1 // SPDX-License-Identifier: GPL-2.0+
3 * drivers/net/phy/micrel.c
5 * Driver for Micrel PHYs
7 * Author: David J. Choi
9 * Copyright (c) 2010-2013 Micrel, Inc.
12 * Support : Micrel Phys:
13 * Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814
14 * 100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041
15 * ksz8021, ksz8031, ksz8051,
18 * Switch : ksz8873, ksz886x
22 #include <linux/bitfield.h>
23 #include <linux/ethtool_netlink.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/phy.h>
27 #include <linux/micrel_phy.h>
29 #include <linux/clk.h>
30 #include <linux/delay.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/ptp_clock.h>
33 #include <linux/ptp_classify.h>
34 #include <linux/net_tstamp.h>
35 #include <linux/gpio/consumer.h>
37 /* Operation Mode Strap Override */
38 #define MII_KSZPHY_OMSO 0x16
39 #define KSZPHY_OMSO_FACTORY_TEST BIT(15)
40 #define KSZPHY_OMSO_B_CAST_OFF BIT(9)
41 #define KSZPHY_OMSO_NAND_TREE_ON BIT(5)
42 #define KSZPHY_OMSO_RMII_OVERRIDE BIT(1)
43 #define KSZPHY_OMSO_MII_OVERRIDE BIT(0)
45 /* general Interrupt control/status reg in vendor specific block. */
46 #define MII_KSZPHY_INTCS 0x1B
47 #define KSZPHY_INTCS_JABBER BIT(15)
48 #define KSZPHY_INTCS_RECEIVE_ERR BIT(14)
49 #define KSZPHY_INTCS_PAGE_RECEIVE BIT(13)
50 #define KSZPHY_INTCS_PARELLEL BIT(12)
51 #define KSZPHY_INTCS_LINK_PARTNER_ACK BIT(11)
52 #define KSZPHY_INTCS_LINK_DOWN BIT(10)
53 #define KSZPHY_INTCS_REMOTE_FAULT BIT(9)
54 #define KSZPHY_INTCS_LINK_UP BIT(8)
55 #define KSZPHY_INTCS_ALL (KSZPHY_INTCS_LINK_UP |\
56 KSZPHY_INTCS_LINK_DOWN)
57 #define KSZPHY_INTCS_LINK_DOWN_STATUS BIT(2)
58 #define KSZPHY_INTCS_LINK_UP_STATUS BIT(0)
59 #define KSZPHY_INTCS_STATUS (KSZPHY_INTCS_LINK_DOWN_STATUS |\
60 KSZPHY_INTCS_LINK_UP_STATUS)
62 /* LinkMD Control/Status */
63 #define KSZ8081_LMD 0x1d
64 #define KSZ8081_LMD_ENABLE_TEST BIT(15)
65 #define KSZ8081_LMD_STAT_NORMAL 0
66 #define KSZ8081_LMD_STAT_OPEN 1
67 #define KSZ8081_LMD_STAT_SHORT 2
68 #define KSZ8081_LMD_STAT_FAIL 3
69 #define KSZ8081_LMD_STAT_MASK GENMASK(14, 13)
70 /* Short cable (<10 meter) has been detected by LinkMD */
71 #define KSZ8081_LMD_SHORT_INDICATOR BIT(12)
72 #define KSZ8081_LMD_DELTA_TIME_MASK GENMASK(8, 0)
74 #define KSZ9x31_LMD 0x12
75 #define KSZ9x31_LMD_VCT_EN BIT(15)
76 #define KSZ9x31_LMD_VCT_DIS_TX BIT(14)
77 #define KSZ9x31_LMD_VCT_PAIR(n) (((n) & 0x3) << 12)
78 #define KSZ9x31_LMD_VCT_SEL_RESULT 0
79 #define KSZ9x31_LMD_VCT_SEL_THRES_HI BIT(10)
80 #define KSZ9x31_LMD_VCT_SEL_THRES_LO BIT(11)
81 #define KSZ9x31_LMD_VCT_SEL_MASK GENMASK(11, 10)
82 #define KSZ9x31_LMD_VCT_ST_NORMAL 0
83 #define KSZ9x31_LMD_VCT_ST_OPEN 1
84 #define KSZ9x31_LMD_VCT_ST_SHORT 2
85 #define KSZ9x31_LMD_VCT_ST_FAIL 3
86 #define KSZ9x31_LMD_VCT_ST_MASK GENMASK(9, 8)
87 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID BIT(7)
88 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG BIT(6)
89 #define KSZ9x31_LMD_VCT_DATA_MASK100 BIT(5)
90 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP BIT(4)
91 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK GENMASK(3, 2)
92 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK GENMASK(1, 0)
93 #define KSZ9x31_LMD_VCT_DATA_MASK GENMASK(7, 0)
95 #define KSZPHY_WIRE_PAIR_MASK 0x3
97 #define LAN8814_CABLE_DIAG 0x12
98 #define LAN8814_CABLE_DIAG_STAT_MASK GENMASK(9, 8)
99 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK GENMASK(7, 0)
100 #define LAN8814_PAIR_BIT_SHIFT 12
102 #define LAN8814_WIRE_PAIR_MASK 0xF
104 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */
105 #define LAN8814_INTC 0x18
106 #define LAN8814_INTS 0x1B
108 #define LAN8814_INT_LINK_DOWN BIT(2)
109 #define LAN8814_INT_LINK_UP BIT(0)
110 #define LAN8814_INT_LINK (LAN8814_INT_LINK_UP |\
111 LAN8814_INT_LINK_DOWN)
113 #define LAN8814_INTR_CTRL_REG 0x34
114 #define LAN8814_INTR_CTRL_REG_POLARITY BIT(1)
115 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE BIT(0)
117 #define LAN8814_EEE_STATE 0x38
118 #define LAN8814_EEE_STATE_MASK2P5P BIT(10)
120 #define LAN8814_PD_CONTROLS 0x9d
121 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK GENMASK(3, 0)
122 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL 0xb
124 /* Represents 1ppm adjustment in 2^32 format with
125 * each nsec contains 4 clock cycles.
126 * The value is calculated as following: (1/1000000)/((2^-32)/4)
128 #define LAN8814_1PPM_FORMAT 17179
130 /* Represents 1ppm adjustment in 2^32 format with
131 * each nsec contains 8 clock cycles.
132 * The value is calculated as following: (1/1000000)/((2^-32)/8)
134 #define LAN8841_1PPM_FORMAT 34360
136 #define PTP_RX_VERSION 0x0248
137 #define PTP_TX_VERSION 0x0288
138 #define PTP_MAX_VERSION(x) (((x) & GENMASK(7, 0)) << 8)
139 #define PTP_MIN_VERSION(x) ((x) & GENMASK(7, 0))
141 #define PTP_RX_MOD 0x024F
142 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
143 #define PTP_RX_TIMESTAMP_EN 0x024D
144 #define PTP_TX_TIMESTAMP_EN 0x028D
146 #define PTP_TIMESTAMP_EN_SYNC_ BIT(0)
147 #define PTP_TIMESTAMP_EN_DREQ_ BIT(1)
148 #define PTP_TIMESTAMP_EN_PDREQ_ BIT(2)
149 #define PTP_TIMESTAMP_EN_PDRES_ BIT(3)
151 #define PTP_TX_PARSE_L2_ADDR_EN 0x0284
152 #define PTP_RX_PARSE_L2_ADDR_EN 0x0244
154 #define PTP_TX_PARSE_IP_ADDR_EN 0x0285
155 #define PTP_RX_PARSE_IP_ADDR_EN 0x0245
156 #define LTC_HARD_RESET 0x023F
157 #define LTC_HARD_RESET_ BIT(0)
159 #define TSU_HARD_RESET 0x02C1
160 #define TSU_HARD_RESET_ BIT(0)
162 #define PTP_CMD_CTL 0x0200
163 #define PTP_CMD_CTL_PTP_DISABLE_ BIT(0)
164 #define PTP_CMD_CTL_PTP_ENABLE_ BIT(1)
165 #define PTP_CMD_CTL_PTP_CLOCK_READ_ BIT(3)
166 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_ BIT(4)
167 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_ BIT(5)
168 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_ BIT(6)
170 #define PTP_COMMON_INT_ENA 0x0204
171 #define PTP_COMMON_INT_ENA_GPIO_CAP_EN BIT(2)
173 #define PTP_CLOCK_SET_SEC_HI 0x0205
174 #define PTP_CLOCK_SET_SEC_MID 0x0206
175 #define PTP_CLOCK_SET_SEC_LO 0x0207
176 #define PTP_CLOCK_SET_NS_HI 0x0208
177 #define PTP_CLOCK_SET_NS_LO 0x0209
179 #define PTP_CLOCK_READ_SEC_HI 0x0229
180 #define PTP_CLOCK_READ_SEC_MID 0x022A
181 #define PTP_CLOCK_READ_SEC_LO 0x022B
182 #define PTP_CLOCK_READ_NS_HI 0x022C
183 #define PTP_CLOCK_READ_NS_LO 0x022D
185 #define PTP_GPIO_SEL 0x0230
186 #define PTP_GPIO_SEL_GPIO_SEL(pin) ((pin) << 8)
187 #define PTP_GPIO_CAP_MAP_LO 0x0232
189 #define PTP_GPIO_CAP_EN 0x0233
190 #define PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) BIT(gpio)
191 #define PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8)
193 #define PTP_GPIO_RE_LTC_SEC_HI_CAP 0x0235
194 #define PTP_GPIO_RE_LTC_SEC_LO_CAP 0x0236
195 #define PTP_GPIO_RE_LTC_NS_HI_CAP 0x0237
196 #define PTP_GPIO_RE_LTC_NS_LO_CAP 0x0238
197 #define PTP_GPIO_FE_LTC_SEC_HI_CAP 0x0239
198 #define PTP_GPIO_FE_LTC_SEC_LO_CAP 0x023A
199 #define PTP_GPIO_FE_LTC_NS_HI_CAP 0x023B
200 #define PTP_GPIO_FE_LTC_NS_LO_CAP 0x023C
202 #define PTP_GPIO_CAP_STS 0x023D
203 #define PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(gpio) BIT(gpio)
204 #define PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(gpio) (BIT(gpio) << 8)
206 #define PTP_OPERATING_MODE 0x0241
207 #define PTP_OPERATING_MODE_STANDALONE_ BIT(0)
209 #define PTP_TX_MOD 0x028F
210 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ BIT(12)
211 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
213 #define PTP_RX_PARSE_CONFIG 0x0242
214 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_ BIT(0)
215 #define PTP_RX_PARSE_CONFIG_IPV4_EN_ BIT(1)
216 #define PTP_RX_PARSE_CONFIG_IPV6_EN_ BIT(2)
218 #define PTP_TX_PARSE_CONFIG 0x0282
219 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_ BIT(0)
220 #define PTP_TX_PARSE_CONFIG_IPV4_EN_ BIT(1)
221 #define PTP_TX_PARSE_CONFIG_IPV6_EN_ BIT(2)
223 #define PTP_CLOCK_RATE_ADJ_HI 0x020C
224 #define PTP_CLOCK_RATE_ADJ_LO 0x020D
225 #define PTP_CLOCK_RATE_ADJ_DIR_ BIT(15)
227 #define PTP_LTC_STEP_ADJ_HI 0x0212
228 #define PTP_LTC_STEP_ADJ_LO 0x0213
229 #define PTP_LTC_STEP_ADJ_DIR_ BIT(15)
231 #define LAN8814_INTR_STS_REG 0x0033
232 #define LAN8814_INTR_STS_REG_1588_TSU0_ BIT(0)
233 #define LAN8814_INTR_STS_REG_1588_TSU1_ BIT(1)
234 #define LAN8814_INTR_STS_REG_1588_TSU2_ BIT(2)
235 #define LAN8814_INTR_STS_REG_1588_TSU3_ BIT(3)
237 #define PTP_CAP_INFO 0x022A
238 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val) (((reg_val) & 0x0f00) >> 8)
239 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val) ((reg_val) & 0x000f)
241 #define PTP_TX_EGRESS_SEC_HI 0x0296
242 #define PTP_TX_EGRESS_SEC_LO 0x0297
243 #define PTP_TX_EGRESS_NS_HI 0x0294
244 #define PTP_TX_EGRESS_NS_LO 0x0295
245 #define PTP_TX_MSG_HEADER2 0x0299
247 #define PTP_RX_INGRESS_SEC_HI 0x0256
248 #define PTP_RX_INGRESS_SEC_LO 0x0257
249 #define PTP_RX_INGRESS_NS_HI 0x0254
250 #define PTP_RX_INGRESS_NS_LO 0x0255
251 #define PTP_RX_MSG_HEADER2 0x0259
253 #define PTP_TSU_INT_EN 0x0200
254 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ BIT(3)
255 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_ BIT(2)
256 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_ BIT(1)
257 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_ BIT(0)
259 #define PTP_TSU_INT_STS 0x0201
260 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_ BIT(3)
261 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_ BIT(2)
262 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_ BIT(1)
263 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_ BIT(0)
265 #define LAN8814_LED_CTRL_1 0x0
266 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_ BIT(6)
269 #define MII_KSZPHY_CTRL_1 0x1e
270 #define KSZ8081_CTRL1_MDIX_STAT BIT(4)
272 /* PHY Control 2 / PHY Control (if no PHY Control 1) */
273 #define MII_KSZPHY_CTRL_2 0x1f
274 #define MII_KSZPHY_CTRL MII_KSZPHY_CTRL_2
275 /* bitmap of PHY register to set interrupt mode */
276 #define KSZ8081_CTRL2_HP_MDIX BIT(15)
277 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT BIT(14)
278 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX BIT(13)
279 #define KSZ8081_CTRL2_FORCE_LINK BIT(11)
280 #define KSZ8081_CTRL2_POWER_SAVING BIT(10)
281 #define KSZPHY_CTRL_INT_ACTIVE_HIGH BIT(9)
282 #define KSZPHY_RMII_REF_CLK_SEL BIT(7)
284 /* Write/read to/from extended registers */
285 #define MII_KSZPHY_EXTREG 0x0b
286 #define KSZPHY_EXTREG_WRITE 0x8000
288 #define MII_KSZPHY_EXTREG_WRITE 0x0c
289 #define MII_KSZPHY_EXTREG_READ 0x0d
291 /* Extended registers */
292 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW 0x104
293 #define MII_KSZPHY_RX_DATA_PAD_SKEW 0x105
294 #define MII_KSZPHY_TX_DATA_PAD_SKEW 0x106
296 #define PS_TO_REG 200
299 #define LAN8814_PTP_GPIO_NUM 24
300 #define LAN8814_PTP_PEROUT_NUM 2
301 #define LAN8814_PTP_EXTTS_NUM 3
303 #define LAN8814_BUFFER_TIME 2
305 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13
306 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12
307 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11
308 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10
309 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9
310 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8
311 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7
312 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6
313 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5
314 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4
315 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3
316 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2
317 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1
318 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0
320 #define LAN8814_GPIO_EN1 0x20
321 #define LAN8814_GPIO_EN2 0x21
322 #define LAN8814_GPIO_DIR1 0x22
323 #define LAN8814_GPIO_DIR2 0x23
324 #define LAN8814_GPIO_BUF1 0x24
325 #define LAN8814_GPIO_BUF2 0x25
327 #define LAN8814_GPIO_EN_ADDR(pin) \
328 ((pin) > 15 ? LAN8814_GPIO_EN1 : LAN8814_GPIO_EN2)
329 #define LAN8814_GPIO_EN_BIT(pin) BIT(pin)
330 #define LAN8814_GPIO_DIR_ADDR(pin) \
331 ((pin) > 15 ? LAN8814_GPIO_DIR1 : LAN8814_GPIO_DIR2)
332 #define LAN8814_GPIO_DIR_BIT(pin) BIT(pin)
333 #define LAN8814_GPIO_BUF_ADDR(pin) \
334 ((pin) > 15 ? LAN8814_GPIO_BUF1 : LAN8814_GPIO_BUF2)
335 #define LAN8814_GPIO_BUF_BIT(pin) BIT(pin)
337 #define LAN8814_EVENT_A 0
338 #define LAN8814_EVENT_B 1
340 #define LAN8814_PTP_GENERAL_CONFIG 0x0201
341 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) \
342 ((event) ? GENMASK(11, 8) : GENMASK(7, 4))
343 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, value) \
344 (((value) & GENMASK(3, 0)) << (4 + ((event) << 2)))
345 #define LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) \
346 ((event) ? BIT(2) : BIT(0))
347 #define LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event) \
348 ((event) ? BIT(3) : BIT(1))
350 #define LAN8814_PTP_CLOCK_TARGET_SEC_HI(event) ((event) ? 0x21F : 0x215)
351 #define LAN8814_PTP_CLOCK_TARGET_SEC_LO(event) ((event) ? 0x220 : 0x216)
352 #define LAN8814_PTP_CLOCK_TARGET_NS_HI(event) ((event) ? 0x221 : 0x217)
353 #define LAN8814_PTP_CLOCK_TARGET_NS_LO(event) ((event) ? 0x222 : 0x218)
355 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event) ((event) ? 0x223 : 0x219)
356 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event) ((event) ? 0x224 : 0x21A)
357 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event) ((event) ? 0x225 : 0x21B)
358 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event) ((event) ? 0x226 : 0x21C)
360 /* Delay used to get the second part from the LTC */
361 #define LAN8841_GET_SEC_LTC_DELAY (500 * NSEC_PER_MSEC)
363 struct kszphy_hw_stat {
369 static struct kszphy_hw_stat kszphy_hw_stats[] = {
370 { "phy_receive_errors", 21, 16},
371 { "phy_idle_errors", 10, 8 },
376 u16 interrupt_level_mask;
378 unsigned long pair_mask;
379 u16 disable_dll_tx_bit;
380 u16 disable_dll_rx_bit;
381 u16 disable_dll_mask;
382 bool has_broadcast_disable;
383 bool has_nand_tree_disable;
384 bool has_rmii_ref_clk_sel;
387 /* Shared structure between the PHYs of the same package. */
388 struct lan8814_shared_priv {
389 struct phy_device *phydev;
390 struct ptp_clock *ptp_clock;
391 struct ptp_clock_info ptp_clock_info;
392 struct ptp_pin_desc *pin_config;
394 /* Lock for ptp_clock */
395 struct mutex shared_lock;
398 struct lan8814_ptp_rx_ts {
399 struct list_head list;
405 struct kszphy_ptp_priv {
406 struct mii_timestamper mii_ts;
407 struct phy_device *phydev;
409 struct sk_buff_head tx_queue;
410 struct sk_buff_head rx_queue;
412 struct list_head rx_ts_list;
413 /* Lock for Rx ts fifo */
414 spinlock_t rx_ts_lock;
417 enum hwtstamp_rx_filters rx_filter;
421 struct ptp_clock *ptp_clock;
422 struct ptp_clock_info ptp_clock_info;
423 /* Lock for ptp_clock */
424 struct mutex ptp_lock;
425 struct ptp_pin_desc *pin_config;
428 /* Lock for accessing seconds */
429 spinlock_t seconds_lock;
433 struct kszphy_ptp_priv ptp_priv;
434 const struct kszphy_type *type;
437 bool rmii_ref_clk_sel;
438 bool rmii_ref_clk_sel_val;
439 u64 stats[ARRAY_SIZE(kszphy_hw_stats)];
442 static const struct kszphy_type lan8814_type = {
443 .led_mode_reg = ~LAN8814_LED_CTRL_1,
444 .cable_diag_reg = LAN8814_CABLE_DIAG,
445 .pair_mask = LAN8814_WIRE_PAIR_MASK,
448 static const struct kszphy_type ksz886x_type = {
449 .cable_diag_reg = KSZ8081_LMD,
450 .pair_mask = KSZPHY_WIRE_PAIR_MASK,
453 static const struct kszphy_type ksz8021_type = {
454 .led_mode_reg = MII_KSZPHY_CTRL_2,
455 .has_broadcast_disable = true,
456 .has_nand_tree_disable = true,
457 .has_rmii_ref_clk_sel = true,
460 static const struct kszphy_type ksz8041_type = {
461 .led_mode_reg = MII_KSZPHY_CTRL_1,
464 static const struct kszphy_type ksz8051_type = {
465 .led_mode_reg = MII_KSZPHY_CTRL_2,
466 .has_nand_tree_disable = true,
469 static const struct kszphy_type ksz8081_type = {
470 .led_mode_reg = MII_KSZPHY_CTRL_2,
471 .has_broadcast_disable = true,
472 .has_nand_tree_disable = true,
473 .has_rmii_ref_clk_sel = true,
476 static const struct kszphy_type ks8737_type = {
477 .interrupt_level_mask = BIT(14),
480 static const struct kszphy_type ksz9021_type = {
481 .interrupt_level_mask = BIT(14),
484 static const struct kszphy_type ksz9131_type = {
485 .interrupt_level_mask = BIT(14),
486 .disable_dll_tx_bit = BIT(12),
487 .disable_dll_rx_bit = BIT(12),
488 .disable_dll_mask = BIT_MASK(12),
491 static const struct kszphy_type lan8841_type = {
492 .disable_dll_tx_bit = BIT(14),
493 .disable_dll_rx_bit = BIT(14),
494 .disable_dll_mask = BIT_MASK(14),
495 .cable_diag_reg = LAN8814_CABLE_DIAG,
496 .pair_mask = LAN8814_WIRE_PAIR_MASK,
499 static int kszphy_extended_write(struct phy_device *phydev,
502 phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum);
503 return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val);
506 static int kszphy_extended_read(struct phy_device *phydev,
509 phy_write(phydev, MII_KSZPHY_EXTREG, regnum);
510 return phy_read(phydev, MII_KSZPHY_EXTREG_READ);
513 static int kszphy_ack_interrupt(struct phy_device *phydev)
515 /* bit[7..0] int status, which is a read and clear register. */
518 rc = phy_read(phydev, MII_KSZPHY_INTCS);
520 return (rc < 0) ? rc : 0;
523 static int kszphy_config_intr(struct phy_device *phydev)
525 const struct kszphy_type *type = phydev->drv->driver_data;
529 if (type && type->interrupt_level_mask)
530 mask = type->interrupt_level_mask;
532 mask = KSZPHY_CTRL_INT_ACTIVE_HIGH;
534 /* set the interrupt pin active low */
535 temp = phy_read(phydev, MII_KSZPHY_CTRL);
539 phy_write(phydev, MII_KSZPHY_CTRL, temp);
541 /* enable / disable interrupts */
542 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
543 err = kszphy_ack_interrupt(phydev);
547 err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL);
549 err = phy_write(phydev, MII_KSZPHY_INTCS, 0);
553 err = kszphy_ack_interrupt(phydev);
559 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev)
563 irq_status = phy_read(phydev, MII_KSZPHY_INTCS);
564 if (irq_status < 0) {
569 if (!(irq_status & KSZPHY_INTCS_STATUS))
572 phy_trigger_machine(phydev);
577 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val)
581 ctrl = phy_read(phydev, MII_KSZPHY_CTRL);
586 ctrl |= KSZPHY_RMII_REF_CLK_SEL;
588 ctrl &= ~KSZPHY_RMII_REF_CLK_SEL;
590 return phy_write(phydev, MII_KSZPHY_CTRL, ctrl);
593 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val)
598 case MII_KSZPHY_CTRL_1:
601 case MII_KSZPHY_CTRL_2:
608 temp = phy_read(phydev, reg);
614 temp &= ~(3 << shift);
615 temp |= val << shift;
616 rc = phy_write(phydev, reg, temp);
619 phydev_err(phydev, "failed to set led mode\n");
624 /* Disable PHY address 0 as the broadcast address, so that it can be used as a
625 * unique (non-broadcast) address on a shared bus.
