1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright 2023 Linaro Limited
7 * Thermal subsystem debug support
9 #include <linux/debugfs.h>
10 #include <linux/ktime.h>
11 #include <linux/list.h>
12 #include <linux/minmax.h>
13 #include <linux/mutex.h>
14 #include <linux/thermal.h>
16 #include "thermal_core.h"
18 static struct dentry *d_root;
19 static struct dentry *d_cdev;
20 static struct dentry *d_tz;
23 * Length of the string containing the thermal zone id or the cooling
24 * device id, including the ending nul character. We can reasonably
25 * assume there won't be more than 256 thermal zones as the maximum
26 * observed today is around 32.
31 * The cooling device transition list is stored in a hash table where
32 * the size is CDEVSTATS_HASH_SIZE. The majority of cooling devices
33 * have dozen of states but some can have much more, so a hash table
34 * is more adequate in this case, because the cost of browsing the entire
35 * list when storing the transitions may not be negligible.
37 #define CDEVSTATS_HASH_SIZE 16
40 * struct cdev_debugfs - per cooling device statistics structure
41 * A cooling device can have a high number of states. Showing the
42 * transitions on a matrix based representation can be overkill given
43 * most of the transitions won't happen and we end up with a matrix
44 * filled with zero. Instead, we show the transitions which actually
47 * Every transition updates the current_state and the timestamp. The
48 * transitions and the durations are stored in lists.
50 * @total: the number of transitions for this cooling device
51 * @current_state: the current cooling device state
52 * @timestamp: the state change timestamp
53 * @transitions: an array of lists containing the state transitions
54 * @durations: an array of lists containing the residencies of each state
60 struct list_head transitions[CDEVSTATS_HASH_SIZE];
61 struct list_head durations[CDEVSTATS_HASH_SIZE];
65 * struct cdev_record - Common structure for cooling device entry
67 * The following common structure allows to store the information
68 * related to the transitions and to the state residencies. They are
69 * identified with a id which is associated to a value. It is used as
70 * nodes for the "transitions" and "durations" above.
72 * @node: node to insert the structure in a list
73 * @id: identifier of the value which can be a state or a transition
74 * @residency: a ktime_t representing a state residency duration
75 * @count: a number of occurrences
78 struct list_head node;
87 * struct trip_stats - Thermal trip statistics
89 * The trip_stats structure has the relevant information to show the
90 * statistics related to temperature going above a trip point.
92 * @timestamp: the trip crossing timestamp
93 * @duration: total time when the zone temperature was above the trip point
94 * @trip_temp: trip temperature at mitigation start
95 * @trip_hyst: trip hysteresis at mitigation start
96 * @count: the number of times the zone temperature was above the trip point
97 * @min: minimum recorded temperature above the trip point
98 * @avg: average temperature above the trip point
111 * struct tz_episode - A mitigation episode information
113 * The tz_episode structure describes a mitigation episode. A
114 * mitigation episode begins the trip point with the lower temperature
115 * is crossed the way up and ends when it is crossed the way
116 * down. During this episode we can have multiple trip points crossed
117 * the way up and down if there are multiple trip described in the
118 * firmware after the lowest temperature trip point.
120 * @timestamp: first trip point crossed the way up
121 * @duration: total duration of the mitigation episode
122 * @node: a list element to be added to the list of tz events
123 * @max_temp: maximum zone temperature during this episode
124 * @trip_stats: per trip point statistics, flexible array
129 struct list_head node;
131 struct trip_stats trip_stats[];
135 * struct tz_debugfs - Store all mitigation episodes for a thermal zone
137 * The tz_debugfs structure contains the list of the mitigation
138 * episodes and has to track which trip point has been crossed in
139 * order to handle correctly nested trip point mitigation episodes.
141 * We keep the history of the trip point crossed in an array and as we
142 * can go back and forth inside this history, eg. trip 0,1,2,1,2,1,0,
143 * we keep track of the current position in the history array.
