1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 * Some corrections by tytso.
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/slab.h>
21 #include <linux/wordpart.h>
23 #include <linux/filelock.h>
24 #include <linux/namei.h>
25 #include <linux/pagemap.h>
26 #include <linux/sched/mm.h>
27 #include <linux/fsnotify.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/mount.h>
32 #include <linux/audit.h>
33 #include <linux/capability.h>
34 #include <linux/file.h>
35 #include <linux/fcntl.h>
36 #include <linux/device_cgroup.h>
37 #include <linux/fs_struct.h>
38 #include <linux/posix_acl.h>
39 #include <linux/hash.h>
40 #include <linux/bitops.h>
41 #include <linux/init_task.h>
42 #include <linux/uaccess.h>
47 /* [Feb-1997 T. Schoebel-Theuer]
48 * Fundamental changes in the pathname lookup mechanisms (namei)
49 * were necessary because of omirr. The reason is that omirr needs
50 * to know the _real_ pathname, not the user-supplied one, in case
51 * of symlinks (and also when transname replacements occur).
53 * The new code replaces the old recursive symlink resolution with
54 * an iterative one (in case of non-nested symlink chains). It does
55 * this with calls to <fs>_follow_link().
56 * As a side effect, dir_namei(), _namei() and follow_link() are now
57 * replaced with a single function lookup_dentry() that can handle all
58 * the special cases of the former code.
60 * With the new dcache, the pathname is stored at each inode, at least as
61 * long as the refcount of the inode is positive. As a side effect, the
62 * size of the dcache depends on the inode cache and thus is dynamic.
64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65 * resolution to correspond with current state of the code.
67 * Note that the symlink resolution is not *completely* iterative.
68 * There is still a significant amount of tail- and mid- recursion in
69 * the algorithm. Also, note that <fs>_readlink() is not used in
70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71 * may return different results than <fs>_follow_link(). Many virtual
72 * filesystems (including /proc) exhibit this behavior.
75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77 * and the name already exists in form of a symlink, try to create the new
78 * name indicated by the symlink. The old code always complained that the
79 * name already exists, due to not following the symlink even if its target
80 * is nonexistent. The new semantics affects also mknod() and link() when
81 * the name is a symlink pointing to a non-existent name.
83 * I don't know which semantics is the right one, since I have no access
84 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86 * "old" one. Personally, I think the new semantics is much more logical.
87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88 * file does succeed in both HP-UX and SunOs, but not in Solaris
89 * and in the old Linux semantics.
92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93 * semantics. See the comments in "open_namei" and "do_link" below.
95 * [10-Sep-98 Alan Modra] Another symlink change.
98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99 * inside the path - always follow.
100 * in the last component in creation/removal/renaming - never follow.
101 * if LOOKUP_FOLLOW passed - follow.
102 * if the pathname has trailing slashes - follow.
103 * otherwise - don't follow.
104 * (applied in that order).
106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108 * During the 2.4 we need to fix the userland stuff depending on it -
109 * hopefully we will be able to get rid of that wart in 2.5. So far only
110 * XEmacs seems to be relying on it...
113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
115 * any extra contention...
118 /* In order to reduce some races, while at the same time doing additional
119 * checking and hopefully speeding things up, we copy filenames to the
120 * kernel data space before using them..
122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123 * PATH_MAX includes the nul terminator --RR.
126 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
129 getname_flags(const char __user *filename, int flags)
131 struct filename *result;
135 result = audit_reusename(filename);
139 result = __getname();
140 if (unlikely(!result))
141 return ERR_PTR(-ENOMEM);
144 * First, try to embed the struct filename inside the names_cache
147 kname = (char *)result->iname;
148 result->name = kname;
150 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
152 * Handle both empty path and copy failure in one go.
154 if (unlikely(len <= 0)) {
155 if (unlikely(len < 0)) {
160 /* The empty path is special. */
161 if (!(flags & LOOKUP_EMPTY)) {
163 return ERR_PTR(-ENOENT);
168 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
169 * separate struct filename so we can dedicate the entire
170 * names_cache allocation for the pathname, and re-do the copy from
173 if (unlikely(len == EMBEDDED_NAME_MAX)) {
174 const size_t size = offsetof(struct filename, iname[1]);
175 kname = (char *)result;
178 * size is chosen that way we to guarantee that
179 * result->iname[0] is within the same object and that
180 * kname can't be equal to result->iname, no matter what.
182 result = kzalloc(size, GFP_KERNEL);
183 if (unlikely(!result)) {
185 return ERR_PTR(-ENOMEM);
187 result->name = kname;
188 len = strncpy_from_user(kname, filename, PATH_MAX);
189 if (unlikely(len < 0)) {
194 /* The empty path is special. */
195 if (unlikely(!len) && !(flags & LOOKUP_EMPTY)) {
198 return ERR_PTR(-ENOENT);
200 if (unlikely(len == PATH_MAX)) {
203 return ERR_PTR(-ENAMETOOLONG);
207 atomic_set(&result->refcnt, 1);
208 result->uptr = filename;
209 result->aname = NULL;
210 audit_getname(result);
215 getname_uflags(const char __user *filename, int uflags)
217 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
219 return getname_flags(filename, flags);
223 getname(const char __user * filename)
225 return getname_flags(filename, 0);
229 getname_kernel(const char * filename)
231 struct filename *result;
232 int len = strlen(filename) + 1;
234 result = __getname();
235 if (unlikely(!result))
236 return ERR_PTR(-ENOMEM);
238 if (len <= EMBEDDED_NAME_MAX) {
239 result->name = (char *)result->iname;
240 } else if (len <= PATH_MAX) {
241 const size_t size = offsetof(struct filename, iname[1]);
242 struct filename *tmp;
244 tmp = kmalloc(size, GFP_KERNEL);
245 if (unlikely(!tmp)) {
247 return ERR_PTR(-ENOMEM);
249 tmp->name = (char *)result;
253 return ERR_PTR(-ENAMETOOLONG);
255 memcpy((char *)result->name, filename, len);
257 result->aname = NULL;
258 atomic_set(&result->refcnt, 1);
259 audit_getname(result);
263 EXPORT_SYMBOL(getname_kernel);
265 void putname(struct filename *name)
270 if (WARN_ON_ONCE(!atomic_read(&name->refcnt)))
273 if (!atomic_dec_and_test(&name->refcnt))
276 if (name->name != name->iname) {
277 __putname(name->name);
282 EXPORT_SYMBOL(putname);
285 * check_acl - perform ACL permission checking
286 * @idmap: idmap of the mount the inode was found from
287 * @inode: inode to check permissions on
288 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
290 * This function performs the ACL permission checking. Since this function
291 * retrieve POSIX acls it needs to know whether it is called from a blocking or
292 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
294 * If the inode has been found through an idmapped mount the idmap of
295 * the vfsmount must be passed through @idmap. This function will then take
296 * care to map the inode according to @idmap before checking permissions.
297 * On non-idmapped mounts or if permission checking is to be performed on the
298 * raw inode simply pass @nop_mnt_idmap.
300 static int check_acl(struct mnt_idmap *idmap,
301 struct inode *inode, int mask)
303 #ifdef CONFIG_FS_POSIX_ACL
304 struct posix_acl *acl;
306 if (mask & MAY_NOT_BLOCK) {
307 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
310 /* no ->get_inode_acl() calls in RCU mode... */
311 if (is_uncached_acl(acl))
313 return posix_acl_permission(idmap, inode, acl, mask);
316 acl = get_inode_acl(inode, ACL_TYPE_ACCESS);
320 int error = posix_acl_permission(idmap, inode, acl, mask);
321 posix_acl_release(acl);
330 * acl_permission_check - perform basic UNIX permission checking
331 * @idmap: idmap of the mount the inode was found from
332 * @inode: inode to check permissions on
333 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
335 * This function performs the basic UNIX permission checking. Since this
336 * function may retrieve POSIX acls it needs to know whether it is called from a
337 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
339 * If the inode has been found through an idmapped mount the idmap of
340 * the vfsmount must be passed through @idmap. This function will then take
341 * care to map the inode according to @idmap before checking permissions.
342 * On non-idmapped mounts or if permission checking is to be performed on the
343 * raw inode simply pass @nop_mnt_idmap.
345 static int acl_permission_check(struct mnt_idmap *idmap,
346 struct inode *inode, int mask)
348 unsigned int mode = inode->i_mode;
351 /* Are we the owner? If so, ACL's don't matter */
352 vfsuid = i_uid_into_vfsuid(idmap, inode);
353 if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) {
356 return (mask & ~mode) ? -EACCES : 0;
359 /* Do we have ACL's? */
360 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
361 int error = check_acl(idmap, inode, mask);
362 if (error != -EAGAIN)
366 /* Only RWX matters for group/other mode bits */
370 * Are the group permissions different from
371 * the other permissions in the bits we care
372 * about? Need to check group ownership if so.
374 if (mask & (mode ^ (mode >> 3))) {
375 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
376 if (vfsgid_in_group_p(vfsgid))
380 /* Bits in 'mode' clear that we require? */
381 return (mask & ~mode) ? -EACCES : 0;
385 * generic_permission - check for access rights on a Posix-like filesystem
386 * @idmap: idmap of the mount the inode was found from
387 * @inode: inode to check access rights for
388 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
389 * %MAY_NOT_BLOCK ...)
391 * Used to check for read/write/execute permissions on a file.
392 * We use "fsuid" for this, letting us set arbitrary permissions
393 * for filesystem access without changing the "normal" uids which
394 * are used for other things.
396 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
397 * request cannot be satisfied (eg. requires blocking or too much complexity).
398 * It would then be called again in ref-walk mode.
400 * If the inode has been found through an idmapped mount the idmap of
401 * the vfsmount must be passed through @idmap. This function will then take
402 * care to map the inode according to @idmap before checking permissions.
403 * On non-idmapped mounts or if permission checking is to be performed on the
404 * raw inode simply pass @nop_mnt_idmap.
406 int generic_permission(struct mnt_idmap *idmap, struct inode *inode,
412 * Do the basic permission checks.
414 ret = acl_permission_check(idmap, inode, mask);
418 if (S_ISDIR(inode->i_mode)) {
419 /* DACs are overridable for directories */
420 if (!(mask & MAY_WRITE))
421 if (capable_wrt_inode_uidgid(idmap, inode,
422 CAP_DAC_READ_SEARCH))
424 if (capable_wrt_inode_uidgid(idmap, inode,
431 * Searching includes executable on directories, else just read.
433 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
434 if (mask == MAY_READ)
435 if (capable_wrt_inode_uidgid(idmap, inode,
436 CAP_DAC_READ_SEARCH))
439 * Read/write DACs are always overridable.
440 * Executable DACs are overridable when there is
441 * at least one exec bit set.
443 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
444 if (capable_wrt_inode_uidgid(idmap, inode,
450 EXPORT_SYMBOL(generic_permission);
453 * do_inode_permission - UNIX permission checking
454 * @idmap: idmap of the mount the inode was found from
455 * @inode: inode to check permissions on
456 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
458 * We _really_ want to just do "generic_permission()" without
459 * even looking at the inode->i_op values. So we keep a cache
460 * flag in inode->i_opflags, that says "this has not special
461 * permission function, use the fast case".
463 static inline int do_inode_permission(struct mnt_idmap *idmap,
464 struct inode *inode, int mask)
466 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
467 if (likely(inode->i_op->permission))
468 return inode->i_op->permission(idmap, inode, mask);
470 /* This gets set once for the inode lifetime */
471 spin_lock(&inode->i_lock);
472 inode->i_opflags |= IOP_FASTPERM;
473 spin_unlock(&inode->i_lock);
475 return generic_permission(idmap, inode, mask);
479 * sb_permission - Check superblock-level permissions
480 * @sb: Superblock of inode to check permission on
481 * @inode: Inode to check permission on
482 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
484 * Separate out file-system wide checks from inode-specific permission checks.
486 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
488 if (unlikely(mask & MAY_WRITE)) {
489 umode_t mode = inode->i_mode;
491 /* Nobody gets write access to a read-only fs. */
492 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
499 * inode_permission - Check for access rights to a given inode
500 * @idmap: idmap of the mount the inode was found from
501 * @inode: Inode to check permission on
502 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
504 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
505 * this, letting us set arbitrary permissions for filesystem access without
506 * changing the "normal" UIDs which are used for other things.
508 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
510 int inode_permission(struct mnt_idmap *idmap,
511 struct inode *inode, int mask)
515 retval = sb_permission(inode->i_sb, inode, mask);
519 if (unlikely(mask & MAY_WRITE)) {
521 * Nobody gets write access to an immutable file.
523 if (IS_IMMUTABLE(inode))
527 * Updating mtime will likely cause i_uid and i_gid to be
528 * written back improperly if their true value is unknown
531 if (HAS_UNMAPPED_ID(idmap, inode))
535 retval = do_inode_permission(idmap, inode, mask);
539 retval = devcgroup_inode_permission(inode, mask);
543 return security_inode_permission(inode, mask);
545 EXPORT_SYMBOL(inode_permission);
548 * path_get - get a reference to a path
549 * @path: path to get the reference to
551 * Given a path increment the reference count to the dentry and the vfsmount.
553 void path_get(const struct path *path)
558 EXPORT_SYMBOL(path_get);
561 * path_put - put a reference to a path
562 * @path: path to put the reference to
564 * Given a path decrement the reference count to the dentry and the vfsmount.
566 void path_put(const struct path *path)
571 EXPORT_SYMBOL(path_put);
573 #define EMBEDDED_LEVELS 2
578 struct inode *inode; /* path.dentry.d_inode */
579 unsigned int flags, state;
580 unsigned seq, next_seq, m_seq, r_seq;
583 int total_link_count;
586 struct delayed_call done;
589 } *stack, internal[EMBEDDED_LEVELS];
590 struct filename *name;
591 struct nameidata *saved;
596 } __randomize_layout;
598 #define ND_ROOT_PRESET 1
599 #define ND_ROOT_GRABBED 2
602 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
604 struct nameidata *old = current->nameidata;
605 p->stack = p->internal;
610 p->path.dentry = NULL;
611 p->total_link_count = old ? old->total_link_count : 0;
613 current->nameidata = p;
616 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
617 const struct path *root)
619 __set_nameidata(p, dfd, name);
621 if (unlikely(root)) {
622 p->state = ND_ROOT_PRESET;
627 static void restore_nameidata(void)
629 struct nameidata *now = current->nameidata, *old = now->saved;
631 current->nameidata = old;
633 old->total_link_count = now->total_link_count;
634 if (now->stack != now->internal)
638 static bool nd_alloc_stack(struct nameidata *nd)
642 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
643 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
646 memcpy(p, nd->internal, sizeof(nd->internal));
652 * path_connected - Verify that a dentry is below mnt.mnt_root
653 * @mnt: The mountpoint to check.
654 * @dentry: The dentry to check.
656 * Rename can sometimes move a file or directory outside of a bind
657 * mount, path_connected allows those cases to be detected.