627 static int kszphy_broadcast_disable(struct phy_device *phydev)
631 ret = phy_read(phydev, MII_KSZPHY_OMSO);
635 ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF);
638 phydev_err(phydev, "failed to disable broadcast address\n");
643 static int kszphy_nand_tree_disable(struct phy_device *phydev)
647 ret = phy_read(phydev, MII_KSZPHY_OMSO);
651 if (!(ret & KSZPHY_OMSO_NAND_TREE_ON))
654 ret = phy_write(phydev, MII_KSZPHY_OMSO,
655 ret & ~KSZPHY_OMSO_NAND_TREE_ON);
658 phydev_err(phydev, "failed to disable NAND tree mode\n");
663 /* Some config bits need to be set again on resume, handle them here. */
664 static int kszphy_config_reset(struct phy_device *phydev)
666 struct kszphy_priv *priv = phydev->priv;
669 if (priv->rmii_ref_clk_sel) {
670 ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val);
673 "failed to set rmii reference clock\n");
678 if (priv->type && priv->led_mode >= 0)
679 kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode);
684 static int kszphy_config_init(struct phy_device *phydev)
686 struct kszphy_priv *priv = phydev->priv;
687 const struct kszphy_type *type;
694 if (type && type->has_broadcast_disable)
695 kszphy_broadcast_disable(phydev);
697 if (type && type->has_nand_tree_disable)
698 kszphy_nand_tree_disable(phydev);
700 return kszphy_config_reset(phydev);
703 static int ksz8041_fiber_mode(struct phy_device *phydev)
705 struct device_node *of_node = phydev->mdio.dev.of_node;
707 return of_property_read_bool(of_node, "micrel,fiber-mode");
710 static int ksz8041_config_init(struct phy_device *phydev)
712 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
714 /* Limit supported and advertised modes in fiber mode */
715 if (ksz8041_fiber_mode(phydev)) {
716 phydev->dev_flags |= MICREL_PHY_FXEN;
717 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
718 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
720 linkmode_and(phydev->supported, phydev->supported, mask);
721 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
723 linkmode_and(phydev->advertising, phydev->advertising, mask);
724 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
725 phydev->advertising);
726 phydev->autoneg = AUTONEG_DISABLE;
729 return kszphy_config_init(phydev);
732 static int ksz8041_config_aneg(struct phy_device *phydev)
734 /* Skip auto-negotiation in fiber mode */
735 if (phydev->dev_flags & MICREL_PHY_FXEN) {
736 phydev->speed = SPEED_100;
740 return genphy_config_aneg(phydev);
743 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev,
748 if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK))
751 ret = phy_read(phydev, MII_BMSR);
755 /* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same
756 * exact PHY ID. However, they can be told apart by the extended
757 * capability registers presence. The KSZ8051 PHY has them while
758 * the switch does not.
767 static int ksz8051_match_phy_device(struct phy_device *phydev)
769 return ksz8051_ksz8795_match_phy_device(phydev, true);
772 static int ksz8081_config_init(struct phy_device *phydev)
774 /* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line
775 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a
776 * pull-down is missing, the factory test mode should be cleared by
777 * manually writing a 0.
779 phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST);
781 return kszphy_config_init(phydev);
784 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl)
790 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX;
793 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX |
794 KSZ8081_CTRL2_MDI_MDI_X_SELECT;
796 case ETH_TP_MDI_AUTO:
803 return phy_modify(phydev, MII_KSZPHY_CTRL_2,
804 KSZ8081_CTRL2_HP_MDIX |
805 KSZ8081_CTRL2_MDI_MDI_X_SELECT |
806 KSZ8081_CTRL2_DISABLE_AUTO_MDIX,
807 KSZ8081_CTRL2_HP_MDIX | val);
810 static int ksz8081_config_aneg(struct phy_device *phydev)
814 ret = genphy_config_aneg(phydev);
818 /* The MDI-X configuration is automatically changed by the PHY after
819 * switching from autoneg off to on. So, take MDI-X configuration under
820 * own control and set it after autoneg configuration was done.
822 return ksz8081_config_mdix(phydev, phydev->mdix_ctrl);
825 static int ksz8081_mdix_update(struct phy_device *phydev)
829 ret = phy_read(phydev, MII_KSZPHY_CTRL_2);
833 if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) {
834 if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT)
835 phydev->mdix_ctrl = ETH_TP_MDI_X;
837 phydev->mdix_ctrl = ETH_TP_MDI;
839 phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
842 ret = phy_read(phydev, MII_KSZPHY_CTRL_1);
846 if (ret & KSZ8081_CTRL1_MDIX_STAT)
847 phydev->mdix = ETH_TP_MDI;
849 phydev->mdix = ETH_TP_MDI_X;
854 static int ksz8081_read_status(struct phy_device *phydev)
858 ret = ksz8081_mdix_update(phydev);
862 return genphy_read_status(phydev);
865 static int ksz8061_config_init(struct phy_device *phydev)
869 /* Chip can be powered down by the bootstrap code. */
870 ret = phy_read(phydev, MII_BMCR);
873 if (ret & BMCR_PDOWN) {
874 ret = phy_write(phydev, MII_BMCR, ret & ~BMCR_PDOWN);
877 usleep_range(1000, 2000);
880 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
884 return kszphy_config_init(phydev);
887 static int ksz8795_match_phy_device(struct phy_device *phydev)
889 return ksz8051_ksz8795_match_phy_device(phydev, false);
892 static int ksz9021_load_values_from_of(struct phy_device *phydev,
893 const struct device_node *of_node,
895 const char *field1, const char *field2,
896 const char *field3, const char *field4)
905 if (!of_property_read_u32(of_node, field1, &val1))
908 if (!of_property_read_u32(of_node, field2, &val2))
911 if (!of_property_read_u32(of_node, field3, &val3))
914 if (!of_property_read_u32(of_node, field4, &val4))
921 newval = kszphy_extended_read(phydev, reg);
926 newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0);
929 newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4);
932 newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8);
935 newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12);
937 return kszphy_extended_write(phydev, reg, newval);
940 static int ksz9021_config_init(struct phy_device *phydev)
942 const struct device_node *of_node;
943 const struct device *dev_walker;
945 /* The Micrel driver has a deprecated option to place phy OF
946 * properties in the MAC node. Walk up the tree of devices to
947 * find a device with an OF node.
949 dev_walker = &phydev->mdio.dev;
951 of_node = dev_walker->of_node;
952 dev_walker = dev_walker->parent;
954 } while (!of_node && dev_walker);
957 ksz9021_load_values_from_of(phydev, of_node,
958 MII_KSZPHY_CLK_CONTROL_PAD_SKEW,
959 "txen-skew-ps", "txc-skew-ps",
960 "rxdv-skew-ps", "rxc-skew-ps");
961 ksz9021_load_values_from_of(phydev, of_node,
962 MII_KSZPHY_RX_DATA_PAD_SKEW,
963 "rxd0-skew-ps", "rxd1-skew-ps",
964 "rxd2-skew-ps", "rxd3-skew-ps");
965 ksz9021_load_values_from_of(phydev, of_node,
966 MII_KSZPHY_TX_DATA_PAD_SKEW,
967 "txd0-skew-ps", "txd1-skew-ps",
968 "txd2-skew-ps", "txd3-skew-ps");
973 #define KSZ9031_PS_TO_REG 60
975 /* Extended registers */
976 /* MMD Address 0x0 */
977 #define MII_KSZ9031RN_FLP_BURST_TX_LO 3
978 #define MII_KSZ9031RN_FLP_BURST_TX_HI 4
980 /* MMD Address 0x2 */
981 #define MII_KSZ9031RN_CONTROL_PAD_SKEW 4
982 #define MII_KSZ9031RN_RX_CTL_M GENMASK(7, 4)
983 #define MII_KSZ9031RN_TX_CTL_M GENMASK(3, 0)
985 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW 5
986 #define MII_KSZ9031RN_RXD3 GENMASK(15, 12)
987 #define MII_KSZ9031RN_RXD2 GENMASK(11, 8)
988 #define MII_KSZ9031RN_RXD1 GENMASK(7, 4)
989 #define MII_KSZ9031RN_RXD0 GENMASK(3, 0)
991 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW 6
992 #define MII_KSZ9031RN_TXD3 GENMASK(15, 12)
993 #define MII_KSZ9031RN_TXD2 GENMASK(11, 8)
994 #define MII_KSZ9031RN_TXD1 GENMASK(7, 4)
995 #define MII_KSZ9031RN_TXD0 GENMASK(3, 0)
997 #define MII_KSZ9031RN_CLK_PAD_SKEW 8
998 #define MII_KSZ9031RN_GTX_CLK GENMASK(9, 5)
999 #define MII_KSZ9031RN_RX_CLK GENMASK(4, 0)
1001 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To
1002 * provide different RGMII options we need to configure delay offset
1003 * for each pad relative to build in delay.
1005 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of
1009 #define RX_CLK_ID 0x19
1011 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the
1012 * internal 1.2ns delay.
1015 #define RX_CLK_ND 0x0
1017 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */
1019 #define TX_CLK_ID 0x1f
1021 /* set tx and tx_clk to "No delay adjustment" to keep 0ns
1025 #define TX_CLK_ND 0xf
1027 /* MMD Address 0x1C */
1028 #define MII_KSZ9031RN_EDPD 0x23
1029 #define MII_KSZ9031RN_EDPD_ENABLE BIT(0)
1031 static int ksz9031_of_load_skew_values(struct phy_device *phydev,
1032 const struct device_node *of_node,
1033 u16 reg, size_t field_sz,
1034 const char *field[], u8 numfields,
1037 int val[4] = {-1, -2, -3, -4};
1044 for (i = 0; i < numfields; i++)
1045 if (!of_property_read_u32(of_node, field[i], val + i))
1053 if (matches < numfields)
1054 newval = phy_read_mmd(phydev, 2, reg);
1058 maxval = (field_sz == 4) ? 0xf : 0x1f;
1059 for (i = 0; i < numfields; i++)
1060 if (val[i] != -(i + 1)) {
1062 mask ^= maxval << (field_sz * i);
1063 newval = (newval & mask) |
1064 (((val[i] / KSZ9031_PS_TO_REG) & maxval)
1068 return phy_write_mmd(phydev, 2, reg, newval);
1071 /* Center KSZ9031RNX FLP timing at 16ms. */
1072 static int ksz9031_center_flp_timing(struct phy_device *phydev)
1076 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI,
1081 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO,
1086 return genphy_restart_aneg(phydev);
1089 /* Enable energy-detect power-down mode */
1090 static int ksz9031_enable_edpd(struct phy_device *phydev)
1094 reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD);
1097 return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD,
1098 reg | MII_KSZ9031RN_EDPD_ENABLE);
1101 static int ksz9031_config_rgmii_delay(struct phy_device *phydev)
1103 u16 rx, tx, rx_clk, tx_clk;
1106 switch (phydev->interface) {
1107 case PHY_INTERFACE_MODE_RGMII:
1113 case PHY_INTERFACE_MODE_RGMII_ID:
1119 case PHY_INTERFACE_MODE_RGMII_RXID:
1125 case PHY_INTERFACE_MODE_RGMII_TXID:
1135 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW,
1136 FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) |
1137 FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx));
1141 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW,
1142 FIELD_PREP(MII_KSZ9031RN_RXD3, rx) |
1143 FIELD_PREP(MII_KSZ9031RN_RXD2, rx) |
1144 FIELD_PREP(MII_KSZ9031RN_RXD1, rx) |
1145 FIELD_PREP(MII_KSZ9031RN_RXD0, rx));
1149 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW,
1150 FIELD_PREP(MII_KSZ9031RN_TXD3, tx) |
1151 FIELD_PREP(MII_KSZ9031RN_TXD2, tx) |
1152 FIELD_PREP(MII_KSZ9031RN_TXD1, tx) |
1153 FIELD_PREP(MII_KSZ9031RN_TXD0, tx));
1157 return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW,
1158 FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) |
1159 FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk));
1162 static int ksz9031_config_init(struct phy_device *phydev)
1164 const struct device_node *of_node;
1165 static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"};
1166 static const char *rx_data_skews[4] = {
1167 "rxd0-skew-ps", "rxd1-skew-ps",
1168 "rxd2-skew-ps", "rxd3-skew-ps"
1170 static const char *tx_data_skews[4] = {
1171 "txd0-skew-ps", "txd1-skew-ps",
1172 "txd2-skew-ps", "txd3-skew-ps"
1174 static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"};
1175 const struct device *dev_walker;
1178 result = ksz9031_enable_edpd(phydev);
1182 /* The Micrel driver has a deprecated option to place phy OF
1183 * properties in the MAC node. Walk up the tree of devices to
1184 * find a device with an OF node.
1186 dev_walker = &phydev->mdio.dev;
1188 of_node = dev_walker->of_node;
1189 dev_walker = dev_walker->parent;
1190 } while (!of_node && dev_walker);
1193 bool update = false;
1195 if (phy_interface_is_rgmii(phydev)) {
1196 result = ksz9031_config_rgmii_delay(phydev);
1201 ksz9031_of_load_skew_values(phydev, of_node,
1202 MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1203 clk_skews, 2, &update);
1205 ksz9031_of_load_skew_values(phydev, of_node,
1206 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1207 control_skews, 2, &update);
1209 ksz9031_of_load_skew_values(phydev, of_node,
1210 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1211 rx_data_skews, 4, &update);
1213 ksz9031_of_load_skew_values(phydev, of_node,
1214 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1215 tx_data_skews, 4, &update);
1217 if (update && !phy_interface_is_rgmii(phydev))
1219 "*-skew-ps values should be used only with RGMII PHY modes\n");
1221 /* Silicon Errata Sheet (DS80000691D or DS80000692D):
1222 * When the device links in the 1000BASE-T slave mode only,
1223 * the optional 125MHz reference output clock (CLK125_NDO)
1224 * has wide duty cycle variation.
