]> Git Repo - linux.git/blob - drivers/soc/ti/knav_qmss_queue.c
crypto: akcipher - Drop sign/verify operations
[linux.git] / drivers / soc / ti / knav_qmss_queue.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Keystone Queue Manager subsystem driver
4  *
5  * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
6  * Authors:     Sandeep Nair <[email protected]>
7  *              Cyril Chemparathy <[email protected]>
8  *              Santosh Shilimkar <[email protected]>
9  */
10
11 #include <linux/debugfs.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/firmware.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/of.h>
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/property.h>
23 #include <linux/slab.h>
24 #include <linux/soc/ti/knav_qmss.h>
25
26 #include "knav_qmss.h"
27
28 static struct knav_device *kdev;
29 static DEFINE_MUTEX(knav_dev_lock);
30 #define knav_dev_lock_held() \
31         lockdep_is_held(&knav_dev_lock)
32
33 /* Queue manager register indices in DTS */
34 #define KNAV_QUEUE_PEEK_REG_INDEX       0
35 #define KNAV_QUEUE_STATUS_REG_INDEX     1
36 #define KNAV_QUEUE_CONFIG_REG_INDEX     2
37 #define KNAV_QUEUE_REGION_REG_INDEX     3
38 #define KNAV_QUEUE_PUSH_REG_INDEX       4
39 #define KNAV_QUEUE_POP_REG_INDEX        5
40
41 /* Queue manager register indices in DTS for QMSS in K2G NAVSS.
42  * There are no status and vbusm push registers on this version
43  * of QMSS. Push registers are same as pop, So all indices above 1
44  * are to be re-defined
45  */
46 #define KNAV_L_QUEUE_CONFIG_REG_INDEX   1
47 #define KNAV_L_QUEUE_REGION_REG_INDEX   2
48 #define KNAV_L_QUEUE_PUSH_REG_INDEX     3
49
50 /* PDSP register indices in DTS */
51 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX  0
52 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX  1
53 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX  2
54 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX   3
55
56 #define knav_queue_idx_to_inst(kdev, idx)                       \
57         (kdev->instances + (idx << kdev->inst_shift))
58
59 #define for_each_handle_rcu(qh, inst)                           \
60         list_for_each_entry_rcu(qh, &inst->handles, list,       \
61                                 knav_dev_lock_held())
62
63 #define for_each_instance(idx, inst, kdev)              \
64         for (idx = 0, inst = kdev->instances;           \
65              idx < (kdev)->num_queues_in_use;                   \
66              idx++, inst = knav_queue_idx_to_inst(kdev, idx))
67
68 /* All firmware file names end up here. List the firmware file names below.
69  * Newest followed by older ones. Search is done from start of the array
70  * until a firmware file is found.
71  */
72 static const char * const knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
73
74 static bool device_ready;
75 bool knav_qmss_device_ready(void)
76 {
77         return device_ready;
78 }
79 EXPORT_SYMBOL_GPL(knav_qmss_device_ready);
80
81 /**
82  * knav_queue_notify: qmss queue notfier call
83  *
84  * @inst:               - qmss queue instance like accumulator
85  */
86 void knav_queue_notify(struct knav_queue_inst *inst)
87 {
88         struct knav_queue *qh;
89
90         if (!inst)
91                 return;
92
93         rcu_read_lock();
94         for_each_handle_rcu(qh, inst) {
95                 if (atomic_read(&qh->notifier_enabled) <= 0)
96                         continue;
97                 if (WARN_ON(!qh->notifier_fn))
98                         continue;
99                 this_cpu_inc(qh->stats->notifies);
100                 qh->notifier_fn(qh->notifier_fn_arg);
101         }
102         rcu_read_unlock();
103 }
104 EXPORT_SYMBOL_GPL(knav_queue_notify);
105
106 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
107 {
108         struct knav_queue_inst *inst = _instdata;
109
110         knav_queue_notify(inst);
111         return IRQ_HANDLED;
112 }
113
114 static int knav_queue_setup_irq(struct knav_range_info *range,
115                           struct knav_queue_inst *inst)
116 {
117         unsigned queue = inst->id - range->queue_base;
118         int ret = 0, irq;
119
120         if (range->flags & RANGE_HAS_IRQ) {
121                 irq = range->irqs[queue].irq;
122                 ret = request_irq(irq, knav_queue_int_handler, 0,
123                                         inst->irq_name, inst);
124                 if (ret)
125                         return ret;
126                 disable_irq(irq);
127                 if (range->irqs[queue].cpu_mask) {
128                         ret = irq_set_affinity_hint(irq, range->irqs[queue].cpu_mask);
129                         if (ret) {
130                                 dev_warn(range->kdev->dev,
131                                          "Failed to set IRQ affinity\n");
132                                 return ret;
133                         }
134                 }
135         }
136         return ret;
137 }
138
139 static void knav_queue_free_irq(struct knav_queue_inst *inst)
140 {
141         struct knav_range_info *range = inst->range;
142         unsigned queue = inst->id - inst->range->queue_base;
143         int irq;
144
145         if (range->flags & RANGE_HAS_IRQ) {
146                 irq = range->irqs[queue].irq;
147                 irq_set_affinity_hint(irq, NULL);
148                 free_irq(irq, inst);
149         }
150 }
151
152 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
153 {
154         return !list_empty(&inst->handles);
155 }
156
157 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
158 {
159         return inst->range->flags & RANGE_RESERVED;
160 }
161
162 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
163 {
164         struct knav_queue *tmp;
165
166         rcu_read_lock();
167         for_each_handle_rcu(tmp, inst) {
168                 if (tmp->flags & KNAV_QUEUE_SHARED) {
169                         rcu_read_unlock();
170                         return true;
171                 }
172         }
173         rcu_read_unlock();
174         return false;
175 }
176
177 static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
178                                                 unsigned type)
179 {
180         if ((type == KNAV_QUEUE_QPEND) &&
181             (inst->range->flags & RANGE_HAS_IRQ)) {
182                 return true;
183         } else if ((type == KNAV_QUEUE_ACC) &&
184                 (inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
185                 return true;
186         } else if ((type == KNAV_QUEUE_GP) &&
187                 !(inst->range->flags &
188                         (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
189                 return true;
190         }
191         return false;
192 }
193
194 static inline struct knav_queue_inst *
195 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
196 {
197         struct knav_queue_inst *inst;
198         int idx;
199
200         for_each_instance(idx, inst, kdev) {
201                 if (inst->id == id)
202                         return inst;
203         }
204         return NULL;
205 }
206
207 static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
208 {
209         if (kdev->base_id <= id &&
210             kdev->base_id + kdev->num_queues > id) {
211                 id -= kdev->base_id;
212                 return knav_queue_match_id_to_inst(kdev, id);
213         }
214         return NULL;
215 }
216
217 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
218                                       const char *name, unsigned flags)
219 {
220         struct knav_queue *qh;
221         unsigned id;
222         int ret = 0;
223
224         qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
225         if (!qh)
226                 return ERR_PTR(-ENOMEM);
227
228         qh->stats = alloc_percpu(struct knav_queue_stats);
229         if (!qh->stats) {
230                 ret = -ENOMEM;
231                 goto err;
232         }
233
234         qh->flags = flags;
235         qh->inst = inst;
236         id = inst->id - inst->qmgr->start_queue;
237         qh->reg_push = &inst->qmgr->reg_push[id];
238         qh->reg_pop = &inst->qmgr->reg_pop[id];
239         qh->reg_peek = &inst->qmgr->reg_peek[id];
240
241         /* first opener? */
242         if (!knav_queue_is_busy(inst)) {
243                 struct knav_range_info *range = inst->range;
244
245                 inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
246                 if (range->ops && range->ops->open_queue)
247                         ret = range->ops->open_queue(range, inst, flags);
248
249                 if (ret)
250                         goto err;
251         }
252         list_add_tail_rcu(&qh->list, &inst->handles);
253         return qh;
254
255 err:
256         if (qh->stats)
257                 free_percpu(qh->stats);