145 * @tz_episodes: a list of thermal mitigation episodes
146 * @tz: thermal zone this object belongs to
147 * @trips_crossed: an array of trip points crossed by id
148 * @nr_trips: the number of trip points currently being crossed
151 struct list_head tz_episodes;
152 struct thermal_zone_device *tz;
158 * struct thermal_debugfs - High level structure for a thermal object in debugfs
160 * The thermal_debugfs structure is the common structure used by the
161 * cooling device or the thermal zone to store the statistics.
163 * @d_top: top directory of the thermal object directory
164 * @lock: per object lock to protect the internals
166 * @cdev_dbg: a cooling device debug structure
167 * @tz_dbg: a thermal zone debug structure
169 struct thermal_debugfs {
170 struct dentry *d_top;
173 struct cdev_debugfs cdev_dbg;
174 struct tz_debugfs tz_dbg;
178 void thermal_debug_init(void)
180 d_root = debugfs_create_dir("thermal", NULL);
184 d_cdev = debugfs_create_dir("cooling_devices", d_root);
188 d_tz = debugfs_create_dir("thermal_zones", d_root);
191 static struct thermal_debugfs *thermal_debugfs_add_id(struct dentry *d, int id)
193 struct thermal_debugfs *thermal_dbg;
196 thermal_dbg = kzalloc(sizeof(*thermal_dbg), GFP_KERNEL);
200 mutex_init(&thermal_dbg->lock);
202 snprintf(ids, IDSLENGTH, "%d", id);
204 thermal_dbg->d_top = debugfs_create_dir(ids, d);
205 if (IS_ERR(thermal_dbg->d_top)) {
213 static void thermal_debugfs_remove_id(struct thermal_debugfs *thermal_dbg)
218 debugfs_remove(thermal_dbg->d_top);
223 static struct cdev_record *
224 thermal_debugfs_cdev_record_alloc(struct thermal_debugfs *thermal_dbg,
225 struct list_head *lists, int id)
227 struct cdev_record *cdev_record;
229 cdev_record = kzalloc(sizeof(*cdev_record), GFP_KERNEL);
233 cdev_record->id = id;
234 INIT_LIST_HEAD(&cdev_record->node);
235 list_add_tail(&cdev_record->node,
236 &lists[cdev_record->id % CDEVSTATS_HASH_SIZE]);
241 static struct cdev_record *
242 thermal_debugfs_cdev_record_find(struct thermal_debugfs *thermal_dbg,
243 struct list_head *lists, int id)
245 struct cdev_record *entry;
247 list_for_each_entry(entry, &lists[id % CDEVSTATS_HASH_SIZE], node)
254 static struct cdev_record *
255 thermal_debugfs_cdev_record_get(struct thermal_debugfs *thermal_dbg,
256 struct list_head *lists, int id)
258 struct cdev_record *cdev_record;
260 cdev_record = thermal_debugfs_cdev_record_find(thermal_dbg, lists, id);
264 return thermal_debugfs_cdev_record_alloc(thermal_dbg, lists, id);
267 static void thermal_debugfs_cdev_clear(struct cdev_debugfs *cdev_dbg)
270 struct cdev_record *entry, *tmp;
272 for (i = 0; i < CDEVSTATS_HASH_SIZE; i++) {
274 list_for_each_entry_safe(entry, tmp,
275 &cdev_dbg->transitions[i], node) {
276 list_del(&entry->node);
280 list_for_each_entry_safe(entry, tmp,
281 &cdev_dbg->durations[i], node) {
282 list_del(&entry->node);
290 static void *cdev_seq_start(struct seq_file *s, loff_t *pos)
292 struct thermal_debugfs *thermal_dbg = s->private;
294 mutex_lock(&thermal_dbg->lock);
296 return (*pos < CDEVSTATS_HASH_SIZE) ? pos : NULL;
299 static void *cdev_seq_next(struct seq_file *s, void *v, loff_t *pos)
