]> Git Repo - linux.git/blob - drivers/perf/riscv_pmu_sbi.c
crypto: akcipher - Drop sign/verify operations
[linux.git] / drivers / perf / riscv_pmu_sbi.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * RISC-V performance counter support.
4  *
5  * Copyright (C) 2021 Western Digital Corporation or its affiliates.
6  *
7  * This code is based on ARM perf event code which is in turn based on
8  * sparc64 and x86 code.
9  */
10
11 #define pr_fmt(fmt) "riscv-pmu-sbi: " fmt
12
13 #include <linux/mod_devicetable.h>
14 #include <linux/perf/riscv_pmu.h>
15 #include <linux/platform_device.h>
16 #include <linux/irq.h>
17 #include <linux/irqdomain.h>
18 #include <linux/of_irq.h>
19 #include <linux/of.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/sched/clock.h>
22 #include <linux/soc/andes/irq.h>
23 #include <linux/workqueue.h>
24
25 #include <asm/errata_list.h>
26 #include <asm/sbi.h>
27 #include <asm/cpufeature.h>
28 #include <asm/vendor_extensions.h>
29 #include <asm/vendor_extensions/andes.h>
30
31 #define ALT_SBI_PMU_OVERFLOW(__ovl)                                     \
32 asm volatile(ALTERNATIVE_2(                                             \
33         "csrr %0, " __stringify(CSR_SCOUNTOVF),                         \
34         "csrr %0, " __stringify(THEAD_C9XX_CSR_SCOUNTEROF),             \
35                 THEAD_VENDOR_ID, ERRATA_THEAD_PMU,                      \
36                 CONFIG_ERRATA_THEAD_PMU,                                \
37         "csrr %0, " __stringify(ANDES_CSR_SCOUNTEROF),                  \
38                 ANDES_VENDOR_ID,                                        \
39                 RISCV_ISA_VENDOR_EXT_XANDESPMU + RISCV_VENDOR_EXT_ALTERNATIVES_BASE, \
40                 CONFIG_ANDES_CUSTOM_PMU)                                \
41         : "=r" (__ovl) :                                                \
42         : "memory")
43
44 #define ALT_SBI_PMU_OVF_CLEAR_PENDING(__irq_mask)                       \
45 asm volatile(ALTERNATIVE(                                               \
46         "csrc " __stringify(CSR_IP) ", %0\n\t",                         \
47         "csrc " __stringify(ANDES_CSR_SLIP) ", %0\n\t",                 \
48                 ANDES_VENDOR_ID,                                        \
49                 RISCV_ISA_VENDOR_EXT_XANDESPMU + RISCV_VENDOR_EXT_ALTERNATIVES_BASE, \
50                 CONFIG_ANDES_CUSTOM_PMU)                                \
51         : : "r"(__irq_mask)                                             \
52         : "memory")
53
54 #define SYSCTL_NO_USER_ACCESS   0
55 #define SYSCTL_USER_ACCESS      1
56 #define SYSCTL_LEGACY           2
57
58 #define PERF_EVENT_FLAG_NO_USER_ACCESS  BIT(SYSCTL_NO_USER_ACCESS)
59 #define PERF_EVENT_FLAG_USER_ACCESS     BIT(SYSCTL_USER_ACCESS)
60 #define PERF_EVENT_FLAG_LEGACY          BIT(SYSCTL_LEGACY)
61
62 PMU_FORMAT_ATTR(event, "config:0-47");
63 PMU_FORMAT_ATTR(firmware, "config:62-63");
64
65 static bool sbi_v2_available;
66 static DEFINE_STATIC_KEY_FALSE(sbi_pmu_snapshot_available);
67 #define sbi_pmu_snapshot_available() \
68         static_branch_unlikely(&sbi_pmu_snapshot_available)
69
70 static struct attribute *riscv_arch_formats_attr[] = {
71         &format_attr_event.attr,
72         &format_attr_firmware.attr,
73         NULL,
74 };
75
76 static struct attribute_group riscv_pmu_format_group = {
77         .name = "format",
78         .attrs = riscv_arch_formats_attr,
79 };
80
81 static const struct attribute_group *riscv_pmu_attr_groups[] = {
82         &riscv_pmu_format_group,
83         NULL,
84 };
85
86 /* Allow user mode access by default */
87 static int sysctl_perf_user_access __read_mostly = SYSCTL_USER_ACCESS;
88
89 /*
90  * RISC-V doesn't have heterogeneous harts yet. This need to be part of
91  * per_cpu in case of harts with different pmu counters
92  */
93 static union sbi_pmu_ctr_info *pmu_ctr_list;
94 static bool riscv_pmu_use_irq;
95 static unsigned int riscv_pmu_irq_num;
96 static unsigned int riscv_pmu_irq_mask;
97 static unsigned int riscv_pmu_irq;
98
99 /* Cache the available counters in a bitmask */
100 static unsigned long cmask;
101
102 struct sbi_pmu_event_data {
103         union {
104                 union {
105                         struct hw_gen_event {
106                                 uint32_t event_code:16;
107                                 uint32_t event_type:4;
108                                 uint32_t reserved:12;
109                         } hw_gen_event;
110                         struct hw_cache_event {
111                                 uint32_t result_id:1;
112                                 uint32_t op_id:2;
113                                 uint32_t cache_id:13;
114                                 uint32_t event_type:4;
115                                 uint32_t reserved:12;
116                         } hw_cache_event;
117                 };
118                 uint32_t event_idx;
119         };
120 };
121
122 static struct sbi_pmu_event_data pmu_hw_event_map[] = {
123         [PERF_COUNT_HW_CPU_CYCLES]              = {.hw_gen_event = {
124                                                         SBI_PMU_HW_CPU_CYCLES,
125                                                         SBI_PMU_EVENT_TYPE_HW, 0}},
126         [PERF_COUNT_HW_INSTRUCTIONS]            = {.hw_gen_event = {
127                                                         SBI_PMU_HW_INSTRUCTIONS,
128                                                         SBI_PMU_EVENT_TYPE_HW, 0}},
129         [PERF_COUNT_HW_CACHE_REFERENCES]        = {.hw_gen_event = {
130                                                         SBI_PMU_HW_CACHE_REFERENCES,
131                                                         SBI_PMU_EVENT_TYPE_HW, 0}},
132         [PERF_COUNT_HW_CACHE_MISSES]            = {.hw_gen_event = {
133                                                         SBI_PMU_HW_CACHE_MISSES,
134                                                         SBI_PMU_EVENT_TYPE_HW, 0}},
135         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = {.hw_gen_event = {
136                                                         SBI_PMU_HW_BRANCH_INSTRUCTIONS,
137                                                         SBI_PMU_EVENT_TYPE_HW, 0}},
138         [PERF_COUNT_HW_BRANCH_MISSES]           = {.hw_gen_event = {
139                                                         SBI_PMU_HW_BRANCH_MISSES,
140                                                         SBI_PMU_EVENT_TYPE_HW, 0}},
141         [PERF_COUNT_HW_BUS_CYCLES]              = {.hw_gen_event = {
142                                                         SBI_PMU_HW_BUS_CYCLES,
143                                                         SBI_PMU_EVENT_TYPE_HW, 0}},
144         [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = {.hw_gen_event = {
145                                                         SBI_PMU_HW_STALLED_CYCLES_FRONTEND,
146                                                         SBI_PMU_EVENT_TYPE_HW, 0}},
147         [PERF_COUNT_HW_STALLED_CYCLES_BACKEND]  = {.hw_gen_event = {
148                                                         SBI_PMU_HW_STALLED_CYCLES_BACKEND,
149                                                         SBI_PMU_EVENT_TYPE_HW, 0}},
150         [PERF_COUNT_HW_REF_CPU_CYCLES]          = {.hw_gen_event = {
151                                                         SBI_PMU_HW_REF_CPU_CYCLES,
152                                                         SBI_PMU_EVENT_TYPE_HW, 0}},
153 };
154
155 #define C(x) PERF_COUNT_HW_CACHE_##x
156 static struct sbi_pmu_event_data pmu_cache_event_map[PERF_COUNT_HW_CACHE_MAX]
157 [PERF_COUNT_HW_CACHE_OP_MAX]
158 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
159         [C(L1D)] = {
160                 [C(OP_READ)] = {
161                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
162                                         C(OP_READ), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
163                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
164                                         C(OP_READ), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
165                 },
166                 [C(OP_WRITE)] = {
167                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
168                                         C(OP_WRITE), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
169                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
170                                         C(OP_WRITE), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
171                 },
172                 [C(OP_PREFETCH)] = {
173                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
174                                         C(OP_PREFETCH), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
175                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
176                                         C(OP_PREFETCH), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
177                 },
178         },
179         [C(L1I)] = {
180                 [C(OP_READ)] = {
181                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
182                                         C(OP_READ), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
183                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), C(OP_READ),
184                                         C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
