1]
10925 * and y'= y / SCHED_CAPACITY_SCALE
10927 * x is the ratio of sum_util compared to the CPU capacity:
10928 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10929 * y' is the ratio of CPUs to be scanned in the LLC domain,
10930 * and the number of CPUs to scan is calculated by:
10932 * nr_scan = llc_weight * y' [2]
10934 * When x hits the threshold of overloaded, AKA, when
10935 * x = 100 / pct, y drops to 0. According to [1],
10936 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10938 * Scale x by SCHED_CAPACITY_SCALE:
10939 * x' = sum_util / llc_weight; [3]
10941 * and finally [1] becomes:
10942 * y = SCHED_CAPACITY_SCALE -
10943 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4]
10948 do_div(x, llc_weight);
10951 pct = env->sd->imbalance_pct;
10952 tmp = x * x * pct * pct;
10953 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
10954 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
10955 y = SCHED_CAPACITY_SCALE - tmp;
10959 do_div(y, SCHED_CAPACITY_SCALE);
10960 if ((int)y != sd_share->nr_idle_scan)
10961 WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
10965 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
10966 * @env: The load balancing environment.
10967 * @sds: variable to hold the statistics for this sched_domain.
10970 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
10972 struct sched_group *sg = env->sd->groups;
10973 struct sg_lb_stats *local = &sds->local_stat;
10974 struct sg_lb_stats tmp_sgs;
10975 unsigned long sum_util = 0;
10976 bool sg_overloaded = 0, sg_overutilized = 0;
10979 struct sg_lb_stats *sgs = &tmp_sgs;
10982 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
10987 if (env->idle != CPU_NEWLY_IDLE ||
10988 time_after_eq(jiffies, sg->sgc->next_update))
10989 update_group_capacity(env->sd, env->dst_cpu);
10992 update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized);
10994 if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) {
10996 sds->busiest_stat = *sgs;
10999 /* Now, start updating sd_lb_stats */
11000 sds->total_load += sgs->group_load;
11001 sds->total_capacity += sgs->group_capacity;
11003 sum_util += sgs->group_util;
11005 } while (sg != env->sd->groups);
11008 * Indicate that the child domain of the busiest group prefers tasks
11009 * go to a child's sibling domains first. NB the flags of a sched group
11010 * are those of the child domain.
11013 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
11016 if (env->sd->flags & SD_NUMA)
11017 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
11019 if (!env->sd->parent) {
11020 /* update overload indicator if we are at root domain */
11021 set_rd_overloaded(env->dst_rq->rd, sg_overloaded);
11023 /* Update over-utilization (tipping point, U >= 0) indicator */
11024 set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11025 } else if (sg_overutilized) {
11026 set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11029 update_idle_cpu_scan(env, sum_util);
11033 * calculate_imbalance - Calculate the amount of imbalance present within the
11034 * groups of a given sched_domain during load balance.
11035 * @env: load balance environment
11036 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
11038 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
11040 struct sg_lb_stats *local, *busiest;
11042 local = &sds->local_stat;
11043 busiest = &sds->busiest_stat;
11045 if (busiest->group_type == group_misfit_task) {
11046 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
11047 /* Set imbalance to allow misfit tasks to be balanced. */
11048 env->migration_type = migrate_misfit;
11049 env->imbalance = 1;
11052 * Set load imbalance to allow moving task from cpu
11053 * with reduced capacity.
11055 env->migration_type = migrate_load;
11056 env->imbalance = busiest->group_misfit_task_load;
11061 if (busiest->group_type == group_asym_packing) {
11063 * In case of asym capacity, we will try to migrate all load to
11064 * the preferred CPU.
11066 env->migration_type = migrate_task;
11067 env->imbalance = busiest->sum_h_nr_running;
11071 if (busiest->group_type == group_smt_balance) {
11072 /* Reduce number of tasks sharing CPU capacity */
11073 env->migration_type = migrate_task;
11074 env->imbalance = 1;
11078 if (busiest->group_type == group_imbalanced) {
11080 * In the group_imb case we cannot rely on group-wide averages
11081 * to ensure CPU-load equilibrium, try to move any task to fix
11082 * the imbalance. The next load balance will take care of
11083 * balancing back the system.
11085 env->migration_type = migrate_task;
11086 env->imbalance = 1;
11091 * Try to use spare capacity of local group without overloading it or
11092 * emptying busiest.
11094 if (local->group_type == group_has_spare) {
11095 if ((busiest->group_type > group_fully_busy) &&
11096 !(env->sd->flags & SD_SHARE_LLC)) {
11098 * If busiest is overloaded, try to fill spare
11099 * capacity. This might end up creating spare capacity
11100 * in busiest or busiest still being overloaded but
11101 * there is no simple way to directly compute the
11102 * amount of load to migrate in order to balance the
11105 env->migration_type = migrate_util;
11106 env->imbalance = max(local->group_capacity, local->group_util) -
11110 * In some cases, the group's utilization is max or even
11111 * higher than capacity because of migrations but the
11112 * local CPU is (newly) idle. There is at least one
11113 * waiting task in this overloaded busiest group. Let's
11116 if (env->idle && env->imbalance == 0) {
11117 env->migration_type = migrate_task;
11118 env->imbalance = 1;
11124 if (busiest->group_weight == 1 || sds->prefer_sibling) {
11126 * When prefer sibling, evenly spread running tasks on
11129 env->migration_type = migrate_task;
11130 env->imbalance = sibling_imbalance(env, sds, busiest, local);
11134 * If there is no overload, we just want to even the number of
11137 env->migration_type = migrate_task;
11138 env->imbalance = max_t(long, 0,
11139 (local->idle_cpus - busiest->idle_cpus));
11143 /* Consider allowing a small imbalance between NUMA groups */
11144 if (env->sd->flags & SD_NUMA) {
11145 env->imbalance = adjust_numa_imbalance(env->imbalance,
11146 local->sum_nr_running + 1,
11147 env->sd->imb_numa_nr);
11151 /* Number of tasks to move to restore balance */
11152 env->imbalance >>= 1;
11158 * Local is fully busy but has to take more load to relieve the
11161 if (local->group_type < group_overloaded) {
11163 * Local will become overloaded so the avg_load metrics are
11167 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
11168 local->group_capacity;
11171 * If the local group is more loaded than the selected
11172 * busiest group don't try to pull any tasks.
11174 if (local->avg_load >= busiest->avg_load) {
11175 env->imbalance = 0;
11179 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
11180 sds->total_capacity;
11183 * If the local group is more loaded than the average system
11184 * load, don't try to pull any tasks.
11186 if (local->avg_load >= sds->avg_load) {
11187 env->imbalance = 0;
11194 * Both group are or will become overloaded and we're trying to get all
11195 * the CPUs to the average_load, so we don't want to push ourselves
11196 * above the average load, nor do we wish to reduce the max loaded CPU
11197 * below the average load. At the same time, we also don't want to
11198 * reduce the group load below the group capacity. Thus we look for
11199 * the minimum possible imbalance.
11201 env->migration_type = migrate_load;
11202 env->imbalance = min(
11203 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
11204 (sds->avg_load - local->avg_load) * local->group_capacity
11205 ) / SCHED_CAPACITY_SCALE;
11208 /******* sched_balance_find_src_group() helpers end here *********************/
11211 * Decision matrix according to the local and busiest group type:
11213 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
11214 * has_spare nr_idle balanced N/A N/A balanced balanced
11215 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
11216 * misfit_task force N/A N/A N/A N/A N/A
11217 * asym_packing force force N/A N/A force force
11218 * imbalanced force force N/A N/A force force
11219 * overloaded force force N/A N/A force avg_load
11221 * N/A : Not Applicable because already filtered while updating
11223 * balanced : The system is balanced for these 2 groups.
11224 * force : Calculate the imbalance as load migration is probably needed.
11225 * avg_load : Only if imbalance is significant enough.
11226 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
11227 * different in groups.
11231 * sched_balance_find_src_group - Returns the busiest group within the sched_domain
11232 * if there is an imbalance.
11233 * @env: The load balancing environment.
11235 * Also calculates the amount of runnable load which should be moved
11236 * to restore balance.
11238 * Return: - The busiest group if imbalance exists.