258         devm_kfree(inst->kdev->dev, qh);
259         return ERR_PTR(ret);
260 }
261
262 static struct knav_queue *
263 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
264 {
265         struct knav_queue_inst *inst;
266         struct knav_queue *qh;
267
268         mutex_lock(&knav_dev_lock);
269
270         qh = ERR_PTR(-ENODEV);
271         inst = knav_queue_find_by_id(id);
272         if (!inst)
273                 goto unlock_ret;
274
275         qh = ERR_PTR(-EEXIST);
276         if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
277                 goto unlock_ret;
278
279         qh = ERR_PTR(-EBUSY);
280         if ((flags & KNAV_QUEUE_SHARED) &&
281             (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
282                 goto unlock_ret;
283
284         qh = __knav_queue_open(inst, name, flags);
285
286 unlock_ret:
287         mutex_unlock(&knav_dev_lock);
288
289         return qh;
290 }
291
292 static struct knav_queue *knav_queue_open_by_type(const char *name,
293                                                 unsigned type, unsigned flags)
294 {
295         struct knav_queue_inst *inst;
296         struct knav_queue *qh = ERR_PTR(-EINVAL);
297         int idx;
298
299         mutex_lock(&knav_dev_lock);
300
301         for_each_instance(idx, inst, kdev) {
302                 if (knav_queue_is_reserved(inst))
303                         continue;
304                 if (!knav_queue_match_type(inst, type))
305                         continue;
306                 if (knav_queue_is_busy(inst))
307                         continue;
308                 qh = __knav_queue_open(inst, name, flags);
309                 goto unlock_ret;
310         }
311
312 unlock_ret:
313         mutex_unlock(&knav_dev_lock);
314         return qh;
315 }
316
317 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
318 {
319         struct knav_range_info *range = inst->range;
320
321         if (range->ops && range->ops->set_notify)
322                 range->ops->set_notify(range, inst, enabled);
323 }
324
325 static int knav_queue_enable_notifier(struct knav_queue *qh)
326 {
327         struct knav_queue_inst *inst = qh->inst;
328         bool first;
329
330         if (WARN_ON(!qh->notifier_fn))
331                 return -EINVAL;
332
333         /* Adjust the per handle notifier count */
334         first = (atomic_inc_return(&qh->notifier_enabled) == 1);
335         if (!first)
336                 return 0; /* nothing to do */
337
338         /* Now adjust the per instance notifier count */
339         first = (atomic_inc_return(&inst->num_notifiers) == 1);
340         if (first)
341                 knav_queue_set_notify(inst, true);
342
343         return 0;
344 }
345
346 static int knav_queue_disable_notifier(struct knav_queue *qh)
347 {
348         struct knav_queue_inst *inst = qh->inst;
349         bool last;
350
351         last = (atomic_dec_return(&qh->notifier_enabled) == 0);
352         if (!last)
353                 return 0; /* nothing to do */
354
355         last = (atomic_dec_return(&inst->num_notifiers) == 0);
356         if (last)
357                 knav_queue_set_notify(inst, false);
358
359         return 0;
360 }
361
362 static int knav_queue_set_notifier(struct knav_queue *qh,
363                                 struct knav_queue_notify_config *cfg)
364 {
365         knav_queue_notify_fn old_fn = qh->notifier_fn;
366
367         if (!cfg)
368                 return -EINVAL;
369
370         if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
371                 return -ENOTSUPP;
372
373         if (!cfg->fn && old_fn)
374                 knav_queue_disable_notifier(qh);
375
376         qh->notifier_fn = cfg->fn;
377         qh->notifier_fn_arg = cfg->fn_arg;
378
379         if (cfg->fn && !old_fn)
380                 knav_queue_enable_notifier(qh);
381
382         return 0;
383 }
384
385 static int knav_gp_set_notify(struct knav_range_info *range,
386                                struct knav_queue_inst *inst,
387                                bool enabled)
388 {
389         unsigned queue;
390
391         if (range->flags & RANGE_HAS_IRQ) {
392                 queue = inst->id - range->queue_base;
393                 if (enabled)
394                         enable_irq(range->irqs[queue].irq);
395                 else
396                         disable_irq_nosync(range->irqs[queue].irq);
397         }
398         return 0;
399 }
400
401 static int knav_gp_open_queue(struct knav_range_info *range,
402                                 struct knav_queue_inst *inst, unsigned flags)
403 {
404         return knav_queue_setup_irq(range, inst);
405 }
406
407 static int knav_gp_close_queue(struct knav_range_info *range,
408                                 struct knav_queue_inst *inst)
409 {
410         knav_queue_free_irq(inst);
411         return 0;
412 }
413
414 static const struct knav_range_ops knav_gp_range_ops = {
415         .set_notify     = knav_gp_set_notify,
416         .open_queue     = knav_gp_open_queue,
417         .close_queue    = knav_gp_close_queue,
418 };
419
420
421 static int knav_queue_get_count(void *qhandle)
422 {
423         struct knav_queue *qh = qhandle;
424         struct knav_queue_inst *inst = qh->inst;
425
426         return readl_relaxed(&qh->reg_peek[0].entry_count) +
427                 atomic_read(&inst->desc_count);
428 }
429
430 static void knav_queue_debug_show_instance(struct seq_file *s,
431                                         struct knav_queue_inst *inst)
432 {
433         struct knav_device *kdev = inst->kdev;
434         struct knav_queue *qh;
435         int cpu = 0;
436         int pushes = 0;
437         int pops = 0;
438         int push_errors = 0;
439         int pop_errors = 0;
440         int notifies = 0;
441
442         if (!knav_queue_is_busy(inst))
443                 return;
444
445         seq_printf(s, "\tqueue id %d (%s)\n",
446                    kdev->base_id + inst->id, inst->name);
447         for_each_handle_rcu(qh, inst) {
448                 for_each_possible_cpu(cpu) {
449                         pushes += per_cpu_ptr(qh->stats, cpu)->pushes;
450                         pops += per_cpu_ptr(qh->stats, cpu)->pops;
451                         push_errors += per_cpu_ptr(qh->stats, cpu)->push_errors;
452                         pop_errors += per_cpu_ptr(qh->stats, cpu)->pop_errors;
453                         notifies += per_cpu_ptr(qh->stats, cpu)->notifies;
454                 }
455
456                 seq_printf(s, "\t\thandle %p: pushes %8d, pops %8d, count %8d, notifies %8d, push errors %8d, pop errors %8d\n",
457                                 qh,
458                                 pushes,
459                                 pops,
460                                 knav_queue_get_count(qh),
461                                 notifies,
462                                 push_errors,
463                                 pop_errors);
464         }
465 }
466
467 static int knav_queue_debug_show(struct seq_file *s, void *v)
468 {
469         struct knav_queue_inst *inst;
470         int idx;
471
472         mutex_lock(&knav_dev_lock);
473         seq_printf(s, "%s: %u-%u\n",
474                    dev_name(kdev->dev), kdev->base_id,
475                    kdev->base_id + kdev->num_queues - 1);
476         for_each_instance(idx, inst, kdev)
477                 knav_queue_debug_show_instance(s, inst);
478         mutex_unlock(&knav_dev_lock);
479
480         return 0;
481 }
482
483 DEFINE_SHOW_ATTRIBUTE(knav_queue_debug);
484
485 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
486                                         u32 flags)
487 {
488         unsigned long end;
489         u32 val = 0;
490
491         end = jiffies + msecs_to_jiffies(timeout);
492         while (time_after(end, jiffies)) {
493                 val = readl_relaxed(addr);
494                 if (flags)
495                         val &= flags;
496                 if (!val)
497                         break;
498                 cpu_relax();
499         }
500         return val ? -ETIMEDOUT : 0;
501 }
502
503
504 static int knav_queue_flush(struct knav_queue *qh)
505 {
506         struct knav_queue_inst *inst = qh->inst;
507         unsigned id = inst->id - inst->qmgr->start_queue;
508
509         atomic_set(&inst->desc_count, 0);
510         writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
511         return 0;
512 }
513
514 /**
515  * knav_queue_open()    - open a hardware queue
516  * @name:               - name to give the queue handle
517  * @id:                 - desired queue number if any or specifes the type
518  *                        of queue
519  * @flags:              - the following flags are applicable to queues:
520  *      KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
521  *                           exclusive by default.