185                 },
186                 [C(OP_WRITE)] = {
187                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
188                                         C(OP_WRITE), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
189                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
190                                         C(OP_WRITE), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
191                 },
192                 [C(OP_PREFETCH)] = {
193                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
194                                         C(OP_PREFETCH), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
195                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
196                                         C(OP_PREFETCH), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
197                 },
198         },
199         [C(LL)] = {
200                 [C(OP_READ)] = {
201                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
202                                         C(OP_READ), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
203                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
204                                         C(OP_READ), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
205                 },
206                 [C(OP_WRITE)] = {
207                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
208                                         C(OP_WRITE), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
209                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
210                                         C(OP_WRITE), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
211                 },
212                 [C(OP_PREFETCH)] = {
213                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
214                                         C(OP_PREFETCH), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
215                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
216                                         C(OP_PREFETCH), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
217                 },
218         },
219         [C(DTLB)] = {
220                 [C(OP_READ)] = {
221                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
222                                         C(OP_READ), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
223                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
224                                         C(OP_READ), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
225                 },
226                 [C(OP_WRITE)] = {
227                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
228                                         C(OP_WRITE), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
229                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
230                                         C(OP_WRITE), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
231                 },
232                 [C(OP_PREFETCH)] = {
233                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
234                                         C(OP_PREFETCH), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
235                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
236                                         C(OP_PREFETCH), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
237                 },
238         },
239         [C(ITLB)] = {
240                 [C(OP_READ)] = {
241                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
242                                         C(OP_READ), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
243                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
244                                         C(OP_READ), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
245                 },
246                 [C(OP_WRITE)] = {
247                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
248                                         C(OP_WRITE), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
249                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
250                                         C(OP_WRITE), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
251                 },
252                 [C(OP_PREFETCH)] = {
253                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
254                                         C(OP_PREFETCH), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
255                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
256                                         C(OP_PREFETCH), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
257                 },
258         },
259         [C(BPU)] = {
260                 [C(OP_READ)] = {
261                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
262                                         C(OP_READ), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
263                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
264                                         C(OP_READ), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
265                 },
266                 [C(OP_WRITE)] = {
267                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
268                                         C(OP_WRITE), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
269                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
270                                         C(OP_WRITE), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
271                 },
272                 [C(OP_PREFETCH)] = {
273                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
274                                         C(OP_PREFETCH), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
275                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
276                                         C(OP_PREFETCH), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
277                 },
278         },
279         [C(NODE)] = {
280                 [C(OP_READ)] = {
281                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
282                                         C(OP_READ), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
283                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
284                                         C(OP_READ), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
285                 },
286                 [C(OP_WRITE)] = {
287                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
288                                         C(OP_WRITE), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
289                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
290                                         C(OP_WRITE), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
291                 },
292                 [C(OP_PREFETCH)] = {
293                         [C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
294                                         C(OP_PREFETCH), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
295                         [C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
296                                         C(OP_PREFETCH), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
297                 },
298         },
299 };
300
301 static void pmu_sbi_check_event(struct sbi_pmu_event_data *edata)
302 {
303         struct sbiret ret;
304
305         ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_CFG_MATCH,
306                         0, cmask, 0, edata->event_idx, 0, 0);
307         if (!ret.error) {
308                 sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP,
309                           ret.value, 0x1, SBI_PMU_STOP_FLAG_RESET, 0, 0, 0);
310         } else if (ret.error == SBI_ERR_NOT_SUPPORTED) {
311                 /* This event cannot be monitored by any counter */
312                 edata->event_idx = -EINVAL;
313         }
314 }
315
316 static void pmu_sbi_check_std_events(struct work_struct *work)
317 {
318         for (int i = 0; i < ARRAY_SIZE(pmu_hw_event_map); i++)
319                 pmu_sbi_check_event(&pmu_hw_event_map[i]);
320
321         for (int i = 0; i < ARRAY_SIZE(pmu_cache_event_map); i++)
322                 for (int j = 0; j < ARRAY_SIZE(pmu_cache_event_map[i]); j++)
323                         for (int k = 0; k < ARRAY_SIZE(pmu_cache_event_map[i][j]); k++)
324                                 pmu_sbi_check_event(&pmu_cache_event_map[i][j][k]);
325 }
326
327 static DECLARE_WORK(check_std_events_work, pmu_sbi_check_std_events);
328
329 static int pmu_sbi_ctr_get_width(int idx)
330 {
331         return pmu_ctr_list[idx].width;
332 }
333
334 static bool pmu_sbi_ctr_is_fw(int cidx)
335 {
336         union sbi_pmu_ctr_info *info;
337
338         info = &pmu_ctr_list[cidx];
339         if (!info)
340                 return false;
341
342         return (info->type == SBI_PMU_CTR_TYPE_FW) ? true : false;
343 }
344
345 /*
346  * Returns the counter width of a programmable counter and number of hardware
347  * counters. As we don't support heterogeneous CPUs yet, it is okay to just
348  * return the counter width of the first programmable counter.