11240 static struct sched_group *sched_balance_find_src_group(struct lb_env *env)
11242 struct sg_lb_stats *local, *busiest;
11243 struct sd_lb_stats sds;
11245 init_sd_lb_stats(&sds);
11248 * Compute the various statistics relevant for load balancing at
11251 update_sd_lb_stats(env, &sds);
11253 /* There is no busy sibling group to pull tasks from */
11257 busiest = &sds.busiest_stat;
11259 /* Misfit tasks should be dealt with regardless of the avg load */
11260 if (busiest->group_type == group_misfit_task)
11261 goto force_balance;
11263 if (!is_rd_overutilized(env->dst_rq->rd) &&
11264 rcu_dereference(env->dst_rq->rd->pd))
11267 /* ASYM feature bypasses nice load balance check */
11268 if (busiest->group_type == group_asym_packing)
11269 goto force_balance;
11272 * If the busiest group is imbalanced the below checks don't
11273 * work because they assume all things are equal, which typically
11274 * isn't true due to cpus_ptr constraints and the like.
11276 if (busiest->group_type == group_imbalanced)
11277 goto force_balance;
11279 local = &sds.local_stat;
11281 * If the local group is busier than the selected busiest group
11282 * don't try and pull any tasks.
11284 if (local->group_type > busiest->group_type)
11288 * When groups are overloaded, use the avg_load to ensure fairness
11291 if (local->group_type == group_overloaded) {
11293 * If the local group is more loaded than the selected
11294 * busiest group don't try to pull any tasks.
11296 if (local->avg_load >= busiest->avg_load)
11299 /* XXX broken for overlapping NUMA groups */
11300 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
11301 sds.total_capacity;
11304 * Don't pull any tasks if this group is already above the
11305 * domain average load.
11307 if (local->avg_load >= sds.avg_load)
11311 * If the busiest group is more loaded, use imbalance_pct to be
11314 if (100 * busiest->avg_load <=
11315 env->sd->imbalance_pct * local->avg_load)
11320 * Try to move all excess tasks to a sibling domain of the busiest
11321 * group's child domain.
11323 if (sds.prefer_sibling && local->group_type == group_has_spare &&
11324 sibling_imbalance(env, &sds, busiest, local) > 1)
11325 goto force_balance;
11327 if (busiest->group_type != group_overloaded) {
11330 * If the busiest group is not overloaded (and as a
11331 * result the local one too) but this CPU is already
11332 * busy, let another idle CPU try to pull task.
11337 if (busiest->group_type == group_smt_balance &&
11338 smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
11339 /* Let non SMT CPU pull from SMT CPU sharing with sibling */
11340 goto force_balance;
11343 if (busiest->group_weight > 1 &&
11344 local->idle_cpus <= (busiest->idle_cpus + 1)) {
11346 * If the busiest group is not overloaded
11347 * and there is no imbalance between this and busiest
11348 * group wrt idle CPUs, it is balanced. The imbalance
11349 * becomes significant if the diff is greater than 1
11350 * otherwise we might end up to just move the imbalance
11351 * on another group. Of course this applies only if
11352 * there is more than 1 CPU per group.
11357 if (busiest->sum_h_nr_running == 1) {
11359 * busiest doesn't have any tasks waiting to run
11366 /* Looks like there is an imbalance. Compute it */
11367 calculate_imbalance(env, &sds);
11368 return env->imbalance ? sds.busiest : NULL;
11371 env->imbalance = 0;
11376 * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group.
11378 static struct rq *sched_balance_find_src_rq(struct lb_env *env,
11379 struct sched_group *group)
11381 struct rq *busiest = NULL, *rq;
11382 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
11383 unsigned int busiest_nr = 0;
11386 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
11387 unsigned long capacity, load, util;
11388 unsigned int nr_running;
11392 rt = fbq_classify_rq(rq);
11395 * We classify groups/runqueues into three groups:
11396 * - regular: there are !numa tasks
11397 * - remote: there are numa tasks that run on the 'wrong' node
11398 * - all: there is no distinction
11400 * In order to avoid migrating ideally placed numa tasks,
11401 * ignore those when there's better options.
11403 * If we ignore the actual busiest queue to migrate another
11404 * task, the next balance pass can still reduce the busiest
11405 * queue by moving tasks around inside the node.
11407 * If we cannot move enough load due to this classification
11408 * the next pass will adjust the group classification and
11409 * allow migration of more tasks.
11411 * Both cases only affect the total convergence complexity.
11413 if (rt > env->fbq_type)
11416 nr_running = rq->cfs.h_nr_running;
11420 capacity = capacity_of(i);
11423 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11424 * eventually lead to active_balancing high->low capacity.
11425 * Higher per-CPU capacity is considered better than balancing
11428 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11429 !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11434 * Make sure we only pull tasks from a CPU of lower priority
11435 * when balancing between SMT siblings.
11437 * If balancing between cores, let lower priority CPUs help
11438 * SMT cores with more than one busy sibling.
11440 if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1)
11443 switch (env->migration_type) {
11446 * When comparing with load imbalance, use cpu_load()
11447 * which is not scaled with the CPU capacity.
11449 load = cpu_load(rq);
11451 if (nr_running == 1 && load > env->imbalance &&
11452 !check_cpu_capacity(rq, env->sd))
11456 * For the load comparisons with the other CPUs,
11457 * consider the cpu_load() scaled with the CPU
11458 * capacity, so that the load can be moved away
11459 * from the CPU that is potentially running at a
11462 * Thus we're looking for max(load_i / capacity_i),
11463 * crosswise multiplication to rid ourselves of the
11464 * division works out to:
11465 * load_i * capacity_j > load_j * capacity_i;
11466 * where j is our previous maximum.
11468 if (load * busiest_capacity > busiest_load * capacity) {
11469 busiest_load = load;
11470 busiest_capacity = capacity;
11476 util = cpu_util_cfs_boost(i);
11479 * Don't try to pull utilization from a CPU with one
11480 * running task. Whatever its utilization, we will fail
11483 if (nr_running <= 1)
11486 if (busiest_util < util) {
11487 busiest_util = util;
11493 if (busiest_nr < nr_running) {
11494 busiest_nr = nr_running;
11499 case migrate_misfit:
11501 * For ASYM_CPUCAPACITY domains with misfit tasks we
11502 * simply seek the "biggest" misfit task.
11504 if (rq->misfit_task_load > busiest_load) {
11505 busiest_load = rq->misfit_task_load;
11518 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11519 * so long as it is large enough.
11521 #define MAX_PINNED_INTERVAL 512
11524 asym_active_balance(struct lb_env *env)
11527 * ASYM_PACKING needs to force migrate tasks from busy but lower
11528 * priority CPUs in order to pack all tasks in the highest priority
11529 * CPUs. When done between cores, do it only if the whole core if the
11530 * whole core is idle.
11532 * If @env::src_cpu is an SMT core with busy siblings, let
11533 * the lower priority @env::dst_cpu help it. Do not follow
11536 return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) &&
11537 (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11538 !sched_use_asym_prio(env->sd, env->src_cpu));
11542 imbalanced_active_balance(struct lb_env *env)
11544 struct sched_domain *sd = env->sd;
11547 * The imbalanced case includes the case of pinned tasks preventing a fair
11548 * distribution of the load on the system but also the even distribution of the
11549 * threads on a system with spare capacity
11551 if ((env->migration_type == migrate_task) &&
11552 (sd->nr_balance_failed > sd->cache_nice_tries+2))
11558 static int need_active_balance(struct lb_env *env)
11560 struct sched_domain *sd = env->sd;
11562 if (asym_active_balance(env))
11565 if (imbalanced_active_balance(env))
11569 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11570 * It's worth migrating the task if the src_cpu's capacity is reduced
11571 * because of other sched_class or IRQs if more capacity stays
11572 * available on dst_cpu.
11575 (env->src_rq->cfs.h_nr_running == 1)) {
11576 if ((check_cpu_capacity(env->src_rq, sd)) &&
11577 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11581 if (env->migration_type == migrate_misfit)
11587 static int active_load_balance_cpu_stop(void *data);
11589 static int should_we_balance(struct lb_env *env)
11591 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11592 struct sched_group *sg = env->sd->groups;
11593 int cpu, idle_smt = -1;
11596 * Ensure the balancing environment is consistent; can happen
11597 * when the softirq triggers 'during' hotplug.
11599 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11603 * In the newly idle case, we will allow all the CPUs
11604 * to do the newly idle load balance.