659 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
661 struct super_block *sb = mnt->mnt_sb;
663 /* Bind mounts can have disconnected paths */
664 if (mnt->mnt_root == sb->s_root)
667 return is_subdir(dentry, mnt->mnt_root);
670 static void drop_links(struct nameidata *nd)
674 struct saved *last = nd->stack + i;
675 do_delayed_call(&last->done);
676 clear_delayed_call(&last->done);
680 static void leave_rcu(struct nameidata *nd)
682 nd->flags &= ~LOOKUP_RCU;
683 nd->seq = nd->next_seq = 0;
687 static void terminate_walk(struct nameidata *nd)
690 if (!(nd->flags & LOOKUP_RCU)) {
693 for (i = 0; i < nd->depth; i++)
694 path_put(&nd->stack[i].link);
695 if (nd->state & ND_ROOT_GRABBED) {
697 nd->state &= ~ND_ROOT_GRABBED;
704 nd->path.dentry = NULL;
707 /* path_put is needed afterwards regardless of success or failure */
708 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
710 int res = __legitimize_mnt(path->mnt, mseq);
717 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
721 return !read_seqcount_retry(&path->dentry->d_seq, seq);
724 static inline bool legitimize_path(struct nameidata *nd,
725 struct path *path, unsigned seq)
727 return __legitimize_path(path, seq, nd->m_seq);
730 static bool legitimize_links(struct nameidata *nd)
733 if (unlikely(nd->flags & LOOKUP_CACHED)) {
738 for (i = 0; i < nd->depth; i++) {
739 struct saved *last = nd->stack + i;
740 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
749 static bool legitimize_root(struct nameidata *nd)
751 /* Nothing to do if nd->root is zero or is managed by the VFS user. */
752 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
754 nd->state |= ND_ROOT_GRABBED;
755 return legitimize_path(nd, &nd->root, nd->root_seq);
759 * Path walking has 2 modes, rcu-walk and ref-walk (see
760 * Documentation/filesystems/path-lookup.txt). In situations when we can't
761 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
762 * normal reference counts on dentries and vfsmounts to transition to ref-walk
763 * mode. Refcounts are grabbed at the last known good point before rcu-walk
764 * got stuck, so ref-walk may continue from there. If this is not successful
765 * (eg. a seqcount has changed), then failure is returned and it's up to caller
766 * to restart the path walk from the beginning in ref-walk mode.
770 * try_to_unlazy - try to switch to ref-walk mode.
771 * @nd: nameidata pathwalk data
772 * Returns: true on success, false on failure
774 * try_to_unlazy attempts to legitimize the current nd->path and nd->root
776 * Must be called from rcu-walk context.
777 * Nothing should touch nameidata between try_to_unlazy() failure and
780 static bool try_to_unlazy(struct nameidata *nd)
782 struct dentry *parent = nd->path.dentry;
784 BUG_ON(!(nd->flags & LOOKUP_RCU));
786 if (unlikely(!legitimize_links(nd)))
788 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
790 if (unlikely(!legitimize_root(nd)))
793 BUG_ON(nd->inode != parent->d_inode);
798 nd->path.dentry = NULL;
805 * try_to_unlazy_next - try to switch to ref-walk mode.
806 * @nd: nameidata pathwalk data
807 * @dentry: next dentry to step into
808 * Returns: true on success, false on failure
810 * Similar to try_to_unlazy(), but here we have the next dentry already
811 * picked by rcu-walk and want to legitimize that in addition to the current
812 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context.
813 * Nothing should touch nameidata between try_to_unlazy_next() failure and
816 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry)
819 BUG_ON(!(nd->flags & LOOKUP_RCU));
821 if (unlikely(!legitimize_links(nd)))
823 res = __legitimize_mnt(nd->path.mnt, nd->m_seq);
829 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
833 * We need to move both the parent and the dentry from the RCU domain
834 * to be properly refcounted. And the sequence number in the dentry
835 * validates *both* dentry counters, since we checked the sequence
836 * number of the parent after we got the child sequence number. So we
837 * know the parent must still be valid if the child sequence number is
839 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
841 if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
844 * Sequence counts matched. Now make sure that the root is
845 * still valid and get it if required.
847 if (unlikely(!legitimize_root(nd)))
855 nd->path.dentry = NULL;
865 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
867 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
868 return dentry->d_op->d_revalidate(dentry, flags);
874 * complete_walk - successful completion of path walk
875 * @nd: pointer nameidata
877 * If we had been in RCU mode, drop out of it and legitimize nd->path.
878 * Revalidate the final result, unless we'd already done that during
879 * the path walk or the filesystem doesn't ask for it. Return 0 on
880 * success, -error on failure. In case of failure caller does not
881 * need to drop nd->path.
883 static int complete_walk(struct nameidata *nd)
885 struct dentry *dentry = nd->path.dentry;
888 if (nd->flags & LOOKUP_RCU) {
890 * We don't want to zero nd->root for scoped-lookups or
891 * externally-managed nd->root.
893 if (!(nd->state & ND_ROOT_PRESET))
894 if (!(nd->flags & LOOKUP_IS_SCOPED))
896 nd->flags &= ~LOOKUP_CACHED;
897 if (!try_to_unlazy(nd))
901 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
903 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
904 * ever step outside the root during lookup" and should already
905 * be guaranteed by the rest of namei, we want to avoid a namei
906 * BUG resulting in userspace being given a path that was not
907 * scoped within the root at some point during the lookup.
909 * So, do a final sanity-check to make sure that in the
910 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
911 * we won't silently return an fd completely outside of the
912 * requested root to userspace.
914 * Userspace could move the path outside the root after this
915 * check, but as discussed elsewhere this is not a concern (the
916 * resolved file was inside the root at some point).
918 if (!path_is_under(&nd->path, &nd->root))
922 if (likely(!(nd->state & ND_JUMPED)))
925 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
928 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
938 static int set_root(struct nameidata *nd)
940 struct fs_struct *fs = current->fs;
943 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
944 * still have to ensure it doesn't happen because it will cause a breakout
947 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
948 return -ENOTRECOVERABLE;
950 if (nd->flags & LOOKUP_RCU) {
954 seq = read_seqcount_begin(&fs->seq);
956 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
957 } while (read_seqcount_retry(&fs->seq, seq));
959 get_fs_root(fs, &nd->root);
960 nd->state |= ND_ROOT_GRABBED;
965 static int nd_jump_root(struct nameidata *nd)
967 if (unlikely(nd->flags & LOOKUP_BENEATH))
969 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
970 /* Absolute path arguments to path_init() are allowed. */
971 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
975 int error = set_root(nd);
979 if (nd->flags & LOOKUP_RCU) {
983 nd->inode = d->d_inode;
984 nd->seq = nd->root_seq;
985 if (read_seqcount_retry(&d->d_seq, nd->seq))
991 nd->inode = nd->path.dentry->d_inode;
993 nd->state |= ND_JUMPED;
998 * Helper to directly jump to a known parsed path from ->get_link,
999 * caller must have taken a reference to path beforehand.
1001 int nd_jump_link(const struct path *path)
1004 struct nameidata *nd = current->nameidata;
1006 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
1010 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1011 if (nd->path.mnt != path->mnt)
1014 /* Not currently safe for scoped-lookups. */
1015 if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1018 path_put(&nd->path);
1020 nd->inode = nd->path.dentry->d_inode;
1021 nd->state |= ND_JUMPED;
1029 static inline void put_link(struct nameidata *nd)
1031 struct saved *last = nd->stack + --nd->depth;
1032 do_delayed_call(&last->done);
1033 if (!(nd->flags & LOOKUP_RCU))
1034 path_put(&last->link);
1037 static int sysctl_protected_symlinks __read_mostly;
1038 static int sysctl_protected_hardlinks __read_mostly;
1039 static int sysctl_protected_fifos __read_mostly;
1040 static int sysctl_protected_regular __read_mostly;
1042 #ifdef CONFIG_SYSCTL
1043 static struct ctl_table namei_sysctls[] = {
1045 .procname = "protected_symlinks",
1046 .data = &sysctl_protected_symlinks,
1047 .maxlen = sizeof(int),
1049 .proc_handler = proc_dointvec_minmax,
1050 .extra1 = SYSCTL_ZERO,
1051 .extra2 = SYSCTL_ONE,
1054 .procname = "protected_hardlinks",
1055 .data = &sysctl_protected_hardlinks,
1056 .maxlen = sizeof(int),
1058 .proc_handler = proc_dointvec_minmax,
1059 .extra1 = SYSCTL_ZERO,
1060 .extra2 = SYSCTL_ONE,
1063 .procname = "protected_fifos",
1064 .data = &sysctl_protected_fifos,
1065 .maxlen = sizeof(int),
1067 .proc_handler = proc_dointvec_minmax,
1068 .extra1 = SYSCTL_ZERO,
1069 .extra2 = SYSCTL_TWO,
1072 .procname = "protected_regular",
1073 .data = &sysctl_protected_regular,
1074 .maxlen = sizeof(int),
1076 .proc_handler = proc_dointvec_minmax,
1077 .extra1 = SYSCTL_ZERO,
1078 .extra2 = SYSCTL_TWO,
1082 static int __init init_fs_namei_sysctls(void)
1084 register_sysctl_init("fs", namei_sysctls);
1087 fs_initcall(init_fs_namei_sysctls);
1089 #endif /* CONFIG_SYSCTL */
1092 * may_follow_link - Check symlink following for unsafe situations
1093 * @nd: nameidata pathwalk data
1094 * @inode: Used for idmapping.
1096 * In the case of the sysctl_protected_symlinks sysctl being enabled,
1097 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1098 * in a sticky world-writable directory. This is to protect privileged
1099 * processes from failing races against path names that may change out
1100 * from under them by way of other users creating malicious symlinks.
1101 * It will permit symlinks to be followed only when outside a sticky
1102 * world-writable directory, or when the uid of the symlink and follower
1103 * match, or when the directory owner matches the symlink's owner.
1105 * Returns 0 if following the symlink is allowed, -ve on error.
1107 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1109 struct mnt_idmap *idmap;
1112 if (!sysctl_protected_symlinks)
1115 idmap = mnt_idmap(nd->path.mnt);
1116 vfsuid = i_uid_into_vfsuid(idmap, inode);
1117 /* Allowed if owner and follower match. */
1118 if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
1121 /* Allowed if parent directory not sticky and world-writable. */
1122 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1125 /* Allowed if parent directory and link owner match. */
1126 if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid))
1129 if (nd->flags & LOOKUP_RCU)
1132 audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1133 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1138 * safe_hardlink_source - Check for safe hardlink conditions
1139 * @idmap: idmap of the mount the inode was found from
1140 * @inode: the source inode to hardlink from
1142 * Return false if at least one of the following conditions:
1143 * - inode is not a regular file
1145 * - inode is setgid and group-exec
1146 * - access failure for read and write
1148 * Otherwise returns true.
1150 static bool safe_hardlink_source(struct mnt_idmap *idmap,
1151 struct inode *inode)
1153 umode_t mode = inode->i_mode;
1155 /* Special files should not get pinned to the filesystem. */
1159 /* Setuid files should not get pinned to the filesystem. */
1163 /* Executable setgid files should not get pinned to the filesystem. */
1164 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1167 /* Hardlinking to unreadable or unwritable sources is dangerous. */
1168 if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE))
1175 * may_linkat - Check permissions for creating a hardlink
1176 * @idmap: idmap of the mount the inode was found from
1177 * @link: the source to hardlink from
1179 * Block hardlink when all of:
1180 * - sysctl_protected_hardlinks enabled
1181 * - fsuid does not match inode
1182 * - hardlink source is unsafe (see safe_hardlink_source() above)
1183 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
1185 * If the inode has been found through an idmapped mount the idmap of
1186 * the vfsmount must be passed through @idmap. This function will then take
1187 * care to map the inode according to @idmap before checking permissions.
1188 * On non-idmapped mounts or if permission checking is to be performed on the
1189 * raw inode simply pass @nop_mnt_idmap.
1191 * Returns 0 if successful, -ve on error.
1193 int may_linkat(struct mnt_idmap *idmap, const struct path *link)
1195 struct inode *inode = link->dentry->d_inode;
1197 /* Inode writeback is not safe when the uid or gid are invalid. */
1198 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
1199 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
1202 if (!sysctl_protected_hardlinks)
1205 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1206 * otherwise, it must be a safe source.
1208 if (safe_hardlink_source(idmap, inode) ||
1209 inode_owner_or_capable(idmap, inode))
1212 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1217 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1218 * should be allowed, or not, on files that already
1220 * @idmap: idmap of the mount the inode was found from
1221 * @nd: nameidata pathwalk data
1222 * @inode: the inode of the file to open
1224 * Block an O_CREAT open of a FIFO (or a regular file) when:
1225 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1226 * - the file already exists
1227 * - we are in a sticky directory
1228 * - we don't own the file
1229 * - the owner of the directory doesn't own the file
1230 * - the directory is world writable
1231 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1232 * the directory doesn't have to be world writable: being group writable will
1235 * If the inode has been found through an idmapped mount the idmap of
1236 * the vfsmount must be passed through @idmap. This function will then take
1237 * care to map the inode according to @idmap before checking permissions.
1238 * On non-idmapped mounts or if permission checking is to be performed on the
1239 * raw inode simply pass @nop_mnt_idmap.
1241 * Returns 0 if the open is allowed, -ve on error.
1243 static int may_create_in_sticky(struct mnt_idmap *idmap, struct nameidata *nd,
1244 struct inode *const inode)
1246 umode_t dir_mode = nd->dir_mode;
1247 vfsuid_t dir_vfsuid = nd->dir_vfsuid, i_vfsuid;
1249 if (likely(!(dir_mode & S_ISVTX)))
1252 if (S_ISREG(inode->i_mode) && !sysctl_protected_regular)
1255 if (S_ISFIFO(inode->i_mode) && !sysctl_protected_fifos)
1258 i_vfsuid = i_uid_into_vfsuid(idmap, inode);
1260 if (vfsuid_eq(i_vfsuid, dir_vfsuid))
1263 if (vfsuid_eq_kuid(i_vfsuid, current_fsuid()))
1266 if (likely(dir_mode & 0002)) {
1267 audit_log_path_denied(AUDIT_ANOM_CREAT, "sticky_create");
1271 if (dir_mode & 0020) {
1272 if (sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) {
1273 audit_log_path_denied(AUDIT_ANOM_CREAT,
1274 "sticky_create_fifo");
1278 if (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode)) {
1279 audit_log_path_denied(AUDIT_ANOM_CREAT,
1280 "sticky_create_regular");
1289 * follow_up - Find the mountpoint of path's vfsmount
1291 * Given a path, find the mountpoint of its source file system.
1292 * Replace @path with the path of the mountpoint in the parent mount.
1295 * Return 1 if we went up a level and 0 if we were already at the
1298 int follow_up(struct path *path)
1300 struct mount *mnt = real_mount(path->mnt);
1301 struct mount *parent;
1302 struct dentry *mountpoint;
1304 read_seqlock_excl(&mount_lock);
1305 parent = mnt->mnt_parent;
1306 if (parent == mnt) {
1307 read_sequnlock_excl(&mount_lock);
1310 mntget(&parent->mnt);
1311 mountpoint = dget(mnt->mnt_mountpoint);
1312 read_sequnlock_excl(&mount_lock);
1314 path->dentry = mountpoint;
1316 path->mnt = &parent->mnt;
1319 EXPORT_SYMBOL(follow_up);
1321 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1322 struct path *path, unsigned *seqp)
1324 while (mnt_has_parent(m)) {
1325 struct dentry *mountpoint = m->mnt_mountpoint;
1328 if (unlikely(root->dentry == mountpoint &&
1329 root->mnt == &m->mnt))
1331 if (mountpoint != m->mnt.mnt_root) {
1332 path->mnt = &m->mnt;
1333 path->dentry = mountpoint;
1334 *seqp = read_seqcount_begin(&mountpoint->d_seq);
1341 static bool choose_mountpoint(struct mount *m, const struct path *root,
1348 unsigned seq, mseq = read_seqbegin(&mount_lock);
1350 found = choose_mountpoint_rcu(m, root, path, &seq);
1351 if (unlikely(!found)) {
1352 if (!read_seqretry(&mount_lock, mseq))
1355 if (likely(__legitimize_path(path, seq, mseq)))
1367 * Perform an automount
1368 * - return -EISDIR to tell follow_managed() to stop and return the path we
1371 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1373 struct dentry *dentry = path->dentry;
1375 /* We don't want to mount if someone's just doing a stat -
1376 * unless they're stat'ing a directory and appended a '/' to
1379 * We do, however, want to mount if someone wants to open or
1380 * create a file of any type under the mountpoint, wants to
1381 * traverse through the mountpoint or wants to open the
1382 * mounted directory. Also, autofs may mark negative dentries
1383 * as being automount points. These will need the attentions
1384 * of the daemon to instantiate them before they can be used.