1226 * The optional CLK125_NDO clock does not meet the RGMII
1227 * 45/55 percent (min/max) duty cycle requirement and therefore
1228 * cannot be used directly by the MAC side for clocking
1229 * applications that have setup/hold time requirements on
1230 * rising and falling clock edges.
1233 * Force the phy to be the master to receive a stable clock
1234 * which meets the duty cycle requirement.
1236 if (of_property_read_bool(of_node, "micrel,force-master")) {
1237 result = phy_read(phydev, MII_CTRL1000);
1239 goto err_force_master;
1241 /* enable master mode, config & prefer master */
1242 result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER;
1243 result = phy_write(phydev, MII_CTRL1000, result);
1245 goto err_force_master;
1249 return ksz9031_center_flp_timing(phydev);
1252 phydev_err(phydev, "failed to force the phy to master mode\n");
1256 #define KSZ9131_SKEW_5BIT_MAX 2400
1257 #define KSZ9131_SKEW_4BIT_MAX 800
1258 #define KSZ9131_OFFSET 700
1259 #define KSZ9131_STEP 100
1261 static int ksz9131_of_load_skew_values(struct phy_device *phydev,
1262 struct device_node *of_node,
1263 u16 reg, size_t field_sz,
1264 char *field[], u8 numfields)
1266 int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET),
1267 -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)};
1268 int skewval, skewmax = 0;
1275 /* psec properties in dts should mean x pico seconds */
1277 skewmax = KSZ9131_SKEW_5BIT_MAX;
1279 skewmax = KSZ9131_SKEW_4BIT_MAX;
1281 for (i = 0; i < numfields; i++)
1282 if (!of_property_read_s32(of_node, field[i], &skewval)) {
1283 if (skewval < -KSZ9131_OFFSET)
1284 skewval = -KSZ9131_OFFSET;
1285 else if (skewval > skewmax)
1288 val[i] = skewval + KSZ9131_OFFSET;
1295 if (matches < numfields)
1296 newval = phy_read_mmd(phydev, 2, reg);
1300 maxval = (field_sz == 4) ? 0xf : 0x1f;
1301 for (i = 0; i < numfields; i++)
1302 if (val[i] != -(i + 1 + KSZ9131_OFFSET)) {
1304 mask ^= maxval << (field_sz * i);
1305 newval = (newval & mask) |
1306 (((val[i] / KSZ9131_STEP) & maxval)
1310 return phy_write_mmd(phydev, 2, reg, newval);
1313 #define KSZ9131RN_MMD_COMMON_CTRL_REG 2
1314 #define KSZ9131RN_RXC_DLL_CTRL 76
1315 #define KSZ9131RN_TXC_DLL_CTRL 77
1316 #define KSZ9131RN_DLL_ENABLE_DELAY 0
1318 static int ksz9131_config_rgmii_delay(struct phy_device *phydev)
1320 const struct kszphy_type *type = phydev->drv->driver_data;
1321 u16 rxcdll_val, txcdll_val;
1324 switch (phydev->interface) {
1325 case PHY_INTERFACE_MODE_RGMII:
1326 rxcdll_val = type->disable_dll_rx_bit;
1327 txcdll_val = type->disable_dll_tx_bit;
1329 case PHY_INTERFACE_MODE_RGMII_ID:
1330 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1331 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1333 case PHY_INTERFACE_MODE_RGMII_RXID:
1334 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1335 txcdll_val = type->disable_dll_tx_bit;
1337 case PHY_INTERFACE_MODE_RGMII_TXID:
1338 rxcdll_val = type->disable_dll_rx_bit;
1339 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1345 ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1346 KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask,
1351 return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1352 KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask,
1356 /* Silicon Errata DS80000693B
1358 * When LEDs are configured in Individual Mode, LED1 is ON in a no-link
1359 * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves
1360 * according to the datasheet (off if there is no link).
1362 static int ksz9131_led_errata(struct phy_device *phydev)
1366 reg = phy_read_mmd(phydev, 2, 0);
1370 if (!(reg & BIT(4)))
1373 return phy_set_bits(phydev, 0x1e, BIT(9));
1376 static int ksz9131_config_init(struct phy_device *phydev)
1378 struct device_node *of_node;
1379 char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"};
1380 char *rx_data_skews[4] = {
1381 "rxd0-skew-psec", "rxd1-skew-psec",
1382 "rxd2-skew-psec", "rxd3-skew-psec"
1384 char *tx_data_skews[4] = {
1385 "txd0-skew-psec", "txd1-skew-psec",
1386 "txd2-skew-psec", "txd3-skew-psec"
1388 char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"};
1389 const struct device *dev_walker;
1392 phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1394 dev_walker = &phydev->mdio.dev;
1396 of_node = dev_walker->of_node;
1397 dev_walker = dev_walker->parent;
1398 } while (!of_node && dev_walker);
1403 if (phy_interface_is_rgmii(phydev)) {
1404 ret = ksz9131_config_rgmii_delay(phydev);
1409 ret = ksz9131_of_load_skew_values(phydev, of_node,
1410 MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1415 ret = ksz9131_of_load_skew_values(phydev, of_node,
1416 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1421 ret = ksz9131_of_load_skew_values(phydev, of_node,
1422 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1427 ret = ksz9131_of_load_skew_values(phydev, of_node,
1428 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1433 ret = ksz9131_led_errata(phydev);
1440 #define MII_KSZ9131_AUTO_MDIX 0x1C
1441 #define MII_KSZ9131_AUTO_MDI_SET BIT(7)
1442 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF BIT(6)
1443 #define MII_KSZ9131_DIG_AXAN_STS 0x14
1444 #define MII_KSZ9131_DIG_AXAN_STS_LINK_DET BIT(14)
1445 #define MII_KSZ9131_DIG_AXAN_STS_A_SELECT BIT(12)
1447 static int ksz9131_mdix_update(struct phy_device *phydev)
1451 if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) {
1452 phydev->mdix = phydev->mdix_ctrl;
1454 ret = phy_read(phydev, MII_KSZ9131_DIG_AXAN_STS);
1458 if (ret & MII_KSZ9131_DIG_AXAN_STS_LINK_DET) {
1459 if (ret & MII_KSZ9131_DIG_AXAN_STS_A_SELECT)
1460 phydev->mdix = ETH_TP_MDI;
1462 phydev->mdix = ETH_TP_MDI_X;
1464 phydev->mdix = ETH_TP_MDI_INVALID;
1471 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl)
1477 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1478 MII_KSZ9131_AUTO_MDI_SET;
1481 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF;
1483 case ETH_TP_MDI_AUTO:
1490 return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX,
1491 MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1492 MII_KSZ9131_AUTO_MDI_SET, val);
1495 static int ksz9131_read_status(struct phy_device *phydev)
1499 ret = ksz9131_mdix_update(phydev);
1503 return genphy_read_status(phydev);
1506 static int ksz9131_config_aneg(struct phy_device *phydev)
1510 ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl);
1514 return genphy_config_aneg(phydev);
1517 static int ksz9477_get_features(struct phy_device *phydev)
1521 ret = genphy_read_abilities(phydev);
1525 /* The "EEE control and capability 1" (Register 3.20) seems to be
1526 * influenced by the "EEE advertisement 1" (Register 7.60). Changes
1527 * on the 7.60 will affect 3.20. So, we need to construct our own list
1529 * KSZ8563R should have 100BaseTX/Full only.
1531 linkmode_and(phydev->supported_eee, phydev->supported,
1532 PHY_EEE_CAP1_FEATURES);
1537 #define KSZ8873MLL_GLOBAL_CONTROL_4 0x06
1538 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX BIT(6)
1539 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED BIT(4)
1540 static int ksz8873mll_read_status(struct phy_device *phydev)
1545 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1547 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1549 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX)
1550 phydev->duplex = DUPLEX_HALF;
1552 phydev->duplex = DUPLEX_FULL;
1554 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED)
1555 phydev->speed = SPEED_10;
1557 phydev->speed = SPEED_100;
1560 phydev->pause = phydev->asym_pause = 0;
1565 static int ksz9031_get_features(struct phy_device *phydev)
1569 ret = genphy_read_abilities(phydev);
1573 /* Silicon Errata Sheet (DS80000691D or DS80000692D):
1574 * Whenever the device's Asymmetric Pause capability is set to 1,
1575 * link-up may fail after a link-up to link-down transition.
1577 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue
1580 * Do not enable the Asymmetric Pause capability bit.
1582 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
1584 /* We force setting the Pause capability as the core will force the
1585 * Asymmetric Pause capability to 1 otherwise.
1587 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
1592 static int ksz9031_read_status(struct phy_device *phydev)
1597 err = genphy_read_status(phydev);
1601 /* Make sure the PHY is not broken. Read idle error count,
1602 * and reset the PHY if it is maxed out.
1604 regval = phy_read(phydev, MII_STAT1000);
1605 if ((regval & 0xFF) == 0xFF) {
1606 phy_init_hw(phydev);
1608 if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev))
1609 phydev->drv->config_intr(phydev);
1610 return genphy_config_aneg(phydev);
1616 static int ksz9x31_cable_test_start(struct phy_device *phydev)
1618 struct kszphy_priv *priv = phydev->priv;
1621 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1622 * Prior to running the cable diagnostics, Auto-negotiation should
1623 * be disabled, full duplex set and the link speed set to 1000Mbps
1624 * via the Basic Control Register.
1626 ret = phy_modify(phydev, MII_BMCR,
1627 BMCR_SPEED1000 | BMCR_FULLDPLX |
1628 BMCR_ANENABLE | BMCR_SPEED100,
1629 BMCR_SPEED1000 | BMCR_FULLDPLX);
1633 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1634 * The Master-Slave configuration should be set to Slave by writing
1635 * a value of 0x1000 to the Auto-Negotiation Master Slave Control
1638 ret = phy_read(phydev, MII_CTRL1000);
1642 /* Cache these bits, they need to be restored once LinkMD finishes. */
1643 priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1644 ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1645 ret |= CTL1000_ENABLE_MASTER;
1647 return phy_write(phydev, MII_CTRL1000, ret);
1650 static int ksz9x31_cable_test_result_trans(u16 status)
1652 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1653 case KSZ9x31_LMD_VCT_ST_NORMAL:
1654 return ETHTOOL_A_CABLE_RESULT_CODE_OK;
1655 case KSZ9x31_LMD_VCT_ST_OPEN:
1656 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
1657 case KSZ9x31_LMD_VCT_ST_SHORT:
1658 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
1659 case KSZ9x31_LMD_VCT_ST_FAIL:
1662 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
1666 static bool ksz9x31_cable_test_failed(u16 status)
1668 int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status);
1670 return stat == KSZ9x31_LMD_VCT_ST_FAIL;
1673 static bool ksz9x31_cable_test_fault_length_valid(u16 status)
1675 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1676 case KSZ9x31_LMD_VCT_ST_OPEN:
1678 case KSZ9x31_LMD_VCT_ST_SHORT:
1684 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat)
1686 int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat);
1688 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1690 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity
1692 if (phydev_id_compare(phydev, PHY_ID_KSZ9131))
1693 dt = clamp(dt - 22, 0, 255);
1695 return (dt * 400) / 10;
1698 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev)
1702 ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val,
1703 !(val & KSZ9x31_LMD_VCT_EN),
1704 30000, 100000, true);
1706 return ret < 0 ? ret : 0;
1709 static int ksz9x31_cable_test_get_pair(int pair)
1711 static const int ethtool_pair[] = {
1712 ETHTOOL_A_CABLE_PAIR_A,
1713 ETHTOOL_A_CABLE_PAIR_B,
1714 ETHTOOL_A_CABLE_PAIR_C,
1715 ETHTOOL_A_CABLE_PAIR_D,
1718 return ethtool_pair[pair];
1721 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair)
1725 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1726 * To test each individual cable pair, set the cable pair in the Cable
1727 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable
1728 * Diagnostic Register, along with setting the Cable Diagnostics Test
1729 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit
1730 * will self clear when the test is concluded.
1732 ret = phy_write(phydev, KSZ9x31_LMD,
1733 KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair));
1737 ret = ksz9x31_cable_test_wait_for_completion(phydev);
1741 val = phy_read(phydev, KSZ9x31_LMD);
1745 if (ksz9x31_cable_test_failed(val))
1748 ret = ethnl_cable_test_result(phydev,
1749 ksz9x31_cable_test_get_pair(pair),
1750 ksz9x31_cable_test_result_trans(val));
1754 if (!ksz9x31_cable_test_fault_length_valid(val))
1757 return ethnl_cable_test_fault_length(phydev,
1758 ksz9x31_cable_test_get_pair(pair),
1759 ksz9x31_cable_test_fault_length(phydev, val));
1762 static int ksz9x31_cable_test_get_status(struct phy_device *phydev,
1765 struct kszphy_priv *priv = phydev->priv;
1766 unsigned long pair_mask = 0xf;
1772 /* Try harder if link partner is active */
1773 while (pair_mask && retries--) {
1774 for_each_set_bit(pair, &pair_mask, 4) {
1775 ret = ksz9x31_cable_test_one_pair(phydev, pair);
1780 clear_bit(pair, &pair_mask);
1782 /* If link partner is in autonegotiation mode it will send 2ms
1783 * of FLPs with at least 6ms of silence.
1784 * Add 2ms sleep to have better chances to hit this silence.
1787 usleep_range(2000, 3000);
1790 /* Report remaining unfinished pair result as unknown. */
1791 for_each_set_bit(pair, &pair_mask, 4) {
1792 ret = ethnl_cable_test_result(phydev,
1793 ksz9x31_cable_test_get_pair(pair),
1794 ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC);
1799 /* Restore cached bits from before LinkMD got started. */
1800 rv = phy_modify(phydev, MII_CTRL1000,
1801 CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER,
1802 priv->vct_ctrl1000);
1809 static int ksz8873mll_config_aneg(struct phy_device *phydev)
1814 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl)
1820 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX;
1823 /* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit
1824 * counter intuitive, the "-X" in "1 = Force MDI" in the data
1825 * sheet seems to be missing:
1826 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins)
1827 * 0 = Normal operation (transmit on TX+/TX- pins)
1829 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI;
1831 case ETH_TP_MDI_AUTO:
1838 return phy_modify(phydev, MII_BMCR,
1839 KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI |
1840 KSZ886X_BMCR_DISABLE_AUTO_MDIX,
1841 KSZ886X_BMCR_HP_MDIX | val);
1844 static int ksz886x_config_aneg(struct phy_device *phydev)
1848 ret = genphy_config_aneg(phydev);
1852 if (phydev->autoneg != AUTONEG_ENABLE) {
1853 /* When autonegotation is disabled, we need to manually force
1854 * the link state. If we don't do this, the PHY will keep
1855 * sending Fast Link Pulses (FLPs) which are part of the
1856 * autonegotiation process. This is not desired when
1857 * autonegotiation is off.
1859 ret = phy_set_bits(phydev, MII_KSZPHY_CTRL,
1860 KSZ886X_CTRL_FORCE_LINK);
1864 /* If we had previously forced the link state, we need to
1865 * clear KSZ886X_CTRL_FORCE_LINK bit now. Otherwise, the PHY
1866 * will not perform autonegotiation.
1868 ret = phy_clear_bits(phydev, MII_KSZPHY_CTRL,
1869 KSZ886X_CTRL_FORCE_LINK);
1874 /* The MDI-X configuration is automatically changed by the PHY after
1875 * switching from autoneg off to on. So, take MDI-X configuration under
1876 * own control and set it after autoneg configuration was done.
1878 return ksz886x_config_mdix(phydev, phydev->mdix_ctrl);
1881 static int ksz886x_mdix_update(struct phy_device *phydev)
1885 ret = phy_read(phydev, MII_BMCR);
1889 if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) {
1890 if (ret & KSZ886X_BMCR_FORCE_MDI)
1891 phydev->mdix_ctrl = ETH_TP_MDI_X;
1893 phydev->mdix_ctrl = ETH_TP_MDI;
1895 phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1898 ret = phy_read(phydev, MII_KSZPHY_CTRL);
1902 /* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */
1903 if (ret & KSZ886X_CTRL_MDIX_STAT)
1904 phydev->mdix = ETH_TP_MDI_X;
1906 phydev->mdix = ETH_TP_MDI;
1911 static int ksz886x_read_status(struct phy_device *phydev)
1915 ret = ksz886x_mdix_update(phydev);
1919 return genphy_read_status(phydev);
1922 struct ksz9477_errata_write {
1928 static const struct ksz9477_errata_write ksz9477_errata_writes[] = {
1929 /* Register settings are needed to improve PHY receive performance */
1930 {0x01, 0x6f, 0xdd0b},
1931 {0x01, 0x8f, 0x6032},
1932 {0x01, 0x9d, 0x248c},
1933 {0x01, 0x75, 0x0060},
1934 {0x01, 0xd3, 0x7777},
1935 {0x1c, 0x06, 0x3008},
1936 {0x1c, 0x08, 0x2000},
1938 /* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */
1939 {0x1c, 0x04, 0x00d0},
1941 /* Register settings are required to meet data sheet supply current specifications */
1942 {0x1c, 0x13, 0x6eff},
1943 {0x1c, 0x14, 0xe6ff},
1944 {0x1c, 0x15, 0x6eff},
1945 {0x1c, 0x16, 0xe6ff},
1946 {0x1c, 0x17, 0x00ff},
1947 {0x1c, 0x18, 0x43ff},
1948 {0x1c, 0x19, 0xc3ff},
1949 {0x1c, 0x1a, 0x6fff},
1950 {0x1c, 0x1b, 0x07ff},
1951 {0x1c, 0x1c, 0x0fff},
1952 {0x1c, 0x1d, 0xe7ff},
1953 {0x1c, 0x1e, 0xefff},
1954 {0x1c, 0x20, 0xeeee},
1957 static int ksz9477_phy_errata(struct phy_device *phydev)
1962 /* Apply PHY settings to address errata listed in
1963 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1964 * Silicon Errata and Data Sheet Clarification documents.
