]> Git Repo - linux.git/blob - drivers/net/ethernet/intel/ice/ice_txrx_lib.c
crypto: akcipher - Drop sign/verify operations
[linux.git] / drivers / net / ethernet / intel / ice / ice_txrx_lib.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3
4 #include <linux/filter.h>
5 #include <linux/net/intel/libie/rx.h>
6
7 #include "ice_txrx_lib.h"
8 #include "ice_eswitch.h"
9 #include "ice_lib.h"
10
11 /**
12  * ice_release_rx_desc - Store the new tail and head values
13  * @rx_ring: ring to bump
14  * @val: new head index
15  */
16 void ice_release_rx_desc(struct ice_rx_ring *rx_ring, u16 val)
17 {
18         u16 prev_ntu = rx_ring->next_to_use & ~0x7;
19
20         rx_ring->next_to_use = val;
21
22         /* update next to alloc since we have filled the ring */
23         rx_ring->next_to_alloc = val;
24
25         /* QRX_TAIL will be updated with any tail value, but hardware ignores
26          * the lower 3 bits. This makes it so we only bump tail on meaningful
27          * boundaries. Also, this allows us to bump tail on intervals of 8 up to
28          * the budget depending on the current traffic load.
29          */
30         val &= ~0x7;
31         if (prev_ntu != val) {
32                 /* Force memory writes to complete before letting h/w
33                  * know there are new descriptors to fetch. (Only
34                  * applicable for weak-ordered memory model archs,
35                  * such as IA-64).
36                  */
37                 wmb();
38                 writel(val, rx_ring->tail);
39         }
40 }
41
42 /**
43  * ice_get_rx_hash - get RX hash value from descriptor
44  * @rx_desc: specific descriptor
45  *
46  * Returns hash, if present, 0 otherwise.
47  */
48 static u32 ice_get_rx_hash(const union ice_32b_rx_flex_desc *rx_desc)
49 {
50         const struct ice_32b_rx_flex_desc_nic *nic_mdid;
51
52         if (unlikely(rx_desc->wb.rxdid != ICE_RXDID_FLEX_NIC))
53                 return 0;
54
55         nic_mdid = (struct ice_32b_rx_flex_desc_nic *)rx_desc;
56         return le32_to_cpu(nic_mdid->rss_hash);
57 }
58
59 /**
60  * ice_rx_hash_to_skb - set the hash value in the skb
61  * @rx_ring: descriptor ring
62  * @rx_desc: specific descriptor
63  * @skb: pointer to current skb
64  * @rx_ptype: the ptype value from the descriptor
65  */
66 static void
67 ice_rx_hash_to_skb(const struct ice_rx_ring *rx_ring,
68                    const union ice_32b_rx_flex_desc *rx_desc,
69                    struct sk_buff *skb, u16 rx_ptype)
70 {
71         struct libeth_rx_pt decoded;
72         u32 hash;
73
74         decoded = libie_rx_pt_parse(rx_ptype);
75         if (!libeth_rx_pt_has_hash(rx_ring->netdev, decoded))
76                 return;
77
78         hash = ice_get_rx_hash(rx_desc);
79         if (likely(hash))
80                 libeth_rx_pt_set_hash(skb, hash, decoded);
81 }
82
83 /**
84  * ice_rx_csum - Indicate in skb if checksum is good
85  * @ring: the ring we care about
86  * @skb: skb currently being received and modified
87  * @rx_desc: the receive descriptor
88  * @ptype: the packet type decoded by hardware
89  *
90  * skb->protocol must be set before this function is called
91  */
92 static void
93 ice_rx_csum(struct ice_rx_ring *ring, struct sk_buff *skb,
94             union ice_32b_rx_flex_desc *rx_desc, u16 ptype)
95 {
96         struct libeth_rx_pt decoded;
97         u16 rx_status0, rx_status1;
98         bool ipv4, ipv6;
99
100         /* Start with CHECKSUM_NONE and by default csum_level = 0 */
101         skb->ip_summed = CHECKSUM_NONE;
102
103         decoded = libie_rx_pt_parse(ptype);
104         if (!libeth_rx_pt_has_checksum(ring->netdev, decoded))
105                 return;
106
107         rx_status0 = le16_to_cpu(rx_desc->wb.status_error0);
108         rx_status1 = le16_to_cpu(rx_desc->wb.status_error1);
109
110         /* check if HW has decoded the packet and checksum */
111         if (!(rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_L3L4P_S)))
112                 return;
113
114         ipv4 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV4;
115         ipv6 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV6;
116
117         if (ipv4 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))) {
118                 ring->vsi->back->hw_rx_eipe_error++;
119                 return;
120         }
121
122         if (ipv4 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S))))
123                 goto checksum_fail;
124
125         if (ipv6 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_IPV6EXADD_S))))
126                 goto checksum_fail;
127
128         /* check for L4 errors and handle packets that were not able to be
129          * checksummed due to arrival speed
130          */
131         if (rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S))
132                 goto checksum_fail;
133
134         /* check for outer UDP checksum error in tunneled packets */
135         if ((rx_status1 & BIT(ICE_RX_FLEX_DESC_STATUS1_NAT_S)) &&
136             (rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S)))
137                 goto checksum_fail;
138
139         /* If there is an outer header present that might contain a checksum
140          * we need to bump the checksum level by 1 to reflect the fact that
141          * we are indicating we validated the inner checksum.
