]> Git Repo - linux.git/blob - drivers/platform/x86/intel/int3472/clk_and_regulator.c
crypto: akcipher - Drop sign/verify operations
[linux.git] / drivers / platform / x86 / intel / int3472 / clk_and_regulator.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Author: Dan Scally <[email protected]> */
3
4 #include <linux/acpi.h>
5 #include <linux/clkdev.h>
6 #include <linux/clk-provider.h>
7 #include <linux/device.h>
8 #include <linux/dmi.h>
9 #include <linux/gpio/consumer.h>
10 #include <linux/regulator/driver.h>
11 #include <linux/slab.h>
12
13 #include "common.h"
14
15 /*
16  * 82c0d13a-78c5-4244-9bb1-eb8b539a8d11
17  * This _DSM GUID allows controlling the sensor clk when it is not controlled
18  * through a GPIO.
19  */
20 static const guid_t img_clk_guid =
21         GUID_INIT(0x82c0d13a, 0x78c5, 0x4244,
22                   0x9b, 0xb1, 0xeb, 0x8b, 0x53, 0x9a, 0x8d, 0x11);
23
24 static void skl_int3472_enable_clk(struct int3472_clock *clk, int enable)
25 {
26         struct int3472_discrete_device *int3472 = to_int3472_device(clk);
27         union acpi_object args[3];
28         union acpi_object argv4;
29
30         if (clk->ena_gpio) {
31                 gpiod_set_value_cansleep(clk->ena_gpio, enable);
32                 return;
33         }
34
35         args[0].integer.type = ACPI_TYPE_INTEGER;
36         args[0].integer.value = clk->imgclk_index;
37         args[1].integer.type = ACPI_TYPE_INTEGER;
38         args[1].integer.value = enable;
39         args[2].integer.type = ACPI_TYPE_INTEGER;
40         args[2].integer.value = 1;
41
42         argv4.type = ACPI_TYPE_PACKAGE;
43         argv4.package.count = 3;
44         argv4.package.elements = args;
45
46         acpi_evaluate_dsm(acpi_device_handle(int3472->adev), &img_clk_guid,
47                           0, 1, &argv4);
48 }
49
50 /*
51  * The regulators have to have .ops to be valid, but the only ops we actually
52  * support are .enable and .disable which are handled via .ena_gpiod. Pass an
53  * empty struct to clear the check without lying about capabilities.
54  */
55 static const struct regulator_ops int3472_gpio_regulator_ops;
56
57 static int skl_int3472_clk_prepare(struct clk_hw *hw)
58 {
59         skl_int3472_enable_clk(to_int3472_clk(hw), 1);
60         return 0;
61 }
62
63 static void skl_int3472_clk_unprepare(struct clk_hw *hw)
64 {
65         skl_int3472_enable_clk(to_int3472_clk(hw), 0);
66 }
67
68 static int skl_int3472_clk_enable(struct clk_hw *hw)
69 {
70         /*
71          * We're just turning a GPIO on to enable the clock, which operation
72          * has the potential to sleep. Given .enable() cannot sleep, but
73          * .prepare() can, we toggle the GPIO in .prepare() instead. Thus,
74          * nothing to do here.
