]> Git Repo - linux.git/blob - drivers/usb/host/xhci-mem.c
crypto: akcipher - Drop sign/verify operations
[linux.git] / drivers / usb / host / xhci-mem.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/usb.h>
12 #include <linux/overflow.h>
13 #include <linux/pci.h>
14 #include <linux/slab.h>
15 #include <linux/dmapool.h>
16 #include <linux/dma-mapping.h>
17
18 #include "xhci.h"
19 #include "xhci-trace.h"
20 #include "xhci-debugfs.h"
21
22 /*
23  * Allocates a generic ring segment from the ring pool, sets the dma address,
24  * initializes the segment to zero, and sets the private next pointer to NULL.
25  *
26  * Section 4.11.1.1:
27  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
28  */
29 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
30                                                unsigned int cycle_state,
31                                                unsigned int max_packet,
32                                                unsigned int num,
33                                                gfp_t flags)
34 {
35         struct xhci_segment *seg;
36         dma_addr_t      dma;
37         int             i;
38         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
39
40         seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
41         if (!seg)
42                 return NULL;
43
44         seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
45         if (!seg->trbs) {
46                 kfree(seg);
47                 return NULL;
48         }
49
50         if (max_packet) {
51                 seg->bounce_buf = kzalloc_node(max_packet, flags,
52                                         dev_to_node(dev));
53                 if (!seg->bounce_buf) {
54                         dma_pool_free(xhci->segment_pool, seg->trbs, dma);
55                         kfree(seg);
56                         return NULL;
57                 }
58         }
59         /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
60         if (cycle_state == 0) {
61                 for (i = 0; i < TRBS_PER_SEGMENT; i++)
62                         seg->trbs[i].link.control = cpu_to_le32(TRB_CYCLE);
63         }
64         seg->num = num;
65         seg->dma = dma;
66         seg->next = NULL;
67
68         return seg;
69 }
70
71 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
72 {
73         if (seg->trbs) {
74                 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
75                 seg->trbs = NULL;
76         }
77         kfree(seg->bounce_buf);
78         kfree(seg);
79 }
80
81 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
82                                 struct xhci_segment *first)
83 {
84         struct xhci_segment *seg;
85
86         seg = first->next;
87         while (seg && seg != first) {
88                 struct xhci_segment *next = seg->next;
89                 xhci_segment_free(xhci, seg);
90                 seg = next;
91         }
92         xhci_segment_free(xhci, first);
93 }
94
95 /*
96  * Make the prev segment point to the next segment.
97  *
98  * Change the last TRB in the prev segment to be a Link TRB which points to the
99  * DMA address of the next segment.  The caller needs to set any Link TRB
100  * related flags, such as End TRB, Toggle Cycle, and no snoop.
101  */
102 static void xhci_link_segments(struct xhci_segment *prev,
103                                struct xhci_segment *next,
104                                enum xhci_ring_type type, bool chain_links)
105 {
106         u32 val;
107
108         if (!prev || !next)
109                 return;
110         prev->next = next;
111         if (type != TYPE_EVENT) {
112                 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
113                         cpu_to_le64(next->dma);
114
115                 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
116                 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
117                 val &= ~TRB_TYPE_BITMASK;
118                 val |= TRB_TYPE(TRB_LINK);
119                 if (chain_links)
120                         val |= TRB_CHAIN;
121                 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
122         }
123 }
124
125 /*
126  * Link the ring to the new segments.
127  * Set Toggle Cycle for the new ring if needed.
128  */
129 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
130                 struct xhci_segment *first, struct xhci_segment *last,
131                 unsigned int num_segs)
132 {
133         struct xhci_segment *next, *seg;
134         bool chain_links;
135
136         if (!ring || !first || !last)
137                 return;
138
139         chain_links = xhci_link_chain_quirk(xhci, ring->type);
140
141         next = ring->enq_seg->next;
142         xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
143         xhci_link_segments(last, next, ring->type, chain_links);
144         ring->num_segs += num_segs;
145
146         if (ring->enq_seg == ring->last_seg) {
147                 if (ring->type != TYPE_EVENT) {
148                         ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
149                                 &= ~cpu_to_le32(LINK_TOGGLE);
150                         last->trbs[TRBS_PER_SEGMENT-1].link.control
151                                 |= cpu_to_le32(LINK_TOGGLE);
152                 }
153                 ring->last_seg = last;
154         }
155
156         for (seg = ring->enq_seg; seg != ring->last_seg; seg = seg->next)
157                 seg->next->num = seg->num + 1;
158 }
159
160 /*
161  * We need a radix tree for mapping physical addresses of TRBs to which stream
162  * ID they belong to.  We need to do this because the host controller won't tell
163  * us which stream ring the TRB came from.  We could store the stream ID in an
164  * event data TRB, but that doesn't help us for the cancellation case, since the
165  * endpoint may stop before it reaches that event data TRB.
166  *
167  * The radix tree maps the upper portion of the TRB DMA address to a ring
168  * segment that has the same upper portion of DMA addresses.  For example, say I
169  * have segments of size 1KB, that are always 1KB aligned.  A segment may
170  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
171  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
172  * pass the radix tree a key to get the right stream ID:
173  *
174  *      0x10c90fff >> 10 = 0x43243
175  *      0x10c912c0 >> 10 = 0x43244
176  *      0x10c91400 >> 10 = 0x43245
177  *
178  * Obviously, only those TRBs with DMA addresses that are within the segment
179  * will make the radix tree return the stream ID for that ring.
180  *
181  * Caveats for the radix tree:
182  *
183  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
184  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
185  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
186  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
187  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
188  * extended systems (where the DMA address can be bigger than 32-bits),
189  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
190  */
191 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
192                 struct xhci_ring *ring,
193                 struct xhci_segment *seg,
194                 gfp_t mem_flags)
195 {
196         unsigned long key;
197         int ret;
198
199         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
200         /* Skip any segments that were already added. */
201         if (radix_tree_lookup(trb_address_map, key))
202                 return 0;
203
204         ret = radix_tree_maybe_preload(mem_flags);
205         if (ret)
206                 return ret;
207         ret = radix_tree_insert(trb_address_map,
208                         key, ring);
209         radix_tree_preload_end();
210         return ret;
211 }
212
213 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
214                 struct xhci_segment *seg)
215 {
216         unsigned long key;
217
218         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
219         if (radix_tree_lookup(trb_address_map, key))
220                 radix_tree_delete(trb_address_map, key);
221 }
222
223 static int xhci_update_stream_segment_mapping(
224                 struct radix_tree_root *trb_address_map,
225                 struct xhci_ring *ring,
226                 struct xhci_segment *first_seg,
227                 struct xhci_segment *last_seg,
228                 gfp_t mem_flags)
229 {
230         struct xhci_segment *seg;
231         struct xhci_segment *failed_seg;
232         int ret;
233
234         if (WARN_ON_ONCE(trb_address_map == NULL))
235                 return 0;
236
237         seg = first_seg;
238         do {
239                 ret = xhci_insert_segment_mapping(trb_address_map,
240                                 ring, seg, mem_flags);
241                 if (ret)
242                         goto remove_streams;
243                 if (seg == last_seg)
244                         return 0;
245                 seg = seg->next;
246         } while (seg != first_seg);
247
248         return 0;
249
250 remove_streams:
251         failed_seg = seg;
252         seg = first_seg;
253         do {
254                 xhci_remove_segment_mapping(trb_address_map, seg);
255                 if (seg == failed_seg)
256                         return ret;
257                 seg = seg->next;
258         } while (seg != first_seg);
259
260         return ret;
261 }
262
263 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
264 {
265         struct xhci_segment *seg;
266
267         if (WARN_ON_ONCE(ring->trb_address_map == NULL))
268                 return;
269
270         seg = ring->first_seg;
271         do {
272                 xhci_remove_segment_mapping(ring->trb_address_map, seg);
273                 seg = seg->next;
274         } while (seg != ring->first_seg);
275 }
276
277 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
278 {
279         return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
280                         ring->first_seg, ring->last_seg, mem_flags);
281 }
282
283 /* XXX: Do we need the hcd structure in all these functions? */
284 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
285 {
286         if (!ring)
287                 return;
288
289         trace_xhci_ring_free(ring);
290
291         if (ring->first_seg) {
292                 if (ring->type == TYPE_STREAM)
293                         xhci_remove_stream_mapping(ring);
294                 xhci_free_segments_for_ring(xhci, ring->first_seg);
295         }
296
297         kfree(ring);
298 }
299
300 void xhci_initialize_ring_info(struct xhci_ring *ring,
301                                unsigned int cycle_state)
302 {
303         /* The ring is empty, so the enqueue pointer == dequeue pointer */
304         ring->enqueue = ring->first_seg->trbs;
305         ring->enq_seg = ring->first_seg;
306         ring->dequeue = ring->enqueue;
307         ring->deq_seg = ring->first_seg;
308         /* The ring is initialized to 0. The producer must write 1 to the cycle
309          * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
310          * compare CCS to the cycle bit to check ownership, so CCS = 1.
311          *
312          * New rings are initialized with cycle state equal to 1; if we are
313          * handling ring expansion, set the cycle state equal to the old ring.
314          */
315         ring->cycle_state = cycle_state;
316
317         /*
318          * Each segment has a link TRB, and leave an extra TRB for SW
319          * accounting purpose
320          */
321         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
322 }
323 EXPORT_SYMBOL_GPL(xhci_initialize_ring_info);
324
325 /* Allocate segments and link them for a ring */
326 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
327                                         struct xhci_segment **first,
328                                         struct xhci_segment **last,
329                                         unsigned int num_segs,
330                                         unsigned int cycle_state,
331                                         enum xhci_ring_type type,
332                                         unsigned int max_packet,
333                                         gfp_t flags)
334 {
335         struct xhci_segment *prev;
336         unsigned int num = 0;
337         bool chain_links;
338
339         chain_links = xhci_link_chain_quirk(xhci, type);
340
341         prev = xhci_segment_alloc(xhci, cycle_state, max_packet, num, flags);
342         if (!prev)
343                 return -ENOMEM;
344         num++;
345
346         *first = prev;
347         while (num < num_segs) {
348                 struct xhci_segment     *next;
349
350                 next = xhci_segment_alloc(xhci, cycle_state, max_packet, num,
351                                           flags);
352                 if (!next)
353                         goto free_segments;
354
355                 xhci_link_segments(prev, next, type, chain_links);
356                 prev = next;
357                 num++;
358         }
359         xhci_link_segments(prev, *first, type, chain_links);
360         *last = prev;
361
362         return 0;
363
364 free_segments:
365         xhci_free_segments_for_ring(xhci, *first);
366         return -ENOMEM;
367 }
368
369 /*
370  * Create a new ring with zero or more segments.
