]> Git Repo - linux.git/blob - drivers/net/ethernet/intel/ice/ice_virtchnl.c
crypto: akcipher - Drop sign/verify operations
[linux.git] / drivers / net / ethernet / intel / ice / ice_virtchnl.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2022, Intel Corporation. */
3
4 #include "ice_virtchnl.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice.h"
7 #include "ice_base.h"
8 #include "ice_lib.h"
9 #include "ice_fltr.h"
10 #include "ice_virtchnl_allowlist.h"
11 #include "ice_vf_vsi_vlan_ops.h"
12 #include "ice_vlan.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_dcb_lib.h"
15
16 #define FIELD_SELECTOR(proto_hdr_field) \
17                 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
18
19 struct ice_vc_hdr_match_type {
20         u32 vc_hdr;     /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
21         u32 ice_hdr;    /* ice headers (ICE_FLOW_SEG_HDR_XXX) */
22 };
23
24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = {
25         {VIRTCHNL_PROTO_HDR_NONE,       ICE_FLOW_SEG_HDR_NONE},
26         {VIRTCHNL_PROTO_HDR_ETH,        ICE_FLOW_SEG_HDR_ETH},
27         {VIRTCHNL_PROTO_HDR_S_VLAN,     ICE_FLOW_SEG_HDR_VLAN},
28         {VIRTCHNL_PROTO_HDR_C_VLAN,     ICE_FLOW_SEG_HDR_VLAN},
29         {VIRTCHNL_PROTO_HDR_IPV4,       ICE_FLOW_SEG_HDR_IPV4 |
30                                         ICE_FLOW_SEG_HDR_IPV_OTHER},
31         {VIRTCHNL_PROTO_HDR_IPV6,       ICE_FLOW_SEG_HDR_IPV6 |
32                                         ICE_FLOW_SEG_HDR_IPV_OTHER},
33         {VIRTCHNL_PROTO_HDR_TCP,        ICE_FLOW_SEG_HDR_TCP},
34         {VIRTCHNL_PROTO_HDR_UDP,        ICE_FLOW_SEG_HDR_UDP},
35         {VIRTCHNL_PROTO_HDR_SCTP,       ICE_FLOW_SEG_HDR_SCTP},
36         {VIRTCHNL_PROTO_HDR_PPPOE,      ICE_FLOW_SEG_HDR_PPPOE},
37         {VIRTCHNL_PROTO_HDR_GTPU_IP,    ICE_FLOW_SEG_HDR_GTPU_IP},
38         {VIRTCHNL_PROTO_HDR_GTPU_EH,    ICE_FLOW_SEG_HDR_GTPU_EH},
39         {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
40                                         ICE_FLOW_SEG_HDR_GTPU_DWN},
41         {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
42                                         ICE_FLOW_SEG_HDR_GTPU_UP},
43         {VIRTCHNL_PROTO_HDR_L2TPV3,     ICE_FLOW_SEG_HDR_L2TPV3},
44         {VIRTCHNL_PROTO_HDR_ESP,        ICE_FLOW_SEG_HDR_ESP},
45         {VIRTCHNL_PROTO_HDR_AH,         ICE_FLOW_SEG_HDR_AH},
46         {VIRTCHNL_PROTO_HDR_PFCP,       ICE_FLOW_SEG_HDR_PFCP_SESSION},
47 };
48
49 struct ice_vc_hash_field_match_type {
50         u32 vc_hdr;             /* virtchnl headers
51                                  * (VIRTCHNL_PROTO_HDR_XXX)
52                                  */
53         u32 vc_hash_field;      /* virtchnl hash fields selector
54                                  * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
55                                  */
56         u64 ice_hash_field;     /* ice hash fields
57                                  * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
58                                  */
59 };
60
61 static const struct
62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = {
63         {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
64                 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
65         {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
66                 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
67         {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
68                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
69                 ICE_FLOW_HASH_ETH},
70         {VIRTCHNL_PROTO_HDR_ETH,
71                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
72                 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
73         {VIRTCHNL_PROTO_HDR_S_VLAN,
74                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
75                 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
76         {VIRTCHNL_PROTO_HDR_C_VLAN,
77                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
78                 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
79         {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
80                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
81         {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
82                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
83         {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
84                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
85                 ICE_FLOW_HASH_IPV4},
86         {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
87                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
88                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
89                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
90         {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
91                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
92                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
93                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
94         {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
95                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
96                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
97                 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
98         {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
99                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
100         {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
101                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
102         {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
103                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
104         {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
105                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
106                 ICE_FLOW_HASH_IPV6},
107         {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
108                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
109                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
110                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
111         {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
112                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
113                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
114                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
115         {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
116                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
117                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
118                 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
119         {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
120                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
121         {VIRTCHNL_PROTO_HDR_TCP,
122                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
123                 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
124         {VIRTCHNL_PROTO_HDR_TCP,
125                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
126                 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
127         {VIRTCHNL_PROTO_HDR_TCP,
128                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
129                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
130                 ICE_FLOW_HASH_TCP_PORT},
131         {VIRTCHNL_PROTO_HDR_UDP,
132                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
133                 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
134         {VIRTCHNL_PROTO_HDR_UDP,
135                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
136                 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
137         {VIRTCHNL_PROTO_HDR_UDP,
138                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
139                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
140                 ICE_FLOW_HASH_UDP_PORT},
141         {VIRTCHNL_PROTO_HDR_SCTP,
142                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
143                 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
144         {VIRTCHNL_PROTO_HDR_SCTP,
145                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
146                 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
147         {VIRTCHNL_PROTO_HDR_SCTP,
148                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
149                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
150                 ICE_FLOW_HASH_SCTP_PORT},
151         {VIRTCHNL_PROTO_HDR_PPPOE,
152                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
153                 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
154         {VIRTCHNL_PROTO_HDR_GTPU_IP,
155                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
156                 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
157         {VIRTCHNL_PROTO_HDR_L2TPV3,
158                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
159                 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
160         {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
161                 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
162         {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
163                 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
164         {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
165                 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
166 };
167
168 /**
169  * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
170  * @pf: pointer to the PF structure
171  * @v_opcode: operation code
172  * @v_retval: return value
173  * @msg: pointer to the msg buffer
174  * @msglen: msg length
175  */
176 static void
177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
178                     enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
179 {
180         struct ice_hw *hw = &pf->hw;
181         struct ice_vf *vf;
182         unsigned int bkt;
183
184         mutex_lock(&pf->vfs.table_lock);
185         ice_for_each_vf(pf, bkt, vf) {
186                 /* Not all vfs are enabled so skip the ones that are not */
187                 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
188                     !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
189                         continue;
190
191                 /* Ignore return value on purpose - a given VF may fail, but
192                  * we need to keep going and send to all of them
193                  */
194                 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
195                                       msglen, NULL);
196         }
197         mutex_unlock(&pf->vfs.table_lock);
198 }
199
200 /**
201  * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
202  * @vf: pointer to the VF structure
203  * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
204  * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
205  * @link_up: whether or not to set the link up/down
206  */
207 static void
208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
209                  int ice_link_speed, bool link_up)
210 {
211         if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
212                 pfe->event_data.link_event_adv.link_status = link_up;
213                 /* Speed in Mbps */
214                 pfe->event_data.link_event_adv.link_speed =
215                         ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
216         } else {
217                 pfe->event_data.link_event.link_status = link_up;
218                 /* Legacy method for virtchnl link speeds */
219                 pfe->event_data.link_event.link_speed =
220                         (enum virtchnl_link_speed)
221                         ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
222         }
223 }
224
225 /**
226  * ice_vc_notify_vf_link_state - Inform a VF of link status
227  * @vf: pointer to the VF structure
228  *
229  * send a link status message to a single VF
230  */
231 void ice_vc_notify_vf_link_state(struct ice_vf *vf)
232 {
233         struct virtchnl_pf_event pfe = { 0 };
234         struct ice_hw *hw = &vf->pf->hw;
235
236         pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
237         pfe.severity = PF_EVENT_SEVERITY_INFO;
238
239         if (ice_is_vf_link_up(vf))
240                 ice_set_pfe_link(vf, &pfe,
241                                  hw->port_info->phy.link_info.link_speed, true);
242         else
243                 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
244
245         ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
246                               VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
247                               sizeof(pfe), NULL);
248 }
249
250 /**
251  * ice_vc_notify_link_state - Inform all VFs on a PF of link status
252  * @pf: pointer to the PF structure
253  */
254 void ice_vc_notify_link_state(struct ice_pf *pf)
255 {
256         struct ice_vf *vf;
257         unsigned int bkt;
258
259         mutex_lock(&pf->vfs.table_lock);
260         ice_for_each_vf(pf, bkt, vf)
261                 ice_vc_notify_vf_link_state(vf);
262         mutex_unlock(&pf->vfs.table_lock);
263 }
264
265 /**
266  * ice_vc_notify_reset - Send pending reset message to all VFs
267  * @pf: pointer to the PF structure
268  *
269  * indicate a pending reset to all VFs on a given PF
270  */
271 void ice_vc_notify_reset(struct ice_pf *pf)
272 {
273         struct virtchnl_pf_event pfe;
274
275         if (!ice_has_vfs(pf))
276                 return;
277
278         pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
279         pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
280         ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
281                             (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
282 }
283
284 /**
285  * ice_vc_send_msg_to_vf - Send message to VF
286  * @vf: pointer to the VF info
287  * @v_opcode: virtual channel opcode
288  * @v_retval: virtual channel return value
289  * @msg: pointer to the msg buffer
290  * @msglen: msg length
291  *
292  * send msg to VF
293  */
294 int
295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
296                       enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
297 {
298         struct device *dev;
299         struct ice_pf *pf;
300         int aq_ret;
301
302         pf = vf->pf;
303         dev = ice_pf_to_dev(pf);
304
305         aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
306                                        msg, msglen, NULL);
307         if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
308                 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n",
309                          vf->vf_id, aq_ret,
310                          ice_aq_str(pf->hw.mailboxq.sq_last_status));
311                 return -EIO;
312         }
313
314         return 0;
315 }
316
317 /**
318  * ice_vc_get_ver_msg
319  * @vf: pointer to the VF info
320  * @msg: pointer to the msg buffer
321  *
322  * called from the VF to request the API version used by the PF
323  */
324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
325 {
326         struct virtchnl_version_info info = {
327                 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
328         };
329
330         vf->vf_ver = *(struct virtchnl_version_info *)msg;
331         /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
332         if (VF_IS_V10(&vf->vf_ver))
333                 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
334
335         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
336                                      VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
337                                      sizeof(struct virtchnl_version_info));
338 }
339
340 /**
341  * ice_vc_get_max_frame_size - get max frame size allowed for VF
342  * @vf: VF used to determine max frame size
343  *
344  * Max frame size is determined based on the current port's max frame size and
345  * whether a port VLAN is configured on this VF. The VF is not aware whether
346  * it's in a port VLAN so the PF needs to account for this in max frame size
347  * checks and sending the max frame size to the VF.
348  */
349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
350 {
351         struct ice_port_info *pi = ice_vf_get_port_info(vf);
352         u16 max_frame_size;
353
354         max_frame_size = pi->phy.link_info.max_frame_size;
355
356         if (ice_vf_is_port_vlan_ena(vf))
357                 max_frame_size -= VLAN_HLEN;
358
359         return max_frame_size;
360 }
361
362 /**
363  * ice_vc_get_vlan_caps
364  * @hw: pointer to the hw
365  * @vf: pointer to the VF info
366  * @vsi: pointer to the VSI
367  * @driver_caps: current driver caps
368  *
369  * Return 0 if there is no VLAN caps supported, or VLAN caps value
370  */
371 static u32
372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi,
373                      u32 driver_caps)
374 {
375         if (ice_is_eswitch_mode_switchdev(vf->pf))
376                 /* In switchdev setting VLAN from VF isn't supported */
377                 return 0;
378
379         if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
380                 /* VLAN offloads based on current device configuration */
381                 return VIRTCHNL_VF_OFFLOAD_VLAN_V2;
382         } else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) {
383                 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for
384                  * these two conditions, which amounts to guest VLAN filtering
385                  * and offloads being based on the inner VLAN or the
386                  * inner/single VLAN respectively and don't allow VF to
387                  * negotiate VIRTCHNL_VF_OFFLOAD in any other cases
388                  */
389                 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) {
390                         return VIRTCHNL_VF_OFFLOAD_VLAN;
391                 } else if (!ice_is_dvm_ena(hw) &&
392                            !ice_vf_is_port_vlan_ena(vf)) {
393                         /* configure backward compatible support for VFs that
394                          * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is
395                          * configured in SVM, and no port VLAN is configured
396                          */
397                         ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi);
398                         return VIRTCHNL_VF_OFFLOAD_VLAN;
399                 } else if (ice_is_dvm_ena(hw)) {
400                         /* configure software offloaded VLAN support when DVM
401                          * is enabled, but no port VLAN is enabled
402                          */
403                         ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi);
404                 }
405         }
406
407         return 0;
408 }
409
410 /**
411  * ice_vc_get_vf_res_msg
412  * @vf: pointer to the VF info
413  * @msg: pointer to the msg buffer
414  *
415  * called from the VF to request its resources
416  */
417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
418 {
419         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
420         struct virtchnl_vf_resource *vfres = NULL;
421         struct ice_hw *hw = &vf->pf->hw;
422         struct ice_vsi *vsi;
423         int len = 0;
424         int ret;
425
426         if (ice_check_vf_init(vf)) {
427                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
428                 goto err;
429         }
430
431         len = virtchnl_struct_size(vfres, vsi_res, 0);
432
433         vfres = kzalloc(len, GFP_KERNEL);
434         if (!vfres) {
435                 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
436                 len = 0;
437                 goto err;
438         }
439         if (VF_IS_V11(&vf->vf_ver))
440                 vf->driver_caps = *(u32 *)msg;
441         else
442                 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
443                                   VIRTCHNL_VF_OFFLOAD_VLAN;
444
445         vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
446         vsi = ice_get_vf_vsi(vf);
447         if (!vsi) {
448                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
449                 goto err;
450         }
451
452         vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi,
453                                                     vf->driver_caps);
454
455         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF)
456                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
457
458         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
459                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC;
460
461         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
462                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
463
464         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_TC_U32 &&
465             vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
466                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_TC_U32;
467
468         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
469                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
470
471         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
472                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
473
474         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
475                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
476
477         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
478                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
479
480         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
481                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
482
483         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
484                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
485
486         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC)
487                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_CRC;
488
489         if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
490                 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
491
492         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
493                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
494
495         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
496                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
497
498         vfres->num_vsis = 1;
499         /* Tx and Rx queue are equal for VF */
500         vfres->num_queue_pairs = vsi->num_txq;
501         vfres->max_vectors = vf->num_msix;
502         vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
503         vfres->rss_lut_size = ICE_LUT_VSI_SIZE;
504         vfres->max_mtu = ice_vc_get_max_frame_size(vf);
505
506         vfres->vsi_res[0].vsi_id = ICE_VF_VSI_ID;
507         vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
508         vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
509         ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
510                         vf->hw_lan_addr);
511
512         /* match guest capabilities */
513         vf->driver_caps = vfres->vf_cap_flags;
514
515         ice_vc_set_caps_allowlist(vf);
516         ice_vc_set_working_allowlist(vf);
517
518         set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
519
520 err:
521         /* send the response back to the VF */
522         ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
523                                     (u8 *)vfres, len);
524
525         kfree(vfres);
526         return ret;
527 }
528
529 /**
530  * ice_vc_reset_vf_msg
531  * @vf: pointer to the VF info
532  *
533  * called from the VF to reset itself,
534  * unlike other virtchnl messages, PF driver
535  * doesn't send the response back to the VF
536  */
537 static void ice_vc_reset_vf_msg(struct ice_vf *vf)
538 {
539         if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
540                 ice_reset_vf(vf, 0);
541 }
542
543 /**
544  * ice_vc_isvalid_vsi_id
545  * @vf: pointer to the VF info
546  * @vsi_id: VF relative VSI ID
547  *
548  * check for the valid VSI ID
549  */
550 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
551 {
552         return vsi_id == ICE_VF_VSI_ID;
553 }
554
555 /**
556  * ice_vc_isvalid_q_id
557  * @vsi: VSI to check queue ID against
558  * @qid: VSI relative queue ID
559  *
560  * check for the valid queue ID
561  */
562 static bool ice_vc_isvalid_q_id(struct ice_vsi *vsi, u8 qid)
563 {
564         /* allocated Tx and Rx queues should be always equal for VF VSI */
565         return qid < vsi->alloc_txq;
566 }
567
568 /**
569  * ice_vc_isvalid_ring_len
570  * @ring_len: length of ring
571  *
572  * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
573  * or zero
574  */
575 static bool ice_vc_isvalid_ring_len(u16 ring_len)
576 {
577         return ring_len == 0 ||
578                (ring_len >= ICE_MIN_NUM_DESC &&
579                 ring_len <= ICE_MAX_NUM_DESC &&
580                 !(ring_len % ICE_REQ_DESC_MULTIPLE));
581 }
582
583 /**
584  * ice_vc_validate_pattern
585  * @vf: pointer to the VF info
586  * @proto: virtchnl protocol headers
587  *
588  * validate the pattern is supported or not.