522  *                           Subsequent attempts to open a shared queue should
523  *                           also have this flag.
524  *
525  * Returns a handle to the open hardware queue if successful. Use IS_ERR()
526  * to check the returned value for error codes.
527  */
528 void *knav_queue_open(const char *name, unsigned id,
529                                         unsigned flags)
530 {
531         struct knav_queue *qh = ERR_PTR(-EINVAL);
532
533         switch (id) {
534         case KNAV_QUEUE_QPEND:
535         case KNAV_QUEUE_ACC:
536         case KNAV_QUEUE_GP:
537                 qh = knav_queue_open_by_type(name, id, flags);
538                 break;
539
540         default:
541                 qh = knav_queue_open_by_id(name, id, flags);
542                 break;
543         }
544         return qh;
545 }
546 EXPORT_SYMBOL_GPL(knav_queue_open);
547
548 /**
549  * knav_queue_close()   - close a hardware queue handle
550  * @qhandle:            - handle to close
551  */
552 void knav_queue_close(void *qhandle)
553 {
554         struct knav_queue *qh = qhandle;
555         struct knav_queue_inst *inst = qh->inst;
556
557         while (atomic_read(&qh->notifier_enabled) > 0)
558                 knav_queue_disable_notifier(qh);
559
560         mutex_lock(&knav_dev_lock);
561         list_del_rcu(&qh->list);
562         mutex_unlock(&knav_dev_lock);
563         synchronize_rcu();
564         if (!knav_queue_is_busy(inst)) {
565                 struct knav_range_info *range = inst->range;
566
567                 if (range->ops && range->ops->close_queue)
568                         range->ops->close_queue(range, inst);
569         }
570         free_percpu(qh->stats);
571         devm_kfree(inst->kdev->dev, qh);
572 }
573 EXPORT_SYMBOL_GPL(knav_queue_close);
574
575 /**
576  * knav_queue_device_control()  - Perform control operations on a queue
577  * @qhandle:                    - queue handle
578  * @cmd:                        - control commands
579  * @arg:                        - command argument
580  *
581  * Returns 0 on success, errno otherwise.
582  */
583 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
584                                 unsigned long arg)
585 {
586         struct knav_queue *qh = qhandle;
587         struct knav_queue_notify_config *cfg;
588         int ret;
589
590         switch ((int)cmd) {
591         case KNAV_QUEUE_GET_ID:
592                 ret = qh->inst->kdev->base_id + qh->inst->id;
593                 break;
594
595         case KNAV_QUEUE_FLUSH:
596                 ret = knav_queue_flush(qh);
597                 break;
598
599         case KNAV_QUEUE_SET_NOTIFIER:
600                 cfg = (void *)arg;
601                 ret = knav_queue_set_notifier(qh, cfg);
602                 break;
603
604         case KNAV_QUEUE_ENABLE_NOTIFY:
605                 ret = knav_queue_enable_notifier(qh);
606                 break;
607
608         case KNAV_QUEUE_DISABLE_NOTIFY:
609                 ret = knav_queue_disable_notifier(qh);
610                 break;
611
612         case KNAV_QUEUE_GET_COUNT:
613                 ret = knav_queue_get_count(qh);
614                 break;
615
616         default:
617                 ret = -ENOTSUPP;
618                 break;
619         }
620         return ret;
621 }
622 EXPORT_SYMBOL_GPL(knav_queue_device_control);
623
624
625
626 /**
627  * knav_queue_push()    - push data (or descriptor) to the tail of a queue
628  * @qhandle:            - hardware queue handle
629  * @dma:                - DMA data to push
630  * @size:               - size of data to push
631  * @flags:              - can be used to pass additional information
632  *
633  * Returns 0 on success, errno otherwise.
634  */
635 int knav_queue_push(void *qhandle, dma_addr_t dma,
636                                         unsigned size, unsigned flags)
637 {
638         struct knav_queue *qh = qhandle;
639         u32 val;
640
641         val = (u32)dma | ((size / 16) - 1);
642         writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
643
644         this_cpu_inc(qh->stats->pushes);
645         return 0;
646 }
647 EXPORT_SYMBOL_GPL(knav_queue_push);
648
649 /**
650  * knav_queue_pop()     - pop data (or descriptor) from the head of a queue
651  * @qhandle:            - hardware queue handle
652  * @size:               - (optional) size of the data pop'ed.
653  *
654  * Returns a DMA address on success, 0 on failure.
655  */
656 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
657 {
658         struct knav_queue *qh = qhandle;
659         struct knav_queue_inst *inst = qh->inst;
660         dma_addr_t dma;
661         u32 val, idx;
662
663         /* are we accumulated? */
664         if (inst->descs) {
665                 if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
666                         atomic_inc(&inst->desc_count);
667                         return 0;
668                 }
669                 idx  = atomic_inc_return(&inst->desc_head);
670                 idx &= ACC_DESCS_MASK;
671                 val = inst->descs[idx];
672         } else {
673                 val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
674                 if (unlikely(!val))
675                         return 0;
676         }
677
678         dma = val & DESC_PTR_MASK;
679         if (size)
680                 *size = ((val & DESC_SIZE_MASK) + 1) * 16;
681
682         this_cpu_inc(qh->stats->pops);
683         return dma;
684 }
685 EXPORT_SYMBOL_GPL(knav_queue_pop);
686
687 /* carve out descriptors and push into queue */
688 static void kdesc_fill_pool(struct knav_pool *pool)
689 {
690         struct knav_region *region;
691         int i;
692
693         region = pool->region;
694         pool->desc_size = region->desc_size;
695         for (i = 0; i < pool->num_desc; i++) {
696                 int index = pool->region_offset + i;
697                 dma_addr_t dma_addr;
698                 unsigned dma_size;
699                 dma_addr = region->dma_start + (region->desc_size * index);
700                 dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
701                 dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
702                                            DMA_TO_DEVICE);
703                 knav_queue_push(pool->queue, dma_addr, dma_size, 0);
704         }
705 }
706
707 /* pop out descriptors and close the queue */
708 static void kdesc_empty_pool(struct knav_pool *pool)
709 {
710         dma_addr_t dma;
711         unsigned size;
712         void *desc;
713         int i;
714
715         if (!pool->queue)
716                 return;
717
718         for (i = 0;; i++) {
719                 dma = knav_queue_pop(pool->queue, &size);
720                 if (!dma)
721                         break;
722                 desc = knav_pool_desc_dma_to_virt(pool, dma);
723                 if (!desc) {
724                         dev_dbg(pool->kdev->dev,
725                                 "couldn't unmap desc, continuing\n");
726                         continue;
727                 }
728         }
729         WARN_ON(i != pool->num_desc);
730         knav_queue_close(pool->queue);
731 }
732
733
734 /* Get the DMA address of a descriptor */
735 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
736 {
737         struct knav_pool *pool = ph;
738         return pool->region->dma_start + (virt - pool->region->virt_start);
739 }
740 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
741
742 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
743 {
744         struct knav_pool *pool = ph;
745         return pool->region->virt_start + (dma - pool->region->dma_start);
746 }
747 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
748
749 /**
750  * knav_pool_create()   - Create a pool of descriptors
751  * @name:               - name to give the pool handle
752  * @num_desc:           - numbers of descriptors in the pool
753  * @region_id:          - QMSS region id from which the descriptors are to be
754  *                        allocated.
755  *
756  * Returns a pool handle on success.
757  * Use IS_ERR_OR_NULL() to identify error values on return.