371  *
372  * Link each segment together into a ring.
373  * Set the end flag and the cycle toggle bit on the last segment.
374  * See section 4.9.1 and figures 15 and 16.
375  */
376 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
377                 unsigned int num_segs, unsigned int cycle_state,
378                 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
379 {
380         struct xhci_ring        *ring;
381         int ret;
382         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
383
384         ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
385         if (!ring)
386                 return NULL;
387
388         ring->num_segs = num_segs;
389         ring->bounce_buf_len = max_packet;
390         INIT_LIST_HEAD(&ring->td_list);
391         ring->type = type;
392         if (num_segs == 0)
393                 return ring;
394
395         ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg, &ring->last_seg, num_segs,
396                                            cycle_state, type, max_packet, flags);
397         if (ret)
398                 goto fail;
399
400         /* Only event ring does not use link TRB */
401         if (type != TYPE_EVENT) {
402                 /* See section 4.9.2.1 and 6.4.4.1 */
403                 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
404                         cpu_to_le32(LINK_TOGGLE);
405         }
406         xhci_initialize_ring_info(ring, cycle_state);
407         trace_xhci_ring_alloc(ring);
408         return ring;
409
410 fail:
411         kfree(ring);
412         return NULL;
413 }
414
415 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
416                 struct xhci_virt_device *virt_dev,
417                 unsigned int ep_index)
418 {
419         xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
420         virt_dev->eps[ep_index].ring = NULL;
421 }
422
423 /*
424  * Expand an existing ring.
425  * Allocate a new ring which has same segment numbers and link the two rings.
426  */
427 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
428                                 unsigned int num_new_segs, gfp_t flags)
429 {
430         struct xhci_segment     *first;
431         struct xhci_segment     *last;
432         int                     ret;
433
434         ret = xhci_alloc_segments_for_ring(xhci, &first, &last, num_new_segs, ring->cycle_state,
435                                            ring->type, ring->bounce_buf_len, flags);
436         if (ret)
437                 return -ENOMEM;
438
439         if (ring->type == TYPE_STREAM) {
440                 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
441                                                 ring, first, last, flags);
442                 if (ret)
443                         goto free_segments;
444         }
445
446         xhci_link_rings(xhci, ring, first, last, num_new_segs);
447         trace_xhci_ring_expansion(ring);
448         xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
449                         "ring expansion succeed, now has %d segments",
450                         ring->num_segs);
451
452         return 0;
453
454 free_segments:
455         xhci_free_segments_for_ring(xhci, first);
456         return ret;
457 }
458
459 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
460                                                     int type, gfp_t flags)
461 {
462         struct xhci_container_ctx *ctx;
463         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
464
465         if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
466                 return NULL;
467
468         ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
469         if (!ctx)
470                 return NULL;
471
472         ctx->type = type;
473         ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
474         if (type == XHCI_CTX_TYPE_INPUT)
475                 ctx->size += CTX_SIZE(xhci->hcc_params);
476
477         ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
478         if (!ctx->bytes) {
479                 kfree(ctx);
480                 return NULL;
481         }
482         return ctx;
483 }
484
485 void xhci_free_container_ctx(struct xhci_hcd *xhci,
486                              struct xhci_container_ctx *ctx)
487 {
488         if (!ctx)
489                 return;
490         dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
491         kfree(ctx);
492 }
493
494 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
495                                               struct xhci_container_ctx *ctx)
496 {
497         if (ctx->type != XHCI_CTX_TYPE_INPUT)
498                 return NULL;
499
500         return (struct xhci_input_control_ctx *)ctx->bytes;
501 }
502
503 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
504                                         struct xhci_container_ctx *ctx)
505 {
506         if (ctx->type == XHCI_CTX_TYPE_DEVICE)
507                 return (struct xhci_slot_ctx *)ctx->bytes;
508
509         return (struct xhci_slot_ctx *)
510                 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
511 }
512
513 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
514                                     struct xhci_container_ctx *ctx,
515                                     unsigned int ep_index)
516 {
517         /* increment ep index by offset of start of ep ctx array */
518         ep_index++;
519         if (ctx->type == XHCI_CTX_TYPE_INPUT)
520                 ep_index++;
521
522         return (struct xhci_ep_ctx *)
523                 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
524 }
525 EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
526
527 /***************** Streams structures manipulation *************************/
528
529 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
530                 unsigned int num_stream_ctxs,
531                 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
532 {
533         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
534         size_t size = array_size(sizeof(struct xhci_stream_ctx), num_stream_ctxs);
535
536         if (size > MEDIUM_STREAM_ARRAY_SIZE)
537                 dma_free_coherent(dev, size, stream_ctx, dma);
538         else if (size > SMALL_STREAM_ARRAY_SIZE)
539                 dma_pool_free(xhci->medium_streams_pool, stream_ctx, dma);
540         else
541                 dma_pool_free(xhci->small_streams_pool, stream_ctx, dma);
542 }
543
544 /*
545  * The stream context array for each endpoint with bulk streams enabled can
546  * vary in size, based on:
547  *  - how many streams the endpoint supports,
548  *  - the maximum primary stream array size the host controller supports,
549  *  - and how many streams the device driver asks for.
550  *
551  * The stream context array must be a power of 2, and can be as small as
552  * 64 bytes or as large as 1MB.
553  */
554 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
555                 unsigned int num_stream_ctxs, dma_addr_t *dma,
556                 gfp_t mem_flags)
557 {
558         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
559         size_t size = array_size(sizeof(struct xhci_stream_ctx), num_stream_ctxs);
560
561         if (size > MEDIUM_STREAM_ARRAY_SIZE)
562                 return dma_alloc_coherent(dev, size, dma, mem_flags);
563         if (size > SMALL_STREAM_ARRAY_SIZE)
564                 return dma_pool_zalloc(xhci->medium_streams_pool, mem_flags, dma);
565         else
566                 return dma_pool_zalloc(xhci->small_streams_pool, mem_flags, dma);
567 }
568
569 struct xhci_ring *xhci_dma_to_transfer_ring(
570                 struct xhci_virt_ep *ep,
571                 u64 address)
572 {
573         if (ep->ep_state & EP_HAS_STREAMS)
574                 return radix_tree_lookup(&ep->stream_info->trb_address_map,
575                                 address >> TRB_SEGMENT_SHIFT);
576         return ep->ring;
577 }
578
579 /*
580  * Change an endpoint's internal structure so it supports stream IDs.  The
581  * number of requested streams includes stream 0, which cannot be used by device
582  * drivers.
583  *
584  * The number of stream contexts in the stream context array may be bigger than
585  * the number of streams the driver wants to use.  This is because the number of
586  * stream context array entries must be a power of two.
587  */
588 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
589                 unsigned int num_stream_ctxs,
590                 unsigned int num_streams,
591                 unsigned int max_packet, gfp_t mem_flags)
592 {
593         struct xhci_stream_info *stream_info;
594         u32 cur_stream;
595         struct xhci_ring *cur_ring;
596         u64 addr;
597         int ret;
598         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
599
600         xhci_dbg(xhci, "Allocating %u streams and %u stream context array entries.\n",
601                         num_streams, num_stream_ctxs);
602         if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
603                 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
604                 return NULL;
605         }
606         xhci->cmd_ring_reserved_trbs++;
607
608         stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
609                         dev_to_node(dev));
610         if (!stream_info)
611                 goto cleanup_trbs;
612
613         stream_info->num_streams = num_streams;
614         stream_info->num_stream_ctxs = num_stream_ctxs;
615
616         /* Initialize the array of virtual pointers to stream rings. */
617         stream_info->stream_rings = kcalloc_node(
618                         num_streams, sizeof(struct xhci_ring *), mem_flags,
619                         dev_to_node(dev));
620         if (!stream_info->stream_rings)
621                 goto cleanup_info;
622
623         /* Initialize the array of DMA addresses for stream rings for the HW. */
624         stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
625                         num_stream_ctxs, &stream_info->ctx_array_dma,
626                         mem_flags);
627         if (!stream_info->stream_ctx_array)
628                 goto cleanup_ring_array;
629
630         /* Allocate everything needed to free the stream rings later */
631         stream_info->free_streams_command =
632                 xhci_alloc_command_with_ctx(xhci, true, mem_flags);
633         if (!stream_info->free_streams_command)
634                 goto cleanup_ctx;
635
636         INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
637
638         /* Allocate rings for all the streams that the driver will use,
639          * and add their segment DMA addresses to the radix tree.
640          * Stream 0 is reserved.
641          */
642
643         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
644                 stream_info->stream_rings[cur_stream] =
645                         xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
646                                         mem_flags);
647                 cur_ring = stream_info->stream_rings[cur_stream];
648                 if (!cur_ring)
649                         goto cleanup_rings;
650                 cur_ring->stream_id = cur_stream;
651                 cur_ring->trb_address_map = &stream_info->trb_address_map;
652                 /* Set deq ptr, cycle bit, and stream context type */
653                 addr = cur_ring->first_seg->dma |
654                         SCT_FOR_CTX(SCT_PRI_TR) |
655                         cur_ring->cycle_state;
656                 stream_info->stream_ctx_array[cur_stream].stream_ring =
657                         cpu_to_le64(addr);
658                 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", cur_stream, addr);
659
660                 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
661                 if (ret) {
662                         xhci_ring_free(xhci, cur_ring);
663                         stream_info->stream_rings[cur_stream] = NULL;
664                         goto cleanup_rings;
665                 }
666         }
667         /* Leave the other unused stream ring pointers in the stream context
668          * array initialized to zero.  This will cause the xHC to give us an
669          * error if the device asks for a stream ID we don't have setup (if it
670          * was any other way, the host controller would assume the ring is
671          * "empty" and wait forever for data to be queued to that stream ID).
672          */
673
674         return stream_info;
675
676 cleanup_rings:
677         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
678                 cur_ring = stream_info->stream_rings[cur_stream];
679                 if (cur_ring) {
680                         xhci_ring_free(xhci, cur_ring);
681                         stream_info->stream_rings[cur_stream] = NULL;
682                 }
683         }
684         xhci_free_command(xhci, stream_info->free_streams_command);
685 cleanup_ctx:
686         xhci_free_stream_ctx(xhci,
687                 stream_info->num_stream_ctxs,
688                 stream_info->stream_ctx_array,
689                 stream_info->ctx_array_dma);
690 cleanup_ring_array:
691         kfree(stream_info->stream_rings);
692 cleanup_info:
693         kfree(stream_info);
694 cleanup_trbs:
695         xhci->cmd_ring_reserved_trbs--;
696         return NULL;
697 }
698 /*
699  * Sets the MaxPStreams field and the Linear Stream Array field.