1386 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1387 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1391 if (count && (*count)++ >= MAXSYMLINKS)
1394 return finish_automount(dentry->d_op->d_automount(path), path);
1398 * mount traversal - out-of-line part. One note on ->d_flags accesses -
1399 * dentries are pinned but not locked here, so negative dentry can go
1400 * positive right under us. Use of smp_load_acquire() provides a barrier
1401 * sufficient for ->d_inode and ->d_flags consistency.
1403 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1404 int *count, unsigned lookup_flags)
1406 struct vfsmount *mnt = path->mnt;
1407 bool need_mntput = false;
1410 while (flags & DCACHE_MANAGED_DENTRY) {
1411 /* Allow the filesystem to manage the transit without i_mutex
1413 if (flags & DCACHE_MANAGE_TRANSIT) {
1414 ret = path->dentry->d_op->d_manage(path, false);
1415 flags = smp_load_acquire(&path->dentry->d_flags);
1420 if (flags & DCACHE_MOUNTED) { // something's mounted on it..
1421 struct vfsmount *mounted = lookup_mnt(path);
1422 if (mounted) { // ... in our namespace
1426 path->mnt = mounted;
1427 path->dentry = dget(mounted->mnt_root);
1428 // here we know it's positive
1429 flags = path->dentry->d_flags;
1435 if (!(flags & DCACHE_NEED_AUTOMOUNT))
1438 // uncovered automount point
1439 ret = follow_automount(path, count, lookup_flags);
1440 flags = smp_load_acquire(&path->dentry->d_flags);
1447 // possible if you race with several mount --move
1448 if (need_mntput && path->mnt == mnt)
1450 if (!ret && unlikely(d_flags_negative(flags)))
1452 *jumped = need_mntput;
1456 static inline int traverse_mounts(struct path *path, bool *jumped,
1457 int *count, unsigned lookup_flags)
1459 unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1462 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1464 if (unlikely(d_flags_negative(flags)))
1468 return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1471 int follow_down_one(struct path *path)
1473 struct vfsmount *mounted;
1475 mounted = lookup_mnt(path);
1479 path->mnt = mounted;
1480 path->dentry = dget(mounted->mnt_root);
1485 EXPORT_SYMBOL(follow_down_one);
1488 * Follow down to the covering mount currently visible to userspace. At each
1489 * point, the filesystem owning that dentry may be queried as to whether the
1490 * caller is permitted to proceed or not.
1492 int follow_down(struct path *path, unsigned int flags)
1494 struct vfsmount *mnt = path->mnt;
1496 int ret = traverse_mounts(path, &jumped, NULL, flags);
1498 if (path->mnt != mnt)
1502 EXPORT_SYMBOL(follow_down);
1505 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1506 * we meet a managed dentry that would need blocking.
1508 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path)
1510 struct dentry *dentry = path->dentry;
1511 unsigned int flags = dentry->d_flags;
1513 if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1516 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1521 * Don't forget we might have a non-mountpoint managed dentry
1522 * that wants to block transit.
1524 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1525 int res = dentry->d_op->d_manage(path, true);
1527 return res == -EISDIR;
1528 flags = dentry->d_flags;
1531 if (flags & DCACHE_MOUNTED) {
1532 struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1534 path->mnt = &mounted->mnt;
1535 dentry = path->dentry = mounted->mnt.mnt_root;
1536 nd->state |= ND_JUMPED;
1537 nd->next_seq = read_seqcount_begin(&dentry->d_seq);
1538 flags = dentry->d_flags;
1539 // makes sure that non-RCU pathwalk could reach
1541 if (read_seqretry(&mount_lock, nd->m_seq))
1545 if (read_seqretry(&mount_lock, nd->m_seq))
1548 return !(flags & DCACHE_NEED_AUTOMOUNT);
1552 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1558 path->mnt = nd->path.mnt;
1559 path->dentry = dentry;
1560 if (nd->flags & LOOKUP_RCU) {
1561 unsigned int seq = nd->next_seq;
1562 if (likely(__follow_mount_rcu(nd, path)))
1564 // *path and nd->next_seq might've been clobbered
1565 path->mnt = nd->path.mnt;
1566 path->dentry = dentry;
1568 if (!try_to_unlazy_next(nd, dentry))
1571 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1573 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1576 nd->state |= ND_JUMPED;
1578 if (unlikely(ret)) {
1580 if (path->mnt != nd->path.mnt)
1587 * This looks up the name in dcache and possibly revalidates the found dentry.
1588 * NULL is returned if the dentry does not exist in the cache.
1590 static struct dentry *lookup_dcache(const struct qstr *name,
1594 struct dentry *dentry = d_lookup(dir, name);
1596 int error = d_revalidate(dentry, flags);
1597 if (unlikely(error <= 0)) {
1599 d_invalidate(dentry);
1601 return ERR_PTR(error);
1608 * Parent directory has inode locked exclusive. This is one
1609 * and only case when ->lookup() gets called on non in-lookup
1610 * dentries - as the matter of fact, this only gets called
1611 * when directory is guaranteed to have no in-lookup children
1614 struct dentry *lookup_one_qstr_excl(const struct qstr *name,
1615 struct dentry *base,
1618 struct dentry *dentry = lookup_dcache(name, base, flags);
1620 struct inode *dir = base->d_inode;
1625 /* Don't create child dentry for a dead directory. */
1626 if (unlikely(IS_DEADDIR(dir)))
1627 return ERR_PTR(-ENOENT);
1629 dentry = d_alloc(base, name);
1630 if (unlikely(!dentry))
1631 return ERR_PTR(-ENOMEM);
1633 old = dir->i_op->lookup(dir, dentry, flags);
1634 if (unlikely(old)) {
1640 EXPORT_SYMBOL(lookup_one_qstr_excl);
1643 * lookup_fast - do fast lockless (but racy) lookup of a dentry
1644 * @nd: current nameidata
1646 * Do a fast, but racy lookup in the dcache for the given dentry, and
1647 * revalidate it. Returns a valid dentry pointer or NULL if one wasn't
1648 * found. On error, an ERR_PTR will be returned.
1650 * If this function returns a valid dentry and the walk is no longer
1651 * lazy, the dentry will carry a reference that must later be put. If
1652 * RCU mode is still in force, then this is not the case and the dentry
1653 * must be legitimized before use. If this returns NULL, then the walk
1654 * will no longer be in RCU mode.
1656 static struct dentry *lookup_fast(struct nameidata *nd)
1658 struct dentry *dentry, *parent = nd->path.dentry;
1662 * Rename seqlock is not required here because in the off chance
1663 * of a false negative due to a concurrent rename, the caller is
1664 * going to fall back to non-racy lookup.
1666 if (nd->flags & LOOKUP_RCU) {
1667 dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq);
1668 if (unlikely(!dentry)) {
1669 if (!try_to_unlazy(nd))
1670 return ERR_PTR(-ECHILD);
1675 * This sequence count validates that the parent had no
1676 * changes while we did the lookup of the dentry above.
1678 if (read_seqcount_retry(&parent->d_seq, nd->seq))
1679 return ERR_PTR(-ECHILD);
1681 status = d_revalidate(dentry, nd->flags);
1682 if (likely(status > 0))
1684 if (!try_to_unlazy_next(nd, dentry))
1685 return ERR_PTR(-ECHILD);
1686 if (status == -ECHILD)
1687 /* we'd been told to redo it in non-rcu mode */
1688 status = d_revalidate(dentry, nd->flags);
1690 dentry = __d_lookup(parent, &nd->last);
1691 if (unlikely(!dentry))
1693 status = d_revalidate(dentry, nd->flags);
1695 if (unlikely(status <= 0)) {
1697 d_invalidate(dentry);
1699 return ERR_PTR(status);
1704 /* Fast lookup failed, do it the slow way */
1705 static struct dentry *__lookup_slow(const struct qstr *name,
1709 struct dentry *dentry, *old;
1710 struct inode *inode = dir->d_inode;
1711 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1713 /* Don't go there if it's already dead */
1714 if (unlikely(IS_DEADDIR(inode)))
1715 return ERR_PTR(-ENOENT);
1717 dentry = d_alloc_parallel(dir, name, &wq);
1720 if (unlikely(!d_in_lookup(dentry))) {
1721 int error = d_revalidate(dentry, flags);
1722 if (unlikely(error <= 0)) {
1724 d_invalidate(dentry);
1729 dentry = ERR_PTR(error);
1732 old = inode->i_op->lookup(inode, dentry, flags);
1733 d_lookup_done(dentry);
1734 if (unlikely(old)) {
1742 static struct dentry *lookup_slow(const struct qstr *name,
1746 struct inode *inode = dir->d_inode;
1748 inode_lock_shared(inode);
1749 res = __lookup_slow(name, dir, flags);
1750 inode_unlock_shared(inode);
1754 static inline int may_lookup(struct mnt_idmap *idmap,
1755 struct nameidata *restrict nd)
1759 mask = nd->flags & LOOKUP_RCU ? MAY_NOT_BLOCK : 0;
1760 err = inode_permission(idmap, nd->inode, mask | MAY_EXEC);
1764 // If we failed, and we weren't in LOOKUP_RCU, it's final
1765 if (!(nd->flags & LOOKUP_RCU))
1768 // Drop out of RCU mode to make sure it wasn't transient
1769 if (!try_to_unlazy(nd))
1770 return -ECHILD; // redo it all non-lazy
1772 if (err != -ECHILD) // hard error
1775 return inode_permission(idmap, nd->inode, MAY_EXEC);
1778 static int reserve_stack(struct nameidata *nd, struct path *link)
1780 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1783 if (likely(nd->depth != EMBEDDED_LEVELS))
1785 if (likely(nd->stack != nd->internal))
1787 if (likely(nd_alloc_stack(nd)))
1790 if (nd->flags & LOOKUP_RCU) {
1791 // we need to grab link before we do unlazy. And we can't skip
1792 // unlazy even if we fail to grab the link - cleanup needs it
1793 bool grabbed_link = legitimize_path(nd, link, nd->next_seq);
1795 if (!try_to_unlazy(nd) || !grabbed_link)
1798 if (nd_alloc_stack(nd))
1804 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1806 static const char *pick_link(struct nameidata *nd, struct path *link,
1807 struct inode *inode, int flags)
1811 int error = reserve_stack(nd, link);
1813 if (unlikely(error)) {
1814 if (!(nd->flags & LOOKUP_RCU))
1816 return ERR_PTR(error);
1818 last = nd->stack + nd->depth++;
1820 clear_delayed_call(&last->done);
1821 last->seq = nd->next_seq;
1823 if (flags & WALK_TRAILING) {
1824 error = may_follow_link(nd, inode);
1825 if (unlikely(error))
1826 return ERR_PTR(error);
1829 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1830 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1831 return ERR_PTR(-ELOOP);
1833 if (!(nd->flags & LOOKUP_RCU)) {
1834 touch_atime(&last->link);
1836 } else if (atime_needs_update(&last->link, inode)) {
1837 if (!try_to_unlazy(nd))
1838 return ERR_PTR(-ECHILD);
1839 touch_atime(&last->link);
1842 error = security_inode_follow_link(link->dentry, inode,
1843 nd->flags & LOOKUP_RCU);
1844 if (unlikely(error))
1845 return ERR_PTR(error);
1847 res = READ_ONCE(inode->i_link);
1849 const char * (*get)(struct dentry *, struct inode *,
1850 struct delayed_call *);
1851 get = inode->i_op->get_link;
1852 if (nd->flags & LOOKUP_RCU) {
1853 res = get(NULL, inode, &last->done);
1854 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1855 res = get(link->dentry, inode, &last->done);
1857 res = get(link->dentry, inode, &last->done);
1865 error = nd_jump_root(nd);
1866 if (unlikely(error))
1867 return ERR_PTR(error);
1868 while (unlikely(*++res == '/'))
1873 all_done: // pure jump
1879 * Do we need to follow links? We _really_ want to be able
1880 * to do this check without having to look at inode->i_op,
1881 * so we keep a cache of "no, this doesn't need follow_link"
1882 * for the common case.
1884 * NOTE: dentry must be what nd->next_seq had been sampled from.
1886 static const char *step_into(struct nameidata *nd, int flags,
1887 struct dentry *dentry)
1890 struct inode *inode;
1891 int err = handle_mounts(nd, dentry, &path);
1894 return ERR_PTR(err);
1895 inode = path.dentry->d_inode;
1896 if (likely(!d_is_symlink(path.dentry)) ||
1897 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1898 (flags & WALK_NOFOLLOW)) {
1899 /* not a symlink or should not follow */
1900 if (nd->flags & LOOKUP_RCU) {
1901 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1902 return ERR_PTR(-ECHILD);
1903 if (unlikely(!inode))
1904 return ERR_PTR(-ENOENT);
1906 dput(nd->path.dentry);
1907 if (nd->path.mnt != path.mnt)
1908 mntput(nd->path.mnt);
1912 nd->seq = nd->next_seq;
1915 if (nd->flags & LOOKUP_RCU) {
1916 /* make sure that d_is_symlink above matches inode */
1917 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1918 return ERR_PTR(-ECHILD);
1920 if (path.mnt == nd->path.mnt)
1923 return pick_link(nd, &path, inode, flags);
1926 static struct dentry *follow_dotdot_rcu(struct nameidata *nd)
1928 struct dentry *parent, *old;
1930 if (path_equal(&nd->path, &nd->root))
1932 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1935 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1936 &nd->root, &path, &seq))
1938 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1939 return ERR_PTR(-ECHILD);
1941 nd->inode = path.dentry->d_inode;
1943 // makes sure that non-RCU pathwalk could reach this state
1944 if (read_seqretry(&mount_lock, nd->m_seq))
1945 return ERR_PTR(-ECHILD);
1946 /* we know that mountpoint was pinned */
1948 old = nd->path.dentry;
1949 parent = old->d_parent;
1950 nd->next_seq = read_seqcount_begin(&parent->d_seq);
1951 // makes sure that non-RCU pathwalk could reach this state
1952 if (read_seqcount_retry(&old->d_seq, nd->seq))
1953 return ERR_PTR(-ECHILD);
1954 if (unlikely(!path_connected(nd->path.mnt, parent)))
1955 return ERR_PTR(-ECHILD);
1958 if (read_seqretry(&mount_lock, nd->m_seq))
1959 return ERR_PTR(-ECHILD);
1960 if (unlikely(nd->flags & LOOKUP_BENEATH))
1961 return ERR_PTR(-ECHILD);
1962 nd->next_seq = nd->seq;
1963 return nd->path.dentry;
1966 static struct dentry *follow_dotdot(struct nameidata *nd)
1968 struct dentry *parent;
1970 if (path_equal(&nd->path, &nd->root))
1972 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1975 if (!choose_mountpoint(real_mount(nd->path.mnt),
1978 path_put(&nd->path);
1980 nd->inode = path.dentry->d_inode;
1981 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1982 return ERR_PTR(-EXDEV);
1984 /* rare case of legitimate dget_parent()... */
1985 parent = dget_parent(nd->path.dentry);
1986 if (unlikely(!path_connected(nd->path.mnt, parent))) {
1988 return ERR_PTR(-ENOENT);
1993 if (unlikely(nd->flags & LOOKUP_BENEATH))
1994 return ERR_PTR(-EXDEV);
1995 return dget(nd->path.dentry);
1998 static const char *handle_dots(struct nameidata *nd, int type)
2000 if (type == LAST_DOTDOT) {
2001 const char *error = NULL;
2002 struct dentry *parent;
2004 if (!nd->root.mnt) {
2005 error = ERR_PTR(set_root(nd));
2009 if (nd->flags & LOOKUP_RCU)
2010 parent = follow_dotdot_rcu(nd);
2012 parent = follow_dotdot(nd);
2014 return ERR_CAST(parent);
2015 error = step_into(nd, WALK_NOFOLLOW, parent);
2016 if (unlikely(error))
2019 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
2021 * If there was a racing rename or mount along our
2022 * path, then we can't be sure that ".." hasn't jumped
2023 * above nd->root (and so userspace should retry or use
2027 if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))
2028 return ERR_PTR(-EAGAIN);
2029 if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))
2030 return ERR_PTR(-EAGAIN);
2036 static const char *walk_component(struct nameidata *nd, int flags)
2038 struct dentry *dentry;
2040 * "." and ".." are special - ".." especially so because it has
2041 * to be able to know about the current root directory and
2042 * parent relationships.