1966 * Document notes: Before configuring the PHY MMD registers, it is
1967 * necessary to set the PHY to 100 Mbps speed with auto-negotiation
1968 * disabled by writing to register 0xN100-0xN101. After writing the
1969 * MMD registers, and after all errata workarounds that involve PHY
1970 * register settings, write register 0xN100-0xN101 again to enable
1971 * and restart auto-negotiation.
1973 err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX);
1977 for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) {
1978 const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i];
1980 err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val);
1985 err = genphy_restart_aneg(phydev);
1992 static int ksz9477_config_init(struct phy_device *phydev)
1996 /* Only KSZ9897 family of switches needs this fix. */
1997 if ((phydev->phy_id & 0xf) == 1) {
1998 err = ksz9477_phy_errata(phydev);
2003 /* According to KSZ9477 Errata DS80000754C (Module 4) all EEE modes
2004 * in this switch shall be regarded as broken.
2006 if (phydev->dev_flags & MICREL_NO_EEE)
2007 phydev->eee_broken_modes = -1;
2009 return kszphy_config_init(phydev);
2012 static int kszphy_get_sset_count(struct phy_device *phydev)
2014 return ARRAY_SIZE(kszphy_hw_stats);
2017 static void kszphy_get_strings(struct phy_device *phydev, u8 *data)
2021 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) {
2022 strscpy(data + i * ETH_GSTRING_LEN,
2023 kszphy_hw_stats[i].string, ETH_GSTRING_LEN);
2027 static u64 kszphy_get_stat(struct phy_device *phydev, int i)
2029 struct kszphy_hw_stat stat = kszphy_hw_stats[i];
2030 struct kszphy_priv *priv = phydev->priv;
2034 val = phy_read(phydev, stat.reg);
2038 val = val & ((1 << stat.bits) - 1);
2039 priv->stats[i] += val;
2040 ret = priv->stats[i];
2046 static void kszphy_get_stats(struct phy_device *phydev,
2047 struct ethtool_stats *stats, u64 *data)
2051 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
2052 data[i] = kszphy_get_stat(phydev, i);
2055 static int kszphy_suspend(struct phy_device *phydev)
2057 /* Disable PHY Interrupts */
2058 if (phy_interrupt_is_valid(phydev)) {
2059 phydev->interrupts = PHY_INTERRUPT_DISABLED;
2060 if (phydev->drv->config_intr)
2061 phydev->drv->config_intr(phydev);
2064 return genphy_suspend(phydev);
2067 static void kszphy_parse_led_mode(struct phy_device *phydev)
2069 const struct kszphy_type *type = phydev->drv->driver_data;
2070 const struct device_node *np = phydev->mdio.dev.of_node;
2071 struct kszphy_priv *priv = phydev->priv;
2074 if (type && type->led_mode_reg) {
2075 ret = of_property_read_u32(np, "micrel,led-mode",
2079 priv->led_mode = -1;
2081 if (priv->led_mode > 3) {
2082 phydev_err(phydev, "invalid led mode: 0x%02x\n",
2084 priv->led_mode = -1;
2087 priv->led_mode = -1;
2091 static int kszphy_resume(struct phy_device *phydev)
2095 genphy_resume(phydev);
2097 /* After switching from power-down to normal mode, an internal global
2098 * reset is automatically generated. Wait a minimum of 1 ms before
2099 * read/write access to the PHY registers.
2101 usleep_range(1000, 2000);
2103 ret = kszphy_config_reset(phydev);
2107 /* Enable PHY Interrupts */
2108 if (phy_interrupt_is_valid(phydev)) {
2109 phydev->interrupts = PHY_INTERRUPT_ENABLED;
2110 if (phydev->drv->config_intr)
2111 phydev->drv->config_intr(phydev);
2117 static int ksz9477_resume(struct phy_device *phydev)
2121 /* No need to initialize registers if not powered down. */
2122 ret = phy_read(phydev, MII_BMCR);
2125 if (!(ret & BMCR_PDOWN))
2128 genphy_resume(phydev);
2130 /* After switching from power-down to normal mode, an internal global
2131 * reset is automatically generated. Wait a minimum of 1 ms before
2132 * read/write access to the PHY registers.
2134 usleep_range(1000, 2000);
2136 /* Only KSZ9897 family of switches needs this fix. */
2137 if ((phydev->phy_id & 0xf) == 1) {
2138 ret = ksz9477_phy_errata(phydev);
2143 /* Enable PHY Interrupts */
2144 if (phy_interrupt_is_valid(phydev)) {
2145 phydev->interrupts = PHY_INTERRUPT_ENABLED;
2146 if (phydev->drv->config_intr)
2147 phydev->drv->config_intr(phydev);
2153 static int ksz8061_resume(struct phy_device *phydev)
2157 /* This function can be called twice when the Ethernet device is on. */
2158 ret = phy_read(phydev, MII_BMCR);
2161 if (!(ret & BMCR_PDOWN))
2164 genphy_resume(phydev);
2165 usleep_range(1000, 2000);
2167 /* Re-program the value after chip is reset. */
2168 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
2172 /* Enable PHY Interrupts */
2173 if (phy_interrupt_is_valid(phydev)) {
2174 phydev->interrupts = PHY_INTERRUPT_ENABLED;
2175 if (phydev->drv->config_intr)
2176 phydev->drv->config_intr(phydev);
2182 static int kszphy_probe(struct phy_device *phydev)
2184 const struct kszphy_type *type = phydev->drv->driver_data;
2185 const struct device_node *np = phydev->mdio.dev.of_node;
2186 struct kszphy_priv *priv;
2189 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
2193 phydev->priv = priv;
2197 kszphy_parse_led_mode(phydev);
2199 clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, "rmii-ref");
2200 /* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */
2201 if (!IS_ERR_OR_NULL(clk)) {
2202 unsigned long rate = clk_get_rate(clk);
2203 bool rmii_ref_clk_sel_25_mhz;
2206 priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel;
2207 rmii_ref_clk_sel_25_mhz = of_property_read_bool(np,
2208 "micrel,rmii-reference-clock-select-25-mhz");
2210 if (rate > 24500000 && rate < 25500000) {
2211 priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz;
2212 } else if (rate > 49500000 && rate < 50500000) {
2213 priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz;
2215 phydev_err(phydev, "Clock rate out of range: %ld\n",
2220 /* unnamed clock from the generic ethernet-phy binding */
2221 clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, NULL);
2223 return PTR_ERR(clk);
2226 if (ksz8041_fiber_mode(phydev))
2227 phydev->port = PORT_FIBRE;
2229 /* Support legacy board-file configuration */
2230 if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) {
2231 priv->rmii_ref_clk_sel = true;
2232 priv->rmii_ref_clk_sel_val = true;
2238 static int lan8814_cable_test_start(struct phy_device *phydev)
2240 /* If autoneg is enabled, we won't be able to test cross pair
2241 * short. In this case, the PHY will "detect" a link and
2242 * confuse the internal state machine - disable auto neg here.
2243 * Set the speed to 1000mbit and full duplex.
2245 return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100,
2246 BMCR_SPEED1000 | BMCR_FULLDPLX);
2249 static int ksz886x_cable_test_start(struct phy_device *phydev)
2251 if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA)
2254 /* If autoneg is enabled, we won't be able to test cross pair
2255 * short. In this case, the PHY will "detect" a link and
2256 * confuse the internal state machine - disable auto neg here.
2257 * If autoneg is disabled, we should set the speed to 10mbit.
2259 return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100);
2262 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask)
2264 switch (FIELD_GET(mask, status)) {
2265 case KSZ8081_LMD_STAT_NORMAL:
2266 return ETHTOOL_A_CABLE_RESULT_CODE_OK;
2267 case KSZ8081_LMD_STAT_SHORT:
2268 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
2269 case KSZ8081_LMD_STAT_OPEN:
2270 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
2271 case KSZ8081_LMD_STAT_FAIL:
2274 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
2278 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask)
2280 return FIELD_GET(mask, status) ==
2281 KSZ8081_LMD_STAT_FAIL;
2284 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask)
2286 switch (FIELD_GET(mask, status)) {
2287 case KSZ8081_LMD_STAT_OPEN:
2289 case KSZ8081_LMD_STAT_SHORT:
2295 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev,
2296 u16 status, u16 data_mask)
2300 /* According to the data sheet the distance to the fault is
2301 * DELTA_TIME * 0.4 meters for ksz phys.
2302 * (DELTA_TIME - 22) * 0.8 for lan8814 phy.
2304 dt = FIELD_GET(data_mask, status);
2306 if (phydev_id_compare(phydev, PHY_ID_LAN8814))
2307 return ((dt - 22) * 800) / 10;
2309 return (dt * 400) / 10;
2312 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev)
2314 const struct kszphy_type *type = phydev->drv->driver_data;
2317 ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val,
2318 !(val & KSZ8081_LMD_ENABLE_TEST),
2319 30000, 100000, true);
2321 return ret < 0 ? ret : 0;
2324 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair)
2326 static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A,
2327 ETHTOOL_A_CABLE_PAIR_B,
2328 ETHTOOL_A_CABLE_PAIR_C,
2329 ETHTOOL_A_CABLE_PAIR_D,
2335 val = KSZ8081_LMD_ENABLE_TEST;
2336 val = val | (pair << LAN8814_PAIR_BIT_SHIFT);
2338 ret = phy_write(phydev, LAN8814_CABLE_DIAG, val);
2342 ret = ksz886x_cable_test_wait_for_completion(phydev);
2346 val = phy_read(phydev, LAN8814_CABLE_DIAG);
2350 if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK))
2353 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2354 ksz886x_cable_test_result_trans(val,
2355 LAN8814_CABLE_DIAG_STAT_MASK
2360 if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK))
2363 fault_length = ksz886x_cable_test_fault_length(phydev, val,
2364 LAN8814_CABLE_DIAG_VCT_DATA_MASK);
2366 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2369 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair)
2371 static const int ethtool_pair[] = {
2372 ETHTOOL_A_CABLE_PAIR_A,
2373 ETHTOOL_A_CABLE_PAIR_B,
2378 /* There is no way to choice the pair, like we do one ksz9031.
2379 * We can workaround this limitation by using the MDI-X functionality.
2384 mdix = ETH_TP_MDI_X;
2386 switch (phydev->phy_id & MICREL_PHY_ID_MASK) {
2387 case PHY_ID_KSZ8081:
2388 ret = ksz8081_config_mdix(phydev, mdix);
2390 case PHY_ID_KSZ886X:
2391 ret = ksz886x_config_mdix(phydev, mdix);
2400 /* Now we are ready to fire. This command will send a 100ns pulse
2403 ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST);
2407 ret = ksz886x_cable_test_wait_for_completion(phydev);
2411 val = phy_read(phydev, KSZ8081_LMD);
2415 if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK))
2418 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2419 ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK));
2423 if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK))
2426 fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK);
2428 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2431 static int ksz886x_cable_test_get_status(struct phy_device *phydev,
2434 const struct kszphy_type *type = phydev->drv->driver_data;
2435 unsigned long pair_mask = type->pair_mask;
2442 /* Try harder if link partner is active */
2443 while (pair_mask && retries--) {
2444 for_each_set_bit(pair, &pair_mask, 4) {
2445 if (type->cable_diag_reg == LAN8814_CABLE_DIAG)
2446 ret = lan8814_cable_test_one_pair(phydev, pair);
2448 ret = ksz886x_cable_test_one_pair(phydev, pair);
2453 clear_bit(pair, &pair_mask);
2455 /* If link partner is in autonegotiation mode it will send 2ms
2456 * of FLPs with at least 6ms of silence.
2457 * Add 2ms sleep to have better chances to hit this silence.
2468 #define LAN_EXT_PAGE_ACCESS_CONTROL 0x16
2469 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA 0x17
2470 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC 0x4000
2472 #define LAN8814_QSGMII_SOFT_RESET 0x43
2473 #define LAN8814_QSGMII_SOFT_RESET_BIT BIT(0)
2474 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG 0x13
2475 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA BIT(3)
2476 #define LAN8814_ALIGN_SWAP 0x4a
2477 #define LAN8814_ALIGN_TX_A_B_SWAP 0x1
2478 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0)
2480 #define LAN8804_ALIGN_SWAP 0x4a
2481 #define LAN8804_ALIGN_TX_A_B_SWAP 0x1
2482 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0)
2483 #define LAN8814_CLOCK_MANAGEMENT 0xd
2484 #define LAN8814_LINK_QUALITY 0x8e
2486 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr)
2490 phy_lock_mdio_bus(phydev);
2491 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2492 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2493 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2494 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC));
2495 data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA);
2496 phy_unlock_mdio_bus(phydev);
2501 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr,
2504 phy_lock_mdio_bus(phydev);
2505 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2506 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2507 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2508 page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC);
2510 val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val);
2512 phydev_err(phydev, "Error: phy_write has returned error %d\n",
2514 phy_unlock_mdio_bus(phydev);
2518 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable)
2523 val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ |
2524 PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ |
2525 PTP_TSU_INT_EN_PTP_RX_TS_EN_ |
2526 PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_;
2528 return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val);
2531 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev,
2532 u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2534 *seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI);
2535 *seconds = (*seconds << 16) |
2536 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO);
2538 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI);
2539 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2540 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO);
2542 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2);
2545 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev,
2546 u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2548 *seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI);
2549 *seconds = *seconds << 16 |
2550 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO);
2552 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI);
2553 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2554 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO);
2556 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2);
2559 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct kernel_ethtool_ts_info *info)
2561 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2562 struct phy_device *phydev = ptp_priv->phydev;
2563 struct lan8814_shared_priv *shared = phydev->shared->priv;
2565 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
2566 SOF_TIMESTAMPING_RX_HARDWARE |
2567 SOF_TIMESTAMPING_RAW_HARDWARE;
2569 info->phc_index = ptp_clock_index(shared->ptp_clock);
2572 (1 << HWTSTAMP_TX_OFF) |
2573 (1 << HWTSTAMP_TX_ON) |
2574 (1 << HWTSTAMP_TX_ONESTEP_SYNC);
2577 (1 << HWTSTAMP_FILTER_NONE) |
2578 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2579 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
2580 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
2581 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2586 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress)
2590 for (i = 0; i < FIFO_SIZE; ++i)
2591 lanphy_read_page_reg(phydev, 5,
2592 egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2);
2594 /* Read to clear overflow status bit */
2595 lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
2598 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts,
2599 struct kernel_hwtstamp_config *config,
2600 struct netlink_ext_ack *extack)
2602 struct kszphy_ptp_priv *ptp_priv =
2603 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2604 struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2605 int txcfg = 0, rxcfg = 0;
2609 ptp_priv->hwts_tx_type = config->tx_type;
2610 ptp_priv->rx_filter = config->rx_filter;
2612 switch (config->rx_filter) {
2613 case HWTSTAMP_FILTER_NONE:
2614 ptp_priv->layer = 0;
2615 ptp_priv->version = 0;
2617 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2618 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2619 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2620 ptp_priv->layer = PTP_CLASS_L4;
2621 ptp_priv->version = PTP_CLASS_V2;
2623 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2624 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2625 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2626 ptp_priv->layer = PTP_CLASS_L2;
2627 ptp_priv->version = PTP_CLASS_V2;
2629 case HWTSTAMP_FILTER_PTP_V2_EVENT:
2630 case HWTSTAMP_FILTER_PTP_V2_SYNC:
2631 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2632 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
2633 ptp_priv->version = PTP_CLASS_V2;
2639 if (ptp_priv->layer & PTP_CLASS_L2) {
2640 rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_;
2641 txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_;
2642 } else if (ptp_priv->layer & PTP_CLASS_L4) {
2643 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
2644 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
2646 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg);
2647 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg);
2649 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
2650 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
2651 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
2652 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
2654 tx_mod = lanphy_read_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD);
2655 if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) {
2656 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD,
2657 tx_mod | PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
2658 } else if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ON) {
2659 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD,
2660 tx_mod & ~PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
2663 if (config->rx_filter != HWTSTAMP_FILTER_NONE)
2664 lan8814_config_ts_intr(ptp_priv->phydev, true);
2666 lan8814_config_ts_intr(ptp_priv->phydev, false);
2668 /* In case of multiple starts and stops, these needs to be cleared */
2669 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2670 list_del(&rx_ts->list);
2673 skb_queue_purge(&ptp_priv->rx_queue);
2674 skb_queue_purge(&ptp_priv->tx_queue);
2676 lan8814_flush_fifo(ptp_priv->phydev, false);
2677 lan8814_flush_fifo(ptp_priv->phydev, true);
2682 static void lan8814_txtstamp(struct mii_timestamper *mii_ts,
2683 struct sk_buff *skb, int type)
2685 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2687 switch (ptp_priv->hwts_tx_type) {
2688 case HWTSTAMP_TX_ONESTEP_SYNC:
2689 if (ptp_msg_is_sync(skb, type)) {
2694 case HWTSTAMP_TX_ON:
2695 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2696 skb_queue_tail(&ptp_priv->tx_queue, skb);
2698 case HWTSTAMP_TX_OFF:
2705 static bool lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig)
2707 struct ptp_header *ptp_header;
2710 skb_push(skb, ETH_HLEN);
2711 type = ptp_classify_raw(skb);
2712 ptp_header = ptp_parse_header(skb, type);
2713 skb_pull_inline(skb, ETH_HLEN);
2718 *sig = (__force u16)(ntohs(ptp_header->sequence_id));
2722 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv,
2723 struct sk_buff *skb)
2725 struct skb_shared_hwtstamps *shhwtstamps;
2726 struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2727 unsigned long flags;
2731 if (!lan8814_get_sig_rx(skb, &skb_sig))
2734 /* Iterate over all RX timestamps and match it with the received skbs */
2735 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
2736 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2737 /* Check if we found the signature we were looking for. */
2738 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
2741 shhwtstamps = skb_hwtstamps(skb);
2742 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2743 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds,
2745 list_del(&rx_ts->list);
2751 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
2758 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type)
2760 struct kszphy_ptp_priv *ptp_priv =
2761 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2763 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
2764 type == PTP_CLASS_NONE)
2767 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
2770 /* If we failed to match then add it to the queue for when the timestamp
2773 if (!lan8814_match_rx_skb(ptp_priv, skb))
2774 skb_queue_tail(&ptp_priv->rx_queue, skb);
2779 static void lan8814_ptp_clock_set(struct phy_device *phydev,
2780 time64_t sec, u32 nsec)
2782 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, lower_16_bits(sec));
2783 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, upper_16_bits(sec));
2784 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_HI, upper_32_bits(sec));
2785 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, lower_16_bits(nsec));
2786 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, upper_16_bits(nsec));
2788 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_);
2791 static void lan8814_ptp_clock_get(struct phy_device *phydev,
2792 time64_t *sec, u32 *nsec)
2794 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_);
2796 *sec = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_HI);
2798 *sec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID);
2800 *sec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO);
2802 *nsec = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI);
2804 *nsec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO);
2807 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci,