303 return (*pos < CDEVSTATS_HASH_SIZE) ? pos : NULL;
306 static void cdev_seq_stop(struct seq_file *s, void *v)
308 struct thermal_debugfs *thermal_dbg = s->private;
310 mutex_unlock(&thermal_dbg->lock);
313 static int cdev_tt_seq_show(struct seq_file *s, void *v)
315 struct thermal_debugfs *thermal_dbg = s->private;
316 struct cdev_debugfs *cdev_dbg = &thermal_dbg->cdev_dbg;
317 struct list_head *transitions = cdev_dbg->transitions;
318 struct cdev_record *entry;
319 int i = *(loff_t *)v;
322 seq_puts(s, "Transition\tOccurences\n");
324 list_for_each_entry(entry, &transitions[i], node) {
326 * Assuming maximum cdev states is 1024, the longer
327 * string for a transition would be "1024->1024\0"
331 snprintf(buffer, ARRAY_SIZE(buffer), "%d->%d",
332 entry->id >> 16, entry->id & 0xFFFF);
334 seq_printf(s, "%-10s\t%-10llu\n", buffer, entry->count);
340 static const struct seq_operations tt_sops = {
341 .start = cdev_seq_start,
342 .next = cdev_seq_next,
343 .stop = cdev_seq_stop,
344 .show = cdev_tt_seq_show,
347 DEFINE_SEQ_ATTRIBUTE(tt);
349 static int cdev_dt_seq_show(struct seq_file *s, void *v)
351 struct thermal_debugfs *thermal_dbg = s->private;
352 struct cdev_debugfs *cdev_dbg = &thermal_dbg->cdev_dbg;
353 struct list_head *durations = cdev_dbg->durations;
354 struct cdev_record *entry;
355 int i = *(loff_t *)v;
358 seq_puts(s, "State\tResidency\n");
360 list_for_each_entry(entry, &durations[i], node) {
361 s64 duration = ktime_to_ms(entry->residency);
363 if (entry->id == cdev_dbg->current_state)
364 duration += ktime_ms_delta(ktime_get(),
365 cdev_dbg->timestamp);
367 seq_printf(s, "%-5d\t%-10llu\n", entry->id, duration);
373 static const struct seq_operations dt_sops = {
374 .start = cdev_seq_start,
375 .next = cdev_seq_next,
376 .stop = cdev_seq_stop,
377 .show = cdev_dt_seq_show,
380 DEFINE_SEQ_ATTRIBUTE(dt);
382 static int cdev_clear_set(void *data, u64 val)
384 struct thermal_debugfs *thermal_dbg = data;
389 mutex_lock(&thermal_dbg->lock);
391 thermal_debugfs_cdev_clear(&thermal_dbg->cdev_dbg);
393 mutex_unlock(&thermal_dbg->lock);
398 DEFINE_DEBUGFS_ATTRIBUTE(cdev_clear_fops, NULL, cdev_clear_set, "%llu\n");
401 * thermal_debug_cdev_state_update - Update a cooling device state change
403 * Computes a transition and the duration of the previous state residency.
405 * @cdev : a pointer to a cooling device
406 * @new_state: an integer corresponding to the new cooling device state
408 void thermal_debug_cdev_state_update(const struct thermal_cooling_device *cdev,
411 struct thermal_debugfs *thermal_dbg = cdev->debugfs;
412 struct cdev_debugfs *cdev_dbg;
413 struct cdev_record *cdev_record;
414 int transition, old_state;
416 if (!thermal_dbg || (thermal_dbg->cdev_dbg.current_state == new_state))
419 mutex_lock(&thermal_dbg->lock);
421 cdev_dbg = &thermal_dbg->cdev_dbg;
423 old_state = cdev_dbg->current_state;
426 * Get the old state information in the durations list. If
427 * this one does not exist, a new allocated one will be
428 * returned. Recompute the total duration in the old state and
429 * get a new timestamp for the new state.