2044 if (unlikely(nd->last_type != LAST_NORM)) {
2045 if (!(flags & WALK_MORE) && nd->depth)
2047 return handle_dots(nd, nd->last_type);
2049 dentry = lookup_fast(nd);
2051 return ERR_CAST(dentry);
2052 if (unlikely(!dentry)) {
2053 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
2055 return ERR_CAST(dentry);
2057 if (!(flags & WALK_MORE) && nd->depth)
2059 return step_into(nd, flags, dentry);
2063 * We can do the critical dentry name comparison and hashing
2064 * operations one word at a time, but we are limited to:
2066 * - Architectures with fast unaligned word accesses. We could
2067 * do a "get_unaligned()" if this helps and is sufficiently
2070 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2071 * do not trap on the (extremely unlikely) case of a page
2072 * crossing operation.
2074 * - Furthermore, we need an efficient 64-bit compile for the
2075 * 64-bit case in order to generate the "number of bytes in
2076 * the final mask". Again, that could be replaced with a
2077 * efficient population count instruction or similar.
2079 #ifdef CONFIG_DCACHE_WORD_ACCESS
2081 #include <asm/word-at-a-time.h>
2085 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2087 #elif defined(CONFIG_64BIT)
2089 * Register pressure in the mixing function is an issue, particularly
2090 * on 32-bit x86, but almost any function requires one state value and
2091 * one temporary. Instead, use a function designed for two state values
2092 * and no temporaries.
2094 * This function cannot create a collision in only two iterations, so
2095 * we have two iterations to achieve avalanche. In those two iterations,
2096 * we have six layers of mixing, which is enough to spread one bit's
2097 * influence out to 2^6 = 64 state bits.
2099 * Rotate constants are scored by considering either 64 one-bit input
2100 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2101 * probability of that delta causing a change to each of the 128 output
2102 * bits, using a sample of random initial states.
2104 * The Shannon entropy of the computed probabilities is then summed
2105 * to produce a score. Ideally, any input change has a 50% chance of
2106 * toggling any given output bit.
2108 * Mixing scores (in bits) for (12,45):
2109 * Input delta: 1-bit 2-bit
2110 * 1 round: 713.3 42542.6
2111 * 2 rounds: 2753.7 140389.8
2112 * 3 rounds: 5954.1 233458.2
2113 * 4 rounds: 7862.6 256672.2
2114 * Perfect: 8192 258048
2115 * (64*128) (64*63/2 * 128)
2117 #define HASH_MIX(x, y, a) \
2119 y ^= x, x = rol64(x,12),\
2120 x += y, y = rol64(y,45),\
2124 * Fold two longs into one 32-bit hash value. This must be fast, but
2125 * latency isn't quite as critical, as there is a fair bit of additional
2126 * work done before the hash value is used.
2128 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2130 y ^= x * GOLDEN_RATIO_64;
2131 y *= GOLDEN_RATIO_64;
2135 #else /* 32-bit case */
2138 * Mixing scores (in bits) for (7,20):
2139 * Input delta: 1-bit 2-bit
2140 * 1 round: 330.3 9201.6
2141 * 2 rounds: 1246.4 25475.4
2142 * 3 rounds: 1907.1 31295.1
2143 * 4 rounds: 2042.3 31718.6
2144 * Perfect: 2048 31744
2145 * (32*64) (32*31/2 * 64)
2147 #define HASH_MIX(x, y, a) \
2149 y ^= x, x = rol32(x, 7),\
2150 x += y, y = rol32(y,20),\
2153 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2155 /* Use arch-optimized multiply if one exists */
2156 return __hash_32(y ^ __hash_32(x));
2162 * Return the hash of a string of known length. This is carfully
2163 * designed to match hash_name(), which is the more critical function.
2164 * In particular, we must end by hashing a final word containing 0..7
2165 * payload bytes, to match the way that hash_name() iterates until it
2166 * finds the delimiter after the name.
2168 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2170 unsigned long a, x = 0, y = (unsigned long)salt;
2175 a = load_unaligned_zeropad(name);
2176 if (len < sizeof(unsigned long))
2179 name += sizeof(unsigned long);
2180 len -= sizeof(unsigned long);
2182 x ^= a & bytemask_from_count(len);
2184 return fold_hash(x, y);
2186 EXPORT_SYMBOL(full_name_hash);
2188 /* Return the "hash_len" (hash and length) of a null-terminated string */
2189 u64 hashlen_string(const void *salt, const char *name)
2191 unsigned long a = 0, x = 0, y = (unsigned long)salt;
2192 unsigned long adata, mask, len;
2193 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2200 len += sizeof(unsigned long);
2202 a = load_unaligned_zeropad(name+len);
2203 } while (!has_zero(a, &adata, &constants));
2205 adata = prep_zero_mask(a, adata, &constants);
2206 mask = create_zero_mask(adata);
2207 x ^= a & zero_bytemask(mask);
2209 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2211 EXPORT_SYMBOL(hashlen_string);
2214 * Calculate the length and hash of the path component, and
2215 * return the length as the result.
2217 static inline const char *hash_name(struct nameidata *nd,
2219 unsigned long *lastword)
2221 unsigned long a, b, x, y = (unsigned long)nd->path.dentry;
2222 unsigned long adata, bdata, mask, len;
2223 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2226 * The first iteration is special, because it can result in
2227 * '.' and '..' and has no mixing other than the final fold.
2229 a = load_unaligned_zeropad(name);
2230 b = a ^ REPEAT_BYTE('/');
2231 if (has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)) {
2232 adata = prep_zero_mask(a, adata, &constants);
2233 bdata = prep_zero_mask(b, bdata, &constants);
2234 mask = create_zero_mask(adata | bdata);
2235 a &= zero_bytemask(mask);
2237 len = find_zero(mask);
2238 nd->last.hash = fold_hash(a, y);
2247 len += sizeof(unsigned long);
2248 a = load_unaligned_zeropad(name+len);
2249 b = a ^ REPEAT_BYTE('/');
2250 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2252 adata = prep_zero_mask(a, adata, &constants);
2253 bdata = prep_zero_mask(b, bdata, &constants);
2254 mask = create_zero_mask(adata | bdata);
2255 a &= zero_bytemask(mask);
2257 len += find_zero(mask);
2258 *lastword = 0; // Multi-word components cannot be DOT or DOTDOT
2260 nd->last.hash = fold_hash(x, y);
2266 * Note that the 'last' word is always zero-masked, but
2267 * was loaded as a possibly big-endian word.
2270 #define LAST_WORD_IS_DOT (0x2eul << (BITS_PER_LONG-8))
2271 #define LAST_WORD_IS_DOTDOT (0x2e2eul << (BITS_PER_LONG-16))
2274 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2276 /* Return the hash of a string of known length */
2277 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2279 unsigned long hash = init_name_hash(salt);
2281 hash = partial_name_hash((unsigned char)*name++, hash);
2282 return end_name_hash(hash);
2284 EXPORT_SYMBOL(full_name_hash);
2286 /* Return the "hash_len" (hash and length) of a null-terminated string */
2287 u64 hashlen_string(const void *salt, const char *name)
2289 unsigned long hash = init_name_hash(salt);
2290 unsigned long len = 0, c;
2292 c = (unsigned char)*name;
2295 hash = partial_name_hash(c, hash);
2296 c = (unsigned char)name[len];
2298 return hashlen_create(end_name_hash(hash), len);
2300 EXPORT_SYMBOL(hashlen_string);
2303 * We know there's a real path component here of at least
2306 static inline const char *hash_name(struct nameidata *nd, const char *name, unsigned long *lastword)
2308 unsigned long hash = init_name_hash(nd->path.dentry);
2309 unsigned long len = 0, c, last = 0;
2311 c = (unsigned char)*name;
2313 last = (last << 8) + c;
2315 hash = partial_name_hash(c, hash);
2316 c = (unsigned char)name[len];
2317 } while (c && c != '/');
2319 // This is reliable for DOT or DOTDOT, since the component
2320 // cannot contain NUL characters - top bits being zero means
2321 // we cannot have had any other pathnames.
2323 nd->last.hash = end_name_hash(hash);
2330 #ifndef LAST_WORD_IS_DOT
2331 #define LAST_WORD_IS_DOT 0x2e
2332 #define LAST_WORD_IS_DOTDOT 0x2e2e
2337 * This is the basic name resolution function, turning a pathname into
2338 * the final dentry. We expect 'base' to be positive and a directory.
2340 * Returns 0 and nd will have valid dentry and mnt on success.
2341 * Returns error and drops reference to input namei data on failure.
2343 static int link_path_walk(const char *name, struct nameidata *nd)
2345 int depth = 0; // depth <= nd->depth
2348 nd->last_type = LAST_ROOT;
2349 nd->flags |= LOOKUP_PARENT;
2351 return PTR_ERR(name);
2355 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2359 /* At this point we know we have a real path component. */
2361 struct mnt_idmap *idmap;
2363 unsigned long lastword;
2365 idmap = mnt_idmap(nd->path.mnt);
2366 err = may_lookup(idmap, nd);
2370 nd->last.name = name;
2371 name = hash_name(nd, name, &lastword);
2374 case LAST_WORD_IS_DOTDOT:
2375 nd->last_type = LAST_DOTDOT;
2376 nd->state |= ND_JUMPED;
2379 case LAST_WORD_IS_DOT:
2380 nd->last_type = LAST_DOT;
2384 nd->last_type = LAST_NORM;
2385 nd->state &= ~ND_JUMPED;
2387 struct dentry *parent = nd->path.dentry;
2388 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2389 err = parent->d_op->d_hash(parent, &nd->last);
2398 * If it wasn't NUL, we know it was '/'. Skip that
2399 * slash, and continue until no more slashes.
2403 } while (unlikely(*name == '/'));
2404 if (unlikely(!*name)) {
2406 /* pathname or trailing symlink, done */
2408 nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode);
2409 nd->dir_mode = nd->inode->i_mode;
2410 nd->flags &= ~LOOKUP_PARENT;
2413 /* last component of nested symlink */
2414 name = nd->stack[--depth].name;
2415 link = walk_component(nd, 0);
2417 /* not the last component */
2418 link = walk_component(nd, WALK_MORE);
2420 if (unlikely(link)) {
2422 return PTR_ERR(link);
2423 /* a symlink to follow */
2424 nd->stack[depth++].name = name;
2428 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2429 if (nd->flags & LOOKUP_RCU) {
2430 if (!try_to_unlazy(nd))
2438 /* must be paired with terminate_walk() */
2439 static const char *path_init(struct nameidata *nd, unsigned flags)
2442 const char *s = nd->name->name;
2444 /* LOOKUP_CACHED requires RCU, ask caller to retry */
2445 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2446 return ERR_PTR(-EAGAIN);
2449 flags &= ~LOOKUP_RCU;
2450 if (flags & LOOKUP_RCU)
2453 nd->seq = nd->next_seq = 0;
2456 nd->state |= ND_JUMPED;
2458 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2459 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2462 if (nd->state & ND_ROOT_PRESET) {
2463 struct dentry *root = nd->root.dentry;
2464 struct inode *inode = root->d_inode;
2465 if (*s && unlikely(!d_can_lookup(root)))
2466 return ERR_PTR(-ENOTDIR);
2467 nd->path = nd->root;
2469 if (flags & LOOKUP_RCU) {
2470 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2471 nd->root_seq = nd->seq;
2473 path_get(&nd->path);
2478 nd->root.mnt = NULL;
2480 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2481 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2482 error = nd_jump_root(nd);
2483 if (unlikely(error))
2484 return ERR_PTR(error);
2488 /* Relative pathname -- get the starting-point it is relative to. */
2489 if (nd->dfd == AT_FDCWD) {
2490 if (flags & LOOKUP_RCU) {
2491 struct fs_struct *fs = current->fs;
2495 seq = read_seqcount_begin(&fs->seq);
2497 nd->inode = nd->path.dentry->d_inode;
2498 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2499 } while (read_seqcount_retry(&fs->seq, seq));
2501 get_fs_pwd(current->fs, &nd->path);
2502 nd->inode = nd->path.dentry->d_inode;
2505 /* Caller must check execute permissions on the starting path component */
2506 struct fd f = fdget_raw(nd->dfd);
2507 struct dentry *dentry;
2510 return ERR_PTR(-EBADF);
2512 if (flags & LOOKUP_LINKAT_EMPTY) {
2513 if (fd_file(f)->f_cred != current_cred() &&
2514 !ns_capable(fd_file(f)->f_cred->user_ns, CAP_DAC_READ_SEARCH)) {
2516 return ERR_PTR(-ENOENT);
2520 dentry = fd_file(f)->f_path.dentry;
2522 if (*s && unlikely(!d_can_lookup(dentry))) {
2524 return ERR_PTR(-ENOTDIR);
2527 nd->path = fd_file(f)->f_path;
2528 if (flags & LOOKUP_RCU) {
2529 nd->inode = nd->path.dentry->d_inode;
2530 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2532 path_get(&nd->path);
2533 nd->inode = nd->path.dentry->d_inode;
2538 /* For scoped-lookups we need to set the root to the dirfd as well. */
2539 if (flags & LOOKUP_IS_SCOPED) {
2540 nd->root = nd->path;
2541 if (flags & LOOKUP_RCU) {
2542 nd->root_seq = nd->seq;
2544 path_get(&nd->root);
2545 nd->state |= ND_ROOT_GRABBED;
2551 static inline const char *lookup_last(struct nameidata *nd)
2553 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2554 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2556 return walk_component(nd, WALK_TRAILING);
2559 static int handle_lookup_down(struct nameidata *nd)
2561 if (!(nd->flags & LOOKUP_RCU))
2562 dget(nd->path.dentry);
2563 nd->next_seq = nd->seq;
2564 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry));
2567 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
2568 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2570 const char *s = path_init(nd, flags);
2573 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2574 err = handle_lookup_down(nd);
2575 if (unlikely(err < 0))
2579 while (!(err = link_path_walk(s, nd)) &&
2580 (s = lookup_last(nd)) != NULL)
2582 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2583 err = handle_lookup_down(nd);
2584 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2587 err = complete_walk(nd);
2589 if (!err && nd->flags & LOOKUP_DIRECTORY)
2590 if (!d_can_lookup(nd->path.dentry))
2594 nd->path.mnt = NULL;
2595 nd->path.dentry = NULL;
2601 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2602 struct path *path, struct path *root)
2605 struct nameidata nd;
2607 return PTR_ERR(name);
2608 set_nameidata(&nd, dfd, name, root);
2609 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2610 if (unlikely(retval == -ECHILD))
2611 retval = path_lookupat(&nd, flags, path);
2612 if (unlikely(retval == -ESTALE))
2613 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2615 if (likely(!retval))
2616 audit_inode(name, path->dentry,
2617 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2618 restore_nameidata();
2622 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
2623 static int path_parentat(struct nameidata *nd, unsigned flags,
2624 struct path *parent)
2626 const char *s = path_init(nd, flags);
2627 int err = link_path_walk(s, nd);
2629 err = complete_walk(nd);
2632 nd->path.mnt = NULL;
2633 nd->path.dentry = NULL;
2639 /* Note: this does not consume "name" */
2640 static int __filename_parentat(int dfd, struct filename *name,
2641 unsigned int flags, struct path *parent,
2642 struct qstr *last, int *type,
2643 const struct path *root)
2646 struct nameidata nd;
2649 return PTR_ERR(name);
2650 set_nameidata(&nd, dfd, name, root);
2651 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2652 if (unlikely(retval == -ECHILD))
2653 retval = path_parentat(&nd, flags, parent);
2654 if (unlikely(retval == -ESTALE))
2655 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2656 if (likely(!retval)) {
2658 *type = nd.last_type;
2659 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2661 restore_nameidata();
2665 static int filename_parentat(int dfd, struct filename *name,
2666 unsigned int flags, struct path *parent,
2667 struct qstr *last, int *type)
2669 return __filename_parentat(dfd, name, flags, parent, last, type, NULL);
2672 /* does lookup, returns the object with parent locked */
2673 static struct dentry *__kern_path_locked(int dfd, struct filename *name, struct path *path)
2679 error = filename_parentat(dfd, name, 0, path, &last, &type);
2681 return ERR_PTR(error);
2682 if (unlikely(type != LAST_NORM)) {
2684 return ERR_PTR(-EINVAL);
2686 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2687 d = lookup_one_qstr_excl(&last, path->dentry, 0);
2689 inode_unlock(path->dentry->d_inode);
2695 struct dentry *kern_path_locked(const char *name, struct path *path)
2697 struct filename *filename = getname_kernel(name);
2698 struct dentry *res = __kern_path_locked(AT_FDCWD, filename, path);
2704 struct dentry *user_path_locked_at(int dfd, const char __user *name, struct path *path)
2706 struct filename *filename = getname(name);
2707 struct dentry *res = __kern_path_locked(dfd, filename, path);
2712 EXPORT_SYMBOL(user_path_locked_at);
2714 int kern_path(const char *name, unsigned int flags, struct path *path)
2716 struct filename *filename = getname_kernel(name);
2717 int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2723 EXPORT_SYMBOL(kern_path);
2726 * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair
2727 * @filename: filename structure
2728 * @flags: lookup flags
2729 * @parent: pointer to struct path to fill
2730 * @last: last component
2731 * @type: type of the last component
2732 * @root: pointer to struct path of the base directory
2734 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags,
2735 struct path *parent, struct qstr *last, int *type,
2736 const struct path *root)
2738 return __filename_parentat(AT_FDCWD, filename, flags, parent, last,
2741 EXPORT_SYMBOL(vfs_path_parent_lookup);
2744 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2745 * @dentry: pointer to dentry of the base directory
2746 * @mnt: pointer to vfs mount of the base directory
2747 * @name: pointer to file name
2748 * @flags: lookup flags
2749 * @path: pointer to struct path to fill
2751 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2752 const char *name, unsigned int flags,
2755 struct filename *filename;
2756 struct path root = {.mnt = mnt, .dentry = dentry};
2759 filename = getname_kernel(name);
2760 /* the first argument of filename_lookup() is ignored with root */
2761 ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2765 EXPORT_SYMBOL(vfs_path_lookup);
2767 static int lookup_one_common(struct mnt_idmap *idmap,
2768 const char *name, struct dentry *base, int len,
2773 this->hash = full_name_hash(base, name, len);
2777 if (is_dot_dotdot(name, len))
2781 unsigned int c = *(const unsigned char *)name++;
2782 if (c == '/' || c == '\0')
2786 * See if the low-level filesystem might want
2787 * to use its own hash..