589  *
590  * Return: true on success, false on error.
591  */
592 bool
593 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto)
594 {
595         bool is_ipv4 = false;
596         bool is_ipv6 = false;
597         bool is_udp = false;
598         u16 ptype = -1;
599         int i = 0;
600
601         while (i < proto->count &&
602                proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) {
603                 switch (proto->proto_hdr[i].type) {
604                 case VIRTCHNL_PROTO_HDR_ETH:
605                         ptype = ICE_PTYPE_MAC_PAY;
606                         break;
607                 case VIRTCHNL_PROTO_HDR_IPV4:
608                         ptype = ICE_PTYPE_IPV4_PAY;
609                         is_ipv4 = true;
610                         break;
611                 case VIRTCHNL_PROTO_HDR_IPV6:
612                         ptype = ICE_PTYPE_IPV6_PAY;
613                         is_ipv6 = true;
614                         break;
615                 case VIRTCHNL_PROTO_HDR_UDP:
616                         if (is_ipv4)
617                                 ptype = ICE_PTYPE_IPV4_UDP_PAY;
618                         else if (is_ipv6)
619                                 ptype = ICE_PTYPE_IPV6_UDP_PAY;
620                         is_udp = true;
621                         break;
622                 case VIRTCHNL_PROTO_HDR_TCP:
623                         if (is_ipv4)
624                                 ptype = ICE_PTYPE_IPV4_TCP_PAY;
625                         else if (is_ipv6)
626                                 ptype = ICE_PTYPE_IPV6_TCP_PAY;
627                         break;
628                 case VIRTCHNL_PROTO_HDR_SCTP:
629                         if (is_ipv4)
630                                 ptype = ICE_PTYPE_IPV4_SCTP_PAY;
631                         else if (is_ipv6)
632                                 ptype = ICE_PTYPE_IPV6_SCTP_PAY;
633                         break;
634                 case VIRTCHNL_PROTO_HDR_GTPU_IP:
635                 case VIRTCHNL_PROTO_HDR_GTPU_EH:
636                         if (is_ipv4)
637                                 ptype = ICE_MAC_IPV4_GTPU;
638                         else if (is_ipv6)
639                                 ptype = ICE_MAC_IPV6_GTPU;
640                         goto out;
641                 case VIRTCHNL_PROTO_HDR_L2TPV3:
642                         if (is_ipv4)
643                                 ptype = ICE_MAC_IPV4_L2TPV3;
644                         else if (is_ipv6)
645                                 ptype = ICE_MAC_IPV6_L2TPV3;
646                         goto out;
647                 case VIRTCHNL_PROTO_HDR_ESP:
648                         if (is_ipv4)
649                                 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP :
650                                                 ICE_MAC_IPV4_ESP;
651                         else if (is_ipv6)
652                                 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP :
653                                                 ICE_MAC_IPV6_ESP;
654                         goto out;
655                 case VIRTCHNL_PROTO_HDR_AH:
656                         if (is_ipv4)
657                                 ptype = ICE_MAC_IPV4_AH;
658                         else if (is_ipv6)
659                                 ptype = ICE_MAC_IPV6_AH;
660                         goto out;
661                 case VIRTCHNL_PROTO_HDR_PFCP:
662                         if (is_ipv4)
663                                 ptype = ICE_MAC_IPV4_PFCP_SESSION;
664                         else if (is_ipv6)
665                                 ptype = ICE_MAC_IPV6_PFCP_SESSION;
666                         goto out;
667                 default:
668                         break;
669                 }
670                 i++;
671         }
672
673 out:
674         return ice_hw_ptype_ena(&vf->pf->hw, ptype);
675 }
676
677 /**
678  * ice_vc_parse_rss_cfg - parses hash fields and headers from
679  * a specific virtchnl RSS cfg
680  * @hw: pointer to the hardware
681  * @rss_cfg: pointer to the virtchnl RSS cfg
682  * @hash_cfg: pointer to the HW hash configuration
683  *
684  * Return true if all the protocol header and hash fields in the RSS cfg could
685  * be parsed, else return false
686  *
687  * This function parses the virtchnl RSS cfg to be the intended
688  * hash fields and the intended header for RSS configuration
689  */
690 static bool ice_vc_parse_rss_cfg(struct ice_hw *hw,
691                                  struct virtchnl_rss_cfg *rss_cfg,
692                                  struct ice_rss_hash_cfg *hash_cfg)
693 {
694         const struct ice_vc_hash_field_match_type *hf_list;
695         const struct ice_vc_hdr_match_type *hdr_list;
696         int i, hf_list_len, hdr_list_len;
697         u32 *addl_hdrs = &hash_cfg->addl_hdrs;
698         u64 *hash_flds = &hash_cfg->hash_flds;
699
700         /* set outer layer RSS as default */
701         hash_cfg->hdr_type = ICE_RSS_OUTER_HEADERS;
702
703         if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
704                 hash_cfg->symm = true;
705         else
706                 hash_cfg->symm = false;
707
708         hf_list = ice_vc_hash_field_list;
709         hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list);
710         hdr_list = ice_vc_hdr_list;
711         hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list);
712
713         for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
714                 struct virtchnl_proto_hdr *proto_hdr =
715                                         &rss_cfg->proto_hdrs.proto_hdr[i];
716                 bool hdr_found = false;
717                 int j;
718
719                 /* Find matched ice headers according to virtchnl headers. */
720                 for (j = 0; j < hdr_list_len; j++) {
721                         struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
722
723                         if (proto_hdr->type == hdr_map.vc_hdr) {
724                                 *addl_hdrs |= hdr_map.ice_hdr;
725                                 hdr_found = true;
726                         }
727                 }
728
729                 if (!hdr_found)
730                         return false;
731
732                 /* Find matched ice hash fields according to
733                  * virtchnl hash fields.
734                  */
735                 for (j = 0; j < hf_list_len; j++) {
736                         struct ice_vc_hash_field_match_type hf_map = hf_list[j];
737
738                         if (proto_hdr->type == hf_map.vc_hdr &&
739                             proto_hdr->field_selector == hf_map.vc_hash_field) {
740                                 *hash_flds |= hf_map.ice_hash_field;
741                                 break;
742                         }
743                 }
744         }
745
746         return true;
747 }
748
749 /**
750  * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
751  * RSS offloads
752  * @caps: VF driver negotiated capabilities
753  *
754  * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
755  * else return false
756  */
757 static bool ice_vf_adv_rss_offload_ena(u32 caps)
758 {
759         return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
760 }
761
762 /**
763  * ice_vc_handle_rss_cfg
764  * @vf: pointer to the VF info
765  * @msg: pointer to the message buffer
766  * @add: add a RSS config if true, otherwise delete a RSS config
767  *
768  * This function adds/deletes a RSS config
769  */
770 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
771 {
772         u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
773         struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
774         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
775         struct device *dev = ice_pf_to_dev(vf->pf);
776         struct ice_hw *hw = &vf->pf->hw;
777         struct ice_vsi *vsi;
778
779         if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
780                 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
781                         vf->vf_id);
782                 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
783                 goto error_param;
784         }
785
786         if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) {
787                 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
788                         vf->vf_id);
789                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
790                 goto error_param;
791         }
792
793         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
794                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
795                 goto error_param;
796         }
797
798         if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
799             rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
800             rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
801                 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
802                         vf->vf_id);
803                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
804                 goto error_param;
805         }
806
807         vsi = ice_get_vf_vsi(vf);
808         if (!vsi) {
809                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
810                 goto error_param;
811         }
812
813         if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
814                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
815                 goto error_param;
816         }
817
818         if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
819                 struct ice_vsi_ctx *ctx;
820                 u8 lut_type, hash_type;
821                 int status;
822
823                 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
824                 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_HASH_XOR :
825                                 ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
826
827                 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
828                 if (!ctx) {
829                         v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
830                         goto error_param;
831                 }
832
833                 ctx->info.q_opt_rss =
834                         FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
835                         FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
836
837                 /* Preserve existing queueing option setting */
838                 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
839                                           ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
840                 ctx->info.q_opt_tc = vsi->info.q_opt_tc;
841                 ctx->info.q_opt_flags = vsi->info.q_opt_rss;
842
843                 ctx->info.valid_sections =
844                                 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
845
846                 status = ice_update_vsi(hw, vsi->idx, ctx, NULL);
847                 if (status) {
848                         dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n",
849                                 status, ice_aq_str(hw->adminq.sq_last_status));
850                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
851                 } else {
852                         vsi->info.q_opt_rss = ctx->info.q_opt_rss;
853                 }
854
855                 kfree(ctx);
856         } else {
857                 struct ice_rss_hash_cfg cfg;
858
859                 /* Only check for none raw pattern case */
860                 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
861                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
862                         goto error_param;
863                 }
864                 cfg.addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
865                 cfg.hash_flds = ICE_HASH_INVALID;
866                 cfg.hdr_type = ICE_RSS_ANY_HEADERS;
867
868                 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &cfg)) {
869                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
870                         goto error_param;
871                 }
872
873                 if (add) {
874                         if (ice_add_rss_cfg(hw, vsi, &cfg)) {
875                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
876                                 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
877                                         vsi->vsi_num, v_ret);
878                         }
879                 } else {
880                         int status;
881
882                         status = ice_rem_rss_cfg(hw, vsi->idx, &cfg);
883                         /* We just ignore -ENOENT, because if two configurations
884                          * share the same profile remove one of them actually
885                          * removes both, since the profile is deleted.