700  * Sets the dequeue pointer to the stream context array.
701  */
702 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
703                 struct xhci_ep_ctx *ep_ctx,
704                 struct xhci_stream_info *stream_info)
705 {
706         u32 max_primary_streams;
707         /* MaxPStreams is the number of stream context array entries, not the
708          * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
709          * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
710          */
711         max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
712         xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
713                         "Setting number of stream ctx array entries to %u",
714                         1 << (max_primary_streams + 1));
715         ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
716         ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
717                                        | EP_HAS_LSA);
718         ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
719 }
720
721 /*
722  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
723  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
724  * not at the beginning of the ring).
725  */
726 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
727                 struct xhci_virt_ep *ep)
728 {
729         dma_addr_t addr;
730         ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
731         addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
732         ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
733 }
734
735 /* Frees all stream contexts associated with the endpoint,
736  *
737  * Caller should fix the endpoint context streams fields.
738  */
739 void xhci_free_stream_info(struct xhci_hcd *xhci,
740                 struct xhci_stream_info *stream_info)
741 {
742         int cur_stream;
743         struct xhci_ring *cur_ring;
744
745         if (!stream_info)
746                 return;
747
748         for (cur_stream = 1; cur_stream < stream_info->num_streams;
749                         cur_stream++) {
750                 cur_ring = stream_info->stream_rings[cur_stream];
751                 if (cur_ring) {
752                         xhci_ring_free(xhci, cur_ring);
753                         stream_info->stream_rings[cur_stream] = NULL;
754                 }
755         }
756         xhci_free_command(xhci, stream_info->free_streams_command);
757         xhci->cmd_ring_reserved_trbs--;
758         if (stream_info->stream_ctx_array)
759                 xhci_free_stream_ctx(xhci,
760                                 stream_info->num_stream_ctxs,
761                                 stream_info->stream_ctx_array,
762                                 stream_info->ctx_array_dma);
763
764         kfree(stream_info->stream_rings);
765         kfree(stream_info);
766 }
767
768
769 /***************** Device context manipulation *************************/
770
771 static void xhci_free_tt_info(struct xhci_hcd *xhci,
772                 struct xhci_virt_device *virt_dev,
773                 int slot_id)
774 {
775         struct list_head *tt_list_head;
776         struct xhci_tt_bw_info *tt_info, *next;
777         bool slot_found = false;
778
779         /* If the device never made it past the Set Address stage,
780          * it may not have the root hub port pointer set correctly.
781          */
782         if (!virt_dev->rhub_port) {
783                 xhci_dbg(xhci, "Bad rhub port.\n");
784                 return;
785         }
786
787         tt_list_head = &(xhci->rh_bw[virt_dev->rhub_port->hw_portnum].tts);
788         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
789                 /* Multi-TT hubs will have more than one entry */
790                 if (tt_info->slot_id == slot_id) {
791                         slot_found = true;
792                         list_del(&tt_info->tt_list);
793                         kfree(tt_info);
794                 } else if (slot_found) {
795                         break;
796                 }
797         }
798 }
799
800 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
801                 struct xhci_virt_device *virt_dev,
802                 struct usb_device *hdev,
803                 struct usb_tt *tt, gfp_t mem_flags)
804 {
805         struct xhci_tt_bw_info          *tt_info;
806         unsigned int                    num_ports;
807         int                             i, j;
808         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
809
810         if (!tt->multi)
811                 num_ports = 1;
812         else
813                 num_ports = hdev->maxchild;
814
815         for (i = 0; i < num_ports; i++, tt_info++) {
816                 struct xhci_interval_bw_table *bw_table;
817
818                 tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
819                                 dev_to_node(dev));
820                 if (!tt_info)
821                         goto free_tts;
822                 INIT_LIST_HEAD(&tt_info->tt_list);
823                 list_add(&tt_info->tt_list,
824                                 &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].tts);
825                 tt_info->slot_id = virt_dev->udev->slot_id;
826                 if (tt->multi)
827                         tt_info->ttport = i+1;
828                 bw_table = &tt_info->bw_table;
829                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
830                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
831         }
832         return 0;
833
834 free_tts:
835         xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
836         return -ENOMEM;
837 }
838
839
840 /* All the xhci_tds in the ring's TD list should be freed at this point.
841  * Should be called with xhci->lock held if there is any chance the TT lists
842  * will be manipulated by the configure endpoint, allocate device, or update
843  * hub functions while this function is removing the TT entries from the list.
844  */
845 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
846 {
847         struct xhci_virt_device *dev;
848         int i;
849         int old_active_eps = 0;
850
851         /* Slot ID 0 is reserved */
852         if (slot_id == 0 || !xhci->devs[slot_id])
853                 return;
854
855         dev = xhci->devs[slot_id];
856
857         xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
858         if (!dev)
859                 return;
860
861         trace_xhci_free_virt_device(dev);
862
863         if (dev->tt_info)
864                 old_active_eps = dev->tt_info->active_eps;
865
866         for (i = 0; i < 31; i++) {
867                 if (dev->eps[i].ring)
868                         xhci_ring_free(xhci, dev->eps[i].ring);
869                 if (dev->eps[i].stream_info)
870                         xhci_free_stream_info(xhci,
871                                         dev->eps[i].stream_info);
872                 /*
873                  * Endpoints are normally deleted from the bandwidth list when
874                  * endpoints are dropped, before device is freed.
875                  * If host is dying or being removed then endpoints aren't
876                  * dropped cleanly, so delete the endpoint from list here.
877                  * Only applicable for hosts with software bandwidth checking.
878                  */
879
880                 if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
881                         list_del_init(&dev->eps[i].bw_endpoint_list);
882                         xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
883                                  slot_id, i);
884                 }
885         }
886         /* If this is a hub, free the TT(s) from the TT list */
887         xhci_free_tt_info(xhci, dev, slot_id);
888         /* If necessary, update the number of active TTs on this root port */
889         xhci_update_tt_active_eps(xhci, dev, old_active_eps);
890
891         if (dev->in_ctx)
892                 xhci_free_container_ctx(xhci, dev->in_ctx);
893         if (dev->out_ctx)
894                 xhci_free_container_ctx(xhci, dev->out_ctx);
895
896         if (dev->udev && dev->udev->slot_id)
897                 dev->udev->slot_id = 0;
898         if (dev->rhub_port && dev->rhub_port->slot_id == slot_id)
899                 dev->rhub_port->slot_id = 0;
900         kfree(xhci->devs[slot_id]);
901         xhci->devs[slot_id] = NULL;
902 }
903
904 /*
905  * Free a virt_device structure.
906  * If the virt_device added a tt_info (a hub) and has children pointing to
907  * that tt_info, then free the child first. Recursive.
908  * We can't rely on udev at this point to find child-parent relationships.
909  */
910 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
911 {
912         struct xhci_virt_device *vdev;
913         struct list_head *tt_list_head;
914         struct xhci_tt_bw_info *tt_info, *next;
915         int i;
916
917         vdev = xhci->devs[slot_id];
918         if (!vdev)
919                 return;
920
921         if (!vdev->rhub_port) {
922                 xhci_dbg(xhci, "Bad rhub port.\n");
923                 goto out;
924         }
925
926         tt_list_head = &(xhci->rh_bw[vdev->rhub_port->hw_portnum].tts);
927         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
928                 /* is this a hub device that added a tt_info to the tts list */
929                 if (tt_info->slot_id == slot_id) {
930                         /* are any devices using this tt_info? */
931                         for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
932                                 vdev = xhci->devs[i];
933                                 if (vdev && (vdev->tt_info == tt_info))
934                                         xhci_free_virt_devices_depth_first(
935                                                 xhci, i);
936                         }
937                 }
938         }
939 out:
940         /* we are now at a leaf device */
941         xhci_debugfs_remove_slot(xhci, slot_id);
942         xhci_free_virt_device(xhci, slot_id);
943 }
944
945 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
946                 struct usb_device *udev, gfp_t flags)
947 {
948         struct xhci_virt_device *dev;
949         int i;
950
951         /* Slot ID 0 is reserved */
952         if (slot_id == 0 || xhci->devs[slot_id]) {
953                 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
954                 return 0;
955         }
956
957         dev = kzalloc(sizeof(*dev), flags);
958         if (!dev)
959                 return 0;
960
961         dev->slot_id = slot_id;
962
963         /* Allocate the (output) device context that will be used in the HC. */
964         dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
965         if (!dev->out_ctx)
966                 goto fail;
967
968         xhci_dbg(xhci, "Slot %d output ctx = 0x%pad (dma)\n", slot_id, &dev->out_ctx->dma);
969
970         /* Allocate the (input) device context for address device command */
971         dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
972         if (!dev->in_ctx)
973                 goto fail;
974
975         xhci_dbg(xhci, "Slot %d input ctx = 0x%pad (dma)\n", slot_id, &dev->in_ctx->dma);
976
977         /* Initialize the cancellation and bandwidth list for each ep */
978         for (i = 0; i < 31; i++) {
979                 dev->eps[i].ep_index = i;
980                 dev->eps[i].vdev = dev;
981                 dev->eps[i].xhci = xhci;
982                 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
983                 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
984         }
985
986         /* Allocate endpoint 0 ring */
987         dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
988         if (!dev->eps[0].ring)
989                 goto fail;
990
991         dev->udev = udev;
992
993         /* Point to output device context in dcbaa. */
994         xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
995         xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
996                  slot_id,
997                  &xhci->dcbaa->dev_context_ptrs[slot_id],
998                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
999
1000         trace_xhci_alloc_virt_device(dev);
1001
1002         xhci->devs[slot_id] = dev;
1003
1004         return 1;
1005 fail:
1006
1007         if (dev->in_ctx)
1008                 xhci_free_container_ctx(xhci, dev->in_ctx);
1009         if (dev->out_ctx)
1010                 xhci_free_container_ctx(xhci, dev->out_ctx);
1011         kfree(dev);
1012
1013         return 0;
1014 }
1015
1016 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1017                 struct usb_device *udev)
1018 {
1019         struct xhci_virt_device *virt_dev;
1020         struct xhci_ep_ctx      *ep0_ctx;
1021         struct xhci_ring        *ep_ring;
1022
1023         virt_dev = xhci->devs[udev->slot_id];
1024         ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1025         ep_ring = virt_dev->eps[0].ring;
1026         /*
1027          * FIXME we don't keep track of the dequeue pointer very well after a
1028          * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1029          * host to our enqueue pointer.  This should only be called after a
1030          * configured device has reset, so all control transfers should have
1031          * been completed or cancelled before the reset.