431 cdev_record = thermal_debugfs_cdev_record_get(thermal_dbg,
435 ktime_t now = ktime_get();
436 ktime_t delta = ktime_sub(now, cdev_dbg->timestamp);
437 cdev_record->residency = ktime_add(cdev_record->residency, delta);
438 cdev_dbg->timestamp = now;
441 cdev_dbg->current_state = new_state;
444 * Create a record for the new state if it is not there, so its
445 * duration will be printed by cdev_dt_seq_show() as expected if it
446 * runs before the next state transition.
448 thermal_debugfs_cdev_record_get(thermal_dbg, cdev_dbg->durations, new_state);
450 transition = (old_state << 16) | new_state;
453 * Get the transition in the transitions list. If this one
454 * does not exist, a new allocated one will be returned.
455 * Increment the occurrence of this transition which is stored
456 * in the value field.
458 cdev_record = thermal_debugfs_cdev_record_get(thermal_dbg,
459 cdev_dbg->transitions,
462 cdev_record->count++;
466 mutex_unlock(&thermal_dbg->lock);
470 * thermal_debug_cdev_add - Add a cooling device debugfs entry
472 * Allocates a cooling device object for debug, initializes the
473 * statistics and create the entries in sysfs.
474 * @cdev: a pointer to a cooling device
475 * @state: current state of the cooling device
477 void thermal_debug_cdev_add(struct thermal_cooling_device *cdev, int state)
479 struct thermal_debugfs *thermal_dbg;
480 struct cdev_debugfs *cdev_dbg;
483 thermal_dbg = thermal_debugfs_add_id(d_cdev, cdev->id);
487 cdev_dbg = &thermal_dbg->cdev_dbg;
489 for (i = 0; i < CDEVSTATS_HASH_SIZE; i++) {
490 INIT_LIST_HEAD(&cdev_dbg->transitions[i]);
491 INIT_LIST_HEAD(&cdev_dbg->durations[i]);
494 cdev_dbg->current_state = state;
495 cdev_dbg->timestamp = ktime_get();
498 * Create a record for the initial cooling device state, so its
499 * duration will be printed by cdev_dt_seq_show() as expected if it
500 * runs before the first state transition.
502 thermal_debugfs_cdev_record_get(thermal_dbg, cdev_dbg->durations, state);
504 debugfs_create_file("trans_table", 0400, thermal_dbg->d_top,
505 thermal_dbg, &tt_fops);
507 debugfs_create_file("time_in_state_ms", 0400, thermal_dbg->d_top,
508 thermal_dbg, &dt_fops);
510 debugfs_create_file("clear", 0200, thermal_dbg->d_top,
511 thermal_dbg, &cdev_clear_fops);
513 debugfs_create_u32("total_trans", 0400, thermal_dbg->d_top,
516 cdev->debugfs = thermal_dbg;
520 * thermal_debug_cdev_remove - Remove a cooling device debugfs entry
522 * Frees the statistics memory data and remove the debugfs entry
524 * @cdev: a pointer to a cooling device
526 void thermal_debug_cdev_remove(struct thermal_cooling_device *cdev)
528 struct thermal_debugfs *thermal_dbg;
530 mutex_lock(&cdev->lock);
532 thermal_dbg = cdev->debugfs;
534 mutex_unlock(&cdev->lock);
538 cdev->debugfs = NULL;
540 mutex_unlock(&cdev->lock);
542 mutex_lock(&thermal_dbg->lock);
544 thermal_debugfs_cdev_clear(&thermal_dbg->cdev_dbg);
546 mutex_unlock(&thermal_dbg->lock);
548 thermal_debugfs_remove_id(thermal_dbg);
551 static struct tz_episode *thermal_debugfs_tz_event_alloc(struct thermal_zone_device *tz,
554 struct tz_episode *tze;
557 tze = kzalloc(struct_size(tze, trip_stats, tz->num_trips), GFP_KERNEL);
561 INIT_LIST_HEAD(&tze->node);
562 tze->timestamp = now;
563 tze->duration = KTIME_MIN;
564 tze->max_temp = INT_MIN;
566 for (i = 0; i < tz->num_trips; i++) {