886                          */
887                         if (status && status != -ENOENT) {
888                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
889                                 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n",
890                                         vf->vf_id, status);
891                         }
892                 }
893         }
894
895 error_param:
896         return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0);
897 }
898
899 /**
900  * ice_vc_config_rss_key
901  * @vf: pointer to the VF info
902  * @msg: pointer to the msg buffer
903  *
904  * Configure the VF's RSS key
905  */
906 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
907 {
908         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
909         struct virtchnl_rss_key *vrk =
910                 (struct virtchnl_rss_key *)msg;
911         struct ice_vsi *vsi;
912
913         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
914                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
915                 goto error_param;
916         }
917
918         if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
919                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
920                 goto error_param;
921         }
922
923         if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
924                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
925                 goto error_param;
926         }
927
928         if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
929                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
930                 goto error_param;
931         }
932
933         vsi = ice_get_vf_vsi(vf);
934         if (!vsi) {
935                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
936                 goto error_param;
937         }
938
939         if (ice_set_rss_key(vsi, vrk->key))
940                 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
941 error_param:
942         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
943                                      NULL, 0);
944 }
945
946 /**
947  * ice_vc_config_rss_lut
948  * @vf: pointer to the VF info
949  * @msg: pointer to the msg buffer
950  *
951  * Configure the VF's RSS LUT
952  */
953 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
954 {
955         struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
956         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
957         struct ice_vsi *vsi;
958
959         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
960                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
961                 goto error_param;
962         }
963
964         if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
965                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
966                 goto error_param;
967         }
968
969         if (vrl->lut_entries != ICE_LUT_VSI_SIZE) {
970                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
971                 goto error_param;
972         }
973
974         if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
975                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
976                 goto error_param;
977         }
978
979         vsi = ice_get_vf_vsi(vf);
980         if (!vsi) {
981                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
982                 goto error_param;
983         }
984
985         if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE))
986                 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
987 error_param:
988         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
989                                      NULL, 0);
990 }
991
992 /**
993  * ice_vc_config_rss_hfunc
994  * @vf: pointer to the VF info
995  * @msg: pointer to the msg buffer
996  *
997  * Configure the VF's RSS Hash function
998  */
999 static int ice_vc_config_rss_hfunc(struct ice_vf *vf, u8 *msg)
1000 {
1001         struct virtchnl_rss_hfunc *vrh = (struct virtchnl_rss_hfunc *)msg;
1002         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1003         u8 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1004         struct ice_vsi *vsi;
1005
1006         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1007                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1008                 goto error_param;
1009         }
1010
1011         if (!ice_vc_isvalid_vsi_id(vf, vrh->vsi_id)) {
1012                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1013                 goto error_param;
1014         }
1015
1016         if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
1017                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1018                 goto error_param;
1019         }
1020
1021         vsi = ice_get_vf_vsi(vf);
1022         if (!vsi) {
1023                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1024                 goto error_param;
1025         }
1026
1027         if (vrh->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
1028                 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ;
1029
1030         if (ice_set_rss_hfunc(vsi, hfunc))
1031                 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1032 error_param:
1033         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_HFUNC, v_ret,
1034                                      NULL, 0);
1035 }
1036
1037 /**
1038  * ice_vc_cfg_promiscuous_mode_msg
1039  * @vf: pointer to the VF info
1040  * @msg: pointer to the msg buffer
1041  *
1042  * called from the VF to configure VF VSIs promiscuous mode
1043  */
1044 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
1045 {
1046         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1047         bool rm_promisc, alluni = false, allmulti = false;
1048         struct virtchnl_promisc_info *info =
1049             (struct virtchnl_promisc_info *)msg;
1050         struct ice_vsi_vlan_ops *vlan_ops;
1051         int mcast_err = 0, ucast_err = 0;
1052         struct ice_pf *pf = vf->pf;
1053         struct ice_vsi *vsi;
1054         u8 mcast_m, ucast_m;
1055         struct device *dev;
1056         int ret = 0;
1057
1058         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1059                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1060                 goto error_param;
1061         }
1062
1063         if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
1064                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1065                 goto error_param;
1066         }
1067
1068         vsi = ice_get_vf_vsi(vf);
1069         if (!vsi) {
1070                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1071                 goto error_param;
1072         }
1073
1074         dev = ice_pf_to_dev(pf);
1075         if (!ice_is_vf_trusted(vf)) {
1076                 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
1077                         vf->vf_id);
1078                 /* Leave v_ret alone, lie to the VF on purpose. */
1079                 goto error_param;
1080         }
1081
1082         if (info->flags & FLAG_VF_UNICAST_PROMISC)
1083                 alluni = true;
1084
1085         if (info->flags & FLAG_VF_MULTICAST_PROMISC)
1086                 allmulti = true;
1087
1088         rm_promisc = !allmulti && !alluni;
1089
1090         vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
1091         if (rm_promisc)
1092                 ret = vlan_ops->ena_rx_filtering(vsi);
1093         else
1094                 ret = vlan_ops->dis_rx_filtering(vsi);
1095         if (ret) {
1096                 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
1097                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1098                 goto error_param;
1099         }
1100
1101         ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m);
1102
1103         if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
1104                 if (alluni) {
1105                         /* in this case we're turning on promiscuous mode */
1106                         ret = ice_set_dflt_vsi(vsi);
1107                 } else {
1108                         /* in this case we're turning off promiscuous mode */
1109                         if (ice_is_dflt_vsi_in_use(vsi->port_info))
1110                                 ret = ice_clear_dflt_vsi(vsi);
1111                 }
1112
1113                 /* in this case we're turning on/off only
1114                  * allmulticast
1115                  */
1116                 if (allmulti)
1117                         mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1118                 else
1119                         mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1120
1121                 if (ret) {
1122                         dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n",
1123                                 vf->vf_id, ret);
1124                         v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1125                         goto error_param;
1126                 }
1127         } else {
1128                 if (alluni)
1129                         ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m);
1130                 else
1131                         ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m);
1132
1133                 if (allmulti)
1134                         mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1135                 else
1136                         mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1137
1138                 if (ucast_err || mcast_err)
1139                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1140         }
1141
1142         if (!mcast_err) {
1143                 if (allmulti &&
1144                     !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
1145                         dev_info(dev, "VF %u successfully set multicast promiscuous mode\n",
1146                                  vf->vf_id);
1147                 else if (!allmulti &&
1148                          test_and_clear_bit(ICE_VF_STATE_MC_PROMISC,
1149                                             vf->vf_states))
1150                         dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n",
1151                                  vf->vf_id);
1152         } else {
1153                 dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n",
1154                         vf->vf_id, mcast_err);
1155         }
1156
1157         if (!ucast_err) {
1158                 if (alluni &&
1159                     !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
1160                         dev_info(dev, "VF %u successfully set unicast promiscuous mode\n",
1161                                  vf->vf_id);
1162                 else if (!alluni &&
1163                          test_and_clear_bit(ICE_VF_STATE_UC_PROMISC,
1164                                             vf->vf_states))
1165                         dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n",
1166                                  vf->vf_id);
1167         } else {
1168                 dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n",
1169                         vf->vf_id, ucast_err);
1170         }
1171
1172 error_param:
1173         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
1174                                      v_ret, NULL, 0);
1175 }
1176
1177 /**
1178  * ice_vc_get_stats_msg
1179  * @vf: pointer to the VF info
1180  * @msg: pointer to the msg buffer
1181  *
1182  * called from the VF to get VSI stats
1183  */
1184 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
1185 {
1186         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1187         struct virtchnl_queue_select *vqs =
1188                 (struct virtchnl_queue_select *)msg;
1189         struct ice_eth_stats stats = { 0 };
1190         struct ice_vsi *vsi;
1191
1192         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1193                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1194                 goto error_param;
1195         }
1196
1197         if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1198                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1199                 goto error_param;
1200         }
1201
1202         vsi = ice_get_vf_vsi(vf);
1203         if (!vsi) {
1204                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1205                 goto error_param;
1206         }
1207
1208         ice_update_eth_stats(vsi);
1209
1210         stats = vsi->eth_stats;
1211
1212 error_param:
1213         /* send the response to the VF */
1214         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
1215                                      (u8 *)&stats, sizeof(stats));
1216 }
1217
1218 /**
1219  * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
1220  * @vqs: virtchnl_queue_select structure containing bitmaps to validate
1221  *
1222  * Return true on successful validation, else false
1223  */
1224 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
1225 {
1226         if ((!vqs->rx_queues && !vqs->tx_queues) ||
1227             vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
1228             vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
1229                 return false;
1230
1231         return true;
1232 }
1233
1234 /**
1235  * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
1236  * @vsi: VSI of the VF to configure
1237  * @q_idx: VF queue index used to determine the queue in the PF's space
1238  */
1239 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1240 {
1241         struct ice_hw *hw = &vsi->back->hw;
1242         u32 pfq = vsi->txq_map[q_idx];
1243         u32 reg;
1244
1245         reg = rd32(hw, QINT_TQCTL(pfq));
1246
1247         /* MSI-X index 0 in the VF's space is always for the OICR, which means
1248          * this is most likely a poll mode VF driver, so don't enable an
1249          * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1250          */
1251         if (!(reg & QINT_TQCTL_MSIX_INDX_M))
1252                 return;
1253
1254         wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
1255 }
1256
1257 /**
1258  * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
1259  * @vsi: VSI of the VF to configure
1260  * @q_idx: VF queue index used to determine the queue in the PF's space
1261  */
1262 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1263 {
1264         struct ice_hw *hw = &vsi->back->hw;
1265         u32 pfq = vsi->rxq_map[q_idx];
1266         u32 reg;
1267
1268         reg = rd32(hw, QINT_RQCTL(pfq));
1269
1270         /* MSI-X index 0 in the VF's space is always for the OICR, which means
1271          * this is most likely a poll mode VF driver, so don't enable an
1272          * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1273          */
1274         if (!(reg & QINT_RQCTL_MSIX_INDX_M))
1275                 return;
1276
1277         wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
1278 }
1279
1280 /**
1281  * ice_vc_ena_qs_msg
1282  * @vf: pointer to the VF info
1283  * @msg: pointer to the msg buffer
1284  *
1285  * called from the VF to enable all or specific queue(s)
1286  */
1287 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
1288 {
1289         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1290         struct virtchnl_queue_select *vqs =
1291             (struct virtchnl_queue_select *)msg;
1292         struct ice_vsi *vsi;
1293         unsigned long q_map;
1294         u16 vf_q_id;
1295
1296         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1297                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1298                 goto error_param;
1299         }
1300
1301         if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1302                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1303                 goto error_param;
1304         }
1305
1306         if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1307                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1308                 goto error_param;
1309         }
1310
1311         vsi = ice_get_vf_vsi(vf);
1312         if (!vsi) {
1313                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1314                 goto error_param;
1315         }
1316
1317         /* Enable only Rx rings, Tx rings were enabled by the FW when the
1318          * Tx queue group list was configured and the context bits were
1319          * programmed using ice_vsi_cfg_txqs
1320          */
1321         q_map = vqs->rx_queues;
1322         for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1323                 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1324                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1325                         goto error_param;
1326                 }
1327
1328                 /* Skip queue if enabled */
1329                 if (test_bit(vf_q_id, vf->rxq_ena))
1330                         continue;
1331
1332                 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
1333                         dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
1334                                 vf_q_id, vsi->vsi_num);
1335                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1336                         goto error_param;
1337                 }
1338
1339                 ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
1340                 set_bit(vf_q_id, vf->rxq_ena);
1341         }
1342
1343         q_map = vqs->tx_queues;
1344         for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1345                 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1346                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1347                         goto error_param;
1348                 }
1349
1350                 /* Skip queue if enabled */
1351                 if (test_bit(vf_q_id, vf->txq_ena))
1352                         continue;
1353
1354                 ice_vf_ena_txq_interrupt(vsi, vf_q_id);
1355                 set_bit(vf_q_id, vf->txq_ena);
1356         }
1357
1358         /* Set flag to indicate that queues are enabled */
1359         if (v_ret == VIRTCHNL_STATUS_SUCCESS)
1360                 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1361
1362 error_param:
1363         /* send the response to the VF */
1364         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
1365                                      NULL, 0);
1366 }
1367
1368 /**
1369  * ice_vf_vsi_dis_single_txq - disable a single Tx queue
1370  * @vf: VF to disable queue for
1371  * @vsi: VSI for the VF
1372  * @q_id: VF relative (0-based) queue ID
1373  *
1374  * Attempt to disable the Tx queue passed in. If the Tx queue was successfully
1375  * disabled then clear q_id bit in the enabled queues bitmap and return
1376  * success. Otherwise return error.
1377  */
1378 static int
1379 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id)
1380 {
1381         struct ice_txq_meta txq_meta = { 0 };
1382         struct ice_tx_ring *ring;
1383         int err;
1384
1385         if (!test_bit(q_id, vf->txq_ena))
1386                 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n",
1387                         q_id, vsi->vsi_num);
1388
1389         ring = vsi->tx_rings[q_id];
1390         if (!ring)
1391                 return -EINVAL;
1392
1393         ice_fill_txq_meta(vsi, ring, &txq_meta);
1394
1395         err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta);
1396         if (err) {
1397                 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
1398                         q_id, vsi->vsi_num);
1399                 return err;
1400         }
1401
1402         /* Clear enabled queues flag */
1403         clear_bit(q_id, vf->txq_ena);
1404
1405         return 0;
1406 }
1407
1408 /**
1409  * ice_vc_dis_qs_msg
1410  * @vf: pointer to the VF info
1411  * @msg: pointer to the msg buffer
1412  *
1413  * called from the VF to disable all or specific queue(s)
1414  */
1415 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
1416 {
1417         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1418         struct virtchnl_queue_select *vqs =
1419             (struct virtchnl_queue_select *)msg;
1420         struct ice_vsi *vsi;
1421         unsigned long q_map;
1422         u16 vf_q_id;
1423
1424         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
1425             !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
1426                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1427                 goto error_param;
1428         }
1429
1430         if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1431                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1432                 goto error_param;
1433         }
1434
1435         if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1436                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1437                 goto error_param;
1438         }
1439
1440         vsi = ice_get_vf_vsi(vf);
1441         if (!vsi) {
1442                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1443                 goto error_param;
1444         }
1445
1446         if (vqs->tx_queues) {
1447                 q_map = vqs->tx_queues;
1448
1449                 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1450                         if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1451                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1452                                 goto error_param;
1453                         }
1454
1455                         if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) {
1456                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1457                                 goto error_param;
1458                         }
1459                 }
1460         }
1461
1462         q_map = vqs->rx_queues;
1463         /* speed up Rx queue disable by batching them if possible */
1464         if (q_map &&
1465             bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
1466                 if (ice_vsi_stop_all_rx_rings(vsi)) {
1467                         dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
1468                                 vsi->vsi_num);
1469                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1470                         goto error_param;
1471                 }
1472
1473                 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
1474         } else if (q_map) {
1475                 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1476                         if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1477                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1478                                 goto error_param;
1479                         }
1480
1481                         /* Skip queue if not enabled */
1482                         if (!test_bit(vf_q_id, vf->rxq_ena))
1483                                 continue;
1484
1485                         if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
1486                                                      true)) {
1487                                 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
1488                                         vf_q_id, vsi->vsi_num);
1489                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1490                                 goto error_param;
1491                         }
1492
1493                         /* Clear enabled queues flag */
1494                         clear_bit(vf_q_id, vf->rxq_ena);
1495                 }
1496         }
1497
1498         /* Clear enabled queues flag */
1499         if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
1500                 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1501
1502 error_param:
1503         /* send the response to the VF */
1504         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