11606 * However, we bail out if we already have tasks or a wakeup pending,
11607 * to optimize wakeup latency.
11609 if (env->idle == CPU_NEWLY_IDLE) {
11610 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11615 cpumask_copy(swb_cpus, group_balance_mask(sg));
11616 /* Try to find first idle CPU */
11617 for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11618 if (!idle_cpu(cpu))
11622 * Don't balance to idle SMT in busy core right away when
11623 * balancing cores, but remember the first idle SMT CPU for
11624 * later consideration. Find CPU on an idle core first.
11626 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11627 if (idle_smt == -1)
11630 * If the core is not idle, and first SMT sibling which is
11631 * idle has been found, then its not needed to check other
11632 * SMT siblings for idleness:
11634 #ifdef CONFIG_SCHED_SMT
11635 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11641 * Are we the first idle core in a non-SMT domain or higher,
11642 * or the first idle CPU in a SMT domain?
11644 return cpu == env->dst_cpu;
11647 /* Are we the first idle CPU with busy siblings? */
11648 if (idle_smt != -1)
11649 return idle_smt == env->dst_cpu;
11651 /* Are we the first CPU of this group ? */
11652 return group_balance_cpu(sg) == env->dst_cpu;
11656 * Check this_cpu to ensure it is balanced within domain. Attempt to move
11657 * tasks if there is an imbalance.
11659 static int sched_balance_rq(int this_cpu, struct rq *this_rq,
11660 struct sched_domain *sd, enum cpu_idle_type idle,
11661 int *continue_balancing)
11663 int ld_moved, cur_ld_moved, active_balance = 0;
11664 struct sched_domain *sd_parent = sd->parent;
11665 struct sched_group *group;
11666 struct rq *busiest;
11667 struct rq_flags rf;
11668 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11669 struct lb_env env = {
11671 .dst_cpu = this_cpu,
11673 .dst_grpmask = group_balance_mask(sd->groups),
11675 .loop_break = SCHED_NR_MIGRATE_BREAK,
11678 .tasks = LIST_HEAD_INIT(env.tasks),
11681 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11683 schedstat_inc(sd->lb_count[idle]);
11686 if (!should_we_balance(&env)) {
11687 *continue_balancing = 0;
11691 group = sched_balance_find_src_group(&env);
11693 schedstat_inc(sd->lb_nobusyg[idle]);
11697 busiest = sched_balance_find_src_rq(&env, group);
11699 schedstat_inc(sd->lb_nobusyq[idle]);
11703 WARN_ON_ONCE(busiest == env.dst_rq);
11705 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
11707 env.src_cpu = busiest->cpu;
11708 env.src_rq = busiest;
11711 /* Clear this flag as soon as we find a pullable task */
11712 env.flags |= LBF_ALL_PINNED;
11713 if (busiest->nr_running > 1) {
11715 * Attempt to move tasks. If sched_balance_find_src_group has found
11716 * an imbalance but busiest->nr_running <= 1, the group is
11717 * still unbalanced. ld_moved simply stays zero, so it is
11718 * correctly treated as an imbalance.
11720 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
11723 rq_lock_irqsave(busiest, &rf);
11724 update_rq_clock(busiest);
11727 * cur_ld_moved - load moved in current iteration
11728 * ld_moved - cumulative load moved across iterations
11730 cur_ld_moved = detach_tasks(&env);
11733 * We've detached some tasks from busiest_rq. Every
11734 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11735 * unlock busiest->lock, and we are able to be sure
11736 * that nobody can manipulate the tasks in parallel.
11737 * See task_rq_lock() family for the details.
11740 rq_unlock(busiest, &rf);
11742 if (cur_ld_moved) {
11743 attach_tasks(&env);
11744 ld_moved += cur_ld_moved;
11747 local_irq_restore(rf.flags);
11749 if (env.flags & LBF_NEED_BREAK) {
11750 env.flags &= ~LBF_NEED_BREAK;
11755 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11756 * us and move them to an alternate dst_cpu in our sched_group
11757 * where they can run. The upper limit on how many times we
11758 * iterate on same src_cpu is dependent on number of CPUs in our
11761 * This changes load balance semantics a bit on who can move
11762 * load to a given_cpu. In addition to the given_cpu itself
11763 * (or a ilb_cpu acting on its behalf where given_cpu is
11764 * nohz-idle), we now have balance_cpu in a position to move
11765 * load to given_cpu. In rare situations, this may cause
11766 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11767 * _independently_ and at _same_ time to move some load to
11768 * given_cpu) causing excess load to be moved to given_cpu.
11769 * This however should not happen so much in practice and
11770 * moreover subsequent load balance cycles should correct the
11771 * excess load moved.
11773 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11775 /* Prevent to re-select dst_cpu via env's CPUs */
11776 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
11778 env.dst_rq = cpu_rq(env.new_dst_cpu);
11779 env.dst_cpu = env.new_dst_cpu;
11780 env.flags &= ~LBF_DST_PINNED;
11782 env.loop_break = SCHED_NR_MIGRATE_BREAK;
11785 * Go back to "more_balance" rather than "redo" since we
11786 * need to continue with same src_cpu.
11792 * We failed to reach balance because of affinity.
11795 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11797 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11798 *group_imbalance = 1;
11801 /* All tasks on this runqueue were pinned by CPU affinity */
11802 if (unlikely(env.flags & LBF_ALL_PINNED)) {
11803 __cpumask_clear_cpu(cpu_of(busiest), cpus);
11805 * Attempting to continue load balancing at the current
11806 * sched_domain level only makes sense if there are
11807 * active CPUs remaining as possible busiest CPUs to
11808 * pull load from which are not contained within the
11809 * destination group that is receiving any migrated
11812 if (!cpumask_subset(cpus, env.dst_grpmask)) {
11814 env.loop_break = SCHED_NR_MIGRATE_BREAK;
11817 goto out_all_pinned;
11822 schedstat_inc(sd->lb_failed[idle]);
11824 * Increment the failure counter only on periodic balance.
11825 * We do not want newidle balance, which can be very
11826 * frequent, pollute the failure counter causing
11827 * excessive cache_hot migrations and active balances.
11829 * Similarly for migration_misfit which is not related to
11830 * load/util migration, don't pollute nr_balance_failed.
11832 if (idle != CPU_NEWLY_IDLE &&
11833 env.migration_type != migrate_misfit)
11834 sd->nr_balance_failed++;
11836 if (need_active_balance(&env)) {
11837 unsigned long flags;
11839 raw_spin_rq_lock_irqsave(busiest, flags);
11842 * Don't kick the active_load_balance_cpu_stop,
11843 * if the curr task on busiest CPU can't be
11844 * moved to this_cpu:
11846 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11847 raw_spin_rq_unlock_irqrestore(busiest, flags);
11848 goto out_one_pinned;
11851 /* Record that we found at least one task that could run on this_cpu */
11852 env.flags &= ~LBF_ALL_PINNED;
11855 * ->active_balance synchronizes accesses to
11856 * ->active_balance_work. Once set, it's cleared
11857 * only after active load balance is finished.
11859 if (!busiest->active_balance) {
11860 busiest->active_balance = 1;
11861 busiest->push_cpu = this_cpu;
11862 active_balance = 1;
11866 raw_spin_rq_unlock_irqrestore(busiest, flags);
11867 if (active_balance) {
11868 stop_one_cpu_nowait(cpu_of(busiest),
11869 active_load_balance_cpu_stop, busiest,
11870 &busiest->active_balance_work);
11875 sd->nr_balance_failed = 0;
11878 if (likely(!active_balance) || need_active_balance(&env)) {
11879 /* We were unbalanced, so reset the balancing interval */
11880 sd->balance_interval = sd->min_interval;
11887 * We reach balance although we may have faced some affinity
11888 * constraints. Clear the imbalance flag only if other tasks got
11889 * a chance to move and fix the imbalance.
11891 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11892 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11894 if (*group_imbalance)
11895 *group_imbalance = 0;
11900 * We reach balance because all tasks are pinned at this level so
11901 * we can't migrate them. Let the imbalance flag set so parent level
11902 * can try to migrate them.
11904 schedstat_inc(sd->lb_balanced[idle]);
11906 sd->nr_balance_failed = 0;
11912 * sched_balance_newidle() disregards balance intervals, so we could
11913 * repeatedly reach this code, which would lead to balance_interval
11914 * skyrocketing in a short amount of time. Skip the balance_interval
11915 * increase logic to avoid that.
