1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
5 #include "ice_switch.h"
8 #define ICE_ETH_DA_OFFSET 0
9 #define ICE_ETH_ETHTYPE_OFFSET 12
10 #define ICE_ETH_VLAN_TCI_OFFSET 14
11 #define ICE_MAX_VLAN_ID 0xFFF
12 #define ICE_IPV6_ETHER_ID 0x86DD
14 /* Dummy ethernet header needed in the ice_aqc_sw_rules_elem
15 * struct to configure any switch filter rules.
16 * {DA (6 bytes), SA(6 bytes),
17 * Ether type (2 bytes for header without VLAN tag) OR
18 * VLAN tag (4 bytes for header with VLAN tag) }
20 * Word on Hardcoded values
21 * byte 0 = 0x2: to identify it as locally administered DA MAC
22 * byte 6 = 0x2: to identify it as locally administered SA MAC
23 * byte 12 = 0x81 & byte 13 = 0x00:
24 * In case of VLAN filter first two bytes defines ether type (0x8100)
25 * and remaining two bytes are placeholder for programming a given VLAN ID
26 * In case of Ether type filter it is treated as header without VLAN tag
27 * and byte 12 and 13 is used to program a given Ether type instead
29 static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0,
34 ICE_PKT_OUTER_IPV6 = BIT(0),
35 ICE_PKT_TUN_GTPC = BIT(1),
36 ICE_PKT_TUN_GTPU = BIT(2),
37 ICE_PKT_TUN_NVGRE = BIT(3),
38 ICE_PKT_TUN_UDP = BIT(4),
39 ICE_PKT_INNER_IPV6 = BIT(5),
40 ICE_PKT_INNER_TCP = BIT(6),
41 ICE_PKT_INNER_UDP = BIT(7),
42 ICE_PKT_GTP_NOPAY = BIT(8),
43 ICE_PKT_KMALLOC = BIT(9),
44 ICE_PKT_PPPOE = BIT(10),
45 ICE_PKT_L2TPV3 = BIT(11),
46 ICE_PKT_PFCP = BIT(12),
49 struct ice_dummy_pkt_offsets {
50 enum ice_protocol_type type;
51 u16 offset; /* ICE_PROTOCOL_LAST indicates end of list */
54 struct ice_dummy_pkt_profile {
55 const struct ice_dummy_pkt_offsets *offsets;
62 #define ICE_DECLARE_PKT_OFFSETS(type) \
63 static const struct ice_dummy_pkt_offsets \
64 ice_dummy_##type##_packet_offsets[]
66 #define ICE_DECLARE_PKT_TEMPLATE(type) \
67 static const u8 ice_dummy_##type##_packet[]
69 #define ICE_PKT_PROFILE(type, m) { \
71 .pkt = ice_dummy_##type##_packet, \
72 .pkt_len = sizeof(ice_dummy_##type##_packet), \
73 .offsets = ice_dummy_##type##_packet_offsets, \
74 .offsets_len = sizeof(ice_dummy_##type##_packet_offsets), \
77 ICE_DECLARE_PKT_OFFSETS(vlan) = {
78 { ICE_VLAN_OFOS, 12 },
81 ICE_DECLARE_PKT_TEMPLATE(vlan) = {
82 0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_OFOS 12 */
85 ICE_DECLARE_PKT_OFFSETS(qinq) = {
90 ICE_DECLARE_PKT_TEMPLATE(qinq) = {
91 0x91, 0x00, 0x00, 0x00, /* ICE_VLAN_EX 12 */
92 0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_IN 16 */
95 ICE_DECLARE_PKT_OFFSETS(gre_tcp) = {
98 { ICE_IPV4_OFOS, 14 },
101 { ICE_ETYPE_IL, 54 },
104 { ICE_PROTOCOL_LAST, 0 },
107 ICE_DECLARE_PKT_TEMPLATE(gre_tcp) = {
108 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
109 0x00, 0x00, 0x00, 0x00,
110 0x00, 0x00, 0x00, 0x00,
112 0x08, 0x00, /* ICE_ETYPE_OL 12 */
114 0x45, 0x00, 0x00, 0x3E, /* ICE_IPV4_OFOS 14 */
115 0x00, 0x00, 0x00, 0x00,
116 0x00, 0x2F, 0x00, 0x00,
117 0x00, 0x00, 0x00, 0x00,
118 0x00, 0x00, 0x00, 0x00,
120 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
121 0x00, 0x00, 0x00, 0x00,
123 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
124 0x00, 0x00, 0x00, 0x00,
125 0x00, 0x00, 0x00, 0x00,
127 0x08, 0x00, /* ICE_ETYPE_IL 54 */
129 0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 56 */
130 0x00, 0x00, 0x00, 0x00,
131 0x00, 0x06, 0x00, 0x00,
132 0x00, 0x00, 0x00, 0x00,
133 0x00, 0x00, 0x00, 0x00,
135 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 76 */
136 0x00, 0x00, 0x00, 0x00,
137 0x00, 0x00, 0x00, 0x00,
138 0x50, 0x02, 0x20, 0x00,
139 0x00, 0x00, 0x00, 0x00
142 ICE_DECLARE_PKT_OFFSETS(gre_udp) = {
144 { ICE_ETYPE_OL, 12 },
145 { ICE_IPV4_OFOS, 14 },
148 { ICE_ETYPE_IL, 54 },
150 { ICE_UDP_ILOS, 76 },
151 { ICE_PROTOCOL_LAST, 0 },
154 ICE_DECLARE_PKT_TEMPLATE(gre_udp) = {
155 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
156 0x00, 0x00, 0x00, 0x00,
157 0x00, 0x00, 0x00, 0x00,
159 0x08, 0x00, /* ICE_ETYPE_OL 12 */
161 0x45, 0x00, 0x00, 0x3E, /* ICE_IPV4_OFOS 14 */
162 0x00, 0x00, 0x00, 0x00,
163 0x00, 0x2F, 0x00, 0x00,
164 0x00, 0x00, 0x00, 0x00,
165 0x00, 0x00, 0x00, 0x00,
167 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
168 0x00, 0x00, 0x00, 0x00,
170 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
171 0x00, 0x00, 0x00, 0x00,
172 0x00, 0x00, 0x00, 0x00,
174 0x08, 0x00, /* ICE_ETYPE_IL 54 */
176 0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 56 */
177 0x00, 0x00, 0x00, 0x00,
178 0x00, 0x11, 0x00, 0x00,
179 0x00, 0x00, 0x00, 0x00,
180 0x00, 0x00, 0x00, 0x00,
182 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 76 */
183 0x00, 0x08, 0x00, 0x00,
186 ICE_DECLARE_PKT_OFFSETS(udp_tun_tcp) = {
188 { ICE_ETYPE_OL, 12 },
189 { ICE_IPV4_OFOS, 14 },
193 { ICE_VXLAN_GPE, 42 },
195 { ICE_ETYPE_IL, 62 },
198 { ICE_PROTOCOL_LAST, 0 },
201 ICE_DECLARE_PKT_TEMPLATE(udp_tun_tcp) = {
202 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
203 0x00, 0x00, 0x00, 0x00,
204 0x00, 0x00, 0x00, 0x00,
206 0x08, 0x00, /* ICE_ETYPE_OL 12 */
208 0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
209 0x00, 0x01, 0x00, 0x00,
210 0x40, 0x11, 0x00, 0x00,
211 0x00, 0x00, 0x00, 0x00,
212 0x00, 0x00, 0x00, 0x00,
214 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
215 0x00, 0x46, 0x00, 0x00,
217 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
218 0x00, 0x00, 0x00, 0x00,
220 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
221 0x00, 0x00, 0x00, 0x00,
222 0x00, 0x00, 0x00, 0x00,
224 0x08, 0x00, /* ICE_ETYPE_IL 62 */
226 0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_IL 64 */
227 0x00, 0x01, 0x00, 0x00,
228 0x40, 0x06, 0x00, 0x00,
229 0x00, 0x00, 0x00, 0x00,
230 0x00, 0x00, 0x00, 0x00,
232 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 84 */
233 0x00, 0x00, 0x00, 0x00,
234 0x00, 0x00, 0x00, 0x00,
235 0x50, 0x02, 0x20, 0x00,
236 0x00, 0x00, 0x00, 0x00
239 ICE_DECLARE_PKT_OFFSETS(udp_tun_udp) = {
241 { ICE_ETYPE_OL, 12 },
242 { ICE_IPV4_OFOS, 14 },
246 { ICE_VXLAN_GPE, 42 },
248 { ICE_ETYPE_IL, 62 },
250 { ICE_UDP_ILOS, 84 },
251 { ICE_PROTOCOL_LAST, 0 },
254 ICE_DECLARE_PKT_TEMPLATE(udp_tun_udp) = {
255 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
256 0x00, 0x00, 0x00, 0x00,
257 0x00, 0x00, 0x00, 0x00,
259 0x08, 0x00, /* ICE_ETYPE_OL 12 */
261 0x45, 0x00, 0x00, 0x4e, /* ICE_IPV4_OFOS 14 */
262 0x00, 0x01, 0x00, 0x00,
263 0x00, 0x11, 0x00, 0x00,
264 0x00, 0x00, 0x00, 0x00,
265 0x00, 0x00, 0x00, 0x00,
267 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
268 0x00, 0x3a, 0x00, 0x00,
270 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
271 0x00, 0x00, 0x00, 0x00,
273 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
274 0x00, 0x00, 0x00, 0x00,
275 0x00, 0x00, 0x00, 0x00,
277 0x08, 0x00, /* ICE_ETYPE_IL 62 */
279 0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_IL 64 */
280 0x00, 0x01, 0x00, 0x00,
281 0x00, 0x11, 0x00, 0x00,
282 0x00, 0x00, 0x00, 0x00,
283 0x00, 0x00, 0x00, 0x00,
285 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 84 */
286 0x00, 0x08, 0x00, 0x00,
289 ICE_DECLARE_PKT_OFFSETS(gre_ipv6_tcp) = {
291 { ICE_ETYPE_OL, 12 },
292 { ICE_IPV4_OFOS, 14 },
295 { ICE_ETYPE_IL, 54 },
298 { ICE_PROTOCOL_LAST, 0 },
301 ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_tcp) = {
302 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
303 0x00, 0x00, 0x00, 0x00,
304 0x00, 0x00, 0x00, 0x00,
306 0x08, 0x00, /* ICE_ETYPE_OL 12 */
308 0x45, 0x00, 0x00, 0x66, /* ICE_IPV4_OFOS 14 */
309 0x00, 0x00, 0x00, 0x00,
310 0x00, 0x2F, 0x00, 0x00,
311 0x00, 0x00, 0x00, 0x00,
312 0x00, 0x00, 0x00, 0x00,
314 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
315 0x00, 0x00, 0x00, 0x00,
317 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
318 0x00, 0x00, 0x00, 0x00,
319 0x00, 0x00, 0x00, 0x00,
321 0x86, 0xdd, /* ICE_ETYPE_IL 54 */
323 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
324 0x00, 0x08, 0x06, 0x40,
325 0x00, 0x00, 0x00, 0x00,
326 0x00, 0x00, 0x00, 0x00,
327 0x00, 0x00, 0x00, 0x00,
328 0x00, 0x00, 0x00, 0x00,
329 0x00, 0x00, 0x00, 0x00,
330 0x00, 0x00, 0x00, 0x00,
331 0x00, 0x00, 0x00, 0x00,
332 0x00, 0x00, 0x00, 0x00,
334 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 96 */
335 0x00, 0x00, 0x00, 0x00,
336 0x00, 0x00, 0x00, 0x00,
337 0x50, 0x02, 0x20, 0x00,
338 0x00, 0x00, 0x00, 0x00
341 ICE_DECLARE_PKT_OFFSETS(gre_ipv6_udp) = {
343 { ICE_ETYPE_OL, 12 },
344 { ICE_IPV4_OFOS, 14 },
347 { ICE_ETYPE_IL, 54 },
349 { ICE_UDP_ILOS, 96 },
350 { ICE_PROTOCOL_LAST, 0 },
353 ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_udp) = {
354 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
355 0x00, 0x00, 0x00, 0x00,
356 0x00, 0x00, 0x00, 0x00,
358 0x08, 0x00, /* ICE_ETYPE_OL 12 */
360 0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
361 0x00, 0x00, 0x00, 0x00,
362 0x00, 0x2F, 0x00, 0x00,
363 0x00, 0x00, 0x00, 0x00,
364 0x00, 0x00, 0x00, 0x00,
366 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
367 0x00, 0x00, 0x00, 0x00,
369 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
370 0x00, 0x00, 0x00, 0x00,
371 0x00, 0x00, 0x00, 0x00,
373 0x86, 0xdd, /* ICE_ETYPE_IL 54 */
375 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
376 0x00, 0x08, 0x11, 0x40,
377 0x00, 0x00, 0x00, 0x00,
378 0x00, 0x00, 0x00, 0x00,
379 0x00, 0x00, 0x00, 0x00,
380 0x00, 0x00, 0x00, 0x00,
381 0x00, 0x00, 0x00, 0x00,
382 0x00, 0x00, 0x00, 0x00,
383 0x00, 0x00, 0x00, 0x00,
384 0x00, 0x00, 0x00, 0x00,
386 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 96 */
387 0x00, 0x08, 0x00, 0x00,
390 ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_tcp) = {
392 { ICE_ETYPE_OL, 12 },
393 { ICE_IPV4_OFOS, 14 },
397 { ICE_VXLAN_GPE, 42 },
399 { ICE_ETYPE_IL, 62 },
402 { ICE_PROTOCOL_LAST, 0 },
405 ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_tcp) = {
406 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
407 0x00, 0x00, 0x00, 0x00,
408 0x00, 0x00, 0x00, 0x00,
410 0x08, 0x00, /* ICE_ETYPE_OL 12 */
412 0x45, 0x00, 0x00, 0x6e, /* ICE_IPV4_OFOS 14 */
413 0x00, 0x01, 0x00, 0x00,
414 0x40, 0x11, 0x00, 0x00,
415 0x00, 0x00, 0x00, 0x00,
416 0x00, 0x00, 0x00, 0x00,
418 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
419 0x00, 0x5a, 0x00, 0x00,
421 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
422 0x00, 0x00, 0x00, 0x00,
424 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
425 0x00, 0x00, 0x00, 0x00,
426 0x00, 0x00, 0x00, 0x00,
428 0x86, 0xdd, /* ICE_ETYPE_IL 62 */
430 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
431 0x00, 0x08, 0x06, 0x40,
432 0x00, 0x00, 0x00, 0x00,
433 0x00, 0x00, 0x00, 0x00,
434 0x00, 0x00, 0x00, 0x00,
435 0x00, 0x00, 0x00, 0x00,
436 0x00, 0x00, 0x00, 0x00,
437 0x00, 0x00, 0x00, 0x00,
438 0x00, 0x00, 0x00, 0x00,
439 0x00, 0x00, 0x00, 0x00,
441 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 104 */
442 0x00, 0x00, 0x00, 0x00,
443 0x00, 0x00, 0x00, 0x00,
444 0x50, 0x02, 0x20, 0x00,
445 0x00, 0x00, 0x00, 0x00
448 ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_udp) = {
450 { ICE_ETYPE_OL, 12 },
451 { ICE_IPV4_OFOS, 14 },
455 { ICE_VXLAN_GPE, 42 },
457 { ICE_ETYPE_IL, 62 },
459 { ICE_UDP_ILOS, 104 },
460 { ICE_PROTOCOL_LAST, 0 },
463 ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_udp) = {
464 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
465 0x00, 0x00, 0x00, 0x00,
466 0x00, 0x00, 0x00, 0x00,
468 0x08, 0x00, /* ICE_ETYPE_OL 12 */
470 0x45, 0x00, 0x00, 0x62, /* ICE_IPV4_OFOS 14 */
471 0x00, 0x01, 0x00, 0x00,
472 0x00, 0x11, 0x00, 0x00,
473 0x00, 0x00, 0x00, 0x00,
474 0x00, 0x00, 0x00, 0x00,
476 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
477 0x00, 0x4e, 0x00, 0x00,
479 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
480 0x00, 0x00, 0x00, 0x00,
482 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
483 0x00, 0x00, 0x00, 0x00,
484 0x00, 0x00, 0x00, 0x00,
486 0x86, 0xdd, /* ICE_ETYPE_IL 62 */
488 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
489 0x00, 0x08, 0x11, 0x40,
490 0x00, 0x00, 0x00, 0x00,
491 0x00, 0x00, 0x00, 0x00,
492 0x00, 0x00, 0x00, 0x00,
493 0x00, 0x00, 0x00, 0x00,
494 0x00, 0x00, 0x00, 0x00,
495 0x00, 0x00, 0x00, 0x00,
496 0x00, 0x00, 0x00, 0x00,
497 0x00, 0x00, 0x00, 0x00,
499 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 104 */
500 0x00, 0x08, 0x00, 0x00,
503 /* offset info for MAC + IPv4 + UDP dummy packet */
504 ICE_DECLARE_PKT_OFFSETS(udp) = {
506 { ICE_ETYPE_OL, 12 },
507 { ICE_IPV4_OFOS, 14 },
508 { ICE_UDP_ILOS, 34 },
509 { ICE_PROTOCOL_LAST, 0 },
512 /* Dummy packet for MAC + IPv4 + UDP */
513 ICE_DECLARE_PKT_TEMPLATE(udp) = {
514 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
515 0x00, 0x00, 0x00, 0x00,
516 0x00, 0x00, 0x00, 0x00,
518 0x08, 0x00, /* ICE_ETYPE_OL 12 */