567 tze->trip_stats[i].trip_temp = THERMAL_TEMP_INVALID;
568 tze->trip_stats[i].min = INT_MAX;
574 void thermal_debug_tz_trip_up(struct thermal_zone_device *tz,
575 const struct thermal_trip *trip)
577 struct thermal_debugfs *thermal_dbg = tz->debugfs;
578 int trip_id = thermal_zone_trip_id(tz, trip);
579 ktime_t now = ktime_get();
580 struct trip_stats *trip_stats;
581 struct tz_debugfs *tz_dbg;
582 struct tz_episode *tze;
587 tz_dbg = &thermal_dbg->tz_dbg;
589 mutex_lock(&thermal_dbg->lock);
592 * The mitigation is starting. A mitigation can contain
593 * several episodes where each of them is related to a
594 * temperature crossing a trip point. The episodes are
595 * nested. That means when the temperature is crossing the
596 * first trip point, the duration begins to be measured. If
597 * the temperature continues to increase and reaches the
598 * second trip point, the duration of the first trip must be
608 * trip 1 / | | `---- | | \
610 * trip 0 / | | | | | | \
611 * | /| | | | | | | |\
612 * | / | | | | | | | | `--
613 * | / | | | | | | | |
614 * |----- | | | | | | | |
616 * --------|-|-|--------|--------|------|-|-|------------------> time
617 * | | |<--t2-->| |<-t2'>| | |
619 * | |<------------t1------------>| |
621 * |<-------------t0--------------->|
624 if (!tz_dbg->nr_trips) {
625 tze = thermal_debugfs_tz_event_alloc(tz, now);
629 list_add(&tze->node, &tz_dbg->tz_episodes);
633 * Each time a trip point is crossed the way up, the trip_id
634 * is stored in the trip_crossed array and the nr_trips is
635 * incremented. A nr_trips equal to zero means we are entering
636 * a mitigation episode.
638 * The trip ids may not be in the ascending order but the
639 * result in the array trips_crossed will be in the ascending
640 * temperature order. The function detecting when a trip point
641 * is crossed the way down will handle the very rare case when
642 * the trip points may have been reordered during this
643 * mitigation episode.
645 tz_dbg->trips_crossed[tz_dbg->nr_trips++] = trip_id;
647 tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node);
648 trip_stats = &tze->trip_stats[trip_id];
649 trip_stats->trip_temp = trip->temperature;
650 trip_stats->trip_hyst = trip->hysteresis;
651 trip_stats->timestamp = now;
654 mutex_unlock(&thermal_dbg->lock);
657 static void tz_episode_close_trip(struct tz_episode *tze, int trip_id, ktime_t now)
659 struct trip_stats *trip_stats = &tze->trip_stats[trip_id];
660 ktime_t delta = ktime_sub(now, trip_stats->timestamp);
662 trip_stats->duration = ktime_add(delta, trip_stats->duration);
663 /* Mark the end of mitigation for this trip point. */
664 trip_stats->timestamp = KTIME_MAX;
667 void thermal_debug_tz_trip_down(struct thermal_zone_device *tz,
668 const struct thermal_trip *trip)
670 struct thermal_debugfs *thermal_dbg = tz->debugfs;
671 int trip_id = thermal_zone_trip_id(tz, trip);
672 ktime_t now = ktime_get();
673 struct tz_episode *tze;
674 struct tz_debugfs *tz_dbg;
680 tz_dbg = &thermal_dbg->tz_dbg;
682 mutex_lock(&thermal_dbg->lock);
685 * The temperature crosses the way down but there was not
686 * mitigation detected before. That may happen when the
687 * temperature is greater than a trip point when registering a
688 * thermal zone, which is a common use case as the kernel has
689 * no mitigation mechanism yet at boot time.