1032          */
1033         ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1034                                                         ep_ring->enqueue)
1035                                    | ep_ring->cycle_state);
1036 }
1037
1038 /*
1039  * The xHCI roothub may have ports of differing speeds in any order in the port
1040  * status registers.
1041  *
1042  * The xHCI hardware wants to know the roothub port that the USB device
1043  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1044  * know is the index of that port under either the USB 2.0 or the USB 3.0
1045  * roothub, but that doesn't give us the real index into the HW port status
1046  * registers.
1047  */
1048 static struct xhci_port *xhci_find_rhub_port(struct xhci_hcd *xhci, struct usb_device *udev)
1049 {
1050         struct usb_device *top_dev;
1051         struct xhci_hub *rhub;
1052         struct usb_hcd *hcd;
1053
1054         if (udev->speed >= USB_SPEED_SUPER)
1055                 hcd = xhci_get_usb3_hcd(xhci);
1056         else
1057                 hcd = xhci->main_hcd;
1058
1059         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1060                         top_dev = top_dev->parent)
1061                 /* Found device below root hub */;
1062
1063         rhub = xhci_get_rhub(hcd);
1064         return rhub->ports[top_dev->portnum - 1];
1065 }
1066
1067 /* Setup an xHCI virtual device for a Set Address command */
1068 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1069 {
1070         struct xhci_virt_device *dev;
1071         struct xhci_ep_ctx      *ep0_ctx;
1072         struct xhci_slot_ctx    *slot_ctx;
1073         u32                     max_packets;
1074
1075         dev = xhci->devs[udev->slot_id];
1076         /* Slot ID 0 is reserved */
1077         if (udev->slot_id == 0 || !dev) {
1078                 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1079                                 udev->slot_id);
1080                 return -EINVAL;
1081         }
1082         ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1083         slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1084
1085         /* 3) Only the control endpoint is valid - one endpoint context */
1086         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1087         switch (udev->speed) {
1088         case USB_SPEED_SUPER_PLUS:
1089                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1090                 max_packets = MAX_PACKET(512);
1091                 break;
1092         case USB_SPEED_SUPER:
1093                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1094                 max_packets = MAX_PACKET(512);
1095                 break;
1096         case USB_SPEED_HIGH:
1097                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1098                 max_packets = MAX_PACKET(64);
1099                 break;
1100         /* USB core guesses at a 64-byte max packet first for FS devices */
1101         case USB_SPEED_FULL:
1102                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1103                 max_packets = MAX_PACKET(64);
1104                 break;
1105         case USB_SPEED_LOW:
1106                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1107                 max_packets = MAX_PACKET(8);
1108                 break;
1109         default:
1110                 /* Speed was set earlier, this shouldn't happen. */
1111                 return -EINVAL;
1112         }
1113         /* Find the root hub port this device is under */
1114         dev->rhub_port = xhci_find_rhub_port(xhci, udev);
1115         if (!dev->rhub_port)
1116                 return -EINVAL;
1117         /* Slot ID is set to the device directly below the root hub */
1118         if (!udev->parent->parent)
1119                 dev->rhub_port->slot_id = udev->slot_id;
1120         slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(dev->rhub_port->hw_portnum + 1));
1121         xhci_dbg(xhci, "Slot ID %d: HW portnum %d, hcd portnum %d\n",
1122                  udev->slot_id, dev->rhub_port->hw_portnum, dev->rhub_port->hcd_portnum);
1123
1124         /* Find the right bandwidth table that this device will be a part of.
1125          * If this is a full speed device attached directly to a root port (or a
1126          * decendent of one), it counts as a primary bandwidth domain, not a
1127          * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1128          * will never be created for the HS root hub.
1129          */
1130         if (!udev->tt || !udev->tt->hub->parent) {
1131                 dev->bw_table = &xhci->rh_bw[dev->rhub_port->hw_portnum].bw_table;
1132         } else {
1133                 struct xhci_root_port_bw_info *rh_bw;
1134                 struct xhci_tt_bw_info *tt_bw;
1135
1136                 rh_bw = &xhci->rh_bw[dev->rhub_port->hw_portnum];
1137                 /* Find the right TT. */
1138                 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1139                         if (tt_bw->slot_id != udev->tt->hub->slot_id)
1140                                 continue;
1141
1142                         if (!dev->udev->tt->multi ||
1143                                         (udev->tt->multi &&
1144                                          tt_bw->ttport == dev->udev->ttport)) {
1145                                 dev->bw_table = &tt_bw->bw_table;
1146                                 dev->tt_info = tt_bw;
1147                                 break;
1148                         }
1149                 }
1150                 if (!dev->tt_info)
1151                         xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1152         }
1153
1154         /* Is this a LS/FS device under an external HS hub? */
1155         if (udev->tt && udev->tt->hub->parent) {
1156                 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1157                                                 (udev->ttport << 8));
1158                 if (udev->tt->multi)
1159                         slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1160         }
1161         xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1162         xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1163
1164         /* Step 4 - ring already allocated */
1165         /* Step 5 */
1166         ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1167
1168         /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1169         ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1170                                          max_packets);
1171
1172         ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1173                                    dev->eps[0].ring->cycle_state);
1174
1175         trace_xhci_setup_addressable_virt_device(dev);
1176
1177         /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1178
1179         return 0;
1180 }
1181
1182 /*
1183  * Convert interval expressed as 2^(bInterval - 1) == interval into
1184  * straight exponent value 2^n == interval.
1185  *
1186  */
1187 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1188                 struct usb_host_endpoint *ep)
1189 {
1190         unsigned int interval;
1191
1192         interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1193         if (interval != ep->desc.bInterval - 1)
1194                 dev_warn(&udev->dev,
1195                          "ep %#x - rounding interval to %d %sframes\n",
1196                          ep->desc.bEndpointAddress,
1197                          1 << interval,
1198                          udev->speed == USB_SPEED_FULL ? "" : "micro");
1199
1200         if (udev->speed == USB_SPEED_FULL) {
1201                 /*
1202                  * Full speed isoc endpoints specify interval in frames,
1203                  * not microframes. We are using microframes everywhere,
1204                  * so adjust accordingly.
1205                  */
1206                 interval += 3;  /* 1 frame = 2^3 uframes */
1207         }
1208
1209         return interval;
1210 }
1211
1212 /*
1213  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1214  * microframes, rounded down to nearest power of 2.
1215  */
1216 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1217                 struct usb_host_endpoint *ep, unsigned int desc_interval,
1218                 unsigned int min_exponent, unsigned int max_exponent)
1219 {
1220         unsigned int interval;
1221
1222         interval = fls(desc_interval) - 1;
1223         interval = clamp_val(interval, min_exponent, max_exponent);
1224         if ((1 << interval) != desc_interval)
1225                 dev_dbg(&udev->dev,
1226                          "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1227                          ep->desc.bEndpointAddress,
1228                          1 << interval,
1229                          desc_interval);
1230
1231         return interval;
1232 }
1233
1234 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1235                 struct usb_host_endpoint *ep)
1236 {
1237         if (ep->desc.bInterval == 0)
1238                 return 0;
1239         return xhci_microframes_to_exponent(udev, ep,
1240                         ep->desc.bInterval, 0, 15);
1241 }
1242
1243
1244 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1245                 struct usb_host_endpoint *ep)
1246 {
1247         return xhci_microframes_to_exponent(udev, ep,
1248                         ep->desc.bInterval * 8, 3, 10);
1249 }
1250
1251 /* Return the polling or NAK interval.
1252  *
1253  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1254  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1255  *
1256  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1257  * is set to 0.
1258  */
1259 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1260                 struct usb_host_endpoint *ep)
1261 {
1262         unsigned int interval = 0;
1263
1264         switch (udev->speed) {
1265         case USB_SPEED_HIGH:
1266                 /* Max NAK rate */
1267                 if (usb_endpoint_xfer_control(&ep->desc) ||
1268                     usb_endpoint_xfer_bulk(&ep->desc)) {
1269                         interval = xhci_parse_microframe_interval(udev, ep);
1270                         break;
1271                 }
1272                 fallthrough;    /* SS and HS isoc/int have same decoding */
1273
1274         case USB_SPEED_SUPER_PLUS:
1275         case USB_SPEED_SUPER:
1276                 if (usb_endpoint_xfer_int(&ep->desc) ||
1277                     usb_endpoint_xfer_isoc(&ep->desc)) {
1278                         interval = xhci_parse_exponent_interval(udev, ep);
1279                 }
1280                 break;
1281
1282         case USB_SPEED_FULL:
1283                 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1284                         interval = xhci_parse_exponent_interval(udev, ep);
1285                         break;
1286                 }
1287                 /*
1288                  * Fall through for interrupt endpoint interval decoding
1289                  * since it uses the same rules as low speed interrupt
1290                  * endpoints.
1291                  */
1292                 fallthrough;
1293
1294         case USB_SPEED_LOW:
1295                 if (usb_endpoint_xfer_int(&ep->desc) ||
1296                     usb_endpoint_xfer_isoc(&ep->desc)) {
1297
1298                         interval = xhci_parse_frame_interval(udev, ep);
1299                 }
1300                 break;
1301
1302         default:
1303                 BUG();
1304         }
1305         return interval;
1306 }
1307
1308 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1309  * High speed endpoint descriptors can define "the number of additional
1310  * transaction opportunities per microframe", but that goes in the Max Burst
1311  * endpoint context field.