520 0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 14 */
521 0x00, 0x01, 0x00, 0x00,
522 0x00, 0x11, 0x00, 0x00,
523 0x00, 0x00, 0x00, 0x00,
524 0x00, 0x00, 0x00, 0x00,
526 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 34 */
527 0x00, 0x08, 0x00, 0x00,
529 0x00, 0x00, /* 2 bytes for 4 byte alignment */
532 /* offset info for MAC + IPv4 + TCP dummy packet */
533 ICE_DECLARE_PKT_OFFSETS(tcp) = {
535 { ICE_ETYPE_OL, 12 },
536 { ICE_IPV4_OFOS, 14 },
538 { ICE_PROTOCOL_LAST, 0 },
541 /* Dummy packet for MAC + IPv4 + TCP */
542 ICE_DECLARE_PKT_TEMPLATE(tcp) = {
543 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
544 0x00, 0x00, 0x00, 0x00,
545 0x00, 0x00, 0x00, 0x00,
547 0x08, 0x00, /* ICE_ETYPE_OL 12 */
549 0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 14 */
550 0x00, 0x01, 0x00, 0x00,
551 0x00, 0x06, 0x00, 0x00,
552 0x00, 0x00, 0x00, 0x00,
553 0x00, 0x00, 0x00, 0x00,
555 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 34 */
556 0x00, 0x00, 0x00, 0x00,
557 0x00, 0x00, 0x00, 0x00,
558 0x50, 0x00, 0x00, 0x00,
559 0x00, 0x00, 0x00, 0x00,
561 0x00, 0x00, /* 2 bytes for 4 byte alignment */
564 ICE_DECLARE_PKT_OFFSETS(tcp_ipv6) = {
566 { ICE_ETYPE_OL, 12 },
567 { ICE_IPV6_OFOS, 14 },
569 { ICE_PROTOCOL_LAST, 0 },
572 ICE_DECLARE_PKT_TEMPLATE(tcp_ipv6) = {
573 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
574 0x00, 0x00, 0x00, 0x00,
575 0x00, 0x00, 0x00, 0x00,
577 0x86, 0xDD, /* ICE_ETYPE_OL 12 */
579 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
580 0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
581 0x00, 0x00, 0x00, 0x00,
582 0x00, 0x00, 0x00, 0x00,
583 0x00, 0x00, 0x00, 0x00,
584 0x00, 0x00, 0x00, 0x00,
585 0x00, 0x00, 0x00, 0x00,
586 0x00, 0x00, 0x00, 0x00,
587 0x00, 0x00, 0x00, 0x00,
588 0x00, 0x00, 0x00, 0x00,
590 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 54 */
591 0x00, 0x00, 0x00, 0x00,
592 0x00, 0x00, 0x00, 0x00,
593 0x50, 0x00, 0x00, 0x00,
594 0x00, 0x00, 0x00, 0x00,
596 0x00, 0x00, /* 2 bytes for 4 byte alignment */
600 ICE_DECLARE_PKT_OFFSETS(udp_ipv6) = {
602 { ICE_ETYPE_OL, 12 },
603 { ICE_IPV6_OFOS, 14 },
604 { ICE_UDP_ILOS, 54 },
605 { ICE_PROTOCOL_LAST, 0 },
608 /* IPv6 + UDP dummy packet */
609 ICE_DECLARE_PKT_TEMPLATE(udp_ipv6) = {
610 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
611 0x00, 0x00, 0x00, 0x00,
612 0x00, 0x00, 0x00, 0x00,
614 0x86, 0xDD, /* ICE_ETYPE_OL 12 */
616 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
617 0x00, 0x10, 0x11, 0x00, /* Next header UDP */
618 0x00, 0x00, 0x00, 0x00,
619 0x00, 0x00, 0x00, 0x00,
620 0x00, 0x00, 0x00, 0x00,
621 0x00, 0x00, 0x00, 0x00,
622 0x00, 0x00, 0x00, 0x00,
623 0x00, 0x00, 0x00, 0x00,
624 0x00, 0x00, 0x00, 0x00,
625 0x00, 0x00, 0x00, 0x00,
627 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 54 */
628 0x00, 0x10, 0x00, 0x00,
630 0x00, 0x00, 0x00, 0x00, /* needed for ESP packets */
631 0x00, 0x00, 0x00, 0x00,
633 0x00, 0x00, /* 2 bytes for 4 byte alignment */
636 /* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
637 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_tcp) = {
639 { ICE_IPV4_OFOS, 14 },
644 { ICE_PROTOCOL_LAST, 0 },
647 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_tcp) = {
648 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
649 0x00, 0x00, 0x00, 0x00,
650 0x00, 0x00, 0x00, 0x00,
653 0x45, 0x00, 0x00, 0x58, /* IP 14 */
654 0x00, 0x00, 0x00, 0x00,
655 0x00, 0x11, 0x00, 0x00,
656 0x00, 0x00, 0x00, 0x00,
657 0x00, 0x00, 0x00, 0x00,
659 0x00, 0x00, 0x08, 0x68, /* UDP 34 */
660 0x00, 0x44, 0x00, 0x00,
662 0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 42 */
663 0x00, 0x00, 0x00, 0x00,
664 0x00, 0x00, 0x00, 0x85,
666 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
667 0x00, 0x00, 0x00, 0x00,
669 0x45, 0x00, 0x00, 0x28, /* IP 62 */
670 0x00, 0x00, 0x00, 0x00,
671 0x00, 0x06, 0x00, 0x00,
672 0x00, 0x00, 0x00, 0x00,
673 0x00, 0x00, 0x00, 0x00,
675 0x00, 0x00, 0x00, 0x00, /* TCP 82 */
676 0x00, 0x00, 0x00, 0x00,
677 0x00, 0x00, 0x00, 0x00,
678 0x50, 0x00, 0x00, 0x00,
679 0x00, 0x00, 0x00, 0x00,
681 0x00, 0x00, /* 2 bytes for 4 byte alignment */
684 /* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner UDP */
685 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_udp) = {
687 { ICE_IPV4_OFOS, 14 },
691 { ICE_UDP_ILOS, 82 },
692 { ICE_PROTOCOL_LAST, 0 },
695 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_udp) = {
696 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
697 0x00, 0x00, 0x00, 0x00,
698 0x00, 0x00, 0x00, 0x00,
701 0x45, 0x00, 0x00, 0x4c, /* IP 14 */
702 0x00, 0x00, 0x00, 0x00,
703 0x00, 0x11, 0x00, 0x00,
704 0x00, 0x00, 0x00, 0x00,
705 0x00, 0x00, 0x00, 0x00,
707 0x00, 0x00, 0x08, 0x68, /* UDP 34 */
708 0x00, 0x38, 0x00, 0x00,
710 0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 42 */
711 0x00, 0x00, 0x00, 0x00,
712 0x00, 0x00, 0x00, 0x85,
714 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
715 0x00, 0x00, 0x00, 0x00,
717 0x45, 0x00, 0x00, 0x1c, /* IP 62 */
718 0x00, 0x00, 0x00, 0x00,
719 0x00, 0x11, 0x00, 0x00,
720 0x00, 0x00, 0x00, 0x00,
721 0x00, 0x00, 0x00, 0x00,
723 0x00, 0x00, 0x00, 0x00, /* UDP 82 */
724 0x00, 0x08, 0x00, 0x00,
726 0x00, 0x00, /* 2 bytes for 4 byte alignment */
729 /* Outer IPv6 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
730 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_tcp) = {
732 { ICE_IPV4_OFOS, 14 },
737 { ICE_PROTOCOL_LAST, 0 },
740 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_tcp) = {
741 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
742 0x00, 0x00, 0x00, 0x00,
743 0x00, 0x00, 0x00, 0x00,
746 0x45, 0x00, 0x00, 0x6c, /* IP 14 */
747 0x00, 0x00, 0x00, 0x00,
748 0x00, 0x11, 0x00, 0x00,
749 0x00, 0x00, 0x00, 0x00,
750 0x00, 0x00, 0x00, 0x00,
752 0x00, 0x00, 0x08, 0x68, /* UDP 34 */
753 0x00, 0x58, 0x00, 0x00,
755 0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 42 */
756 0x00, 0x00, 0x00, 0x00,
757 0x00, 0x00, 0x00, 0x85,
759 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
760 0x00, 0x00, 0x00, 0x00,
762 0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
763 0x00, 0x14, 0x06, 0x00,
764 0x00, 0x00, 0x00, 0x00,
765 0x00, 0x00, 0x00, 0x00,
766 0x00, 0x00, 0x00, 0x00,
767 0x00, 0x00, 0x00, 0x00,
768 0x00, 0x00, 0x00, 0x00,
769 0x00, 0x00, 0x00, 0x00,
770 0x00, 0x00, 0x00, 0x00,
771 0x00, 0x00, 0x00, 0x00,
773 0x00, 0x00, 0x00, 0x00, /* TCP 102 */
774 0x00, 0x00, 0x00, 0x00,
775 0x00, 0x00, 0x00, 0x00,
776 0x50, 0x00, 0x00, 0x00,
777 0x00, 0x00, 0x00, 0x00,
779 0x00, 0x00, /* 2 bytes for 4 byte alignment */
782 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_udp) = {
784 { ICE_IPV4_OFOS, 14 },
788 { ICE_UDP_ILOS, 102 },
789 { ICE_PROTOCOL_LAST, 0 },
792 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_udp) = {
793 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
794 0x00, 0x00, 0x00, 0x00,
795 0x00, 0x00, 0x00, 0x00,
798 0x45, 0x00, 0x00, 0x60, /* IP 14 */
799 0x00, 0x00, 0x00, 0x00,
800 0x00, 0x11, 0x00, 0x00,
801 0x00, 0x00, 0x00, 0x00,
802 0x00, 0x00, 0x00, 0x00,
804 0x00, 0x00, 0x08, 0x68, /* UDP 34 */
805 0x00, 0x4c, 0x00, 0x00,
807 0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 42 */
808 0x00, 0x00, 0x00, 0x00,
809 0x00, 0x00, 0x00, 0x85,
811 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
812 0x00, 0x00, 0x00, 0x00,
814 0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
815 0x00, 0x08, 0x11, 0x00,
816 0x00, 0x00, 0x00, 0x00,
817 0x00, 0x00, 0x00, 0x00,
818 0x00, 0x00, 0x00, 0x00,
819 0x00, 0x00, 0x00, 0x00,
820 0x00, 0x00, 0x00, 0x00,
821 0x00, 0x00, 0x00, 0x00,
822 0x00, 0x00, 0x00, 0x00,
823 0x00, 0x00, 0x00, 0x00,
825 0x00, 0x00, 0x00, 0x00, /* UDP 102 */
826 0x00, 0x08, 0x00, 0x00,
828 0x00, 0x00, /* 2 bytes for 4 byte alignment */
831 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_tcp) = {
833 { ICE_IPV6_OFOS, 14 },
838 { ICE_PROTOCOL_LAST, 0 },
841 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_tcp) = {
842 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
843 0x00, 0x00, 0x00, 0x00,
844 0x00, 0x00, 0x00, 0x00,
847 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
848 0x00, 0x44, 0x11, 0x00,
849 0x00, 0x00, 0x00, 0x00,
850 0x00, 0x00, 0x00, 0x00,
851 0x00, 0x00, 0x00, 0x00,
852 0x00, 0x00, 0x00, 0x00,
853 0x00, 0x00, 0x00, 0x00,
854 0x00, 0x00, 0x00, 0x00,
855 0x00, 0x00, 0x00, 0x00,
856 0x00, 0x00, 0x00, 0x00,
858 0x00, 0x00, 0x08, 0x68, /* UDP 54 */
859 0x00, 0x44, 0x00, 0x00,
861 0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 62 */
862 0x00, 0x00, 0x00, 0x00,
863 0x00, 0x00, 0x00, 0x85,
865 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
866 0x00, 0x00, 0x00, 0x00,
868 0x45, 0x00, 0x00, 0x28, /* IP 82 */
869 0x00, 0x00, 0x00, 0x00,
870 0x00, 0x06, 0x00, 0x00,
871 0x00, 0x00, 0x00, 0x00,
872 0x00, 0x00, 0x00, 0x00,
874 0x00, 0x00, 0x00, 0x00, /* TCP 102 */
875 0x00, 0x00, 0x00, 0x00,
876 0x00, 0x00, 0x00, 0x00,
877 0x50, 0x00, 0x00, 0x00,
878 0x00, 0x00, 0x00, 0x00,
880 0x00, 0x00, /* 2 bytes for 4 byte alignment */
883 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_udp) = {
885 { ICE_IPV6_OFOS, 14 },
889 { ICE_UDP_ILOS, 102 },
890 { ICE_PROTOCOL_LAST, 0 },
893 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_udp) = {
894 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
895 0x00, 0x00, 0x00, 0x00,
896 0x00, 0x00, 0x00, 0x00,
899 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
900 0x00, 0x38, 0x11, 0x00,
901 0x00, 0x00, 0x00, 0x00,
902 0x00, 0x00, 0x00, 0x00,
903 0x00, 0x00, 0x00, 0x00,
904 0x00, 0x00, 0x00, 0x00,
905 0x00, 0x00, 0x00, 0x00,
906 0x00, 0x00, 0x00, 0x00,
907 0x00, 0x00, 0x00, 0x00,
908 0x00, 0x00, 0x00, 0x00,
910 0x00, 0x00, 0x08, 0x68, /* UDP 54 */
911 0x00, 0x38, 0x00, 0x00,
913 0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 62 */
914 0x00, 0x00, 0x00, 0x00,
915 0x00, 0x00, 0x00, 0x85,
917 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
918 0x00, 0x00, 0x00, 0x00,
920 0x45, 0x00, 0x00, 0x1c, /* IP 82 */
921 0x00, 0x00, 0x00, 0x00,
922 0x00, 0x11, 0x00, 0x00,
923 0x00, 0x00, 0x00, 0x00,
924 0x00, 0x00, 0x00, 0x00,
926 0x00, 0x00, 0x00, 0x00, /* UDP 102 */
927 0x00, 0x08, 0x00, 0x00,
929 0x00, 0x00, /* 2 bytes for 4 byte alignment */
932 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_tcp) = {
934 { ICE_IPV6_OFOS, 14 },
939 { ICE_PROTOCOL_LAST, 0 },
942 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_tcp) = {
943 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
944 0x00, 0x00, 0x00, 0x00,
945 0x00, 0x00, 0x00, 0x00,
948 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
949 0x00, 0x58, 0x11, 0x00,
950 0x00, 0x00, 0x00, 0x00,
951 0x00, 0x00, 0x00, 0x00,
952 0x00, 0x00, 0x00, 0x00,
953 0x00, 0x00, 0x00, 0x00,
954 0x00, 0x00, 0x00, 0x00,
955 0x00, 0x00, 0x00, 0x00,
956 0x00, 0x00, 0x00, 0x00,
957 0x00, 0x00, 0x00, 0x00,
959 0x00, 0x00, 0x08, 0x68, /* UDP 54 */
960 0x00, 0x58, 0x00, 0x00,
962 0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 62 */
963 0x00, 0x00, 0x00, 0x00,
964 0x00, 0x00, 0x00, 0x85,
966 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
967 0x00, 0x00, 0x00, 0x00,
969 0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
970 0x00, 0x14, 0x06, 0x00,
971 0x00, 0x00, 0x00, 0x00,
972 0x00, 0x00, 0x00, 0x00,
973 0x00, 0x00, 0x00, 0x00,
974 0x00, 0x00, 0x00, 0x00,
975 0x00, 0x00, 0x00, 0x00,
976 0x00, 0x00, 0x00, 0x00,
977 0x00, 0x00, 0x00, 0x00,
978 0x00, 0x00, 0x00, 0x00,
980 0x00, 0x00, 0x00, 0x00, /* TCP 122 */
981 0x00, 0x00, 0x00, 0x00,
982 0x00, 0x00, 0x00, 0x00,
983 0x50, 0x00, 0x00, 0x00,
984 0x00, 0x00, 0x00, 0x00,
986 0x00, 0x00, /* 2 bytes for 4 byte alignment */
989 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_udp) = {
991 { ICE_IPV6_OFOS, 14 },
995 { ICE_UDP_ILOS, 122 },
996 { ICE_PROTOCOL_LAST, 0 },
999 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_udp) = {
1000 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
1001 0x00, 0x00, 0x00, 0x00,
1002 0x00, 0x00, 0x00, 0x00,
1005 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
1006 0x00, 0x4c, 0x11, 0x00,
1007 0x00, 0x00, 0x00, 0x00,
1008 0x00, 0x00, 0x00, 0x00,
1009 0x00, 0x00, 0x00, 0x00,
1010 0x00, 0x00, 0x00, 0x00,
1011 0x00, 0x00, 0x00, 0x00,
1012 0x00, 0x00, 0x00, 0x00,
1013 0x00, 0x00, 0x00, 0x00,
1014 0x00, 0x00, 0x00, 0x00,
1016 0x00, 0x00, 0x08, 0x68, /* UDP 54 */
1017 0x00, 0x4c, 0x00, 0x00,
1019 0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 62 */
1020 0x00, 0x00, 0x00, 0x00,
1021 0x00, 0x00, 0x00, 0x85,
1023 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
1024 0x00, 0x00, 0x00, 0x00,
1026 0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
1027 0x00, 0x08, 0x11, 0x00,
1028 0x00, 0x00, 0x00, 0x00,