1505                                      NULL, 0);
1506 }
1507
1508 /**
1509  * ice_cfg_interrupt
1510  * @vf: pointer to the VF info
1511  * @vsi: the VSI being configured
1512  * @map: vector map for mapping vectors to queues
1513  * @q_vector: structure for interrupt vector
1514  * configure the IRQ to queue map
1515  */
1516 static enum virtchnl_status_code
1517 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi,
1518                   struct virtchnl_vector_map *map,
1519                   struct ice_q_vector *q_vector)
1520 {
1521         u16 vsi_q_id, vsi_q_id_idx;
1522         unsigned long qmap;
1523
1524         q_vector->num_ring_rx = 0;
1525         q_vector->num_ring_tx = 0;
1526
1527         qmap = map->rxq_map;
1528         for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1529                 vsi_q_id = vsi_q_id_idx;
1530
1531                 if (!ice_vc_isvalid_q_id(vsi, vsi_q_id))
1532                         return VIRTCHNL_STATUS_ERR_PARAM;
1533
1534                 q_vector->num_ring_rx++;
1535                 q_vector->rx.itr_idx = map->rxitr_idx;
1536                 vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
1537                 ice_cfg_rxq_interrupt(vsi, vsi_q_id,
1538                                       q_vector->vf_reg_idx,
1539                                       q_vector->rx.itr_idx);
1540         }
1541
1542         qmap = map->txq_map;
1543         for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1544                 vsi_q_id = vsi_q_id_idx;
1545
1546                 if (!ice_vc_isvalid_q_id(vsi, vsi_q_id))
1547                         return VIRTCHNL_STATUS_ERR_PARAM;
1548
1549                 q_vector->num_ring_tx++;
1550                 q_vector->tx.itr_idx = map->txitr_idx;
1551                 vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
1552                 ice_cfg_txq_interrupt(vsi, vsi_q_id,
1553                                       q_vector->vf_reg_idx,
1554                                       q_vector->tx.itr_idx);
1555         }
1556
1557         return VIRTCHNL_STATUS_SUCCESS;
1558 }
1559
1560 /**
1561  * ice_vc_cfg_irq_map_msg
1562  * @vf: pointer to the VF info
1563  * @msg: pointer to the msg buffer
1564  *
1565  * called from the VF to configure the IRQ to queue map
1566  */
1567 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
1568 {
1569         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1570         u16 num_q_vectors_mapped, vsi_id, vector_id;
1571         struct virtchnl_irq_map_info *irqmap_info;
1572         struct virtchnl_vector_map *map;
1573         struct ice_vsi *vsi;
1574         int i;
1575
1576         irqmap_info = (struct virtchnl_irq_map_info *)msg;
1577         num_q_vectors_mapped = irqmap_info->num_vectors;
1578
1579         /* Check to make sure number of VF vectors mapped is not greater than
1580          * number of VF vectors originally allocated, and check that
1581          * there is actually at least a single VF queue vector mapped
1582          */
1583         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1584             vf->num_msix < num_q_vectors_mapped ||
1585             !num_q_vectors_mapped) {
1586                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1587                 goto error_param;
1588         }
1589
1590         vsi = ice_get_vf_vsi(vf);
1591         if (!vsi) {
1592                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1593                 goto error_param;
1594         }
1595
1596         for (i = 0; i < num_q_vectors_mapped; i++) {
1597                 struct ice_q_vector *q_vector;
1598
1599                 map = &irqmap_info->vecmap[i];
1600
1601                 vector_id = map->vector_id;
1602                 vsi_id = map->vsi_id;
1603                 /* vector_id is always 0-based for each VF, and can never be
1604                  * larger than or equal to the max allowed interrupts per VF
1605                  */
1606                 if (!(vector_id < vf->num_msix) ||
1607                     !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
1608                     (!vector_id && (map->rxq_map || map->txq_map))) {
1609                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1610                         goto error_param;
1611                 }
1612
1613                 /* No need to map VF miscellaneous or rogue vector */
1614                 if (!vector_id)
1615                         continue;
1616
1617                 /* Subtract non queue vector from vector_id passed by VF
1618                  * to get actual number of VSI queue vector array index
1619                  */
1620                 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
1621                 if (!q_vector) {
1622                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1623                         goto error_param;
1624                 }
1625
1626                 /* lookout for the invalid queue index */
1627                 v_ret = ice_cfg_interrupt(vf, vsi, map, q_vector);
1628                 if (v_ret)
1629                         goto error_param;
1630         }
1631
1632 error_param:
1633         /* send the response to the VF */
1634         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
1635                                      NULL, 0);
1636 }
1637
1638 /**
1639  * ice_vc_cfg_qs_msg
1640  * @vf: pointer to the VF info
1641  * @msg: pointer to the msg buffer
1642  *
1643  * called from the VF to configure the Rx/Tx queues
1644  */
1645 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
1646 {
1647         struct virtchnl_vsi_queue_config_info *qci =
1648             (struct virtchnl_vsi_queue_config_info *)msg;
1649         struct virtchnl_queue_pair_info *qpi;
1650         struct ice_pf *pf = vf->pf;
1651         struct ice_lag *lag;
1652         struct ice_vsi *vsi;
1653         u8 act_prt, pri_prt;
1654         int i = -1, q_idx;
1655
1656         lag = pf->lag;
1657         mutex_lock(&pf->lag_mutex);
1658         act_prt = ICE_LAG_INVALID_PORT;
1659         pri_prt = pf->hw.port_info->lport;
1660         if (lag && lag->bonded && lag->primary) {
1661                 act_prt = lag->active_port;
1662                 if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT &&
1663                     lag->upper_netdev)
1664                         ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt);
1665                 else
1666                         act_prt = ICE_LAG_INVALID_PORT;
1667         }
1668
1669         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
1670                 goto error_param;
1671
1672         if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id))
1673                 goto error_param;
1674
1675         vsi = ice_get_vf_vsi(vf);
1676         if (!vsi)
1677                 goto error_param;
1678
1679         if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
1680             qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1681                 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
1682                         vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1683                 goto error_param;
1684         }
1685
1686         for (i = 0; i < qci->num_queue_pairs; i++) {
1687                 if (!qci->qpair[i].rxq.crc_disable)
1688                         continue;
1689
1690                 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) ||
1691                     vf->vlan_strip_ena)
1692                         goto error_param;
1693         }
1694
1695         for (i = 0; i < qci->num_queue_pairs; i++) {
1696                 qpi = &qci->qpair[i];
1697                 if (qpi->txq.vsi_id != qci->vsi_id ||
1698                     qpi->rxq.vsi_id != qci->vsi_id ||
1699                     qpi->rxq.queue_id != qpi->txq.queue_id ||
1700                     qpi->txq.headwb_enabled ||
1701                     !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
1702                     !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
1703                     !ice_vc_isvalid_q_id(vsi, qpi->txq.queue_id)) {
1704                         goto error_param;
1705                 }
1706
1707                 q_idx = qpi->rxq.queue_id;
1708
1709                 /* make sure selected "q_idx" is in valid range of queues
1710                  * for selected "vsi"
1711                  */
1712                 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) {
1713                         goto error_param;
1714                 }
1715
1716                 /* copy Tx queue info from VF into VSI */
1717                 if (qpi->txq.ring_len > 0) {
1718                         vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr;
1719                         vsi->tx_rings[i]->count = qpi->txq.ring_len;
1720
1721                         /* Disable any existing queue first */
1722                         if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx))
1723                                 goto error_param;
1724
1725                         /* Configure a queue with the requested settings */
1726                         if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) {
1727                                 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n",
1728                                          vf->vf_id, i);
1729                                 goto error_param;
1730                         }
1731                 }
1732
1733                 /* copy Rx queue info from VF into VSI */
1734                 if (qpi->rxq.ring_len > 0) {
1735                         u16 max_frame_size = ice_vc_get_max_frame_size(vf);
1736                         u32 rxdid;
1737
1738                         vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr;
1739                         vsi->rx_rings[i]->count = qpi->rxq.ring_len;
1740
1741                         if (qpi->rxq.crc_disable)
1742                                 vsi->rx_rings[q_idx]->flags |=
1743                                         ICE_RX_FLAGS_CRC_STRIP_DIS;
1744                         else
1745                                 vsi->rx_rings[q_idx]->flags &=
1746                                         ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1747
1748                         if (qpi->rxq.databuffer_size != 0 &&
1749                             (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
1750                              qpi->rxq.databuffer_size < 1024))
1751                                 goto error_param;
1752                         vsi->rx_buf_len = qpi->rxq.databuffer_size;
1753                         vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len;
1754                         if (qpi->rxq.max_pkt_size > max_frame_size ||
1755                             qpi->rxq.max_pkt_size < 64)
1756                                 goto error_param;
1757
1758                         vsi->max_frame = qpi->rxq.max_pkt_size;
1759                         /* add space for the port VLAN since the VF driver is
1760                          * not expected to account for it in the MTU
1761                          * calculation
1762                          */
1763                         if (ice_vf_is_port_vlan_ena(vf))
1764                                 vsi->max_frame += VLAN_HLEN;
1765
1766                         if (ice_vsi_cfg_single_rxq(vsi, q_idx)) {
1767                                 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n",
1768                                          vf->vf_id, i);
1769                                 goto error_param;
1770                         }
1771
1772                         /* If Rx flex desc is supported, select RXDID for Rx
1773                          * queues. Otherwise, use legacy 32byte descriptor
1774                          * format. Legacy 16byte descriptor is not supported.
1775                          * If this RXDID is selected, return error.
1776                          */
1777                         if (vf->driver_caps &
1778                             VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
1779                                 rxdid = qpi->rxq.rxdid;
1780                                 if (!(BIT(rxdid) & pf->supported_rxdids))
1781                                         goto error_param;
1782                         } else {
1783                                 rxdid = ICE_RXDID_LEGACY_1;
1784                         }
1785
1786                         ice_write_qrxflxp_cntxt(&vsi->back->hw,
1787                                                 vsi->rxq_map[q_idx],
1788                                                 rxdid, 0x03, false);
1789                 }
1790         }
1791
1792         if (lag && lag->bonded && lag->primary &&
1793             act_prt != ICE_LAG_INVALID_PORT)
1794                 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
1795         mutex_unlock(&pf->lag_mutex);
1796
1797         /* send the response to the VF */
1798         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1799                                      VIRTCHNL_STATUS_SUCCESS, NULL, 0);
1800 error_param:
1801         /* disable whatever we can */
1802         for (; i >= 0; i--) {
1803                 if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true))
1804                         dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n",
1805                                 vf->vf_id, i);
1806                 if (ice_vf_vsi_dis_single_txq(vf, vsi, i))
1807                         dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n",
1808                                 vf->vf_id, i);
1809         }
1810
1811         if (lag && lag->bonded && lag->primary &&
1812             act_prt != ICE_LAG_INVALID_PORT)
1813                 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
1814         mutex_unlock(&pf->lag_mutex);
1815
1816         ice_lag_move_new_vf_nodes(vf);
1817
1818         /* send the response to the VF */
1819         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1820                                      VIRTCHNL_STATUS_ERR_PARAM, NULL, 0);
1821 }
1822
1823 /**
1824  * ice_can_vf_change_mac
1825  * @vf: pointer to the VF info
1826  *
1827  * Return true if the VF is allowed to change its MAC filters, false otherwise
1828  */
1829 static bool ice_can_vf_change_mac(struct ice_vf *vf)
1830 {
1831         /* If the VF MAC address has been set administratively (via the
1832          * ndo_set_vf_mac command), then deny permission to the VF to
1833          * add/delete unicast MAC addresses, unless the VF is trusted
1834          */
1835         if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
1836                 return false;
1837
1838         return true;
1839 }
1840
1841 /**
1842  * ice_vc_ether_addr_type - get type of virtchnl_ether_addr
1843  * @vc_ether_addr: used to extract the type
1844  */
1845 static u8
1846 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr)
1847 {
1848         return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK);
1849 }
1850
1851 /**
1852  * ice_is_vc_addr_legacy - check if the MAC address is from an older VF
1853  * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1854  */
1855 static bool
1856 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr)
1857 {
1858         u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1859
1860         return (type == VIRTCHNL_ETHER_ADDR_LEGACY);
1861 }
1862
1863 /**
1864  * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC
1865  * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1866  *
1867  * This function should only be called when the MAC address in
1868  * virtchnl_ether_addr is a valid unicast MAC
1869  */
1870 static bool
1871 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr)
1872 {
1873         u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1874
1875         return (type == VIRTCHNL_ETHER_ADDR_PRIMARY);
1876 }
1877
1878 /**
1879  * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed
1880  * @vf: VF to update
1881  * @vc_ether_addr: structure from VIRTCHNL with MAC to add
1882  */
1883 static void
1884 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1885 {
1886         u8 *mac_addr = vc_ether_addr->addr;
1887
1888         if (!is_valid_ether_addr(mac_addr))
1889                 return;
1890
1891         /* only allow legacy VF drivers to set the device and hardware MAC if it
1892          * is zero and allow new VF drivers to set the hardware MAC if the type
1893          * was correctly specified over VIRTCHNL
1894          */
1895         if ((ice_is_vc_addr_legacy(vc_ether_addr) &&
1896              is_zero_ether_addr(vf->hw_lan_addr)) ||
1897             ice_is_vc_addr_primary(vc_ether_addr)) {
1898                 ether_addr_copy(vf->dev_lan_addr, mac_addr);
1899                 ether_addr_copy(vf->hw_lan_addr, mac_addr);
1900         }
1901
1902         /* hardware and device MACs are already set, but its possible that the
1903          * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the
1904          * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it
1905          * away for the legacy VF driver case as it will be updated in the
1906          * delete flow for this case
1907          */
1908         if (ice_is_vc_addr_legacy(vc_ether_addr)) {
1909                 ether_addr_copy(vf->legacy_last_added_umac.addr,
1910                                 mac_addr);
1911                 vf->legacy_last_added_umac.time_modified = jiffies;
1912         }
1913 }
1914
1915 /**
1916  * ice_vc_add_mac_addr - attempt to add the MAC address passed in
1917  * @vf: pointer to the VF info
1918  * @vsi: pointer to the VF's VSI
1919  * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC
1920  */
1921 static int
1922 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1923                     struct virtchnl_ether_addr *vc_ether_addr)
1924 {
1925         struct device *dev = ice_pf_to_dev(vf->pf);
1926         u8 *mac_addr = vc_ether_addr->addr;
1927         int ret;
1928
1929         /* device MAC already added */
1930         if (ether_addr_equal(mac_addr, vf->dev_lan_addr))
1931                 return 0;
1932
1933         if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
1934                 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
1935                 return -EPERM;
1936         }
1937
1938         ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1939         if (ret == -EEXIST) {
1940                 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
1941                         vf->vf_id);
1942                 /* don't return since we might need to update
1943                  * the primary MAC in ice_vfhw_mac_add() below
1944                  */
1945         } else if (ret) {
1946                 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
1947                         mac_addr, vf->vf_id, ret);
1948                 return ret;
1949         } else {
1950                 vf->num_mac++;
1951         }
1952
1953         ice_vfhw_mac_add(vf, vc_ether_addr);
1954
1955         return ret;
1956 }
1957
1958 /**
1959  * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired
1960  * @last_added_umac: structure used to check expiration
1961  */
1962 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac)
1963 {
1964 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME    msecs_to_jiffies(3000)
1965         return time_is_before_jiffies(last_added_umac->time_modified +
1966                                       ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME);
1967 }
1968
1969 /**
1970  * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF
1971  * @vf: VF to update
1972  * @vc_ether_addr: structure from VIRTCHNL with MAC to check
1973  *
1974  * only update cached hardware MAC for legacy VF drivers on delete
1975  * because we cannot guarantee order/type of MAC from the VF driver
1976  */
1977 static void
1978 ice_update_legacy_cached_mac(struct ice_vf *vf,
1979                              struct virtchnl_ether_addr *vc_ether_addr)
1980 {
1981         if (!ice_is_vc_addr_legacy(vc_ether_addr) ||
1982             ice_is_legacy_umac_expired(&vf->legacy_last_added_umac))
1983                 return;
1984
1985         ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr);
1986         ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr);
1987 }
1988
1989 /**
1990  * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed
1991  * @vf: VF to update
1992  * @vc_ether_addr: structure from VIRTCHNL with MAC to delete
1993  */
1994 static void
1995 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1996 {
1997         u8 *mac_addr = vc_ether_addr->addr;
1998
1999         if (!is_valid_ether_addr(mac_addr) ||
2000             !ether_addr_equal(vf->dev_lan_addr, mac_addr))
2001                 return;
2002
2003         /* allow the device MAC to be repopulated in the add flow and don't
2004          * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant
2005          * to be persistent on VM reboot and across driver unload/load, which
2006          * won't work if we clear the hardware MAC here
2007          */
2008         eth_zero_addr(vf->dev_lan_addr);
2009
2010         ice_update_legacy_cached_mac(vf, vc_ether_addr);
2011 }
2012
2013 /**
2014  * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
2015  * @vf: pointer to the VF info
2016  * @vsi: pointer to the VF's VSI
2017  * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC
2018  */
2019 static int
2020 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
2021                     struct virtchnl_ether_addr *vc_ether_addr)
2022 {
2023         struct device *dev = ice_pf_to_dev(vf->pf);
2024         u8 *mac_addr = vc_ether_addr->addr;
2025         int status;
2026
2027         if (!ice_can_vf_change_mac(vf) &&
2028             ether_addr_equal(vf->dev_lan_addr, mac_addr))
2029                 return 0;
2030
2031         status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
2032         if (status == -ENOENT) {
2033                 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
2034                         vf->vf_id);
2035                 return -ENOENT;
2036         } else if (status) {
2037                 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
2038                         mac_addr, vf->vf_id, status);
2039                 return -EIO;
2040         }
2041
2042         ice_vfhw_mac_del(vf, vc_ether_addr);
2043
2044         vf->num_mac--;
2045
2046         return 0;
2047 }
2048
2049 /**
2050  * ice_vc_handle_mac_addr_msg
2051  * @vf: pointer to the VF info
2052  * @msg: pointer to the msg buffer
2053  * @set: true if MAC filters are being set, false otherwise
2054  *
2055  * add guest MAC address filter
2056  */
2057 static int
2058 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
2059 {
2060         int (*ice_vc_cfg_mac)
2061                 (struct ice_vf *vf, struct ice_vsi *vsi,
2062                  struct virtchnl_ether_addr *virtchnl_ether_addr);
2063         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2064         struct virtchnl_ether_addr_list *al =
2065             (struct virtchnl_ether_addr_list *)msg;
2066         struct ice_pf *pf = vf->pf;
2067         enum virtchnl_ops vc_op;
2068         struct ice_vsi *vsi;
2069         int i;
2070
2071         if (set) {
2072                 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
2073                 ice_vc_cfg_mac = ice_vc_add_mac_addr;
2074         } else {
2075                 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
2076                 ice_vc_cfg_mac = ice_vc_del_mac_addr;
2077         }
2078
2079         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
2080             !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
2081                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2082                 goto handle_mac_exit;
2083         }
2084
2085         /* If this VF is not privileged, then we can't add more than a
2086          * limited number of addresses. Check to make sure that the
2087          * additions do not push us over the limit.