758  */
759 void *knav_pool_create(const char *name,
760                                         int num_desc, int region_id)
761 {
762         struct knav_region *reg_itr, *region = NULL;
763         struct knav_pool *pool, *pi = NULL, *iter;
764         struct list_head *node;
765         unsigned last_offset;
766         int ret;
767
768         if (!kdev)
769                 return ERR_PTR(-EPROBE_DEFER);
770
771         if (!kdev->dev)
772                 return ERR_PTR(-ENODEV);
773
774         pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
775         if (!pool) {
776                 dev_err(kdev->dev, "out of memory allocating pool\n");
777                 return ERR_PTR(-ENOMEM);
778         }
779
780         for_each_region(kdev, reg_itr) {
781                 if (reg_itr->id != region_id)
782                         continue;
783                 region = reg_itr;
784                 break;
785         }
786
787         if (!region) {
788                 dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
789                 ret = -EINVAL;
790                 goto err;
791         }
792
793         pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
794         if (IS_ERR(pool->queue)) {
795                 dev_err(kdev->dev,
796                         "failed to open queue for pool(%s), error %ld\n",
797                         name, PTR_ERR(pool->queue));
798                 ret = PTR_ERR(pool->queue);
799                 goto err;
800         }
801
802         pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
803         pool->kdev = kdev;
804         pool->dev = kdev->dev;
805
806         mutex_lock(&knav_dev_lock);
807
808         if (num_desc > (region->num_desc - region->used_desc)) {
809                 dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
810                         region_id, name);
811                 ret = -ENOMEM;
812                 goto err_unlock;
813         }
814
815         /* Region maintains a sorted (by region offset) list of pools
816          * use the first free slot which is large enough to accomodate
817          * the request
818          */
819         last_offset = 0;
820         node = &region->pools;
821         list_for_each_entry(iter, &region->pools, region_inst) {
822                 if ((iter->region_offset - last_offset) >= num_desc) {
823                         pi = iter;
824                         break;
825                 }
826                 last_offset = iter->region_offset + iter->num_desc;
827         }
828
829         if (pi) {
830                 node = &pi->region_inst;
831                 pool->region = region;
832                 pool->num_desc = num_desc;
833                 pool->region_offset = last_offset;
834                 region->used_desc += num_desc;
835                 list_add_tail(&pool->list, &kdev->pools);
836                 list_add_tail(&pool->region_inst, node);
837         } else {
838                 dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
839                         name, region_id);
840                 ret = -ENOMEM;
841                 goto err_unlock;
842         }
843
844         mutex_unlock(&knav_dev_lock);
845         kdesc_fill_pool(pool);
846         return pool;
847
848 err_unlock:
849         mutex_unlock(&knav_dev_lock);
850 err:
851         kfree(pool->name);
852         devm_kfree(kdev->dev, pool);
853         return ERR_PTR(ret);
854 }
855 EXPORT_SYMBOL_GPL(knav_pool_create);
856
857 /**
858  * knav_pool_destroy()  - Free a pool of descriptors
859  * @ph:         - pool handle
860  */
861 void knav_pool_destroy(void *ph)
862 {
863         struct knav_pool *pool = ph;
864
865         if (!pool)
866                 return;
867
868         if (!pool->region)
869                 return;
870
871         kdesc_empty_pool(pool);
872         mutex_lock(&knav_dev_lock);
873
874         pool->region->used_desc -= pool->num_desc;
875         list_del(&pool->region_inst);
876         list_del(&pool->list);
877
878         mutex_unlock(&knav_dev_lock);
879         kfree(pool->name);
880         devm_kfree(kdev->dev, pool);
881 }
882 EXPORT_SYMBOL_GPL(knav_pool_destroy);
883
884
885 /**
886  * knav_pool_desc_get() - Get a descriptor from the pool
887  * @ph:         - pool handle
888  *
889  * Returns descriptor from the pool.
890  */
891 void *knav_pool_desc_get(void *ph)
892 {
893         struct knav_pool *pool = ph;
894         dma_addr_t dma;
895         unsigned size;
896         void *data;
897
898         dma = knav_queue_pop(pool->queue, &size);
899         if (unlikely(!dma))
900                 return ERR_PTR(-ENOMEM);
901         data = knav_pool_desc_dma_to_virt(pool, dma);
902         return data;
903 }
904 EXPORT_SYMBOL_GPL(knav_pool_desc_get);
905
906 /**
907  * knav_pool_desc_put() - return a descriptor to the pool
908  * @ph:         - pool handle
909  * @desc:       - virtual address
910  */
911 void knav_pool_desc_put(void *ph, void *desc)
912 {
913         struct knav_pool *pool = ph;
914         dma_addr_t dma;
915         dma = knav_pool_desc_virt_to_dma(pool, desc);
916         knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
917 }
918 EXPORT_SYMBOL_GPL(knav_pool_desc_put);
919
920 /**
921  * knav_pool_desc_map() - Map descriptor for DMA transfer
922  * @ph:                         - pool handle
923  * @desc:                       - address of descriptor to map
924  * @size:                       - size of descriptor to map
925  * @dma:                        - DMA address return pointer
926  * @dma_sz:                     - adjusted return pointer
927  *
928  * Returns 0 on success, errno otherwise.
929  */
930 int knav_pool_desc_map(void *ph, void *desc, unsigned size,
931                                         dma_addr_t *dma, unsigned *dma_sz)
932 {
933         struct knav_pool *pool = ph;
934         *dma = knav_pool_desc_virt_to_dma(pool, desc);
935         size = min(size, pool->region->desc_size);
936         size = ALIGN(size, SMP_CACHE_BYTES);
937         *dma_sz = size;
938         dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
939
940         /* Ensure the descriptor reaches to the memory */
941         __iowmb();
942
943         return 0;
944 }
945 EXPORT_SYMBOL_GPL(knav_pool_desc_map);
946
947 /**
948  * knav_pool_desc_unmap()       - Unmap descriptor after DMA transfer
949  * @ph:                         - pool handle
950  * @dma:                        - DMA address of descriptor to unmap
951  * @dma_sz:                     - size of descriptor to unmap
952  *
953  * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
954  * error values on return.
955  */
956 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
957 {
958         struct knav_pool *pool = ph;
959         unsigned desc_sz;
960         void *desc;
961
962         desc_sz = min(dma_sz, pool->region->desc_size);
963         desc = knav_pool_desc_dma_to_virt(pool, dma);
964         dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
965         prefetch(desc);
966         return desc;
967 }
968 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
969
970 /**
971  * knav_pool_count()    - Get the number of descriptors in pool.
972  * @ph:                 - pool handle
973  * Returns number of elements in the pool.