1029 0x00, 0x00, 0x00, 0x00,
1030 0x00, 0x00, 0x00, 0x00,
1031 0x00, 0x00, 0x00, 0x00,
1032 0x00, 0x00, 0x00, 0x00,
1033 0x00, 0x00, 0x00, 0x00,
1034 0x00, 0x00, 0x00, 0x00,
1035 0x00, 0x00, 0x00, 0x00,
1037 0x00, 0x00, 0x00, 0x00, /* UDP 122 */
1038 0x00, 0x08, 0x00, 0x00,
1040 0x00, 0x00, /* 2 bytes for 4 byte alignment */
1043 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4) = {
1044 { ICE_MAC_OFOS, 0 },
1045 { ICE_IPV4_OFOS, 14 },
1047 { ICE_GTP_NO_PAY, 42 },
1048 { ICE_PROTOCOL_LAST, 0 },
1051 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4) = {
1052 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1053 0x00, 0x00, 0x00, 0x00,
1054 0x00, 0x00, 0x00, 0x00,
1057 0x45, 0x00, 0x00, 0x44, /* ICE_IPV4_OFOS 14 */
1058 0x00, 0x00, 0x40, 0x00,
1059 0x40, 0x11, 0x00, 0x00,
1060 0x00, 0x00, 0x00, 0x00,
1061 0x00, 0x00, 0x00, 0x00,
1063 0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 34 */
1064 0x00, 0x00, 0x00, 0x00,
1066 0x34, 0xff, 0x00, 0x28, /* ICE_GTP 42 */
1067 0x00, 0x00, 0x00, 0x00,
1068 0x00, 0x00, 0x00, 0x85,
1070 0x02, 0x00, 0x00, 0x00, /* PDU Session extension header */
1071 0x00, 0x00, 0x00, 0x00,
1073 0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 62 */
1074 0x00, 0x00, 0x40, 0x00,
1075 0x40, 0x00, 0x00, 0x00,
1076 0x00, 0x00, 0x00, 0x00,
1077 0x00, 0x00, 0x00, 0x00,
1081 ICE_DECLARE_PKT_OFFSETS(ipv6_gtp) = {
1082 { ICE_MAC_OFOS, 0 },
1083 { ICE_IPV6_OFOS, 14 },
1085 { ICE_GTP_NO_PAY, 62 },
1086 { ICE_PROTOCOL_LAST, 0 },
1089 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtp) = {
1090 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1091 0x00, 0x00, 0x00, 0x00,
1092 0x00, 0x00, 0x00, 0x00,
1095 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */
1096 0x00, 0x6c, 0x11, 0x00, /* Next header UDP*/
1097 0x00, 0x00, 0x00, 0x00,
1098 0x00, 0x00, 0x00, 0x00,
1099 0x00, 0x00, 0x00, 0x00,
1100 0x00, 0x00, 0x00, 0x00,
1101 0x00, 0x00, 0x00, 0x00,
1102 0x00, 0x00, 0x00, 0x00,
1103 0x00, 0x00, 0x00, 0x00,
1104 0x00, 0x00, 0x00, 0x00,
1106 0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 54 */
1107 0x00, 0x00, 0x00, 0x00,
1109 0x30, 0x00, 0x00, 0x28, /* ICE_GTP 62 */
1110 0x00, 0x00, 0x00, 0x00,
1115 ICE_DECLARE_PKT_OFFSETS(pfcp_session_ipv4) = {
1116 { ICE_MAC_OFOS, 0 },
1117 { ICE_ETYPE_OL, 12 },
1118 { ICE_IPV4_OFOS, 14 },
1119 { ICE_UDP_ILOS, 34 },
1121 { ICE_PROTOCOL_LAST, 0 },
1124 ICE_DECLARE_PKT_TEMPLATE(pfcp_session_ipv4) = {
1125 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1126 0x00, 0x00, 0x00, 0x00,
1127 0x00, 0x00, 0x00, 0x00,
1129 0x08, 0x00, /* ICE_ETYPE_OL 12 */
1131 0x45, 0x00, 0x00, 0x2c, /* ICE_IPV4_OFOS 14 */
1132 0x00, 0x01, 0x00, 0x00,
1133 0x00, 0x11, 0x00, 0x00,
1134 0x00, 0x00, 0x00, 0x00,
1135 0x00, 0x00, 0x00, 0x00,
1137 0x00, 0x00, 0x22, 0x65, /* ICE_UDP_ILOS 34 */
1138 0x00, 0x18, 0x00, 0x00,
1140 0x21, 0x01, 0x00, 0x0c, /* ICE_PFCP 42 */
1141 0x00, 0x00, 0x00, 0x00,
1142 0x00, 0x00, 0x00, 0x00,
1143 0x00, 0x00, 0x00, 0x00,
1145 0x00, 0x00, /* 2 bytes for 4 byte alignment */
1148 ICE_DECLARE_PKT_OFFSETS(pfcp_session_ipv6) = {
1149 { ICE_MAC_OFOS, 0 },
1150 { ICE_ETYPE_OL, 12 },
1151 { ICE_IPV6_OFOS, 14 },
1152 { ICE_UDP_ILOS, 54 },
1154 { ICE_PROTOCOL_LAST, 0 },
1157 ICE_DECLARE_PKT_TEMPLATE(pfcp_session_ipv6) = {
1158 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1159 0x00, 0x00, 0x00, 0x00,
1160 0x00, 0x00, 0x00, 0x00,
1162 0x86, 0xdd, /* ICE_ETYPE_OL 12 */
1164 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */
1165 0x00, 0x10, 0x11, 0x00, /* Next header UDP */
1166 0x00, 0x00, 0x00, 0x00,
1167 0x00, 0x00, 0x00, 0x00,
1168 0x00, 0x00, 0x00, 0x00,
1169 0x00, 0x00, 0x00, 0x00,
1170 0x00, 0x00, 0x00, 0x00,
1171 0x00, 0x00, 0x00, 0x00,
1172 0x00, 0x00, 0x00, 0x00,
1173 0x00, 0x00, 0x00, 0x00,
1175 0x00, 0x00, 0x22, 0x65, /* ICE_UDP_ILOS 54 */
1176 0x00, 0x18, 0x00, 0x00,
1178 0x21, 0x01, 0x00, 0x0c, /* ICE_PFCP 62 */
1179 0x00, 0x00, 0x00, 0x00,
1180 0x00, 0x00, 0x00, 0x00,
1181 0x00, 0x00, 0x00, 0x00,
1183 0x00, 0x00, /* 2 bytes for 4 byte alignment */
1186 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_tcp) = {
1187 { ICE_MAC_OFOS, 0 },
1188 { ICE_ETYPE_OL, 12 },
1190 { ICE_IPV4_OFOS, 22 },
1192 { ICE_PROTOCOL_LAST, 0 },
1195 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_tcp) = {
1196 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1197 0x00, 0x00, 0x00, 0x00,
1198 0x00, 0x00, 0x00, 0x00,
1200 0x88, 0x64, /* ICE_ETYPE_OL 12 */
1202 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1205 0x00, 0x21, /* PPP Link Layer 20 */
1207 0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 22 */
1208 0x00, 0x01, 0x00, 0x00,
1209 0x00, 0x06, 0x00, 0x00,
1210 0x00, 0x00, 0x00, 0x00,
1211 0x00, 0x00, 0x00, 0x00,
1213 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 42 */
1214 0x00, 0x00, 0x00, 0x00,
1215 0x00, 0x00, 0x00, 0x00,
1216 0x50, 0x00, 0x00, 0x00,
1217 0x00, 0x00, 0x00, 0x00,
1219 0x00, 0x00, /* 2 bytes for 4 bytes alignment */
1222 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_udp) = {
1223 { ICE_MAC_OFOS, 0 },
1224 { ICE_ETYPE_OL, 12 },
1226 { ICE_IPV4_OFOS, 22 },
1227 { ICE_UDP_ILOS, 42 },
1228 { ICE_PROTOCOL_LAST, 0 },
1231 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_udp) = {
1232 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1233 0x00, 0x00, 0x00, 0x00,
1234 0x00, 0x00, 0x00, 0x00,
1236 0x88, 0x64, /* ICE_ETYPE_OL 12 */
1238 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1241 0x00, 0x21, /* PPP Link Layer 20 */
1243 0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 22 */
1244 0x00, 0x01, 0x00, 0x00,
1245 0x00, 0x11, 0x00, 0x00,
1246 0x00, 0x00, 0x00, 0x00,
1247 0x00, 0x00, 0x00, 0x00,
1249 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 42 */
1250 0x00, 0x08, 0x00, 0x00,
1252 0x00, 0x00, /* 2 bytes for 4 bytes alignment */
1255 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_tcp) = {
1256 { ICE_MAC_OFOS, 0 },
1257 { ICE_ETYPE_OL, 12 },
1259 { ICE_IPV6_OFOS, 22 },
1261 { ICE_PROTOCOL_LAST, 0 },
1264 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_tcp) = {
1265 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1266 0x00, 0x00, 0x00, 0x00,
1267 0x00, 0x00, 0x00, 0x00,
1269 0x88, 0x64, /* ICE_ETYPE_OL 12 */
1271 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1274 0x00, 0x57, /* PPP Link Layer 20 */
1276 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1277 0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
1278 0x00, 0x00, 0x00, 0x00,
1279 0x00, 0x00, 0x00, 0x00,
1280 0x00, 0x00, 0x00, 0x00,
1281 0x00, 0x00, 0x00, 0x00,
1282 0x00, 0x00, 0x00, 0x00,
1283 0x00, 0x00, 0x00, 0x00,
1284 0x00, 0x00, 0x00, 0x00,
1285 0x00, 0x00, 0x00, 0x00,
1287 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 62 */
1288 0x00, 0x00, 0x00, 0x00,
1289 0x00, 0x00, 0x00, 0x00,
1290 0x50, 0x00, 0x00, 0x00,
1291 0x00, 0x00, 0x00, 0x00,
1293 0x00, 0x00, /* 2 bytes for 4 bytes alignment */
1296 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_udp) = {
1297 { ICE_MAC_OFOS, 0 },
1298 { ICE_ETYPE_OL, 12 },
1300 { ICE_IPV6_OFOS, 22 },
1301 { ICE_UDP_ILOS, 62 },
1302 { ICE_PROTOCOL_LAST, 0 },
1305 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_udp) = {
1306 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1307 0x00, 0x00, 0x00, 0x00,
1308 0x00, 0x00, 0x00, 0x00,
1310 0x88, 0x64, /* ICE_ETYPE_OL 12 */
1312 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1315 0x00, 0x57, /* PPP Link Layer 20 */
1317 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1318 0x00, 0x08, 0x11, 0x00, /* Next header UDP*/
1319 0x00, 0x00, 0x00, 0x00,
1320 0x00, 0x00, 0x00, 0x00,
1321 0x00, 0x00, 0x00, 0x00,
1322 0x00, 0x00, 0x00, 0x00,
1323 0x00, 0x00, 0x00, 0x00,
1324 0x00, 0x00, 0x00, 0x00,
1325 0x00, 0x00, 0x00, 0x00,
1326 0x00, 0x00, 0x00, 0x00,
1328 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 62 */
1329 0x00, 0x08, 0x00, 0x00,
1331 0x00, 0x00, /* 2 bytes for 4 bytes alignment */
1334 ICE_DECLARE_PKT_OFFSETS(ipv4_l2tpv3) = {
1335 { ICE_MAC_OFOS, 0 },
1336 { ICE_ETYPE_OL, 12 },
1337 { ICE_IPV4_OFOS, 14 },
1339 { ICE_PROTOCOL_LAST, 0 },
1342 ICE_DECLARE_PKT_TEMPLATE(ipv4_l2tpv3) = {
1343 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1344 0x00, 0x00, 0x00, 0x00,
1345 0x00, 0x00, 0x00, 0x00,
1347 0x08, 0x00, /* ICE_ETYPE_OL 12 */
1349 0x45, 0x00, 0x00, 0x20, /* ICE_IPV4_IL 14 */
1350 0x00, 0x00, 0x40, 0x00,
1351 0x40, 0x73, 0x00, 0x00,
1352 0x00, 0x00, 0x00, 0x00,
1353 0x00, 0x00, 0x00, 0x00,
1355 0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 34 */
1356 0x00, 0x00, 0x00, 0x00,
1357 0x00, 0x00, 0x00, 0x00,
1358 0x00, 0x00, /* 2 bytes for 4 bytes alignment */
1361 ICE_DECLARE_PKT_OFFSETS(ipv6_l2tpv3) = {
1362 { ICE_MAC_OFOS, 0 },
1363 { ICE_ETYPE_OL, 12 },
1364 { ICE_IPV6_OFOS, 14 },
1366 { ICE_PROTOCOL_LAST, 0 },
1369 ICE_DECLARE_PKT_TEMPLATE(ipv6_l2tpv3) = {
1370 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1371 0x00, 0x00, 0x00, 0x00,
1372 0x00, 0x00, 0x00, 0x00,
1374 0x86, 0xDD, /* ICE_ETYPE_OL 12 */
1376 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 14 */
1377 0x00, 0x0c, 0x73, 0x40,
1378 0x00, 0x00, 0x00, 0x00,
1379 0x00, 0x00, 0x00, 0x00,
1380 0x00, 0x00, 0x00, 0x00,
1381 0x00, 0x00, 0x00, 0x00,
1382 0x00, 0x00, 0x00, 0x00,
1383 0x00, 0x00, 0x00, 0x00,
1384 0x00, 0x00, 0x00, 0x00,
1385 0x00, 0x00, 0x00, 0x00,
1387 0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 54 */
1388 0x00, 0x00, 0x00, 0x00,
1389 0x00, 0x00, 0x00, 0x00,
1390 0x00, 0x00, /* 2 bytes for 4 bytes alignment */
1393 static const struct ice_dummy_pkt_profile ice_dummy_pkt_profiles[] = {
1394 ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPU | ICE_PKT_OUTER_IPV6 |
1396 ICE_PKT_PROFILE(ipv6_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1397 ICE_PKT_OUTER_IPV6 |
1398 ICE_PKT_INNER_IPV6 |
1400 ICE_PKT_PROFILE(ipv6_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1401 ICE_PKT_OUTER_IPV6 |
1402 ICE_PKT_INNER_IPV6),
1403 ICE_PKT_PROFILE(ipv6_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1404 ICE_PKT_OUTER_IPV6 |
1406 ICE_PKT_PROFILE(ipv6_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU |
1407 ICE_PKT_OUTER_IPV6),
1408 ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPU | ICE_PKT_GTP_NOPAY),
1409 ICE_PKT_PROFILE(ipv4_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1410 ICE_PKT_INNER_IPV6 |
1412 ICE_PKT_PROFILE(ipv4_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1413 ICE_PKT_INNER_IPV6),
1414 ICE_PKT_PROFILE(ipv4_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1416 ICE_PKT_PROFILE(ipv4_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU),
1417 ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPC | ICE_PKT_OUTER_IPV6),
1418 ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPC),
1419 ICE_PKT_PROFILE(pfcp_session_ipv6, ICE_PKT_PFCP | ICE_PKT_OUTER_IPV6),
1420 ICE_PKT_PROFILE(pfcp_session_ipv4, ICE_PKT_PFCP),
1421 ICE_PKT_PROFILE(pppoe_ipv6_udp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6 |
1423 ICE_PKT_PROFILE(pppoe_ipv6_tcp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6),
1424 ICE_PKT_PROFILE(pppoe_ipv4_udp, ICE_PKT_PPPOE | ICE_PKT_INNER_UDP),
1425 ICE_PKT_PROFILE(pppoe_ipv4_tcp, ICE_PKT_PPPOE),
1426 ICE_PKT_PROFILE(gre_ipv6_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6 |
1428 ICE_PKT_PROFILE(gre_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_TCP),
1429 ICE_PKT_PROFILE(gre_ipv6_udp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6),
1430 ICE_PKT_PROFILE(gre_udp, ICE_PKT_TUN_NVGRE),
1431 ICE_PKT_PROFILE(udp_tun_ipv6_tcp, ICE_PKT_TUN_UDP |
1432 ICE_PKT_INNER_IPV6 |
1434 ICE_PKT_PROFILE(ipv6_l2tpv3, ICE_PKT_L2TPV3 | ICE_PKT_OUTER_IPV6),
1435 ICE_PKT_PROFILE(ipv4_l2tpv3, ICE_PKT_L2TPV3),
1436 ICE_PKT_PROFILE(udp_tun_tcp, ICE_PKT_TUN_UDP | ICE_PKT_INNER_TCP),
1437 ICE_PKT_PROFILE(udp_tun_ipv6_udp, ICE_PKT_TUN_UDP |
1438 ICE_PKT_INNER_IPV6),
1439 ICE_PKT_PROFILE(udp_tun_udp, ICE_PKT_TUN_UDP),
1440 ICE_PKT_PROFILE(udp_ipv6, ICE_PKT_OUTER_IPV6 | ICE_PKT_INNER_UDP),
1441 ICE_PKT_PROFILE(udp, ICE_PKT_INNER_UDP),
1442 ICE_PKT_PROFILE(tcp_ipv6, ICE_PKT_OUTER_IPV6),
1443 ICE_PKT_PROFILE(tcp, 0),
1446 /* this is a recipe to profile association bitmap */
1447 static DECLARE_BITMAP(recipe_to_profile[ICE_MAX_NUM_RECIPES],
1448 ICE_MAX_NUM_PROFILES);
1450 /* this is a profile to recipe association bitmap */
1451 static DECLARE_BITMAP(profile_to_recipe[ICE_MAX_NUM_PROFILES],
1452 ICE_MAX_NUM_RECIPES);
1455 * ice_init_def_sw_recp - initialize the recipe book keeping tables
1456 * @hw: pointer to the HW struct
1458 * Allocate memory for the entire recipe table and initialize the structures/
1459 * entries corresponding to basic recipes.