2088          */
2089         if (set && !ice_is_vf_trusted(vf) &&
2090             (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
2091                 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
2092                         vf->vf_id);
2093                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2094                 goto handle_mac_exit;
2095         }
2096
2097         vsi = ice_get_vf_vsi(vf);
2098         if (!vsi) {
2099                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2100                 goto handle_mac_exit;
2101         }
2102
2103         for (i = 0; i < al->num_elements; i++) {
2104                 u8 *mac_addr = al->list[i].addr;
2105                 int result;
2106
2107                 if (is_broadcast_ether_addr(mac_addr) ||
2108                     is_zero_ether_addr(mac_addr))
2109                         continue;
2110
2111                 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]);
2112                 if (result == -EEXIST || result == -ENOENT) {
2113                         continue;
2114                 } else if (result) {
2115                         v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2116                         goto handle_mac_exit;
2117                 }
2118         }
2119
2120 handle_mac_exit:
2121         /* send the response to the VF */
2122         return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
2123 }
2124
2125 /**
2126  * ice_vc_add_mac_addr_msg
2127  * @vf: pointer to the VF info
2128  * @msg: pointer to the msg buffer
2129  *
2130  * add guest MAC address filter
2131  */
2132 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2133 {
2134         return ice_vc_handle_mac_addr_msg(vf, msg, true);
2135 }
2136
2137 /**
2138  * ice_vc_del_mac_addr_msg
2139  * @vf: pointer to the VF info
2140  * @msg: pointer to the msg buffer
2141  *
2142  * remove guest MAC address filter
2143  */
2144 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2145 {
2146         return ice_vc_handle_mac_addr_msg(vf, msg, false);
2147 }
2148
2149 /**
2150  * ice_vc_request_qs_msg
2151  * @vf: pointer to the VF info
2152  * @msg: pointer to the msg buffer
2153  *
2154  * VFs get a default number of queues but can use this message to request a
2155  * different number. If the request is successful, PF will reset the VF and
2156  * return 0. If unsuccessful, PF will send message informing VF of number of
2157  * available queue pairs via virtchnl message response to VF.
2158  */
2159 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
2160 {
2161         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2162         struct virtchnl_vf_res_request *vfres =
2163                 (struct virtchnl_vf_res_request *)msg;
2164         u16 req_queues = vfres->num_queue_pairs;
2165         struct ice_pf *pf = vf->pf;
2166         u16 max_allowed_vf_queues;
2167         u16 tx_rx_queue_left;
2168         struct device *dev;
2169         u16 cur_queues;
2170
2171         dev = ice_pf_to_dev(pf);
2172         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2173                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2174                 goto error_param;
2175         }
2176
2177         cur_queues = vf->num_vf_qs;
2178         tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
2179                                  ice_get_avail_rxq_count(pf));
2180         max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
2181         if (!req_queues) {
2182                 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
2183                         vf->vf_id);
2184         } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
2185                 dev_err(dev, "VF %d tried to request more than %d queues.\n",
2186                         vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
2187                 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
2188         } else if (req_queues > cur_queues &&
2189                    req_queues - cur_queues > tx_rx_queue_left) {
2190                 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
2191                          vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
2192                 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
2193                                                ICE_MAX_RSS_QS_PER_VF);
2194         } else {
2195                 /* request is successful, then reset VF */
2196                 vf->num_req_qs = req_queues;
2197                 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
2198                 dev_info(dev, "VF %d granted request of %u queues.\n",
2199                          vf->vf_id, req_queues);
2200                 return 0;
2201         }
2202
2203 error_param:
2204         /* send the response to the VF */
2205         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
2206                                      v_ret, (u8 *)vfres, sizeof(*vfres));
2207 }
2208
2209 /**
2210  * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
2211  * @caps: VF driver negotiated capabilities
2212  *
2213  * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
2214  */
2215 static bool ice_vf_vlan_offload_ena(u32 caps)
2216 {
2217         return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
2218 }
2219
2220 /**
2221  * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed
2222  * @vf: VF used to determine if VLAN promiscuous config is allowed
2223  */
2224 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf)
2225 {
2226         if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2227              test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
2228             test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags))
2229                 return true;
2230
2231         return false;
2232 }
2233
2234 /**
2235  * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN
2236  * @vsi: VF's VSI used to enable VLAN promiscuous mode
2237  * @vlan: VLAN used to enable VLAN promiscuous
2238  *
2239  * This function should only be called if VLAN promiscuous mode is allowed,
2240  * which can be determined via ice_is_vlan_promisc_allowed().
2241  */
2242 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2243 {
2244         u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2245         int status;
2246
2247         status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2248                                           vlan->vid);
2249         if (status && status != -EEXIST)
2250                 return status;
2251
2252         return 0;
2253 }
2254
2255 /**
2256  * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN
2257  * @vsi: VF's VSI used to disable VLAN promiscuous mode for
2258  * @vlan: VLAN used to disable VLAN promiscuous
2259  *
2260  * This function should only be called if VLAN promiscuous mode is allowed,
2261  * which can be determined via ice_is_vlan_promisc_allowed().
2262  */
2263 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2264 {
2265         u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2266         int status;
2267
2268         status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2269                                             vlan->vid);
2270         if (status && status != -ENOENT)
2271                 return status;
2272
2273         return 0;
2274 }
2275
2276 /**
2277  * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters
2278  * @vf: VF to check against
2279  * @vsi: VF's VSI
2280  *
2281  * If the VF is trusted then the VF is allowed to add as many VLANs as it
2282  * wants to, so return false.
2283  *
2284  * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max
2285  * allowed VLANs for an untrusted VF. Return the result of this comparison.
2286  */
2287 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi)
2288 {
2289         if (ice_is_vf_trusted(vf))
2290                 return false;
2291
2292 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS    1
2293         return ((ice_vsi_num_non_zero_vlans(vsi) +
2294                 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF);
2295 }
2296
2297 /**
2298  * ice_vc_process_vlan_msg
2299  * @vf: pointer to the VF info
2300  * @msg: pointer to the msg buffer
2301  * @add_v: Add VLAN if true, otherwise delete VLAN
2302  *
2303  * Process virtchnl op to add or remove programmed guest VLAN ID
2304  */
2305 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
2306 {
2307         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2308         struct virtchnl_vlan_filter_list *vfl =
2309             (struct virtchnl_vlan_filter_list *)msg;
2310         struct ice_pf *pf = vf->pf;
2311         bool vlan_promisc = false;
2312         struct ice_vsi *vsi;
2313         struct device *dev;
2314         int status = 0;
2315         int i;
2316
2317         dev = ice_pf_to_dev(pf);
2318         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2319                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2320                 goto error_param;
2321         }
2322
2323         if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2324                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2325                 goto error_param;
2326         }
2327
2328         if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
2329                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2330                 goto error_param;
2331         }
2332
2333         for (i = 0; i < vfl->num_elements; i++) {
2334                 if (vfl->vlan_id[i] >= VLAN_N_VID) {
2335                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2336                         dev_err(dev, "invalid VF VLAN id %d\n",
2337                                 vfl->vlan_id[i]);
2338                         goto error_param;
2339                 }
2340         }
2341
2342         vsi = ice_get_vf_vsi(vf);
2343         if (!vsi) {
2344                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2345                 goto error_param;
2346         }
2347
2348         if (add_v && ice_vf_has_max_vlans(vf, vsi)) {
2349                 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2350                          vf->vf_id);
2351                 /* There is no need to let VF know about being not trusted,
2352                  * so we can just return success message here
2353                  */
2354                 goto error_param;
2355         }
2356
2357         /* in DVM a VF can add/delete inner VLAN filters when
2358          * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM
2359          */
2360         if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) {
2361                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2362                 goto error_param;
2363         }
2364
2365         /* in DVM VLAN promiscuous is based on the outer VLAN, which would be
2366          * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only
2367          * allow vlan_promisc = true in SVM and if no port VLAN is configured
2368          */
2369         vlan_promisc = ice_is_vlan_promisc_allowed(vf) &&
2370                 !ice_is_dvm_ena(&pf->hw) &&
2371                 !ice_vf_is_port_vlan_ena(vf);
2372
2373         if (add_v) {
2374                 for (i = 0; i < vfl->num_elements; i++) {
2375                         u16 vid = vfl->vlan_id[i];
2376                         struct ice_vlan vlan;
2377
2378                         if (ice_vf_has_max_vlans(vf, vsi)) {
2379                                 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2380                                          vf->vf_id);
2381                                 /* There is no need to let VF know about being
2382                                  * not trusted, so we can just return success
2383                                  * message here as well.
2384                                  */
2385                                 goto error_param;
2386                         }
2387
2388                         /* we add VLAN 0 by default for each VF so we can enable
2389                          * Tx VLAN anti-spoof without triggering MDD events so
2390                          * we don't need to add it again here
2391                          */
2392                         if (!vid)
2393                                 continue;
2394
2395                         vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2396                         status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan);
2397                         if (status) {
2398                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2399                                 goto error_param;
2400                         }
2401
2402                         /* Enable VLAN filtering on first non-zero VLAN */
2403                         if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) {
2404                                 if (vf->spoofchk) {
2405                                         status = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
2406                                         if (status) {
2407                                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2408                                                 dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n",
2409                                                         vid, status);
2410                                                 goto error_param;
2411                                         }
2412                                 }
2413                                 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) {
2414                                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2415                                         dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
2416                                                 vid, status);
2417                                         goto error_param;
2418                                 }
2419                         } else if (vlan_promisc) {
2420                                 status = ice_vf_ena_vlan_promisc(vsi, &vlan);
2421                                 if (status) {
2422                                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2423                                         dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
2424                                                 vid, status);
2425                                 }
2426                         }
2427                 }
2428         } else {
2429                 /* In case of non_trusted VF, number of VLAN elements passed
2430                  * to PF for removal might be greater than number of VLANs
2431                  * filter programmed for that VF - So, use actual number of
2432                  * VLANS added earlier with add VLAN opcode. In order to avoid
2433                  * removing VLAN that doesn't exist, which result to sending
2434                  * erroneous failed message back to the VF
2435                  */
2436                 int num_vf_vlan;
2437
2438                 num_vf_vlan = vsi->num_vlan;
2439                 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
2440                         u16 vid = vfl->vlan_id[i];
2441                         struct ice_vlan vlan;
2442
2443                         /* we add VLAN 0 by default for each VF so we can enable
2444                          * Tx VLAN anti-spoof without triggering MDD events so
2445                          * we don't want a VIRTCHNL request to remove it
2446                          */
2447                         if (!vid)
2448                                 continue;
2449
2450                         vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2451                         status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan);
2452                         if (status) {
2453                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2454                                 goto error_param;
2455                         }
2456
2457                         /* Disable VLAN filtering when only VLAN 0 is left */
2458                         if (!ice_vsi_has_non_zero_vlans(vsi)) {
2459                                 vsi->inner_vlan_ops.dis_tx_filtering(vsi);
2460                                 vsi->inner_vlan_ops.dis_rx_filtering(vsi);
2461                         }
2462
2463                         if (vlan_promisc)
2464                                 ice_vf_dis_vlan_promisc(vsi, &vlan);
2465                 }
2466         }
2467
2468 error_param:
2469         /* send the response to the VF */
2470         if (add_v)
2471                 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
2472                                              NULL, 0);
2473         else
2474                 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
2475                                              NULL, 0);
2476 }
2477
2478 /**
2479  * ice_vc_add_vlan_msg
2480  * @vf: pointer to the VF info
2481  * @msg: pointer to the msg buffer
2482  *
2483  * Add and program guest VLAN ID
2484  */
2485 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
2486 {
2487         return ice_vc_process_vlan_msg(vf, msg, true);
2488 }
2489
2490 /**
2491  * ice_vc_remove_vlan_msg
2492  * @vf: pointer to the VF info
2493  * @msg: pointer to the msg buffer
2494  *
2495  * remove programmed guest VLAN ID
2496  */
2497 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
2498 {
2499         return ice_vc_process_vlan_msg(vf, msg, false);
2500 }
2501
2502 /**
2503  * ice_vsi_is_rxq_crc_strip_dis - check if Rx queue CRC strip is disabled or not
2504  * @vsi: pointer to the VF VSI info
2505  */
2506 static bool ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi *vsi)
2507 {
2508         unsigned int i;
2509
2510         ice_for_each_alloc_rxq(vsi, i)
2511                 if (vsi->rx_rings[i]->flags & ICE_RX_FLAGS_CRC_STRIP_DIS)
2512                         return true;
2513
2514         return false;
2515 }
2516
2517 /**
2518  * ice_vc_ena_vlan_stripping
2519  * @vf: pointer to the VF info
2520  *
2521  * Enable VLAN header stripping for a given VF
2522  */
2523 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
2524 {
2525         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2526         struct ice_vsi *vsi;
2527
2528         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2529                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2530                 goto error_param;
2531         }
2532
2533         if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2534                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2535                 goto error_param;
2536         }
2537
2538         vsi = ice_get_vf_vsi(vf);
2539         if (!vsi) {
2540                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2541                 goto error_param;
2542         }
2543
2544         if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q))
2545                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2546         else
2547                 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2548
2549 error_param:
2550         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
2551                                      v_ret, NULL, 0);
2552 }
2553
2554 /**
2555  * ice_vc_dis_vlan_stripping
2556  * @vf: pointer to the VF info
2557  *
2558  * Disable VLAN header stripping for a given VF
2559  */
2560 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
2561 {
2562         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2563         struct ice_vsi *vsi;
2564
2565         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2566                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2567                 goto error_param;
2568         }
2569
2570         if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2571                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2572                 goto error_param;
2573         }
2574
2575         vsi = ice_get_vf_vsi(vf);
2576         if (!vsi) {
2577                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2578                 goto error_param;
2579         }
2580
2581         if (vsi->inner_vlan_ops.dis_stripping(vsi))
2582                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2583         else
2584                 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
2585
2586 error_param:
2587         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
2588                                      v_ret, NULL, 0);
2589 }
2590
2591 /**
2592  * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware
2593  * @vf: pointer to the VF info
2594  */
2595 static int ice_vc_get_rss_hena(struct ice_vf *vf)
2596 {
2597         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2598         struct virtchnl_rss_hena *vrh = NULL;
2599         int len = 0, ret;
2600
2601         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2602                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2603                 goto err;
2604         }
2605
2606         if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
2607                 dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n");
2608                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2609                 goto err;
2610         }
2611
2612         len = sizeof(struct virtchnl_rss_hena);
2613         vrh = kzalloc(len, GFP_KERNEL);
2614         if (!vrh) {
2615                 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2616                 len = 0;
2617                 goto err;
2618         }
2619
2620         vrh->hena = ICE_DEFAULT_RSS_HENA;
2621 err:
2622         /* send the response back to the VF */
2623         ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret,
2624                                     (u8 *)vrh, len);
2625         kfree(vrh);
2626         return ret;
2627 }
2628
2629 /**
2630  * ice_vc_set_rss_hena - set RSS HENA bits for the VF
2631  * @vf: pointer to the VF info
2632  * @msg: pointer to the msg buffer
2633  */
2634 static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg)
2635 {
2636         struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg;
2637         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2638         struct ice_pf *pf = vf->pf;
2639         struct ice_vsi *vsi;
2640         struct device *dev;
2641         int status;
2642
2643         dev = ice_pf_to_dev(pf);
2644
2645         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2646                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2647                 goto err;
2648         }
2649
2650         if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2651                 dev_err(dev, "RSS not supported by PF\n");
2652                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2653                 goto err;
2654         }
2655
2656         vsi = ice_get_vf_vsi(vf);
2657         if (!vsi) {
2658                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2659                 goto err;
2660         }
2661
2662         /* clear all previously programmed RSS configuration to allow VF drivers
2663          * the ability to customize the RSS configuration and/or completely
2664          * disable RSS
2665          */
2666         status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
2667         if (status && !vrh->hena) {
2668                 /* only report failure to clear the current RSS configuration if
2669                  * that was clearly the VF's intention (i.e. vrh->hena = 0)
2670                  */
2671                 v_ret = ice_err_to_virt_err(status);
2672                 goto err;
2673         } else if (status) {
2674                 /* allow the VF to update the RSS configuration even on failure
2675                  * to clear the current RSS confguration in an attempt to keep
2676                  * RSS in a working state
2677                  */
2678                 dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n",
2679                          vf->vf_id);
2680         }
2681
2682         if (vrh->hena) {
2683                 status = ice_add_avf_rss_cfg(&pf->hw, vsi, vrh->hena);
2684                 v_ret = ice_err_to_virt_err(status);
2685         }
2686
2687         /* send the response to the VF */
2688 err:
2689         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret,
2690                                      NULL, 0);
2691 }
2692
2693 /**
2694  * ice_vc_query_rxdid - query RXDID supported by DDP package
2695  * @vf: pointer to VF info
2696  *
2697  * Called from VF to query a bitmap of supported flexible
2698  * descriptor RXDIDs of a DDP package.