2789 if (base->d_flags & DCACHE_OP_HASH) {
2790 int err = base->d_op->d_hash(base, this);
2795 return inode_permission(idmap, base->d_inode, MAY_EXEC);
2799 * try_lookup_one_len - filesystem helper to lookup single pathname component
2800 * @name: pathname component to lookup
2801 * @base: base directory to lookup from
2802 * @len: maximum length @len should be interpreted to
2804 * Look up a dentry by name in the dcache, returning NULL if it does not
2805 * currently exist. The function does not try to create a dentry.
2807 * Note that this routine is purely a helper for filesystem usage and should
2808 * not be called by generic code.
2810 * The caller must hold base->i_mutex.
2812 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2817 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2819 err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2821 return ERR_PTR(err);
2823 return lookup_dcache(&this, base, 0);
2825 EXPORT_SYMBOL(try_lookup_one_len);
2828 * lookup_one_len - filesystem helper to lookup single pathname component
2829 * @name: pathname component to lookup
2830 * @base: base directory to lookup from
2831 * @len: maximum length @len should be interpreted to
2833 * Note that this routine is purely a helper for filesystem usage and should
2834 * not be called by generic code.
2836 * The caller must hold base->i_mutex.
2838 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2840 struct dentry *dentry;
2844 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2846 err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2848 return ERR_PTR(err);
2850 dentry = lookup_dcache(&this, base, 0);
2851 return dentry ? dentry : __lookup_slow(&this, base, 0);
2853 EXPORT_SYMBOL(lookup_one_len);
2856 * lookup_one - filesystem helper to lookup single pathname component
2857 * @idmap: idmap of the mount the lookup is performed from
2858 * @name: pathname component to lookup
2859 * @base: base directory to lookup from
2860 * @len: maximum length @len should be interpreted to
2862 * Note that this routine is purely a helper for filesystem usage and should
2863 * not be called by generic code.
2865 * The caller must hold base->i_mutex.
2867 struct dentry *lookup_one(struct mnt_idmap *idmap, const char *name,
2868 struct dentry *base, int len)
2870 struct dentry *dentry;
2874 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2876 err = lookup_one_common(idmap, name, base, len, &this);
2878 return ERR_PTR(err);
2880 dentry = lookup_dcache(&this, base, 0);
2881 return dentry ? dentry : __lookup_slow(&this, base, 0);
2883 EXPORT_SYMBOL(lookup_one);
2886 * lookup_one_unlocked - filesystem helper to lookup single pathname component
2887 * @idmap: idmap of the mount the lookup is performed from
2888 * @name: pathname component to lookup
2889 * @base: base directory to lookup from
2890 * @len: maximum length @len should be interpreted to
2892 * Note that this routine is purely a helper for filesystem usage and should
2893 * not be called by generic code.
2895 * Unlike lookup_one_len, it should be called without the parent
2896 * i_mutex held, and will take the i_mutex itself if necessary.
2898 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap,
2899 const char *name, struct dentry *base,
2906 err = lookup_one_common(idmap, name, base, len, &this);
2908 return ERR_PTR(err);
2910 ret = lookup_dcache(&this, base, 0);
2912 ret = lookup_slow(&this, base, 0);
2915 EXPORT_SYMBOL(lookup_one_unlocked);
2918 * lookup_one_positive_unlocked - filesystem helper to lookup single
2919 * pathname component
2920 * @idmap: idmap of the mount the lookup is performed from
2921 * @name: pathname component to lookup
2922 * @base: base directory to lookup from
2923 * @len: maximum length @len should be interpreted to
2925 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
2926 * known positive or ERR_PTR(). This is what most of the users want.
2928 * Note that pinned negative with unlocked parent _can_ become positive at any
2929 * time, so callers of lookup_one_unlocked() need to be very careful; pinned
2930 * positives have >d_inode stable, so this one avoids such problems.
2932 * Note that this routine is purely a helper for filesystem usage and should
2933 * not be called by generic code.
2935 * The helper should be called without i_mutex held.
2937 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap,
2939 struct dentry *base, int len)
2941 struct dentry *ret = lookup_one_unlocked(idmap, name, base, len);
2943 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2945 ret = ERR_PTR(-ENOENT);
2949 EXPORT_SYMBOL(lookup_one_positive_unlocked);
2952 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2953 * @name: pathname component to lookup
2954 * @base: base directory to lookup from
2955 * @len: maximum length @len should be interpreted to
2957 * Note that this routine is purely a helper for filesystem usage and should
2958 * not be called by generic code.
2960 * Unlike lookup_one_len, it should be called without the parent
2961 * i_mutex held, and will take the i_mutex itself if necessary.
2963 struct dentry *lookup_one_len_unlocked(const char *name,
2964 struct dentry *base, int len)
2966 return lookup_one_unlocked(&nop_mnt_idmap, name, base, len);
2968 EXPORT_SYMBOL(lookup_one_len_unlocked);
2971 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2972 * on negatives. Returns known positive or ERR_PTR(); that's what
2973 * most of the users want. Note that pinned negative with unlocked parent
2974 * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2975 * need to be very careful; pinned positives have ->d_inode stable, so
2976 * this one avoids such problems.
2978 struct dentry *lookup_positive_unlocked(const char *name,
2979 struct dentry *base, int len)
2981 return lookup_one_positive_unlocked(&nop_mnt_idmap, name, base, len);
2983 EXPORT_SYMBOL(lookup_positive_unlocked);
2985 #ifdef CONFIG_UNIX98_PTYS
2986 int path_pts(struct path *path)
2988 /* Find something mounted on "pts" in the same directory as
2991 struct dentry *parent = dget_parent(path->dentry);
2992 struct dentry *child;
2993 struct qstr this = QSTR_INIT("pts", 3);
2995 if (unlikely(!path_connected(path->mnt, parent))) {
3000 path->dentry = parent;
3001 child = d_hash_and_lookup(parent, &this);
3002 if (IS_ERR_OR_NULL(child))
3005 path->dentry = child;
3007 follow_down(path, 0);
3012 int user_path_at(int dfd, const char __user *name, unsigned flags,
3015 struct filename *filename = getname_flags(name, flags);
3016 int ret = filename_lookup(dfd, filename, flags, path, NULL);
3021 EXPORT_SYMBOL(user_path_at);
3023 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
3024 struct inode *inode)
3026 kuid_t fsuid = current_fsuid();
3028 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid))
3030 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid))
3032 return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER);
3034 EXPORT_SYMBOL(__check_sticky);
3037 * Check whether we can remove a link victim from directory dir, check
3038 * whether the type of victim is right.
3039 * 1. We can't do it if dir is read-only (done in permission())
3040 * 2. We should have write and exec permissions on dir
3041 * 3. We can't remove anything from append-only dir
3042 * 4. We can't do anything with immutable dir (done in permission())
3043 * 5. If the sticky bit on dir is set we should either
3044 * a. be owner of dir, or
3045 * b. be owner of victim, or
3046 * c. have CAP_FOWNER capability
3047 * 6. If the victim is append-only or immutable we can't do antyhing with
3048 * links pointing to it.
3049 * 7. If the victim has an unknown uid or gid we can't change the inode.
3050 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
3051 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
3052 * 10. We can't remove a root or mountpoint.
3053 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
3054 * nfs_async_unlink().
3056 static int may_delete(struct mnt_idmap *idmap, struct inode *dir,
3057 struct dentry *victim, bool isdir)
3059 struct inode *inode = d_backing_inode(victim);
3062 if (d_is_negative(victim))
3066 BUG_ON(victim->d_parent->d_inode != dir);
3068 /* Inode writeback is not safe when the uid or gid are invalid. */
3069 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
3070 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
3073 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
3075 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3081 if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) ||
3082 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
3083 HAS_UNMAPPED_ID(idmap, inode))
3086 if (!d_is_dir(victim))
3088 if (IS_ROOT(victim))
3090 } else if (d_is_dir(victim))
3092 if (IS_DEADDIR(dir))
3094 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
3099 /* Check whether we can create an object with dentry child in directory
3101 * 1. We can't do it if child already exists (open has special treatment for
3102 * this case, but since we are inlined it's OK)
3103 * 2. We can't do it if dir is read-only (done in permission())
3104 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
3105 * 4. We should have write and exec permissions on dir
3106 * 5. We can't do it if dir is immutable (done in permission())
3108 static inline int may_create(struct mnt_idmap *idmap,
3109 struct inode *dir, struct dentry *child)
3111 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
3114 if (IS_DEADDIR(dir))
3116 if (!fsuidgid_has_mapping(dir->i_sb, idmap))
3119 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3122 // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held
3123 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2)
3125 struct dentry *p = p1, *q = p2, *r;
3127 while ((r = p->d_parent) != p2 && r != p)
3130 // p is a child of p2 and an ancestor of p1 or p1 itself
3131 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3132 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2);
3135 // p is the root of connected component that contains p1
3136 // p2 does not occur on the path from p to p1
3137 while ((r = q->d_parent) != p1 && r != p && r != q)
3140 // q is a child of p1 and an ancestor of p2 or p2 itself
3141 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3142 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3144 } else if (likely(r == p)) {
3145 // both p2 and p1 are descendents of p
3146 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3147 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3149 } else { // no common ancestor at the time we'd been called
3150 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3151 return ERR_PTR(-EXDEV);
3156 * p1 and p2 should be directories on the same fs.
3158 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3161 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3165 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3166 return lock_two_directories(p1, p2);
3168 EXPORT_SYMBOL(lock_rename);
3171 * c1 and p2 should be on the same fs.
3173 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2)
3175 if (READ_ONCE(c1->d_parent) == p2) {
3177 * hopefully won't need to touch ->s_vfs_rename_mutex at all.
3179 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3181 * now that p2 is locked, nobody can move in or out of it,
3182 * so the test below is safe.
3184 if (likely(c1->d_parent == p2))
3188 * c1 got moved out of p2 while we'd been taking locks;
3189 * unlock and fall back to slow case.
3191 inode_unlock(p2->d_inode);
3194 mutex_lock(&c1->d_sb->s_vfs_rename_mutex);
3196 * nobody can move out of any directories on this fs.
3198 if (likely(c1->d_parent != p2))
3199 return lock_two_directories(c1->d_parent, p2);
3202 * c1 got moved into p2 while we were taking locks;
3203 * we need p2 locked and ->s_vfs_rename_mutex unlocked,
3204 * for consistency with lock_rename().
3206 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3207 mutex_unlock(&c1->d_sb->s_vfs_rename_mutex);
3210 EXPORT_SYMBOL(lock_rename_child);
3212 void unlock_rename(struct dentry *p1, struct dentry *p2)
3214 inode_unlock(p1->d_inode);
3216 inode_unlock(p2->d_inode);
3217 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3220 EXPORT_SYMBOL(unlock_rename);
3223 * vfs_prepare_mode - prepare the mode to be used for a new inode
3224 * @idmap: idmap of the mount the inode was found from
3225 * @dir: parent directory of the new inode
3226 * @mode: mode of the new inode
3227 * @mask_perms: allowed permission by the vfs
3228 * @type: type of file to be created
3230 * This helper consolidates and enforces vfs restrictions on the @mode of a new
3231 * object to be created.
3233 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3234 * the kernel documentation for mode_strip_umask()). Moving umask stripping
3235 * after setgid stripping allows the same ordering for both non-POSIX ACL and
3236 * POSIX ACL supporting filesystems.
3238 * Note that it's currently valid for @type to be 0 if a directory is created.
3239 * Filesystems raise that flag individually and we need to check whether each
3240 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3243 * Returns: mode to be passed to the filesystem
3245 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap,
3246 const struct inode *dir, umode_t mode,
3247 umode_t mask_perms, umode_t type)
3249 mode = mode_strip_sgid(idmap, dir, mode);
3250 mode = mode_strip_umask(dir, mode);
3253 * Apply the vfs mandated allowed permission mask and set the type of
3254 * file to be created before we call into the filesystem.
3256 mode &= (mask_perms & ~S_IFMT);
3257 mode |= (type & S_IFMT);
3263 * vfs_create - create new file
3264 * @idmap: idmap of the mount the inode was found from
3265 * @dir: inode of the parent directory
3266 * @dentry: dentry of the child file
3267 * @mode: mode of the child file
3268 * @want_excl: whether the file must not yet exist
3270 * Create a new file.