1312  */
1313 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1314                 struct usb_host_endpoint *ep)
1315 {
1316         if (udev->speed < USB_SPEED_SUPER ||
1317                         !usb_endpoint_xfer_isoc(&ep->desc))
1318                 return 0;
1319         return ep->ss_ep_comp.bmAttributes;
1320 }
1321
1322 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1323                                        struct usb_host_endpoint *ep)
1324 {
1325         /* Super speed and Plus have max burst in ep companion desc */
1326         if (udev->speed >= USB_SPEED_SUPER)
1327                 return ep->ss_ep_comp.bMaxBurst;
1328
1329         if (udev->speed == USB_SPEED_HIGH &&
1330             (usb_endpoint_xfer_isoc(&ep->desc) ||
1331              usb_endpoint_xfer_int(&ep->desc)))
1332                 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1333
1334         return 0;
1335 }
1336
1337 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1338 {
1339         int in;
1340
1341         in = usb_endpoint_dir_in(&ep->desc);
1342
1343         switch (usb_endpoint_type(&ep->desc)) {
1344         case USB_ENDPOINT_XFER_CONTROL:
1345                 return CTRL_EP;
1346         case USB_ENDPOINT_XFER_BULK:
1347                 return in ? BULK_IN_EP : BULK_OUT_EP;
1348         case USB_ENDPOINT_XFER_ISOC:
1349                 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1350         case USB_ENDPOINT_XFER_INT:
1351                 return in ? INT_IN_EP : INT_OUT_EP;
1352         }
1353         return 0;
1354 }
1355
1356 /* Return the maximum endpoint service interval time (ESIT) payload.
1357  * Basically, this is the maxpacket size, multiplied by the burst size
1358  * and mult size.
1359  */
1360 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1361                 struct usb_host_endpoint *ep)
1362 {
1363         int max_burst;
1364         int max_packet;
1365
1366         /* Only applies for interrupt or isochronous endpoints */
1367         if (usb_endpoint_xfer_control(&ep->desc) ||
1368                         usb_endpoint_xfer_bulk(&ep->desc))
1369                 return 0;
1370
1371         /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1372         if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1373             USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1374                 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1375
1376         /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1377         if (udev->speed >= USB_SPEED_SUPER)
1378                 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1379
1380         max_packet = usb_endpoint_maxp(&ep->desc);
1381         max_burst = usb_endpoint_maxp_mult(&ep->desc);
1382         /* A 0 in max burst means 1 transfer per ESIT */
1383         return max_packet * max_burst;
1384 }
1385
1386 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1387  * Drivers will have to call usb_alloc_streams() to do that.
1388  */
1389 int xhci_endpoint_init(struct xhci_hcd *xhci,
1390                 struct xhci_virt_device *virt_dev,
1391                 struct usb_device *udev,
1392                 struct usb_host_endpoint *ep,
1393                 gfp_t mem_flags)
1394 {
1395         unsigned int ep_index;
1396         struct xhci_ep_ctx *ep_ctx;
1397         struct xhci_ring *ep_ring;
1398         unsigned int max_packet;
1399         enum xhci_ring_type ring_type;
1400         u32 max_esit_payload;
1401         u32 endpoint_type;
1402         unsigned int max_burst;
1403         unsigned int interval;
1404         unsigned int mult;
1405         unsigned int avg_trb_len;
1406         unsigned int err_count = 0;
1407
1408         ep_index = xhci_get_endpoint_index(&ep->desc);
1409         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1410
1411         endpoint_type = xhci_get_endpoint_type(ep);
1412         if (!endpoint_type)
1413                 return -EINVAL;
1414
1415         ring_type = usb_endpoint_type(&ep->desc);
1416
1417         /*
1418          * Get values to fill the endpoint context, mostly from ep descriptor.
1419          * The average TRB buffer lengt for bulk endpoints is unclear as we
1420          * have no clue on scatter gather list entry size. For Isoc and Int,
1421          * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1422          */
1423         max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1424         interval = xhci_get_endpoint_interval(udev, ep);
1425
1426         /* Periodic endpoint bInterval limit quirk */
1427         if (usb_endpoint_xfer_int(&ep->desc) ||
1428             usb_endpoint_xfer_isoc(&ep->desc)) {
1429                 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1430                     udev->speed >= USB_SPEED_HIGH &&
1431                     interval >= 7) {
1432                         interval = 6;
1433                 }
1434         }
1435
1436         mult = xhci_get_endpoint_mult(udev, ep);
1437         max_packet = usb_endpoint_maxp(&ep->desc);
1438         max_burst = xhci_get_endpoint_max_burst(udev, ep);
1439         avg_trb_len = max_esit_payload;
1440
1441         /* FIXME dig Mult and streams info out of ep companion desc */
1442
1443         /* Allow 3 retries for everything but isoc, set CErr = 3 */
1444         if (!usb_endpoint_xfer_isoc(&ep->desc))
1445                 err_count = 3;
1446         /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1447         if (usb_endpoint_xfer_bulk(&ep->desc)) {
1448                 if (udev->speed == USB_SPEED_HIGH)
1449                         max_packet = 512;
1450                 if (udev->speed == USB_SPEED_FULL) {
1451                         max_packet = rounddown_pow_of_two(max_packet);
1452                         max_packet = clamp_val(max_packet, 8, 64);
1453                 }
1454         }
1455         /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1456         if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1457                 avg_trb_len = 8;
1458         /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1459         if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1460                 mult = 0;
1461
1462         /* Set up the endpoint ring */
1463         virt_dev->eps[ep_index].new_ring =
1464                 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1465         if (!virt_dev->eps[ep_index].new_ring)
1466                 return -ENOMEM;
1467
1468         virt_dev->eps[ep_index].skip = false;
1469         ep_ring = virt_dev->eps[ep_index].new_ring;
1470
1471         /* Fill the endpoint context */
1472         ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1473                                       EP_INTERVAL(interval) |
1474                                       EP_MULT(mult));
1475         ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1476                                        MAX_PACKET(max_packet) |
1477                                        MAX_BURST(max_burst) |
1478                                        ERROR_COUNT(err_count));
1479         ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1480                                   ep_ring->cycle_state);
1481
1482         ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1483                                       EP_AVG_TRB_LENGTH(avg_trb_len));
1484
1485         return 0;
1486 }
1487
1488 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1489                 struct xhci_virt_device *virt_dev,
1490                 struct usb_host_endpoint *ep)
1491 {
1492         unsigned int ep_index;
1493         struct xhci_ep_ctx *ep_ctx;
1494
1495         ep_index = xhci_get_endpoint_index(&ep->desc);
1496         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1497
1498         ep_ctx->ep_info = 0;
1499         ep_ctx->ep_info2 = 0;
1500         ep_ctx->deq = 0;
1501         ep_ctx->tx_info = 0;
1502         /* Don't free the endpoint ring until the set interface or configuration
1503          * request succeeds.
1504          */
1505 }
1506
1507 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1508 {
1509         bw_info->ep_interval = 0;
1510         bw_info->mult = 0;
1511         bw_info->num_packets = 0;
1512         bw_info->max_packet_size = 0;
1513         bw_info->type = 0;
1514         bw_info->max_esit_payload = 0;
1515 }
1516
1517 void xhci_update_bw_info(struct xhci_hcd *xhci,
1518                 struct xhci_container_ctx *in_ctx,
1519                 struct xhci_input_control_ctx *ctrl_ctx,
1520                 struct xhci_virt_device *virt_dev)
1521 {
1522         struct xhci_bw_info *bw_info;
1523         struct xhci_ep_ctx *ep_ctx;
1524         unsigned int ep_type;
1525         int i;
1526
1527         for (i = 1; i < 31; i++) {
1528                 bw_info = &virt_dev->eps[i].bw_info;
1529
1530                 /* We can't tell what endpoint type is being dropped, but
1531                  * unconditionally clearing the bandwidth info for non-periodic
1532                  * endpoints should be harmless because the info will never be
1533                  * set in the first place.
1534                  */
1535                 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1536                         /* Dropped endpoint */
1537                         xhci_clear_endpoint_bw_info(bw_info);
1538                         continue;
1539                 }
1540
1541                 if (EP_IS_ADDED(ctrl_ctx, i)) {
1542                         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1543                         ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1544
1545                         /* Ignore non-periodic endpoints */
1546                         if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1547                                         ep_type != ISOC_IN_EP &&
1548                                         ep_type != INT_IN_EP)
1549                                 continue;
1550
1551                         /* Added or changed endpoint */
1552                         bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1553                                         le32_to_cpu(ep_ctx->ep_info));
1554                         /* Number of packets and mult are zero-based in the
1555                          * input context, but we want one-based for the
1556                          * interval table.
1557                          */
1558                         bw_info->mult = CTX_TO_EP_MULT(
1559                                         le32_to_cpu(ep_ctx->ep_info)) + 1;
1560                         bw_info->num_packets = CTX_TO_MAX_BURST(
1561                                         le32_to_cpu(ep_ctx->ep_info2)) + 1;
1562                         bw_info->max_packet_size = MAX_PACKET_DECODED(
1563                                         le32_to_cpu(ep_ctx->ep_info2));
1564                         bw_info->type = ep_type;
1565                         bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1566                                         le32_to_cpu(ep_ctx->tx_info));
1567                 }
1568         }
1569 }
1570
1571 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1572  * Useful when you want to change one particular aspect of the endpoint and then
1573  * issue a configure endpoint command.
1574  */
1575 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1576                 struct xhci_container_ctx *in_ctx,
1577                 struct xhci_container_ctx *out_ctx,
1578                 unsigned int ep_index)
1579 {
1580         struct xhci_ep_ctx *out_ep_ctx;
1581         struct xhci_ep_ctx *in_ep_ctx;
1582
1583         out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1584         in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1585
1586         in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1587         in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1588         in_ep_ctx->deq = out_ep_ctx->deq;
1589         in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1590         if (xhci->quirks & XHCI_MTK_HOST) {
1591                 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1592                 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1593         }
1594 }
1595
1596 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1597  * Useful when you want to change one particular aspect of the endpoint and then
1598  * issue a configure endpoint command.  Only the context entries field matters,
1599  * but we'll copy the whole thing anyway.