11917 * Similarly misfit migration which is not necessarily an indication of
11918 * the system being busy and requires lb to backoff to let it settle
11921 if (env.idle == CPU_NEWLY_IDLE ||
11922 env.migration_type == migrate_misfit)
11925 /* tune up the balancing interval */
11926 if ((env.flags & LBF_ALL_PINNED &&
11927 sd->balance_interval < MAX_PINNED_INTERVAL) ||
11928 sd->balance_interval < sd->max_interval)
11929 sd->balance_interval *= 2;
11934 static inline unsigned long
11935 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11937 unsigned long interval = sd->balance_interval;
11940 interval *= sd->busy_factor;
11942 /* scale ms to jiffies */
11943 interval = msecs_to_jiffies(interval);
11946 * Reduce likelihood of busy balancing at higher domains racing with
11947 * balancing at lower domains by preventing their balancing periods
11948 * from being multiples of each other.
11953 interval = clamp(interval, 1UL, max_load_balance_interval);
11959 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
11961 unsigned long interval, next;
11963 /* used by idle balance, so cpu_busy = 0 */
11964 interval = get_sd_balance_interval(sd, 0);
11965 next = sd->last_balance + interval;
11967 if (time_after(*next_balance, next))
11968 *next_balance = next;
11972 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
11973 * running tasks off the busiest CPU onto idle CPUs. It requires at
11974 * least 1 task to be running on each physical CPU where possible, and
11975 * avoids physical / logical imbalances.
11977 static int active_load_balance_cpu_stop(void *data)
11979 struct rq *busiest_rq = data;
11980 int busiest_cpu = cpu_of(busiest_rq);
11981 int target_cpu = busiest_rq->push_cpu;
11982 struct rq *target_rq = cpu_rq(target_cpu);
11983 struct sched_domain *sd;
11984 struct task_struct *p = NULL;
11985 struct rq_flags rf;
11987 rq_lock_irq(busiest_rq, &rf);
11989 * Between queueing the stop-work and running it is a hole in which
11990 * CPUs can become inactive. We should not move tasks from or to
11993 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
11996 /* Make sure the requested CPU hasn't gone down in the meantime: */
11997 if (unlikely(busiest_cpu != smp_processor_id() ||
11998 !busiest_rq->active_balance))
12001 /* Is there any task to move? */
12002 if (busiest_rq->nr_running <= 1)
12006 * This condition is "impossible", if it occurs
12007 * we need to fix it. Originally reported by
12008 * Bjorn Helgaas on a 128-CPU setup.
12010 WARN_ON_ONCE(busiest_rq == target_rq);
12012 /* Search for an sd spanning us and the target CPU. */
12014 for_each_domain(target_cpu, sd) {
12015 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
12020 struct lb_env env = {
12022 .dst_cpu = target_cpu,
12023 .dst_rq = target_rq,
12024 .src_cpu = busiest_rq->cpu,
12025 .src_rq = busiest_rq,
12027 .flags = LBF_ACTIVE_LB,
12030 schedstat_inc(sd->alb_count);
12031 update_rq_clock(busiest_rq);
12033 p = detach_one_task(&env);
12035 schedstat_inc(sd->alb_pushed);
12036 /* Active balancing done, reset the failure counter. */
12037 sd->nr_balance_failed = 0;
12039 schedstat_inc(sd->alb_failed);
12044 busiest_rq->active_balance = 0;
12045 rq_unlock(busiest_rq, &rf);
12048 attach_one_task(target_rq, p);
12050 local_irq_enable();
12056 * This flag serializes load-balancing passes over large domains
12057 * (above the NODE topology level) - only one load-balancing instance
12058 * may run at a time, to reduce overhead on very large systems with
12059 * lots of CPUs and large NUMA distances.
12061 * - Note that load-balancing passes triggered while another one
12062 * is executing are skipped and not re-tried.
12064 * - Also note that this does not serialize rebalance_domains()
12065 * execution, as non-SD_SERIALIZE domains will still be
12066 * load-balanced in parallel.
12068 static atomic_t sched_balance_running = ATOMIC_INIT(0);
12071 * Scale the max sched_balance_rq interval with the number of CPUs in the system.
12072 * This trades load-balance latency on larger machines for less cross talk.
12074 void update_max_interval(void)
12076 max_load_balance_interval = HZ*num_online_cpus()/10;
12079 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
12081 if (cost > sd->max_newidle_lb_cost) {
12083 * Track max cost of a domain to make sure to not delay the
12084 * next wakeup on the CPU.
12086 sd->max_newidle_lb_cost = cost;
12087 sd->last_decay_max_lb_cost = jiffies;
12088 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
12090 * Decay the newidle max times by ~1% per second to ensure that
12091 * it is not outdated and the current max cost is actually
12094 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
12095 sd->last_decay_max_lb_cost = jiffies;
12104 * It checks each scheduling domain to see if it is due to be balanced,
12105 * and initiates a balancing operation if so.
12107 * Balancing parameters are set up in init_sched_domains.
12109 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle)
12111 int continue_balancing = 1;
12113 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
12114 unsigned long interval;
12115 struct sched_domain *sd;
12116 /* Earliest time when we have to do rebalance again */
12117 unsigned long next_balance = jiffies + 60*HZ;
12118 int update_next_balance = 0;
12119 int need_serialize, need_decay = 0;
12123 for_each_domain(cpu, sd) {
12125 * Decay the newidle max times here because this is a regular
12126 * visit to all the domains.
12128 need_decay = update_newidle_cost(sd, 0);
12129 max_cost += sd->max_newidle_lb_cost;
12132 * Stop the load balance at this level. There is another
12133 * CPU in our sched group which is doing load balancing more
12136 if (!continue_balancing) {
12142 interval = get_sd_balance_interval(sd, busy);
12144 need_serialize = sd->flags & SD_SERIALIZE;
12145 if (need_serialize) {
12146 if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1))
12150 if (time_after_eq(jiffies, sd->last_balance + interval)) {
12151 if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) {
12153 * The LBF_DST_PINNED logic could have changed
12154 * env->dst_cpu, so we can't know our idle
12155 * state even if we migrated tasks. Update it.
12157 idle = idle_cpu(cpu);
12158 busy = !idle && !sched_idle_cpu(cpu);
12160 sd->last_balance = jiffies;
12161 interval = get_sd_balance_interval(sd, busy);
12163 if (need_serialize)
12164 atomic_set_release(&sched_balance_running, 0);
12166 if (time_after(next_balance, sd->last_balance + interval)) {
12167 next_balance = sd->last_balance + interval;
12168 update_next_balance = 1;
12173 * Ensure the rq-wide value also decays but keep it at a
12174 * reasonable floor to avoid funnies with rq->avg_idle.
12176 rq->max_idle_balance_cost =
12177 max((u64)sysctl_sched_migration_cost, max_cost);
12182 * next_balance will be updated only when there is a need.
12183 * When the cpu is attached to null domain for ex, it will not be
12186 if (likely(update_next_balance))
12187 rq->next_balance = next_balance;
12191 static inline int on_null_domain(struct rq *rq)
12193 return unlikely(!rcu_dereference_sched(rq->sd));
12196 #ifdef CONFIG_NO_HZ_COMMON
12198 * NOHZ idle load balancing (ILB) details:
12200 * - When one of the busy CPUs notices that there may be an idle rebalancing
12201 * needed, they will kick the idle load balancer, which then does idle
12202 * load balancing for all the idle CPUs.
12204 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set
12207 static inline int find_new_ilb(void)
12209 const struct cpumask *hk_mask;
12212 hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
12214 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) {
12216 if (ilb_cpu == smp_processor_id())
12219 if (idle_cpu(ilb_cpu))
12227 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
12228 * SMP function call (IPI).
12230 * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
12232 static void kick_ilb(unsigned int flags)
12237 * Increase nohz.next_balance only when if full ilb is triggered but
12238 * not if we only update stats.
12240 if (flags & NOHZ_BALANCE_KICK)
12241 nohz.next_balance = jiffies+1;
12243 ilb_cpu = find_new_ilb();
12248 * Don't bother if no new NOHZ balance work items for ilb_cpu,
12249 * i.e. all bits in flags are already set in ilb_cpu.
12251 if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags)
12255 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
12256 * the first flag owns it; cleared by nohz_csd_func().