349  */
350 int riscv_pmu_get_hpm_info(u32 *hw_ctr_width, u32 *num_hw_ctr)
351 {
352         int i;
353         union sbi_pmu_ctr_info *info;
354         u32 hpm_width = 0, hpm_count = 0;
355
356         if (!cmask)
357                 return -EINVAL;
358
359         for_each_set_bit(i, &cmask, RISCV_MAX_COUNTERS) {
360                 info = &pmu_ctr_list[i];
361                 if (!info)
362                         continue;
363                 if (!hpm_width && info->csr != CSR_CYCLE && info->csr != CSR_INSTRET)
364                         hpm_width = info->width;
365                 if (info->type == SBI_PMU_CTR_TYPE_HW)
366                         hpm_count++;
367         }
368
369         *hw_ctr_width = hpm_width;
370         *num_hw_ctr = hpm_count;
371
372         return 0;
373 }
374 EXPORT_SYMBOL_GPL(riscv_pmu_get_hpm_info);
375
376 static uint8_t pmu_sbi_csr_index(struct perf_event *event)
377 {
378         return pmu_ctr_list[event->hw.idx].csr - CSR_CYCLE;
379 }
380
381 static unsigned long pmu_sbi_get_filter_flags(struct perf_event *event)
382 {
383         unsigned long cflags = 0;
384         bool guest_events = false;
385
386         if (event->attr.config1 & RISCV_PMU_CONFIG1_GUEST_EVENTS)
387                 guest_events = true;
388         if (event->attr.exclude_kernel)
389                 cflags |= guest_events ? SBI_PMU_CFG_FLAG_SET_VSINH : SBI_PMU_CFG_FLAG_SET_SINH;
390         if (event->attr.exclude_user)
391                 cflags |= guest_events ? SBI_PMU_CFG_FLAG_SET_VUINH : SBI_PMU_CFG_FLAG_SET_UINH;
392         if (guest_events && event->attr.exclude_hv)
393                 cflags |= SBI_PMU_CFG_FLAG_SET_SINH;
394         if (event->attr.exclude_host)
395                 cflags |= SBI_PMU_CFG_FLAG_SET_UINH | SBI_PMU_CFG_FLAG_SET_SINH;
396         if (event->attr.exclude_guest)
397                 cflags |= SBI_PMU_CFG_FLAG_SET_VSINH | SBI_PMU_CFG_FLAG_SET_VUINH;
398
399         return cflags;
400 }
401
402 static int pmu_sbi_ctr_get_idx(struct perf_event *event)
403 {
404         struct hw_perf_event *hwc = &event->hw;
405         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
406         struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
407         struct sbiret ret;
408         int idx;
409         uint64_t cbase = 0, cmask = rvpmu->cmask;
410         unsigned long cflags = 0;
411
412         cflags = pmu_sbi_get_filter_flags(event);
413
414         /*
415          * In legacy mode, we have to force the fixed counters for those events
416          * but not in the user access mode as we want to use the other counters
417          * that support sampling/filtering.
418          */
419         if ((hwc->flags & PERF_EVENT_FLAG_LEGACY) && (event->attr.type == PERF_TYPE_HARDWARE)) {
420                 if (event->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
421                         cflags |= SBI_PMU_CFG_FLAG_SKIP_MATCH;
422                         cmask = 1;
423                 } else if (event->attr.config == PERF_COUNT_HW_INSTRUCTIONS) {
424                         cflags |= SBI_PMU_CFG_FLAG_SKIP_MATCH;
425                         cmask = BIT(CSR_INSTRET - CSR_CYCLE);
426                 }
427         }
428
429         /* retrieve the available counter index */
430 #if defined(CONFIG_32BIT)
431         ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_CFG_MATCH, cbase,
432                         cmask, cflags, hwc->event_base, hwc->config,
433                         hwc->config >> 32);
434 #else
435         ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_CFG_MATCH, cbase,
436                         cmask, cflags, hwc->event_base, hwc->config, 0);
437 #endif
438         if (ret.error) {
439                 pr_debug("Not able to find a counter for event %lx config %llx\n",
440                         hwc->event_base, hwc->config);
441                 return sbi_err_map_linux_errno(ret.error);
442         }
443
444         idx = ret.value;
445         if (!test_bit(idx, &rvpmu->cmask) || !pmu_ctr_list[idx].value)
446                 return -ENOENT;
447
448         /* Additional sanity check for the counter id */
449         if (pmu_sbi_ctr_is_fw(idx)) {
450                 if (!test_and_set_bit(idx, cpuc->used_fw_ctrs))
451                         return idx;
452         } else {
453                 if (!test_and_set_bit(idx, cpuc->used_hw_ctrs))
454                         return idx;
455         }
456
457         return -ENOENT;
458 }
459
460 static void pmu_sbi_ctr_clear_idx(struct perf_event *event)
461 {
462
463         struct hw_perf_event *hwc = &event->hw;
464         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
465         struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
466         int idx = hwc->idx;
467
468         if (pmu_sbi_ctr_is_fw(idx))
469                 clear_bit(idx, cpuc->used_fw_ctrs);
470         else
471                 clear_bit(idx, cpuc->used_hw_ctrs);
472 }
473
474 static int pmu_event_find_cache(u64 config)
475 {
476         unsigned int cache_type, cache_op, cache_result, ret;
477
478         cache_type = (config >>  0) & 0xff;
479         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
480                 return -EINVAL;
481
482         cache_op = (config >>  8) & 0xff;
483         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
484                 return -EINVAL;
485
486         cache_result = (config >> 16) & 0xff;
487         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
488                 return -EINVAL;
489
490         ret = pmu_cache_event_map[cache_type][cache_op][cache_result].event_idx;
491
492         return ret;
493 }
494
495 static bool pmu_sbi_is_fw_event(struct perf_event *event)
496 {
497         u32 type = event->attr.type;
498         u64 config = event->attr.config;
499
500         if ((type == PERF_TYPE_RAW) && ((config >> 63) == 1))
501                 return true;
502         else
503                 return false;
504 }
505
506 static int pmu_sbi_event_map(struct perf_event *event, u64 *econfig)
507 {
508         u32 type = event->attr.type;
509         u64 config = event->attr.config;
510         u64 raw_config_val;
511         int ret;
512
513         /*
514          * Ensure we are finished checking standard hardware events for
515          * validity before allowing userspace to configure any events.
516          */
517         flush_work(&check_std_events_work);
518
519         switch (type) {
520         case PERF_TYPE_HARDWARE:
521                 if (config >= PERF_COUNT_HW_MAX)
522                         return -EINVAL;
523                 ret = pmu_hw_event_map[event->attr.config].event_idx;
524                 break;
525         case PERF_TYPE_HW_CACHE:
526                 ret = pmu_event_find_cache(config);
527                 break;
528         case PERF_TYPE_RAW:
529                 /*
530                  * As per SBI specification, the upper 16 bits must be unused
531                  * for a raw event.