691 if (!tz_dbg->nr_trips)
694 for (i = tz_dbg->nr_trips - 1; i >= 0; i--) {
695 if (tz_dbg->trips_crossed[i] == trip_id)
704 if (i < tz_dbg->nr_trips)
705 tz_dbg->trips_crossed[i] = tz_dbg->trips_crossed[tz_dbg->nr_trips];
707 tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node);
709 tz_episode_close_trip(tze, trip_id, now);
712 * This event closes the mitigation as we are crossing the
713 * last trip point the way down.
715 if (!tz_dbg->nr_trips)
716 tze->duration = ktime_sub(now, tze->timestamp);
719 mutex_unlock(&thermal_dbg->lock);
722 void thermal_debug_update_trip_stats(struct thermal_zone_device *tz)
724 struct thermal_debugfs *thermal_dbg = tz->debugfs;
725 struct tz_debugfs *tz_dbg;
726 struct tz_episode *tze;
732 tz_dbg = &thermal_dbg->tz_dbg;
734 mutex_lock(&thermal_dbg->lock);
736 if (!tz_dbg->nr_trips)
739 tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node);
741 if (tz->temperature > tze->max_temp)
742 tze->max_temp = tz->temperature;
744 for (i = 0; i < tz_dbg->nr_trips; i++) {
745 int trip_id = tz_dbg->trips_crossed[i];
746 struct trip_stats *trip_stats = &tze->trip_stats[trip_id];
748 trip_stats->min = min(trip_stats->min, tz->temperature);
749 trip_stats->avg += (tz->temperature - trip_stats->avg) /
753 mutex_unlock(&thermal_dbg->lock);
756 static void *tze_seq_start(struct seq_file *s, loff_t *pos)
758 struct thermal_debugfs *thermal_dbg = s->private;
759 struct tz_debugfs *tz_dbg = &thermal_dbg->tz_dbg;
761 mutex_lock(&thermal_dbg->lock);
763 return seq_list_start(&tz_dbg->tz_episodes, *pos);
766 static void *tze_seq_next(struct seq_file *s, void *v, loff_t *pos)
768 struct thermal_debugfs *thermal_dbg = s->private;
769 struct tz_debugfs *tz_dbg = &thermal_dbg->tz_dbg;
771 return seq_list_next(v, &tz_dbg->tz_episodes, pos);
774 static void tze_seq_stop(struct seq_file *s, void *v)
776 struct thermal_debugfs *thermal_dbg = s->private;
778 mutex_unlock(&thermal_dbg->lock);
781 static int tze_seq_show(struct seq_file *s, void *v)
783 struct thermal_debugfs *thermal_dbg = s->private;
784 struct thermal_zone_device *tz = thermal_dbg->tz_dbg.tz;
785 struct thermal_trip_desc *td;
786 struct tz_episode *tze;
791 tze = list_entry((struct list_head *)v, struct tz_episode, node);
793 if (tze->duration == KTIME_MIN) {
794 /* Mitigation in progress. */
795 duration_ms = ktime_to_ms(ktime_sub(ktime_get(), tze->timestamp));
798 duration_ms = ktime_to_ms(tze->duration);
802 seq_printf(s, ",-Mitigation at %llums, duration%c%llums, max. temp=%dm°C\n",
803 ktime_to_ms(tze->timestamp), c, duration_ms, tze->max_temp);
805 seq_printf(s, "| trip | type | temp(m°C) | hyst(m°C) | duration(ms) | avg(m°C) | min(m°C) |\n");
807 for_each_trip_desc(tz, td) {
808 const struct thermal_trip *trip = &td->trip;
809 struct trip_stats *trip_stats;
812 * There is no possible mitigation happening at the