2808 struct timespec64 *ts)
2810 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2812 struct phy_device *phydev = shared->phydev;
2816 mutex_lock(&shared->shared_lock);
2817 lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds);
2818 mutex_unlock(&shared->shared_lock);
2819 ts->tv_sec = seconds;
2820 ts->tv_nsec = nano_seconds;
2825 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci,
2826 const struct timespec64 *ts)
2828 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2830 struct phy_device *phydev = shared->phydev;
2832 mutex_lock(&shared->shared_lock);
2833 lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec);
2834 mutex_unlock(&shared->shared_lock);
2839 static void lan8814_ptp_set_target(struct phy_device *phydev, int event,
2840 s64 start_sec, u32 start_nsec)
2842 /* Set the start time */
2843 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_SEC_LO(event),
2844 lower_16_bits(start_sec));
2845 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_SEC_HI(event),
2846 upper_16_bits(start_sec));
2848 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_NS_LO(event),
2849 lower_16_bits(start_nsec));
2850 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_NS_HI(event),
2851 upper_16_bits(start_nsec) & 0x3fff);
2854 static void lan8814_ptp_update_target(struct phy_device *phydev, time64_t sec)
2856 lan8814_ptp_set_target(phydev, LAN8814_EVENT_A,
2857 sec + LAN8814_BUFFER_TIME, 0);
2858 lan8814_ptp_set_target(phydev, LAN8814_EVENT_B,
2859 sec + LAN8814_BUFFER_TIME, 0);
2862 static void lan8814_ptp_clock_step(struct phy_device *phydev,
2865 u32 nano_seconds_step;
2866 u64 abs_time_step_ns;
2867 time64_t set_seconds;
2872 if (time_step_ns > 15000000000LL) {
2873 /* convert to clock set */
2874 lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds);
2875 set_seconds += div_u64_rem(time_step_ns, 1000000000LL,
2877 nano_seconds += remainder;
2878 if (nano_seconds >= 1000000000) {
2880 nano_seconds -= 1000000000;
2882 lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds);
2883 lan8814_ptp_update_target(phydev, set_seconds);
2885 } else if (time_step_ns < -15000000000LL) {
2886 /* convert to clock set */
2887 time_step_ns = -time_step_ns;
2889 lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds);
2890 set_seconds -= div_u64_rem(time_step_ns, 1000000000LL,
2892 nano_seconds_step = remainder;
2893 if (nano_seconds < nano_seconds_step) {
2895 nano_seconds += 1000000000;
2897 nano_seconds -= nano_seconds_step;
2898 lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds);
2899 lan8814_ptp_update_target(phydev, set_seconds);
2904 if (time_step_ns >= 0) {
2905 abs_time_step_ns = (u64)time_step_ns;
2906 seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000,
2908 nano_seconds = remainder;
2910 abs_time_step_ns = (u64)(-time_step_ns);
2911 seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000,
2913 nano_seconds = remainder;
2914 if (nano_seconds > 0) {
2915 /* subtracting nano seconds is not allowed
2916 * convert to subtracting from seconds,
2917 * and adding to nanoseconds
2920 nano_seconds = (1000000000 - nano_seconds);
2924 if (nano_seconds > 0) {
2925 /* add 8 ns to cover the likely normal increment */
2929 if (nano_seconds >= 1000000000) {
2930 /* carry into seconds */
2932 nano_seconds -= 1000000000;
2939 u32 adjustment_value = (u32)seconds;
2940 u16 adjustment_value_lo, adjustment_value_hi;
2942 if (adjustment_value > 0xF)
2943 adjustment_value = 0xF;
2945 adjustment_value_lo = adjustment_value & 0xffff;
2946 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
2948 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2949 adjustment_value_lo);
2950 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2951 PTP_LTC_STEP_ADJ_DIR_ |
2952 adjustment_value_hi);
2953 seconds -= ((s32)adjustment_value);
2955 lan8814_ptp_clock_get(phydev, &set_seconds, &nsec);
2956 set_seconds -= adjustment_value;
2957 lan8814_ptp_update_target(phydev, set_seconds);
2959 u32 adjustment_value = (u32)(-seconds);
2960 u16 adjustment_value_lo, adjustment_value_hi;
2962 if (adjustment_value > 0xF)
2963 adjustment_value = 0xF;
2965 adjustment_value_lo = adjustment_value & 0xffff;
2966 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
2968 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2969 adjustment_value_lo);
2970 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2971 adjustment_value_hi);
2972 seconds += ((s32)adjustment_value);
2974 lan8814_ptp_clock_get(phydev, &set_seconds, &nsec);
2975 set_seconds += adjustment_value;
2976 lan8814_ptp_update_target(phydev, set_seconds);
2978 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
2979 PTP_CMD_CTL_PTP_LTC_STEP_SEC_);
2982 u16 nano_seconds_lo;
2983 u16 nano_seconds_hi;
2985 nano_seconds_lo = nano_seconds & 0xffff;
2986 nano_seconds_hi = (nano_seconds >> 16) & 0x3fff;
2988 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2990 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2991 PTP_LTC_STEP_ADJ_DIR_ |
2993 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
2994 PTP_CMD_CTL_PTP_LTC_STEP_NSEC_);
2998 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta)
3000 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3002 struct phy_device *phydev = shared->phydev;
3004 mutex_lock(&shared->shared_lock);
3005 lan8814_ptp_clock_step(phydev, delta);
3006 mutex_unlock(&shared->shared_lock);
3011 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm)
3013 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3015 struct phy_device *phydev = shared->phydev;
3016 u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi;
3017 bool positive = true;
3018 u32 kszphy_rate_adj;
3020 if (scaled_ppm < 0) {
3021 scaled_ppm = -scaled_ppm;
3025 kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16);
3026 kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16;
3028 kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff;
3029 kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff;
3032 kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_;
3034 mutex_lock(&shared->shared_lock);
3035 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi);
3036 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo);
3037 mutex_unlock(&shared->shared_lock);
3042 static void lan8814_ptp_set_reload(struct phy_device *phydev, int event,
3043 s64 period_sec, u32 period_nsec)
3045 lanphy_write_page_reg(phydev, 4,
3046 LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event),
3047 lower_16_bits(period_sec));
3048 lanphy_write_page_reg(phydev, 4,
3049 LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event),
3050 upper_16_bits(period_sec));
3052 lanphy_write_page_reg(phydev, 4,
3053 LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event),
3054 lower_16_bits(period_nsec));
3055 lanphy_write_page_reg(phydev, 4,
3056 LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event),
3057 upper_16_bits(period_nsec) & 0x3fff);
3060 static void lan8814_ptp_enable_event(struct phy_device *phydev, int event,
3065 val = lanphy_read_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG);
3066 /* Set the pulse width of the event */
3067 val &= ~(LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event));
3068 /* Make sure that the target clock will be incremented each time when
3069 * local time reaches or pass it
3071 val |= LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width);
3072 val &= ~(LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event));
3073 /* Set the polarity high */
3074 val |= LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event);
3075 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG, val);
3078 static void lan8814_ptp_disable_event(struct phy_device *phydev, int event)
3082 /* Set target to too far in the future, effectively disabling it */
3083 lan8814_ptp_set_target(phydev, event, 0xFFFFFFFF, 0);
3085 /* And then reload once it recheas the target */
3086 val = lanphy_read_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG);
3087 val |= LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event);
3088 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG, val);
3091 static void lan8814_ptp_perout_off(struct phy_device *phydev, int pin)
3095 /* Disable gpio alternate function,
3096 * 1: select as gpio,
3097 * 0: select alt func
3099 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin));
3100 val |= LAN8814_GPIO_EN_BIT(pin);
3101 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), val);
3103 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin));
3104 val &= ~LAN8814_GPIO_DIR_BIT(pin);
3105 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), val);
3107 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin));
3108 val &= ~LAN8814_GPIO_BUF_BIT(pin);
3109 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin), val);
3112 static void lan8814_ptp_perout_on(struct phy_device *phydev, int pin)
3116 /* Set as gpio output */
3117 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin));
3118 val |= LAN8814_GPIO_DIR_BIT(pin);
3119 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), val);
3121 /* Enable gpio 0:for alternate function, 1:gpio */
3122 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin));
3123 val &= ~LAN8814_GPIO_EN_BIT(pin);
3124 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), val);
3126 /* Set buffer type to push pull */
3127 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin));
3128 val |= LAN8814_GPIO_BUF_BIT(pin);
3129 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin), val);
3132 static int lan8814_ptp_perout(struct ptp_clock_info *ptpci,
3133 struct ptp_clock_request *rq, int on)
3135 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3137 struct phy_device *phydev = shared->phydev;
3138 struct timespec64 ts_on, ts_period;
3139 s64 on_nsec, period_nsec;
3143 /* Reject requests with unsupported flags */
3144 if (rq->perout.flags & ~PTP_PEROUT_DUTY_CYCLE)
3147 mutex_lock(&shared->shared_lock);
3148 event = rq->perout.index;
3149 pin = ptp_find_pin(shared->ptp_clock, PTP_PF_PEROUT, event);
3150 if (pin < 0 || pin >= LAN8814_PTP_PEROUT_NUM) {
3151 mutex_unlock(&shared->shared_lock);
3156 lan8814_ptp_perout_off(phydev, pin);
3157 lan8814_ptp_disable_event(phydev, event);
3158 mutex_unlock(&shared->shared_lock);
3162 ts_on.tv_sec = rq->perout.on.sec;
3163 ts_on.tv_nsec = rq->perout.on.nsec;
3164 on_nsec = timespec64_to_ns(&ts_on);
3166 ts_period.tv_sec = rq->perout.period.sec;
3167 ts_period.tv_nsec = rq->perout.period.nsec;
3168 period_nsec = timespec64_to_ns(&ts_period);
3170 if (period_nsec < 200) {
3171 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n",
3172 phydev_name(phydev));
3173 mutex_unlock(&shared->shared_lock);
3177 if (on_nsec >= period_nsec) {
3178 pr_warn_ratelimited("%s: pulse width must be smaller than period\n",
3179 phydev_name(phydev));
3180 mutex_unlock(&shared->shared_lock);
3186 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS;
3189 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS;
3192 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS;
3195 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS;
3198 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS;
3201 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS;
3204 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US;
3207 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US;
3210 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US;
3213 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US;
3216 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US;
3219 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US;
3222 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS;
3225 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
3228 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n",
3229 phydev_name(phydev));
3230 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
3234 /* Configure to pulse every period */
3235 lan8814_ptp_enable_event(phydev, event, pulse_width);
3236 lan8814_ptp_set_target(phydev, event, rq->perout.start.sec,
3237 rq->perout.start.nsec);
3238 lan8814_ptp_set_reload(phydev, event, rq->perout.period.sec,
3239 rq->perout.period.nsec);
3240 lan8814_ptp_perout_on(phydev, pin);
3241 mutex_unlock(&shared->shared_lock);
3246 static void lan8814_ptp_extts_on(struct phy_device *phydev, int pin, u32 flags)
3250 /* Set as gpio input */
3251 tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin));
3252 tmp &= ~LAN8814_GPIO_DIR_BIT(pin);
3253 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), tmp);
3255 /* Map the pin to ltc pin 0 of the capture map registers */
3256 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO);
3258 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO, tmp);
3260 /* Enable capture on the edges of the ltc pin */
3261 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_EN);
3262 if (flags & PTP_RISING_EDGE)
3263 tmp |= PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0);
3264 if (flags & PTP_FALLING_EDGE)
3265 tmp |= PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0);
3266 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_EN, tmp);
3268 /* Enable interrupt top interrupt */
3269 tmp = lanphy_read_page_reg(phydev, 4, PTP_COMMON_INT_ENA);
3270 tmp |= PTP_COMMON_INT_ENA_GPIO_CAP_EN;
3271 lanphy_write_page_reg(phydev, 4, PTP_COMMON_INT_ENA, tmp);
3274 static void lan8814_ptp_extts_off(struct phy_device *phydev, int pin)
3278 /* Set as gpio out */
3279 tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin));
3280 tmp |= LAN8814_GPIO_DIR_BIT(pin);
3281 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), tmp);
3283 /* Enable alternate, 0:for alternate function, 1:gpio */
3284 tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin));
3285 tmp &= ~LAN8814_GPIO_EN_BIT(pin);
3286 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), tmp);
3288 /* Clear the mapping of pin to registers 0 of the capture registers */
3289 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO);
3290 tmp &= ~GENMASK(3, 0);
3291 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO, tmp);
3293 /* Disable capture on both of the edges */
3294 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_EN);
3295 tmp &= ~PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin);
3296 tmp &= ~PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin);
3297 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_EN, tmp);
3299 /* Disable interrupt top interrupt */
3300 tmp = lanphy_read_page_reg(phydev, 4, PTP_COMMON_INT_ENA);
3301 tmp &= ~PTP_COMMON_INT_ENA_GPIO_CAP_EN;
3302 lanphy_write_page_reg(phydev, 4, PTP_COMMON_INT_ENA, tmp);
3305 static int lan8814_ptp_extts(struct ptp_clock_info *ptpci,
3306 struct ptp_clock_request *rq, int on)
3308 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3310 struct phy_device *phydev = shared->phydev;
3313 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
3318 pin = ptp_find_pin(shared->ptp_clock, PTP_PF_EXTTS,
3320 if (pin == -1 || pin != LAN8814_PTP_EXTTS_NUM)
3323 mutex_lock(&shared->shared_lock);
3325 lan8814_ptp_extts_on(phydev, pin, rq->extts.flags);
3327 lan8814_ptp_extts_off(phydev, pin);
3329 mutex_unlock(&shared->shared_lock);
3334 static int lan8814_ptpci_enable(struct ptp_clock_info *ptpci,
3335 struct ptp_clock_request *rq, int on)
3338 case PTP_CLK_REQ_PEROUT:
3339 return lan8814_ptp_perout(ptpci, rq, on);
3340 case PTP_CLK_REQ_EXTTS:
3341 return lan8814_ptp_extts(ptpci, rq, on);
3347 static int lan8814_ptpci_verify(struct ptp_clock_info *ptp, unsigned int pin,
3348 enum ptp_pin_function func, unsigned int chan)
3353 /* Only pins 0 and 1 can generate perout signals. And for pin 0
3354 * there is only chan 0 (event A) and for pin 1 there is only
3357 if (pin >= LAN8814_PTP_PEROUT_NUM || pin != chan)
3361 if (pin != LAN8814_PTP_EXTTS_NUM)
3371 static bool lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig)
3373 struct ptp_header *ptp_header;
3376 type = ptp_classify_raw(skb);
3377 ptp_header = ptp_parse_header(skb, type);
3382 *sig = (__force u16)(ntohs(ptp_header->sequence_id));
3386 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv,
3387 u32 seconds, u32 nsec, u16 seq_id)
3389 struct skb_shared_hwtstamps shhwtstamps;
3390 struct sk_buff *skb, *skb_tmp;
3391 unsigned long flags;
3395 spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags);
3396 skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) {
3397 if (!lan8814_get_sig_tx(skb, &skb_sig))
3400 if (memcmp(&skb_sig, &seq_id, sizeof(seq_id)))
3403 __skb_unlink(skb, &ptp_priv->tx_queue);
3407 spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags);
3410 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
3411 shhwtstamps.hwtstamp = ktime_set(seconds, nsec);
3412 skb_complete_tx_timestamp(skb, &shhwtstamps);
3416 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv)
3418 struct phy_device *phydev = ptp_priv->phydev;
3422 lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id);
3423 lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id);
3426 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv)
3428 struct phy_device *phydev = ptp_priv->phydev;
3432 lan8814_dequeue_tx_skb(ptp_priv);
3434 /* If other timestamps are available in the FIFO,
3437 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
3438 } while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0);
3441 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv,
3442 struct lan8814_ptp_rx_ts *rx_ts)
3444 struct skb_shared_hwtstamps *shhwtstamps;
3445 struct sk_buff *skb, *skb_tmp;
3446 unsigned long flags;
3450 spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags);
3451 skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) {
3452 if (!lan8814_get_sig_rx(skb, &skb_sig))
3455 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
3458 __skb_unlink(skb, &ptp_priv->rx_queue);
3463 spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags);
3466 shhwtstamps = skb_hwtstamps(skb);
3467 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3468 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec);
3475 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv,
3476 struct lan8814_ptp_rx_ts *rx_ts)
3478 unsigned long flags;
3480 /* If we failed to match the skb add it to the queue for when
3481 * the frame will come
3483 if (!lan8814_match_skb(ptp_priv, rx_ts)) {
3484 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
3485 list_add(&rx_ts->list, &ptp_priv->rx_ts_list);
3486 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
3492 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv)
3494 struct phy_device *phydev = ptp_priv->phydev;
3495 struct lan8814_ptp_rx_ts *rx_ts;
3499 rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL);
3503 lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec,
3505 lan8814_match_rx_ts(ptp_priv, rx_ts);
3507 /* If other timestamps are available in the FIFO,
3510 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
3511 } while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0);
3514 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status)
3516 struct kszphy_priv *priv = phydev->priv;
3517 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3519 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_)
3520 lan8814_get_tx_ts(ptp_priv);
3522 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_)
3523 lan8814_get_rx_ts(ptp_priv);
3525 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) {
3526 lan8814_flush_fifo(phydev, true);
3527 skb_queue_purge(&ptp_priv->tx_queue);
3530 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) {
3531 lan8814_flush_fifo(phydev, false);
3532 skb_queue_purge(&ptp_priv->rx_queue);
3536 static int lan8814_gpio_process_cap(struct lan8814_shared_priv *shared)
3538 struct phy_device *phydev = shared->phydev;
3539 struct ptp_clock_event ptp_event = {0};
3544 /* This is 0 because whatever was the input pin it was mapped it to
3547 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_SEL);
3548 tmp |= PTP_GPIO_SEL_GPIO_SEL(0);
3549 lanphy_write_page_reg(phydev, 4, PTP_GPIO_SEL, tmp);
3551 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_STS);
3552 if (!(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(0)) &&
3553 !(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(0)))
3557 sec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_SEC_HI_CAP);
3559 sec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_SEC_LO_CAP);
3561 nsec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff;
3563 nsec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_LO_CAP);
3565 sec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_SEC_HI_CAP);
3567 sec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_SEC_LO_CAP);
3569 nsec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff;
3571 nsec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_LO_CAP);
3574 ptp_event.index = 0;
3575 ptp_event.timestamp = ktime_set(sec, nsec);
3576 ptp_event.type = PTP_CLOCK_EXTTS;
3577 ptp_clock_event(shared->ptp_clock, &ptp_event);
3582 static int lan8814_handle_gpio_interrupt(struct phy_device *phydev, u16 status)
3584 struct lan8814_shared_priv *shared = phydev->shared->priv;
3587 mutex_lock(&shared->shared_lock);
3588 ret = lan8814_gpio_process_cap(shared);
3589 mutex_unlock(&shared->shared_lock);
3594 static int lan8804_config_init(struct phy_device *phydev)
3598 /* MDI-X setting for swap A,B transmit */
3599 val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP);
3600 val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK;
3601 val |= LAN8804_ALIGN_TX_A_B_SWAP;