142          */
143         if (decoded.tunnel_type >= LIBETH_RX_PT_TUNNEL_IP_GRENAT)
144                 skb->csum_level = 1;
145
146         skb->ip_summed = CHECKSUM_UNNECESSARY;
147         return;
148
149 checksum_fail:
150         ring->vsi->back->hw_csum_rx_error++;
151 }
152
153 /**
154  * ice_ptp_rx_hwts_to_skb - Put RX timestamp into skb
155  * @rx_ring: Ring to get the VSI info
156  * @rx_desc: Receive descriptor
157  * @skb: Particular skb to send timestamp with
158  *
159  * The timestamp is in ns, so we must convert the result first.
160  */
161 static void
162 ice_ptp_rx_hwts_to_skb(struct ice_rx_ring *rx_ring,
163                        const union ice_32b_rx_flex_desc *rx_desc,
164                        struct sk_buff *skb)
165 {
166         u64 ts_ns = ice_ptp_get_rx_hwts(rx_desc, &rx_ring->pkt_ctx);
167
168         skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ts_ns);
169 }
170
171 /**
172  * ice_get_ptype - Read HW packet type from the descriptor
173  * @rx_desc: RX descriptor
174  */
175 static u16 ice_get_ptype(const union ice_32b_rx_flex_desc *rx_desc)
176 {
177         return le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
178                ICE_RX_FLEX_DESC_PTYPE_M;
179 }
180
181 /**
182  * ice_process_skb_fields - Populate skb header fields from Rx descriptor
183  * @rx_ring: Rx descriptor ring packet is being transacted on
184  * @rx_desc: pointer to the EOP Rx descriptor
185  * @skb: pointer to current skb being populated
186  *
187  * This function checks the ring, descriptor, and packet information in
188  * order to populate the hash, checksum, VLAN, protocol, and
189  * other fields within the skb.
190  */
191 void
192 ice_process_skb_fields(struct ice_rx_ring *rx_ring,
193                        union ice_32b_rx_flex_desc *rx_desc,
194                        struct sk_buff *skb)
195 {
196         u16 ptype = ice_get_ptype(rx_desc);
197
198         ice_rx_hash_to_skb(rx_ring, rx_desc, skb, ptype);
199
200         /* modifies the skb - consumes the enet header */
201         if (unlikely(rx_ring->flags & ICE_RX_FLAGS_MULTIDEV)) {
202                 struct net_device *netdev = ice_eswitch_get_target(rx_ring,
203                                                                    rx_desc);
204
205                 if (ice_is_port_repr_netdev(netdev))
206                         ice_repr_inc_rx_stats(netdev, skb->len);
207                 skb->protocol = eth_type_trans(skb, netdev);
208         } else {
209                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
210         }
211
212         ice_rx_csum(rx_ring, skb, rx_desc, ptype);
213
214         if (rx_ring->ptp_rx)
215                 ice_ptp_rx_hwts_to_skb(rx_ring, rx_desc, skb);
216 }
217
218 /**
219  * ice_receive_skb - Send a completed packet up the stack
220  * @rx_ring: Rx ring in play
221  * @skb: packet to send up
222  * @vlan_tci: VLAN TCI for packet
223  *
224  * This function sends the completed packet (via. skb) up the stack using
225  * gro receive functions (with/without VLAN tag)
226  */
227 void
228 ice_receive_skb(struct ice_rx_ring *rx_ring, struct sk_buff *skb, u16 vlan_tci)
229 {
230         if ((vlan_tci & VLAN_VID_MASK) && rx_ring->vlan_proto)
231                 __vlan_hwaccel_put_tag(skb, rx_ring->vlan_proto,
232                                        vlan_tci);
233
234         napi_gro_receive(&rx_ring->q_vector->napi, skb);
235 }
236
237 /**
238  * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer
239  * @dev: device for DMA mapping
240  * @tx_buf: Tx buffer to clean
241  * @bq: XDP bulk flush struct
242  */
243 static void
244 ice_clean_xdp_tx_buf(struct device *dev, struct ice_tx_buf *tx_buf,
245                      struct xdp_frame_bulk *bq)