75          */
76         return 0;
77 }
78
79 static void skl_int3472_clk_disable(struct clk_hw *hw)
80 {
81         /* Likewise, nothing to do here... */
82 }
83
84 static unsigned int skl_int3472_get_clk_frequency(struct int3472_discrete_device *int3472)
85 {
86         union acpi_object *obj;
87         unsigned int freq;
88
89         obj = skl_int3472_get_acpi_buffer(int3472->sensor, "SSDB");
90         if (IS_ERR(obj))
91                 return 0; /* report rate as 0 on error */
92
93         if (obj->buffer.length < CIO2_SENSOR_SSDB_MCLKSPEED_OFFSET + sizeof(u32)) {
94                 dev_err(int3472->dev, "The buffer is too small\n");
95                 kfree(obj);
96                 return 0;
97         }
98
99         freq = *(u32 *)(obj->buffer.pointer + CIO2_SENSOR_SSDB_MCLKSPEED_OFFSET);
100
101         kfree(obj);
102         return freq;
103 }
104
105 static unsigned long skl_int3472_clk_recalc_rate(struct clk_hw *hw,
106                                                  unsigned long parent_rate)
107 {
108         struct int3472_clock *clk = to_int3472_clk(hw);
109
110         return clk->frequency;
111 }
112
113 static const struct clk_ops skl_int3472_clock_ops = {
114         .prepare = skl_int3472_clk_prepare,
115         .unprepare = skl_int3472_clk_unprepare,
116         .enable = skl_int3472_clk_enable,
117         .disable = skl_int3472_clk_disable,
118         .recalc_rate = skl_int3472_clk_recalc_rate,
119 };
120
121 int skl_int3472_register_dsm_clock(struct int3472_discrete_device *int3472)
122 {
123         struct acpi_device *adev = int3472->adev;
124         struct clk_init_data init = {
125                 .ops = &skl_int3472_clock_ops,
126                 .flags = CLK_GET_RATE_NOCACHE,
127         };
128         int ret;
129
130         if (int3472->clock.cl)
131                 return 0; /* A GPIO controlled clk has already been registered */
132
133         if (!acpi_check_dsm(adev->handle, &img_clk_guid, 0, BIT(1)))
134                 return 0; /* DSM clock control is not available */
135
136         init.name = kasprintf(GFP_KERNEL, "%s-clk", acpi_dev_name(adev));
137         if (!init.name)
138                 return -ENOMEM;
139
140         int3472->clock.frequency = skl_int3472_get_clk_frequency(int3472);
141         int3472->clock.clk_hw.init = &init;
142         int3472->clock.clk = clk_register(&adev->dev, &int3472->clock.clk_hw);
143         if (IS_ERR(int3472->clock.clk)) {
144                 ret = PTR_ERR(int3472->clock.clk);
145                 goto out_free_init_name;
146         }
147
148         int3472->clock.cl = clkdev_create(int3472->clock.clk, NULL, int3472->sensor_name);
149         if (!int3472->clock.cl) {
150                 ret = -ENOMEM;
151                 goto err_unregister_clk;
152         }
153
154         kfree(init.name);
155         return 0;
156
157 err_unregister_clk:
158         clk_unregister(int3472->clock.clk);
159 out_free_init_name:
160         kfree(init.name);
161         return ret;
162 }
163
164 int skl_int3472_register_gpio_clock(struct int3472_discrete_device *int3472,
165                                     struct gpio_desc *gpio)
166 {
167         struct clk_init_data init = {
168                 .ops = &skl_int3472_clock_ops,
169                 .flags = CLK_GET_RATE_NOCACHE,
170         };
171         int ret;
172
173         if (int3472->clock.cl)
174                 return -EBUSY;
175
176         int3472->clock.ena_gpio = gpio;
177
178         init.name = kasprintf(GFP_KERNEL, "%s-clk",
179                               acpi_dev_name(int3472->adev));
180         if (!init.name)
181                 return -ENOMEM;
182
183         int3472->clock.frequency = skl_int3472_get_clk_frequency(int3472);
184
185         int3472->clock.clk_hw.init = &init;
186         int3472->clock.clk = clk_register(&int3472->adev->dev,
187                                           &int3472->clock.clk_hw);
188         if (IS_ERR(int3472->clock.clk)) {
189                 ret = PTR_ERR(int3472->clock.clk);
190                 goto out_free_init_name;
191         }
192
193         int3472->clock.cl = clkdev_create(int3472->clock.clk, NULL,
194                                           int3472->sensor_name);
195         if (!int3472->clock.cl) {
196                 ret = -ENOMEM;
197                 goto err_unregister_clk;
198         }
199
200         kfree(init.name);
201         return 0;
202
203 err_unregister_clk:
204         clk_unregister(int3472->clock.clk);
205 out_free_init_name:
206         kfree(init.name);
207
208         return ret;
209 }
210
211 void skl_int3472_unregister_clock(struct int3472_discrete_device *int3472)
212 {
213         if (!int3472->clock.cl)
214                 return;
215
216         clkdev_drop(int3472->clock.cl);
217         clk_unregister(int3472->clock.clk);
218 }
219
220 /*
221  * The INT3472 device is going to be the only supplier of a regulator for
222  * the sensor device. But unlike the clk framework the regulator framework
223  * does not allow matching by consumer-device-name only.