1461 int ice_init_def_sw_recp(struct ice_hw *hw)
1463 struct ice_sw_recipe *recps;
1466 recps = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_NUM_RECIPES,
1467 sizeof(*recps), GFP_KERNEL);
1471 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
1472 recps[i].root_rid = i;
1473 INIT_LIST_HEAD(&recps[i].filt_rules);
1474 INIT_LIST_HEAD(&recps[i].filt_replay_rules);
1475 mutex_init(&recps[i].filt_rule_lock);
1478 hw->switch_info->recp_list = recps;
1484 * ice_aq_get_sw_cfg - get switch configuration
1485 * @hw: pointer to the hardware structure
1486 * @buf: pointer to the result buffer
1487 * @buf_size: length of the buffer available for response
1488 * @req_desc: pointer to requested descriptor
1489 * @num_elems: pointer to number of elements
1490 * @cd: pointer to command details structure or NULL
1492 * Get switch configuration (0x0200) to be placed in buf.
1493 * This admin command returns information such as initial VSI/port number
1494 * and switch ID it belongs to.
1496 * NOTE: *req_desc is both an input/output parameter.
1497 * The caller of this function first calls this function with *request_desc set
1498 * to 0. If the response from f/w has *req_desc set to 0, all the switch
1499 * configuration information has been returned; if non-zero (meaning not all
1500 * the information was returned), the caller should call this function again
1501 * with *req_desc set to the previous value returned by f/w to get the
1502 * next block of switch configuration information.
1504 * *num_elems is output only parameter. This reflects the number of elements
1505 * in response buffer. The caller of this function to use *num_elems while
1506 * parsing the response buffer.
1509 ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp_elem *buf,
1510 u16 buf_size, u16 *req_desc, u16 *num_elems,
1511 struct ice_sq_cd *cd)
1513 struct ice_aqc_get_sw_cfg *cmd;
1514 struct ice_aq_desc desc;
1517 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg);
1518 cmd = &desc.params.get_sw_conf;
1519 cmd->element = cpu_to_le16(*req_desc);
1521 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1523 *req_desc = le16_to_cpu(cmd->element);
1524 *num_elems = le16_to_cpu(cmd->num_elems);
1532 * @hw: pointer to the HW struct
1533 * @vsi_ctx: pointer to a VSI context struct
1534 * @cd: pointer to command details structure or NULL
1536 * Add a VSI context to the hardware (0x0210)
1539 ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1540 struct ice_sq_cd *cd)
1542 struct ice_aqc_add_update_free_vsi_resp *res;
1543 struct ice_aqc_add_get_update_free_vsi *cmd;
1544 struct ice_aq_desc desc;
1547 cmd = &desc.params.vsi_cmd;
1548 res = &desc.params.add_update_free_vsi_res;
1550 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi);
1552 if (!vsi_ctx->alloc_from_pool)
1553 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num |
1554 ICE_AQ_VSI_IS_VALID);
1555 cmd->vf_id = vsi_ctx->vf_num;
1557 cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags);
1559 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1561 status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1562 sizeof(vsi_ctx->info), cd);
1565 vsi_ctx->vsi_num = le16_to_cpu(res->vsi_num) & ICE_AQ_VSI_NUM_M;
1566 vsi_ctx->vsis_allocd = le16_to_cpu(res->vsi_used);
1567 vsi_ctx->vsis_unallocated = le16_to_cpu(res->vsi_free);
1575 * @hw: pointer to the HW struct
1576 * @vsi_ctx: pointer to a VSI context struct
1577 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1578 * @cd: pointer to command details structure or NULL
1580 * Free VSI context info from hardware (0x0213)
1583 ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1584 bool keep_vsi_alloc, struct ice_sq_cd *cd)
1586 struct ice_aqc_add_update_free_vsi_resp *resp;
1587 struct ice_aqc_add_get_update_free_vsi *cmd;
1588 struct ice_aq_desc desc;
1591 cmd = &desc.params.vsi_cmd;
1592 resp = &desc.params.add_update_free_vsi_res;
1594 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi);
1596 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1598 cmd->cmd_flags = cpu_to_le16(ICE_AQ_VSI_KEEP_ALLOC);
1600 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1602 vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1603 vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1611 * @hw: pointer to the HW struct
1612 * @vsi_ctx: pointer to a VSI context struct
1613 * @cd: pointer to command details structure or NULL
1615 * Update VSI context in the hardware (0x0211)
1618 ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1619 struct ice_sq_cd *cd)
1621 struct ice_aqc_add_update_free_vsi_resp *resp;
1622 struct ice_aqc_add_get_update_free_vsi *cmd;
1623 struct ice_aq_desc desc;
1626 cmd = &desc.params.vsi_cmd;
1627 resp = &desc.params.add_update_free_vsi_res;
1629 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi);
1631 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1633 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1635 status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1636 sizeof(vsi_ctx->info), cd);
1639 vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1640 vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1647 * ice_is_vsi_valid - check whether the VSI is valid or not
1648 * @hw: pointer to the HW struct
1649 * @vsi_handle: VSI handle
1651 * check whether the VSI is valid or not
1653 bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle)
1655 return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle];
1659 * ice_get_hw_vsi_num - return the HW VSI number
1660 * @hw: pointer to the HW struct
1661 * @vsi_handle: VSI handle
1663 * return the HW VSI number
1664 * Caution: call this function only if VSI is valid (ice_is_vsi_valid)
1666 u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle)
1668 return hw->vsi_ctx[vsi_handle]->vsi_num;
1672 * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle
1673 * @hw: pointer to the HW struct
1674 * @vsi_handle: VSI handle
1676 * return the VSI context entry for a given VSI handle
1678 struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1680 return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle];
1684 * ice_save_vsi_ctx - save the VSI context for a given VSI handle
1685 * @hw: pointer to the HW struct
1686 * @vsi_handle: VSI handle
1687 * @vsi: VSI context pointer
1689 * save the VSI context entry for a given VSI handle
1692 ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi)
1694 hw->vsi_ctx[vsi_handle] = vsi;
1698 * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs
1699 * @hw: pointer to the HW struct
1700 * @vsi_handle: VSI handle
1702 static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle)
1704 struct ice_vsi_ctx *vsi = ice_get_vsi_ctx(hw, vsi_handle);
1709 ice_for_each_traffic_class(i) {
1710 devm_kfree(ice_hw_to_dev(hw), vsi->lan_q_ctx[i]);
1711 vsi->lan_q_ctx[i] = NULL;
1712 devm_kfree(ice_hw_to_dev(hw), vsi->rdma_q_ctx[i]);
1713 vsi->rdma_q_ctx[i] = NULL;
1718 * ice_clear_vsi_ctx - clear the VSI context entry
1719 * @hw: pointer to the HW struct
1720 * @vsi_handle: VSI handle
1722 * clear the VSI context entry
1724 static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1726 struct ice_vsi_ctx *vsi;
1728 vsi = ice_get_vsi_ctx(hw, vsi_handle);
1730 ice_clear_vsi_q_ctx(hw, vsi_handle);
1731 devm_kfree(ice_hw_to_dev(hw), vsi);
1732 hw->vsi_ctx[vsi_handle] = NULL;
1737 * ice_clear_all_vsi_ctx - clear all the VSI context entries
1738 * @hw: pointer to the HW struct
1740 void ice_clear_all_vsi_ctx(struct ice_hw *hw)
1744 for (i = 0; i < ICE_MAX_VSI; i++)
1745 ice_clear_vsi_ctx(hw, i);
1749 * ice_add_vsi - add VSI context to the hardware and VSI handle list
1750 * @hw: pointer to the HW struct
1751 * @vsi_handle: unique VSI handle provided by drivers
1752 * @vsi_ctx: pointer to a VSI context struct
1753 * @cd: pointer to command details structure or NULL
1755 * Add a VSI context to the hardware also add it into the VSI handle list.
1756 * If this function gets called after reset for existing VSIs then update
1757 * with the new HW VSI number in the corresponding VSI handle list entry.
1760 ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1761 struct ice_sq_cd *cd)
1763 struct ice_vsi_ctx *tmp_vsi_ctx;
1766 if (vsi_handle >= ICE_MAX_VSI)
1768 status = ice_aq_add_vsi(hw, vsi_ctx, cd);
1771 tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1773 /* Create a new VSI context */
1774 tmp_vsi_ctx = devm_kzalloc(ice_hw_to_dev(hw),
1775 sizeof(*tmp_vsi_ctx), GFP_KERNEL);
1777 ice_aq_free_vsi(hw, vsi_ctx, false, cd);
1780 *tmp_vsi_ctx = *vsi_ctx;
1781 ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx);
1783 /* update with new HW VSI num */
1784 tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num;
1791 * ice_free_vsi- free VSI context from hardware and VSI handle list
1792 * @hw: pointer to the HW struct
1793 * @vsi_handle: unique VSI handle
1794 * @vsi_ctx: pointer to a VSI context struct
1795 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1796 * @cd: pointer to command details structure or NULL
1798 * Free VSI context info from hardware as well as from VSI handle list
1801 ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1802 bool keep_vsi_alloc, struct ice_sq_cd *cd)
1806 if (!ice_is_vsi_valid(hw, vsi_handle))
1808 vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1809 status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd);
1811 ice_clear_vsi_ctx(hw, vsi_handle);
1817 * @hw: pointer to the HW struct
1818 * @vsi_handle: unique VSI handle
1819 * @vsi_ctx: pointer to a VSI context struct
1820 * @cd: pointer to command details structure or NULL
1822 * Update VSI context in the hardware
1825 ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1826 struct ice_sq_cd *cd)
1828 if (!ice_is_vsi_valid(hw, vsi_handle))
1830 vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1831 return ice_aq_update_vsi(hw, vsi_ctx, cd);
1835 * ice_cfg_rdma_fltr - enable/disable RDMA filtering on VSI
1836 * @hw: pointer to HW struct
1837 * @vsi_handle: VSI SW index
1838 * @enable: boolean for enable/disable
1841 ice_cfg_rdma_fltr(struct ice_hw *hw, u16 vsi_handle, bool enable)
1843 struct ice_vsi_ctx *ctx, *cached_ctx;
1846 cached_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1850 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1854 ctx->info.q_opt_rss = cached_ctx->info.q_opt_rss;
1855 ctx->info.q_opt_tc = cached_ctx->info.q_opt_tc;
1856 ctx->info.q_opt_flags = cached_ctx->info.q_opt_flags;
1858 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1861 ctx->info.q_opt_flags |= ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1863 ctx->info.q_opt_flags &= ~ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1865 status = ice_update_vsi(hw, vsi_handle, ctx, NULL);
1867 cached_ctx->info.q_opt_flags = ctx->info.q_opt_flags;
1868 cached_ctx->info.valid_sections |= ctx->info.valid_sections;
1876 * ice_aq_alloc_free_vsi_list
1877 * @hw: pointer to the HW struct
1878 * @vsi_list_id: VSI list ID returned or used for lookup
1879 * @lkup_type: switch rule filter lookup type
1880 * @opc: switch rules population command type - pass in the command opcode
1882 * allocates or free a VSI list resource
1885 ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id,
1886 enum ice_sw_lkup_type lkup_type,
1887 enum ice_adminq_opc opc)
1889 DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1);
1890 u16 buf_len = __struct_size(sw_buf);
1891 struct ice_aqc_res_elem *vsi_ele;
1894 sw_buf->num_elems = cpu_to_le16(1);
1896 if (lkup_type == ICE_SW_LKUP_MAC ||
1897 lkup_type == ICE_SW_LKUP_MAC_VLAN ||
1898 lkup_type == ICE_SW_LKUP_ETHERTYPE ||
1899 lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
1900 lkup_type == ICE_SW_LKUP_PROMISC ||
1901 lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
1902 lkup_type == ICE_SW_LKUP_DFLT ||
1903 lkup_type == ICE_SW_LKUP_LAST) {
1904 sw_buf->res_type = cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_REP);
1905 } else if (lkup_type == ICE_SW_LKUP_VLAN) {
1906 if (opc == ice_aqc_opc_alloc_res)
1908 cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE |
1909 ICE_AQC_RES_TYPE_FLAG_SHARED);
1912 cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE);
1917 if (opc == ice_aqc_opc_free_res)
1918 sw_buf->elem[0].e.sw_resp = cpu_to_le16(*vsi_list_id);
1920 status = ice_aq_alloc_free_res(hw, sw_buf, buf_len, opc);
1924 if (opc == ice_aqc_opc_alloc_res) {
1925 vsi_ele = &sw_buf->elem[0];
1926 *vsi_list_id = le16_to_cpu(vsi_ele->e.sw_resp);
1933 * ice_aq_sw_rules - add/update/remove switch rules
1934 * @hw: pointer to the HW struct
1935 * @rule_list: pointer to switch rule population list
1936 * @rule_list_sz: total size of the rule list in bytes
1937 * @num_rules: number of switch rules in the rule_list
1938 * @opc: switch rules population command type - pass in the command opcode
1939 * @cd: pointer to command details structure or NULL
1941 * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware
1944 ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz,
1945 u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1947 struct ice_aq_desc desc;
1950 if (opc != ice_aqc_opc_add_sw_rules &&
1951 opc != ice_aqc_opc_update_sw_rules &&
1952 opc != ice_aqc_opc_remove_sw_rules)
1955 ice_fill_dflt_direct_cmd_desc(&desc, opc);
1957 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1958 desc.params.sw_rules.num_rules_fltr_entry_index =
1959 cpu_to_le16(num_rules);
1960 status = ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd);
1961 if (opc != ice_aqc_opc_add_sw_rules &&
1962 hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT)
1966 if (opc == ice_aqc_opc_add_sw_rules)
1967 hw->switch_info->rule_cnt += num_rules;
1968 else if (opc == ice_aqc_opc_remove_sw_rules)
1969 hw->switch_info->rule_cnt -= num_rules;
1972 trace_ice_aq_sw_rules(hw->switch_info);
1978 * ice_aq_add_recipe - add switch recipe
1979 * @hw: pointer to the HW struct
1980 * @s_recipe_list: pointer to switch rule population list
1981 * @num_recipes: number of switch recipes in the list
1982 * @cd: pointer to command details structure or NULL
1987 ice_aq_add_recipe(struct ice_hw *hw,
1988 struct ice_aqc_recipe_data_elem *s_recipe_list,
1989 u16 num_recipes, struct ice_sq_cd *cd)
1991 struct ice_aqc_add_get_recipe *cmd;
1992 struct ice_aq_desc desc;
1995 cmd = &desc.params.add_get_recipe;
1996 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_recipe);
1998 cmd->num_sub_recipes = cpu_to_le16(num_recipes);
1999 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2001 buf_size = num_recipes * sizeof(*s_recipe_list);
2003 return ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
2007 * ice_aq_get_recipe - get switch recipe
2008 * @hw: pointer to the HW struct
2009 * @s_recipe_list: pointer to switch rule population list
2010 * @num_recipes: pointer to the number of recipes (input and output)
2011 * @recipe_root: root recipe number of recipe(s) to retrieve
2012 * @cd: pointer to command details structure or NULL
2016 * On input, *num_recipes should equal the number of entries in s_recipe_list.
2017 * On output, *num_recipes will equal the number of entries returned in
2020 * The caller must supply enough space in s_recipe_list to hold all possible
2021 * recipes and *num_recipes must equal ICE_MAX_NUM_RECIPES.