246 {
247         dma_unmap_single(dev, dma_unmap_addr(tx_buf, dma),
248                          dma_unmap_len(tx_buf, len), DMA_TO_DEVICE);
249         dma_unmap_len_set(tx_buf, len, 0);
250
251         switch (tx_buf->type) {
252         case ICE_TX_BUF_XDP_TX:
253                 page_frag_free(tx_buf->raw_buf);
254                 break;
255         case ICE_TX_BUF_XDP_XMIT:
256                 xdp_return_frame_bulk(tx_buf->xdpf, bq);
257                 break;
258         }
259
260         tx_buf->type = ICE_TX_BUF_EMPTY;
261 }
262
263 /**
264  * ice_clean_xdp_irq - Reclaim resources after transmit completes on XDP ring
265  * @xdp_ring: XDP ring to clean
266  */
267 static u32 ice_clean_xdp_irq(struct ice_tx_ring *xdp_ring)
268 {
269         int total_bytes = 0, total_pkts = 0;
270         struct device *dev = xdp_ring->dev;
271         u32 ntc = xdp_ring->next_to_clean;
272         struct ice_tx_desc *tx_desc;
273         u32 cnt = xdp_ring->count;
274         struct xdp_frame_bulk bq;
275         u32 frags, xdp_tx = 0;
276         u32 ready_frames = 0;
277         u32 idx;
278         u32 ret;
279
280         idx = xdp_ring->tx_buf[ntc].rs_idx;
281         tx_desc = ICE_TX_DESC(xdp_ring, idx);
282         if (tx_desc->cmd_type_offset_bsz &
283             cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)) {
284                 if (idx >= ntc)
285                         ready_frames = idx - ntc + 1;
286                 else
287                         ready_frames = idx + cnt - ntc + 1;
288         }
289
290         if (unlikely(!ready_frames))
291                 return 0;
292         ret = ready_frames;
293
294         xdp_frame_bulk_init(&bq);
295         rcu_read_lock(); /* xdp_return_frame_bulk() */
296
297         while (ready_frames) {
298                 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
299                 struct ice_tx_buf *head = tx_buf;
300
301                 /* bytecount holds size of head + frags */
302                 total_bytes += tx_buf->bytecount;
303                 frags = tx_buf->nr_frags;
304                 total_pkts++;
305                 /* count head + frags */
306                 ready_frames -= frags + 1;
307                 xdp_tx++;
308
309                 ntc++;
310                 if (ntc == cnt)
311                         ntc = 0;
312
313                 for (int i = 0; i < frags; i++) {
314                         tx_buf = &xdp_ring->tx_buf[ntc];
315
316                         ice_clean_xdp_tx_buf(dev, tx_buf, &bq);
317                         ntc++;
318                         if (ntc == cnt)
319                                 ntc = 0;
320                 }
321
322                 ice_clean_xdp_tx_buf(dev, head, &bq);
323         }
324
325         xdp_flush_frame_bulk(&bq);
326         rcu_read_unlock();
327
328         tx_desc->cmd_type_offset_bsz = 0;
329         xdp_ring->next_to_clean = ntc;
330         xdp_ring->xdp_tx_active -= xdp_tx;
331         ice_update_tx_ring_stats(xdp_ring, total_pkts, total_bytes);
332
333         return ret;
334 }
335
336 /**
337  * __ice_xmit_xdp_ring - submit frame to XDP ring for transmission
338  * @xdp: XDP buffer to be placed onto Tx descriptors
339  * @xdp_ring: XDP ring for transmission
340  * @frame: whether this comes from .ndo_xdp_xmit()
341  */
342 int __ice_xmit_xdp_ring(struct xdp_buff *xdp, struct ice_tx_ring *xdp_ring,
343                         bool frame)
344 {
345         struct skb_shared_info *sinfo = NULL;
346         u32 size = xdp->data_end - xdp->data;
347         struct device *dev = xdp_ring->dev;
348         u32 ntu = xdp_ring->next_to_use;
349         struct ice_tx_desc *tx_desc;
350         struct ice_tx_buf *tx_head;
351         struct ice_tx_buf *tx_buf;