1600  */
1601 void xhci_slot_copy(struct xhci_hcd *xhci,
1602                 struct xhci_container_ctx *in_ctx,
1603                 struct xhci_container_ctx *out_ctx)
1604 {
1605         struct xhci_slot_ctx *in_slot_ctx;
1606         struct xhci_slot_ctx *out_slot_ctx;
1607
1608         in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1609         out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1610
1611         in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1612         in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1613         in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1614         in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1615 }
1616
1617 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1618 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1619 {
1620         int i;
1621         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1622         int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1623
1624         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1625                         "Allocating %d scratchpad buffers", num_sp);
1626
1627         if (!num_sp)
1628                 return 0;
1629
1630         xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1631                                 dev_to_node(dev));
1632         if (!xhci->scratchpad)
1633                 goto fail_sp;
1634
1635         xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1636                                      array_size(sizeof(u64), num_sp),
1637                                      &xhci->scratchpad->sp_dma, flags);
1638         if (!xhci->scratchpad->sp_array)
1639                 goto fail_sp2;
1640
1641         xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1642                                         flags, dev_to_node(dev));
1643         if (!xhci->scratchpad->sp_buffers)
1644                 goto fail_sp3;
1645
1646         xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1647         for (i = 0; i < num_sp; i++) {
1648                 dma_addr_t dma;
1649                 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1650                                                flags);
1651                 if (!buf)
1652                         goto fail_sp4;
1653
1654                 xhci->scratchpad->sp_array[i] = dma;
1655                 xhci->scratchpad->sp_buffers[i] = buf;
1656         }
1657
1658         return 0;
1659
1660  fail_sp4:
1661         while (i--)
1662                 dma_free_coherent(dev, xhci->page_size,
1663                                     xhci->scratchpad->sp_buffers[i],
1664                                     xhci->scratchpad->sp_array[i]);
1665
1666         kfree(xhci->scratchpad->sp_buffers);
1667
1668  fail_sp3:
1669         dma_free_coherent(dev, array_size(sizeof(u64), num_sp),
1670                             xhci->scratchpad->sp_array,
1671                             xhci->scratchpad->sp_dma);
1672
1673  fail_sp2:
1674         kfree(xhci->scratchpad);
1675         xhci->scratchpad = NULL;
1676
1677  fail_sp:
1678         return -ENOMEM;
1679 }
1680
1681 static void scratchpad_free(struct xhci_hcd *xhci)
1682 {
1683         int num_sp;
1684         int i;
1685         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1686
1687         if (!xhci->scratchpad)
1688                 return;
1689
1690         num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1691
1692         for (i = 0; i < num_sp; i++) {
1693                 dma_free_coherent(dev, xhci->page_size,
1694                                     xhci->scratchpad->sp_buffers[i],
1695                                     xhci->scratchpad->sp_array[i]);
1696         }
1697         kfree(xhci->scratchpad->sp_buffers);
1698         dma_free_coherent(dev, array_size(sizeof(u64), num_sp),
1699                             xhci->scratchpad->sp_array,
1700                             xhci->scratchpad->sp_dma);
1701         kfree(xhci->scratchpad);
1702         xhci->scratchpad = NULL;
1703 }
1704
1705 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1706                 bool allocate_completion, gfp_t mem_flags)
1707 {
1708         struct xhci_command *command;
1709         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1710
1711         command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1712         if (!command)
1713                 return NULL;
1714
1715         if (allocate_completion) {
1716                 command->completion =
1717                         kzalloc_node(sizeof(struct completion), mem_flags,
1718                                 dev_to_node(dev));
1719                 if (!command->completion) {
1720                         kfree(command);
1721                         return NULL;
1722                 }
1723                 init_completion(command->completion);
1724         }
1725
1726         command->status = 0;
1727         /* set default timeout to 5000 ms */
1728         command->timeout_ms = XHCI_CMD_DEFAULT_TIMEOUT;
1729         INIT_LIST_HEAD(&command->cmd_list);
1730         return command;
1731 }
1732
1733 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1734                 bool allocate_completion, gfp_t mem_flags)
1735 {
1736         struct xhci_command *command;
1737
1738         command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1739         if (!command)
1740                 return NULL;
1741
1742         command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1743                                                    mem_flags);
1744         if (!command->in_ctx) {
1745                 kfree(command->completion);
1746                 kfree(command);
1747                 return NULL;
1748         }
1749         return command;
1750 }
1751
1752 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1753 {
1754         kfree(urb_priv);
1755 }
1756
1757 void xhci_free_command(struct xhci_hcd *xhci,
1758                 struct xhci_command *command)
1759 {
1760         xhci_free_container_ctx(xhci,
1761                         command->in_ctx);
1762         kfree(command->completion);
1763         kfree(command);
1764 }
1765
1766 static int xhci_alloc_erst(struct xhci_hcd *xhci,
1767                     struct xhci_ring *evt_ring,
1768                     struct xhci_erst *erst,
1769                     gfp_t flags)
1770 {
1771         size_t size;
1772         unsigned int val;
1773         struct xhci_segment *seg;
1774         struct xhci_erst_entry *entry;
1775
1776         size = array_size(sizeof(struct xhci_erst_entry), evt_ring->num_segs);
1777         erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1778                                            size, &erst->erst_dma_addr, flags);
1779         if (!erst->entries)
1780                 return -ENOMEM;
1781
1782         erst->num_entries = evt_ring->num_segs;
1783
1784         seg = evt_ring->first_seg;
1785         for (val = 0; val < evt_ring->num_segs; val++) {
1786                 entry = &erst->entries[val];
1787                 entry->seg_addr = cpu_to_le64(seg->dma);
1788                 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1789                 entry->rsvd = 0;
1790                 seg = seg->next;
1791         }
1792
1793         return 0;
1794 }
1795
1796 static void
1797 xhci_remove_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1798 {
1799         u32 tmp;
1800
1801         if (!ir)
1802                 return;
1803
1804         /*
1805          * Clean out interrupter registers except ERSTBA. Clearing either the
1806          * low or high 32 bits of ERSTBA immediately causes the controller to
1807          * dereference the partially cleared 64 bit address, causing IOMMU error.
1808          */
1809         if (ir->ir_set) {
1810                 tmp = readl(&ir->ir_set->erst_size);
1811                 tmp &= ERST_SIZE_MASK;
1812                 writel(tmp, &ir->ir_set->erst_size);
1813
1814                 xhci_write_64(xhci, ERST_EHB, &ir->ir_set->erst_dequeue);
1815         }
1816 }
1817
1818 static void
1819 xhci_free_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1820 {
1821         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1822         size_t erst_size;
1823
1824         if (!ir)
1825                 return;
1826
1827         erst_size = array_size(sizeof(struct xhci_erst_entry), ir->erst.num_entries);
1828         if (ir->erst.entries)
1829                 dma_free_coherent(dev, erst_size,
1830                                   ir->erst.entries,
1831                                   ir->erst.erst_dma_addr);
1832         ir->erst.entries = NULL;
1833
1834         /* free interrupter event ring */
1835         if (ir->event_ring)
1836                 xhci_ring_free(xhci, ir->event_ring);
1837
1838         ir->event_ring = NULL;
1839
1840         kfree(ir);
1841 }
1842
1843 void xhci_remove_secondary_interrupter(struct usb_hcd *hcd, struct xhci_interrupter *ir)
1844 {
1845         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1846         unsigned int intr_num;
1847
1848         spin_lock_irq(&xhci->lock);
1849
1850         /* interrupter 0 is primary interrupter, don't touch it */
1851         if (!ir || !ir->intr_num || ir->intr_num >= xhci->max_interrupters) {
1852                 xhci_dbg(xhci, "Invalid secondary interrupter, can't remove\n");
1853                 spin_unlock_irq(&xhci->lock);
1854                 return;
1855         }
1856
1857         intr_num = ir->intr_num;
1858
1859         xhci_remove_interrupter(xhci, ir);
1860         xhci->interrupters[intr_num] = NULL;
1861
1862         spin_unlock_irq(&xhci->lock);
1863
1864         xhci_free_interrupter(xhci, ir);
1865 }
1866 EXPORT_SYMBOL_GPL(xhci_remove_secondary_interrupter);
1867
1868 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1869 {
1870         struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
1871         int i, j, num_ports;
1872
1873         cancel_delayed_work_sync(&xhci->cmd_timer);
1874
1875         for (i = 0; xhci->interrupters && i < xhci->max_interrupters; i++) {
1876                 if (xhci->interrupters[i]) {
1877                         xhci_remove_interrupter(xhci, xhci->interrupters[i]);
1878                         xhci_free_interrupter(xhci, xhci->interrupters[i]);
1879                         xhci->interrupters[i] = NULL;
1880                 }
1881         }
1882         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed interrupters");
1883
1884         if (xhci->cmd_ring)
1885                 xhci_ring_free(xhci, xhci->cmd_ring);
1886         xhci->cmd_ring = NULL;
1887         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1888         xhci_cleanup_command_queue(xhci);
1889
1890         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1891         for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1892                 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1893                 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1894                         struct list_head *ep = &bwt->interval_bw[j].endpoints;
1895                         while (!list_empty(ep))
1896                                 list_del_init(ep->next);
1897                 }
1898         }
1899
1900         for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1901                 xhci_free_virt_devices_depth_first(xhci, i);
1902
1903         dma_pool_destroy(xhci->segment_pool);
1904         xhci->segment_pool = NULL;
1905         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1906
1907         dma_pool_destroy(xhci->device_pool);
1908         xhci->device_pool = NULL;
1909         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1910
1911         dma_pool_destroy(xhci->small_streams_pool);
1912         xhci->small_streams_pool = NULL;
1913         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1914                         "Freed small stream array pool");
1915
1916         dma_pool_destroy(xhci->medium_streams_pool);
1917         xhci->medium_streams_pool = NULL;
1918         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1919                         "Freed medium stream array pool");
1920
1921         if (xhci->dcbaa)
1922                 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1923                                 xhci->dcbaa, xhci->dcbaa->dma);
1924         xhci->dcbaa = NULL;
1925
1926         scratchpad_free(xhci);
1927
1928         if (!xhci->rh_bw)
1929                 goto no_bw;
1930
1931         for (i = 0; i < num_ports; i++) {
1932                 struct xhci_tt_bw_info *tt, *n;
1933                 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1934                         list_del(&tt->tt_list);
1935                         kfree(tt);
1936                 }
1937         }
1938
1939 no_bw:
1940         xhci->cmd_ring_reserved_trbs = 0;
1941         xhci->usb2_rhub.num_ports = 0;
1942         xhci->usb3_rhub.num_ports = 0;
1943         xhci->num_active_eps = 0;
1944         kfree(xhci->usb2_rhub.ports);
1945         kfree(xhci->usb3_rhub.ports);
1946         kfree(xhci->hw_ports);
1947         kfree(xhci->rh_bw);
1948         for (i = 0; i < xhci->num_port_caps; i++)
1949                 kfree(xhci->port_caps[i].psi);
1950         kfree(xhci->port_caps);
1951         kfree(xhci->interrupters);
1952         xhci->num_port_caps = 0;
1953
1954         xhci->usb2_rhub.ports = NULL;
1955         xhci->usb3_rhub.ports = NULL;
1956         xhci->hw_ports = NULL;
1957         xhci->rh_bw = NULL;
1958         xhci->port_caps = NULL;
1959         xhci->interrupters = NULL;
1960
1961         xhci->page_size = 0;
1962         xhci->page_shift = 0;
1963         xhci->usb2_rhub.bus_state.bus_suspended = 0;
1964         xhci->usb3_rhub.bus_state.bus_suspended = 0;
1965 }
1966
1967 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1968 {
1969         dma_addr_t deq;
1970
1971         deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg,
1972                         ir->event_ring->dequeue);
1973         if (!deq)
1974                 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr.\n");
1975         /* Update HC event ring dequeue pointer */
1976         /* Don't clear the EHB bit (which is RW1C) because
1977          * there might be more events to service.