2024 ice_aq_get_recipe(struct ice_hw *hw,
2025 struct ice_aqc_recipe_data_elem *s_recipe_list,
2026 u16 *num_recipes, u16 recipe_root, struct ice_sq_cd *cd)
2028 struct ice_aqc_add_get_recipe *cmd;
2029 struct ice_aq_desc desc;
2033 if (*num_recipes != ICE_MAX_NUM_RECIPES)
2036 cmd = &desc.params.add_get_recipe;
2037 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe);
2039 cmd->return_index = cpu_to_le16(recipe_root);
2040 cmd->num_sub_recipes = 0;
2042 buf_size = *num_recipes * sizeof(*s_recipe_list);
2044 status = ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
2045 *num_recipes = le16_to_cpu(cmd->num_sub_recipes);
2051 * ice_update_recipe_lkup_idx - update a default recipe based on the lkup_idx
2052 * @hw: pointer to the HW struct
2053 * @params: parameters used to update the default recipe
2055 * This function only supports updating default recipes and it only supports
2056 * updating a single recipe based on the lkup_idx at a time.
2058 * This is done as a read-modify-write operation. First, get the current recipe
2059 * contents based on the recipe's ID. Then modify the field vector index and
2060 * mask if it's valid at the lkup_idx. Finally, use the add recipe AQ to update
2061 * the pre-existing recipe with the modifications.
2064 ice_update_recipe_lkup_idx(struct ice_hw *hw,
2065 struct ice_update_recipe_lkup_idx_params *params)
2067 struct ice_aqc_recipe_data_elem *rcp_list;
2068 u16 num_recps = ICE_MAX_NUM_RECIPES;
2071 rcp_list = kcalloc(num_recps, sizeof(*rcp_list), GFP_KERNEL);
2075 /* read current recipe list from firmware */
2076 rcp_list->recipe_indx = params->rid;
2077 status = ice_aq_get_recipe(hw, rcp_list, &num_recps, params->rid, NULL);
2079 ice_debug(hw, ICE_DBG_SW, "Failed to get recipe %d, status %d\n",
2080 params->rid, status);
2084 /* only modify existing recipe's lkup_idx and mask if valid, while
2085 * leaving all other fields the same, then update the recipe firmware
2087 rcp_list->content.lkup_indx[params->lkup_idx] = params->fv_idx;
2088 if (params->mask_valid)
2089 rcp_list->content.mask[params->lkup_idx] =
2090 cpu_to_le16(params->mask);
2092 if (params->ignore_valid)
2093 rcp_list->content.lkup_indx[params->lkup_idx] |=
2094 ICE_AQ_RECIPE_LKUP_IGNORE;
2096 status = ice_aq_add_recipe(hw, &rcp_list[0], 1, NULL);
2098 ice_debug(hw, ICE_DBG_SW, "Failed to update recipe %d lkup_idx %d fv_idx %d mask %d mask_valid %s, status %d\n",
2099 params->rid, params->lkup_idx, params->fv_idx,
2100 params->mask, params->mask_valid ? "true" : "false",
2109 * ice_aq_map_recipe_to_profile - Map recipe to packet profile
2110 * @hw: pointer to the HW struct
2111 * @profile_id: package profile ID to associate the recipe with
2112 * @r_assoc: Recipe bitmap filled in and need to be returned as response
2113 * @cd: pointer to command details structure or NULL
2114 * Recipe to profile association (0x0291)
2117 ice_aq_map_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u64 r_assoc,
2118 struct ice_sq_cd *cd)
2120 struct ice_aqc_recipe_to_profile *cmd;
2121 struct ice_aq_desc desc;
2123 cmd = &desc.params.recipe_to_profile;
2124 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_recipe_to_profile);
2125 cmd->profile_id = cpu_to_le16(profile_id);
2126 /* Set the recipe ID bit in the bitmask to let the device know which
2127 * profile we are associating the recipe to
2129 cmd->recipe_assoc = cpu_to_le64(r_assoc);
2131 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2135 * ice_aq_get_recipe_to_profile - Map recipe to packet profile
2136 * @hw: pointer to the HW struct
2137 * @profile_id: package profile ID to associate the recipe with
2138 * @r_assoc: Recipe bitmap filled in and need to be returned as response
2139 * @cd: pointer to command details structure or NULL
2140 * Associate profile ID with given recipe (0x0293)
2143 ice_aq_get_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u64 *r_assoc,
2144 struct ice_sq_cd *cd)
2146 struct ice_aqc_recipe_to_profile *cmd;
2147 struct ice_aq_desc desc;
2150 cmd = &desc.params.recipe_to_profile;
2151 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe_to_profile);
2152 cmd->profile_id = cpu_to_le16(profile_id);
2154 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2156 *r_assoc = le64_to_cpu(cmd->recipe_assoc);
2162 * ice_init_chk_recipe_reuse_support - check if recipe reuse is supported
2163 * @hw: pointer to the hardware structure
2165 void ice_init_chk_recipe_reuse_support(struct ice_hw *hw)
2167 struct ice_nvm_info *nvm = &hw->flash.nvm;
2169 hw->recp_reuse = (nvm->major == 0x4 && nvm->minor >= 0x30) ||
2174 * ice_alloc_recipe - add recipe resource
2175 * @hw: pointer to the hardware structure
2176 * @rid: recipe ID returned as response to AQ call
2178 int ice_alloc_recipe(struct ice_hw *hw, u16 *rid)
2180 DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1);
2181 u16 buf_len = __struct_size(sw_buf);
2185 sw_buf->num_elems = cpu_to_le16(1);
2186 res_type = FIELD_PREP(ICE_AQC_RES_TYPE_M, ICE_AQC_RES_TYPE_RECIPE);
2188 res_type |= ICE_AQC_RES_TYPE_FLAG_SUBSCRIBE_SHARED;
2190 res_type |= ICE_AQC_RES_TYPE_FLAG_SHARED;
2191 sw_buf->res_type = cpu_to_le16(res_type);
2192 status = ice_aq_alloc_free_res(hw, sw_buf, buf_len,
2193 ice_aqc_opc_alloc_res);
2195 *rid = le16_to_cpu(sw_buf->elem[0].e.sw_resp);
2196 hw->switch_info->recp_cnt++;
2203 * ice_free_recipe_res - free recipe resource
2204 * @hw: pointer to the hardware structure
2205 * @rid: recipe ID to free
2207 * Return: 0 on success, and others on error
2209 static int ice_free_recipe_res(struct ice_hw *hw, u16 rid)
2213 status = ice_free_hw_res(hw, ICE_AQC_RES_TYPE_RECIPE, 1, &rid);
2215 hw->switch_info->recp_cnt--;
2221 * ice_release_recipe_res - disassociate and free recipe resource
2222 * @hw: pointer to the hardware structure
2223 * @recp: the recipe struct resource to unassociate and free
2225 * Return: 0 on success, and others on error
2227 static int ice_release_recipe_res(struct ice_hw *hw,
2228 struct ice_sw_recipe *recp)
2230 DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
2231 struct ice_switch_info *sw = hw->switch_info;
2236 for_each_set_bit(rid, recp->r_bitmap, ICE_MAX_NUM_RECIPES) {
2237 for_each_set_bit(prof, recipe_to_profile[rid],
2238 ICE_MAX_NUM_PROFILES) {
2239 status = ice_aq_get_recipe_to_profile(hw, prof,
2245 bitmap_from_arr64(r_bitmap, &recp_assoc,
2246 ICE_MAX_NUM_RECIPES);
2247 bitmap_andnot(r_bitmap, r_bitmap, recp->r_bitmap,
2248 ICE_MAX_NUM_RECIPES);
2249 bitmap_to_arr64(&recp_assoc, r_bitmap,
2250 ICE_MAX_NUM_RECIPES);
2251 ice_aq_map_recipe_to_profile(hw, prof,
2254 clear_bit(rid, profile_to_recipe[prof]);
2255 clear_bit(prof, recipe_to_profile[rid]);
2258 status = ice_free_recipe_res(hw, rid);
2262 sw->recp_list[rid].recp_created = false;
2263 sw->recp_list[rid].adv_rule = false;
2264 memset(&sw->recp_list[rid].lkup_exts, 0,
2265 sizeof(sw->recp_list[rid].lkup_exts));
2266 clear_bit(rid, recp->r_bitmap);
2273 * ice_get_recp_to_prof_map - updates recipe to profile mapping
2274 * @hw: pointer to hardware structure
2276 * This function is used to populate recipe_to_profile matrix where index to
2277 * this array is the recipe ID and the element is the mapping of which profiles
2278 * is this recipe mapped to.
2280 static void ice_get_recp_to_prof_map(struct ice_hw *hw)
2282 DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
2286 for (i = 0; i < hw->switch_info->max_used_prof_index + 1; i++) {
2289 bitmap_zero(profile_to_recipe[i], ICE_MAX_NUM_RECIPES);
2290 bitmap_zero(r_bitmap, ICE_MAX_NUM_RECIPES);
2291 if (ice_aq_get_recipe_to_profile(hw, i, &recp_assoc, NULL))
2293 bitmap_from_arr64(r_bitmap, &recp_assoc, ICE_MAX_NUM_RECIPES);
2294 bitmap_copy(profile_to_recipe[i], r_bitmap,
2295 ICE_MAX_NUM_RECIPES);
2296 for_each_set_bit(j, r_bitmap, ICE_MAX_NUM_RECIPES)
2297 set_bit(i, recipe_to_profile[j]);
2302 * ice_get_recp_frm_fw - update SW bookkeeping from FW recipe entries
2303 * @hw: pointer to hardware structure
2304 * @recps: struct that we need to populate
2305 * @rid: recipe ID that we are populating
2306 * @refresh_required: true if we should get recipe to profile mapping from FW
2307 * @is_add: flag of adding recipe
2309 * This function is used to populate all the necessary entries into our
2310 * bookkeeping so that we have a current list of all the recipes that are
2311 * programmed in the firmware.
2314 ice_get_recp_frm_fw(struct ice_hw *hw, struct ice_sw_recipe *recps, u8 rid,
2315 bool *refresh_required, bool is_add)
2317 DECLARE_BITMAP(result_bm, ICE_MAX_FV_WORDS);
2318 struct ice_aqc_recipe_data_elem *tmp;
2319 u16 num_recps = ICE_MAX_NUM_RECIPES;
2320 struct ice_prot_lkup_ext *lkup_exts;
2325 bitmap_zero(result_bm, ICE_MAX_FV_WORDS);
2327 /* we need a buffer big enough to accommodate all the recipes */
2328 tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL);
2332 tmp[0].recipe_indx = rid;
2333 status = ice_aq_get_recipe(hw, tmp, &num_recps, rid, NULL);
2334 /* non-zero status meaning recipe doesn't exist */
2338 /* Get recipe to profile map so that we can get the fv from lkups that
2339 * we read for a recipe from FW. Since we want to minimize the number of
2340 * times we make this FW call, just make one call and cache the copy
2341 * until a new recipe is added. This operation is only required the
2342 * first time to get the changes from FW. Then to search existing
2343 * entries we don't need to update the cache again until another recipe
2346 if (*refresh_required) {
2347 ice_get_recp_to_prof_map(hw);
2348 *refresh_required = false;
2351 /* Start populating all the entries for recps[rid] based on lkups from
2352 * firmware. Note that we are only creating the root recipe in our
2355 lkup_exts = &recps[rid].lkup_exts;
2357 for (sub_recps = 0; sub_recps < num_recps; sub_recps++) {
2358 struct ice_aqc_recipe_data_elem root_bufs = tmp[sub_recps];
2359 u8 i, prof, idx, prot = 0;
2363 idx = root_bufs.recipe_indx;
2364 is_root = root_bufs.content.rid & ICE_AQ_RECIPE_ID_IS_ROOT;
2366 /* Mark all result indices in this chain */
2367 if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
2368 set_bit(root_bufs.content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN,
2371 /* get the first profile that is associated with rid */
2372 prof = find_first_bit(recipe_to_profile[idx],
2373 ICE_MAX_NUM_PROFILES);
2374 for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) {
2375 u8 lkup_indx = root_bufs.content.lkup_indx[i];
2376 u16 lkup_mask = le16_to_cpu(root_bufs.content.mask[i]);
2378 /* If the recipe is a chained recipe then all its
2379 * child recipe's result will have a result index.
2380 * To fill fv_words we should not use those result
2381 * index, we only need the protocol ids and offsets.
2382 * We will skip all the fv_idx which stores result
2383 * index in them. We also need to skip any fv_idx which
2384 * has ICE_AQ_RECIPE_LKUP_IGNORE or 0 since it isn't a
2385 * valid offset value.
2388 (lkup_indx & ICE_AQ_RECIPE_LKUP_IGNORE) ||
2390 hw->switch_info->prof_res_bm[prof]))
2393 ice_find_prot_off(hw, ICE_BLK_SW, prof, lkup_indx,
2395 lkup_exts->fv_words[fv_word_idx].prot_id = prot;
2396 lkup_exts->fv_words[fv_word_idx].off = off;
2397 lkup_exts->field_mask[fv_word_idx] = lkup_mask;
2401 /* Propagate some data to the recipe database */
2402 recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2403 recps[idx].need_pass_l2 = !!(root_bufs.content.act_ctrl &
2404 ICE_AQ_RECIPE_ACT_NEED_PASS_L2);
2405 recps[idx].allow_pass_l2 = !!(root_bufs.content.act_ctrl &
2406 ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2);
2407 bitmap_zero(recps[idx].res_idxs, ICE_MAX_FV_WORDS);
2408 if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN) {
2409 set_bit(root_bufs.content.result_indx &
2410 ~ICE_AQ_RECIPE_RESULT_EN, recps[idx].res_idxs);
2414 if (hw->recp_reuse && is_add)
2415 recps[idx].recp_created = true;
2420 /* Only do the following for root recipes entries */
2421 memcpy(recps[idx].r_bitmap, root_bufs.recipe_bitmap,
2422 sizeof(recps[idx].r_bitmap));
2423 recps[idx].root_rid = root_bufs.content.rid &
2424 ~ICE_AQ_RECIPE_ID_IS_ROOT;
2425 recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2428 /* Complete initialization of the root recipe entry */
2429 lkup_exts->n_val_words = fv_word_idx;
2431 /* Copy result indexes */
2432 bitmap_copy(recps[rid].res_idxs, result_bm, ICE_MAX_FV_WORDS);
2434 recps[rid].recp_created = true;
2441 /* ice_init_port_info - Initialize port_info with switch configuration data
2442 * @pi: pointer to port_info
2443 * @vsi_port_num: VSI number or port number
2444 * @type: Type of switch element (port or VSI)
2445 * @swid: switch ID of the switch the element is attached to
2446 * @pf_vf_num: PF or VF number
2447 * @is_vf: true if the element is a VF, false otherwise
2450 ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type,
2451 u16 swid, u16 pf_vf_num, bool is_vf)
2454 case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
2455 pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK);
2457 pi->pf_vf_num = pf_vf_num;
2461 ice_debug(pi->hw, ICE_DBG_SW, "incorrect VSI/port type received\n");
2466 /* ice_get_initial_sw_cfg - Get initial port and default VSI data
2467 * @hw: pointer to the hardware structure
2469 int ice_get_initial_sw_cfg(struct ice_hw *hw)
2471 struct ice_aqc_get_sw_cfg_resp_elem *rbuf;
2477 rbuf = kzalloc(ICE_SW_CFG_MAX_BUF_LEN, GFP_KERNEL);
2481 /* Multiple calls to ice_aq_get_sw_cfg may be required
2482 * to get all the switch configuration information. The need
2483 * for additional calls is indicated by ice_aq_get_sw_cfg
2484 * writing a non-zero value in req_desc
2487 struct ice_aqc_get_sw_cfg_resp_elem *ele;
2489 status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN,
2490 &req_desc, &num_elems, NULL);
2495 for (i = 0, ele = rbuf; i < num_elems; i++, ele++) {
2496 u16 pf_vf_num, swid, vsi_port_num;
2500 vsi_port_num = le16_to_cpu(ele->vsi_port_num) &
2501 ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M;
2503 pf_vf_num = le16_to_cpu(ele->pf_vf_num) &
2504 ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M;
2506 swid = le16_to_cpu(ele->swid);
2508 if (le16_to_cpu(ele->pf_vf_num) &
2509 ICE_AQC_GET_SW_CONF_RESP_IS_VF)
2512 res_type = (u8)(le16_to_cpu(ele->vsi_port_num) >>
2513 ICE_AQC_GET_SW_CONF_RESP_TYPE_S);
2515 if (res_type == ICE_AQC_GET_SW_CONF_RESP_VSI) {
2516 /* FW VSI is not needed. Just continue. */
2520 ice_init_port_info(hw->port_info, vsi_port_num,
2521 res_type, swid, pf_vf_num, is_vf);
2523 } while (req_desc && !status);
2530 * ice_fill_sw_info - Helper function to populate lb_en and lan_en
2531 * @hw: pointer to the hardware structure
2532 * @fi: filter info structure to fill/update
2534 * This helper function populates the lb_en and lan_en elements of the provided
2535 * ice_fltr_info struct using the switch's type and characteristics of the
2536 * switch rule being configured.