532                  * Bits 63:62 are used to distinguish between raw events
533                  * 00 - Hardware raw event
534                  * 10 - SBI firmware events
535                  * 11 - Risc-V platform specific firmware event
536                  */
537                 raw_config_val = config & RISCV_PMU_RAW_EVENT_MASK;
538                 switch (config >> 62) {
539                 case 0:
540                         ret = RISCV_PMU_RAW_EVENT_IDX;
541                         *econfig = raw_config_val;
542                         break;
543                 case 2:
544                         ret = (raw_config_val & 0xFFFF) |
545                                 (SBI_PMU_EVENT_TYPE_FW << 16);
546                         break;
547                 case 3:
548                         /*
549                          * For Risc-V platform specific firmware events
550                          * Event code - 0xFFFF
551                          * Event data - raw event encoding
552                          */
553                         ret = SBI_PMU_EVENT_TYPE_FW << 16 | RISCV_PLAT_FW_EVENT;
554                         *econfig = raw_config_val;
555                         break;
556                 }
557                 break;
558         default:
559                 ret = -EINVAL;
560                 break;
561         }
562
563         return ret;
564 }
565
566 static void pmu_sbi_snapshot_free(struct riscv_pmu *pmu)
567 {
568         int cpu;
569
570         for_each_possible_cpu(cpu) {
571                 struct cpu_hw_events *cpu_hw_evt = per_cpu_ptr(pmu->hw_events, cpu);
572
573                 if (!cpu_hw_evt->snapshot_addr)
574                         continue;
575
576                 free_page((unsigned long)cpu_hw_evt->snapshot_addr);
577                 cpu_hw_evt->snapshot_addr = NULL;
578                 cpu_hw_evt->snapshot_addr_phys = 0;
579         }
580 }
581
582 static int pmu_sbi_snapshot_alloc(struct riscv_pmu *pmu)
583 {
584         int cpu;
585         struct page *snapshot_page;
586
587         for_each_possible_cpu(cpu) {
588                 struct cpu_hw_events *cpu_hw_evt = per_cpu_ptr(pmu->hw_events, cpu);
589
590                 snapshot_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
591                 if (!snapshot_page) {
592                         pmu_sbi_snapshot_free(pmu);
593                         return -ENOMEM;
594                 }
595                 cpu_hw_evt->snapshot_addr = page_to_virt(snapshot_page);
596                 cpu_hw_evt->snapshot_addr_phys = page_to_phys(snapshot_page);
597         }
598
599         return 0;
600 }
601
602 static int pmu_sbi_snapshot_disable(void)
603 {
604         struct sbiret ret;
605
606         ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_SNAPSHOT_SET_SHMEM, SBI_SHMEM_DISABLE,
607                         SBI_SHMEM_DISABLE, 0, 0, 0, 0);
608         if (ret.error) {
609                 pr_warn("failed to disable snapshot shared memory\n");
610                 return sbi_err_map_linux_errno(ret.error);
611         }
612
613         return 0;
614 }
615
616 static int pmu_sbi_snapshot_setup(struct riscv_pmu *pmu, int cpu)
617 {
618         struct cpu_hw_events *cpu_hw_evt;
619         struct sbiret ret = {0};
620
621         cpu_hw_evt = per_cpu_ptr(pmu->hw_events, cpu);
622         if (!cpu_hw_evt->snapshot_addr_phys)
623                 return -EINVAL;
624
625         if (cpu_hw_evt->snapshot_set_done)
626                 return 0;
627
628         if (IS_ENABLED(CONFIG_32BIT))
629                 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_SNAPSHOT_SET_SHMEM,
630                                 cpu_hw_evt->snapshot_addr_phys,
631                                 (u64)(cpu_hw_evt->snapshot_addr_phys) >> 32, 0, 0, 0, 0);
632         else
633                 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_SNAPSHOT_SET_SHMEM,
634                                 cpu_hw_evt->snapshot_addr_phys, 0, 0, 0, 0, 0);
635
636         /* Free up the snapshot area memory and fall back to SBI PMU calls without snapshot */
637         if (ret.error) {
638                 if (ret.error != SBI_ERR_NOT_SUPPORTED)
639                         pr_warn("pmu snapshot setup failed with error %ld\n", ret.error);
640                 return sbi_err_map_linux_errno(ret.error);
641         }
642
643         memset(cpu_hw_evt->snapshot_cval_shcopy, 0, sizeof(u64) * RISCV_MAX_COUNTERS);
644         cpu_hw_evt->snapshot_set_done = true;
645
646         return 0;
647 }
648
649 static u64 pmu_sbi_ctr_read(struct perf_event *event)
650 {
651         struct hw_perf_event *hwc = &event->hw;
652         int idx = hwc->idx;
653         struct sbiret ret;
654         u64 val = 0;
655         struct riscv_pmu *pmu = to_riscv_pmu(event->pmu);
656         struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
657         struct riscv_pmu_snapshot_data *sdata = cpu_hw_evt->snapshot_addr;
658         union sbi_pmu_ctr_info info = pmu_ctr_list[idx];
659
660         /* Read the value from the shared memory directly only if counter is stopped */
661         if (sbi_pmu_snapshot_available() && (hwc->state & PERF_HES_STOPPED)) {
662                 val = sdata->ctr_values[idx];
663                 return val;
664         }
665
666         if (pmu_sbi_is_fw_event(event)) {
667                 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_FW_READ,
668                                 hwc->idx, 0, 0, 0, 0, 0);
669                 if (ret.error)
670                         return 0;
671
672                 val = ret.value;
673                 if (IS_ENABLED(CONFIG_32BIT) && sbi_v2_available && info.width >= 32) {
674                         ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_FW_READ_HI,
675                                         hwc->idx, 0, 0, 0, 0, 0);
676                         if (!ret.error)
677                                 val |= ((u64)ret.value << 32);
678                         else
679                                 WARN_ONCE(1, "Unable to read upper 32 bits of firmware counter error: %ld\n",
680                                           ret.error);
681                 }
682         } else {
683                 val = riscv_pmu_ctr_read_csr(info.csr);
684                 if (IS_ENABLED(CONFIG_32BIT))
685                         val |= ((u64)riscv_pmu_ctr_read_csr(info.csr + 0x80)) << 32;
686         }
687
688         return val;
689 }
690
691 static void pmu_sbi_set_scounteren(void *arg)
692 {
693         struct perf_event *event = (struct perf_event *)arg;
694
695         if (event->hw.idx != -1)
696                 csr_write(CSR_SCOUNTEREN,
697                           csr_read(CSR_SCOUNTEREN) | BIT(pmu_sbi_csr_index(event)));
698 }
699
700 static void pmu_sbi_reset_scounteren(void *arg)
701 {
702         struct perf_event *event = (struct perf_event *)arg;
703
704         if (event->hw.idx != -1)
705                 csr_write(CSR_SCOUNTEREN,
706                           csr_read(CSR_SCOUNTEREN) & ~BIT(pmu_sbi_csr_index(event)));
707 }
708
709 static void pmu_sbi_ctr_start(struct perf_event *event, u64 ival)
710 {
711         struct sbiret ret;
712         struct hw_perf_event *hwc = &event->hw;
713         unsigned long flag = SBI_PMU_START_FLAG_SET_INIT_VALUE;
714
715         /* There is no benefit setting SNAPSHOT FLAG for a single counter */
716 #if defined(CONFIG_32BIT)
717         ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, hwc->idx,
718                         1, flag, ival, ival >> 32, 0);
719 #else
720         ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, hwc->idx,
721                         1, flag, ival, 0, 0);
722 #endif
723         if (ret.error && (ret.error != SBI_ERR_ALREADY_STARTED))
724                 pr_err("Starting counter idx %d failed with error %d\n",
725                         hwc->idx, sbi_err_map_linux_errno(ret.error));
726
727         if ((hwc->flags & PERF_EVENT_FLAG_USER_ACCESS) &&
728             (hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
729                 pmu_sbi_set_scounteren((void *)event);
730 }
731
732 static void pmu_sbi_ctr_stop(struct perf_event *event, unsigned long flag)
733 {
734         struct sbiret ret;
735         struct hw_perf_event *hwc = &event->hw;
736         struct riscv_pmu *pmu = to_riscv_pmu(event->pmu);
737         struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
738         struct riscv_pmu_snapshot_data *sdata = cpu_hw_evt->snapshot_addr;
739
740         if ((hwc->flags & PERF_EVENT_FLAG_USER_ACCESS) &&
741             (hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
742                 pmu_sbi_reset_scounteren((void *)event);
743
744         if (sbi_pmu_snapshot_available())
745                 flag |= SBI_PMU_STOP_FLAG_TAKE_SNAPSHOT;
746
747         ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP, hwc->idx, 1, flag, 0, 0, 0);
748         if (!ret.error && sbi_pmu_snapshot_available()) {
749                 /*
750                  * The counter snapshot is based on the index base specified by hwc->idx.
751                  * The actual counter value is updated in shared memory at index 0 when counter
752                  * mask is 0x01. To ensure accurate counter values, it's necessary to transfer
753                  * the counter value to shared memory. However, if hwc->idx is zero, the counter
754                  * value is already correctly updated in shared memory, requiring no further
755                  * adjustment.