2699  */
2700 static int ice_vc_query_rxdid(struct ice_vf *vf)
2701 {
2702         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2703         struct virtchnl_supported_rxdids *rxdid = NULL;
2704         struct ice_hw *hw = &vf->pf->hw;
2705         struct ice_pf *pf = vf->pf;
2706         int len = 0;
2707         int ret, i;
2708         u32 regval;
2709
2710         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2711                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2712                 goto err;
2713         }
2714
2715         if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) {
2716                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2717                 goto err;
2718         }
2719
2720         len = sizeof(struct virtchnl_supported_rxdids);
2721         rxdid = kzalloc(len, GFP_KERNEL);
2722         if (!rxdid) {
2723                 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2724                 len = 0;
2725                 goto err;
2726         }
2727
2728         /* RXDIDs supported by DDP package can be read from the register
2729          * to get the supported RXDID bitmap. But the legacy 32byte RXDID
2730          * is not listed in DDP package, add it in the bitmap manually.
2731          * Legacy 16byte descriptor is not supported.
2732          */
2733         rxdid->supported_rxdids |= BIT(ICE_RXDID_LEGACY_1);
2734
2735         for (i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
2736                 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0));
2737                 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
2738                         & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
2739                         rxdid->supported_rxdids |= BIT(i);
2740         }
2741
2742         pf->supported_rxdids = rxdid->supported_rxdids;
2743
2744 err:
2745         ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS,
2746                                     v_ret, (u8 *)rxdid, len);
2747         kfree(rxdid);
2748         return ret;
2749 }
2750
2751 /**
2752  * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
2753  * @vf: VF to enable/disable VLAN stripping for on initialization
2754  *
2755  * Set the default for VLAN stripping based on whether a port VLAN is configured
2756  * and the current VLAN mode of the device.
2757  */
2758 static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
2759 {
2760         struct ice_vsi *vsi = ice_get_vf_vsi(vf);
2761
2762         vf->vlan_strip_ena = 0;
2763
2764         if (!vsi)
2765                 return -EINVAL;
2766
2767         /* don't modify stripping if port VLAN is configured in SVM since the
2768          * port VLAN is based on the inner/single VLAN in SVM
2769          */
2770         if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw))
2771                 return 0;
2772
2773         if (ice_vf_vlan_offload_ena(vf->driver_caps)) {
2774                 int err;
2775
2776                 err = vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q);
2777                 if (!err)
2778                         vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2779                 return err;
2780         }
2781
2782         return vsi->inner_vlan_ops.dis_stripping(vsi);
2783 }
2784
2785 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf)
2786 {
2787         if (vf->trusted)
2788                 return VLAN_N_VID;
2789         else
2790                 return ICE_MAX_VLAN_PER_VF;
2791 }
2792
2793 /**
2794  * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used
2795  * @vf: VF that being checked for
2796  *
2797  * When the device is in double VLAN mode, check whether or not the outer VLAN
2798  * is allowed.
2799  */
2800 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf)
2801 {
2802         if (ice_vf_is_port_vlan_ena(vf))
2803                 return true;
2804
2805         return false;
2806 }
2807
2808 /**
2809  * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM
2810  * @vf: VF that capabilities are being set for
2811  * @caps: VLAN capabilities to populate
2812  *
2813  * Determine VLAN capabilities support based on whether a port VLAN is
2814  * configured. If a port VLAN is configured then the VF should use the inner
2815  * filtering/offload capabilities since the port VLAN is using the outer VLAN
2816  * capabilies.
2817  */
2818 static void
2819 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2820 {
2821         struct virtchnl_vlan_supported_caps *supported_caps;
2822
2823         if (ice_vf_outer_vlan_not_allowed(vf)) {
2824                 /* until support for inner VLAN filtering is added when a port
2825                  * VLAN is configured, only support software offloaded inner
2826                  * VLANs when a port VLAN is confgured in DVM
2827                  */
2828                 supported_caps = &caps->filtering.filtering_support;
2829                 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2830
2831                 supported_caps = &caps->offloads.stripping_support;
2832                 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2833                                         VIRTCHNL_VLAN_TOGGLE |
2834                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2835                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2836
2837                 supported_caps = &caps->offloads.insertion_support;
2838                 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2839                                         VIRTCHNL_VLAN_TOGGLE |
2840                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2841                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2842
2843                 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2844                 caps->offloads.ethertype_match =
2845                         VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2846         } else {
2847                 supported_caps = &caps->filtering.filtering_support;
2848                 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2849                 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2850                                         VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2851                                         VIRTCHNL_VLAN_ETHERTYPE_9100 |
2852                                         VIRTCHNL_VLAN_ETHERTYPE_AND;
2853                 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2854                                                  VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2855                                                  VIRTCHNL_VLAN_ETHERTYPE_9100;
2856
2857                 supported_caps = &caps->offloads.stripping_support;
2858                 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2859                                         VIRTCHNL_VLAN_ETHERTYPE_8100 |
2860                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2861                 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2862                                         VIRTCHNL_VLAN_ETHERTYPE_8100 |
2863                                         VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2864                                         VIRTCHNL_VLAN_ETHERTYPE_9100 |
2865                                         VIRTCHNL_VLAN_ETHERTYPE_XOR |
2866                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2;
2867
2868                 supported_caps = &caps->offloads.insertion_support;
2869                 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2870                                         VIRTCHNL_VLAN_ETHERTYPE_8100 |
2871                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2872                 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2873                                         VIRTCHNL_VLAN_ETHERTYPE_8100 |
2874                                         VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2875                                         VIRTCHNL_VLAN_ETHERTYPE_9100 |
2876                                         VIRTCHNL_VLAN_ETHERTYPE_XOR |
2877                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2;
2878
2879                 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2880
2881                 caps->offloads.ethertype_match =
2882                         VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2883         }
2884
2885         caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2886 }
2887
2888 /**
2889  * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM
2890  * @vf: VF that capabilities are being set for
2891  * @caps: VLAN capabilities to populate
2892  *
2893  * Determine VLAN capabilities support based on whether a port VLAN is
2894  * configured. If a port VLAN is configured then the VF does not have any VLAN
2895  * filtering or offload capabilities since the port VLAN is using the inner VLAN
2896  * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner
2897  * VLAN fitlering and offload capabilities.
2898  */
2899 static void
2900 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2901 {
2902         struct virtchnl_vlan_supported_caps *supported_caps;
2903
2904         if (ice_vf_is_port_vlan_ena(vf)) {
2905                 supported_caps = &caps->filtering.filtering_support;
2906                 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2907                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2908
2909                 supported_caps = &caps->offloads.stripping_support;
2910                 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2911                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2912
2913                 supported_caps = &caps->offloads.insertion_support;
2914                 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2915                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2916
2917                 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED;
2918                 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED;
2919                 caps->filtering.max_filters = 0;
2920         } else {
2921                 supported_caps = &caps->filtering.filtering_support;
2922                 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100;
2923                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2924                 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2925
2926                 supported_caps = &caps->offloads.stripping_support;
2927                 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2928                                         VIRTCHNL_VLAN_TOGGLE |
2929                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2930                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2931
2932                 supported_caps = &caps->offloads.insertion_support;
2933                 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2934                                         VIRTCHNL_VLAN_TOGGLE |
2935                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2936                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2937
2938                 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2939                 caps->offloads.ethertype_match =
2940                         VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2941                 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2942         }
2943 }
2944
2945 /**
2946  * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities
2947  * @vf: VF to determine VLAN capabilities for
2948  *
2949  * This will only be called if the VF and PF successfully negotiated
2950  * VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2951  *
2952  * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN
2953  * is configured or not.
2954  */
2955 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf)
2956 {
2957         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2958         struct virtchnl_vlan_caps *caps = NULL;
2959         int err, len = 0;
2960
2961         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2962                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2963                 goto out;
2964         }
2965
2966         caps = kzalloc(sizeof(*caps), GFP_KERNEL);
2967         if (!caps) {
2968                 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2969                 goto out;
2970         }
2971         len = sizeof(*caps);
2972
2973         if (ice_is_dvm_ena(&vf->pf->hw))
2974                 ice_vc_set_dvm_caps(vf, caps);
2975         else
2976                 ice_vc_set_svm_caps(vf, caps);
2977
2978         /* store negotiated caps to prevent invalid VF messages */
2979         memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps));
2980
2981 out:
2982         err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS,
2983                                     v_ret, (u8 *)caps, len);
2984         kfree(caps);
2985         return err;
2986 }
2987
2988 /**
2989  * ice_vc_validate_vlan_tpid - validate VLAN TPID
2990  * @filtering_caps: negotiated/supported VLAN filtering capabilities
2991  * @tpid: VLAN TPID used for validation
2992  *
2993  * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against
2994  * the negotiated/supported filtering caps to see if the VLAN TPID is valid.
2995  */
2996 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid)
2997 {
2998         enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED;
2999
3000         switch (tpid) {
3001         case ETH_P_8021Q:
3002                 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
3003                 break;
3004         case ETH_P_8021AD:
3005                 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8;
3006                 break;
3007         case ETH_P_QINQ1:
3008                 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100;
3009                 break;
3010         }
3011
3012         if (!(filtering_caps & vlan_ethertype))
3013                 return false;
3014
3015         return true;
3016 }
3017
3018 /**
3019  * ice_vc_is_valid_vlan - validate the virtchnl_vlan
3020  * @vc_vlan: virtchnl_vlan to validate
3021  *
3022  * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return
3023  * false. Otherwise return true.
3024  */
3025 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan)
3026 {
3027         if (!vc_vlan->tci || !vc_vlan->tpid)
3028                 return false;
3029
3030         return true;
3031 }
3032
3033 /**
3034  * ice_vc_validate_vlan_filter_list - validate the filter list from the VF
3035  * @vfc: negotiated/supported VLAN filtering capabilities
3036  * @vfl: VLAN filter list from VF to validate
3037  *
3038  * Validate all of the filters in the VLAN filter list from the VF. If any of
3039  * the checks fail then return false. Otherwise return true.
3040  */
3041 static bool
3042 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc,
3043                                  struct virtchnl_vlan_filter_list_v2 *vfl)
3044 {
3045         u16 i;
3046
3047         if (!vfl->num_elements)
3048                 return false;
3049
3050         for (i = 0; i < vfl->num_elements; i++) {
3051                 struct virtchnl_vlan_supported_caps *filtering_support =
3052                         &vfc->filtering_support;
3053                 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3054                 struct virtchnl_vlan *outer = &vlan_fltr->outer;
3055                 struct virtchnl_vlan *inner = &vlan_fltr->inner;
3056
3057                 if ((ice_vc_is_valid_vlan(outer) &&
3058                      filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) ||
3059                     (ice_vc_is_valid_vlan(inner) &&
3060                      filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED))
3061                         return false;
3062
3063                 if ((outer->tci_mask &&
3064                      !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) ||
3065                     (inner->tci_mask &&
3066                      !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK)))
3067                         return false;
3068
3069                 if (((outer->tci & VLAN_PRIO_MASK) &&
3070                      !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) ||
3071                     ((inner->tci & VLAN_PRIO_MASK) &&
3072                      !(filtering_support->inner & VIRTCHNL_VLAN_PRIO)))
3073                         return false;
3074
3075                 if ((ice_vc_is_valid_vlan(outer) &&
3076                      !ice_vc_validate_vlan_tpid(filtering_support->outer,
3077                                                 outer->tpid)) ||
3078                     (ice_vc_is_valid_vlan(inner) &&
3079                      !ice_vc_validate_vlan_tpid(filtering_support->inner,
3080                                                 inner->tpid)))
3081                         return false;
3082         }
3083
3084         return true;
3085 }
3086
3087 /**
3088  * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan
3089  * @vc_vlan: struct virtchnl_vlan to transform
3090  */
3091 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan)
3092 {
3093         struct ice_vlan vlan = { 0 };
3094
3095         vlan.prio = FIELD_GET(VLAN_PRIO_MASK, vc_vlan->tci);
3096         vlan.vid = vc_vlan->tci & VLAN_VID_MASK;
3097         vlan.tpid = vc_vlan->tpid;
3098
3099         return vlan;
3100 }
3101
3102 /**
3103  * ice_vc_vlan_action - action to perform on the virthcnl_vlan
3104  * @vsi: VF's VSI used to perform the action
3105  * @vlan_action: function to perform the action with (i.e. add/del)
3106  * @vlan: VLAN filter to perform the action with
3107  */
3108 static int
3109 ice_vc_vlan_action(struct ice_vsi *vsi,
3110                    int (*vlan_action)(struct ice_vsi *, struct ice_vlan *),
3111                    struct ice_vlan *vlan)
3112 {
3113         int err;
3114
3115         err = vlan_action(vsi, vlan);
3116         if (err)
3117                 return err;
3118
3119         return 0;
3120 }
3121
3122 /**
3123  * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list
3124  * @vf: VF used to delete the VLAN(s)
3125  * @vsi: VF's VSI used to delete the VLAN(s)
3126  * @vfl: virthchnl filter list used to delete the filters
3127  */
3128 static int
3129 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3130                  struct virtchnl_vlan_filter_list_v2 *vfl)
3131 {
3132         bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3133         int err;
3134         u16 i;
3135
3136         for (i = 0; i < vfl->num_elements; i++) {
3137                 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3138                 struct virtchnl_vlan *vc_vlan;
3139
3140                 vc_vlan = &vlan_fltr->outer;
3141                 if (ice_vc_is_valid_vlan(vc_vlan)) {
3142                         struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3143
3144                         err = ice_vc_vlan_action(vsi,
3145                                                  vsi->outer_vlan_ops.del_vlan,
3146                                                  &vlan);
3147                         if (err)
3148                                 return err;
3149
3150                         if (vlan_promisc)
3151                                 ice_vf_dis_vlan_promisc(vsi, &vlan);
3152
3153                         /* Disable VLAN filtering when only VLAN 0 is left */
3154                         if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) {
3155                                 err = vsi->outer_vlan_ops.dis_tx_filtering(vsi);
3156                                 if (err)
3157                                         return err;
3158                         }
3159                 }
3160
3161                 vc_vlan = &vlan_fltr->inner;
3162                 if (ice_vc_is_valid_vlan(vc_vlan)) {
3163                         struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3164
3165                         err = ice_vc_vlan_action(vsi,
3166                                                  vsi->inner_vlan_ops.del_vlan,
3167                                                  &vlan);
3168                         if (err)
3169                                 return err;
3170
3171                         /* no support for VLAN promiscuous on inner VLAN unless
3172                          * we are in Single VLAN Mode (SVM)
3173                          */
3174                         if (!ice_is_dvm_ena(&vsi->back->hw)) {
3175                                 if (vlan_promisc)
3176                                         ice_vf_dis_vlan_promisc(vsi, &vlan);
3177
3178                                 /* Disable VLAN filtering when only VLAN 0 is left */
3179                                 if (!ice_vsi_has_non_zero_vlans(vsi)) {
3180                                         err = vsi->inner_vlan_ops.dis_tx_filtering(vsi);
3181                                         if (err)
3182                                                 return err;
3183                                 }
3184                         }
3185                 }
3186         }
3187
3188         return 0;
3189 }
3190
3191 /**
3192  * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2
3193  * @vf: VF the message was received from
3194  * @msg: message received from the VF
3195  */
3196 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3197 {
3198         struct virtchnl_vlan_filter_list_v2 *vfl =
3199                 (struct virtchnl_vlan_filter_list_v2 *)msg;
3200         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3201         struct ice_vsi *vsi;
3202
3203         if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering,
3204                                               vfl)) {
3205                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3206                 goto out;
3207         }
3208
3209         if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3210                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3211                 goto out;
3212         }
3213
3214         vsi = ice_get_vf_vsi(vf);
3215         if (!vsi) {
3216                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3217                 goto out;
3218         }
3219
3220         if (ice_vc_del_vlans(vf, vsi, vfl))
3221                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3222
3223 out:
3224         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL,
3225                                      0);
3226 }
3227
3228 /**
3229  * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list
3230  * @vf: VF used to add the VLAN(s)
3231  * @vsi: VF's VSI used to add the VLAN(s)
3232  * @vfl: virthchnl filter list used to add the filters
3233  */
3234 static int
3235 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3236                  struct virtchnl_vlan_filter_list_v2 *vfl)
3237 {
3238         bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3239         int err;
3240         u16 i;
3241
3242         for (i = 0; i < vfl->num_elements; i++) {
3243                 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3244                 struct virtchnl_vlan *vc_vlan;
3245
3246                 vc_vlan = &vlan_fltr->outer;
3247                 if (ice_vc_is_valid_vlan(vc_vlan)) {
3248                         struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3249
3250                         err = ice_vc_vlan_action(vsi,
3251                                                  vsi->outer_vlan_ops.add_vlan,
3252                                                  &vlan);
3253                         if (err)
3254                                 return err;
3255
3256                         if (vlan_promisc) {
3257                                 err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3258                                 if (err)
3259                                         return err;
3260                         }
3261
3262                         /* Enable VLAN filtering on first non-zero VLAN */
3263                         if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) {
3264                                 err = vsi->outer_vlan_ops.ena_tx_filtering(vsi);
3265                                 if (err)
3266                                         return err;
3267                         }
3268                 }
3269
3270                 vc_vlan = &vlan_fltr->inner;
3271                 if (ice_vc_is_valid_vlan(vc_vlan)) {
3272                         struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3273
3274                         err = ice_vc_vlan_action(vsi,
3275                                                  vsi->inner_vlan_ops.add_vlan,
3276                                                  &vlan);
3277                         if (err)
3278                                 return err;
3279
3280                         /* no support for VLAN promiscuous on inner VLAN unless
3281                          * we are in Single VLAN Mode (SVM)
3282                          */
3283                         if (!ice_is_dvm_ena(&vsi->back->hw)) {
3284                                 if (vlan_promisc) {
3285                                         err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3286                                         if (err)
3287                                                 return err;
3288                                 }
3289
3290                                 /* Enable VLAN filtering on first non-zero VLAN */
3291                                 if (vf->spoofchk && vlan.vid) {
3292                                         err = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
3293                                         if (err)
3294                                                 return err;
3295                                 }
3296                         }
3297                 }
3298         }
3299
3300         return 0;
3301 }
3302
3303 /**
3304  * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF
3305  * @vsi: VF VSI used to get number of existing VLAN filters
3306  * @vfc: negotiated/supported VLAN filtering capabilities
3307  * @vfl: VLAN filter list from VF to validate
3308  *
3309  * Validate all of the filters in the VLAN filter list from the VF during the
3310  * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false.