2538 static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi)
2542 if ((fi->flag & ICE_FLTR_TX) &&
2543 (fi->fltr_act == ICE_FWD_TO_VSI ||
2544 fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2545 fi->fltr_act == ICE_FWD_TO_Q ||
2546 fi->fltr_act == ICE_FWD_TO_QGRP)) {
2547 /* Setting LB for prune actions will result in replicated
2548 * packets to the internal switch that will be dropped.
2550 if (fi->lkup_type != ICE_SW_LKUP_VLAN)
2553 /* Set lan_en to TRUE if
2554 * 1. The switch is a VEB AND
2556 * 2.1 The lookup is a directional lookup like ethertype,
2557 * promiscuous, ethertype-MAC, promiscuous-VLAN
2558 * and default-port OR
2559 * 2.2 The lookup is VLAN, OR
2560 * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR
2561 * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC.
2565 * The switch is a VEPA.
2567 * In all other cases, the LAN enable has to be set to false.
2570 if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2571 fi->lkup_type == ICE_SW_LKUP_PROMISC ||
2572 fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2573 fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2574 fi->lkup_type == ICE_SW_LKUP_DFLT ||
2575 fi->lkup_type == ICE_SW_LKUP_VLAN ||
2576 (fi->lkup_type == ICE_SW_LKUP_MAC &&
2577 !is_unicast_ether_addr(fi->l_data.mac.mac_addr)) ||
2578 (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN &&
2579 !is_unicast_ether_addr(fi->l_data.mac.mac_addr)))
2586 if (fi->flag & ICE_FLTR_TX_ONLY)
2591 * ice_fill_eth_hdr - helper to copy dummy_eth_hdr into supplied buffer
2592 * @eth_hdr: pointer to buffer to populate
2594 void ice_fill_eth_hdr(u8 *eth_hdr)
2596 memcpy(eth_hdr, dummy_eth_header, DUMMY_ETH_HDR_LEN);
2600 * ice_fill_sw_rule - Helper function to fill switch rule structure
2601 * @hw: pointer to the hardware structure
2602 * @f_info: entry containing packet forwarding information
2603 * @s_rule: switch rule structure to be filled in based on mac_entry
2604 * @opc: switch rules population command type - pass in the command opcode
2607 ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info,
2608 struct ice_sw_rule_lkup_rx_tx *s_rule,
2609 enum ice_adminq_opc opc)
2611 u16 vlan_id = ICE_MAX_VLAN_ID + 1;
2612 u16 vlan_tpid = ETH_P_8021Q;
2620 if (opc == ice_aqc_opc_remove_sw_rules) {
2622 s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
2623 s_rule->hdr_len = 0;
2627 eth_hdr_sz = sizeof(dummy_eth_header);
2628 eth_hdr = s_rule->hdr_data;
2630 /* initialize the ether header with a dummy header */
2631 memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz);
2632 ice_fill_sw_info(hw, f_info);
2634 switch (f_info->fltr_act) {
2635 case ICE_FWD_TO_VSI:
2636 act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
2637 f_info->fwd_id.hw_vsi_id);
2638 if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2639 act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2640 ICE_SINGLE_ACT_VALID_BIT;
2642 case ICE_FWD_TO_VSI_LIST:
2643 act |= ICE_SINGLE_ACT_VSI_LIST;
2644 act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_LIST_ID_M,
2645 f_info->fwd_id.vsi_list_id);
2646 if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2647 act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2648 ICE_SINGLE_ACT_VALID_BIT;
2651 act |= ICE_SINGLE_ACT_TO_Q;
2652 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
2653 f_info->fwd_id.q_id);
2655 case ICE_DROP_PACKET:
2656 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
2657 ICE_SINGLE_ACT_VALID_BIT;
2659 case ICE_FWD_TO_QGRP:
2660 q_rgn = f_info->qgrp_size > 0 ?
2661 (u8)ilog2(f_info->qgrp_size) : 0;
2662 act |= ICE_SINGLE_ACT_TO_Q;
2663 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
2664 f_info->fwd_id.q_id);
2665 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_REGION_M, q_rgn);
2672 act |= ICE_SINGLE_ACT_LB_ENABLE;
2674 act |= ICE_SINGLE_ACT_LAN_ENABLE;
2676 switch (f_info->lkup_type) {
2677 case ICE_SW_LKUP_MAC:
2678 daddr = f_info->l_data.mac.mac_addr;
2680 case ICE_SW_LKUP_VLAN:
2681 vlan_id = f_info->l_data.vlan.vlan_id;
2682 if (f_info->l_data.vlan.tpid_valid)
2683 vlan_tpid = f_info->l_data.vlan.tpid;
2684 if (f_info->fltr_act == ICE_FWD_TO_VSI ||
2685 f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
2686 act |= ICE_SINGLE_ACT_PRUNE;
2687 act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS;
2690 case ICE_SW_LKUP_ETHERTYPE_MAC:
2691 daddr = f_info->l_data.ethertype_mac.mac_addr;
2693 case ICE_SW_LKUP_ETHERTYPE:
2694 off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2695 *off = cpu_to_be16(f_info->l_data.ethertype_mac.ethertype);
2697 case ICE_SW_LKUP_MAC_VLAN:
2698 daddr = f_info->l_data.mac_vlan.mac_addr;
2699 vlan_id = f_info->l_data.mac_vlan.vlan_id;
2701 case ICE_SW_LKUP_PROMISC_VLAN:
2702 vlan_id = f_info->l_data.mac_vlan.vlan_id;
2704 case ICE_SW_LKUP_PROMISC:
2705 daddr = f_info->l_data.mac_vlan.mac_addr;
2711 s_rule->hdr.type = (f_info->flag & ICE_FLTR_RX) ?
2712 cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX) :
2713 cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
2715 /* Recipe set depending on lookup type */
2716 s_rule->recipe_id = cpu_to_le16(f_info->lkup_type);
2717 s_rule->src = cpu_to_le16(f_info->src);
2718 s_rule->act = cpu_to_le32(act);
2721 ether_addr_copy(eth_hdr + ICE_ETH_DA_OFFSET, daddr);
2723 if (!(vlan_id > ICE_MAX_VLAN_ID)) {
2724 off = (__force __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET);
2725 *off = cpu_to_be16(vlan_id);
2726 off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2727 *off = cpu_to_be16(vlan_tpid);
2730 /* Create the switch rule with the final dummy Ethernet header */
2731 if (opc != ice_aqc_opc_update_sw_rules)
2732 s_rule->hdr_len = cpu_to_le16(eth_hdr_sz);
2736 * ice_add_marker_act
2737 * @hw: pointer to the hardware structure
2738 * @m_ent: the management entry for which sw marker needs to be added
2739 * @sw_marker: sw marker to tag the Rx descriptor with
2740 * @l_id: large action resource ID
2742 * Create a large action to hold software marker and update the switch rule
2743 * entry pointed by m_ent with newly created large action
2746 ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
2747 u16 sw_marker, u16 l_id)
2749 struct ice_sw_rule_lkup_rx_tx *rx_tx;
2750 struct ice_sw_rule_lg_act *lg_act;
2751 /* For software marker we need 3 large actions
2752 * 1. FWD action: FWD TO VSI or VSI LIST
2753 * 2. GENERIC VALUE action to hold the profile ID
2754 * 3. GENERIC VALUE action to hold the software marker ID
2756 const u16 num_lg_acts = 3;
2763 if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
2766 /* Create two back-to-back switch rules and submit them to the HW using
2767 * one memory buffer:
2771 lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(lg_act, num_lg_acts);
2772 rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(rx_tx);
2773 lg_act = devm_kzalloc(ice_hw_to_dev(hw), rules_size, GFP_KERNEL);
2777 rx_tx = (typeof(rx_tx))((u8 *)lg_act + lg_act_size);
2779 /* Fill in the first switch rule i.e. large action */
2780 lg_act->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LG_ACT);
2781 lg_act->index = cpu_to_le16(l_id);
2782 lg_act->size = cpu_to_le16(num_lg_acts);
2784 /* First action VSI forwarding or VSI list forwarding depending on how
2787 id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id :
2788 m_ent->fltr_info.fwd_id.hw_vsi_id;
2790 act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
2791 act |= FIELD_PREP(ICE_LG_ACT_VSI_LIST_ID_M, id);
2792 if (m_ent->vsi_count > 1)
2793 act |= ICE_LG_ACT_VSI_LIST;
2794 lg_act->act[0] = cpu_to_le32(act);
2796 /* Second action descriptor type */
2797 act = ICE_LG_ACT_GENERIC;
2799 act |= FIELD_PREP(ICE_LG_ACT_GENERIC_VALUE_M, 1);
2800 lg_act->act[1] = cpu_to_le32(act);
2802 act = FIELD_PREP(ICE_LG_ACT_GENERIC_OFFSET_M,
2803 ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX);
2805 /* Third action Marker value */
2806 act |= ICE_LG_ACT_GENERIC;
2807 act |= FIELD_PREP(ICE_LG_ACT_GENERIC_VALUE_M, sw_marker);
2809 lg_act->act[2] = cpu_to_le32(act);
2811 /* call the fill switch rule to fill the lookup Tx Rx structure */
2812 ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
2813 ice_aqc_opc_update_sw_rules);
2815 /* Update the action to point to the large action ID */
2816 act = ICE_SINGLE_ACT_PTR;
2817 act |= FIELD_PREP(ICE_SINGLE_ACT_PTR_VAL_M, l_id);
2818 rx_tx->act = cpu_to_le32(act);
2820 /* Use the filter rule ID of the previously created rule with single
2821 * act. Once the update happens, hardware will treat this as large
2824 rx_tx->index = cpu_to_le16(m_ent->fltr_info.fltr_rule_id);
2826 status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
2827 ice_aqc_opc_update_sw_rules, NULL);
2829 m_ent->lg_act_idx = l_id;
2830 m_ent->sw_marker_id = sw_marker;
2833 devm_kfree(ice_hw_to_dev(hw), lg_act);
2838 * ice_create_vsi_list_map
2839 * @hw: pointer to the hardware structure
2840 * @vsi_handle_arr: array of VSI handles to set in the VSI mapping
2841 * @num_vsi: number of VSI handles in the array
2842 * @vsi_list_id: VSI list ID generated as part of allocate resource
2844 * Helper function to create a new entry of VSI list ID to VSI mapping
2845 * using the given VSI list ID
2847 static struct ice_vsi_list_map_info *
2848 ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2851 struct ice_switch_info *sw = hw->switch_info;
2852 struct ice_vsi_list_map_info *v_map;
2855 v_map = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*v_map), GFP_KERNEL);
2859 v_map->vsi_list_id = vsi_list_id;
2861 for (i = 0; i < num_vsi; i++)
2862 set_bit(vsi_handle_arr[i], v_map->vsi_map);
2864 list_add(&v_map->list_entry, &sw->vsi_list_map_head);
2869 * ice_update_vsi_list_rule
2870 * @hw: pointer to the hardware structure
2871 * @vsi_handle_arr: array of VSI handles to form a VSI list
2872 * @num_vsi: number of VSI handles in the array
2873 * @vsi_list_id: VSI list ID generated as part of allocate resource
2874 * @remove: Boolean value to indicate if this is a remove action
2875 * @opc: switch rules population command type - pass in the command opcode
2876 * @lkup_type: lookup type of the filter
2878 * Call AQ command to add a new switch rule or update existing switch rule
2879 * using the given VSI list ID
2882 ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2883 u16 vsi_list_id, bool remove, enum ice_adminq_opc opc,
2884 enum ice_sw_lkup_type lkup_type)
2886 struct ice_sw_rule_vsi_list *s_rule;
2895 if (lkup_type == ICE_SW_LKUP_MAC ||
2896 lkup_type == ICE_SW_LKUP_MAC_VLAN ||
2897 lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2898 lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2899 lkup_type == ICE_SW_LKUP_PROMISC ||
2900 lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2901 lkup_type == ICE_SW_LKUP_DFLT ||
2902 lkup_type == ICE_SW_LKUP_LAST)
2903 rule_type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR :
2904 ICE_AQC_SW_RULES_T_VSI_LIST_SET;
2905 else if (lkup_type == ICE_SW_LKUP_VLAN)
2906 rule_type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR :
2907 ICE_AQC_SW_RULES_T_PRUNE_LIST_SET;
2911 s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, num_vsi);
2912 s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
2915 for (i = 0; i < num_vsi; i++) {
2916 if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) {
2920 /* AQ call requires hw_vsi_id(s) */
2922 cpu_to_le16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i]));
2925 s_rule->hdr.type = cpu_to_le16(rule_type);
2926 s_rule->number_vsi = cpu_to_le16(num_vsi);
2927 s_rule->index = cpu_to_le16(vsi_list_id);
2929 status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL);
2932 devm_kfree(ice_hw_to_dev(hw), s_rule);
2937 * ice_create_vsi_list_rule - Creates and populates a VSI list rule
2938 * @hw: pointer to the HW struct
2939 * @vsi_handle_arr: array of VSI handles to form a VSI list
2940 * @num_vsi: number of VSI handles in the array
2941 * @vsi_list_id: stores the ID of the VSI list to be created
2942 * @lkup_type: switch rule filter's lookup type
2945 ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2946 u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type)
2950 status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type,
2951 ice_aqc_opc_alloc_res);
2955 /* Update the newly created VSI list to include the specified VSIs */
2956 return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi,
2957 *vsi_list_id, false,
2958 ice_aqc_opc_add_sw_rules, lkup_type);
2962 * ice_create_pkt_fwd_rule
2963 * @hw: pointer to the hardware structure
2964 * @f_entry: entry containing packet forwarding information
2966 * Create switch rule with given filter information and add an entry
2967 * to the corresponding filter management list to track this switch rule
2971 ice_create_pkt_fwd_rule(struct ice_hw *hw,
2972 struct ice_fltr_list_entry *f_entry)
2974 struct ice_fltr_mgmt_list_entry *fm_entry;
2975 struct ice_sw_rule_lkup_rx_tx *s_rule;
2976 enum ice_sw_lkup_type l_type;
2977 struct ice_sw_recipe *recp;
2980 s_rule = devm_kzalloc(ice_hw_to_dev(hw),
2981 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
2985 fm_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*fm_entry),
2989 goto ice_create_pkt_fwd_rule_exit;
2992 fm_entry->fltr_info = f_entry->fltr_info;
2994 /* Initialize all the fields for the management entry */
2995 fm_entry->vsi_count = 1;
2996 fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX;
2997 fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID;
2998 fm_entry->counter_index = ICE_INVAL_COUNTER_ID;
3000 ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule,
3001 ice_aqc_opc_add_sw_rules);
3003 status = ice_aq_sw_rules(hw, s_rule,
3004 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
3005 ice_aqc_opc_add_sw_rules, NULL);
3007 devm_kfree(ice_hw_to_dev(hw), fm_entry);
3008 goto ice_create_pkt_fwd_rule_exit;
3011 f_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
3012 fm_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
3014 /* The book keeping entries will get removed when base driver
3015 * calls remove filter AQ command
3017 l_type = fm_entry->fltr_info.lkup_type;
3018 recp = &hw->switch_info->recp_list[l_type];
3019 list_add(&fm_entry->list_entry, &recp->filt_rules);
3021 ice_create_pkt_fwd_rule_exit:
3022 devm_kfree(ice_hw_to_dev(hw), s_rule);
3027 * ice_update_pkt_fwd_rule
3028 * @hw: pointer to the hardware structure
3029 * @f_info: filter information for switch rule
3031 * Call AQ command to update a previously created switch rule with a
3035 ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info)
3037 struct ice_sw_rule_lkup_rx_tx *s_rule;
3040 s_rule = devm_kzalloc(ice_hw_to_dev(hw),
3041 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
3046 ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules);
3048 s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
3050 /* Update switch rule with new rule set to forward VSI list */
3051 status = ice_aq_sw_rules(hw, s_rule,
3052 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
3053 ice_aqc_opc_update_sw_rules, NULL);
3055 devm_kfree(ice_hw_to_dev(hw), s_rule);
3060 * ice_update_sw_rule_bridge_mode
3061 * @hw: pointer to the HW struct
3063 * Updates unicast switch filter rules based on VEB/VEPA mode
3065 int ice_update_sw_rule_bridge_mode(struct ice_hw *hw)
3067 struct ice_switch_info *sw = hw->switch_info;
3068 struct ice_fltr_mgmt_list_entry *fm_entry;
3069 struct list_head *rule_head;
3070 struct mutex *rule_lock; /* Lock to protect filter rule list */
3073 rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
3074 rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
3076 mutex_lock(rule_lock);
3077 list_for_each_entry(fm_entry, rule_head, list_entry) {
3078 struct ice_fltr_info *fi = &fm_entry->fltr_info;
3079 u8 *addr = fi->l_data.mac.mac_addr;
3081 /* Update unicast Tx rules to reflect the selected
3084 if ((fi->flag & ICE_FLTR_TX) && is_unicast_ether_addr(addr) &&
3085 (fi->fltr_act == ICE_FWD_TO_VSI ||
3086 fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
3087 fi->fltr_act == ICE_FWD_TO_Q ||
3088 fi->fltr_act == ICE_FWD_TO_QGRP)) {
3089 status = ice_update_pkt_fwd_rule(hw, fi);
3095 mutex_unlock(rule_lock);
3101 * ice_add_update_vsi_list
3102 * @hw: pointer to the hardware structure
3103 * @m_entry: pointer to current filter management list entry
3104 * @cur_fltr: filter information from the book keeping entry
3105 * @new_fltr: filter information with the new VSI to be added
3107 * Call AQ command to add or update previously created VSI list with new VSI.