3602 lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val);
3604 /* Make sure that the PHY will not stop generating the clock when the
3605 * link partner goes down
3607 lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e);
3608 lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY);
3613 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev)
3617 status = phy_read(phydev, LAN8814_INTS);
3624 phy_trigger_machine(phydev);
3629 #define LAN8804_OUTPUT_CONTROL 25
3630 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER BIT(14)
3631 #define LAN8804_CONTROL 31
3632 #define LAN8804_CONTROL_INTR_POLARITY BIT(14)
3634 static int lan8804_config_intr(struct phy_device *phydev)
3638 /* This is an internal PHY of lan966x and is not possible to change the
3639 * polarity on the GIC found in lan966x, therefore change the polarity
3640 * of the interrupt in the PHY from being active low instead of active
3643 phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY);
3645 /* By default interrupt buffer is open-drain in which case the interrupt
3646 * can be active only low. Therefore change the interrupt buffer to be
3647 * push-pull to be able to change interrupt polarity
3649 phy_write(phydev, LAN8804_OUTPUT_CONTROL,
3650 LAN8804_OUTPUT_CONTROL_INTR_BUFFER);
3652 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3653 err = phy_read(phydev, LAN8814_INTS);
3657 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
3661 err = phy_write(phydev, LAN8814_INTC, 0);
3665 err = phy_read(phydev, LAN8814_INTS);
3673 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev)
3678 irq_status = phy_read(phydev, LAN8814_INTS);
3679 if (irq_status < 0) {
3684 if (irq_status & LAN8814_INT_LINK) {
3685 phy_trigger_machine(phydev);
3690 irq_status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
3694 lan8814_handle_ptp_interrupt(phydev, irq_status);
3698 if (!lan8814_handle_gpio_interrupt(phydev, irq_status))
3704 static int lan8814_ack_interrupt(struct phy_device *phydev)
3706 /* bit[12..0] int status, which is a read and clear register. */
3709 rc = phy_read(phydev, LAN8814_INTS);
3711 return (rc < 0) ? rc : 0;
3714 static int lan8814_config_intr(struct phy_device *phydev)
3718 lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG,
3719 LAN8814_INTR_CTRL_REG_POLARITY |
3720 LAN8814_INTR_CTRL_REG_INTR_ENABLE);
3722 /* enable / disable interrupts */
3723 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3724 err = lan8814_ack_interrupt(phydev);
3728 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
3730 err = phy_write(phydev, LAN8814_INTC, 0);
3734 err = lan8814_ack_interrupt(phydev);
3740 static void lan8814_ptp_init(struct phy_device *phydev)
3742 struct kszphy_priv *priv = phydev->priv;
3743 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3746 if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) ||
3747 !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
3750 lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_);
3752 temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD);
3753 temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
3754 lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp);
3756 temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD);
3757 temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
3758 lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp);
3760 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0);
3761 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0);
3763 /* Removing default registers configs related to L2 and IP */
3764 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0);
3765 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0);
3766 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0);
3767 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0);
3769 /* Disable checking for minorVersionPTP field */
3770 lanphy_write_page_reg(phydev, 5, PTP_RX_VERSION,
3771 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0));
3772 lanphy_write_page_reg(phydev, 5, PTP_TX_VERSION,
3773 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0));
3775 skb_queue_head_init(&ptp_priv->tx_queue);
3776 skb_queue_head_init(&ptp_priv->rx_queue);
3777 INIT_LIST_HEAD(&ptp_priv->rx_ts_list);
3778 spin_lock_init(&ptp_priv->rx_ts_lock);
3780 ptp_priv->phydev = phydev;
3782 ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp;
3783 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
3784 ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp;
3785 ptp_priv->mii_ts.ts_info = lan8814_ts_info;
3787 phydev->mii_ts = &ptp_priv->mii_ts;
3789 /* Timestamp selected by default to keep legacy API */
3790 phydev->default_timestamp = true;
3793 static int lan8814_ptp_probe_once(struct phy_device *phydev)
3795 struct lan8814_shared_priv *shared = phydev->shared->priv;
3797 /* Initialise shared lock for clock*/
3798 mutex_init(&shared->shared_lock);
3800 shared->pin_config = devm_kmalloc_array(&phydev->mdio.dev,
3801 LAN8814_PTP_GPIO_NUM,
3802 sizeof(*shared->pin_config),
3804 if (!shared->pin_config)
3807 for (int i = 0; i < LAN8814_PTP_GPIO_NUM; i++) {
3808 struct ptp_pin_desc *ptp_pin = &shared->pin_config[i];
3810 memset(ptp_pin, 0, sizeof(*ptp_pin));
3811 snprintf(ptp_pin->name,
3812 sizeof(ptp_pin->name), "lan8814_ptp_pin_%02d", i);
3814 ptp_pin->func = PTP_PF_NONE;
3817 shared->ptp_clock_info.owner = THIS_MODULE;
3818 snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name);
3819 shared->ptp_clock_info.max_adj = 31249999;
3820 shared->ptp_clock_info.n_alarm = 0;
3821 shared->ptp_clock_info.n_ext_ts = LAN8814_PTP_EXTTS_NUM;
3822 shared->ptp_clock_info.n_pins = LAN8814_PTP_GPIO_NUM;
3823 shared->ptp_clock_info.pps = 0;
3824 shared->ptp_clock_info.pin_config = shared->pin_config;
3825 shared->ptp_clock_info.n_per_out = LAN8814_PTP_PEROUT_NUM;
3826 shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine;
3827 shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime;
3828 shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64;
3829 shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64;
3830 shared->ptp_clock_info.getcrosststamp = NULL;
3831 shared->ptp_clock_info.enable = lan8814_ptpci_enable;
3832 shared->ptp_clock_info.verify = lan8814_ptpci_verify;
3834 shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info,
3836 if (IS_ERR(shared->ptp_clock)) {
3837 phydev_err(phydev, "ptp_clock_register failed %lu\n",
3838 PTR_ERR(shared->ptp_clock));
3842 /* Check if PHC support is missing at the configuration level */
3843 if (!shared->ptp_clock)
3846 phydev_dbg(phydev, "successfully registered ptp clock\n");
3848 shared->phydev = phydev;
3850 /* The EP.4 is shared between all the PHYs in the package and also it
3851 * can be accessed by any of the PHYs
3853 lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_);
3854 lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE,
3855 PTP_OPERATING_MODE_STANDALONE_);
3857 /* Enable ptp to run LTC clock for ptp and gpio 1PPS operation */
3858 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_ENABLE_);
3863 static void lan8814_setup_led(struct phy_device *phydev, int val)
3867 temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1);
3870 temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
3872 temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
3874 lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp);
3877 static int lan8814_config_init(struct phy_device *phydev)
3879 struct kszphy_priv *lan8814 = phydev->priv;
3883 val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET);
3884 val |= LAN8814_QSGMII_SOFT_RESET_BIT;
3885 lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val);
3887 /* Disable ANEG with QSGMII PCS Host side */
3888 val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG);
3889 val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA;
3890 lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val);
3892 /* MDI-X setting for swap A,B transmit */
3893 val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP);
3894 val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK;
3895 val |= LAN8814_ALIGN_TX_A_B_SWAP;
3896 lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val);
3898 if (lan8814->led_mode >= 0)
3899 lan8814_setup_led(phydev, lan8814->led_mode);
3904 /* It is expected that there will not be any 'lan8814_take_coma_mode'
3905 * function called in suspend. Because the GPIO line can be shared, so if one of
3906 * the phys goes back in coma mode, then all the other PHYs will go, which is
3909 static int lan8814_release_coma_mode(struct phy_device *phydev)
3911 struct gpio_desc *gpiod;
3913 gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode",
3914 GPIOD_OUT_HIGH_OPEN_DRAIN |
3915 GPIOD_FLAGS_BIT_NONEXCLUSIVE);
3917 return PTR_ERR(gpiod);
3919 gpiod_set_consumer_name(gpiod, "LAN8814 coma mode");
3920 gpiod_set_value_cansleep(gpiod, 0);
3925 static void lan8814_clear_2psp_bit(struct phy_device *phydev)
3929 /* It was noticed that when traffic is passing through the PHY and the
3930 * cable is removed then the LED was still one even though there is no
3933 val = lanphy_read_page_reg(phydev, 2, LAN8814_EEE_STATE);
3934 val &= ~LAN8814_EEE_STATE_MASK2P5P;
3935 lanphy_write_page_reg(phydev, 2, LAN8814_EEE_STATE, val);
3938 static void lan8814_update_meas_time(struct phy_device *phydev)
3942 /* By setting the measure time to a value of 0xb this will allow cables
3943 * longer than 100m to be used. This configuration can be used
3944 * regardless of the mode of operation of the PHY
3946 val = lanphy_read_page_reg(phydev, 1, LAN8814_PD_CONTROLS);
3947 val &= ~LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK;
3948 val |= LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL;
3949 lanphy_write_page_reg(phydev, 1, LAN8814_PD_CONTROLS, val);
3952 static int lan8814_probe(struct phy_device *phydev)
3954 const struct kszphy_type *type = phydev->drv->driver_data;
3955 struct kszphy_priv *priv;
3959 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
3963 phydev->priv = priv;
3967 kszphy_parse_led_mode(phydev);
3969 /* Strap-in value for PHY address, below register read gives starting
3972 addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F;
3973 devm_phy_package_join(&phydev->mdio.dev, phydev,
3974 addr, sizeof(struct lan8814_shared_priv));
3976 if (phy_package_init_once(phydev)) {
3977 err = lan8814_release_coma_mode(phydev);
3981 err = lan8814_ptp_probe_once(phydev);
3986 lan8814_ptp_init(phydev);
3988 /* Errata workarounds */
3989 lan8814_clear_2psp_bit(phydev);
3990 lan8814_update_meas_time(phydev);
3995 #define LAN8841_MMD_TIMER_REG 0
3996 #define LAN8841_MMD0_REGISTER_17 17
3997 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x) ((x) & 0x3)
3998 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS BIT(3)
3999 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG 2
4000 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK BIT(14)
4001 #define LAN8841_MMD_ANALOG_REG 28
4002 #define LAN8841_ANALOG_CONTROL_1 1
4003 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x) (((x) & 0x3) << 5)
4004 #define LAN8841_ANALOG_CONTROL_10 13
4005 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x) ((x) & 0x3)
4006 #define LAN8841_ANALOG_CONTROL_11 14
4007 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x) (((x) & 0x7) << 12)
4008 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT 69
4009 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc
4010 #define LAN8841_BTRX_POWER_DOWN 70
4011 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A BIT(0)
4012 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A BIT(1)
4013 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B BIT(2)
4014 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B BIT(3)
4015 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C BIT(5)
4016 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D BIT(7)
4017 #define LAN8841_ADC_CHANNEL_MASK 198
4018 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN 370
4019 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN 371
4020 #define LAN8841_PTP_RX_VERSION 374
4021 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN 434
4022 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN 435
4023 #define LAN8841_PTP_TX_VERSION 438
4024 #define LAN8841_PTP_CMD_CTL 256
4025 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE BIT(2)
4026 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE BIT(1)
4027 #define LAN8841_PTP_CMD_CTL_PTP_RESET BIT(0)
4028 #define LAN8841_PTP_RX_PARSE_CONFIG 368
4029 #define LAN8841_PTP_TX_PARSE_CONFIG 432
4030 #define LAN8841_PTP_RX_MODE 381
4031 #define LAN8841_PTP_INSERT_TS_EN BIT(0)
4032 #define LAN8841_PTP_INSERT_TS_32BIT BIT(1)
4034 static int lan8841_config_init(struct phy_device *phydev)
4038 ret = ksz9131_config_init(phydev);
4042 /* Initialize the HW by resetting everything */
4043 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4044 LAN8841_PTP_CMD_CTL,
4045 LAN8841_PTP_CMD_CTL_PTP_RESET,
4046 LAN8841_PTP_CMD_CTL_PTP_RESET);
4048 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4049 LAN8841_PTP_CMD_CTL,
4050 LAN8841_PTP_CMD_CTL_PTP_ENABLE,
4051 LAN8841_PTP_CMD_CTL_PTP_ENABLE);
4053 /* Don't process any frames */
4054 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4055 LAN8841_PTP_RX_PARSE_CONFIG, 0);
4056 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4057 LAN8841_PTP_TX_PARSE_CONFIG, 0);
4058 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4059 LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0);
4060 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4061 LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0);
4062 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4063 LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0);
4064 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4065 LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0);
4067 /* Disable checking for minorVersionPTP field */
4068 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4069 LAN8841_PTP_RX_VERSION, 0xff00);
4070 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4071 LAN8841_PTP_TX_VERSION, 0xff00);
4073 /* 100BT Clause 40 improvenent errata */
4074 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4075 LAN8841_ANALOG_CONTROL_1,
4076 LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2));
4077 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4078 LAN8841_ANALOG_CONTROL_10,
4079 LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1));
4081 /* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap
4084 ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4085 LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG);
4086 if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) {
4087 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4088 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT,
4089 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL);
4090 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4091 LAN8841_BTRX_POWER_DOWN,
4092 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A |
4093 LAN8841_BTRX_POWER_DOWN_BTRX_CH_A |
4094 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B |
4095 LAN8841_BTRX_POWER_DOWN_BTRX_CH_B |
4096 LAN8841_BTRX_POWER_DOWN_BTRX_CH_C |
4097 LAN8841_BTRX_POWER_DOWN_BTRX_CH_D);
4100 /* LDO Adjustment errata */
4101 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4102 LAN8841_ANALOG_CONTROL_11,
4103 LAN8841_ANALOG_CONTROL_11_LDO_REF(1));
4105 /* 100BT RGMII latency tuning errata */
4106 phy_write_mmd(phydev, MDIO_MMD_PMAPMD,
4107 LAN8841_ADC_CHANNEL_MASK, 0x0);
4108 phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG,
4109 LAN8841_MMD0_REGISTER_17,
4110 LAN8841_MMD0_REGISTER_17_DROP_OPT(2) |
4111 LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS);
4116 #define LAN8841_OUTPUT_CTRL 25
4117 #define LAN8841_OUTPUT_CTRL_INT_BUFFER BIT(14)
4118 #define LAN8841_INT_PTP BIT(9)
4120 static int lan8841_config_intr(struct phy_device *phydev)
4124 phy_modify(phydev, LAN8841_OUTPUT_CTRL,
4125 LAN8841_OUTPUT_CTRL_INT_BUFFER, 0);
4127 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
4128 err = phy_read(phydev, LAN8814_INTS);
4132 /* Enable / disable interrupts. It is OK to enable PTP interrupt
4133 * even if it PTP is not enabled. Because the underneath blocks
4134 * will not enable the PTP so we will never get the PTP
4137 err = phy_write(phydev, LAN8814_INTC,
4138 LAN8814_INT_LINK | LAN8841_INT_PTP);
4140 err = phy_write(phydev, LAN8814_INTC, 0);
4144 err = phy_read(phydev, LAN8814_INTS);
4148 /* Getting a positive value doesn't mean that is an error, it
4149 * just indicates what was the status. Therefore make sure to
4150 * clear the value and say that there is no error.
4158 #define LAN8841_PTP_TX_EGRESS_SEC_LO 453
4159 #define LAN8841_PTP_TX_EGRESS_SEC_HI 452
4160 #define LAN8841_PTP_TX_EGRESS_NS_LO 451
4161 #define LAN8841_PTP_TX_EGRESS_NS_HI 450
4162 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID BIT(15)
4163 #define LAN8841_PTP_TX_MSG_HEADER2 455
4165 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv,
4166 u32 *sec, u32 *nsec, u16 *seq)
4168 struct phy_device *phydev = ptp_priv->phydev;
4170 *nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI);
4171 if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID))
4174 *nsec = ((*nsec & 0x3fff) << 16);
4175 *nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO);
4177 *sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI);
4179 *sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO);
4181 *seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
4186 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv)
4191 while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq))
4192 lan8814_match_tx_skb(ptp_priv, sec, nsec, seq);
4195 #define LAN8841_PTP_INT_STS 259
4196 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT BIT(13)
4197 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT BIT(12)
4198 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT BIT(2)
4200 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv)
4202 struct phy_device *phydev = ptp_priv->phydev;
4205 for (i = 0; i < FIFO_SIZE; ++i)
4206 phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
4208 phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
4211 #define LAN8841_PTP_GPIO_CAP_STS 506
4212 #define LAN8841_PTP_GPIO_SEL 327
4213 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio) ((gpio) << 8)
4214 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP 498
4215 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP 499
4216 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP 500
4217 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP 501
4218 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP 502
4219 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP 503
4220 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP 504
4221 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP 505
4223 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv)
4225 struct phy_device *phydev = ptp_priv->phydev;
4226 struct ptp_clock_event ptp_event = {0};
4230 pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0);
4234 tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS);
4238 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL,
4239 LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin));
4243 mutex_lock(&ptp_priv->ptp_lock);
4244 if (tmp & BIT(pin)) {
4245 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP);
4247 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP);
4249 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff;
4251 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP);
4253 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP);
4255 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP);
4257 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff;
4259 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP);
4261 mutex_unlock(&ptp_priv->ptp_lock);
4262 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0);
4266 ptp_event.index = 0;
4267 ptp_event.timestamp = ktime_set(sec, nsec);
4268 ptp_event.type = PTP_CLOCK_EXTTS;
4269 ptp_clock_event(ptp_priv->ptp_clock, &ptp_event);
4272 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev)
4274 struct kszphy_priv *priv = phydev->priv;
4275 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
4279 status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
4281 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT)
4282 lan8841_ptp_process_tx_ts(ptp_priv);
4284 if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT)
4285 lan8841_gpio_process_cap(ptp_priv);
4287 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) {
4288 lan8841_ptp_flush_fifo(ptp_priv);
4289 skb_queue_purge(&ptp_priv->tx_queue);
4292 } while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT |
4293 LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT |
4294 LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT));
4297 #define LAN8841_INTS_PTP BIT(9)
4299 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev)
4301 irqreturn_t ret = IRQ_NONE;
4304 irq_status = phy_read(phydev, LAN8814_INTS);
4305 if (irq_status < 0) {
4310 if (irq_status & LAN8814_INT_LINK) {
4311 phy_trigger_machine(phydev);
4315 if (irq_status & LAN8841_INTS_PTP) {
4316 lan8841_handle_ptp_interrupt(phydev);
4323 static int lan8841_ts_info(struct mii_timestamper *mii_ts,
4324 struct kernel_ethtool_ts_info *info)
4326 struct kszphy_ptp_priv *ptp_priv;
4328 ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
4330 info->phc_index = ptp_priv->ptp_clock ?