3272 * If the inode has been found through an idmapped mount the idmap of
3273 * the vfsmount must be passed through @idmap. This function will then take
3274 * care to map the inode according to @idmap before checking permissions.
3275 * On non-idmapped mounts or if permission checking is to be performed on the
3276 * raw inode simply pass @nop_mnt_idmap.
3278 int vfs_create(struct mnt_idmap *idmap, struct inode *dir,
3279 struct dentry *dentry, umode_t mode, bool want_excl)
3283 error = may_create(idmap, dir, dentry);
3287 if (!dir->i_op->create)
3288 return -EACCES; /* shouldn't it be ENOSYS? */
3290 mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG);
3291 error = security_inode_create(dir, dentry, mode);
3294 error = dir->i_op->create(idmap, dir, dentry, mode, want_excl);
3296 fsnotify_create(dir, dentry);
3299 EXPORT_SYMBOL(vfs_create);
3301 int vfs_mkobj(struct dentry *dentry, umode_t mode,
3302 int (*f)(struct dentry *, umode_t, void *),
3305 struct inode *dir = dentry->d_parent->d_inode;
3306 int error = may_create(&nop_mnt_idmap, dir, dentry);
3312 error = security_inode_create(dir, dentry, mode);
3315 error = f(dentry, mode, arg);
3317 fsnotify_create(dir, dentry);
3320 EXPORT_SYMBOL(vfs_mkobj);
3322 bool may_open_dev(const struct path *path)
3324 return !(path->mnt->mnt_flags & MNT_NODEV) &&
3325 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3328 static int may_open(struct mnt_idmap *idmap, const struct path *path,
3329 int acc_mode, int flag)
3331 struct dentry *dentry = path->dentry;
3332 struct inode *inode = dentry->d_inode;
3338 switch (inode->i_mode & S_IFMT) {
3342 if (acc_mode & MAY_WRITE)
3344 if (acc_mode & MAY_EXEC)
3349 if (!may_open_dev(path))
3354 if (acc_mode & MAY_EXEC)
3359 if ((acc_mode & MAY_EXEC) && path_noexec(path))
3364 error = inode_permission(idmap, inode, MAY_OPEN | acc_mode);
3369 * An append-only file must be opened in append mode for writing.
3371 if (IS_APPEND(inode)) {
3372 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3378 /* O_NOATIME can only be set by the owner or superuser */
3379 if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode))
3385 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp)
3387 const struct path *path = &filp->f_path;
3388 struct inode *inode = path->dentry->d_inode;
3389 int error = get_write_access(inode);
3393 error = security_file_truncate(filp);
3395 error = do_truncate(idmap, path->dentry, 0,
3396 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3399 put_write_access(inode);
3403 static inline int open_to_namei_flags(int flag)
3405 if ((flag & O_ACCMODE) == 3)
3410 static int may_o_create(struct mnt_idmap *idmap,
3411 const struct path *dir, struct dentry *dentry,
3414 int error = security_path_mknod(dir, dentry, mode, 0);
3418 if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap))
3421 error = inode_permission(idmap, dir->dentry->d_inode,
3422 MAY_WRITE | MAY_EXEC);
3426 return security_inode_create(dir->dentry->d_inode, dentry, mode);
3430 * Attempt to atomically look up, create and open a file from a negative
3433 * Returns 0 if successful. The file will have been created and attached to
3434 * @file by the filesystem calling finish_open().
3436 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3437 * be set. The caller will need to perform the open themselves. @path will
3438 * have been updated to point to the new dentry. This may be negative.
3440 * Returns an error code otherwise.
3442 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3444 int open_flag, umode_t mode)
3446 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3447 struct inode *dir = nd->path.dentry->d_inode;
3450 if (nd->flags & LOOKUP_DIRECTORY)
3451 open_flag |= O_DIRECTORY;
3453 file->f_path.dentry = DENTRY_NOT_SET;
3454 file->f_path.mnt = nd->path.mnt;
3455 error = dir->i_op->atomic_open(dir, dentry, file,
3456 open_to_namei_flags(open_flag), mode);
3457 d_lookup_done(dentry);
3459 if (file->f_mode & FMODE_OPENED) {
3460 if (unlikely(dentry != file->f_path.dentry)) {
3462 dentry = dget(file->f_path.dentry);
3464 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3467 if (file->f_path.dentry) {
3469 dentry = file->f_path.dentry;
3471 if (unlikely(d_is_negative(dentry)))
3477 dentry = ERR_PTR(error);
3483 * Look up and maybe create and open the last component.
3485 * Must be called with parent locked (exclusive in O_CREAT case).
3487 * Returns 0 on success, that is, if
3488 * the file was successfully atomically created (if necessary) and opened, or
3489 * the file was not completely opened at this time, though lookups and
3490 * creations were performed.
3491 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3492 * In the latter case dentry returned in @path might be negative if O_CREAT
3493 * hadn't been specified.
3495 * An error code is returned on failure.
3497 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3498 const struct open_flags *op,
3501 struct mnt_idmap *idmap;
3502 struct dentry *dir = nd->path.dentry;
3503 struct inode *dir_inode = dir->d_inode;
3504 int open_flag = op->open_flag;
3505 struct dentry *dentry;
3506 int error, create_error = 0;
3507 umode_t mode = op->mode;
3508 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3510 if (unlikely(IS_DEADDIR(dir_inode)))
3511 return ERR_PTR(-ENOENT);
3513 file->f_mode &= ~FMODE_CREATED;
3514 dentry = d_lookup(dir, &nd->last);
3517 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3521 if (d_in_lookup(dentry))
3524 error = d_revalidate(dentry, nd->flags);
3525 if (likely(error > 0))
3529 d_invalidate(dentry);
3533 if (dentry->d_inode) {
3534 /* Cached positive dentry: will open in f_op->open */
3538 if (open_flag & O_CREAT)
3539 audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3542 * Checking write permission is tricky, bacuse we don't know if we are
3543 * going to actually need it: O_CREAT opens should work as long as the
3544 * file exists. But checking existence breaks atomicity. The trick is
3545 * to check access and if not granted clear O_CREAT from the flags.
3547 * Another problem is returing the "right" error value (e.g. for an
3548 * O_EXCL open we want to return EEXIST not EROFS).
3550 if (unlikely(!got_write))
3551 open_flag &= ~O_TRUNC;
3552 idmap = mnt_idmap(nd->path.mnt);
3553 if (open_flag & O_CREAT) {
3554 if (open_flag & O_EXCL)
3555 open_flag &= ~O_TRUNC;
3556 mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode);
3557 if (likely(got_write))
3558 create_error = may_o_create(idmap, &nd->path,
3561 create_error = -EROFS;
3564 open_flag &= ~O_CREAT;
3565 if (dir_inode->i_op->atomic_open) {
3566 dentry = atomic_open(nd, dentry, file, open_flag, mode);
3567 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3568 dentry = ERR_PTR(create_error);
3572 if (d_in_lookup(dentry)) {
3573 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3575 d_lookup_done(dentry);
3576 if (unlikely(res)) {
3578 error = PTR_ERR(res);
3586 /* Negative dentry, just create the file */
3587 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3588 file->f_mode |= FMODE_CREATED;
3589 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3590 if (!dir_inode->i_op->create) {
3595 error = dir_inode->i_op->create(idmap, dir_inode, dentry,
3596 mode, open_flag & O_EXCL);
3600 if (unlikely(create_error) && !dentry->d_inode) {
3601 error = create_error;
3608 return ERR_PTR(error);
3611 static inline bool trailing_slashes(struct nameidata *nd)
3613 return (bool)nd->last.name[nd->last.len];
3616 static struct dentry *lookup_fast_for_open(struct nameidata *nd, int open_flag)
3618 struct dentry *dentry;
3620 if (open_flag & O_CREAT) {
3621 if (trailing_slashes(nd))
3622 return ERR_PTR(-EISDIR);
3624 /* Don't bother on an O_EXCL create */
3625 if (open_flag & O_EXCL)
3629 if (trailing_slashes(nd))
3630 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3632 dentry = lookup_fast(nd);
3633 if (IS_ERR_OR_NULL(dentry))
3636 if (open_flag & O_CREAT) {
3637 /* Discard negative dentries. Need inode_lock to do the create */
3638 if (!dentry->d_inode) {
3639 if (!(nd->flags & LOOKUP_RCU))
3647 static const char *open_last_lookups(struct nameidata *nd,
3648 struct file *file, const struct open_flags *op)
3650 struct dentry *dir = nd->path.dentry;
3651 int open_flag = op->open_flag;
3652 bool got_write = false;
3653 struct dentry *dentry;
3656 nd->flags |= op->intent;
3658 if (nd->last_type != LAST_NORM) {
3661 return handle_dots(nd, nd->last_type);
3664 /* We _can_ be in RCU mode here */
3665 dentry = lookup_fast_for_open(nd, open_flag);
3667 return ERR_CAST(dentry);
3672 if (!(open_flag & O_CREAT)) {
3673 if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU))
3674 return ERR_PTR(-ECHILD);
3676 if (nd->flags & LOOKUP_RCU) {
3677 if (!try_to_unlazy(nd))
3678 return ERR_PTR(-ECHILD);
3682 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3683 got_write = !mnt_want_write(nd->path.mnt);
3685 * do _not_ fail yet - we might not need that or fail with
3686 * a different error; let lookup_open() decide; we'll be
3687 * dropping this one anyway.
3690 if (open_flag & O_CREAT)
3691 inode_lock(dir->d_inode);
3693 inode_lock_shared(dir->d_inode);
3694 dentry = lookup_open(nd, file, op, got_write);
3695 if (!IS_ERR(dentry)) {
3696 if (file->f_mode & FMODE_CREATED)
3697 fsnotify_create(dir->d_inode, dentry);
3698 if (file->f_mode & FMODE_OPENED)
3699 fsnotify_open(file);
3701 if (open_flag & O_CREAT)
3702 inode_unlock(dir->d_inode);
3704 inode_unlock_shared(dir->d_inode);
3707 mnt_drop_write(nd->path.mnt);
3710 return ERR_CAST(dentry);
3712 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3713 dput(nd->path.dentry);
3714 nd->path.dentry = dentry;
3721 res = step_into(nd, WALK_TRAILING, dentry);
3723 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3728 * Handle the last step of open()
3730 static int do_open(struct nameidata *nd,
3731 struct file *file, const struct open_flags *op)
3733 struct mnt_idmap *idmap;
3734 int open_flag = op->open_flag;
3739 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3740 error = complete_walk(nd);
3744 if (!(file->f_mode & FMODE_CREATED))
3745 audit_inode(nd->name, nd->path.dentry, 0);
3746 idmap = mnt_idmap(nd->path.mnt);
3747 if (open_flag & O_CREAT) {
3748 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3750 if (d_is_dir(nd->path.dentry))
3752 error = may_create_in_sticky(idmap, nd,
3753 d_backing_inode(nd->path.dentry));
3754 if (unlikely(error))
3757 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3760 do_truncate = false;
3761 acc_mode = op->acc_mode;
3762 if (file->f_mode & FMODE_CREATED) {
3763 /* Don't check for write permission, don't truncate */
3764 open_flag &= ~O_TRUNC;
3766 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3767 error = mnt_want_write(nd->path.mnt);
3772 error = may_open(idmap, &nd->path, acc_mode, open_flag);
3773 if (!error && !(file->f_mode & FMODE_OPENED))
3774 error = vfs_open(&nd->path, file);
3776 error = security_file_post_open(file, op->acc_mode);
3777 if (!error && do_truncate)
3778 error = handle_truncate(idmap, file);
3779 if (unlikely(error > 0)) {
3784 mnt_drop_write(nd->path.mnt);
3789 * vfs_tmpfile - create tmpfile
3790 * @idmap: idmap of the mount the inode was found from
3791 * @parentpath: pointer to the path of the base directory
3792 * @file: file descriptor of the new tmpfile
3793 * @mode: mode of the new tmpfile
3795 * Create a temporary file.
3797 * If the inode has been found through an idmapped mount the idmap of
3798 * the vfsmount must be passed through @idmap. This function will then take
3799 * care to map the inode according to @idmap before checking permissions.
3800 * On non-idmapped mounts or if permission checking is to be performed on the
3801 * raw inode simply pass @nop_mnt_idmap.
3803 int vfs_tmpfile(struct mnt_idmap *idmap,
3804 const struct path *parentpath,
3805 struct file *file, umode_t mode)
3807 struct dentry *child;
3808 struct inode *dir = d_inode(parentpath->dentry);
3809 struct inode *inode;
3811 int open_flag = file->f_flags;
3813 /* we want directory to be writable */
3814 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3817 if (!dir->i_op->tmpfile)
3819 child = d_alloc(parentpath->dentry, &slash_name);
3820 if (unlikely(!child))
3822 file->f_path.mnt = parentpath->mnt;
3823 file->f_path.dentry = child;
3824 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
3825 error = dir->i_op->tmpfile(idmap, dir, file, mode);
3827 if (file->f_mode & FMODE_OPENED)
3828 fsnotify_open(file);
3831 /* Don't check for other permissions, the inode was just created */
3832 error = may_open(idmap, &file->f_path, 0, file->f_flags);
3835 inode = file_inode(file);
3836 if (!(open_flag & O_EXCL)) {
3837 spin_lock(&inode->i_lock);
3838 inode->i_state |= I_LINKABLE;
3839 spin_unlock(&inode->i_lock);
3841 security_inode_post_create_tmpfile(idmap, inode);
3846 * kernel_tmpfile_open - open a tmpfile for kernel internal use
3847 * @idmap: idmap of the mount the inode was found from
3848 * @parentpath: path of the base directory
3849 * @mode: mode of the new tmpfile
3851 * @cred: credentials for open
3853 * Create and open a temporary file. The file is not accounted in nr_files,
3854 * hence this is only for kernel internal use, and must not be installed into
3855 * file tables or such.
3857 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
3858 const struct path *parentpath,
3859 umode_t mode, int open_flag,
3860 const struct cred *cred)
3865 file = alloc_empty_file_noaccount(open_flag, cred);
3869 error = vfs_tmpfile(idmap, parentpath, file, mode);
3872 file = ERR_PTR(error);
3876 EXPORT_SYMBOL(kernel_tmpfile_open);
3878 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3879 const struct open_flags *op,
3883 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3885 if (unlikely(error))
3887 error = mnt_want_write(path.mnt);
3888 if (unlikely(error))
3890 error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode);
3893 audit_inode(nd->name, file->f_path.dentry, 0);
3895 mnt_drop_write(path.mnt);
3901 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3904 int error = path_lookupat(nd, flags, &path);
3906 audit_inode(nd->name, path.dentry, 0);
3907 error = vfs_open(&path, file);
3913 static struct file *path_openat(struct nameidata *nd,
3914 const struct open_flags *op, unsigned flags)
3919 file = alloc_empty_file(op->open_flag, current_cred());
3923 if (unlikely(file->f_flags & __O_TMPFILE)) {
3924 error = do_tmpfile(nd, flags, op, file);
3925 } else if (unlikely(file->f_flags & O_PATH)) {
3926 error = do_o_path(nd, flags, file);
3928 const char *s = path_init(nd, flags);
3929 while (!(error = link_path_walk(s, nd)) &&
3930 (s = open_last_lookups(nd, file, op)) != NULL)
3933 error = do_open(nd, file, op);
3936 if (likely(!error)) {
3937 if (likely(file->f_mode & FMODE_OPENED))
3943 if (error == -EOPENSTALE) {
3944 if (flags & LOOKUP_RCU)
3949 return ERR_PTR(error);
3952 struct file *do_filp_open(int dfd, struct filename *pathname,
3953 const struct open_flags *op)
3955 struct nameidata nd;
3956 int flags = op->lookup_flags;
3959 set_nameidata(&nd, dfd, pathname, NULL);
3960 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3961 if (unlikely(filp == ERR_PTR(-ECHILD)))
3962 filp = path_openat(&nd, op, flags);
3963 if (unlikely(filp == ERR_PTR(-ESTALE)))
3964 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3965 restore_nameidata();
3969 struct file *do_file_open_root(const struct path *root,
3970 const char *name, const struct open_flags *op)
3972 struct nameidata nd;
3974 struct filename *filename;
3975 int flags = op->lookup_flags;
3977 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
3978 return ERR_PTR(-ELOOP);
3980 filename = getname_kernel(name);
3981 if (IS_ERR(filename))
3982 return ERR_CAST(filename);
3984 set_nameidata(&nd, -1, filename, root);
3985 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3986 if (unlikely(file == ERR_PTR(-ECHILD)))
3987 file = path_openat(&nd, op, flags);
3988 if (unlikely(file == ERR_PTR(-ESTALE)))
3989 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3990 restore_nameidata();
3995 static struct dentry *filename_create(int dfd, struct filename *name,
3996 struct path *path, unsigned int lookup_flags)
3998 struct dentry *dentry = ERR_PTR(-EEXIST);
4000 bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
4001 unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
4002 unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
4007 error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
4009 return ERR_PTR(error);
4012 * Yucky last component or no last component at all?