12258 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
12259 if (flags & NOHZ_KICK_MASK)
12263 * This way we generate an IPI on the target CPU which
12264 * is idle, and the softirq performing NOHZ idle load balancing
12265 * will be run before returning from the IPI.
12267 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
12271 * Current decision point for kicking the idle load balancer in the presence
12272 * of idle CPUs in the system.
12274 static void nohz_balancer_kick(struct rq *rq)
12276 unsigned long now = jiffies;
12277 struct sched_domain_shared *sds;
12278 struct sched_domain *sd;
12279 int nr_busy, i, cpu = rq->cpu;
12280 unsigned int flags = 0;
12282 if (unlikely(rq->idle_balance))
12286 * We may be recently in ticked or tickless idle mode. At the first
12287 * busy tick after returning from idle, we will update the busy stats.
12289 nohz_balance_exit_idle(rq);
12292 * None are in tickless mode and hence no need for NOHZ idle load
12295 if (likely(!atomic_read(&nohz.nr_cpus)))
12298 if (READ_ONCE(nohz.has_blocked) &&
12299 time_after(now, READ_ONCE(nohz.next_blocked)))
12300 flags = NOHZ_STATS_KICK;
12302 if (time_before(now, nohz.next_balance))
12305 if (rq->nr_running >= 2) {
12306 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12312 sd = rcu_dereference(rq->sd);
12315 * If there's a runnable CFS task and the current CPU has reduced
12316 * capacity, kick the ILB to see if there's a better CPU to run on:
12318 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
12319 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12324 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
12327 * When ASYM_PACKING; see if there's a more preferred CPU
12328 * currently idle; in which case, kick the ILB to move tasks
12331 * When balancing between cores, all the SMT siblings of the
12332 * preferred CPU must be idle.
12334 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
12335 if (sched_asym(sd, i, cpu)) {
12336 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12342 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
12345 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
12346 * to run the misfit task on.
12348 if (check_misfit_status(rq)) {
12349 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12354 * For asymmetric systems, we do not want to nicely balance
12355 * cache use, instead we want to embrace asymmetry and only
12356 * ensure tasks have enough CPU capacity.
12358 * Skip the LLC logic because it's not relevant in that case.
12363 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
12366 * If there is an imbalance between LLC domains (IOW we could
12367 * increase the overall cache utilization), we need a less-loaded LLC
12368 * domain to pull some load from. Likewise, we may need to spread
12369 * load within the current LLC domain (e.g. packed SMT cores but
12370 * other CPUs are idle). We can't really know from here how busy
12371 * the others are - so just get a NOHZ balance going if it looks
12372 * like this LLC domain has tasks we could move.
12374 nr_busy = atomic_read(&sds->nr_busy_cpus);
12376 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12383 if (READ_ONCE(nohz.needs_update))
12384 flags |= NOHZ_NEXT_KICK;
12390 static void set_cpu_sd_state_busy(int cpu)
12392 struct sched_domain *sd;
12395 sd = rcu_dereference(per_cpu(sd_llc, cpu));
12397 if (!sd || !sd->nohz_idle)
12401 atomic_inc(&sd->shared->nr_busy_cpus);
12406 void nohz_balance_exit_idle(struct rq *rq)
12408 SCHED_WARN_ON(rq != this_rq());
12410 if (likely(!rq->nohz_tick_stopped))
12413 rq->nohz_tick_stopped = 0;
12414 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
12415 atomic_dec(&nohz.nr_cpus);
12417 set_cpu_sd_state_busy(rq->cpu);
12420 static void set_cpu_sd_state_idle(int cpu)
12422 struct sched_domain *sd;
12425 sd = rcu_dereference(per_cpu(sd_llc, cpu));
12427 if (!sd || sd->nohz_idle)
12431 atomic_dec(&sd->shared->nr_busy_cpus);
12437 * This routine will record that the CPU is going idle with tick stopped.
12438 * This info will be used in performing idle load balancing in the future.
12440 void nohz_balance_enter_idle(int cpu)
12442 struct rq *rq = cpu_rq(cpu);
12444 SCHED_WARN_ON(cpu != smp_processor_id());
12446 /* If this CPU is going down, then nothing needs to be done: */
12447 if (!cpu_active(cpu))
12450 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
12451 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
12455 * Can be set safely without rq->lock held
12456 * If a clear happens, it will have evaluated last additions because
12457 * rq->lock is held during the check and the clear
12459 rq->has_blocked_load = 1;
12462 * The tick is still stopped but load could have been added in the
12463 * meantime. We set the nohz.has_blocked flag to trig a check of the
12464 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12465 * of nohz.has_blocked can only happen after checking the new load
12467 if (rq->nohz_tick_stopped)
12470 /* If we're a completely isolated CPU, we don't play: */
12471 if (on_null_domain(rq))
12474 rq->nohz_tick_stopped = 1;
12476 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12477 atomic_inc(&nohz.nr_cpus);
12480 * Ensures that if nohz_idle_balance() fails to observe our
12481 * @idle_cpus_mask store, it must observe the @has_blocked
12482 * and @needs_update stores.
12484 smp_mb__after_atomic();
12486 set_cpu_sd_state_idle(cpu);
12488 WRITE_ONCE(nohz.needs_update, 1);
12491 * Each time a cpu enter idle, we assume that it has blocked load and
12492 * enable the periodic update of the load of idle CPUs
12494 WRITE_ONCE(nohz.has_blocked, 1);
12497 static bool update_nohz_stats(struct rq *rq)
12499 unsigned int cpu = rq->cpu;
12501 if (!rq->has_blocked_load)
12504 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12507 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12510 sched_balance_update_blocked_averages(cpu);
12512 return rq->has_blocked_load;
12516 * Internal function that runs load balance for all idle CPUs. The load balance
12517 * can be a simple update of blocked load or a complete load balance with
12518 * tasks movement depending of flags.
12520 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12522 /* Earliest time when we have to do rebalance again */
12523 unsigned long now = jiffies;
12524 unsigned long next_balance = now + 60*HZ;
12525 bool has_blocked_load = false;
12526 int update_next_balance = 0;
12527 int this_cpu = this_rq->cpu;
12531 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12534 * We assume there will be no idle load after this update and clear
12535 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12536 * set the has_blocked flag and trigger another update of idle load.
12537 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12538 * setting the flag, we are sure to not clear the state and not
12539 * check the load of an idle cpu.
12541 * Same applies to idle_cpus_mask vs needs_update.
12543 if (flags & NOHZ_STATS_KICK)
12544 WRITE_ONCE(nohz.has_blocked, 0);
12545 if (flags & NOHZ_NEXT_KICK)
12546 WRITE_ONCE(nohz.needs_update, 0);
12549 * Ensures that if we miss the CPU, we must see the has_blocked
12550 * store from nohz_balance_enter_idle().
12555 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12556 * chance for other idle cpu to pull load.
12558 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) {
12559 if (!idle_cpu(balance_cpu))
12563 * If this CPU gets work to do, stop the load balancing
12564 * work being done for other CPUs. Next load
12565 * balancing owner will pick it up.
12567 if (need_resched()) {
12568 if (flags & NOHZ_STATS_KICK)
12569 has_blocked_load = true;
12570 if (flags & NOHZ_NEXT_KICK)
12571 WRITE_ONCE(nohz.needs_update, 1);
12575 rq = cpu_rq(balance_cpu);
12577 if (flags & NOHZ_STATS_KICK)
12578 has_blocked_load |= update_nohz_stats(rq);
12581 * If time for next balance is due,
12584 if (time_after_eq(jiffies, rq->next_balance)) {
12585 struct rq_flags rf;
12587 rq_lock_irqsave(rq, &rf);
12588 update_rq_clock(rq);
12589 rq_unlock_irqrestore(rq, &rf);
12591 if (flags & NOHZ_BALANCE_KICK)
12592 sched_balance_domains(rq, CPU_IDLE);
12595 if (time_after(next_balance, rq->next_balance)) {
12596 next_balance = rq->next_balance;
12597 update_next_balance = 1;
12602 * next_balance will be updated only when there is a need.
12603 * When the CPU is attached to null domain for ex, it will not be
12606 if (likely(update_next_balance))
12607 nohz.next_balance = next_balance;
12609 if (flags & NOHZ_STATS_KICK)
12610 WRITE_ONCE(nohz.next_blocked,
12611 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12614 /* There is still blocked load, enable periodic update */
12615 if (has_blocked_load)
12616 WRITE_ONCE(nohz.has_blocked, 1);
12620 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12621 * rebalancing for all the CPUs for whom scheduler ticks are stopped.