756                  */
757                 if (hwc->idx > 0) {
758                         sdata->ctr_values[hwc->idx] = sdata->ctr_values[0];
759                         sdata->ctr_values[0] = 0;
760                 }
761         } else if (ret.error && (ret.error != SBI_ERR_ALREADY_STOPPED) &&
762                 flag != SBI_PMU_STOP_FLAG_RESET) {
763                 pr_err("Stopping counter idx %d failed with error %d\n",
764                         hwc->idx, sbi_err_map_linux_errno(ret.error));
765         }
766 }
767
768 static int pmu_sbi_find_num_ctrs(void)
769 {
770         struct sbiret ret;
771
772         ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_NUM_COUNTERS, 0, 0, 0, 0, 0, 0);
773         if (!ret.error)
774                 return ret.value;
775         else
776                 return sbi_err_map_linux_errno(ret.error);
777 }
778
779 static int pmu_sbi_get_ctrinfo(int nctr, unsigned long *mask)
780 {
781         struct sbiret ret;
782         int i, num_hw_ctr = 0, num_fw_ctr = 0;
783         union sbi_pmu_ctr_info cinfo;
784
785         pmu_ctr_list = kcalloc(nctr, sizeof(*pmu_ctr_list), GFP_KERNEL);
786         if (!pmu_ctr_list)
787                 return -ENOMEM;
788
789         for (i = 0; i < nctr; i++) {
790                 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_GET_INFO, i, 0, 0, 0, 0, 0);
791                 if (ret.error)
792                         /* The logical counter ids are not expected to be contiguous */
793                         continue;
794
795                 *mask |= BIT(i);
796
797                 cinfo.value = ret.value;
798                 if (cinfo.type == SBI_PMU_CTR_TYPE_FW)
799                         num_fw_ctr++;
800                 else
801                         num_hw_ctr++;
802                 pmu_ctr_list[i].value = cinfo.value;
803         }
804
805         pr_info("%d firmware and %d hardware counters\n", num_fw_ctr, num_hw_ctr);
806
807         return 0;
808 }
809
810 static inline void pmu_sbi_stop_all(struct riscv_pmu *pmu)
811 {
812         /*
813          * No need to check the error because we are disabling all the counters
814          * which may include counters that are not enabled yet.
815          */
816         sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP,
817                   0, pmu->cmask, SBI_PMU_STOP_FLAG_RESET, 0, 0, 0);
818 }
819
820 static inline void pmu_sbi_stop_hw_ctrs(struct riscv_pmu *pmu)
821 {
822         struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
823         struct riscv_pmu_snapshot_data *sdata = cpu_hw_evt->snapshot_addr;
824         unsigned long flag = 0;
825         int i, idx;
826         struct sbiret ret;
827         u64 temp_ctr_overflow_mask = 0;
828
829         if (sbi_pmu_snapshot_available())
830                 flag = SBI_PMU_STOP_FLAG_TAKE_SNAPSHOT;
831
832         /* Reset the shadow copy to avoid save/restore any value from previous overflow */
833         memset(cpu_hw_evt->snapshot_cval_shcopy, 0, sizeof(u64) * RISCV_MAX_COUNTERS);
834
835         for (i = 0; i < BITS_TO_LONGS(RISCV_MAX_COUNTERS); i++) {
836                 /* No need to check the error here as we can't do anything about the error */
837                 ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP, i * BITS_PER_LONG,
838                                 cpu_hw_evt->used_hw_ctrs[i], flag, 0, 0, 0);
839                 if (!ret.error && sbi_pmu_snapshot_available()) {
840                         /* Save the counter values to avoid clobbering */
841                         for_each_set_bit(idx, &cpu_hw_evt->used_hw_ctrs[i], BITS_PER_LONG)
842                                 cpu_hw_evt->snapshot_cval_shcopy[i * BITS_PER_LONG + idx] =
843                                                         sdata->ctr_values[idx];
844                         /* Save the overflow mask to avoid clobbering */
845                         temp_ctr_overflow_mask |= sdata->ctr_overflow_mask << (i * BITS_PER_LONG);
846                 }
847         }
848
849         /* Restore the counter values to the shared memory for used hw counters */
850         if (sbi_pmu_snapshot_available()) {
851                 for_each_set_bit(idx, cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS)
852                         sdata->ctr_values[idx] = cpu_hw_evt->snapshot_cval_shcopy[idx];
853                 if (temp_ctr_overflow_mask)
854                         sdata->ctr_overflow_mask = temp_ctr_overflow_mask;
855         }
856 }
857
858 /*
859  * This function starts all the used counters in two step approach.
860  * Any counter that did not overflow can be start in a single step
861  * while the overflowed counters need to be started with updated initialization
862  * value.
863  */
864 static inline void pmu_sbi_start_ovf_ctrs_sbi(struct cpu_hw_events *cpu_hw_evt,
865                                               u64 ctr_ovf_mask)
866 {
867         int idx = 0, i;
868         struct perf_event *event;
869         unsigned long flag = SBI_PMU_START_FLAG_SET_INIT_VALUE;
870         unsigned long ctr_start_mask = 0;
871         uint64_t max_period;
872         struct hw_perf_event *hwc;
873         u64 init_val = 0;
874
875         for (i = 0; i < BITS_TO_LONGS(RISCV_MAX_COUNTERS); i++) {
876                 ctr_start_mask = cpu_hw_evt->used_hw_ctrs[i] & ~ctr_ovf_mask;
877                 /* Start all the counters that did not overflow in a single shot */
878                 sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, i * BITS_PER_LONG, ctr_start_mask,
879                         0, 0, 0, 0);
880         }
881
882         /* Reinitialize and start all the counter that overflowed */
883         while (ctr_ovf_mask) {
884                 if (ctr_ovf_mask & 0x01) {
885                         event = cpu_hw_evt->events[idx];
886                         hwc = &event->hw;
887                         max_period = riscv_pmu_ctr_get_width_mask(event);
888                         init_val = local64_read(&hwc->prev_count) & max_period;
889 #if defined(CONFIG_32BIT)
890                         sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx, 1,
891                                   flag, init_val, init_val >> 32, 0);
892 #else
893                         sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx, 1,
894                                   flag, init_val, 0, 0);
895 #endif
896                         perf_event_update_userpage(event);
897                 }
898                 ctr_ovf_mask = ctr_ovf_mask >> 1;
899                 idx++;
900         }
901 }
902
903 static inline void pmu_sbi_start_ovf_ctrs_snapshot(struct cpu_hw_events *cpu_hw_evt,
904                                                    u64 ctr_ovf_mask)
905 {
906         int i, idx = 0;
907         struct perf_event *event;
908         unsigned long flag = SBI_PMU_START_FLAG_INIT_SNAPSHOT;
909         u64 max_period, init_val = 0;
910         struct hw_perf_event *hwc;
911         struct riscv_pmu_snapshot_data *sdata = cpu_hw_evt->snapshot_addr;
912
913         for_each_set_bit(idx, cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS) {
914                 if (ctr_ovf_mask & BIT(idx)) {
915                         event = cpu_hw_evt->events[idx];
916                         hwc = &event->hw;
917                         max_period = riscv_pmu_ctr_get_width_mask(event);
918                         init_val = local64_read(&hwc->prev_count) & max_period;
919                         cpu_hw_evt->snapshot_cval_shcopy[idx] = init_val;
920                 }
921                 /*
922                  * We do not need to update the non-overflow counters the previous
923                  * value should have been there already.