4013 * (foo/., foo/.., /////)
4015 if (unlikely(type != LAST_NORM))
4018 /* don't fail immediately if it's r/o, at least try to report other errors */
4019 err2 = mnt_want_write(path->mnt);
4021 * Do the final lookup. Suppress 'create' if there is a trailing
4022 * '/', and a directory wasn't requested.
4024 if (last.name[last.len] && !want_dir)
4026 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
4027 dentry = lookup_one_qstr_excl(&last, path->dentry,
4028 reval_flag | create_flags);
4033 if (d_is_positive(dentry))
4037 * Special case - lookup gave negative, but... we had foo/bar/
4038 * From the vfs_mknod() POV we just have a negative dentry -
4039 * all is fine. Let's be bastards - you had / on the end, you've
4040 * been asking for (non-existent) directory. -ENOENT for you.
4042 if (unlikely(!create_flags)) {
4046 if (unlikely(err2)) {
4053 dentry = ERR_PTR(error);
4055 inode_unlock(path->dentry->d_inode);
4057 mnt_drop_write(path->mnt);
4063 struct dentry *kern_path_create(int dfd, const char *pathname,
4064 struct path *path, unsigned int lookup_flags)
4066 struct filename *filename = getname_kernel(pathname);
4067 struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4072 EXPORT_SYMBOL(kern_path_create);
4074 void done_path_create(struct path *path, struct dentry *dentry)
4077 inode_unlock(path->dentry->d_inode);
4078 mnt_drop_write(path->mnt);
4081 EXPORT_SYMBOL(done_path_create);
4083 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
4084 struct path *path, unsigned int lookup_flags)
4086 struct filename *filename = getname(pathname);
4087 struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4092 EXPORT_SYMBOL(user_path_create);
4095 * vfs_mknod - create device node or file
4096 * @idmap: idmap of the mount the inode was found from
4097 * @dir: inode of the parent directory
4098 * @dentry: dentry of the child device node
4099 * @mode: mode of the child device node
4100 * @dev: device number of device to create
4102 * Create a device node or file.
4104 * If the inode has been found through an idmapped mount the idmap of
4105 * the vfsmount must be passed through @idmap. This function will then take
4106 * care to map the inode according to @idmap before checking permissions.
4107 * On non-idmapped mounts or if permission checking is to be performed on the
4108 * raw inode simply pass @nop_mnt_idmap.
4110 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
4111 struct dentry *dentry, umode_t mode, dev_t dev)
4113 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
4114 int error = may_create(idmap, dir, dentry);
4119 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
4120 !capable(CAP_MKNOD))
4123 if (!dir->i_op->mknod)
4126 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
4127 error = devcgroup_inode_mknod(mode, dev);
4131 error = security_inode_mknod(dir, dentry, mode, dev);
4135 error = dir->i_op->mknod(idmap, dir, dentry, mode, dev);
4137 fsnotify_create(dir, dentry);
4140 EXPORT_SYMBOL(vfs_mknod);
4142 static int may_mknod(umode_t mode)
4144 switch (mode & S_IFMT) {
4150 case 0: /* zero mode translates to S_IFREG */
4159 static int do_mknodat(int dfd, struct filename *name, umode_t mode,
4162 struct mnt_idmap *idmap;
4163 struct dentry *dentry;
4166 unsigned int lookup_flags = 0;
4168 error = may_mknod(mode);
4172 dentry = filename_create(dfd, name, &path, lookup_flags);
4173 error = PTR_ERR(dentry);
4177 error = security_path_mknod(&path, dentry,
4178 mode_strip_umask(path.dentry->d_inode, mode), dev);
4182 idmap = mnt_idmap(path.mnt);
4183 switch (mode & S_IFMT) {
4184 case 0: case S_IFREG:
4185 error = vfs_create(idmap, path.dentry->d_inode,
4186 dentry, mode, true);
4188 security_path_post_mknod(idmap, dentry);
4190 case S_IFCHR: case S_IFBLK:
4191 error = vfs_mknod(idmap, path.dentry->d_inode,
4192 dentry, mode, new_decode_dev(dev));
4194 case S_IFIFO: case S_IFSOCK:
4195 error = vfs_mknod(idmap, path.dentry->d_inode,
4200 done_path_create(&path, dentry);
4201 if (retry_estale(error, lookup_flags)) {
4202 lookup_flags |= LOOKUP_REVAL;
4210 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
4213 return do_mknodat(dfd, getname(filename), mode, dev);
4216 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
4218 return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
4222 * vfs_mkdir - create directory
4223 * @idmap: idmap of the mount the inode was found from
4224 * @dir: inode of the parent directory
4225 * @dentry: dentry of the child directory
4226 * @mode: mode of the child directory
4228 * Create a directory.
4230 * If the inode has been found through an idmapped mount the idmap of
4231 * the vfsmount must be passed through @idmap. This function will then take
4232 * care to map the inode according to @idmap before checking permissions.
4233 * On non-idmapped mounts or if permission checking is to be performed on the
4234 * raw inode simply pass @nop_mnt_idmap.
4236 int vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
4237 struct dentry *dentry, umode_t mode)
4240 unsigned max_links = dir->i_sb->s_max_links;
4242 error = may_create(idmap, dir, dentry);
4246 if (!dir->i_op->mkdir)
4249 mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0);
4250 error = security_inode_mkdir(dir, dentry, mode);
4254 if (max_links && dir->i_nlink >= max_links)
4257 error = dir->i_op->mkdir(idmap, dir, dentry, mode);
4259 fsnotify_mkdir(dir, dentry);
4262 EXPORT_SYMBOL(vfs_mkdir);
4264 int do_mkdirat(int dfd, struct filename *name, umode_t mode)
4266 struct dentry *dentry;
4269 unsigned int lookup_flags = LOOKUP_DIRECTORY;
4272 dentry = filename_create(dfd, name, &path, lookup_flags);
4273 error = PTR_ERR(dentry);
4277 error = security_path_mkdir(&path, dentry,
4278 mode_strip_umask(path.dentry->d_inode, mode));
4280 error = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode,
4283 done_path_create(&path, dentry);
4284 if (retry_estale(error, lookup_flags)) {
4285 lookup_flags |= LOOKUP_REVAL;
4293 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4295 return do_mkdirat(dfd, getname(pathname), mode);
4298 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4300 return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4304 * vfs_rmdir - remove directory
4305 * @idmap: idmap of the mount the inode was found from
4306 * @dir: inode of the parent directory
4307 * @dentry: dentry of the child directory
4309 * Remove a directory.
4311 * If the inode has been found through an idmapped mount the idmap of
4312 * the vfsmount must be passed through @idmap. This function will then take
4313 * care to map the inode according to @idmap before checking permissions.
4314 * On non-idmapped mounts or if permission checking is to be performed on the
4315 * raw inode simply pass @nop_mnt_idmap.
4317 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir,
4318 struct dentry *dentry)
4320 int error = may_delete(idmap, dir, dentry, 1);
4325 if (!dir->i_op->rmdir)
4329 inode_lock(dentry->d_inode);
4332 if (is_local_mountpoint(dentry) ||
4333 (dentry->d_inode->i_flags & S_KERNEL_FILE))
4336 error = security_inode_rmdir(dir, dentry);
4340 error = dir->i_op->rmdir(dir, dentry);
4344 shrink_dcache_parent(dentry);
4345 dentry->d_inode->i_flags |= S_DEAD;
4347 detach_mounts(dentry);
4350 inode_unlock(dentry->d_inode);
4353 d_delete_notify(dir, dentry);
4356 EXPORT_SYMBOL(vfs_rmdir);
4358 int do_rmdir(int dfd, struct filename *name)
4361 struct dentry *dentry;
4365 unsigned int lookup_flags = 0;
4367 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4383 error = mnt_want_write(path.mnt);
4387 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4388 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4389 error = PTR_ERR(dentry);
4392 if (!dentry->d_inode) {
4396 error = security_path_rmdir(&path, dentry);
4399 error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry);
4403 inode_unlock(path.dentry->d_inode);
4404 mnt_drop_write(path.mnt);
4407 if (retry_estale(error, lookup_flags)) {
4408 lookup_flags |= LOOKUP_REVAL;
4416 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4418 return do_rmdir(AT_FDCWD, getname(pathname));
4422 * vfs_unlink - unlink a filesystem object
4423 * @idmap: idmap of the mount the inode was found from
4424 * @dir: parent directory
4426 * @delegated_inode: returns victim inode, if the inode is delegated.
4428 * The caller must hold dir->i_mutex.
4430 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4431 * return a reference to the inode in delegated_inode. The caller
4432 * should then break the delegation on that inode and retry. Because
4433 * breaking a delegation may take a long time, the caller should drop
4434 * dir->i_mutex before doing so.
4436 * Alternatively, a caller may pass NULL for delegated_inode. This may
4437 * be appropriate for callers that expect the underlying filesystem not
4438 * to be NFS exported.
4440 * If the inode has been found through an idmapped mount the idmap of
4441 * the vfsmount must be passed through @idmap. This function will then take
4442 * care to map the inode according to @idmap before checking permissions.
4443 * On non-idmapped mounts or if permission checking is to be performed on the
4444 * raw inode simply pass @nop_mnt_idmap.
4446 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir,
4447 struct dentry *dentry, struct inode **delegated_inode)
4449 struct inode *target = dentry->d_inode;
4450 int error = may_delete(idmap, dir, dentry, 0);
4455 if (!dir->i_op->unlink)
4459 if (IS_SWAPFILE(target))
4461 else if (is_local_mountpoint(dentry))
4464 error = security_inode_unlink(dir, dentry);
4466 error = try_break_deleg(target, delegated_inode);
4469 error = dir->i_op->unlink(dir, dentry);
4472 detach_mounts(dentry);
4477 inode_unlock(target);
4479 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4480 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4481 fsnotify_unlink(dir, dentry);
4482 } else if (!error) {
4483 fsnotify_link_count(target);
4484 d_delete_notify(dir, dentry);
4489 EXPORT_SYMBOL(vfs_unlink);
4492 * Make sure that the actual truncation of the file will occur outside its
4493 * directory's i_mutex. Truncate can take a long time if there is a lot of
4494 * writeout happening, and we don't want to prevent access to the directory
4495 * while waiting on the I/O.
4497 int do_unlinkat(int dfd, struct filename *name)
4500 struct dentry *dentry;
4504 struct inode *inode = NULL;
4505 struct inode *delegated_inode = NULL;
4506 unsigned int lookup_flags = 0;
4508 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4513 if (type != LAST_NORM)
4516 error = mnt_want_write(path.mnt);
4520 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4521 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4522 error = PTR_ERR(dentry);
4523 if (!IS_ERR(dentry)) {
4525 /* Why not before? Because we want correct error value */
4526 if (last.name[last.len] || d_is_negative(dentry))
4528 inode = dentry->d_inode;
4530 error = security_path_unlink(&path, dentry);
4533 error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4534 dentry, &delegated_inode);
4538 inode_unlock(path.dentry->d_inode);
4540 iput(inode); /* truncate the inode here */
4542 if (delegated_inode) {
4543 error = break_deleg_wait(&delegated_inode);
4547 mnt_drop_write(path.mnt);
4550 if (retry_estale(error, lookup_flags)) {
4551 lookup_flags |= LOOKUP_REVAL;
4560 if (d_is_negative(dentry))
4562 else if (d_is_dir(dentry))
4569 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4571 if ((flag & ~AT_REMOVEDIR) != 0)
4574 if (flag & AT_REMOVEDIR)
4575 return do_rmdir(dfd, getname(pathname));
4576 return do_unlinkat(dfd, getname(pathname));
4579 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4581 return do_unlinkat(AT_FDCWD, getname(pathname));
4585 * vfs_symlink - create symlink
4586 * @idmap: idmap of the mount the inode was found from
4587 * @dir: inode of the parent directory
4588 * @dentry: dentry of the child symlink file
4589 * @oldname: name of the file to link to
4593 * If the inode has been found through an idmapped mount the idmap of
4594 * the vfsmount must be passed through @idmap. This function will then take
4595 * care to map the inode according to @idmap before checking permissions.
4596 * On non-idmapped mounts or if permission checking is to be performed on the
4597 * raw inode simply pass @nop_mnt_idmap.
4599 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
4600 struct dentry *dentry, const char *oldname)
4604 error = may_create(idmap, dir, dentry);
4608 if (!dir->i_op->symlink)
4611 error = security_inode_symlink(dir, dentry, oldname);
4615 error = dir->i_op->symlink(idmap, dir, dentry, oldname);
4617 fsnotify_create(dir, dentry);
4620 EXPORT_SYMBOL(vfs_symlink);
4622 int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4625 struct dentry *dentry;
4627 unsigned int lookup_flags = 0;
4630 error = PTR_ERR(from);
4634 dentry = filename_create(newdfd, to, &path, lookup_flags);
4635 error = PTR_ERR(dentry);
4639 error = security_path_symlink(&path, dentry, from->name);
4641 error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4642 dentry, from->name);
4643 done_path_create(&path, dentry);
4644 if (retry_estale(error, lookup_flags)) {
4645 lookup_flags |= LOOKUP_REVAL;
4654 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4655 int, newdfd, const char __user *, newname)
4657 return do_symlinkat(getname(oldname), newdfd, getname(newname));
4660 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4662 return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4666 * vfs_link - create a new link
4667 * @old_dentry: object to be linked
4668 * @idmap: idmap of the mount
4670 * @new_dentry: where to create the new link
4671 * @delegated_inode: returns inode needing a delegation break
4673 * The caller must hold dir->i_mutex
4675 * If vfs_link discovers a delegation on the to-be-linked file in need
4676 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4677 * inode in delegated_inode. The caller should then break the delegation
4678 * and retry. Because breaking a delegation may take a long time, the
4679 * caller should drop the i_mutex before doing so.
4681 * Alternatively, a caller may pass NULL for delegated_inode. This may
4682 * be appropriate for callers that expect the underlying filesystem not
4683 * to be NFS exported.
4685 * If the inode has been found through an idmapped mount the idmap of
4686 * the vfsmount must be passed through @idmap. This function will then take
4687 * care to map the inode according to @idmap before checking permissions.
4688 * On non-idmapped mounts or if permission checking is to be performed on the
4689 * raw inode simply pass @nop_mnt_idmap.
4691 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap,
4692 struct inode *dir, struct dentry *new_dentry,
4693 struct inode **delegated_inode)
4695 struct inode *inode = old_dentry->d_inode;
4696 unsigned max_links = dir->i_sb->s_max_links;
4702 error = may_create(idmap, dir, new_dentry);
4706 if (dir->i_sb != inode->i_sb)
4710 * A link to an append-only or immutable file cannot be created.