3311  * Otherwise return true.
3312  */
3313 static bool
3314 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi,
3315                                      struct virtchnl_vlan_filtering_caps *vfc,
3316                                      struct virtchnl_vlan_filter_list_v2 *vfl)
3317 {
3318         u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) +
3319                 vfl->num_elements;
3320
3321         if (num_requested_filters > vfc->max_filters)
3322                 return false;
3323
3324         return ice_vc_validate_vlan_filter_list(vfc, vfl);
3325 }
3326
3327 /**
3328  * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2
3329  * @vf: VF the message was received from
3330  * @msg: message received from the VF
3331  */
3332 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3333 {
3334         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3335         struct virtchnl_vlan_filter_list_v2 *vfl =
3336                 (struct virtchnl_vlan_filter_list_v2 *)msg;
3337         struct ice_vsi *vsi;
3338
3339         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3340                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3341                 goto out;
3342         }
3343
3344         if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3345                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3346                 goto out;
3347         }
3348
3349         vsi = ice_get_vf_vsi(vf);
3350         if (!vsi) {
3351                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3352                 goto out;
3353         }
3354
3355         if (!ice_vc_validate_add_vlan_filter_list(vsi,
3356                                                   &vf->vlan_v2_caps.filtering,
3357                                                   vfl)) {
3358                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3359                 goto out;
3360         }
3361
3362         if (ice_vc_add_vlans(vf, vsi, vfl))
3363                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3364
3365 out:
3366         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL,
3367                                      0);
3368 }
3369
3370 /**
3371  * ice_vc_valid_vlan_setting - validate VLAN setting
3372  * @negotiated_settings: negotiated VLAN settings during VF init
3373  * @ethertype_setting: ethertype(s) requested for the VLAN setting
3374  */
3375 static bool
3376 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting)
3377 {
3378         if (ethertype_setting && !(negotiated_settings & ethertype_setting))
3379                 return false;
3380
3381         /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if
3382          * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported
3383          */
3384         if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) &&
3385             hweight32(ethertype_setting) > 1)
3386                 return false;
3387
3388         /* ability to modify the VLAN setting was not negotiated */
3389         if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE))
3390                 return false;
3391
3392         return true;
3393 }
3394
3395 /**
3396  * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message
3397  * @caps: negotiated VLAN settings during VF init
3398  * @msg: message to validate
3399  *
3400  * Used to validate any VLAN virtchnl message sent as a
3401  * virtchnl_vlan_setting structure. Validates the message against the
3402  * negotiated/supported caps during VF driver init.
3403  */
3404 static bool
3405 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps,
3406                               struct virtchnl_vlan_setting *msg)
3407 {
3408         if ((!msg->outer_ethertype_setting &&
3409              !msg->inner_ethertype_setting) ||
3410             (!caps->outer && !caps->inner))
3411                 return false;
3412
3413         if (msg->outer_ethertype_setting &&
3414             !ice_vc_valid_vlan_setting(caps->outer,
3415                                        msg->outer_ethertype_setting))
3416                 return false;
3417
3418         if (msg->inner_ethertype_setting &&
3419             !ice_vc_valid_vlan_setting(caps->inner,
3420                                        msg->inner_ethertype_setting))
3421                 return false;
3422
3423         return true;
3424 }
3425
3426 /**
3427  * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID
3428  * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID
3429  * @tpid: VLAN TPID to populate
3430  */
3431 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid)
3432 {
3433         switch (ethertype_setting) {
3434         case VIRTCHNL_VLAN_ETHERTYPE_8100:
3435                 *tpid = ETH_P_8021Q;
3436                 break;
3437         case VIRTCHNL_VLAN_ETHERTYPE_88A8:
3438                 *tpid = ETH_P_8021AD;
3439                 break;
3440         case VIRTCHNL_VLAN_ETHERTYPE_9100:
3441                 *tpid = ETH_P_QINQ1;
3442                 break;
3443         default:
3444                 *tpid = 0;
3445                 return -EINVAL;
3446         }
3447
3448         return 0;
3449 }
3450
3451 /**
3452  * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting
3453  * @vsi: VF's VSI used to enable the VLAN offload
3454  * @ena_offload: function used to enable the VLAN offload
3455  * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for
3456  */
3457 static int
3458 ice_vc_ena_vlan_offload(struct ice_vsi *vsi,
3459                         int (*ena_offload)(struct ice_vsi *vsi, u16 tpid),
3460                         u32 ethertype_setting)
3461 {
3462         u16 tpid;
3463         int err;
3464
3465         err = ice_vc_get_tpid(ethertype_setting, &tpid);
3466         if (err)
3467                 return err;
3468
3469         err = ena_offload(vsi, tpid);
3470         if (err)
3471                 return err;
3472
3473         return 0;
3474 }
3475
3476 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX  3
3477 #define ICE_L2TSEL_BIT_OFFSET           23
3478 enum ice_l2tsel {
3479         ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND,
3480         ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1,
3481 };
3482
3483 /**
3484  * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
3485  * @vsi: VSI used to update l2tsel on
3486  * @l2tsel: l2tsel setting requested
3487  *
3488  * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
3489  * This will modify which descriptor field the first offloaded VLAN will be
3490  * stripped into.
3491  */
3492 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
3493 {
3494         struct ice_hw *hw = &vsi->back->hw;
3495         u32 l2tsel_bit;
3496         int i;
3497
3498         if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
3499                 l2tsel_bit = 0;
3500         else
3501                 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
3502
3503         for (i = 0; i < vsi->alloc_rxq; i++) {
3504                 u16 pfq = vsi->rxq_map[i];
3505                 u32 qrx_context_offset;
3506                 u32 regval;
3507
3508                 qrx_context_offset =
3509                         QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
3510
3511                 regval = rd32(hw, qrx_context_offset);
3512                 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
3513                 regval |= l2tsel_bit;
3514                 wr32(hw, qrx_context_offset, regval);
3515         }
3516 }
3517
3518 /**
3519  * ice_vc_ena_vlan_stripping_v2_msg
3520  * @vf: VF the message was received from
3521  * @msg: message received from the VF
3522  *
3523  * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
3524  */
3525 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3526 {
3527         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3528         struct virtchnl_vlan_supported_caps *stripping_support;
3529         struct virtchnl_vlan_setting *strip_msg =
3530                 (struct virtchnl_vlan_setting *)msg;
3531         u32 ethertype_setting;
3532         struct ice_vsi *vsi;
3533
3534         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3535                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3536                 goto out;
3537         }
3538
3539         if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3540                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3541                 goto out;
3542         }
3543
3544         vsi = ice_get_vf_vsi(vf);
3545         if (!vsi) {
3546                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3547                 goto out;
3548         }
3549
3550         stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3551         if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3552                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3553                 goto out;
3554         }
3555
3556         if (ice_vsi_is_rxq_crc_strip_dis(vsi)) {
3557                 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3558                 goto out;
3559         }
3560
3561         ethertype_setting = strip_msg->outer_ethertype_setting;
3562         if (ethertype_setting) {
3563                 if (ice_vc_ena_vlan_offload(vsi,
3564                                             vsi->outer_vlan_ops.ena_stripping,
3565                                             ethertype_setting)) {
3566                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3567                         goto out;
3568                 } else {
3569                         enum ice_l2tsel l2tsel =
3570                                 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND;
3571
3572                         /* PF tells the VF that the outer VLAN tag is always
3573                          * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3574                          * inner is always extracted to
3575                          * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3576                          * support outer stripping so the first tag always ends
3577                          * up in L2TAG2_2ND and the second/inner tag, if
3578                          * enabled, is extracted in L2TAG1.
3579                          */
3580                         ice_vsi_update_l2tsel(vsi, l2tsel);
3581
3582                         vf->vlan_strip_ena |= ICE_OUTER_VLAN_STRIP_ENA;
3583                 }
3584         }
3585
3586         ethertype_setting = strip_msg->inner_ethertype_setting;
3587         if (ethertype_setting &&
3588             ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping,
3589                                     ethertype_setting)) {
3590                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3591                 goto out;
3592         }
3593
3594         if (ethertype_setting)
3595                 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
3596
3597 out:
3598         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2,
3599                                      v_ret, NULL, 0);
3600 }
3601
3602 /**
3603  * ice_vc_dis_vlan_stripping_v2_msg
3604  * @vf: VF the message was received from
3605  * @msg: message received from the VF
3606  *
3607  * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
3608  */
3609 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3610 {
3611         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3612         struct virtchnl_vlan_supported_caps *stripping_support;
3613         struct virtchnl_vlan_setting *strip_msg =
3614                 (struct virtchnl_vlan_setting *)msg;
3615         u32 ethertype_setting;
3616         struct ice_vsi *vsi;
3617
3618         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3619                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3620                 goto out;
3621         }
3622
3623         if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3624                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3625                 goto out;
3626         }
3627
3628         vsi = ice_get_vf_vsi(vf);
3629         if (!vsi) {
3630                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3631                 goto out;
3632         }
3633
3634         stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3635         if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3636                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3637                 goto out;
3638         }
3639
3640         ethertype_setting = strip_msg->outer_ethertype_setting;
3641         if (ethertype_setting) {
3642                 if (vsi->outer_vlan_ops.dis_stripping(vsi)) {
3643                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3644                         goto out;
3645                 } else {
3646                         enum ice_l2tsel l2tsel =
3647                                 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1;
3648
3649                         /* PF tells the VF that the outer VLAN tag is always
3650                          * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3651                          * inner is always extracted to
3652                          * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3653                          * support inner stripping while outer stripping is
3654                          * disabled so that the first and only tag is extracted
3655                          * in L2TAG1.