974  */
975 int knav_pool_count(void *ph)
976 {
977         struct knav_pool *pool = ph;
978         return knav_queue_get_count(pool->queue);
979 }
980 EXPORT_SYMBOL_GPL(knav_pool_count);
981
982 static void knav_queue_setup_region(struct knav_device *kdev,
983                                         struct knav_region *region)
984 {
985         unsigned hw_num_desc, hw_desc_size, size;
986         struct knav_reg_region __iomem  *regs;
987         struct knav_qmgr_info *qmgr;
988         struct knav_pool *pool;
989         int id = region->id;
990         struct page *page;
991
992         /* unused region? */
993         if (!region->num_desc) {
994                 dev_warn(kdev->dev, "unused region %s\n", region->name);
995                 return;
996         }
997
998         /* get hardware descriptor value */
999         hw_num_desc = ilog2(region->num_desc - 1) + 1;
1000
1001         /* did we force fit ourselves into nothingness? */
1002         if (region->num_desc < 32) {
1003                 region->num_desc = 0;
1004                 dev_warn(kdev->dev, "too few descriptors in region %s\n",
1005                          region->name);
1006                 return;
1007         }
1008
1009         size = region->num_desc * region->desc_size;
1010         region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
1011                                                 GFP_DMA32);
1012         if (!region->virt_start) {
1013                 region->num_desc = 0;
1014                 dev_err(kdev->dev, "memory alloc failed for region %s\n",
1015                         region->name);
1016                 return;
1017         }
1018         region->virt_end = region->virt_start + size;
1019         page = virt_to_page(region->virt_start);
1020
1021         region->dma_start = dma_map_page(kdev->dev, page, 0, size,
1022                                          DMA_BIDIRECTIONAL);
1023         if (dma_mapping_error(kdev->dev, region->dma_start)) {
1024                 dev_err(kdev->dev, "dma map failed for region %s\n",
1025                         region->name);
1026                 goto fail;
1027         }
1028         region->dma_end = region->dma_start + size;
1029
1030         pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1031         if (!pool) {
1032                 dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1033                 goto fail;
1034         }
1035         pool->num_desc = 0;
1036         pool->region_offset = region->num_desc;
1037         list_add(&pool->region_inst, &region->pools);
1038
1039         dev_dbg(kdev->dev,
1040                 "region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
1041                 region->name, id, region->desc_size, region->num_desc,
1042                 region->link_index, &region->dma_start, &region->dma_end,
1043                 region->virt_start, region->virt_end);
1044
1045         hw_desc_size = (region->desc_size / 16) - 1;
1046         hw_num_desc -= 5;
1047
1048         for_each_qmgr(kdev, qmgr) {
1049                 regs = qmgr->reg_region + id;
1050                 writel_relaxed((u32)region->dma_start, &regs->base);
1051                 writel_relaxed(region->link_index, &regs->start_index);
1052                 writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1053                                &regs->size_count);
1054         }
1055         return;
1056
1057 fail:
1058         if (region->dma_start)
1059                 dma_unmap_page(kdev->dev, region->dma_start, size,
1060                                 DMA_BIDIRECTIONAL);
1061         if (region->virt_start)
1062                 free_pages_exact(region->virt_start, size);
1063         region->num_desc = 0;
1064         return;
1065 }
1066
1067 static const char *knav_queue_find_name(struct device_node *node)
1068 {
1069         const char *name;
1070
1071         if (of_property_read_string(node, "label", &name) < 0)
1072                 name = node->name;
1073         if (!name)
1074                 name = "unknown";
1075         return name;
1076 }
1077
1078 static int knav_queue_setup_regions(struct knav_device *kdev,
1079                                     struct device_node *node)
1080 {
1081         struct device *dev = kdev->dev;
1082         struct device_node *regions __free(device_node) =
1083                         of_get_child_by_name(node, "descriptor-regions");
1084         struct knav_region *region;
1085         struct device_node *child;
1086         u32 temp[2];
1087         int ret;
1088
1089         if (!regions)
1090                 return dev_err_probe(dev, -ENODEV,
1091                                      "descriptor-regions not specified\n");
1092
1093         for_each_child_of_node(regions, child) {
1094                 region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1095                 if (!region) {
1096                         of_node_put(child);
1097                         dev_err(dev, "out of memory allocating region\n");
1098                         return -ENOMEM;
1099                 }
1100
1101                 region->name = knav_queue_find_name(child);
1102                 of_property_read_u32(child, "id", &region->id);
1103                 ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1104                 if (!ret) {
1105                         region->num_desc  = temp[0];
1106                         region->desc_size = temp[1];
1107                 } else {
1108                         dev_err(dev, "invalid region info %s\n", region->name);
1109                         devm_kfree(dev, region);
1110                         continue;
1111                 }
1112
1113                 ret = of_property_read_u32(child, "link-index",
1114                                            &region->link_index);
1115                 if (ret) {
1116                         dev_err(dev, "link index not found for %s\n",
1117                                 region->name);
1118                         devm_kfree(dev, region);
1119                         continue;
1120                 }
1121
1122                 INIT_LIST_HEAD(&region->pools);
1123                 list_add_tail(&region->list, &kdev->regions);
1124         }
1125         if (list_empty(&kdev->regions))
1126                 return dev_err_probe(dev, -ENODEV,
1127                                      "no valid region information found\n");
1128
1129         /* Next, we run through the regions and set things up */
1130         for_each_region(kdev, region)
1131                 knav_queue_setup_region(kdev, region);
1132
1133         return 0;
1134 }
1135
1136 static int knav_get_link_ram(struct knav_device *kdev,
1137                                        const char *name,
1138                                        struct knav_link_ram_block *block)
1139 {
1140         struct platform_device *pdev = to_platform_device(kdev->dev);
1141         struct device_node *node = pdev->dev.of_node;
1142         u32 temp[2];
1143
1144         /*
1145          * Note: link ram resources are specified in "entry" sized units. In
1146          * reality, although entries are ~40bits in hardware, we treat them as
1147          * 64-bit entities here.
1148          *
1149          * For example, to specify the internal link ram for Keystone-I class
1150          * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1151          *
1152          * This gets a bit weird when other link rams are used.  For example,
1153          * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1154          * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1155          * which accounts for 64-bits per entry, for 16K entries.
1156          */
1157         if (!of_property_read_u32_array(node, name , temp, 2)) {
1158                 if (temp[0]) {
1159                         /*
1160                          * queue_base specified => using internal or onchip
1161                          * link ram WARNING - we do not "reserve" this block
1162                          */
1163                         block->dma = (dma_addr_t)temp[0];
1164                         block->virt = NULL;
1165                         block->size = temp[1];
1166                 } else {
1167                         block->size = temp[1];
1168                         /* queue_base not specific => allocate requested size */
1169                         block->virt = dmam_alloc_coherent(kdev->dev,
1170                                                   8 * block->size, &block->dma,
1171                                                   GFP_KERNEL);
1172                         if (!block->virt) {
1173                                 dev_err(kdev->dev, "failed to alloc linkram\n");
1174                                 return -ENOMEM;
1175                         }
1176                 }
1177         } else {
1178                 return -ENODEV;
1179         }
1180         return 0;
1181 }
1182
1183 static int knav_queue_setup_link_ram(struct knav_device *kdev)
1184 {
1185         struct knav_link_ram_block *block;
1186         struct knav_qmgr_info *qmgr;
1187
1188         for_each_qmgr(kdev, qmgr) {
1189                 block = &kdev->link_rams[0];
1190                 dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n",
1191                         &block->dma, block->virt, block->size);
1192                 writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0);
1193                 if (kdev->version == QMSS_66AK2G)
1194                         writel_relaxed(block->size,
1195                                        &qmgr->reg_config->link_ram_size0);
1196                 else
1197                         writel_relaxed(block->size - 1,
1198                                        &qmgr->reg_config->link_ram_size0);
1199                 block++;
1200                 if (!block->size)
1201                         continue;
1202
1203                 dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n",
1204                         &block->dma, block->virt, block->size);
1205                 writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1);
1206         }
1207
1208         return 0;
1209 }
1210
1211 static int knav_setup_queue_range(struct knav_device *kdev,
1212                                         struct device_node *node)
1213 {
1214         struct device *dev = kdev->dev;