4331 ptp_clock_index(ptp_priv->ptp_clock) : -1;
4332 if (info->phc_index == -1)
4335 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
4336 SOF_TIMESTAMPING_RX_HARDWARE |
4337 SOF_TIMESTAMPING_RAW_HARDWARE;
4339 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
4340 (1 << HWTSTAMP_TX_ON) |
4341 (1 << HWTSTAMP_TX_ONESTEP_SYNC);
4343 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
4344 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
4345 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
4346 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
4351 #define LAN8841_PTP_INT_EN 260
4352 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN BIT(13)
4353 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN BIT(12)
4355 static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv,
4358 struct phy_device *phydev = ptp_priv->phydev;
4361 /* Enable interrupts on the TX side */
4362 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4363 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
4364 LAN8841_PTP_INT_EN_PTP_TX_TS_EN,
4365 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
4366 LAN8841_PTP_INT_EN_PTP_TX_TS_EN);
4368 /* Enable the modification of the frame on RX side,
4369 * this will add the ns and 2 bits of sec in the reserved field
4372 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4373 LAN8841_PTP_RX_MODE,
4374 LAN8841_PTP_INSERT_TS_EN |
4375 LAN8841_PTP_INSERT_TS_32BIT,
4376 LAN8841_PTP_INSERT_TS_EN |
4377 LAN8841_PTP_INSERT_TS_32BIT);
4379 ptp_schedule_worker(ptp_priv->ptp_clock, 0);
4381 /* Disable interrupts on the TX side */
4382 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4383 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
4384 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0);
4386 /* Disable modification of the RX frames */
4387 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4388 LAN8841_PTP_RX_MODE,
4389 LAN8841_PTP_INSERT_TS_EN |
4390 LAN8841_PTP_INSERT_TS_32BIT, 0);
4392 ptp_cancel_worker_sync(ptp_priv->ptp_clock);
4396 #define LAN8841_PTP_RX_TIMESTAMP_EN 379
4397 #define LAN8841_PTP_TX_TIMESTAMP_EN 443
4398 #define LAN8841_PTP_TX_MOD 445
4400 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts,
4401 struct kernel_hwtstamp_config *config,
4402 struct netlink_ext_ack *extack)
4404 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
4405 struct phy_device *phydev = ptp_priv->phydev;
4406 int txcfg = 0, rxcfg = 0;
4409 ptp_priv->hwts_tx_type = config->tx_type;
4410 ptp_priv->rx_filter = config->rx_filter;
4412 switch (config->rx_filter) {
4413 case HWTSTAMP_FILTER_NONE:
4414 ptp_priv->layer = 0;
4415 ptp_priv->version = 0;
4417 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
4418 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
4419 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
4420 ptp_priv->layer = PTP_CLASS_L4;
4421 ptp_priv->version = PTP_CLASS_V2;
4423 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
4424 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
4425 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
4426 ptp_priv->layer = PTP_CLASS_L2;
4427 ptp_priv->version = PTP_CLASS_V2;
4429 case HWTSTAMP_FILTER_PTP_V2_EVENT:
4430 case HWTSTAMP_FILTER_PTP_V2_SYNC:
4431 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
4432 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
4433 ptp_priv->version = PTP_CLASS_V2;
4439 /* Setup parsing of the frames and enable the timestamping for ptp
4442 if (ptp_priv->layer & PTP_CLASS_L2) {
4443 rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_;
4444 txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_;
4445 } else if (ptp_priv->layer & PTP_CLASS_L4) {
4446 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
4447 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
4450 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg);
4451 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg);
4453 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
4454 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
4455 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
4456 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
4458 /* Enable / disable of the TX timestamp in the SYNC frames */
4459 phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD,
4460 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_,
4461 ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ?
4462 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0);
4464 /* Now enable/disable the timestamping */
4465 lan8841_ptp_enable_processing(ptp_priv,
4466 config->rx_filter != HWTSTAMP_FILTER_NONE);
4468 skb_queue_purge(&ptp_priv->tx_queue);
4470 lan8841_ptp_flush_fifo(ptp_priv);
4475 static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts,
4476 struct sk_buff *skb, int type)
4478 struct kszphy_ptp_priv *ptp_priv =
4479 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
4480 struct ptp_header *header = ptp_parse_header(skb, type);
4481 struct skb_shared_hwtstamps *shhwtstamps;
4482 struct timespec64 ts;
4483 unsigned long flags;
4489 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
4490 type == PTP_CLASS_NONE)
4493 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
4496 spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
4497 ts.tv_sec = ptp_priv->seconds;
4498 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
4499 ts_header = __be32_to_cpu(header->reserved2);
4501 shhwtstamps = skb_hwtstamps(skb);
4502 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
4504 /* Check for any wrap arounds for the second part */
4505 if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3)
4506 ts.tv_sec -= GENMASK(1, 0) + 1;
4507 else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0)
4510 shhwtstamps->hwtstamp =
4511 ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30,
4512 ts_header & GENMASK(29, 0));
4513 header->reserved2 = 0;
4520 #define LAN8841_EVENT_A 0
4521 #define LAN8841_EVENT_B 1
4522 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 278 : 288)
4523 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 279 : 289)
4524 #define LAN8841_PTP_LTC_TARGET_NS_HI(event) ((event) == LAN8841_EVENT_A ? 280 : 290)
4525 #define LAN8841_PTP_LTC_TARGET_NS_LO(event) ((event) == LAN8841_EVENT_A ? 281 : 291)
4527 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event,
4530 struct phy_device *phydev = ptp_priv->phydev;
4533 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event),
4534 upper_16_bits(sec));
4538 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event),
4539 lower_16_bits(sec));
4543 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff,
4544 upper_16_bits(nsec));
4548 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event),
4549 lower_16_bits(nsec));
4552 #define LAN8841_BUFFER_TIME 2
4554 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv,
4555 const struct timespec64 *ts)
4557 return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A,
4558 ts->tv_sec + LAN8841_BUFFER_TIME, 0);
4561 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 282 : 292)
4562 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 283 : 293)
4563 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) ((event) == LAN8841_EVENT_A ? 284 : 294)
4564 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event) ((event) == LAN8841_EVENT_A ? 285 : 295)
4566 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event,
4569 struct phy_device *phydev = ptp_priv->phydev;
4572 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event),
4573 upper_16_bits(sec));
4577 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event),
4578 lower_16_bits(sec));
4582 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff,
4583 upper_16_bits(nsec));
4587 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event),
4588 lower_16_bits(nsec));
4591 #define LAN8841_PTP_LTC_SET_SEC_HI 262
4592 #define LAN8841_PTP_LTC_SET_SEC_MID 263
4593 #define LAN8841_PTP_LTC_SET_SEC_LO 264
4594 #define LAN8841_PTP_LTC_SET_NS_HI 265
4595 #define LAN8841_PTP_LTC_SET_NS_LO 266
4596 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD BIT(4)
4598 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp,
4599 const struct timespec64 *ts)
4601 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4603 struct phy_device *phydev = ptp_priv->phydev;
4604 unsigned long flags;
4607 /* Set the value to be stored */
4608 mutex_lock(&ptp_priv->ptp_lock);
4609 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec));
4610 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec));
4611 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff);
4612 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec));
4613 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff);
4615 /* Set the command to load the LTC */
4616 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4617 LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD);
4618 ret = lan8841_ptp_update_target(ptp_priv, ts);
4619 mutex_unlock(&ptp_priv->ptp_lock);
4621 spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
4622 ptp_priv->seconds = ts->tv_sec;
4623 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
4628 #define LAN8841_PTP_LTC_RD_SEC_HI 358
4629 #define LAN8841_PTP_LTC_RD_SEC_MID 359
4630 #define LAN8841_PTP_LTC_RD_SEC_LO 360
4631 #define LAN8841_PTP_LTC_RD_NS_HI 361
4632 #define LAN8841_PTP_LTC_RD_NS_LO 362
4633 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ BIT(3)
4635 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp,
4636 struct timespec64 *ts)
4638 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4640 struct phy_device *phydev = ptp_priv->phydev;
4644 mutex_lock(&ptp_priv->ptp_lock);
4645 /* Issue the command to read the LTC */
4646 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4647 LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
4650 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
4652 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
4654 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
4656 ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff;
4658 ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO);
4659 mutex_unlock(&ptp_priv->ptp_lock);
4661 set_normalized_timespec64(ts, s, ns);
4665 static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp,
4666 struct timespec64 *ts)
4668 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4670 struct phy_device *phydev = ptp_priv->phydev;
4673 mutex_lock(&ptp_priv->ptp_lock);
4674 /* Issue the command to read the LTC */
4675 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4676 LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
4679 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
4681 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
4683 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
4684 mutex_unlock(&ptp_priv->ptp_lock);
4686 set_normalized_timespec64(ts, s, 0);
4689 #define LAN8841_PTP_LTC_STEP_ADJ_LO 276
4690 #define LAN8841_PTP_LTC_STEP_ADJ_HI 275
4691 #define LAN8841_PTP_LTC_STEP_ADJ_DIR BIT(15)
4692 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS BIT(5)
4693 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS BIT(6)
4695 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
4697 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4699 struct phy_device *phydev = ptp_priv->phydev;
4700 struct timespec64 ts;
4706 /* The HW allows up to 15 sec to adjust the time, but here we limit to
4707 * 10 sec the adjustment. The reason is, in case the adjustment is 14
4708 * sec and 999999999 nsec, then we add 8ns to compansate the actual
4709 * increment so the value can be bigger than 15 sec. Therefore limit the
4710 * possible adjustments so we will not have these corner cases
4712 if (delta > 10000000000LL || delta < -10000000000LL) {
4713 /* The timeadjustment is too big, so fall back using set time */
4716 ptp->gettime64(ptp, &ts);
4718 now = ktime_to_ns(timespec64_to_ktime(ts));
4719 ts = ns_to_timespec64(now + delta);
4721 ptp->settime64(ptp, &ts);
4725 sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec);
4726 if (delta < 0 && nsec != 0) {
4727 /* It is not allowed to adjust low the nsec part, therefore
4728 * subtract more from second part and add to nanosecond such
4729 * that would roll over, so the second part will increase
4732 nsec = NSEC_PER_SEC - nsec;
4735 /* Calculate the adjustments and the direction */
4740 /* add 8 ns to cover the likely normal increment */
4743 if (nsec >= NSEC_PER_SEC) {
4744 /* carry into seconds */
4746 nsec -= NSEC_PER_SEC;
4749 mutex_lock(&ptp_priv->ptp_lock);
4751 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec);
4752 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
4753 add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0);
4754 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4755 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS);
4759 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO,
4761 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
4762 (nsec >> 16) & 0x3fff);
4763 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4764 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS);
4766 mutex_unlock(&ptp_priv->ptp_lock);
4768 /* Update the target clock */
4769 ptp->gettime64(ptp, &ts);
4770 mutex_lock(&ptp_priv->ptp_lock);
4771 ret = lan8841_ptp_update_target(ptp_priv, &ts);
4772 mutex_unlock(&ptp_priv->ptp_lock);
4777 #define LAN8841_PTP_LTC_RATE_ADJ_HI 269
4778 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR BIT(15)
4779 #define LAN8841_PTP_LTC_RATE_ADJ_LO 270
4781 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
4783 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4785 struct phy_device *phydev = ptp_priv->phydev;
4792 if (scaled_ppm < 0) {
4793 scaled_ppm = -scaled_ppm;
4797 rate = LAN8841_1PPM_FORMAT * (upper_16_bits(scaled_ppm));
4798 rate += (LAN8841_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16;
4800 mutex_lock(&ptp_priv->ptp_lock);
4801 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI,
4802 faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff)
4803 : upper_16_bits(rate) & 0x3fff);
4804 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate));
4805 mutex_unlock(&ptp_priv->ptp_lock);
4810 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin,
4811 enum ptp_pin_function func, unsigned int chan)
4825 #define LAN8841_PTP_GPIO_NUM 10
4826 #define LAN8841_GPIO_EN 128
4827 #define LAN8841_GPIO_DIR 129
4828 #define LAN8841_GPIO_BUF 130
4830 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin)
4832 struct phy_device *phydev = ptp_priv->phydev;
4835 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4839 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
4843 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4846 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin)
4848 struct phy_device *phydev = ptp_priv->phydev;
4851 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4855 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
4859 return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4862 #define LAN8841_GPIO_DATA_SEL1 131
4863 #define LAN8841_GPIO_DATA_SEL2 132
4864 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK GENMASK(2, 0)
4865 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A 1
4866 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B 2
4867 #define LAN8841_PTP_GENERAL_CONFIG 257
4868 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A BIT(1)
4869 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B BIT(3)
4870 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK GENMASK(7, 4)
4871 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK GENMASK(11, 8)
4872 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A 4
4873 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B 7
4875 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin,
4878 struct phy_device *phydev = ptp_priv->phydev;
4882 /* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO
4883 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
4884 * depending on the pin, it requires to read a different register
4887 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin);
4888 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp);
4890 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5));
4891 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp);
4896 /* Disable the event */
4897 if (event == LAN8841_EVENT_A)
4898 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4899 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK;
4901 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4902 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK;
4903 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp);
4906 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin,
4907 u8 event, int pulse_width)
4909 struct phy_device *phydev = ptp_priv->phydev;
4913 /* Enable the event */
4914 if (event == LAN8841_EVENT_A)
4915 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
4916 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4917 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK,
4918 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4919 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A);
4921 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
4922 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4923 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK,
4924 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4925 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B);
4929 /* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO
4930 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
4931 * depending on the pin, it requires to read a different register
4933 if (event == LAN8841_EVENT_A)
4934 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A;
4936 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B;
4939 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1,
4942 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2,
4943 tmp << (3 * (pin - 5)));
4948 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13
4949 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12
4950 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11
4951 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10
4952 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9
4953 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8
4954 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7
4955 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6
4956 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5
4957 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4
4958 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3
4959 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2
4960 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1
4961 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0
4963 static int lan8841_ptp_perout(struct ptp_clock_info *ptp,
4964 struct ptp_clock_request *rq, int on)
4966 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4968 struct phy_device *phydev = ptp_priv->phydev;
4969 struct timespec64 ts_on, ts_period;
4970 s64 on_nsec, period_nsec;
4975 if (rq->perout.flags & ~PTP_PEROUT_DUTY_CYCLE)
4978 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index);
4979 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