352         u32 cnt = xdp_ring->count;
353         void *data = xdp->data;
354         u32 nr_frags = 0;
355         u32 free_space;
356         u32 frag = 0;
357
358         free_space = ICE_DESC_UNUSED(xdp_ring);
359         if (free_space < ICE_RING_QUARTER(xdp_ring))
360                 free_space += ice_clean_xdp_irq(xdp_ring);
361
362         if (unlikely(!free_space))
363                 goto busy;
364
365         if (unlikely(xdp_buff_has_frags(xdp))) {
366                 sinfo = xdp_get_shared_info_from_buff(xdp);
367                 nr_frags = sinfo->nr_frags;
368                 if (free_space < nr_frags + 1)
369                         goto busy;
370         }
371
372         tx_desc = ICE_TX_DESC(xdp_ring, ntu);
373         tx_head = &xdp_ring->tx_buf[ntu];
374         tx_buf = tx_head;
375
376         for (;;) {
377                 dma_addr_t dma;
378
379                 dma = dma_map_single(dev, data, size, DMA_TO_DEVICE);
380                 if (dma_mapping_error(dev, dma))
381                         goto dma_unmap;
382
383                 /* record length, and DMA address */
384                 dma_unmap_len_set(tx_buf, len, size);
385                 dma_unmap_addr_set(tx_buf, dma, dma);
386
387                 if (frame) {
388                         tx_buf->type = ICE_TX_BUF_FRAG;
389                 } else {
390                         tx_buf->type = ICE_TX_BUF_XDP_TX;
391                         tx_buf->raw_buf = data;
392                 }
393
394                 tx_desc->buf_addr = cpu_to_le64(dma);
395                 tx_desc->cmd_type_offset_bsz = ice_build_ctob(0, 0, size, 0);
396
397                 ntu++;
398                 if (ntu == cnt)
399                         ntu = 0;
400
401                 if (frag == nr_frags)
402                         break;
403
404                 tx_desc = ICE_TX_DESC(xdp_ring, ntu);
405                 tx_buf = &xdp_ring->tx_buf[ntu];
406
407                 data = skb_frag_address(&sinfo->frags[frag]);
408                 size = skb_frag_size(&sinfo->frags[frag]);
409                 frag++;
410         }
411
412         /* store info about bytecount and frag count in first desc */
413         tx_head->bytecount = xdp_get_buff_len(xdp);
414         tx_head->nr_frags = nr_frags;
415
416         if (frame) {
417                 tx_head->type = ICE_TX_BUF_XDP_XMIT;
418                 tx_head->xdpf = xdp->data_hard_start;
419         }
420
421         /* update last descriptor from a frame with EOP */
422         tx_desc->cmd_type_offset_bsz |=
423                 cpu_to_le64(ICE_TX_DESC_CMD_EOP << ICE_TXD_QW1_CMD_S);
424
425         xdp_ring->xdp_tx_active++;
426         xdp_ring->next_to_use = ntu;
427
428         return ICE_XDP_TX;
429
430 dma_unmap:
431         for (;;) {
432                 tx_buf = &xdp_ring->tx_buf[ntu];
433                 dma_unmap_page(dev, dma_unmap_addr(tx_buf, dma),
434                                dma_unmap_len(tx_buf, len), DMA_TO_DEVICE);
435                 dma_unmap_len_set(tx_buf, len, 0);
436                 if (tx_buf == tx_head)
437                         break;
438
439                 if (!ntu)
440                         ntu += cnt;
441                 ntu--;
442         }
443         return ICE_XDP_CONSUMED;
444
445 busy:
446         xdp_ring->ring_stats->tx_stats.tx_busy++;
447
448         return ICE_XDP_CONSUMED;
449 }
450
451 /**
452  * ice_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
453  * @xdp_ring: XDP ring
454  * @xdp_res: Result of the receive batch
455  * @first_idx: index to write from caller
456  *
457  * This function bumps XDP Tx tail and/or flush redirect map, and
458  * should be called when a batch of packets has been processed in the
459  * napi loop.