1215         struct knav_range_info *range;
1216         struct knav_qmgr_info *qmgr;
1217         u32 temp[2], start, end, id, index;
1218         int ret, i;
1219
1220         range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1221         if (!range) {
1222                 dev_err(dev, "out of memory allocating range\n");
1223                 return -ENOMEM;
1224         }
1225
1226         range->kdev = kdev;
1227         range->name = knav_queue_find_name(node);
1228         ret = of_property_read_u32_array(node, "qrange", temp, 2);
1229         if (!ret) {
1230                 range->queue_base = temp[0] - kdev->base_id;
1231                 range->num_queues = temp[1];
1232         } else {
1233                 dev_err(dev, "invalid queue range %s\n", range->name);
1234                 devm_kfree(dev, range);
1235                 return -EINVAL;
1236         }
1237
1238         for (i = 0; i < RANGE_MAX_IRQS; i++) {
1239                 struct of_phandle_args oirq;
1240
1241                 if (of_irq_parse_one(node, i, &oirq))
1242                         break;
1243
1244                 range->irqs[i].irq = irq_create_of_mapping(&oirq);
1245                 if (range->irqs[i].irq == IRQ_NONE)
1246                         break;
1247
1248                 range->num_irqs++;
1249
1250                 if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3) {
1251                         unsigned long mask;
1252                         int bit;
1253
1254                         range->irqs[i].cpu_mask = devm_kzalloc(dev,
1255                                                                cpumask_size(), GFP_KERNEL);
1256                         if (!range->irqs[i].cpu_mask)
1257                                 return -ENOMEM;
1258
1259                         mask = (oirq.args[2] & 0x0000ff00) >> 8;
1260                         for_each_set_bit(bit, &mask, BITS_PER_LONG)
1261                                 cpumask_set_cpu(bit, range->irqs[i].cpu_mask);
1262                 }
1263         }
1264
1265         range->num_irqs = min(range->num_irqs, range->num_queues);
1266         if (range->num_irqs)
1267                 range->flags |= RANGE_HAS_IRQ;
1268
1269         if (of_property_read_bool(node, "qalloc-by-id"))
1270                 range->flags |= RANGE_RESERVED;
1271
1272         if (of_property_present(node, "accumulator")) {
1273                 ret = knav_init_acc_range(kdev, node, range);
1274                 if (ret < 0) {
1275                         devm_kfree(dev, range);
1276                         return ret;
1277                 }
1278         } else {
1279                 range->ops = &knav_gp_range_ops;
1280         }
1281
1282         /* set threshold to 1, and flush out the queues */
1283         for_each_qmgr(kdev, qmgr) {
1284                 start = max(qmgr->start_queue, range->queue_base);
1285                 end   = min(qmgr->start_queue + qmgr->num_queues,
1286                             range->queue_base + range->num_queues);
1287                 for (id = start; id < end; id++) {
1288                         index = id - qmgr->start_queue;
1289                         writel_relaxed(THRESH_GTE | 1,
1290                                        &qmgr->reg_peek[index].ptr_size_thresh);
1291                         writel_relaxed(0,
1292                                        &qmgr->reg_push[index].ptr_size_thresh);
1293                 }
1294         }
1295
1296         list_add_tail(&range->list, &kdev->queue_ranges);
1297         dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1298                 range->name, range->queue_base,
1299                 range->queue_base + range->num_queues - 1,
1300                 range->num_irqs,
1301                 (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1302                 (range->flags & RANGE_RESERVED) ? ", reserved" : "",
1303                 (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1304         kdev->num_queues_in_use += range->num_queues;
1305         return 0;
1306 }
1307
1308 static int knav_setup_queue_pools(struct knav_device *kdev,
1309                                   struct device_node *node)
1310 {
1311         struct device_node *queue_pools __free(device_node) =
1312                         of_get_child_by_name(node, "queue-pools");
1313         struct device_node *type, *range;
1314
1315         if (!queue_pools)
1316                 return dev_err_probe(kdev->dev, -ENODEV,
1317                                      "queue-pools not specified\n");
1318
1319         for_each_child_of_node(queue_pools, type) {
1320                 for_each_child_of_node(type, range) {
1321                         /* return value ignored, we init the rest... */
1322                         knav_setup_queue_range(kdev, range);
1323                 }
1324         }
1325
1326         /* ... and barf if they all failed! */
1327         if (list_empty(&kdev->queue_ranges))
1328                 return dev_err_probe(kdev->dev, -ENODEV,
1329                                      "no valid queue range found\n");
1330         return 0;
1331 }
1332
1333 static void knav_free_queue_range(struct knav_device *kdev,
1334                                   struct knav_range_info *range)
1335 {
1336         if (range->ops && range->ops->free_range)
1337                 range->ops->free_range(range);
1338         list_del(&range->list);
1339         devm_kfree(kdev->dev, range);
1340 }
1341
1342 static void knav_free_queue_ranges(struct knav_device *kdev)
1343 {
1344         struct knav_range_info *range;
1345
1346         for (;;) {
1347                 range = first_queue_range(kdev);
1348                 if (!range)
1349                         break;
1350                 knav_free_queue_range(kdev, range);
1351         }
1352 }
1353
1354 static void knav_queue_free_regions(struct knav_device *kdev)
1355 {
1356         struct knav_region *region;
1357         struct knav_pool *pool, *tmp;
1358         unsigned size;
1359
1360         for (;;) {
1361                 region = first_region(kdev);
1362                 if (!region)
1363                         break;
1364                 list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
1365                         knav_pool_destroy(pool);
1366
1367                 size = region->virt_end - region->virt_start;
1368                 if (size)
1369                         free_pages_exact(region->virt_start, size);
1370                 list_del(&region->list);
1371                 devm_kfree(kdev->dev, region);
1372         }
1373 }
1374
1375 static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1376                                         struct device_node *node, int index)
1377 {
1378         struct resource res;
1379         void __iomem *regs;
1380         int ret;
1381
1382         ret = of_address_to_resource(node, index, &res);
1383         if (ret) {
1384                 dev_err(kdev->dev, "Can't translate of node(%pOFn) address for index(%d)\n",
1385                         node, index);
1386                 return ERR_PTR(ret);
1387         }
1388
1389         regs = devm_ioremap_resource(kdev->dev, &res);
1390         if (IS_ERR(regs))
1391                 dev_err(kdev->dev, "Failed to map register base for index(%d) node(%pOFn)\n",
1392                         index, node);
1393         return regs;
1394 }
1395
1396 static int knav_queue_init_qmgrs(struct knav_device *kdev,
1397                                  struct device_node *node)
1398 {
1399         struct device *dev = kdev->dev;
1400         struct device_node *qmgrs __free(device_node) =
1401                         of_get_child_by_name(node, "qmgrs");
1402         struct knav_qmgr_info *qmgr;
1403         struct device_node *child;
1404         u32 temp[2];
1405         int ret;
1406
1407         if (!qmgrs)
1408                 return dev_err_probe(dev, -ENODEV,
1409                                      "queue manager info not specified\n");
1410
1411         for_each_child_of_node(qmgrs, child) {
1412                 qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1413                 if (!qmgr) {
1414                         of_node_put(child);
1415                         dev_err(dev, "out of memory allocating qmgr\n");
1416                         return -ENOMEM;
1417                 }
1418
1419                 ret = of_property_read_u32_array(child, "managed-queues",
1420                                                  temp, 2);
1421                 if (!ret) {
1422                         qmgr->start_queue = temp[0];
1423                         qmgr->num_queues = temp[1];
1424                 } else {
1425                         dev_err(dev, "invalid qmgr queue range\n");
1426                         devm_kfree(dev, qmgr);
1427                         continue;
1428                 }
1429
1430                 dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1431                          qmgr->start_queue, qmgr->num_queues);
1432
1433                 qmgr->reg_peek =
1434                         knav_queue_map_reg(kdev, child,
1435                                            KNAV_QUEUE_PEEK_REG_INDEX);
1436
1437                 if (kdev->version == QMSS) {
1438                         qmgr->reg_status =
1439                                 knav_queue_map_reg(kdev, child,
1440                                                    KNAV_QUEUE_STATUS_REG_INDEX);
1441                 }
1442
1443                 qmgr->reg_config =
1444                         knav_queue_map_reg(kdev, child,
1445                                            (kdev->version == QMSS_66AK2G) ?
1446                                            KNAV_L_QUEUE_CONFIG_REG_INDEX :
1447                                            KNAV_QUEUE_CONFIG_REG_INDEX);
1448                 qmgr->reg_region =
1449                         knav_queue_map_reg(kdev, child,
1450                                            (kdev->version == QMSS_66AK2G) ?
1451                                            KNAV_L_QUEUE_REGION_REG_INDEX :
1452                                            KNAV_QUEUE_REGION_REG_INDEX);
1453
1454                 qmgr->reg_push =
1455                         knav_queue_map_reg(kdev, child,
1456                                            (kdev->version == QMSS_66AK2G) ?