813 * critical trip point, so the stats will be always
814 * zero, skip this trip point
816 if (trip->type == THERMAL_TRIP_CRITICAL)
819 trip_id = thermal_zone_trip_id(tz, trip);
820 trip_stats = &tze->trip_stats[trip_id];
822 /* Skip trips without any stats. */
823 if (trip_stats->trip_temp == THERMAL_TEMP_INVALID)
826 if (trip_stats->timestamp != KTIME_MAX) {
827 /* Mitigation in progress. */
828 ktime_t delta = ktime_sub(ktime_get(),
829 trip_stats->timestamp);
831 delta = ktime_add(delta, trip_stats->duration);
832 duration_ms = ktime_to_ms(delta);
835 duration_ms = ktime_to_ms(trip_stats->duration);
839 seq_printf(s, "| %*d | %*s | %*d | %*d | %c%*lld | %*d | %*d |\n",
841 8, thermal_trip_type_name(trip->type),
842 9, trip_stats->trip_temp,
843 9, trip_stats->trip_hyst,
852 static const struct seq_operations tze_sops = {
853 .start = tze_seq_start,
854 .next = tze_seq_next,
855 .stop = tze_seq_stop,
856 .show = tze_seq_show,
859 DEFINE_SEQ_ATTRIBUTE(tze);
861 void thermal_debug_tz_add(struct thermal_zone_device *tz)
863 struct thermal_debugfs *thermal_dbg;
864 struct tz_debugfs *tz_dbg;
866 thermal_dbg = thermal_debugfs_add_id(d_tz, tz->id);
870 tz_dbg = &thermal_dbg->tz_dbg;
874 tz_dbg->trips_crossed = kzalloc(sizeof(int) * tz->num_trips, GFP_KERNEL);
875 if (!tz_dbg->trips_crossed) {
876 thermal_debugfs_remove_id(thermal_dbg);
880 INIT_LIST_HEAD(&tz_dbg->tz_episodes);
882 debugfs_create_file("mitigations", 0400, thermal_dbg->d_top,
883 thermal_dbg, &tze_fops);
885 tz->debugfs = thermal_dbg;
888 void thermal_debug_tz_remove(struct thermal_zone_device *tz)
890 struct thermal_debugfs *thermal_dbg;
891 struct tz_episode *tze, *tmp;
892 struct tz_debugfs *tz_dbg;
895 mutex_lock(&tz->lock);
897 thermal_dbg = tz->debugfs;
899 mutex_unlock(&tz->lock);
905 mutex_unlock(&tz->lock);
907 tz_dbg = &thermal_dbg->tz_dbg;
909 mutex_lock(&thermal_dbg->lock);
911 trips_crossed = tz_dbg->trips_crossed;
913 list_for_each_entry_safe(tze, tmp, &tz_dbg->tz_episodes, node) {
914 list_del(&tze->node);
918 mutex_unlock(&thermal_dbg->lock);
920 thermal_debugfs_remove_id(thermal_dbg);
921 kfree(trips_crossed);
924 void thermal_debug_tz_resume(struct thermal_zone_device *tz)
926 struct thermal_debugfs *thermal_dbg = tz->debugfs;
927 ktime_t now = ktime_get();
928 struct tz_debugfs *tz_dbg;
929 struct tz_episode *tze;
935 mutex_lock(&thermal_dbg->lock);
937 tz_dbg = &thermal_dbg->tz_dbg;
939 if (!tz_dbg->nr_trips)
943 * A mitigation episode was in progress before the preceding system
944 * suspend transition, so close it because the zone handling is starting
947 tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node);
949 for (i = 0; i < tz_dbg->nr_trips; i++)
950 tz_episode_close_trip(tze, tz_dbg->trips_crossed[i], now);
952 tze->duration = ktime_sub(now, tze->timestamp);
954 tz_dbg->nr_trips = 0;
957 mutex_unlock(&thermal_dbg->lock);