3656                          */
3657                         ice_vsi_update_l2tsel(vsi, l2tsel);
3658
3659                         vf->vlan_strip_ena &= ~ICE_OUTER_VLAN_STRIP_ENA;
3660                 }
3661         }
3662
3663         ethertype_setting = strip_msg->inner_ethertype_setting;
3664         if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) {
3665                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3666                 goto out;
3667         }
3668
3669         if (ethertype_setting)
3670                 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
3671
3672 out:
3673         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2,
3674                                      v_ret, NULL, 0);
3675 }
3676
3677 /**
3678  * ice_vc_ena_vlan_insertion_v2_msg
3679  * @vf: VF the message was received from
3680  * @msg: message received from the VF
3681  *
3682  * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
3683  */
3684 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3685 {
3686         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3687         struct virtchnl_vlan_supported_caps *insertion_support;
3688         struct virtchnl_vlan_setting *insertion_msg =
3689                 (struct virtchnl_vlan_setting *)msg;
3690         u32 ethertype_setting;
3691         struct ice_vsi *vsi;
3692
3693         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3694                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3695                 goto out;
3696         }
3697
3698         if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3699                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3700                 goto out;
3701         }
3702
3703         vsi = ice_get_vf_vsi(vf);
3704         if (!vsi) {
3705                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3706                 goto out;
3707         }
3708
3709         insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3710         if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3711                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3712                 goto out;
3713         }
3714
3715         ethertype_setting = insertion_msg->outer_ethertype_setting;
3716         if (ethertype_setting &&
3717             ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion,
3718                                     ethertype_setting)) {
3719                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3720                 goto out;
3721         }
3722
3723         ethertype_setting = insertion_msg->inner_ethertype_setting;
3724         if (ethertype_setting &&
3725             ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion,
3726                                     ethertype_setting)) {
3727                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3728                 goto out;
3729         }
3730
3731 out:
3732         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2,
3733                                      v_ret, NULL, 0);
3734 }
3735
3736 /**
3737  * ice_vc_dis_vlan_insertion_v2_msg
3738  * @vf: VF the message was received from
3739  * @msg: message received from the VF
3740  *
3741  * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
3742  */
3743 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3744 {
3745         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3746         struct virtchnl_vlan_supported_caps *insertion_support;
3747         struct virtchnl_vlan_setting *insertion_msg =
3748                 (struct virtchnl_vlan_setting *)msg;
3749         u32 ethertype_setting;
3750         struct ice_vsi *vsi;
3751
3752         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3753                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3754                 goto out;
3755         }
3756
3757         if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3758                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3759                 goto out;
3760         }
3761
3762         vsi = ice_get_vf_vsi(vf);
3763         if (!vsi) {
3764                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3765                 goto out;
3766         }
3767
3768         insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3769         if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3770                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3771                 goto out;
3772         }
3773
3774         ethertype_setting = insertion_msg->outer_ethertype_setting;
3775         if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) {
3776                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3777                 goto out;
3778         }
3779
3780         ethertype_setting = insertion_msg->inner_ethertype_setting;
3781         if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) {
3782                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3783                 goto out;
3784         }
3785
3786 out:
3787         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2,
3788                                      v_ret, NULL, 0);
3789 }
3790
3791 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = {
3792         .get_ver_msg = ice_vc_get_ver_msg,
3793         .get_vf_res_msg = ice_vc_get_vf_res_msg,
3794         .reset_vf = ice_vc_reset_vf_msg,
3795         .add_mac_addr_msg = ice_vc_add_mac_addr_msg,
3796         .del_mac_addr_msg = ice_vc_del_mac_addr_msg,
3797         .cfg_qs_msg = ice_vc_cfg_qs_msg,
3798         .ena_qs_msg = ice_vc_ena_qs_msg,
3799         .dis_qs_msg = ice_vc_dis_qs_msg,
3800         .request_qs_msg = ice_vc_request_qs_msg,
3801         .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3802         .config_rss_key = ice_vc_config_rss_key,
3803         .config_rss_lut = ice_vc_config_rss_lut,
3804         .config_rss_hfunc = ice_vc_config_rss_hfunc,
3805         .get_stats_msg = ice_vc_get_stats_msg,
3806         .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg,
3807         .add_vlan_msg = ice_vc_add_vlan_msg,
3808         .remove_vlan_msg = ice_vc_remove_vlan_msg,
3809         .query_rxdid = ice_vc_query_rxdid,
3810         .get_rss_hena = ice_vc_get_rss_hena,
3811         .set_rss_hena_msg = ice_vc_set_rss_hena,
3812         .ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3813         .dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3814         .handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3815         .add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3816         .del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3817         .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3818         .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3819         .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3820         .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3821         .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3822         .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3823         .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3824 };
3825
3826 /**
3827  * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops
3828  * @vf: the VF to switch ops
3829  */
3830 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf)
3831 {
3832         vf->virtchnl_ops = &ice_virtchnl_dflt_ops;
3833 }
3834
3835 /**
3836  * ice_vc_repr_add_mac
3837  * @vf: pointer to VF
3838  * @msg: virtchannel message
3839  *
3840  * When port representors are created, we do not add MAC rule
3841  * to firmware, we store it so that PF could report same
3842  * MAC as VF.
3843  */
3844 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg)
3845 {
3846         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3847         struct virtchnl_ether_addr_list *al =
3848             (struct virtchnl_ether_addr_list *)msg;
3849         struct ice_vsi *vsi;
3850         struct ice_pf *pf;
3851         int i;
3852
3853         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
3854             !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
3855                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3856                 goto handle_mac_exit;
3857         }
3858
3859         pf = vf->pf;
3860
3861         vsi = ice_get_vf_vsi(vf);
3862         if (!vsi) {
3863                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3864                 goto handle_mac_exit;
3865         }
3866
3867         for (i = 0; i < al->num_elements; i++) {
3868                 u8 *mac_addr = al->list[i].addr;
3869
3870                 if (!is_unicast_ether_addr(mac_addr) ||
3871                     ether_addr_equal(mac_addr, vf->hw_lan_addr))
3872                         continue;
3873
3874                 if (vf->pf_set_mac) {
3875                         dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n");
3876                         v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3877                         goto handle_mac_exit;
3878                 }
3879
3880                 ice_vfhw_mac_add(vf, &al->list[i]);
3881                 vf->num_mac++;
3882                 break;
3883         }
3884
3885 handle_mac_exit:
3886         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR,
3887                                      v_ret, NULL, 0);
3888 }
3889
3890 /**
3891  * ice_vc_repr_del_mac - response with success for deleting MAC
3892  * @vf: pointer to VF
3893  * @msg: virtchannel message
3894  *
3895  * Respond with success to not break normal VF flow.
3896  * For legacy VF driver try to update cached MAC address.
3897  */
3898 static int
3899 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg)
3900 {
3901         struct virtchnl_ether_addr_list *al =
3902                 (struct virtchnl_ether_addr_list *)msg;
3903
3904         ice_update_legacy_cached_mac(vf, &al->list[0]);
3905
3906         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR,
3907                                      VIRTCHNL_STATUS_SUCCESS, NULL, 0);
3908 }
3909
3910 static int
3911 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg)
3912 {
3913         dev_dbg(ice_pf_to_dev(vf->pf),
3914                 "Can't config promiscuous mode in switchdev mode for VF %d\n",
3915                 vf->vf_id);
3916         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
3917                                      VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3918                                      NULL, 0);
3919 }
3920
3921 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = {
3922         .get_ver_msg = ice_vc_get_ver_msg,
3923         .get_vf_res_msg = ice_vc_get_vf_res_msg,
3924         .reset_vf = ice_vc_reset_vf_msg,
3925         .add_mac_addr_msg = ice_vc_repr_add_mac,
3926         .del_mac_addr_msg = ice_vc_repr_del_mac,
3927         .cfg_qs_msg = ice_vc_cfg_qs_msg,
3928         .ena_qs_msg = ice_vc_ena_qs_msg,
3929         .dis_qs_msg = ice_vc_dis_qs_msg,
3930         .request_qs_msg = ice_vc_request_qs_msg,
3931         .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3932         .config_rss_key = ice_vc_config_rss_key,
3933         .config_rss_lut = ice_vc_config_rss_lut,
3934         .config_rss_hfunc = ice_vc_config_rss_hfunc,
3935         .get_stats_msg = ice_vc_get_stats_msg,
3936         .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode,
3937         .add_vlan_msg = ice_vc_add_vlan_msg,
3938         .remove_vlan_msg = ice_vc_remove_vlan_msg,
3939         .query_rxdid = ice_vc_query_rxdid,
3940         .get_rss_hena = ice_vc_get_rss_hena,
3941         .set_rss_hena_msg = ice_vc_set_rss_hena,
3942         .ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3943         .dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3944         .handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3945         .add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3946         .del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3947         .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3948         .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3949         .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3950         .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3951         .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3952         .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3953         .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3954 };
3955
3956 /**
3957  * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops
3958  * @vf: the VF to switch ops
3959  */
3960 void ice_virtchnl_set_repr_ops(struct ice_vf *vf)
3961 {
3962         vf->virtchnl_ops = &ice_virtchnl_repr_ops;
3963 }
3964
3965 /**
3966  * ice_is_malicious_vf - check if this vf might be overflowing mailbox
3967  * @vf: the VF to check
3968  * @mbxdata: data about the state of the mailbox
3969  *
3970  * Detect if a given VF might be malicious and attempting to overflow the PF
3971  * mailbox. If so, log a warning message and ignore this event.
3972  */
3973 static bool
3974 ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata)
3975 {
3976         bool report_malvf = false;
3977         struct device *dev;
3978         struct ice_pf *pf;
3979         int status;
3980
3981         pf = vf->pf;
3982         dev = ice_pf_to_dev(pf);
3983
3984         if (test_bit(ICE_VF_STATE_DIS, vf->vf_states))
3985                 return vf->mbx_info.malicious;
3986
3987         /* check to see if we have a newly malicious VF */
3988         status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info,
3989                                           &report_malvf);
3990         if (status)
3991                 dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n",
3992                                      vf->vf_id, vf->dev_lan_addr, status);
3993
3994         if (report_malvf) {
3995                 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
3996                 u8 zero_addr[ETH_ALEN] = {};
3997
3998                 dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n",
3999                          vf->dev_lan_addr,
4000                          pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr);
4001         }
4002
4003         return vf->mbx_info.malicious;
4004 }
4005
4006 /**
4007  * ice_vc_process_vf_msg - Process request from VF
4008  * @pf: pointer to the PF structure
4009  * @event: pointer to the AQ event
4010  * @mbxdata: information used to detect VF attempting mailbox overflow
4011  *
4012  * called from the common asq/arq handler to
4013  * process request from VF
4014  */
4015 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event,
4016                            struct ice_mbx_data *mbxdata)
4017 {
4018         u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
4019         s16 vf_id = le16_to_cpu(event->desc.retval);
4020         const struct ice_virtchnl_ops *ops;
4021         u16 msglen = event->msg_len;
4022         u8 *msg = event->msg_buf;
4023         struct ice_vf *vf = NULL;
4024         struct device *dev;
4025         int err = 0;
4026
4027         dev = ice_pf_to_dev(pf);
4028
4029         vf = ice_get_vf_by_id(pf, vf_id);
4030         if (!vf) {
4031                 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n",
4032                         vf_id, v_opcode, msglen);
4033                 return;
4034         }
4035
4036         mutex_lock(&vf->cfg_lock);
4037
4038         /* Check if the VF is trying to overflow the mailbox */
4039         if (ice_is_malicious_vf(vf, mbxdata))
4040                 goto finish;
4041
4042         /* Check if VF is disabled. */
4043         if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
4044                 err = -EPERM;
4045                 goto error_handler;
4046         }
4047
4048         ops = vf->virtchnl_ops;
4049
4050         /* Perform basic checks on the msg */
4051         err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
4052         if (err) {
4053                 if (err == VIRTCHNL_STATUS_ERR_PARAM)
4054                         err = -EPERM;
4055                 else
4056                         err = -EINVAL;
4057         }
4058
4059 error_handler:
4060         if (err) {
4061                 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
4062                                       NULL, 0);
4063                 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
4064                         vf_id, v_opcode, msglen, err);
4065                 goto finish;
4066         }
4067
4068         if (!ice_vc_is_opcode_allowed(vf, v_opcode)) {
4069                 ice_vc_send_msg_to_vf(vf, v_opcode,
4070                                       VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
4071                                       0);
4072                 goto finish;
4073         }
4074
4075         switch (v_opcode) {
4076         case VIRTCHNL_OP_VERSION:
4077                 err = ops->get_ver_msg(vf, msg);
4078                 break;
4079         case VIRTCHNL_OP_GET_VF_RESOURCES:
4080                 err = ops->get_vf_res_msg(vf, msg);
4081                 if (ice_vf_init_vlan_stripping(vf))
4082                         dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n",
4083                                 vf->vf_id);
4084                 ice_vc_notify_vf_link_state(vf);
4085                 break;
4086         case VIRTCHNL_OP_RESET_VF:
4087                 ops->reset_vf(vf);
4088                 break;
4089         case VIRTCHNL_OP_ADD_ETH_ADDR:
4090                 err = ops->add_mac_addr_msg(vf, msg);
4091                 break;
4092         case VIRTCHNL_OP_DEL_ETH_ADDR:
4093                 err = ops->del_mac_addr_msg(vf, msg);
4094                 break;
4095         case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
4096                 err = ops->cfg_qs_msg(vf, msg);
4097                 break;
4098         case VIRTCHNL_OP_ENABLE_QUEUES:
4099                 err = ops->ena_qs_msg(vf, msg);
4100                 ice_vc_notify_vf_link_state(vf);
4101                 break;
4102         case VIRTCHNL_OP_DISABLE_QUEUES:
4103                 err = ops->dis_qs_msg(vf, msg);
4104                 break;
4105         case VIRTCHNL_OP_REQUEST_QUEUES:
4106                 err = ops->request_qs_msg(vf, msg);
4107                 break;
4108         case VIRTCHNL_OP_CONFIG_IRQ_MAP:
4109                 err = ops->cfg_irq_map_msg(vf, msg);
4110                 break;
4111         case VIRTCHNL_OP_CONFIG_RSS_KEY:
4112                 err = ops->config_rss_key(vf, msg);
4113                 break;
4114         case VIRTCHNL_OP_CONFIG_RSS_LUT:
4115                 err = ops->config_rss_lut(vf, msg);
4116                 break;
4117         case VIRTCHNL_OP_CONFIG_RSS_HFUNC:
4118                 err = ops->config_rss_hfunc(vf, msg);
4119                 break;
4120         case VIRTCHNL_OP_GET_STATS:
4121                 err = ops->get_stats_msg(vf, msg);
4122                 break;
4123         case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
4124                 err = ops->cfg_promiscuous_mode_msg(vf, msg);
4125                 break;
4126         case VIRTCHNL_OP_ADD_VLAN:
4127                 err = ops->add_vlan_msg(vf, msg);
4128                 break;
4129         case VIRTCHNL_OP_DEL_VLAN:
4130                 err = ops->remove_vlan_msg(vf, msg);
4131                 break;
4132         case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
4133                 err = ops->query_rxdid(vf);
4134                 break;
4135         case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
4136                 err = ops->get_rss_hena(vf);
4137                 break;
4138         case VIRTCHNL_OP_SET_RSS_HENA:
4139                 err = ops->set_rss_hena_msg(vf, msg);
4140                 break;
4141         case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
4142                 err = ops->ena_vlan_stripping(vf);
4143                 break;
4144         case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
4145                 err = ops->dis_vlan_stripping(vf);
4146                 break;
4147         case VIRTCHNL_OP_ADD_FDIR_FILTER:
4148                 err = ops->add_fdir_fltr_msg(vf, msg);
4149                 break;
4150         case VIRTCHNL_OP_DEL_FDIR_FILTER:
4151                 err = ops->del_fdir_fltr_msg(vf, msg);
4152                 break;
4153         case VIRTCHNL_OP_ADD_RSS_CFG:
4154                 err = ops->handle_rss_cfg_msg(vf, msg, true);
4155                 break;
4156         case VIRTCHNL_OP_DEL_RSS_CFG:
4157                 err = ops->handle_rss_cfg_msg(vf, msg, false);
4158                 break;
4159         case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
4160                 err = ops->get_offload_vlan_v2_caps(vf);
4161                 break;
4162         case VIRTCHNL_OP_ADD_VLAN_V2:
4163                 err = ops->add_vlan_v2_msg(vf, msg);
4164                 break;
4165         case VIRTCHNL_OP_DEL_VLAN_V2:
4166                 err = ops->remove_vlan_v2_msg(vf, msg);
4167                 break;
4168         case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
4169                 err = ops->ena_vlan_stripping_v2_msg(vf, msg);
4170                 break;
4171         case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
4172                 err = ops->dis_vlan_stripping_v2_msg(vf, msg);
4173                 break;
4174         case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
4175                 err = ops->ena_vlan_insertion_v2_msg(vf, msg);
4176                 break;
4177         case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
4178                 err = ops->dis_vlan_insertion_v2_msg(vf, msg);
4179                 break;
4180         case VIRTCHNL_OP_UNKNOWN:
4181         default:
4182                 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
4183                         vf_id);
4184                 err = ice_vc_send_msg_to_vf(vf, v_opcode,
4185                                             VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4186                                             NULL, 0);
4187                 break;
4188         }
4189         if (err) {
4190                 /* Helper function cares less about error return values here
4191                  * as it is busy with pending work.
4192                  */
4193                 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
4194                          vf_id, v_opcode, err);
4195         }
4196
4197 finish:
4198         mutex_unlock(&vf->cfg_lock);
4199         ice_put_vf(vf);
4200 }
This page took 0.275615 seconds and 4 git commands to generate.