4712 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4715 * Updating the link count will likely cause i_uid and i_gid to
4716 * be writen back improperly if their true value is unknown to
4719 if (HAS_UNMAPPED_ID(idmap, inode))
4721 if (!dir->i_op->link)
4723 if (S_ISDIR(inode->i_mode))
4726 error = security_inode_link(old_dentry, dir, new_dentry);
4731 /* Make sure we don't allow creating hardlink to an unlinked file */
4732 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4734 else if (max_links && inode->i_nlink >= max_links)
4737 error = try_break_deleg(inode, delegated_inode);
4739 error = dir->i_op->link(old_dentry, dir, new_dentry);
4742 if (!error && (inode->i_state & I_LINKABLE)) {
4743 spin_lock(&inode->i_lock);
4744 inode->i_state &= ~I_LINKABLE;
4745 spin_unlock(&inode->i_lock);
4747 inode_unlock(inode);
4749 fsnotify_link(dir, inode, new_dentry);
4752 EXPORT_SYMBOL(vfs_link);
4755 * Hardlinks are often used in delicate situations. We avoid
4756 * security-related surprises by not following symlinks on the
4759 * We don't follow them on the oldname either to be compatible
4760 * with linux 2.0, and to avoid hard-linking to directories
4761 * and other special files. --ADM
4763 int do_linkat(int olddfd, struct filename *old, int newdfd,
4764 struct filename *new, int flags)
4766 struct mnt_idmap *idmap;
4767 struct dentry *new_dentry;
4768 struct path old_path, new_path;
4769 struct inode *delegated_inode = NULL;
4773 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4778 * To use null names we require CAP_DAC_READ_SEARCH or
4779 * that the open-time creds of the dfd matches current.
4780 * This ensures that not everyone will be able to create
4781 * a hardlink using the passed file descriptor.
4783 if (flags & AT_EMPTY_PATH)
4784 how |= LOOKUP_LINKAT_EMPTY;
4786 if (flags & AT_SYMLINK_FOLLOW)
4787 how |= LOOKUP_FOLLOW;
4789 error = filename_lookup(olddfd, old, how, &old_path, NULL);
4793 new_dentry = filename_create(newdfd, new, &new_path,
4794 (how & LOOKUP_REVAL));
4795 error = PTR_ERR(new_dentry);
4796 if (IS_ERR(new_dentry))
4800 if (old_path.mnt != new_path.mnt)
4802 idmap = mnt_idmap(new_path.mnt);
4803 error = may_linkat(idmap, &old_path);
4804 if (unlikely(error))
4806 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4809 error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode,
4810 new_dentry, &delegated_inode);
4812 done_path_create(&new_path, new_dentry);
4813 if (delegated_inode) {
4814 error = break_deleg_wait(&delegated_inode);
4816 path_put(&old_path);
4820 if (retry_estale(error, how)) {
4821 path_put(&old_path);
4822 how |= LOOKUP_REVAL;
4826 path_put(&old_path);
4834 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4835 int, newdfd, const char __user *, newname, int, flags)
4837 return do_linkat(olddfd, getname_uflags(oldname, flags),
4838 newdfd, getname(newname), flags);
4841 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4843 return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4847 * vfs_rename - rename a filesystem object
4848 * @rd: pointer to &struct renamedata info
4850 * The caller must hold multiple mutexes--see lock_rename()).
4852 * If vfs_rename discovers a delegation in need of breaking at either
4853 * the source or destination, it will return -EWOULDBLOCK and return a
4854 * reference to the inode in delegated_inode. The caller should then
4855 * break the delegation and retry. Because breaking a delegation may
4856 * take a long time, the caller should drop all locks before doing
4859 * Alternatively, a caller may pass NULL for delegated_inode. This may
4860 * be appropriate for callers that expect the underlying filesystem not
4861 * to be NFS exported.
4863 * The worst of all namespace operations - renaming directory. "Perverted"
4864 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4867 * a) we can get into loop creation.
4868 * b) race potential - two innocent renames can create a loop together.
4869 * That's where 4.4BSD screws up. Current fix: serialization on
4870 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4872 * c) we may have to lock up to _four_ objects - parents and victim (if it exists),
4873 * and source (if it's a non-directory or a subdirectory that moves to
4874 * different parent).
4875 * And that - after we got ->i_mutex on parents (until then we don't know
4876 * whether the target exists). Solution: try to be smart with locking
4877 * order for inodes. We rely on the fact that tree topology may change
4878 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4879 * move will be locked. Thus we can rank directories by the tree
4880 * (ancestors first) and rank all non-directories after them.
4881 * That works since everybody except rename does "lock parent, lookup,
4882 * lock child" and rename is under ->s_vfs_rename_mutex.
4883 * HOWEVER, it relies on the assumption that any object with ->lookup()
4884 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4885 * we'd better make sure that there's no link(2) for them.
4886 * d) conversion from fhandle to dentry may come in the wrong moment - when
4887 * we are removing the target. Solution: we will have to grab ->i_mutex
4888 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4889 * ->i_mutex on parents, which works but leads to some truly excessive
4892 int vfs_rename(struct renamedata *rd)
4895 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4896 struct dentry *old_dentry = rd->old_dentry;
4897 struct dentry *new_dentry = rd->new_dentry;
4898 struct inode **delegated_inode = rd->delegated_inode;
4899 unsigned int flags = rd->flags;
4900 bool is_dir = d_is_dir(old_dentry);
4901 struct inode *source = old_dentry->d_inode;
4902 struct inode *target = new_dentry->d_inode;
4903 bool new_is_dir = false;
4904 unsigned max_links = new_dir->i_sb->s_max_links;
4905 struct name_snapshot old_name;
4906 bool lock_old_subdir, lock_new_subdir;
4908 if (source == target)
4911 error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir);
4916 error = may_create(rd->new_mnt_idmap, new_dir, new_dentry);
4918 new_is_dir = d_is_dir(new_dentry);
4920 if (!(flags & RENAME_EXCHANGE))
4921 error = may_delete(rd->new_mnt_idmap, new_dir,
4922 new_dentry, is_dir);
4924 error = may_delete(rd->new_mnt_idmap, new_dir,
4925 new_dentry, new_is_dir);
4930 if (!old_dir->i_op->rename)
4934 * If we are going to change the parent - check write permissions,
4935 * we'll need to flip '..'.
4937 if (new_dir != old_dir) {
4939 error = inode_permission(rd->old_mnt_idmap, source,
4944 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4945 error = inode_permission(rd->new_mnt_idmap, target,
4952 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4957 take_dentry_name_snapshot(&old_name, old_dentry);
4961 * The source subdirectory needs to be locked on cross-directory
4962 * rename or cross-directory exchange since its parent changes.
4963 * The target subdirectory needs to be locked on cross-directory
4964 * exchange due to parent change and on any rename due to becoming
4966 * Non-directories need locking in all cases (for NFS reasons);
4967 * they get locked after any subdirectories (in inode address order).
4969 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE.
4970 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex.
4972 lock_old_subdir = new_dir != old_dir;
4973 lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE);
4975 if (lock_old_subdir)
4976 inode_lock_nested(source, I_MUTEX_CHILD);
4977 if (target && (!new_is_dir || lock_new_subdir))
4979 } else if (new_is_dir) {
4980 if (lock_new_subdir)
4981 inode_lock_nested(target, I_MUTEX_CHILD);
4984 lock_two_nondirectories(source, target);
4988 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
4992 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4995 if (max_links && new_dir != old_dir) {
4997 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4999 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
5000 old_dir->i_nlink >= max_links)
5004 error = try_break_deleg(source, delegated_inode);
5008 if (target && !new_is_dir) {
5009 error = try_break_deleg(target, delegated_inode);
5013 error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry,
5014 new_dir, new_dentry, flags);
5018 if (!(flags & RENAME_EXCHANGE) && target) {
5020 shrink_dcache_parent(new_dentry);
5021 target->i_flags |= S_DEAD;
5023 dont_mount(new_dentry);
5024 detach_mounts(new_dentry);
5026 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
5027 if (!(flags & RENAME_EXCHANGE))
5028 d_move(old_dentry, new_dentry);
5030 d_exchange(old_dentry, new_dentry);
5033 if (!is_dir || lock_old_subdir)
5034 inode_unlock(source);
5035 if (target && (!new_is_dir || lock_new_subdir))
5036 inode_unlock(target);
5039 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
5040 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
5041 if (flags & RENAME_EXCHANGE) {
5042 fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
5043 new_is_dir, NULL, new_dentry);
5046 release_dentry_name_snapshot(&old_name);
5050 EXPORT_SYMBOL(vfs_rename);
5052 int do_renameat2(int olddfd, struct filename *from, int newdfd,
5053 struct filename *to, unsigned int flags)
5055 struct renamedata rd;
5056 struct dentry *old_dentry, *new_dentry;
5057 struct dentry *trap;
5058 struct path old_path, new_path;
5059 struct qstr old_last, new_last;
5060 int old_type, new_type;
5061 struct inode *delegated_inode = NULL;
5062 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
5063 bool should_retry = false;
5064 int error = -EINVAL;
5066 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
5069 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
5070 (flags & RENAME_EXCHANGE))
5073 if (flags & RENAME_EXCHANGE)
5077 error = filename_parentat(olddfd, from, lookup_flags, &old_path,
5078 &old_last, &old_type);
5082 error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
5088 if (old_path.mnt != new_path.mnt)
5092 if (old_type != LAST_NORM)
5095 if (flags & RENAME_NOREPLACE)
5097 if (new_type != LAST_NORM)
5100 error = mnt_want_write(old_path.mnt);
5105 trap = lock_rename(new_path.dentry, old_path.dentry);
5107 error = PTR_ERR(trap);
5108 goto exit_lock_rename;
5111 old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry,
5113 error = PTR_ERR(old_dentry);
5114 if (IS_ERR(old_dentry))
5116 /* source must exist */
5118 if (d_is_negative(old_dentry))
5120 new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry,
5121 lookup_flags | target_flags);
5122 error = PTR_ERR(new_dentry);
5123 if (IS_ERR(new_dentry))
5126 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
5128 if (flags & RENAME_EXCHANGE) {
5130 if (d_is_negative(new_dentry))
5133 if (!d_is_dir(new_dentry)) {
5135 if (new_last.name[new_last.len])
5139 /* unless the source is a directory trailing slashes give -ENOTDIR */
5140 if (!d_is_dir(old_dentry)) {
5142 if (old_last.name[old_last.len])
5144 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
5147 /* source should not be ancestor of target */
5149 if (old_dentry == trap)
5151 /* target should not be an ancestor of source */
5152 if (!(flags & RENAME_EXCHANGE))
5154 if (new_dentry == trap)
5157 error = security_path_rename(&old_path, old_dentry,
5158 &new_path, new_dentry, flags);
5162 rd.old_dir = old_path.dentry->d_inode;
5163 rd.old_dentry = old_dentry;
5164 rd.old_mnt_idmap = mnt_idmap(old_path.mnt);
5165 rd.new_dir = new_path.dentry->d_inode;
5166 rd.new_dentry = new_dentry;
5167 rd.new_mnt_idmap = mnt_idmap(new_path.mnt);
5168 rd.delegated_inode = &delegated_inode;
5170 error = vfs_rename(&rd);
5176 unlock_rename(new_path.dentry, old_path.dentry);
5178 if (delegated_inode) {
5179 error = break_deleg_wait(&delegated_inode);
5183 mnt_drop_write(old_path.mnt);
5185 if (retry_estale(error, lookup_flags))
5186 should_retry = true;
5187 path_put(&new_path);
5189 path_put(&old_path);
5191 should_retry = false;
5192 lookup_flags |= LOOKUP_REVAL;
5201 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
5202 int, newdfd, const char __user *, newname, unsigned int, flags)
5204 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5208 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
5209 int, newdfd, const char __user *, newname)
5211 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5215 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
5217 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
5218 getname(newname), 0);
5221 int readlink_copy(char __user *buffer, int buflen, const char *link)
5223 int len = PTR_ERR(link);
5228 if (len > (unsigned) buflen)
5230 if (copy_to_user(buffer, link, len))
5237 * vfs_readlink - copy symlink body into userspace buffer
5238 * @dentry: dentry on which to get symbolic link
5239 * @buffer: user memory pointer
5240 * @buflen: size of buffer
5242 * Does not touch atime. That's up to the caller if necessary
5244 * Does not call security hook.
5246 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5248 struct inode *inode = d_inode(dentry);
5249 DEFINE_DELAYED_CALL(done);
5253 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
5254 if (unlikely(inode->i_op->readlink))
5255 return inode->i_op->readlink(dentry, buffer, buflen);
5257 if (!d_is_symlink(dentry))
5260 spin_lock(&inode->i_lock);
5261 inode->i_opflags |= IOP_DEFAULT_READLINK;
5262 spin_unlock(&inode->i_lock);
5265 link = READ_ONCE(inode->i_link);
5267 link = inode->i_op->get_link(dentry, inode, &done);
5269 return PTR_ERR(link);
5271 res = readlink_copy(buffer, buflen, link);
5272 do_delayed_call(&done);
5275 EXPORT_SYMBOL(vfs_readlink);
5278 * vfs_get_link - get symlink body
5279 * @dentry: dentry on which to get symbolic link
5280 * @done: caller needs to free returned data with this
5282 * Calls security hook and i_op->get_link() on the supplied inode.
5284 * It does not touch atime. That's up to the caller if necessary.
5286 * Does not work on "special" symlinks like /proc/$$/fd/N
5288 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
5290 const char *res = ERR_PTR(-EINVAL);
5291 struct inode *inode = d_inode(dentry);
5293 if (d_is_symlink(dentry)) {
5294 res = ERR_PTR(security_inode_readlink(dentry));
5296 res = inode->i_op->get_link(dentry, inode, done);
5300 EXPORT_SYMBOL(vfs_get_link);
5302 /* get the link contents into pagecache */
5303 const char *page_get_link(struct dentry *dentry, struct inode *inode,
5304 struct delayed_call *callback)
5308 struct address_space *mapping = inode->i_mapping;
5311 page = find_get_page(mapping, 0);
5313 return ERR_PTR(-ECHILD);
5314 if (!PageUptodate(page)) {
5316 return ERR_PTR(-ECHILD);
5319 page = read_mapping_page(mapping, 0, NULL);
5323 set_delayed_call(callback, page_put_link, page);
5324 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5325 kaddr = page_address(page);
5326 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5330 EXPORT_SYMBOL(page_get_link);
5332 void page_put_link(void *arg)
5336 EXPORT_SYMBOL(page_put_link);
5338 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5340 DEFINE_DELAYED_CALL(done);
5341 int res = readlink_copy(buffer, buflen,
5342 page_get_link(dentry, d_inode(dentry),
5344 do_delayed_call(&done);
5347 EXPORT_SYMBOL(page_readlink);
5349 int page_symlink(struct inode *inode, const char *symname, int len)
5351 struct address_space *mapping = inode->i_mapping;
5352 const struct address_space_operations *aops = mapping->a_ops;
5353 bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5354 struct folio *folio;
5355 void *fsdata = NULL;
5361 flags = memalloc_nofs_save();
5362 err = aops->write_begin(NULL, mapping, 0, len-1, &folio, &fsdata);
5364 memalloc_nofs_restore(flags);
5368 memcpy(folio_address(folio), symname, len - 1);
5370 err = aops->write_end(NULL, mapping, 0, len - 1, len - 1,
5377 mark_inode_dirty(inode);
5382 EXPORT_SYMBOL(page_symlink);
5384 const struct inode_operations page_symlink_inode_operations = {
5385 .get_link = page_get_link,
5387 EXPORT_SYMBOL(page_symlink_inode_operations);