3109 * Helper function to do book keeping associated with adding filter information
3110 * The algorithm to do the book keeping is described below :
3111 * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.)
3112 * if only one VSI has been added till now
3113 * Allocate a new VSI list and add two VSIs
3114 * to this list using switch rule command
3115 * Update the previously created switch rule with the
3116 * newly created VSI list ID
3117 * if a VSI list was previously created
3118 * Add the new VSI to the previously created VSI list set
3119 * using the update switch rule command
3122 ice_add_update_vsi_list(struct ice_hw *hw,
3123 struct ice_fltr_mgmt_list_entry *m_entry,
3124 struct ice_fltr_info *cur_fltr,
3125 struct ice_fltr_info *new_fltr)
3127 u16 vsi_list_id = 0;
3130 if ((cur_fltr->fltr_act == ICE_FWD_TO_Q ||
3131 cur_fltr->fltr_act == ICE_FWD_TO_QGRP))
3134 if ((new_fltr->fltr_act == ICE_FWD_TO_Q ||
3135 new_fltr->fltr_act == ICE_FWD_TO_QGRP) &&
3136 (cur_fltr->fltr_act == ICE_FWD_TO_VSI ||
3137 cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST))
3140 if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
3141 /* Only one entry existed in the mapping and it was not already
3142 * a part of a VSI list. So, create a VSI list with the old and
3145 struct ice_fltr_info tmp_fltr;
3146 u16 vsi_handle_arr[2];
3148 /* A rule already exists with the new VSI being added */
3149 if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id)
3152 vsi_handle_arr[0] = cur_fltr->vsi_handle;
3153 vsi_handle_arr[1] = new_fltr->vsi_handle;
3154 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3156 new_fltr->lkup_type);
3160 tmp_fltr = *new_fltr;
3161 tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
3162 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3163 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3164 /* Update the previous switch rule of "MAC forward to VSI" to
3165 * "MAC fwd to VSI list"
3167 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3171 cur_fltr->fwd_id.vsi_list_id = vsi_list_id;
3172 cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3173 m_entry->vsi_list_info =
3174 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3177 if (!m_entry->vsi_list_info)
3180 /* If this entry was large action then the large action needs
3181 * to be updated to point to FWD to VSI list
3183 if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID)
3185 ice_add_marker_act(hw, m_entry,
3186 m_entry->sw_marker_id,
3187 m_entry->lg_act_idx);
3189 u16 vsi_handle = new_fltr->vsi_handle;
3190 enum ice_adminq_opc opcode;
3192 if (!m_entry->vsi_list_info)
3195 /* A rule already exists with the new VSI being added */
3196 if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
3199 /* Update the previously created VSI list set with
3200 * the new VSI ID passed in
3202 vsi_list_id = cur_fltr->fwd_id.vsi_list_id;
3203 opcode = ice_aqc_opc_update_sw_rules;
3205 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
3206 vsi_list_id, false, opcode,
3207 new_fltr->lkup_type);
3208 /* update VSI list mapping info with new VSI ID */
3210 set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
3213 m_entry->vsi_count++;
3218 * ice_find_rule_entry - Search a rule entry
3219 * @hw: pointer to the hardware structure
3220 * @recp_id: lookup type for which the specified rule needs to be searched
3221 * @f_info: rule information
3223 * Helper function to search for a given rule entry
3224 * Returns pointer to entry storing the rule if found
3226 static struct ice_fltr_mgmt_list_entry *
3227 ice_find_rule_entry(struct ice_hw *hw, u8 recp_id, struct ice_fltr_info *f_info)
3229 struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL;
3230 struct ice_switch_info *sw = hw->switch_info;
3231 struct list_head *list_head;
3233 list_head = &sw->recp_list[recp_id].filt_rules;
3234 list_for_each_entry(list_itr, list_head, list_entry) {
3235 if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
3236 sizeof(f_info->l_data)) &&
3237 f_info->flag == list_itr->fltr_info.flag) {
3246 * ice_find_vsi_list_entry - Search VSI list map with VSI count 1
3247 * @hw: pointer to the hardware structure
3248 * @recp_id: lookup type for which VSI lists needs to be searched
3249 * @vsi_handle: VSI handle to be found in VSI list
3250 * @vsi_list_id: VSI list ID found containing vsi_handle
3252 * Helper function to search a VSI list with single entry containing given VSI
3253 * handle element. This can be extended further to search VSI list with more
3254 * than 1 vsi_count. Returns pointer to VSI list entry if found.
3256 struct ice_vsi_list_map_info *
3257 ice_find_vsi_list_entry(struct ice_hw *hw, u8 recp_id, u16 vsi_handle,
3260 struct ice_vsi_list_map_info *map_info = NULL;
3261 struct ice_switch_info *sw = hw->switch_info;
3262 struct ice_fltr_mgmt_list_entry *list_itr;
3263 struct list_head *list_head;
3265 list_head = &sw->recp_list[recp_id].filt_rules;
3266 list_for_each_entry(list_itr, list_head, list_entry) {
3267 if (list_itr->vsi_count == 1 && list_itr->vsi_list_info) {
3268 map_info = list_itr->vsi_list_info;
3269 if (test_bit(vsi_handle, map_info->vsi_map)) {
3270 *vsi_list_id = map_info->vsi_list_id;
3279 * ice_add_rule_internal - add rule for a given lookup type
3280 * @hw: pointer to the hardware structure
3281 * @recp_id: lookup type (recipe ID) for which rule has to be added
3282 * @f_entry: structure containing MAC forwarding information
3284 * Adds or updates the rule lists for a given recipe
3287 ice_add_rule_internal(struct ice_hw *hw, u8 recp_id,
3288 struct ice_fltr_list_entry *f_entry)
3290 struct ice_switch_info *sw = hw->switch_info;
3291 struct ice_fltr_info *new_fltr, *cur_fltr;
3292 struct ice_fltr_mgmt_list_entry *m_entry;
3293 struct mutex *rule_lock; /* Lock to protect filter rule list */
3296 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3298 f_entry->fltr_info.fwd_id.hw_vsi_id =
3299 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3301 rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3303 mutex_lock(rule_lock);
3304 new_fltr = &f_entry->fltr_info;
3305 if (new_fltr->flag & ICE_FLTR_RX)
3306 new_fltr->src = hw->port_info->lport;
3307 else if (new_fltr->flag & ICE_FLTR_TX)
3308 new_fltr->src = f_entry->fltr_info.fwd_id.hw_vsi_id;
3310 m_entry = ice_find_rule_entry(hw, recp_id, new_fltr);
3312 mutex_unlock(rule_lock);
3313 return ice_create_pkt_fwd_rule(hw, f_entry);
3316 cur_fltr = &m_entry->fltr_info;
3317 status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr);
3318 mutex_unlock(rule_lock);
3324 * ice_remove_vsi_list_rule
3325 * @hw: pointer to the hardware structure
3326 * @vsi_list_id: VSI list ID generated as part of allocate resource
3327 * @lkup_type: switch rule filter lookup type
3329 * The VSI list should be emptied before this function is called to remove the
3333 ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id,
3334 enum ice_sw_lkup_type lkup_type)
3336 struct ice_sw_rule_vsi_list *s_rule;
3340 s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, 0);
3341 s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
3345 s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR);
3346 s_rule->index = cpu_to_le16(vsi_list_id);
3348 /* Free the vsi_list resource that we allocated. It is assumed that the
3349 * list is empty at this point.
3351 status = ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type,
3352 ice_aqc_opc_free_res);
3354 devm_kfree(ice_hw_to_dev(hw), s_rule);
3359 * ice_rem_update_vsi_list
3360 * @hw: pointer to the hardware structure
3361 * @vsi_handle: VSI handle of the VSI to remove
3362 * @fm_list: filter management entry for which the VSI list management needs to
3366 ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
3367 struct ice_fltr_mgmt_list_entry *fm_list)
3369 enum ice_sw_lkup_type lkup_type;
3373 if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST ||
3374 fm_list->vsi_count == 0)
3377 /* A rule with the VSI being removed does not exist */
3378 if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
3381 lkup_type = fm_list->fltr_info.lkup_type;
3382 vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id;
3383 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
3384 ice_aqc_opc_update_sw_rules,
3389 fm_list->vsi_count--;
3390 clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
3392 if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) {
3393 struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info;
3394 struct ice_vsi_list_map_info *vsi_list_info =
3395 fm_list->vsi_list_info;
3398 rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
3400 if (!ice_is_vsi_valid(hw, rem_vsi_handle))
3403 /* Make sure VSI list is empty before removing it below */
3404 status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
3406 ice_aqc_opc_update_sw_rules,
3411 tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI;
3412 tmp_fltr_info.fwd_id.hw_vsi_id =
3413 ice_get_hw_vsi_num(hw, rem_vsi_handle);
3414 tmp_fltr_info.vsi_handle = rem_vsi_handle;
3415 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info);
3417 ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
3418 tmp_fltr_info.fwd_id.hw_vsi_id, status);
3422 fm_list->fltr_info = tmp_fltr_info;
3425 if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) ||
3426 (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) {
3427 struct ice_vsi_list_map_info *vsi_list_info =
3428 fm_list->vsi_list_info;
3430 /* Remove the VSI list since it is no longer used */
3431 status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
3433 ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
3434 vsi_list_id, status);
3438 list_del(&vsi_list_info->list_entry);
3439 devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
3440 fm_list->vsi_list_info = NULL;
3447 * ice_remove_rule_internal - Remove a filter rule of a given type
3448 * @hw: pointer to the hardware structure
3449 * @recp_id: recipe ID for which the rule needs to removed
3450 * @f_entry: rule entry containing filter information
3453 ice_remove_rule_internal(struct ice_hw *hw, u8 recp_id,
3454 struct ice_fltr_list_entry *f_entry)
3456 struct ice_switch_info *sw = hw->switch_info;
3457 struct ice_fltr_mgmt_list_entry *list_elem;
3458 struct mutex *rule_lock; /* Lock to protect filter rule list */
3459 bool remove_rule = false;
3463 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3465 f_entry->fltr_info.fwd_id.hw_vsi_id =
3466 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3468 rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3469 mutex_lock(rule_lock);
3470 list_elem = ice_find_rule_entry(hw, recp_id, &f_entry->fltr_info);
3476 if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) {
3478 } else if (!list_elem->vsi_list_info) {
3481 } else if (list_elem->vsi_list_info->ref_cnt > 1) {
3482 /* a ref_cnt > 1 indicates that the vsi_list is being
3483 * shared by multiple rules. Decrement the ref_cnt and
3484 * remove this rule, but do not modify the list, as it
3485 * is in-use by other rules.
3487 list_elem->vsi_list_info->ref_cnt--;
3490 /* a ref_cnt of 1 indicates the vsi_list is only used
3491 * by one rule. However, the original removal request is only
3492 * for a single VSI. Update the vsi_list first, and only
3493 * remove the rule if there are no further VSIs in this list.
3495 vsi_handle = f_entry->fltr_info.vsi_handle;
3496 status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem);
3499 /* if VSI count goes to zero after updating the VSI list */
3500 if (list_elem->vsi_count == 0)
3505 /* Remove the lookup rule */
3506 struct ice_sw_rule_lkup_rx_tx *s_rule;
3508 s_rule = devm_kzalloc(ice_hw_to_dev(hw),
3509 ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3516 ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule,
3517 ice_aqc_opc_remove_sw_rules);
3519 status = ice_aq_sw_rules(hw, s_rule,
3520 ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3521 1, ice_aqc_opc_remove_sw_rules, NULL);
3523 /* Remove a book keeping from the list */
3524 devm_kfree(ice_hw_to_dev(hw), s_rule);
3529 list_del(&list_elem->list_entry);
3530 devm_kfree(ice_hw_to_dev(hw), list_elem);
3533 mutex_unlock(rule_lock);
3538 * ice_vlan_fltr_exist - does this VLAN filter exist for given VSI
3539 * @hw: pointer to the hardware structure
3541 * @vsi_handle: check MAC filter for this VSI
3543 bool ice_vlan_fltr_exist(struct ice_hw *hw, u16 vlan_id, u16 vsi_handle)
3545 struct ice_fltr_mgmt_list_entry *entry;
3546 struct list_head *rule_head;
3547 struct ice_switch_info *sw;
3548 struct mutex *rule_lock; /* Lock to protect filter rule list */
3551 if (vlan_id > ICE_MAX_VLAN_ID)
3554 if (!ice_is_vsi_valid(hw, vsi_handle))
3557 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3558 sw = hw->switch_info;
3559 rule_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
3563 rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3564 mutex_lock(rule_lock);
3565 list_for_each_entry(entry, rule_head, list_entry) {
3566 struct ice_fltr_info *f_info = &entry->fltr_info;
3567 u16 entry_vlan_id = f_info->l_data.vlan.vlan_id;
3568 struct ice_vsi_list_map_info *map_info;
3570 if (entry_vlan_id > ICE_MAX_VLAN_ID)
3573 if (f_info->flag != ICE_FLTR_TX ||
3574 f_info->src_id != ICE_SRC_ID_VSI ||
3575 f_info->lkup_type != ICE_SW_LKUP_VLAN)
3578 /* Only allowed filter action are FWD_TO_VSI/_VSI_LIST */
3579 if (f_info->fltr_act != ICE_FWD_TO_VSI &&
3580 f_info->fltr_act != ICE_FWD_TO_VSI_LIST)
3583 if (f_info->fltr_act == ICE_FWD_TO_VSI) {
3584 if (hw_vsi_id != f_info->fwd_id.hw_vsi_id)
3586 } else if (f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
3587 /* If filter_action is FWD_TO_VSI_LIST, make sure
3588 * that VSI being checked is part of VSI list
3590 if (entry->vsi_count == 1 &&
3591 entry->vsi_list_info) {
3592 map_info = entry->vsi_list_info;
3593 if (!test_bit(vsi_handle, map_info->vsi_map))
3598 if (vlan_id == entry_vlan_id) {
3599 mutex_unlock(rule_lock);
3603 mutex_unlock(rule_lock);
3609 * ice_add_mac - Add a MAC address based filter rule
3610 * @hw: pointer to the hardware structure
3611 * @m_list: list of MAC addresses and forwarding information
3613 int ice_add_mac(struct ice_hw *hw, struct list_head *m_list)
3615 struct ice_fltr_list_entry *m_list_itr;
3621 list_for_each_entry(m_list_itr, m_list, list_entry) {
3622 u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0];
3626 m_list_itr->fltr_info.flag = ICE_FLTR_TX;
3627 vsi_handle = m_list_itr->fltr_info.vsi_handle;
3628 if (!ice_is_vsi_valid(hw, vsi_handle))
3630 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3631 m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id;
3632 /* update the src in case it is VSI num */
3633 if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI)
3635 m_list_itr->fltr_info.src = hw_vsi_id;
3636 if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC ||
3637 is_zero_ether_addr(add))
3640 m_list_itr->status = ice_add_rule_internal(hw, ICE_SW_LKUP_MAC,
3642 if (m_list_itr->status)
3643 return m_list_itr->status;
3650 * ice_add_vlan_internal - Add one VLAN based filter rule
3651 * @hw: pointer to the hardware structure
3652 * @f_entry: filter entry containing one VLAN information
3655 ice_add_vlan_internal(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry)
3657 struct ice_switch_info *sw = hw->switch_info;
3658 struct ice_fltr_mgmt_list_entry *v_list_itr;
3659 struct ice_fltr_info *new_fltr, *cur_fltr;
3660 enum ice_sw_lkup_type lkup_type;
3661 u16 vsi_list_id = 0, vsi_handle;
3662 struct mutex *rule_lock; /* Lock to protect filter rule list */
3665 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3668 f_entry->fltr_info.fwd_id.hw_vsi_id =
3669 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3670 new_fltr = &f_entry->fltr_info;
3672 /* VLAN ID should only be 12 bits */
3673 if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID)
3676 if (new_fltr->src_id != ICE_SRC_ID_VSI)
3679 new_fltr->src = new_fltr->fwd_id.hw_vsi_id;
3680 lkup_type = new_fltr->lkup_type;
3681 vsi_handle = new_fltr->vsi_handle;
3682 rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3683 mutex_lock(rule_lock);
3684 v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, new_fltr);
3686 struct ice_vsi_list_map_info *map_info = NULL;
3688 if (new_fltr->fltr_act == ICE_FWD_TO_VSI) {
3689 /* All VLAN pruning rules use a VSI list. Check if
3690 * there is already a VSI list containing VSI that we
3691 * want to add. If found, use the same vsi_list_id for
3692 * this new VLAN rule or else create a new list.