12623 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12625 unsigned int flags = this_rq->nohz_idle_balance;
12630 this_rq->nohz_idle_balance = 0;
12632 if (idle != CPU_IDLE)
12635 _nohz_idle_balance(this_rq, flags);
12641 * Check if we need to directly run the ILB for updating blocked load before
12642 * entering idle state. Here we run ILB directly without issuing IPIs.
12644 * Note that when this function is called, the tick may not yet be stopped on
12645 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and
12646 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates
12647 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle
12648 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is
12649 * called from this function on (this) CPU that's not yet in the mask. That's
12650 * OK because the goal of nohz_run_idle_balance() is to run ILB only for
12651 * updating the blocked load of already idle CPUs without waking up one of
12652 * those idle CPUs and outside the preempt disable / IRQ off phase of the local
12653 * cpu about to enter idle, because it can take a long time.
12655 void nohz_run_idle_balance(int cpu)
12657 unsigned int flags;
12659 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12662 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12663 * (i.e. NOHZ_STATS_KICK set) and will do the same.
12665 if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12666 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12669 static void nohz_newidle_balance(struct rq *this_rq)
12671 int this_cpu = this_rq->cpu;
12674 * This CPU doesn't want to be disturbed by scheduler
12677 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
12680 /* Will wake up very soon. No time for doing anything else*/
12681 if (this_rq->avg_idle < sysctl_sched_migration_cost)
12684 /* Don't need to update blocked load of idle CPUs*/
12685 if (!READ_ONCE(nohz.has_blocked) ||
12686 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12690 * Set the need to trigger ILB in order to update blocked load
12691 * before entering idle state.
12693 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12696 #else /* !CONFIG_NO_HZ_COMMON */
12697 static inline void nohz_balancer_kick(struct rq *rq) { }
12699 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12704 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12705 #endif /* CONFIG_NO_HZ_COMMON */
12708 * sched_balance_newidle is called by schedule() if this_cpu is about to become
12709 * idle. Attempts to pull tasks from other CPUs.
12712 * < 0 - we released the lock and there are !fair tasks present
12713 * 0 - failed, no new tasks
12714 * > 0 - success, new (fair) tasks present
12716 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf)
12718 unsigned long next_balance = jiffies + HZ;
12719 int this_cpu = this_rq->cpu;
12720 int continue_balancing = 1;
12721 u64 t0, t1, curr_cost = 0;
12722 struct sched_domain *sd;
12723 int pulled_task = 0;
12725 update_misfit_status(NULL, this_rq);
12728 * There is a task waiting to run. No need to search for one.
12729 * Return 0; the task will be enqueued when switching to idle.
12731 if (this_rq->ttwu_pending)
12735 * We must set idle_stamp _before_ calling sched_balance_rq()
12736 * for CPU_NEWLY_IDLE, such that we measure the this duration
12739 this_rq->idle_stamp = rq_clock(this_rq);
12742 * Do not pull tasks towards !active CPUs...
12744 if (!cpu_active(this_cpu))
12748 * This is OK, because current is on_cpu, which avoids it being picked
12749 * for load-balance and preemption/IRQs are still disabled avoiding
12750 * further scheduler activity on it and we're being very careful to
12751 * re-start the picking loop.
12753 rq_unpin_lock(this_rq, rf);
12756 sd = rcu_dereference_check_sched_domain(this_rq->sd);
12758 if (!get_rd_overloaded(this_rq->rd) ||
12759 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12762 update_next_balance(sd, &next_balance);
12769 raw_spin_rq_unlock(this_rq);
12771 t0 = sched_clock_cpu(this_cpu);
12772 sched_balance_update_blocked_averages(this_cpu);
12775 for_each_domain(this_cpu, sd) {
12778 update_next_balance(sd, &next_balance);
12780 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12783 if (sd->flags & SD_BALANCE_NEWIDLE) {
12785 pulled_task = sched_balance_rq(this_cpu, this_rq,
12786 sd, CPU_NEWLY_IDLE,
12787 &continue_balancing);
12789 t1 = sched_clock_cpu(this_cpu);
12790 domain_cost = t1 - t0;
12791 update_newidle_cost(sd, domain_cost);
12793 curr_cost += domain_cost;
12798 * Stop searching for tasks to pull if there are
12799 * now runnable tasks on this rq.
12801 if (pulled_task || !continue_balancing)
12806 raw_spin_rq_lock(this_rq);
12808 if (curr_cost > this_rq->max_idle_balance_cost)
12809 this_rq->max_idle_balance_cost = curr_cost;
12812 * While browsing the domains, we released the rq lock, a task could
12813 * have been enqueued in the meantime. Since we're not going idle,
12814 * pretend we pulled a task.
12816 if (this_rq->cfs.h_nr_running && !pulled_task)
12819 /* Is there a task of a high priority class? */
12820 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
12824 /* Move the next balance forward */
12825 if (time_after(this_rq->next_balance, next_balance))
12826 this_rq->next_balance = next_balance;
12829 this_rq->idle_stamp = 0;
12831 nohz_newidle_balance(this_rq);
12833 rq_repin_lock(this_rq, rf);
12835 return pulled_task;
12839 * This softirq handler is triggered via SCHED_SOFTIRQ from two places:
12841 * - directly from the local scheduler_tick() for periodic load balancing
12843 * - indirectly from a remote scheduler_tick() for NOHZ idle balancing
12844 * through the SMP cross-call nohz_csd_func()
12846 static __latent_entropy void sched_balance_softirq(void)
12848 struct rq *this_rq = this_rq();
12849 enum cpu_idle_type idle = this_rq->idle_balance;
12851 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the
12852 * balancing on behalf of the other idle CPUs whose ticks are
12853 * stopped. Do nohz_idle_balance *before* sched_balance_domains to
12854 * give the idle CPUs a chance to load balance. Else we may
12855 * load balance only within the local sched_domain hierarchy
12856 * and abort nohz_idle_balance altogether if we pull some load.
12858 if (nohz_idle_balance(this_rq, idle))
12861 /* normal load balance */
12862 sched_balance_update_blocked_averages(this_rq->cpu);
12863 sched_balance_domains(this_rq, idle);
12867 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12869 void sched_balance_trigger(struct rq *rq)
12872 * Don't need to rebalance while attached to NULL domain or
12873 * runqueue CPU is not active
12875 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12878 if (time_after_eq(jiffies, rq->next_balance))
12879 raise_softirq(SCHED_SOFTIRQ);
12881 nohz_balancer_kick(rq);
12884 static void rq_online_fair(struct rq *rq)
12888 update_runtime_enabled(rq);
12891 static void rq_offline_fair(struct rq *rq)
12895 /* Ensure any throttled groups are reachable by pick_next_task */
12896 unthrottle_offline_cfs_rqs(rq);
12898 /* Ensure that we remove rq contribution to group share: */
12899 clear_tg_offline_cfs_rqs(rq);
12902 #endif /* CONFIG_SMP */
12904 #ifdef CONFIG_SCHED_CORE
12906 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12908 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12909 u64 slice = se->slice;
12911 return (rtime * min_nr_tasks > slice);
12914 #define MIN_NR_TASKS_DURING_FORCEIDLE 2
12915 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12917 if (!sched_core_enabled(rq))
12921 * If runqueue has only one task which used up its slice and
12922 * if the sibling is forced idle, then trigger schedule to
12923 * give forced idle task a chance.
12925 * sched_slice() considers only this active rq and it gets the
12926 * whole slice. But during force idle, we have siblings acting
12927 * like a single runqueue and hence we need to consider runnable
12928 * tasks on this CPU and the forced idle CPU. Ideally, we should
12929 * go through the forced idle rq, but that would be a perf hit.
12930 * We can assume that the forced idle CPU has at least
12931 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12932 * if we need to give up the CPU.