924                  */
925         }
926
927         for (i = 0; i < BITS_TO_LONGS(RISCV_MAX_COUNTERS); i++) {
928                 /* Restore the counter values to relative indices for used hw counters */
929                 for_each_set_bit(idx, &cpu_hw_evt->used_hw_ctrs[i], BITS_PER_LONG)
930                         sdata->ctr_values[idx] =
931                                         cpu_hw_evt->snapshot_cval_shcopy[idx + i * BITS_PER_LONG];
932                 /* Start all the counters in a single shot */
933                 sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx * BITS_PER_LONG,
934                           cpu_hw_evt->used_hw_ctrs[i], flag, 0, 0, 0);
935         }
936 }
937
938 static void pmu_sbi_start_overflow_mask(struct riscv_pmu *pmu,
939                                         u64 ctr_ovf_mask)
940 {
941         struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
942
943         if (sbi_pmu_snapshot_available())
944                 pmu_sbi_start_ovf_ctrs_snapshot(cpu_hw_evt, ctr_ovf_mask);
945         else
946                 pmu_sbi_start_ovf_ctrs_sbi(cpu_hw_evt, ctr_ovf_mask);
947 }
948
949 static irqreturn_t pmu_sbi_ovf_handler(int irq, void *dev)
950 {
951         struct perf_sample_data data;
952         struct pt_regs *regs;
953         struct hw_perf_event *hw_evt;
954         union sbi_pmu_ctr_info *info;
955         int lidx, hidx, fidx;
956         struct riscv_pmu *pmu;
957         struct perf_event *event;
958         u64 overflow;
959         u64 overflowed_ctrs = 0;
960         struct cpu_hw_events *cpu_hw_evt = dev;
961         u64 start_clock = sched_clock();
962         struct riscv_pmu_snapshot_data *sdata = cpu_hw_evt->snapshot_addr;
963
964         if (WARN_ON_ONCE(!cpu_hw_evt))
965                 return IRQ_NONE;
966
967         /* Firmware counter don't support overflow yet */
968         fidx = find_first_bit(cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS);
969         if (fidx == RISCV_MAX_COUNTERS) {
970                 csr_clear(CSR_SIP, BIT(riscv_pmu_irq_num));
971                 return IRQ_NONE;
972         }
973
974         event = cpu_hw_evt->events[fidx];
975         if (!event) {
976                 ALT_SBI_PMU_OVF_CLEAR_PENDING(riscv_pmu_irq_mask);
977                 return IRQ_NONE;
978         }
979
980         pmu = to_riscv_pmu(event->pmu);
981         pmu_sbi_stop_hw_ctrs(pmu);
982
983         /* Overflow status register should only be read after counter are stopped */
984         if (sbi_pmu_snapshot_available())
985                 overflow = sdata->ctr_overflow_mask;
986         else
987                 ALT_SBI_PMU_OVERFLOW(overflow);
988
989         /*
990          * Overflow interrupt pending bit should only be cleared after stopping
991          * all the counters to avoid any race condition.
992          */
993         ALT_SBI_PMU_OVF_CLEAR_PENDING(riscv_pmu_irq_mask);
994
995         /* No overflow bit is set */
996         if (!overflow)
997                 return IRQ_NONE;
998
999         regs = get_irq_regs();
1000
1001         for_each_set_bit(lidx, cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS) {
1002                 struct perf_event *event = cpu_hw_evt->events[lidx];
1003
1004                 /* Skip if invalid event or user did not request a sampling */
1005                 if (!event || !is_sampling_event(event))
1006                         continue;
1007
1008                 info = &pmu_ctr_list[lidx];
1009                 /* Do a sanity check */
1010                 if (!info || info->type != SBI_PMU_CTR_TYPE_HW)
1011                         continue;
1012
1013                 if (sbi_pmu_snapshot_available())
1014                         /* SBI implementation already updated the logical indicies */
1015                         hidx = lidx;
1016                 else
1017                         /* compute hardware counter index */
1018                         hidx = info->csr - CSR_CYCLE;
1019
1020                 /* check if the corresponding bit is set in sscountovf or overflow mask in shmem */
1021                 if (!(overflow & BIT(hidx)))
1022                         continue;
1023
1024                 /*
1025                  * Keep a track of overflowed counters so that they can be started
1026                  * with updated initial value.
1027                  */
1028                 overflowed_ctrs |= BIT(lidx);
1029                 hw_evt = &event->hw;
1030                 /* Update the event states here so that we know the state while reading */
1031                 hw_evt->state |= PERF_HES_STOPPED;
1032                 riscv_pmu_event_update(event);
1033                 hw_evt->state |= PERF_HES_UPTODATE;
1034                 perf_sample_data_init(&data, 0, hw_evt->last_period);
1035                 if (riscv_pmu_event_set_period(event)) {
1036                         /*
1037                          * Unlike other ISAs, RISC-V don't have to disable interrupts
1038                          * to avoid throttling here. As per the specification, the
1039                          * interrupt remains disabled until the OF bit is set.
1040                          * Interrupts are enabled again only during the start.
1041                          * TODO: We will need to stop the guest counters once
1042                          * virtualization support is added.
1043                          */
1044                         perf_event_overflow(event, &data, regs);
1045                 }
1046                 /* Reset the state as we are going to start the counter after the loop */
1047                 hw_evt->state = 0;
1048         }
1049
1050         pmu_sbi_start_overflow_mask(pmu, overflowed_ctrs);
1051         perf_sample_event_took(sched_clock() - start_clock);
1052
1053         return IRQ_HANDLED;
1054 }
1055
1056 static int pmu_sbi_starting_cpu(unsigned int cpu, struct hlist_node *node)
1057 {
1058         struct riscv_pmu *pmu = hlist_entry_safe(node, struct riscv_pmu, node);
1059         struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
1060
1061         /*
1062          * We keep enabling userspace access to CYCLE, TIME and INSTRET via the
1063          * legacy option but that will be removed in the future.