1457                                             KNAV_L_QUEUE_PUSH_REG_INDEX :
1458                                             KNAV_QUEUE_PUSH_REG_INDEX);
1459
1460                 if (kdev->version == QMSS) {
1461                         qmgr->reg_pop =
1462                                 knav_queue_map_reg(kdev, child,
1463                                                    KNAV_QUEUE_POP_REG_INDEX);
1464                 }
1465
1466                 if (IS_ERR(qmgr->reg_peek) ||
1467                     ((kdev->version == QMSS) &&
1468                     (IS_ERR(qmgr->reg_status) || IS_ERR(qmgr->reg_pop))) ||
1469                     IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1470                     IS_ERR(qmgr->reg_push)) {
1471                         dev_err(dev, "failed to map qmgr regs\n");
1472                         if (kdev->version == QMSS) {
1473                                 if (!IS_ERR(qmgr->reg_status))
1474                                         devm_iounmap(dev, qmgr->reg_status);
1475                                 if (!IS_ERR(qmgr->reg_pop))
1476                                         devm_iounmap(dev, qmgr->reg_pop);
1477                         }
1478                         if (!IS_ERR(qmgr->reg_peek))
1479                                 devm_iounmap(dev, qmgr->reg_peek);
1480                         if (!IS_ERR(qmgr->reg_config))
1481                                 devm_iounmap(dev, qmgr->reg_config);
1482                         if (!IS_ERR(qmgr->reg_region))
1483                                 devm_iounmap(dev, qmgr->reg_region);
1484                         if (!IS_ERR(qmgr->reg_push))
1485                                 devm_iounmap(dev, qmgr->reg_push);
1486                         devm_kfree(dev, qmgr);
1487                         continue;
1488                 }
1489
1490                 /* Use same push register for pop as well */
1491                 if (kdev->version == QMSS_66AK2G)
1492                         qmgr->reg_pop = qmgr->reg_push;
1493
1494                 list_add_tail(&qmgr->list, &kdev->qmgrs);
1495                 dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1496                          qmgr->start_queue, qmgr->num_queues,
1497                          qmgr->reg_peek, qmgr->reg_status,
1498                          qmgr->reg_config, qmgr->reg_region,
1499                          qmgr->reg_push, qmgr->reg_pop);
1500         }
1501         return 0;
1502 }
1503
1504 static int knav_queue_init_pdsps(struct knav_device *kdev,
1505                                         struct device_node *pdsps)
1506 {
1507         struct device *dev = kdev->dev;
1508         struct knav_pdsp_info *pdsp;
1509         struct device_node *child;
1510
1511         for_each_child_of_node(pdsps, child) {
1512                 pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1513                 if (!pdsp) {
1514                         of_node_put(child);
1515                         dev_err(dev, "out of memory allocating pdsp\n");
1516                         return -ENOMEM;
1517                 }
1518                 pdsp->name = knav_queue_find_name(child);
1519                 pdsp->iram =
1520                         knav_queue_map_reg(kdev, child,
1521                                            KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1522                 pdsp->regs =
1523                         knav_queue_map_reg(kdev, child,
1524                                            KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1525                 pdsp->intd =
1526                         knav_queue_map_reg(kdev, child,
1527                                            KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1528                 pdsp->command =
1529                         knav_queue_map_reg(kdev, child,
1530                                            KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1531
1532                 if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1533                     IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1534                         dev_err(dev, "failed to map pdsp %s regs\n",
1535                                 pdsp->name);
1536                         if (!IS_ERR(pdsp->command))
1537                                 devm_iounmap(dev, pdsp->command);
1538                         if (!IS_ERR(pdsp->iram))
1539                                 devm_iounmap(dev, pdsp->iram);
1540                         if (!IS_ERR(pdsp->regs))
1541                                 devm_iounmap(dev, pdsp->regs);
1542                         if (!IS_ERR(pdsp->intd))
1543                                 devm_iounmap(dev, pdsp->intd);
1544                         devm_kfree(dev, pdsp);
1545                         continue;
1546                 }
1547                 of_property_read_u32(child, "id", &pdsp->id);
1548                 list_add_tail(&pdsp->list, &kdev->pdsps);
1549                 dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
1550                         pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1551                         pdsp->intd);
1552         }
1553         return 0;
1554 }
1555
1556 static int knav_queue_stop_pdsp(struct knav_device *kdev,
1557                           struct knav_pdsp_info *pdsp)
1558 {
1559         u32 val, timeout = 1000;
1560         int ret;
1561
1562         val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1563         writel_relaxed(val, &pdsp->regs->control);
1564         ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1565                                         PDSP_CTRL_RUNNING);
1566         if (ret < 0) {
1567                 dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1568                 return ret;
1569         }
1570         pdsp->loaded = false;
1571         pdsp->started = false;
1572         return 0;
1573 }
1574
1575 static int knav_queue_load_pdsp(struct knav_device *kdev,
1576                           struct knav_pdsp_info *pdsp)
1577 {
1578         int i, ret, fwlen;
1579         const struct firmware *fw;
1580         bool found = false;
1581         u32 *fwdata;
1582
1583         for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
1584                 if (knav_acc_firmwares[i]) {
1585                         ret = request_firmware_direct(&fw,
1586                                                       knav_acc_firmwares[i],
1587                                                       kdev->dev);
1588                         if (!ret) {
1589                                 found = true;
1590                                 break;
1591                         }
1592                 }
1593         }
1594
1595         if (!found) {
1596                 dev_err(kdev->dev, "failed to get firmware for pdsp\n");
1597                 return -ENODEV;
1598         }
1599
1600         dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
1601                  knav_acc_firmwares[i]);
1602
1603         writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1604         /* download the firmware */
1605         fwdata = (u32 *)fw->data;
1606         fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1607         for (i = 0; i < fwlen; i++)
1608                 writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1609
1610         release_firmware(fw);
1611         return 0;
1612 }
1613
1614 static int knav_queue_start_pdsp(struct knav_device *kdev,
1615                            struct knav_pdsp_info *pdsp)
1616 {
1617         u32 val, timeout = 1000;
1618         int ret;
1619
1620         /* write a command for sync */
1621         writel_relaxed(0xffffffff, pdsp->command);
1622         while (readl_relaxed(pdsp->command) != 0xffffffff)
1623                 cpu_relax();
1624
1625         /* soft reset the PDSP */
1626         val  = readl_relaxed(&pdsp->regs->control);
1627         val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1628         writel_relaxed(val, &pdsp->regs->control);
1629
1630         /* enable pdsp */
1631         val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1632         writel_relaxed(val, &pdsp->regs->control);
1633
1634         /* wait for command register to clear */
1635         ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1636         if (ret < 0) {
1637                 dev_err(kdev->dev,
1638                         "timed out on pdsp %s command register wait\n",
1639                         pdsp->name);
1640                 return ret;
1641         }
1642         return 0;
1643 }
1644
1645 static void knav_queue_stop_pdsps(struct knav_device *kdev)
1646 {
1647         struct knav_pdsp_info *pdsp;
1648
1649         /* disable all pdsps */
1650         for_each_pdsp(kdev, pdsp)
1651                 knav_queue_stop_pdsp(kdev, pdsp);
1652 }
1653
1654 static int knav_queue_start_pdsps(struct knav_device *kdev)
1655 {
1656         struct knav_pdsp_info *pdsp;
1657         int ret;
1658
1659         knav_queue_stop_pdsps(kdev);
1660         /* now load them all. We return success even if pdsp
1661          * is not loaded as acc channels are optional on having
1662          * firmware availability in the system. We set the loaded
1663          * and stated flag and when initialize the acc range, check
1664          * it and init the range only if pdsp is started.