4983 ret = lan8841_ptp_perout_off(ptp_priv, pin);
4987 return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin);
4990 ts_on.tv_sec = rq->perout.on.sec;
4991 ts_on.tv_nsec = rq->perout.on.nsec;
4992 on_nsec = timespec64_to_ns(&ts_on);
4994 ts_period.tv_sec = rq->perout.period.sec;
4995 ts_period.tv_nsec = rq->perout.period.nsec;
4996 period_nsec = timespec64_to_ns(&ts_period);
4998 if (period_nsec < 200) {
4999 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n",
5000 phydev_name(phydev));
5004 if (on_nsec >= period_nsec) {
5005 pr_warn_ratelimited("%s: pulse width must be smaller than period\n",
5006 phydev_name(phydev));
5012 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS;
5015 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS;
5018 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS;
5021 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS;
5024 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS;
5027 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS;
5030 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US;
5033 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US;
5036 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US;
5039 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US;
5042 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US;
5045 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US;
5048 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS;
5051 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
5054 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n",
5055 phydev_name(phydev));
5056 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
5060 mutex_lock(&ptp_priv->ptp_lock);
5061 ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec,
5062 rq->perout.start.nsec);
5063 mutex_unlock(&ptp_priv->ptp_lock);
5067 ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec,
5068 rq->perout.period.nsec);
5072 ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A,
5077 ret = lan8841_ptp_perout_on(ptp_priv, pin);
5079 lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A);
5084 #define LAN8841_PTP_GPIO_CAP_EN 496
5085 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) (BIT(gpio))
5086 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8)
5087 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN BIT(2)
5089 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin,
5092 struct phy_device *phydev = ptp_priv->phydev;
5096 /* Set GPIO to be intput */
5097 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
5101 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
5105 /* Enable capture on the edges of the pin */
5106 if (flags & PTP_RISING_EDGE)
5107 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin);
5108 if (flags & PTP_FALLING_EDGE)
5109 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin);
5110 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp);
5114 /* Enable interrupt */
5115 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
5116 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
5117 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN);
5120 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin)
5122 struct phy_device *phydev = ptp_priv->phydev;
5125 /* Set GPIO to be output */
5126 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
5130 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
5134 /* Disable capture on both of the edges */
5135 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN,
5136 LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) |
5137 LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin),
5142 /* Disable interrupt */
5143 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
5144 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
5148 static int lan8841_ptp_extts(struct ptp_clock_info *ptp,
5149 struct ptp_clock_request *rq, int on)
5151 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5156 /* Reject requests with unsupported flags */
5157 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
5162 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index);
5163 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
5166 mutex_lock(&ptp_priv->ptp_lock);
5168 ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags);
5170 ret = lan8841_ptp_extts_off(ptp_priv, pin);
5171 mutex_unlock(&ptp_priv->ptp_lock);
5176 static int lan8841_ptp_enable(struct ptp_clock_info *ptp,
5177 struct ptp_clock_request *rq, int on)
5180 case PTP_CLK_REQ_EXTTS:
5181 return lan8841_ptp_extts(ptp, rq, on);
5182 case PTP_CLK_REQ_PEROUT:
5183 return lan8841_ptp_perout(ptp, rq, on);
5191 static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp)
5193 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5195 struct timespec64 ts;
5196 unsigned long flags;
5198 lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts);
5200 spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
5201 ptp_priv->seconds = ts.tv_sec;
5202 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
5204 return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY);
5207 static struct ptp_clock_info lan8841_ptp_clock_info = {
5208 .owner = THIS_MODULE,
5209 .name = "lan8841 ptp",
5210 .max_adj = 31249999,
5211 .gettime64 = lan8841_ptp_gettime64,
5212 .settime64 = lan8841_ptp_settime64,
5213 .adjtime = lan8841_ptp_adjtime,
5214 .adjfine = lan8841_ptp_adjfine,
5215 .verify = lan8841_ptp_verify,
5216 .enable = lan8841_ptp_enable,
5217 .do_aux_work = lan8841_ptp_do_aux_work,
5218 .n_per_out = LAN8841_PTP_GPIO_NUM,
5219 .n_ext_ts = LAN8841_PTP_GPIO_NUM,
5220 .n_pins = LAN8841_PTP_GPIO_NUM,
5223 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3
5224 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0)
5226 static int lan8841_probe(struct phy_device *phydev)
5228 struct kszphy_ptp_priv *ptp_priv;
5229 struct kszphy_priv *priv;
5232 err = kszphy_probe(phydev);
5236 if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
5237 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) &
5238 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN)
5239 phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID;
5241 /* Register the clock */
5242 if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
5245 priv = phydev->priv;
5246 ptp_priv = &priv->ptp_priv;
5248 ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev,
5249 LAN8841_PTP_GPIO_NUM,
5250 sizeof(*ptp_priv->pin_config),
5252 if (!ptp_priv->pin_config)
5255 for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) {
5256 struct ptp_pin_desc *p = &ptp_priv->pin_config[i];
5258 snprintf(p->name, sizeof(p->name), "pin%d", i);
5260 p->func = PTP_PF_NONE;
5263 ptp_priv->ptp_clock_info = lan8841_ptp_clock_info;
5264 ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config;
5265 ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info,
5267 if (IS_ERR(ptp_priv->ptp_clock)) {
5268 phydev_err(phydev, "ptp_clock_register failed: %lu\n",
5269 PTR_ERR(ptp_priv->ptp_clock));
5273 if (!ptp_priv->ptp_clock)
5276 /* Initialize the SW */
5277 skb_queue_head_init(&ptp_priv->tx_queue);
5278 ptp_priv->phydev = phydev;
5279 mutex_init(&ptp_priv->ptp_lock);
5280 spin_lock_init(&ptp_priv->seconds_lock);
5282 ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp;
5283 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
5284 ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp;
5285 ptp_priv->mii_ts.ts_info = lan8841_ts_info;
5287 phydev->mii_ts = &ptp_priv->mii_ts;
5289 /* Timestamp selected by default to keep legacy API */
5290 phydev->default_timestamp = true;
5295 static int lan8841_suspend(struct phy_device *phydev)
5297 struct kszphy_priv *priv = phydev->priv;
5298 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
5300 if (ptp_priv->ptp_clock)
5301 ptp_cancel_worker_sync(ptp_priv->ptp_clock);
5303 return genphy_suspend(phydev);
5306 static struct phy_driver ksphy_driver[] = {
5308 .phy_id = PHY_ID_KS8737,
5309 .phy_id_mask = MICREL_PHY_ID_MASK,
5310 .name = "Micrel KS8737",
5311 /* PHY_BASIC_FEATURES */
5312 .driver_data = &ks8737_type,
5313 .probe = kszphy_probe,
5314 .config_init = kszphy_config_init,
5315 .config_intr = kszphy_config_intr,
5316 .handle_interrupt = kszphy_handle_interrupt,
5317 .suspend = kszphy_suspend,
5318 .resume = kszphy_resume,
5320 .phy_id = PHY_ID_KSZ8021,
5321 .phy_id_mask = 0x00ffffff,
5322 .name = "Micrel KSZ8021 or KSZ8031",
5323 /* PHY_BASIC_FEATURES */
5324 .driver_data = &ksz8021_type,
5325 .probe = kszphy_probe,
5326 .config_init = kszphy_config_init,
5327 .config_intr = kszphy_config_intr,
5328 .handle_interrupt = kszphy_handle_interrupt,
5329 .get_sset_count = kszphy_get_sset_count,
5330 .get_strings = kszphy_get_strings,
5331 .get_stats = kszphy_get_stats,
5332 .suspend = kszphy_suspend,
5333 .resume = kszphy_resume,
5335 .phy_id = PHY_ID_KSZ8031,
5336 .phy_id_mask = 0x00ffffff,
5337 .name = "Micrel KSZ8031",
5338 /* PHY_BASIC_FEATURES */
5339 .driver_data = &ksz8021_type,
5340 .probe = kszphy_probe,
5341 .config_init = kszphy_config_init,
5342 .config_intr = kszphy_config_intr,
5343 .handle_interrupt = kszphy_handle_interrupt,
5344 .get_sset_count = kszphy_get_sset_count,
5345 .get_strings = kszphy_get_strings,
5346 .get_stats = kszphy_get_stats,
5347 .suspend = kszphy_suspend,
5348 .resume = kszphy_resume,
5350 .phy_id = PHY_ID_KSZ8041,
5351 .phy_id_mask = MICREL_PHY_ID_MASK,
5352 .name = "Micrel KSZ8041",
5353 /* PHY_BASIC_FEATURES */
5354 .driver_data = &ksz8041_type,
5355 .probe = kszphy_probe,
5356 .config_init = ksz8041_config_init,
5357 .config_aneg = ksz8041_config_aneg,
5358 .config_intr = kszphy_config_intr,
5359 .handle_interrupt = kszphy_handle_interrupt,
5360 .get_sset_count = kszphy_get_sset_count,
5361 .get_strings = kszphy_get_strings,
5362 .get_stats = kszphy_get_stats,
5363 /* No suspend/resume callbacks because of errata DS80000700A,
5364 * receiver error following software power down.
5367 .phy_id = PHY_ID_KSZ8041RNLI,
5368 .phy_id_mask = MICREL_PHY_ID_MASK,
5369 .name = "Micrel KSZ8041RNLI",
5370 /* PHY_BASIC_FEATURES */
5371 .driver_data = &ksz8041_type,
5372 .probe = kszphy_probe,
5373 .config_init = kszphy_config_init,
5374 .config_intr = kszphy_config_intr,
5375 .handle_interrupt = kszphy_handle_interrupt,
5376 .get_sset_count = kszphy_get_sset_count,
5377 .get_strings = kszphy_get_strings,
5378 .get_stats = kszphy_get_stats,
5379 .suspend = kszphy_suspend,
5380 .resume = kszphy_resume,
5382 .name = "Micrel KSZ8051",
5383 /* PHY_BASIC_FEATURES */
5384 .driver_data = &ksz8051_type,
5385 .probe = kszphy_probe,
5386 .config_init = kszphy_config_init,
5387 .config_intr = kszphy_config_intr,
5388 .handle_interrupt = kszphy_handle_interrupt,
5389 .get_sset_count = kszphy_get_sset_count,
5390 .get_strings = kszphy_get_strings,
5391 .get_stats = kszphy_get_stats,
5392 .match_phy_device = ksz8051_match_phy_device,
5393 .suspend = kszphy_suspend,
5394 .resume = kszphy_resume,
5396 .phy_id = PHY_ID_KSZ8001,
5397 .name = "Micrel KSZ8001 or KS8721",
5398 .phy_id_mask = 0x00fffffc,
5399 /* PHY_BASIC_FEATURES */
5400 .driver_data = &ksz8041_type,
5401 .probe = kszphy_probe,
5402 .config_init = kszphy_config_init,
5403 .config_intr = kszphy_config_intr,
5404 .handle_interrupt = kszphy_handle_interrupt,
5405 .get_sset_count = kszphy_get_sset_count,
5406 .get_strings = kszphy_get_strings,
5407 .get_stats = kszphy_get_stats,
5408 .suspend = kszphy_suspend,
5409 .resume = kszphy_resume,
5411 .phy_id = PHY_ID_KSZ8081,
5412 .name = "Micrel KSZ8081 or KSZ8091",
5413 .phy_id_mask = MICREL_PHY_ID_MASK,
5414 .flags = PHY_POLL_CABLE_TEST,
5415 /* PHY_BASIC_FEATURES */
5416 .driver_data = &ksz8081_type,
5417 .probe = kszphy_probe,
5418 .config_init = ksz8081_config_init,
5419 .soft_reset = genphy_soft_reset,
5420 .config_aneg = ksz8081_config_aneg,
5421 .read_status = ksz8081_read_status,
5422 .config_intr = kszphy_config_intr,
5423 .handle_interrupt = kszphy_handle_interrupt,
5424 .get_sset_count = kszphy_get_sset_count,
5425 .get_strings = kszphy_get_strings,
5426 .get_stats = kszphy_get_stats,
5427 .suspend = kszphy_suspend,
5428 .resume = kszphy_resume,
5429 .cable_test_start = ksz886x_cable_test_start,
5430 .cable_test_get_status = ksz886x_cable_test_get_status,
5432 .phy_id = PHY_ID_KSZ8061,
5433 .name = "Micrel KSZ8061",
5434 .phy_id_mask = MICREL_PHY_ID_MASK,
5435 /* PHY_BASIC_FEATURES */
5436 .probe = kszphy_probe,
5437 .config_init = ksz8061_config_init,
5438 .soft_reset = genphy_soft_reset,
5439 .config_intr = kszphy_config_intr,
5440 .handle_interrupt = kszphy_handle_interrupt,
5441 .suspend = kszphy_suspend,
5442 .resume = ksz8061_resume,
5444 .phy_id = PHY_ID_KSZ9021,
5445 .phy_id_mask = 0x000ffffe,
5446 .name = "Micrel KSZ9021 Gigabit PHY",
5447 /* PHY_GBIT_FEATURES */
5448 .driver_data = &ksz9021_type,
5449 .probe = kszphy_probe,
5450 .get_features = ksz9031_get_features,
5451 .config_init = ksz9021_config_init,
5452 .config_intr = kszphy_config_intr,
5453 .handle_interrupt = kszphy_handle_interrupt,
5454 .get_sset_count = kszphy_get_sset_count,
5455 .get_strings = kszphy_get_strings,
5456 .get_stats = kszphy_get_stats,
5457 .suspend = kszphy_suspend,
5458 .resume = kszphy_resume,
5459 .read_mmd = genphy_read_mmd_unsupported,
5460 .write_mmd = genphy_write_mmd_unsupported,
5462 .phy_id = PHY_ID_KSZ9031,
5463 .phy_id_mask = MICREL_PHY_ID_MASK,
5464 .name = "Micrel KSZ9031 Gigabit PHY",
5465 .flags = PHY_POLL_CABLE_TEST,
5466 .driver_data = &ksz9021_type,
5467 .probe = kszphy_probe,
5468 .get_features = ksz9031_get_features,
5469 .config_init = ksz9031_config_init,
5470 .soft_reset = genphy_soft_reset,
5471 .read_status = ksz9031_read_status,
5472 .config_intr = kszphy_config_intr,
5473 .handle_interrupt = kszphy_handle_interrupt,
5474 .get_sset_count = kszphy_get_sset_count,
5475 .get_strings = kszphy_get_strings,
5476 .get_stats = kszphy_get_stats,
5477 .suspend = kszphy_suspend,
5478 .resume = kszphy_resume,
5479 .cable_test_start = ksz9x31_cable_test_start,
5480 .cable_test_get_status = ksz9x31_cable_test_get_status,
5482 .phy_id = PHY_ID_LAN8814,
5483 .phy_id_mask = MICREL_PHY_ID_MASK,
5484 .name = "Microchip INDY Gigabit Quad PHY",
5485 .flags = PHY_POLL_CABLE_TEST,
5486 .config_init = lan8814_config_init,
5487 .driver_data = &lan8814_type,
5488 .probe = lan8814_probe,
5489 .soft_reset = genphy_soft_reset,
5490 .read_status = ksz9031_read_status,
5491 .get_sset_count = kszphy_get_sset_count,
5492 .get_strings = kszphy_get_strings,
5493 .get_stats = kszphy_get_stats,
5494 .suspend = genphy_suspend,
5495 .resume = kszphy_resume,
5496 .config_intr = lan8814_config_intr,
5497 .handle_interrupt = lan8814_handle_interrupt,
5498 .cable_test_start = lan8814_cable_test_start,
5499 .cable_test_get_status = ksz886x_cable_test_get_status,
5501 .phy_id = PHY_ID_LAN8804,
5502 .phy_id_mask = MICREL_PHY_ID_MASK,
5503 .name = "Microchip LAN966X Gigabit PHY",
5504 .config_init = lan8804_config_init,
5505 .driver_data = &ksz9021_type,
5506 .probe = kszphy_probe,
5507 .soft_reset = genphy_soft_reset,
5508 .read_status = ksz9031_read_status,
5509 .get_sset_count = kszphy_get_sset_count,
5510 .get_strings = kszphy_get_strings,
5511 .get_stats = kszphy_get_stats,
5512 .suspend = genphy_suspend,
5513 .resume = kszphy_resume,
5514 .config_intr = lan8804_config_intr,
5515 .handle_interrupt = lan8804_handle_interrupt,
5517 .phy_id = PHY_ID_LAN8841,
5518 .phy_id_mask = MICREL_PHY_ID_MASK,
5519 .name = "Microchip LAN8841 Gigabit PHY",
5520 .flags = PHY_POLL_CABLE_TEST,
5521 .driver_data = &lan8841_type,
5522 .config_init = lan8841_config_init,
5523 .probe = lan8841_probe,
5524 .soft_reset = genphy_soft_reset,
5525 .config_intr = lan8841_config_intr,
5526 .handle_interrupt = lan8841_handle_interrupt,
5527 .get_sset_count = kszphy_get_sset_count,
5528 .get_strings = kszphy_get_strings,
5529 .get_stats = kszphy_get_stats,
5530 .suspend = lan8841_suspend,
5531 .resume = genphy_resume,
5532 .cable_test_start = lan8814_cable_test_start,
5533 .cable_test_get_status = ksz886x_cable_test_get_status,
5535 .phy_id = PHY_ID_KSZ9131,
5536 .phy_id_mask = MICREL_PHY_ID_MASK,
5537 .name = "Microchip KSZ9131 Gigabit PHY",
5538 /* PHY_GBIT_FEATURES */
5539 .flags = PHY_POLL_CABLE_TEST,
5540 .driver_data = &ksz9131_type,
5541 .probe = kszphy_probe,
5542 .soft_reset = genphy_soft_reset,
5543 .config_init = ksz9131_config_init,
5544 .config_intr = kszphy_config_intr,
5545 .config_aneg = ksz9131_config_aneg,
5546 .read_status = ksz9131_read_status,
5547 .handle_interrupt = kszphy_handle_interrupt,
5548 .get_sset_count = kszphy_get_sset_count,
5549 .get_strings = kszphy_get_strings,
5550 .get_stats = kszphy_get_stats,
5551 .suspend = kszphy_suspend,
5552 .resume = kszphy_resume,
5553 .cable_test_start = ksz9x31_cable_test_start,
5554 .cable_test_get_status = ksz9x31_cable_test_get_status,
5555 .get_features = ksz9477_get_features,
5557 .phy_id = PHY_ID_KSZ8873MLL,
5558 .phy_id_mask = MICREL_PHY_ID_MASK,
5559 .name = "Micrel KSZ8873MLL Switch",
5560 /* PHY_BASIC_FEATURES */
5561 .config_init = kszphy_config_init,
5562 .config_aneg = ksz8873mll_config_aneg,
5563 .read_status = ksz8873mll_read_status,
5564 .suspend = genphy_suspend,
5565 .resume = genphy_resume,
5567 .phy_id = PHY_ID_KSZ886X,
5568 .phy_id_mask = MICREL_PHY_ID_MASK,
5569 .name = "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch",
5570 .driver_data = &ksz886x_type,
5571 /* PHY_BASIC_FEATURES */
5572 .flags = PHY_POLL_CABLE_TEST,
5573 .config_init = kszphy_config_init,
5574 .config_aneg = ksz886x_config_aneg,
5575 .read_status = ksz886x_read_status,
5576 .suspend = genphy_suspend,
5577 .resume = genphy_resume,
5578 .cable_test_start = ksz886x_cable_test_start,
5579 .cable_test_get_status = ksz886x_cable_test_get_status,
5581 .name = "Micrel KSZ87XX Switch",
5582 /* PHY_BASIC_FEATURES */
5583 .config_init = kszphy_config_init,
5584 .match_phy_device = ksz8795_match_phy_device,
5585 .suspend = genphy_suspend,
5586 .resume = genphy_resume,
5588 .phy_id = PHY_ID_KSZ9477,
5589 .phy_id_mask = MICREL_PHY_ID_MASK,
5590 .name = "Microchip KSZ9477",
5591 /* PHY_GBIT_FEATURES */
5592 .config_init = ksz9477_config_init,
5593 .config_intr = kszphy_config_intr,
5594 .handle_interrupt = kszphy_handle_interrupt,
5595 .suspend = genphy_suspend,
5596 .resume = ksz9477_resume,
5597 .get_features = ksz9477_get_features,
5600 module_phy_driver(ksphy_driver);
5602 MODULE_DESCRIPTION("Micrel PHY driver");
5603 MODULE_AUTHOR("David J. Choi");
5604 MODULE_LICENSE("GPL");
5606 static struct mdio_device_id __maybe_unused micrel_tbl[] = {
5607 { PHY_ID_KSZ9021, 0x000ffffe },
5608 { PHY_ID_KSZ9031, MICREL_PHY_ID_MASK },
5609 { PHY_ID_KSZ9131, MICREL_PHY_ID_MASK },
5610 { PHY_ID_KSZ8001, 0x00fffffc },
5611 { PHY_ID_KS8737, MICREL_PHY_ID_MASK },
5612 { PHY_ID_KSZ8021, 0x00ffffff },
5613 { PHY_ID_KSZ8031, 0x00ffffff },
5614 { PHY_ID_KSZ8041, MICREL_PHY_ID_MASK },
5615 { PHY_ID_KSZ8051, MICREL_PHY_ID_MASK },
5616 { PHY_ID_KSZ8061, MICREL_PHY_ID_MASK },
5617 { PHY_ID_KSZ8081, MICREL_PHY_ID_MASK },
5618 { PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK },
5619 { PHY_ID_KSZ886X, MICREL_PHY_ID_MASK },
5620 { PHY_ID_KSZ9477, MICREL_PHY_ID_MASK },
5621 { PHY_ID_LAN8814, MICREL_PHY_ID_MASK },
5622 { PHY_ID_LAN8804, MICREL_PHY_ID_MASK },
5623 { PHY_ID_LAN8841, MICREL_PHY_ID_MASK },
5627 MODULE_DEVICE_TABLE(mdio, micrel_tbl);