460  */
461 void ice_finalize_xdp_rx(struct ice_tx_ring *xdp_ring, unsigned int xdp_res,
462                          u32 first_idx)
463 {
464         struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[first_idx];
465
466         if (xdp_res & ICE_XDP_REDIR)
467                 xdp_do_flush();
468
469         if (xdp_res & ICE_XDP_TX) {
470                 if (static_branch_unlikely(&ice_xdp_locking_key))
471                         spin_lock(&xdp_ring->tx_lock);
472                 /* store index of descriptor with RS bit set in the first
473                  * ice_tx_buf of given NAPI batch
474                  */
475                 tx_buf->rs_idx = ice_set_rs_bit(xdp_ring);
476                 ice_xdp_ring_update_tail(xdp_ring);
477                 if (static_branch_unlikely(&ice_xdp_locking_key))
478                         spin_unlock(&xdp_ring->tx_lock);
479         }
480 }
481
482 /**
483  * ice_xdp_rx_hw_ts - HW timestamp XDP hint handler
484  * @ctx: XDP buff pointer
485  * @ts_ns: destination address
486  *
487  * Copy HW timestamp (if available) to the destination address.
488  */
489 static int ice_xdp_rx_hw_ts(const struct xdp_md *ctx, u64 *ts_ns)
490 {
491         const struct ice_xdp_buff *xdp_ext = (void *)ctx;
492
493         *ts_ns = ice_ptp_get_rx_hwts(xdp_ext->eop_desc,
494                                      xdp_ext->pkt_ctx);
495         if (!*ts_ns)
496                 return -ENODATA;
497
498         return 0;
499 }
500
501 /**
502  * ice_xdp_rx_hash_type - Get XDP-specific hash type from the RX descriptor
503  * @eop_desc: End of Packet descriptor
504  */
505 static enum xdp_rss_hash_type
506 ice_xdp_rx_hash_type(const union ice_32b_rx_flex_desc *eop_desc)
507 {
508         return libie_rx_pt_parse(ice_get_ptype(eop_desc)).hash_type;
509 }
510
511 /**
512  * ice_xdp_rx_hash - RX hash XDP hint handler
513  * @ctx: XDP buff pointer
514  * @hash: hash destination address
515  * @rss_type: XDP hash type destination address
516  *
517  * Copy RX hash (if available) and its type to the destination address.
518  */
519 static int ice_xdp_rx_hash(const struct xdp_md *ctx, u32 *hash,
520                            enum xdp_rss_hash_type *rss_type)
521 {
522         const struct ice_xdp_buff *xdp_ext = (void *)ctx;
523
524         *hash = ice_get_rx_hash(xdp_ext->eop_desc);
525         *rss_type = ice_xdp_rx_hash_type(xdp_ext->eop_desc);
526         if (!likely(*hash))
527                 return -ENODATA;
528
529         return 0;
530 }
531
532 /**
533  * ice_xdp_rx_vlan_tag - VLAN tag XDP hint handler
534  * @ctx: XDP buff pointer
535  * @vlan_proto: destination address for VLAN protocol
536  * @vlan_tci: destination address for VLAN TCI
537  *
538  * Copy VLAN tag (if was stripped) and corresponding protocol
539  * to the destination address.
540  */
541 static int ice_xdp_rx_vlan_tag(const struct xdp_md *ctx, __be16 *vlan_proto,
542                                u16 *vlan_tci)
543 {
544         const struct ice_xdp_buff *xdp_ext = (void *)ctx;
545
546         *vlan_proto = xdp_ext->pkt_ctx->vlan_proto;
547         if (!*vlan_proto)
548                 return -ENODATA;
549
550         *vlan_tci = ice_get_vlan_tci(xdp_ext->eop_desc);
551         if (!*vlan_tci)
552                 return -ENODATA;
553
554         return 0;
555 }
556
557 const struct xdp_metadata_ops ice_xdp_md_ops = {
558         .xmo_rx_timestamp               = ice_xdp_rx_hw_ts,
559         .xmo_rx_hash                    = ice_xdp_rx_hash,
560         .xmo_rx_vlan_tag                = ice_xdp_rx_vlan_tag,
561 };
This page took 0.066415 seconds and 4 git commands to generate.