1064          */
1065         if (sysctl_perf_user_access == SYSCTL_LEGACY)
1066                 csr_write(CSR_SCOUNTEREN, 0x7);
1067         else
1068                 csr_write(CSR_SCOUNTEREN, 0x2);
1069
1070         /* Stop all the counters so that they can be enabled from perf */
1071         pmu_sbi_stop_all(pmu);
1072
1073         if (riscv_pmu_use_irq) {
1074                 cpu_hw_evt->irq = riscv_pmu_irq;
1075                 ALT_SBI_PMU_OVF_CLEAR_PENDING(riscv_pmu_irq_mask);
1076                 enable_percpu_irq(riscv_pmu_irq, IRQ_TYPE_NONE);
1077         }
1078
1079         if (sbi_pmu_snapshot_available())
1080                 return pmu_sbi_snapshot_setup(pmu, cpu);
1081
1082         return 0;
1083 }
1084
1085 static int pmu_sbi_dying_cpu(unsigned int cpu, struct hlist_node *node)
1086 {
1087         if (riscv_pmu_use_irq) {
1088                 disable_percpu_irq(riscv_pmu_irq);
1089         }
1090
1091         /* Disable all counters access for user mode now */
1092         csr_write(CSR_SCOUNTEREN, 0x0);
1093
1094         if (sbi_pmu_snapshot_available())
1095                 return pmu_sbi_snapshot_disable();
1096
1097         return 0;
1098 }
1099
1100 static int pmu_sbi_setup_irqs(struct riscv_pmu *pmu, struct platform_device *pdev)
1101 {
1102         int ret;
1103         struct cpu_hw_events __percpu *hw_events = pmu->hw_events;
1104         struct irq_domain *domain = NULL;
1105
1106         if (riscv_isa_extension_available(NULL, SSCOFPMF)) {
1107                 riscv_pmu_irq_num = RV_IRQ_PMU;
1108                 riscv_pmu_use_irq = true;
1109         } else if (IS_ENABLED(CONFIG_ERRATA_THEAD_PMU) &&
1110                    riscv_cached_mvendorid(0) == THEAD_VENDOR_ID &&
1111                    riscv_cached_marchid(0) == 0 &&
1112                    riscv_cached_mimpid(0) == 0) {
1113                 riscv_pmu_irq_num = THEAD_C9XX_RV_IRQ_PMU;
1114                 riscv_pmu_use_irq = true;
1115         } else if (riscv_has_vendor_extension_unlikely(ANDES_VENDOR_ID,
1116                                                        RISCV_ISA_VENDOR_EXT_XANDESPMU) &&
1117                    IS_ENABLED(CONFIG_ANDES_CUSTOM_PMU)) {
1118                 riscv_pmu_irq_num = ANDES_SLI_CAUSE_BASE + ANDES_RV_IRQ_PMOVI;
1119                 riscv_pmu_use_irq = true;
1120         }
1121
1122         riscv_pmu_irq_mask = BIT(riscv_pmu_irq_num % BITS_PER_LONG);
1123
1124         if (!riscv_pmu_use_irq)
1125                 return -EOPNOTSUPP;
1126
1127         domain = irq_find_matching_fwnode(riscv_get_intc_hwnode(),
1128                                           DOMAIN_BUS_ANY);
1129         if (!domain) {
1130                 pr_err("Failed to find INTC IRQ root domain\n");
1131                 return -ENODEV;
1132         }
1133
1134         riscv_pmu_irq = irq_create_mapping(domain, riscv_pmu_irq_num);
1135         if (!riscv_pmu_irq) {
1136                 pr_err("Failed to map PMU interrupt for node\n");
1137                 return -ENODEV;
1138         }
1139
1140         ret = request_percpu_irq(riscv_pmu_irq, pmu_sbi_ovf_handler, "riscv-pmu", hw_events);
1141         if (ret) {
1142                 pr_err("registering percpu irq failed [%d]\n", ret);
1143                 return ret;
1144         }
1145
1146         return 0;
1147 }
1148
1149 #ifdef CONFIG_CPU_PM
1150 static int riscv_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
1151                                 void *v)
1152 {
1153         struct riscv_pmu *rvpmu = container_of(b, struct riscv_pmu, riscv_pm_nb);
1154         struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
1155         int enabled = bitmap_weight(cpuc->used_hw_ctrs, RISCV_MAX_COUNTERS);
1156         struct perf_event *event;
1157         int idx;
1158
1159         if (!enabled)
1160                 return NOTIFY_OK;
1161
1162         for (idx = 0; idx < RISCV_MAX_COUNTERS; idx++) {
1163                 event = cpuc->events[idx];
1164                 if (!event)
1165                         continue;
1166
1167                 switch (cmd) {
1168                 case CPU_PM_ENTER:
1169                         /*
1170                          * Stop and update the counter
1171                          */
1172                         riscv_pmu_stop(event, PERF_EF_UPDATE);
1173                         break;
1174                 case CPU_PM_EXIT:
1175                 case CPU_PM_ENTER_FAILED:
1176                         /*
1177                          * Restore and enable the counter.
1178                          */
1179                         riscv_pmu_start(event, PERF_EF_RELOAD);
1180                         break;
1181                 default:
1182                         break;
1183                 }
1184         }
1185
1186         return NOTIFY_OK;
1187 }
1188
1189 static int riscv_pm_pmu_register(struct riscv_pmu *pmu)
1190 {
1191         pmu->riscv_pm_nb.notifier_call = riscv_pm_pmu_notify;
1192         return cpu_pm_register_notifier(&pmu->riscv_pm_nb);
1193 }
1194
1195 static void riscv_pm_pmu_unregister(struct riscv_pmu *pmu)
1196 {
1197         cpu_pm_unregister_notifier(&pmu->riscv_pm_nb);
1198 }
1199 #else
1200 static inline int riscv_pm_pmu_register(struct riscv_pmu *pmu) { return 0; }
1201 static inline void riscv_pm_pmu_unregister(struct riscv_pmu *pmu) { }
1202 #endif
1203
1204 static void riscv_pmu_destroy(struct riscv_pmu *pmu)
1205 {
1206         if (sbi_v2_available) {
1207                 if (sbi_pmu_snapshot_available()) {
1208                         pmu_sbi_snapshot_disable();
1209                         pmu_sbi_snapshot_free(pmu);
1210                 }
1211         }
1212         riscv_pm_pmu_unregister(pmu);
1213         cpuhp_state_remove_instance(CPUHP_AP_PERF_RISCV_STARTING, &pmu->node);
1214 }
1215
1216 static void pmu_sbi_event_init(struct perf_event *event)
1217 {
1218         /*
1219          * The permissions are set at event_init so that we do not depend
1220          * on the sysctl value that can change.
1221          */
1222         if (sysctl_perf_user_access == SYSCTL_NO_USER_ACCESS)
1223                 event->hw.flags |= PERF_EVENT_FLAG_NO_USER_ACCESS;
1224         else if (sysctl_perf_user_access == SYSCTL_USER_ACCESS)
1225                 event->hw.flags |= PERF_EVENT_FLAG_USER_ACCESS;
1226         else
1227                 event->hw.flags |= PERF_EVENT_FLAG_LEGACY;
1228 }
1229
1230 static void pmu_sbi_event_mapped(struct perf_event *event, struct mm_struct *mm)
1231 {
1232         if (event->hw.flags & PERF_EVENT_FLAG_NO_USER_ACCESS)
1233                 return;
1234
1235         if (event->hw.flags & PERF_EVENT_FLAG_LEGACY) {
1236                 if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES &&
1237                     event->attr.config != PERF_COUNT_HW_INSTRUCTIONS) {
1238                         return;
1239                 }
1240         }
1241
1242         /*
1243          * The user mmapped the event to directly access it: this is where
1244          * we determine based on sysctl_perf_user_access if we grant userspace
1245          * the direct access to this event. That means that within the same
1246          * task, some events may be directly accessible and some other may not,
1247          * if the user changes the value of sysctl_perf_user_accesss in the
1248          * meantime.
1249          */
1250
1251         event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
1252
1253         /*
1254          * We must enable userspace access *before* advertising in the user page
1255          * that it is possible to do so to avoid any race.
1256          * And we must notify all cpus here because threads that currently run
1257          * on other cpus will try to directly access the counter too without
1258          * calling pmu_sbi_ctr_start.
1259          */
1260         if (event->hw.flags & PERF_EVENT_FLAG_USER_ACCESS)
1261                 on_each_cpu_mask(mm_cpumask(mm),
1262                                  pmu_sbi_set_scounteren, (void *)event, 1);
1263 }
1264
1265 static void pmu_sbi_event_unmapped(struct perf_event *event, struct mm_struct *mm)
1266 {
1267         if (event->hw.flags & PERF_EVENT_FLAG_NO_USER_ACCESS)
1268                 return;
1269
1270         if (event->hw.flags & PERF_EVENT_FLAG_LEGACY) {
1271                 if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES &&
1272                     event->attr.config != PERF_COUNT_HW_INSTRUCTIONS) {
1273                         return;
1274                 }
1275         }
1276
1277         /*
1278          * Here we can directly remove user access since the user does not have
1279          * access to the user page anymore so we avoid the racy window where the
1280          * user could have read cap_user_rdpmc to true right before we disable
1281          * it.