224  *
225  * Ideally all sensor drivers would use "avdd" as supply-id. But for drivers
226  * where this cannot be changed because another supply-id is already used in
227  * e.g. DeviceTree files an alias for the other supply-id can be added here.
228  *
229  * Do not forget to update GPIO_REGULATOR_SUPPLY_MAP_COUNT when changing this.
230  */
231 static const char * const skl_int3472_regulator_map_supplies[] = {
232         "avdd",
233         "AVDD",
234 };
235
236 static_assert(ARRAY_SIZE(skl_int3472_regulator_map_supplies) ==
237               GPIO_REGULATOR_SUPPLY_MAP_COUNT);
238
239 /*
240  * On some models there is a single GPIO regulator which is shared between
241  * sensors and only listed in the ACPI resources of one sensor.
242  * This DMI table contains the name of the second sensor. This is used to add
243  * entries for the second sensor to the supply_map.
244  */
245 static const struct dmi_system_id skl_int3472_regulator_second_sensor[] = {
246         {
247                 /* Lenovo Miix 510-12IKB */
248                 .matches = {
249                         DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
250                         DMI_MATCH(DMI_PRODUCT_VERSION, "MIIX 510-12IKB"),
251                 },
252                 .driver_data = "i2c-OVTI2680:00",
253         },
254         { }
255 };
256
257 int skl_int3472_register_regulator(struct int3472_discrete_device *int3472,
258                                    struct gpio_desc *gpio)
259 {
260         struct regulator_init_data init_data = { };
261         struct regulator_config cfg = { };
262         const char *second_sensor = NULL;
263         const struct dmi_system_id *id;
264         int i, j;
265
266         id = dmi_first_match(skl_int3472_regulator_second_sensor);
267         if (id)
268                 second_sensor = id->driver_data;
269
270         for (i = 0, j = 0; i < ARRAY_SIZE(skl_int3472_regulator_map_supplies); i++) {
271                 int3472->regulator.supply_map[j].supply = skl_int3472_regulator_map_supplies[i];
272                 int3472->regulator.supply_map[j].dev_name = int3472->sensor_name;
273                 j++;
274
275                 if (second_sensor) {
276                         int3472->regulator.supply_map[j].supply =
277                                 skl_int3472_regulator_map_supplies[i];
278                         int3472->regulator.supply_map[j].dev_name = second_sensor;
279                         j++;
280                 }
281         }
282
283         init_data.constraints.valid_ops_mask = REGULATOR_CHANGE_STATUS;
284         init_data.consumer_supplies = int3472->regulator.supply_map;
285         init_data.num_consumer_supplies = j;
286
287         snprintf(int3472->regulator.regulator_name,
288                  sizeof(int3472->regulator.regulator_name), "%s-regulator",
289                  acpi_dev_name(int3472->adev));
290         snprintf(int3472->regulator.supply_name,
291                  GPIO_REGULATOR_SUPPLY_NAME_LENGTH, "supply-0");
292
293         int3472->regulator.rdesc = INT3472_REGULATOR(
294                                                 int3472->regulator.regulator_name,
295                                                 int3472->regulator.supply_name,
296                                                 &int3472_gpio_regulator_ops);
297
298         int3472->regulator.gpio = gpio;
299
300         cfg.dev = &int3472->adev->dev;
301         cfg.init_data = &init_data;
302         cfg.ena_gpiod = int3472->regulator.gpio;
303
304         int3472->regulator.rdev = regulator_register(int3472->dev,
305                                                      &int3472->regulator.rdesc,
306                                                      &cfg);
307
308         return PTR_ERR_OR_ZERO(int3472->regulator.rdev);
309 }
310
311 void skl_int3472_unregister_regulator(struct int3472_discrete_device *int3472)
312 {
313         regulator_unregister(int3472->regulator.rdev);
314 }
This page took 0.051236 seconds and 4 git commands to generate.