12934 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
12935 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
12940 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12942 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
12945 for_each_sched_entity(se) {
12946 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12949 if (cfs_rq->forceidle_seq == fi_seq)
12951 cfs_rq->forceidle_seq = fi_seq;
12954 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
12958 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
12960 struct sched_entity *se = &p->se;
12962 if (p->sched_class != &fair_sched_class)
12965 se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
12968 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
12971 struct rq *rq = task_rq(a);
12972 const struct sched_entity *sea = &a->se;
12973 const struct sched_entity *seb = &b->se;
12974 struct cfs_rq *cfs_rqa;
12975 struct cfs_rq *cfs_rqb;
12978 SCHED_WARN_ON(task_rq(b)->core != rq->core);
12980 #ifdef CONFIG_FAIR_GROUP_SCHED
12982 * Find an se in the hierarchy for tasks a and b, such that the se's
12983 * are immediate siblings.
12985 while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
12986 int sea_depth = sea->depth;
12987 int seb_depth = seb->depth;
12989 if (sea_depth >= seb_depth)
12990 sea = parent_entity(sea);
12991 if (sea_depth <= seb_depth)
12992 seb = parent_entity(seb);
12995 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
12996 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
12998 cfs_rqa = sea->cfs_rq;
12999 cfs_rqb = seb->cfs_rq;
13001 cfs_rqa = &task_rq(a)->cfs;
13002 cfs_rqb = &task_rq(b)->cfs;
13006 * Find delta after normalizing se's vruntime with its cfs_rq's
13007 * min_vruntime_fi, which would have been updated in prior calls
13008 * to se_fi_update().
13010 delta = (s64)(sea->vruntime - seb->vruntime) +
13011 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
13016 static int task_is_throttled_fair(struct task_struct *p, int cpu)
13018 struct cfs_rq *cfs_rq;
13020 #ifdef CONFIG_FAIR_GROUP_SCHED
13021 cfs_rq = task_group(p)->cfs_rq[cpu];
13023 cfs_rq = &cpu_rq(cpu)->cfs;
13025 return throttled_hierarchy(cfs_rq);
13028 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
13032 * scheduler tick hitting a task of our scheduling class.
13034 * NOTE: This function can be called remotely by the tick offload that
13035 * goes along full dynticks. Therefore no local assumption can be made
13036 * and everything must be accessed through the @rq and @curr passed in
13039 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
13041 struct cfs_rq *cfs_rq;
13042 struct sched_entity *se = &curr->se;
13044 for_each_sched_entity(se) {
13045 cfs_rq = cfs_rq_of(se);
13046 entity_tick(cfs_rq, se, queued);
13049 if (static_branch_unlikely(&sched_numa_balancing))
13050 task_tick_numa(rq, curr);
13052 update_misfit_status(curr, rq);
13053 check_update_overutilized_status(task_rq(curr));
13055 task_tick_core(rq, curr);
13059 * called on fork with the child task as argument from the parent's context
13060 * - child not yet on the tasklist
13061 * - preemption disabled
13063 static void task_fork_fair(struct task_struct *p)
13065 set_task_max_allowed_capacity(p);
13069 * Priority of the task has changed. Check to see if we preempt
13070 * the current task.
13073 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
13075 if (!task_on_rq_queued(p))
13078 if (rq->cfs.nr_running == 1)
13082 * Reschedule if we are currently running on this runqueue and
13083 * our priority decreased, or if we are not currently running on
13084 * this runqueue and our priority is higher than the current's
13086 if (task_current(rq, p)) {
13087 if (p->prio > oldprio)
13090 wakeup_preempt(rq, p, 0);
13093 #ifdef CONFIG_FAIR_GROUP_SCHED
13095 * Propagate the changes of the sched_entity across the tg tree to make it
13096 * visible to the root
13098 static void propagate_entity_cfs_rq(struct sched_entity *se)
13100 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13102 if (cfs_rq_throttled(cfs_rq))
13105 if (!throttled_hierarchy(cfs_rq))
13106 list_add_leaf_cfs_rq(cfs_rq);
13108 /* Start to propagate at parent */
13111 for_each_sched_entity(se) {
13112 cfs_rq = cfs_rq_of(se);
13114 update_load_avg(cfs_rq, se, UPDATE_TG);
13116 if (cfs_rq_throttled(cfs_rq))
13119 if (!throttled_hierarchy(cfs_rq))
13120 list_add_leaf_cfs_rq(cfs_rq);
13124 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
13127 static void detach_entity_cfs_rq(struct sched_entity *se)
13129 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13133 * In case the task sched_avg hasn't been attached:
13134 * - A forked task which hasn't been woken up by wake_up_new_task().
13135 * - A task which has been woken up by try_to_wake_up() but is
13136 * waiting for actually being woken up by sched_ttwu_pending().
13138 if (!se->avg.last_update_time)
13142 /* Catch up with the cfs_rq and remove our load when we leave */
13143 update_load_avg(cfs_rq, se, 0);
13144 detach_entity_load_avg(cfs_rq, se);
13145 update_tg_load_avg(cfs_rq);
13146 propagate_entity_cfs_rq(se);
13149 static void attach_entity_cfs_rq(struct sched_entity *se)
13151 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13153 /* Synchronize entity with its cfs_rq */
13154 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
13155 attach_entity_load_avg(cfs_rq, se);
13156 update_tg_load_avg(cfs_rq);
13157 propagate_entity_cfs_rq(se);
13160 static void detach_task_cfs_rq(struct task_struct *p)
13162 struct sched_entity *se = &p->se;
13164 detach_entity_cfs_rq(se);
13167 static void attach_task_cfs_rq(struct task_struct *p)
13169 struct sched_entity *se = &p->se;
13171 attach_entity_cfs_rq(se);
13174 static void switched_from_fair(struct rq *rq, struct task_struct *p)
13176 detach_task_cfs_rq(p);
13178 * Since this is called after changing class, this is a little weird
13179 * and we cannot use DEQUEUE_DELAYED.
13181 if (p->se.sched_delayed) {
13182 /* First, dequeue it from its new class' structures */
13183 dequeue_task(rq, p, DEQUEUE_NOCLOCK | DEQUEUE_SLEEP);
13185 * Now, clean up the fair_sched_class side of things
13186 * related to sched_delayed being true and that wasn't done
13187 * due to the generic dequeue not using DEQUEUE_DELAYED.
13189 finish_delayed_dequeue_entity(&p->se);
13190 p->se.rel_deadline = 0;
13191 __block_task(rq, p);
13195 static void switched_to_fair(struct rq *rq, struct task_struct *p)
13197 SCHED_WARN_ON(p->se.sched_delayed);
13199 attach_task_cfs_rq(p);
13201 set_task_max_allowed_capacity(p);
13203 if (task_on_rq_queued(p)) {
13205 * We were most likely switched from sched_rt, so
13206 * kick off the schedule if running, otherwise just see
13207 * if we can still preempt the current task.
13209 if (task_current(rq, p))
13212 wakeup_preempt(rq, p, 0);
13216 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13218 struct sched_entity *se = &p->se;
13221 if (task_on_rq_queued(p)) {
13223 * Move the next running task to the front of the list, so our
13224 * cfs_tasks list becomes MRU one.
13226 list_move(&se->group_node, &rq->cfs_tasks);
13232 SCHED_WARN_ON(se->sched_delayed);
13234 if (hrtick_enabled_fair(rq))
13235 hrtick_start_fair(rq, p);
13237 update_misfit_status(p, rq);
13238 sched_fair_update_stop_tick(rq, p);
13242 * Account for a task changing its policy or group.
13244 * This routine is mostly called to set cfs_rq->curr field when a task
13245 * migrates between groups/classes.
13247 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13249 struct sched_entity *se = &p->se;
13251 for_each_sched_entity(se) {
13252 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13254 set_next_entity(cfs_rq, se);
13255 /* ensure bandwidth has been allocated on our new cfs_rq */
13256 account_cfs_rq_runtime(cfs_rq, 0);
13259 __set_next_task_fair(rq, p, first);
13262 void init_cfs_rq(struct cfs_rq *cfs_rq)
13264 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
13265 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
13267 raw_spin_lock_init(&cfs_rq->removed.lock);
13271 #ifdef CONFIG_FAIR_GROUP_SCHED
13272 static void task_change_group_fair(struct task_struct *p)
13275 * We couldn't detach or attach a forked task which
13276 * hasn't been woken up by wake_up_new_task().