1282          */
1283         event->hw.flags &= ~PERF_EVENT_FLAG_USER_READ_CNT;
1284
1285         if (event->hw.flags & PERF_EVENT_FLAG_USER_ACCESS)
1286                 on_each_cpu_mask(mm_cpumask(mm),
1287                                  pmu_sbi_reset_scounteren, (void *)event, 1);
1288 }
1289
1290 static void riscv_pmu_update_counter_access(void *info)
1291 {
1292         if (sysctl_perf_user_access == SYSCTL_LEGACY)
1293                 csr_write(CSR_SCOUNTEREN, 0x7);
1294         else
1295                 csr_write(CSR_SCOUNTEREN, 0x2);
1296 }
1297
1298 static int riscv_pmu_proc_user_access_handler(const struct ctl_table *table,
1299                                               int write, void *buffer,
1300                                               size_t *lenp, loff_t *ppos)
1301 {
1302         int prev = sysctl_perf_user_access;
1303         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1304
1305         /*
1306          * Test against the previous value since we clear SCOUNTEREN when
1307          * sysctl_perf_user_access is set to SYSCTL_USER_ACCESS, but we should
1308          * not do that if that was already the case.
1309          */
1310         if (ret || !write || prev == sysctl_perf_user_access)
1311                 return ret;
1312
1313         on_each_cpu(riscv_pmu_update_counter_access, NULL, 1);
1314
1315         return 0;
1316 }
1317
1318 static struct ctl_table sbi_pmu_sysctl_table[] = {
1319         {
1320                 .procname       = "perf_user_access",
1321                 .data           = &sysctl_perf_user_access,
1322                 .maxlen         = sizeof(unsigned int),
1323                 .mode           = 0644,
1324                 .proc_handler   = riscv_pmu_proc_user_access_handler,
1325                 .extra1         = SYSCTL_ZERO,
1326                 .extra2         = SYSCTL_TWO,
1327         },
1328 };
1329
1330 static int pmu_sbi_device_probe(struct platform_device *pdev)
1331 {
1332         struct riscv_pmu *pmu = NULL;
1333         int ret = -ENODEV;
1334         int num_counters;
1335
1336         pr_info("SBI PMU extension is available\n");
1337         pmu = riscv_pmu_alloc();
1338         if (!pmu)
1339                 return -ENOMEM;
1340
1341         num_counters = pmu_sbi_find_num_ctrs();
1342         if (num_counters < 0) {
1343                 pr_err("SBI PMU extension doesn't provide any counters\n");
1344                 goto out_free;
1345         }
1346
1347         /* It is possible to get from SBI more than max number of counters */
1348         if (num_counters > RISCV_MAX_COUNTERS) {
1349                 num_counters = RISCV_MAX_COUNTERS;
1350                 pr_info("SBI returned more than maximum number of counters. Limiting the number of counters to %d\n", num_counters);
1351         }
1352
1353         /* cache all the information about counters now */
1354         if (pmu_sbi_get_ctrinfo(num_counters, &cmask))
1355                 goto out_free;
1356
1357         ret = pmu_sbi_setup_irqs(pmu, pdev);
1358         if (ret < 0) {
1359                 pr_info("Perf sampling/filtering is not supported as sscof extension is not available\n");
1360                 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1361                 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
1362         }
1363
1364         pmu->pmu.attr_groups = riscv_pmu_attr_groups;
1365         pmu->pmu.parent = &pdev->dev;
1366         pmu->cmask = cmask;
1367         pmu->ctr_start = pmu_sbi_ctr_start;
1368         pmu->ctr_stop = pmu_sbi_ctr_stop;
1369         pmu->event_map = pmu_sbi_event_map;
1370         pmu->ctr_get_idx = pmu_sbi_ctr_get_idx;
1371         pmu->ctr_get_width = pmu_sbi_ctr_get_width;
1372         pmu->ctr_clear_idx = pmu_sbi_ctr_clear_idx;
1373         pmu->ctr_read = pmu_sbi_ctr_read;
1374         pmu->event_init = pmu_sbi_event_init;
1375         pmu->event_mapped = pmu_sbi_event_mapped;
1376         pmu->event_unmapped = pmu_sbi_event_unmapped;
1377         pmu->csr_index = pmu_sbi_csr_index;
1378
1379         ret = riscv_pm_pmu_register(pmu);
1380         if (ret)
1381                 goto out_unregister;
1382
1383         ret = perf_pmu_register(&pmu->pmu, "cpu", PERF_TYPE_RAW);
1384         if (ret)
1385                 goto out_unregister;
1386
1387         /* SBI PMU Snapsphot is only available in SBI v2.0 */
1388         if (sbi_v2_available) {
1389                 int cpu;
1390
1391                 ret = pmu_sbi_snapshot_alloc(pmu);
1392                 if (ret)
1393                         goto out_unregister;
1394
1395                 cpu = get_cpu();
1396
1397                 ret = pmu_sbi_snapshot_setup(pmu, cpu);
1398                 if (ret) {
1399                         /* Snapshot is an optional feature. Continue if not available */
1400                         pmu_sbi_snapshot_free(pmu);
1401                 } else {
1402                         pr_info("SBI PMU snapshot detected\n");
1403                         /*
1404                          * We enable it once here for the boot cpu. If snapshot shmem setup
1405                          * fails during cpu hotplug process, it will fail to start the cpu
1406                          * as we can not handle hetergenous PMUs with different snapshot
1407                          * capability.
1408                          */
1409                         static_branch_enable(&sbi_pmu_snapshot_available);
1410                 }
1411                 put_cpu();
1412         }
1413
1414         register_sysctl("kernel", sbi_pmu_sysctl_table);
1415
1416         ret = cpuhp_state_add_instance(CPUHP_AP_PERF_RISCV_STARTING, &pmu->node);
1417         if (ret)
1418                 goto out_unregister;
1419
1420         /* Asynchronously check which standard events are available */
1421         schedule_work(&check_std_events_work);
1422
1423         return 0;
1424
1425 out_unregister:
1426         riscv_pmu_destroy(pmu);
1427
1428 out_free:
1429         kfree(pmu);
1430         return ret;
1431 }
1432
1433 static struct platform_driver pmu_sbi_driver = {
1434         .probe          = pmu_sbi_device_probe,
1435         .driver         = {
1436                 .name   = RISCV_PMU_SBI_PDEV_NAME,
1437         },
1438 };
1439
1440 static int __init pmu_sbi_devinit(void)
1441 {
1442         int ret;
1443         struct platform_device *pdev;
1444
1445         if (sbi_spec_version < sbi_mk_version(0, 3) ||
1446             !sbi_probe_extension(SBI_EXT_PMU)) {
1447                 return 0;
1448         }
1449
1450         if (sbi_spec_version >= sbi_mk_version(2, 0))
1451                 sbi_v2_available = true;
1452
1453         ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_RISCV_STARTING,
1454                                       "perf/riscv/pmu:starting",
1455                                       pmu_sbi_starting_cpu, pmu_sbi_dying_cpu);
1456         if (ret) {
1457                 pr_err("CPU hotplug notifier could not be registered: %d\n",
1458                        ret);
1459                 return ret;
1460         }
1461
1462         ret = platform_driver_register(&pmu_sbi_driver);
1463         if (ret)
1464                 return ret;
1465
1466         pdev = platform_device_register_simple(RISCV_PMU_SBI_PDEV_NAME, -1, NULL, 0);
1467         if (IS_ERR(pdev)) {
1468                 platform_driver_unregister(&pmu_sbi_driver);
1469                 return PTR_ERR(pdev);
1470         }
1471
1472         /* Notify legacy implementation that SBI pmu is available*/
1473         riscv_pmu_legacy_skip_init();
1474
1475         return ret;
1476 }
1477 device_initcall(pmu_sbi_devinit)
This page took 0.115898 seconds and 4 git commands to generate.