1978          */
1979         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1980                        "// Write event ring dequeue pointer, preserving EHB bit");
1981         xhci_write_64(xhci, deq & ERST_PTR_MASK, &ir->ir_set->erst_dequeue);
1982 }
1983
1984 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1985                 __le32 __iomem *addr, int max_caps)
1986 {
1987         u32 temp, port_offset, port_count;
1988         int i;
1989         u8 major_revision, minor_revision, tmp_minor_revision;
1990         struct xhci_hub *rhub;
1991         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1992         struct xhci_port_cap *port_cap;
1993
1994         temp = readl(addr);
1995         major_revision = XHCI_EXT_PORT_MAJOR(temp);
1996         minor_revision = XHCI_EXT_PORT_MINOR(temp);
1997
1998         if (major_revision == 0x03) {
1999                 rhub = &xhci->usb3_rhub;
2000                 /*
2001                  * Some hosts incorrectly use sub-minor version for minor
2002                  * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2003                  * for bcdUSB 0x310). Since there is no USB release with sub
2004                  * minor version 0x301 to 0x309, we can assume that they are
2005                  * incorrect and fix it here.
2006                  */
2007                 if (minor_revision > 0x00 && minor_revision < 0x10)
2008                         minor_revision <<= 4;
2009                 /*
2010                  * Some zhaoxin's xHCI controller that follow usb3.1 spec
2011                  * but only support Gen1.
2012                  */
2013                 if (xhci->quirks & XHCI_ZHAOXIN_HOST) {
2014                         tmp_minor_revision = minor_revision;
2015                         minor_revision = 0;
2016                 }
2017
2018         } else if (major_revision <= 0x02) {
2019                 rhub = &xhci->usb2_rhub;
2020         } else {
2021                 xhci_warn(xhci, "Ignoring unknown port speed, Ext Cap %p, revision = 0x%x\n",
2022                                 addr, major_revision);
2023                 /* Ignoring port protocol we can't understand. FIXME */
2024                 return;
2025         }
2026
2027         /* Port offset and count in the third dword, see section 7.2 */
2028         temp = readl(addr + 2);
2029         port_offset = XHCI_EXT_PORT_OFF(temp);
2030         port_count = XHCI_EXT_PORT_COUNT(temp);
2031         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2032                        "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x",
2033                        addr, port_offset, port_count, major_revision);
2034         /* Port count includes the current port offset */
2035         if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2036                 /* WTF? "Valid values are â€˜1’ to MaxPorts" */
2037                 return;
2038
2039         port_cap = &xhci->port_caps[xhci->num_port_caps++];
2040         if (xhci->num_port_caps > max_caps)
2041                 return;
2042
2043         port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2044
2045         if (port_cap->psi_count) {
2046                 port_cap->psi = kcalloc_node(port_cap->psi_count,
2047                                              sizeof(*port_cap->psi),
2048                                              GFP_KERNEL, dev_to_node(dev));
2049                 if (!port_cap->psi)
2050                         port_cap->psi_count = 0;
2051
2052                 port_cap->psi_uid_count++;
2053                 for (i = 0; i < port_cap->psi_count; i++) {
2054                         port_cap->psi[i] = readl(addr + 4 + i);
2055
2056                         /* count unique ID values, two consecutive entries can
2057                          * have the same ID if link is assymetric
2058                          */
2059                         if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2060                                   XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2061                                 port_cap->psi_uid_count++;
2062
2063                         if (xhci->quirks & XHCI_ZHAOXIN_HOST &&
2064                             major_revision == 0x03 &&
2065                             XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5)
2066                                 minor_revision = tmp_minor_revision;
2067
2068                         xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2069                                   XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2070                                   XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2071                                   XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2072                                   XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2073                                   XHCI_EXT_PORT_LP(port_cap->psi[i]),
2074                                   XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2075                 }
2076         }
2077
2078         rhub->maj_rev = major_revision;
2079
2080         if (rhub->min_rev < minor_revision)
2081                 rhub->min_rev = minor_revision;
2082
2083         port_cap->maj_rev = major_revision;
2084         port_cap->min_rev = minor_revision;
2085         port_cap->protocol_caps = temp;
2086
2087         if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2088                  (temp & XHCI_HLC)) {
2089                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2090                                "xHCI 1.0: support USB2 hardware lpm");
2091                 xhci->hw_lpm_support = 1;
2092         }
2093
2094         port_offset--;
2095         for (i = port_offset; i < (port_offset + port_count); i++) {
2096                 struct xhci_port *hw_port = &xhci->hw_ports[i];
2097                 /* Duplicate entry.  Ignore the port if the revisions differ. */
2098                 if (hw_port->rhub) {
2099                         xhci_warn(xhci, "Duplicate port entry, Ext Cap %p, port %u\n", addr, i);
2100                         xhci_warn(xhci, "Port was marked as USB %u, duplicated as USB %u\n",
2101                                         hw_port->rhub->maj_rev, major_revision);
2102                         /* Only adjust the roothub port counts if we haven't
2103                          * found a similar duplicate.
2104                          */
2105                         if (hw_port->rhub != rhub &&
2106                                  hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2107                                 hw_port->rhub->num_ports--;
2108                                 hw_port->hcd_portnum = DUPLICATE_ENTRY;
2109                         }
2110                         continue;
2111                 }
2112                 hw_port->rhub = rhub;
2113                 hw_port->port_cap = port_cap;
2114                 rhub->num_ports++;
2115         }
2116         /* FIXME: Should we disable ports not in the Extended Capabilities? */
2117 }
2118
2119 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2120                                         struct xhci_hub *rhub, gfp_t flags)
2121 {
2122         int port_index = 0;
2123         int i;
2124         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2125
2126         if (!rhub->num_ports)
2127                 return;
2128         rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2129                         flags, dev_to_node(dev));
2130         if (!rhub->ports)
2131                 return;
2132
2133         for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2134                 if (xhci->hw_ports[i].rhub != rhub ||
2135                     xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2136                         continue;
2137                 xhci->hw_ports[i].hcd_portnum = port_index;
2138                 rhub->ports[port_index] = &xhci->hw_ports[i];
2139                 port_index++;
2140                 if (port_index == rhub->num_ports)
2141                         break;
2142         }
2143 }
2144
2145 /*
2146  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2147  * specify what speeds each port is supposed to be.  We can't count on the port
2148  * speed bits in the PORTSC register being correct until a device is connected,
2149  * but we need to set up the two fake roothubs with the correct number of USB
2150  * 3.0 and USB 2.0 ports at host controller initialization time.
2151  */
2152 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2153 {
2154         void __iomem *base;
2155         u32 offset;
2156         unsigned int num_ports;
2157         int i, j;
2158         int cap_count = 0;
2159         u32 cap_start;
2160         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2161
2162         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2163         xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2164                                 flags, dev_to_node(dev));
2165         if (!xhci->hw_ports)
2166                 return -ENOMEM;
2167
2168         for (i = 0; i < num_ports; i++) {
2169                 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2170                         NUM_PORT_REGS * i;
2171                 xhci->hw_ports[i].hw_portnum = i;
2172
2173                 init_completion(&xhci->hw_ports[i].rexit_done);
2174                 init_completion(&xhci->hw_ports[i].u3exit_done);
2175         }
2176
2177         xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2178                                    dev_to_node(dev));
2179         if (!xhci->rh_bw)
2180                 return -ENOMEM;
2181         for (i = 0; i < num_ports; i++) {
2182                 struct xhci_interval_bw_table *bw_table;
2183
2184                 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2185                 bw_table = &xhci->rh_bw[i].bw_table;
2186                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2187                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2188         }
2189         base = &xhci->cap_regs->hc_capbase;
2190
2191         cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2192         if (!cap_start) {
2193                 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2194                 return -ENODEV;
2195         }
2196
2197         offset = cap_start;
2198         /* count extended protocol capability entries for later caching */
2199         while (offset) {
2200                 cap_count++;
2201                 offset = xhci_find_next_ext_cap(base, offset,
2202                                                       XHCI_EXT_CAPS_PROTOCOL);
2203         }
2204
2205         xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2206                                 flags, dev_to_node(dev));
2207         if (!xhci->port_caps)
2208                 return -ENOMEM;
2209
2210         offset = cap_start;
2211
2212         while (offset) {
2213                 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2214                 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2215                     num_ports)
2216                         break;
2217                 offset = xhci_find_next_ext_cap(base, offset,
2218                                                 XHCI_EXT_CAPS_PROTOCOL);
2219         }
2220         if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2221                 xhci_warn(xhci, "No ports on the roothubs?\n");
2222                 return -ENODEV;
2223         }
2224         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2225                        "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2226                        xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2227
2228         /* Place limits on the number of roothub ports so that the hub
2229          * descriptors aren't longer than the USB core will allocate.