13278 if (READ_ONCE(p->__state) == TASK_NEW)
13281 detach_task_cfs_rq(p);
13284 /* Tell se's cfs_rq has been changed -- migrated */
13285 p->se.avg.last_update_time = 0;
13287 set_task_rq(p, task_cpu(p));
13288 attach_task_cfs_rq(p);
13291 void free_fair_sched_group(struct task_group *tg)
13295 for_each_possible_cpu(i) {
13297 kfree(tg->cfs_rq[i]);
13306 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
13308 struct sched_entity *se;
13309 struct cfs_rq *cfs_rq;
13312 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
13315 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
13319 tg->shares = NICE_0_LOAD;
13321 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
13323 for_each_possible_cpu(i) {
13324 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
13325 GFP_KERNEL, cpu_to_node(i));
13329 se = kzalloc_node(sizeof(struct sched_entity_stats),
13330 GFP_KERNEL, cpu_to_node(i));
13334 init_cfs_rq(cfs_rq);
13335 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
13336 init_entity_runnable_average(se);
13347 void online_fair_sched_group(struct task_group *tg)
13349 struct sched_entity *se;
13350 struct rq_flags rf;
13354 for_each_possible_cpu(i) {
13357 rq_lock_irq(rq, &rf);
13358 update_rq_clock(rq);
13359 attach_entity_cfs_rq(se);
13360 sync_throttle(tg, i);
13361 rq_unlock_irq(rq, &rf);
13365 void unregister_fair_sched_group(struct task_group *tg)
13369 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
13371 for_each_possible_cpu(cpu) {
13372 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
13373 struct sched_entity *se = tg->se[cpu];
13374 struct rq *rq = cpu_rq(cpu);
13377 if (se->sched_delayed) {
13378 guard(rq_lock_irqsave)(rq);
13379 if (se->sched_delayed) {
13380 update_rq_clock(rq);
13381 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
13383 list_del_leaf_cfs_rq(cfs_rq);
13385 remove_entity_load_avg(se);
13389 * Only empty task groups can be destroyed; so we can speculatively
13390 * check on_list without danger of it being re-added.
13392 if (cfs_rq->on_list) {
13393 guard(rq_lock_irqsave)(rq);
13394 list_del_leaf_cfs_rq(cfs_rq);
13399 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
13400 struct sched_entity *se, int cpu,
13401 struct sched_entity *parent)
13403 struct rq *rq = cpu_rq(cpu);
13407 init_cfs_rq_runtime(cfs_rq);
13409 tg->cfs_rq[cpu] = cfs_rq;
13412 /* se could be NULL for root_task_group */
13417 se->cfs_rq = &rq->cfs;
13420 se->cfs_rq = parent->my_q;
13421 se->depth = parent->depth + 1;
13425 /* guarantee group entities always have weight */
13426 update_load_set(&se->load, NICE_0_LOAD);
13427 se->parent = parent;
13430 static DEFINE_MUTEX(shares_mutex);
13432 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
13436 lockdep_assert_held(&shares_mutex);
13439 * We can't change the weight of the root cgroup.
13444 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
13446 if (tg->shares == shares)
13449 tg->shares = shares;
13450 for_each_possible_cpu(i) {
13451 struct rq *rq = cpu_rq(i);
13452 struct sched_entity *se = tg->se[i];
13453 struct rq_flags rf;
13455 /* Propagate contribution to hierarchy */
13456 rq_lock_irqsave(rq, &rf);
13457 update_rq_clock(rq);
13458 for_each_sched_entity(se) {
13459 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
13460 update_cfs_group(se);
13462 rq_unlock_irqrestore(rq, &rf);
13468 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
13472 mutex_lock(&shares_mutex);
13473 if (tg_is_idle(tg))
13476 ret = __sched_group_set_shares(tg, shares);
13477 mutex_unlock(&shares_mutex);
13482 int sched_group_set_idle(struct task_group *tg, long idle)
13486 if (tg == &root_task_group)
13489 if (idle < 0 || idle > 1)
13492 mutex_lock(&shares_mutex);
13494 if (tg->idle == idle) {
13495 mutex_unlock(&shares_mutex);
13501 for_each_possible_cpu(i) {
13502 struct rq *rq = cpu_rq(i);
13503 struct sched_entity *se = tg->se[i];
13504 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
13505 bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13506 long idle_task_delta;
13507 struct rq_flags rf;
13509 rq_lock_irqsave(rq, &rf);
13511 grp_cfs_rq->idle = idle;
13512 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13516 parent_cfs_rq = cfs_rq_of(se);
13517 if (cfs_rq_is_idle(grp_cfs_rq))
13518 parent_cfs_rq->idle_nr_running++;
13520 parent_cfs_rq->idle_nr_running--;
13523 idle_task_delta = grp_cfs_rq->h_nr_running -
13524 grp_cfs_rq->idle_h_nr_running;
13525 if (!cfs_rq_is_idle(grp_cfs_rq))
13526 idle_task_delta *= -1;
13528 for_each_sched_entity(se) {
13529 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13534 cfs_rq->idle_h_nr_running += idle_task_delta;
13536 /* Already accounted at parent level and above. */
13537 if (cfs_rq_is_idle(cfs_rq))
13542 rq_unlock_irqrestore(rq, &rf);
13545 /* Idle groups have minimum weight. */
13546 if (tg_is_idle(tg))
13547 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13549 __sched_group_set_shares(tg, NICE_0_LOAD);
13551 mutex_unlock(&shares_mutex);
13555 #endif /* CONFIG_FAIR_GROUP_SCHED */
13558 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13560 struct sched_entity *se = &task->se;
13561 unsigned int rr_interval = 0;
13564 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13567 if (rq->cfs.load.weight)
13568 rr_interval = NS_TO_JIFFIES(se->slice);
13570 return rr_interval;
13574 * All the scheduling class methods:
13576 DEFINE_SCHED_CLASS(fair) = {
13578 .enqueue_task = enqueue_task_fair,
13579 .dequeue_task = dequeue_task_fair,
13580 .yield_task = yield_task_fair,
13581 .yield_to_task = yield_to_task_fair,
13583 .wakeup_preempt = check_preempt_wakeup_fair,
13585 .pick_task = pick_task_fair,
13586 .pick_next_task = __pick_next_task_fair,
13587 .put_prev_task = put_prev_task_fair,
13588 .set_next_task = set_next_task_fair,
13591 .balance = balance_fair,
13592 .select_task_rq = select_task_rq_fair,
13593 .migrate_task_rq = migrate_task_rq_fair,
13595 .rq_online = rq_online_fair,
13596 .rq_offline = rq_offline_fair,
13598 .task_dead = task_dead_fair,
13599 .set_cpus_allowed = set_cpus_allowed_fair,
13602 .task_tick = task_tick_fair,
13603 .task_fork = task_fork_fair,
13605 .reweight_task = reweight_task_fair,
13606 .prio_changed = prio_changed_fair,
13607 .switched_from = switched_from_fair,
13608 .switched_to = switched_to_fair,
13610 .get_rr_interval = get_rr_interval_fair,
13612 .update_curr = update_curr_fair,
13614 #ifdef CONFIG_FAIR_GROUP_SCHED
13615 .task_change_group = task_change_group_fair,
13618 #ifdef CONFIG_SCHED_CORE
13619 .task_is_throttled = task_is_throttled_fair,
13622 #ifdef CONFIG_UCLAMP_TASK
13623 .uclamp_enabled = 1,
13627 #ifdef CONFIG_SCHED_DEBUG
13628 void print_cfs_stats(struct seq_file *m, int cpu)
13630 struct cfs_rq *cfs_rq, *pos;
13633 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13634 print_cfs_rq(m, cpu, cfs_rq);
13638 #ifdef CONFIG_NUMA_BALANCING
13639 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13642 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13643 struct numa_group *ng;
13646 ng = rcu_dereference(p->numa_group);
13647 for_each_online_node(node) {
13648 if (p->numa_faults) {
13649 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13650 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13653 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13654 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13656 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13660 #endif /* CONFIG_NUMA_BALANCING */
13661 #endif /* CONFIG_SCHED_DEBUG */
13663 __init void init_sched_fair_class(void)
13668 for_each_possible_cpu(i) {
13669 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13670 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i));
13671 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13672 GFP_KERNEL, cpu_to_node(i));
13674 #ifdef CONFIG_CFS_BANDWIDTH
13675 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13676 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13680 open_softirq(SCHED_SOFTIRQ, sched_balance_softirq);
13682 #ifdef CONFIG_NO_HZ_COMMON
13683 nohz.next_balance = jiffies;
13684 nohz.next_blocked = jiffies;
13685 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);