1665          */
1666         for_each_pdsp(kdev, pdsp) {
1667                 ret = knav_queue_load_pdsp(kdev, pdsp);
1668                 if (!ret)
1669                         pdsp->loaded = true;
1670         }
1671
1672         for_each_pdsp(kdev, pdsp) {
1673                 if (pdsp->loaded) {
1674                         ret = knav_queue_start_pdsp(kdev, pdsp);
1675                         if (!ret)
1676                                 pdsp->started = true;
1677                 }
1678         }
1679         return 0;
1680 }
1681
1682 static int knav_queue_setup_pdsps(struct knav_device *kdev,
1683                                   struct device_node *node)
1684 {
1685         struct device_node *pdsps __free(device_node) =
1686                         of_get_child_by_name(node, "pdsps");
1687
1688         if (pdsps) {
1689                 int ret;
1690
1691                 ret = knav_queue_init_pdsps(kdev, pdsps);
1692                 if (ret)
1693                         return ret;
1694
1695                 ret = knav_queue_start_pdsps(kdev);
1696                 if (ret)
1697                         return ret;
1698         }
1699         return 0;
1700 }
1701
1702 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1703 {
1704         struct knav_qmgr_info *qmgr;
1705
1706         for_each_qmgr(kdev, qmgr) {
1707                 if ((id >= qmgr->start_queue) &&
1708                     (id < qmgr->start_queue + qmgr->num_queues))
1709                         return qmgr;
1710         }
1711         return NULL;
1712 }
1713
1714 static int knav_queue_init_queue(struct knav_device *kdev,
1715                                         struct knav_range_info *range,
1716                                         struct knav_queue_inst *inst,
1717                                         unsigned id)
1718 {
1719         char irq_name[KNAV_NAME_SIZE];
1720         inst->qmgr = knav_find_qmgr(id);
1721         if (!inst->qmgr)
1722                 return -1;
1723
1724         INIT_LIST_HEAD(&inst->handles);
1725         inst->kdev = kdev;
1726         inst->range = range;
1727         inst->irq_num = -1;
1728         inst->id = id;
1729         scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1730         inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1731
1732         if (range->ops && range->ops->init_queue)
1733                 return range->ops->init_queue(range, inst);
1734         else
1735                 return 0;
1736 }
1737
1738 static int knav_queue_init_queues(struct knav_device *kdev)
1739 {
1740         struct knav_range_info *range;
1741         int size, id, base_idx;
1742         int idx = 0, ret = 0;
1743
1744         /* how much do we need for instance data? */
1745         size = sizeof(struct knav_queue_inst);
1746
1747         /* round this up to a power of 2, keep the index to instance
1748          * arithmetic fast.
1749          * */
1750         kdev->inst_shift = order_base_2(size);
1751         size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1752         kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1753         if (!kdev->instances)
1754                 return -ENOMEM;
1755
1756         for_each_queue_range(kdev, range) {
1757                 if (range->ops && range->ops->init_range)
1758                         range->ops->init_range(range);
1759                 base_idx = idx;
1760                 for (id = range->queue_base;
1761                      id < range->queue_base + range->num_queues; id++, idx++) {
1762                         ret = knav_queue_init_queue(kdev, range,
1763                                         knav_queue_idx_to_inst(kdev, idx), id);
1764                         if (ret < 0)
1765                                 return ret;
1766                 }
1767                 range->queue_base_inst =
1768                         knav_queue_idx_to_inst(kdev, base_idx);
1769         }
1770         return 0;
1771 }
1772
1773 /* Match table for of_platform binding */
1774 static const struct of_device_id keystone_qmss_of_match[] = {
1775         {
1776                 .compatible = "ti,keystone-navigator-qmss",
1777         },
1778         {
1779                 .compatible = "ti,66ak2g-navss-qm",
1780                 .data   = (void *)QMSS_66AK2G,
1781         },
1782         {},
1783 };
1784 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1785
1786 static int knav_queue_probe(struct platform_device *pdev)
1787 {
1788         struct device_node *node = pdev->dev.of_node;
1789         struct device *dev = &pdev->dev;
1790         u32 temp[2];
1791         int ret;
1792
1793         if (!node) {
1794                 dev_err(dev, "device tree info unavailable\n");
1795                 return -ENODEV;
1796         }
1797
1798         kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1799         if (!kdev) {
1800                 dev_err(dev, "memory allocation failed\n");
1801                 return -ENOMEM;
1802         }
1803
1804         if (device_get_match_data(dev))
1805                 kdev->version = QMSS_66AK2G;
1806
1807         platform_set_drvdata(pdev, kdev);
1808         kdev->dev = dev;
1809         INIT_LIST_HEAD(&kdev->queue_ranges);
1810         INIT_LIST_HEAD(&kdev->qmgrs);
1811         INIT_LIST_HEAD(&kdev->pools);
1812         INIT_LIST_HEAD(&kdev->regions);
1813         INIT_LIST_HEAD(&kdev->pdsps);
1814
1815         pm_runtime_enable(&pdev->dev);
1816         ret = pm_runtime_resume_and_get(&pdev->dev);
1817         if (ret < 0) {
1818                 pm_runtime_disable(&pdev->dev);
1819                 dev_err(dev, "Failed to enable QMSS\n");
1820                 return ret;
1821         }
1822
1823         if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1824                 dev_err(dev, "queue-range not specified\n");
1825                 ret = -ENODEV;
1826                 goto err;
1827         }
1828         kdev->base_id    = temp[0];
1829         kdev->num_queues = temp[1];
1830
1831         /* Initialize queue managers using device tree configuration */
1832         ret = knav_queue_init_qmgrs(kdev, node);
1833         if (ret)
1834                 goto err;
1835
1836         /* get pdsp configuration values from device tree */
1837         ret = knav_queue_setup_pdsps(kdev, node);
1838         if (ret)
1839                 goto err;
1840
1841         /* get usable queue range values from device tree */
1842         ret = knav_setup_queue_pools(kdev, node);
1843         if (ret)
1844                 goto err;
1845
1846         ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1847         if (ret) {
1848                 dev_err(kdev->dev, "could not setup linking ram\n");
1849                 goto err;
1850         }
1851
1852         ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1853         if (ret) {
1854                 /*
1855                  * nothing really, we have one linking ram already, so we just
1856                  * live within our means
1857                  */
1858         }
1859
1860         ret = knav_queue_setup_link_ram(kdev);
1861         if (ret)
1862                 goto err;
1863
1864         ret = knav_queue_setup_regions(kdev, node);
1865         if (ret)
1866                 goto err;
1867
1868         ret = knav_queue_init_queues(kdev);
1869         if (ret < 0) {
1870                 dev_err(dev, "hwqueue initialization failed\n");
1871                 goto err;
1872         }
1873
1874         debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1875                             &knav_queue_debug_fops);
1876         device_ready = true;
1877         return 0;
1878
1879 err:
1880         knav_queue_stop_pdsps(kdev);
1881         knav_queue_free_regions(kdev);
1882         knav_free_queue_ranges(kdev);
1883         pm_runtime_put_sync(&pdev->dev);
1884         pm_runtime_disable(&pdev->dev);
1885         return ret;
1886 }
1887
1888 static void knav_queue_remove(struct platform_device *pdev)
1889 {
1890         /* TODO: Free resources */
1891         pm_runtime_put_sync(&pdev->dev);
1892         pm_runtime_disable(&pdev->dev);
1893 }
1894
1895 static struct platform_driver keystone_qmss_driver = {
1896         .probe          = knav_queue_probe,
1897         .remove_new     = knav_queue_remove,
1898         .driver         = {
1899                 .name   = "keystone-navigator-qmss",
1900                 .of_match_table = keystone_qmss_of_match,
1901         },
1902 };
1903 module_platform_driver(keystone_qmss_driver);
1904
1905 MODULE_LICENSE("GPL v2");
1906 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1907 MODULE_AUTHOR("Sandeep Nair <[email protected]>");
1908 MODULE_AUTHOR("Santosh Shilimkar <[email protected]>");
This page took 0.169306 seconds and 4 git commands to generate.