2230          */
2231         if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2232                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2233                                 "Limiting USB 3.0 roothub ports to %u.",
2234                                 USB_SS_MAXPORTS);
2235                 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2236         }
2237         if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2238                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2239                                 "Limiting USB 2.0 roothub ports to %u.",
2240                                 USB_MAXCHILDREN);
2241                 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2242         }
2243
2244         if (!xhci->usb2_rhub.num_ports)
2245                 xhci_info(xhci, "USB2 root hub has no ports\n");
2246
2247         if (!xhci->usb3_rhub.num_ports)
2248                 xhci_info(xhci, "USB3 root hub has no ports\n");
2249
2250         xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2251         xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2252
2253         return 0;
2254 }
2255
2256 static struct xhci_interrupter *
2257 xhci_alloc_interrupter(struct xhci_hcd *xhci, unsigned int segs, gfp_t flags)
2258 {
2259         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2260         struct xhci_interrupter *ir;
2261         unsigned int max_segs;
2262         int ret;
2263
2264         if (!segs)
2265                 segs = ERST_DEFAULT_SEGS;
2266
2267         max_segs = BIT(HCS_ERST_MAX(xhci->hcs_params2));
2268         segs = min(segs, max_segs);
2269
2270         ir = kzalloc_node(sizeof(*ir), flags, dev_to_node(dev));
2271         if (!ir)
2272                 return NULL;
2273
2274         ir->event_ring = xhci_ring_alloc(xhci, segs, 1, TYPE_EVENT, 0, flags);
2275         if (!ir->event_ring) {
2276                 xhci_warn(xhci, "Failed to allocate interrupter event ring\n");
2277                 kfree(ir);
2278                 return NULL;
2279         }
2280
2281         ret = xhci_alloc_erst(xhci, ir->event_ring, &ir->erst, flags);
2282         if (ret) {
2283                 xhci_warn(xhci, "Failed to allocate interrupter erst\n");
2284                 xhci_ring_free(xhci, ir->event_ring);
2285                 kfree(ir);
2286                 return NULL;
2287         }
2288
2289         return ir;
2290 }
2291
2292 static int
2293 xhci_add_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir,
2294                      unsigned int intr_num)
2295 {
2296         u64 erst_base;
2297         u32 erst_size;
2298
2299         if (intr_num >= xhci->max_interrupters) {
2300                 xhci_warn(xhci, "Can't add interrupter %d, max interrupters %d\n",
2301                           intr_num, xhci->max_interrupters);
2302                 return -EINVAL;
2303         }
2304
2305         if (xhci->interrupters[intr_num]) {
2306                 xhci_warn(xhci, "Interrupter %d\n already set up", intr_num);
2307                 return -EINVAL;
2308         }
2309
2310         xhci->interrupters[intr_num] = ir;
2311         ir->intr_num = intr_num;
2312         ir->ir_set = &xhci->run_regs->ir_set[intr_num];
2313
2314         /* set ERST count with the number of entries in the segment table */
2315         erst_size = readl(&ir->ir_set->erst_size);
2316         erst_size &= ERST_SIZE_MASK;
2317         erst_size |= ir->event_ring->num_segs;
2318         writel(erst_size, &ir->ir_set->erst_size);
2319
2320         erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
2321         erst_base &= ERST_BASE_RSVDP;
2322         erst_base |= ir->erst.erst_dma_addr & ~ERST_BASE_RSVDP;
2323         if (xhci->quirks & XHCI_WRITE_64_HI_LO)
2324                 hi_lo_writeq(erst_base, &ir->ir_set->erst_base);
2325         else
2326                 xhci_write_64(xhci, erst_base, &ir->ir_set->erst_base);
2327
2328         /* Set the event ring dequeue address of this interrupter */
2329         xhci_set_hc_event_deq(xhci, ir);
2330
2331         return 0;
2332 }
2333
2334 struct xhci_interrupter *
2335 xhci_create_secondary_interrupter(struct usb_hcd *hcd, unsigned int segs,
2336                                   u32 imod_interval)
2337 {
2338         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2339         struct xhci_interrupter *ir;
2340         unsigned int i;
2341         int err = -ENOSPC;
2342
2343         if (!xhci->interrupters || xhci->max_interrupters <= 1)
2344                 return NULL;
2345
2346         ir = xhci_alloc_interrupter(xhci, segs, GFP_KERNEL);
2347         if (!ir)
2348                 return NULL;
2349
2350         spin_lock_irq(&xhci->lock);
2351
2352         /* Find available secondary interrupter, interrupter 0 is reserved for primary */
2353         for (i = 1; i < xhci->max_interrupters; i++) {
2354                 if (xhci->interrupters[i] == NULL) {
2355                         err = xhci_add_interrupter(xhci, ir, i);
2356                         break;
2357                 }
2358         }
2359
2360         spin_unlock_irq(&xhci->lock);
2361
2362         if (err) {
2363                 xhci_warn(xhci, "Failed to add secondary interrupter, max interrupters %d\n",
2364                           xhci->max_interrupters);
2365                 xhci_free_interrupter(xhci, ir);
2366                 return NULL;
2367         }
2368
2369         err = xhci_set_interrupter_moderation(ir, imod_interval);
2370         if (err)
2371                 xhci_warn(xhci, "Failed to set interrupter %d moderation to %uns\n",
2372                           i, imod_interval);
2373
2374         xhci_dbg(xhci, "Add secondary interrupter %d, max interrupters %d\n",
2375                  i, xhci->max_interrupters);
2376
2377         return ir;
2378 }
2379 EXPORT_SYMBOL_GPL(xhci_create_secondary_interrupter);
2380
2381 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2382 {
2383         struct xhci_interrupter *ir;
2384         struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
2385         dma_addr_t      dma;
2386         unsigned int    val, val2;
2387         u64             val_64;
2388         u32             page_size, temp;
2389         int             i;
2390
2391         INIT_LIST_HEAD(&xhci->cmd_list);
2392
2393         /* init command timeout work */
2394         INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2395         init_completion(&xhci->cmd_ring_stop_completion);
2396
2397         page_size = readl(&xhci->op_regs->page_size);
2398         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2399                         "Supported page size register = 0x%x", page_size);
2400         i = ffs(page_size);
2401         if (i < 16)
2402                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2403                         "Supported page size of %iK", (1 << (i+12)) / 1024);
2404         else
2405                 xhci_warn(xhci, "WARN: no supported page size\n");
2406         /* Use 4K pages, since that's common and the minimum the HC supports */
2407         xhci->page_shift = 12;
2408         xhci->page_size = 1 << xhci->page_shift;
2409         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2410                         "HCD page size set to %iK", xhci->page_size / 1024);
2411
2412         /*
2413          * Program the Number of Device Slots Enabled field in the CONFIG
2414          * register with the max value of slots the HC can handle.
2415          */
2416         val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2417         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2418                         "// xHC can handle at most %d device slots.", val);
2419         val2 = readl(&xhci->op_regs->config_reg);
2420         val |= (val2 & ~HCS_SLOTS_MASK);
2421         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2422                         "// Setting Max device slots reg = 0x%x.", val);
2423         writel(val, &xhci->op_regs->config_reg);
2424
2425         /*
2426          * xHCI section 5.4.6 - Device Context array must be
2427          * "physically contiguous and 64-byte (cache line) aligned".
2428          */
2429         xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2430                         flags);
2431         if (!xhci->dcbaa)
2432                 goto fail;
2433         xhci->dcbaa->dma = dma;
2434         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2435                         "// Device context base array address = 0x%pad (DMA), %p (virt)",
2436                         &xhci->dcbaa->dma, xhci->dcbaa);
2437         xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2438
2439         /*
2440          * Initialize the ring segment pool.  The ring must be a contiguous
2441          * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2442          * however, the command ring segment needs 64-byte aligned segments
2443          * and our use of dma addresses in the trb_address_map radix tree needs
2444          * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2445          */
2446         if (xhci->quirks & XHCI_ZHAOXIN_TRB_FETCH)
2447                 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2448                                 TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2);
2449         else
2450                 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2451                                 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2452
2453         /* See Table 46 and Note on Figure 55 */
2454         xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2455                         2112, 64, xhci->page_size);
2456         if (!xhci->segment_pool || !xhci->device_pool)
2457                 goto fail;
2458
2459         /* Linear stream context arrays don't have any boundary restrictions,
2460          * and only need to be 16-byte aligned.
2461          */
2462         xhci->small_streams_pool =
2463                 dma_pool_create("xHCI 256 byte stream ctx arrays",
2464                         dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2465         xhci->medium_streams_pool =
2466                 dma_pool_create("xHCI 1KB stream ctx arrays",
2467                         dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2468         /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2469          * will be allocated with dma_alloc_coherent()
2470          */
2471
2472         if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2473                 goto fail;
2474
2475         /* Set up the command ring to have one segments for now. */
2476         xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2477         if (!xhci->cmd_ring)
2478                 goto fail;
2479         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2480                         "Allocated command ring at %p", xhci->cmd_ring);
2481         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%pad",
2482                         &xhci->cmd_ring->first_seg->dma);
2483
2484         /* Set the address in the Command Ring Control register */
2485         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2486         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2487                 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2488                 xhci->cmd_ring->cycle_state;
2489         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2490                         "// Setting command ring address to 0x%016llx", val_64);
2491         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2492
2493         /* Reserve one command ring TRB for disabling LPM.
2494          * Since the USB core grabs the shared usb_bus bandwidth mutex before
2495          * disabling LPM, we only need to reserve one TRB for all devices.
2496          */
2497         xhci->cmd_ring_reserved_trbs++;
2498
2499         val = readl(&xhci->cap_regs->db_off);
2500         val &= DBOFF_MASK;
2501         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2502                        "// Doorbell array is located at offset 0x%x from cap regs base addr",
2503                        val);
2504         xhci->dba = (void __iomem *) xhci->cap_regs + val;
2505
2506         /* Allocate and set up primary interrupter 0 with an event ring. */
2507         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2508                        "Allocating primary event ring");
2509         xhci->interrupters = kcalloc_node(xhci->max_interrupters, sizeof(*xhci->interrupters),
2510                                           flags, dev_to_node(dev));
2511
2512         ir = xhci_alloc_interrupter(xhci, 0, flags);
2513         if (!ir)
2514                 goto fail;
2515
2516         if (xhci_add_interrupter(xhci, ir, 0))
2517                 goto fail;
2518
2519         ir->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
2520
2521         /*
2522          * XXX: Might need to set the Interrupter Moderation Register to
2523          * something other than the default (~1ms minimum between interrupts).
2524          * See section 5.5.1.2.
2525          */
2526         for (i = 0; i < MAX_HC_SLOTS; i++)
2527                 xhci->devs[i] = NULL;
2528
2529         if (scratchpad_alloc(xhci, flags))
2530                 goto fail;
2531         if (xhci_setup_port_arrays(xhci, flags))
2532                 goto fail;
2533
2534         /* Enable USB 3.0 device notifications for function remote wake, which
2535          * is necessary for allowing USB 3.0 devices to do remote wakeup from
2536          * U3 (device suspend).
2537          */
2538         temp = readl(&xhci->op_regs->dev_notification);
2539         temp &= ~DEV_NOTE_MASK;
2540         temp |= DEV_NOTE_FWAKE;
2541         writel(temp, &xhci->op_regs->dev_notification);
2542
2543         return 0;
2544
2545 fail:
2546         xhci_halt(xhci);
2547         xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2548         xhci_mem_cleanup(xhci);
2549         return -ENOMEM;
2550 }
This page took 0.178758 seconds and 4 git commands to generate.