3694 map_info = ice_find_vsi_list_entry(hw, ICE_SW_LKUP_VLAN,
3698 status = ice_create_vsi_list_rule(hw,
3706 /* Convert the action to forwarding to a VSI list. */
3707 new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3708 new_fltr->fwd_id.vsi_list_id = vsi_list_id;
3711 status = ice_create_pkt_fwd_rule(hw, f_entry);
3713 v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN,
3719 /* reuse VSI list for new rule and increment ref_cnt */
3721 v_list_itr->vsi_list_info = map_info;
3722 map_info->ref_cnt++;
3724 v_list_itr->vsi_list_info =
3725 ice_create_vsi_list_map(hw, &vsi_handle,
3729 } else if (v_list_itr->vsi_list_info->ref_cnt == 1) {
3730 /* Update existing VSI list to add new VSI ID only if it used
3733 cur_fltr = &v_list_itr->fltr_info;
3734 status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr,
3737 /* If VLAN rule exists and VSI list being used by this rule is
3738 * referenced by more than 1 VLAN rule. Then create a new VSI
3739 * list appending previous VSI with new VSI and update existing
3740 * VLAN rule to point to new VSI list ID
3742 struct ice_fltr_info tmp_fltr;
3743 u16 vsi_handle_arr[2];
3746 /* Current implementation only supports reusing VSI list with
3747 * one VSI count. We should never hit below condition
3749 if (v_list_itr->vsi_count > 1 &&
3750 v_list_itr->vsi_list_info->ref_cnt > 1) {
3751 ice_debug(hw, ICE_DBG_SW, "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n");
3757 find_first_bit(v_list_itr->vsi_list_info->vsi_map,
3760 /* A rule already exists with the new VSI being added */
3761 if (cur_handle == vsi_handle) {
3766 vsi_handle_arr[0] = cur_handle;
3767 vsi_handle_arr[1] = vsi_handle;
3768 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3769 &vsi_list_id, lkup_type);
3773 tmp_fltr = v_list_itr->fltr_info;
3774 tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id;
3775 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3776 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3777 /* Update the previous switch rule to a new VSI list which
3778 * includes current VSI that is requested
3780 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3784 /* before overriding VSI list map info. decrement ref_cnt of
3787 v_list_itr->vsi_list_info->ref_cnt--;
3789 /* now update to newly created list */
3790 v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id;
3791 v_list_itr->vsi_list_info =
3792 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3794 v_list_itr->vsi_count++;
3798 mutex_unlock(rule_lock);
3803 * ice_add_vlan - Add VLAN based filter rule
3804 * @hw: pointer to the hardware structure
3805 * @v_list: list of VLAN entries and forwarding information
3807 int ice_add_vlan(struct ice_hw *hw, struct list_head *v_list)
3809 struct ice_fltr_list_entry *v_list_itr;
3814 list_for_each_entry(v_list_itr, v_list, list_entry) {
3815 if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN)
3817 v_list_itr->fltr_info.flag = ICE_FLTR_TX;
3818 v_list_itr->status = ice_add_vlan_internal(hw, v_list_itr);
3819 if (v_list_itr->status)
3820 return v_list_itr->status;
3826 * ice_add_eth_mac - Add ethertype and MAC based filter rule
3827 * @hw: pointer to the hardware structure
3828 * @em_list: list of ether type MAC filter, MAC is optional
3830 * This function requires the caller to populate the entries in
3831 * the filter list with the necessary fields (including flags to
3832 * indicate Tx or Rx rules).
3834 int ice_add_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3836 struct ice_fltr_list_entry *em_list_itr;
3838 if (!em_list || !hw)
3841 list_for_each_entry(em_list_itr, em_list, list_entry) {
3842 enum ice_sw_lkup_type l_type =
3843 em_list_itr->fltr_info.lkup_type;
3845 if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3846 l_type != ICE_SW_LKUP_ETHERTYPE)
3849 em_list_itr->status = ice_add_rule_internal(hw, l_type,
3851 if (em_list_itr->status)
3852 return em_list_itr->status;
3858 * ice_remove_eth_mac - Remove an ethertype (or MAC) based filter rule
3859 * @hw: pointer to the hardware structure
3860 * @em_list: list of ethertype or ethertype MAC entries
3862 int ice_remove_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3864 struct ice_fltr_list_entry *em_list_itr, *tmp;
3866 if (!em_list || !hw)
3869 list_for_each_entry_safe(em_list_itr, tmp, em_list, list_entry) {
3870 enum ice_sw_lkup_type l_type =
3871 em_list_itr->fltr_info.lkup_type;
3873 if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3874 l_type != ICE_SW_LKUP_ETHERTYPE)
3877 em_list_itr->status = ice_remove_rule_internal(hw, l_type,
3879 if (em_list_itr->status)
3880 return em_list_itr->status;
3886 * ice_rem_sw_rule_info
3887 * @hw: pointer to the hardware structure
3888 * @rule_head: pointer to the switch list structure that we want to delete
3891 ice_rem_sw_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3893 if (!list_empty(rule_head)) {
3894 struct ice_fltr_mgmt_list_entry *entry;
3895 struct ice_fltr_mgmt_list_entry *tmp;
3897 list_for_each_entry_safe(entry, tmp, rule_head, list_entry) {
3898 list_del(&entry->list_entry);
3899 devm_kfree(ice_hw_to_dev(hw), entry);
3905 * ice_rem_adv_rule_info
3906 * @hw: pointer to the hardware structure
3907 * @rule_head: pointer to the switch list structure that we want to delete
3910 ice_rem_adv_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3912 struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
3913 struct ice_adv_fltr_mgmt_list_entry *lst_itr;
3915 if (list_empty(rule_head))
3918 list_for_each_entry_safe(lst_itr, tmp_entry, rule_head, list_entry) {
3919 list_del(&lst_itr->list_entry);
3920 devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
3921 devm_kfree(ice_hw_to_dev(hw), lst_itr);
3926 * ice_cfg_dflt_vsi - change state of VSI to set/clear default
3927 * @pi: pointer to the port_info structure
3928 * @vsi_handle: VSI handle to set as default
3929 * @set: true to add the above mentioned switch rule, false to remove it
3930 * @direction: ICE_FLTR_RX or ICE_FLTR_TX
3932 * add filter rule to set/unset given VSI as default VSI for the switch
3933 * (represented by swid)
3936 ice_cfg_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, bool set,
3939 struct ice_fltr_list_entry f_list_entry;
3940 struct ice_fltr_info f_info;
3941 struct ice_hw *hw = pi->hw;
3945 if (!ice_is_vsi_valid(hw, vsi_handle))
3948 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3950 memset(&f_info, 0, sizeof(f_info));
3952 f_info.lkup_type = ICE_SW_LKUP_DFLT;
3953 f_info.flag = direction;
3954 f_info.fltr_act = ICE_FWD_TO_VSI;
3955 f_info.fwd_id.hw_vsi_id = hw_vsi_id;
3956 f_info.vsi_handle = vsi_handle;
3958 if (f_info.flag & ICE_FLTR_RX) {
3959 f_info.src = hw->port_info->lport;
3960 f_info.src_id = ICE_SRC_ID_LPORT;
3961 } else if (f_info.flag & ICE_FLTR_TX) {
3962 f_info.src_id = ICE_SRC_ID_VSI;
3963 f_info.src = hw_vsi_id;
3964 f_info.flag |= ICE_FLTR_TX_ONLY;
3966 f_list_entry.fltr_info = f_info;
3969 status = ice_add_rule_internal(hw, ICE_SW_LKUP_DFLT,
3972 status = ice_remove_rule_internal(hw, ICE_SW_LKUP_DFLT,
3979 * ice_vsi_uses_fltr - Determine if given VSI uses specified filter
3980 * @fm_entry: filter entry to inspect
3981 * @vsi_handle: VSI handle to compare with filter info
3984 ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle)
3986 return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI &&
3987 fm_entry->fltr_info.vsi_handle == vsi_handle) ||
3988 (fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST &&
3989 fm_entry->vsi_list_info &&
3990 (test_bit(vsi_handle, fm_entry->vsi_list_info->vsi_map))));
3994 * ice_check_if_dflt_vsi - check if VSI is default VSI
3995 * @pi: pointer to the port_info structure
3996 * @vsi_handle: vsi handle to check for in filter list
3997 * @rule_exists: indicates if there are any VSI's in the rule list
3999 * checks if the VSI is in a default VSI list, and also indicates
4000 * if the default VSI list is empty
4003 ice_check_if_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle,
4006 struct ice_fltr_mgmt_list_entry *fm_entry;
4007 struct ice_sw_recipe *recp_list;
4008 struct list_head *rule_head;
4009 struct mutex *rule_lock; /* Lock to protect filter rule list */
4012 recp_list = &pi->hw->switch_info->recp_list[ICE_SW_LKUP_DFLT];
4013 rule_lock = &recp_list->filt_rule_lock;
4014 rule_head = &recp_list->filt_rules;
4016 mutex_lock(rule_lock);
4018 if (rule_exists && !list_empty(rule_head))
4019 *rule_exists = true;
4021 list_for_each_entry(fm_entry, rule_head, list_entry) {
4022 if (ice_vsi_uses_fltr(fm_entry, vsi_handle)) {
4028 mutex_unlock(rule_lock);
4034 * ice_remove_mac - remove a MAC address based filter rule
4035 * @hw: pointer to the hardware structure
4036 * @m_list: list of MAC addresses and forwarding information
4038 * This function removes either a MAC filter rule or a specific VSI from a
4039 * VSI list for a multicast MAC address.
4041 * Returns -ENOENT if a given entry was not added by ice_add_mac. Caller should
4042 * be aware that this call will only work if all the entries passed into m_list
4043 * were added previously. It will not attempt to do a partial remove of entries
4046 int ice_remove_mac(struct ice_hw *hw, struct list_head *m_list)
4048 struct ice_fltr_list_entry *list_itr, *tmp;
4053 list_for_each_entry_safe(list_itr, tmp, m_list, list_entry) {
4054 enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type;
4057 if (l_type != ICE_SW_LKUP_MAC)
4060 vsi_handle = list_itr->fltr_info.vsi_handle;
4061 if (!ice_is_vsi_valid(hw, vsi_handle))
4064 list_itr->fltr_info.fwd_id.hw_vsi_id =
4065 ice_get_hw_vsi_num(hw, vsi_handle);
4067 list_itr->status = ice_remove_rule_internal(hw,
4070 if (list_itr->status)
4071 return list_itr->status;
4077 * ice_remove_vlan - Remove VLAN based filter rule
4078 * @hw: pointer to the hardware structure
4079 * @v_list: list of VLAN entries and forwarding information
4081 int ice_remove_vlan(struct ice_hw *hw, struct list_head *v_list)
4083 struct ice_fltr_list_entry *v_list_itr, *tmp;
4088 list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
4089 enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type;
4091 if (l_type != ICE_SW_LKUP_VLAN)
4093 v_list_itr->status = ice_remove_rule_internal(hw,
4096 if (v_list_itr->status)
4097 return v_list_itr->status;
4103 * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list
4104 * @hw: pointer to the hardware structure
4105 * @vsi_handle: VSI handle to remove filters from
4106 * @vsi_list_head: pointer to the list to add entry to
4107 * @fi: pointer to fltr_info of filter entry to copy & add
4109 * Helper function, used when creating a list of filters to remove from
4110 * a specific VSI. The entry added to vsi_list_head is a COPY of the
4111 * original filter entry, with the exception of fltr_info.fltr_act and
4112 * fltr_info.fwd_id fields. These are set such that later logic can
4113 * extract which VSI to remove the fltr from, and pass on that information.
4116 ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
4117 struct list_head *vsi_list_head,
4118 struct ice_fltr_info *fi)
4120 struct ice_fltr_list_entry *tmp;
4122 /* this memory is freed up in the caller function
4123 * once filters for this VSI are removed
4125 tmp = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*tmp), GFP_KERNEL);
4129 tmp->fltr_info = *fi;
4131 /* Overwrite these fields to indicate which VSI to remove filter from,
4132 * so find and remove logic can extract the information from the
4133 * list entries. Note that original entries will still have proper
4136 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
4137 tmp->fltr_info.vsi_handle = vsi_handle;
4138 tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4140 list_add(&tmp->list_entry, vsi_list_head);
4146 * ice_add_to_vsi_fltr_list - Add VSI filters to the list
4147 * @hw: pointer to the hardware structure
4148 * @vsi_handle: VSI handle to remove filters from
4149 * @lkup_list_head: pointer to the list that has certain lookup type filters
4150 * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle
4152 * Locates all filters in lkup_list_head that are used by the given VSI,
4153 * and adds COPIES of those entries to vsi_list_head (intended to be used
4154 * to remove the listed filters).
4155 * Note that this means all entries in vsi_list_head must be explicitly
4156 * deallocated by the caller when done with list.
4159 ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
4160 struct list_head *lkup_list_head,
4161 struct list_head *vsi_list_head)
4163 struct ice_fltr_mgmt_list_entry *fm_entry;
4166 /* check to make sure VSI ID is valid and within boundary */
4167 if (!ice_is_vsi_valid(hw, vsi_handle))
4170 list_for_each_entry(fm_entry, lkup_list_head, list_entry) {
4171 if (!ice_vsi_uses_fltr(fm_entry, vsi_handle))
4174 status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4176 &fm_entry->fltr_info);
4184 * ice_determine_promisc_mask
4185 * @fi: filter info to parse
4187 * Helper function to determine which ICE_PROMISC_ mask corresponds
4188 * to given filter into.
4190 static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi)
4192 u16 vid = fi->l_data.mac_vlan.vlan_id;
4193 u8 *macaddr = fi->l_data.mac.mac_addr;
4194 bool is_tx_fltr = false;
4195 u8 promisc_mask = 0;
4197 if (fi->flag == ICE_FLTR_TX)
4200 if (is_broadcast_ether_addr(macaddr))
4201 promisc_mask |= is_tx_fltr ?
4202 ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX;
4203 else if (is_multicast_ether_addr(macaddr))
4204 promisc_mask |= is_tx_fltr ?
4205 ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX;
4206 else if (is_unicast_ether_addr(macaddr))
4207 promisc_mask |= is_tx_fltr ?
4208 ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX;
4210 promisc_mask |= is_tx_fltr ?
4211 ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX;
4213 return promisc_mask;
4217 * ice_remove_promisc - Remove promisc based filter rules
4218 * @hw: pointer to the hardware structure
4219 * @recp_id: recipe ID for which the rule needs to removed
4220 * @v_list: list of promisc entries
4223 ice_remove_promisc(struct ice_hw *hw, u8 recp_id, struct list_head *v_list)
4225 struct ice_fltr_list_entry *v_list_itr, *tmp;
4227 list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
4228 v_list_itr->status =
4229 ice_remove_rule_internal(hw, recp_id, v_list_itr);
4230 if (v_list_itr->status)
4231 return v_list_itr->status;
4237 * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI
4238 * @hw: pointer to the hardware structure
4239 * @vsi_handle: VSI handle to clear mode
4240 * @promisc_mask: mask of promiscuous config bits to clear
4241 * @vid: VLAN ID to clear VLAN promiscuous
4244 ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4247 struct ice_switch_info *sw = hw->switch_info;
4248 struct ice_fltr_list_entry *fm_entry, *tmp;
4249 struct list_head remove_list_head;
4250 struct ice_fltr_mgmt_list_entry *itr;
4251 struct list_head *rule_head;
4252 struct mutex *rule_lock; /* Lock to protect filter rule list */
4256 if (!ice_is_vsi_valid(hw, vsi_handle))
4259 if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX))
4260 recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4262 recipe_id = ICE_SW_LKUP_PROMISC;
4264 rule_head = &sw->recp_list[recipe_id].filt_rules;
4265 rule_lock = &sw->recp_list[recipe_id].filt_rule_lock;
4267 INIT_LIST_HEAD(&remove_list_head);
4269 mutex_lock(rule_lock);
4270 list_for_each_entry(itr, rule_head, list_entry) {
4271 struct ice_fltr_info *fltr_info;
4272 u8 fltr_promisc_mask = 0;
4274 if (!ice_vsi_uses_fltr(itr, vsi_handle))
4276 fltr_info = &itr->fltr_info;
4278 if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN &&
4279 vid != fltr_info->l_data.mac_vlan.vlan_id)
4282 fltr_promisc_mask |= ice_determine_promisc_mask(fltr_info);
4284 /* Skip if filter is not completely specified by given mask */
4285 if (fltr_promisc_mask & ~promisc_mask)
4288 status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4292 mutex_unlock(rule_lock);
4293 goto free_fltr_list;
4296 mutex_unlock(rule_lock);
4298 status = ice_remove_promisc(hw, recipe_id, &remove_list_head);
4301 list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4302 list_del(&fm_entry->list_entry);
4303 devm_kfree(ice_hw_to_dev(hw), fm_entry);
4310 * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s)
4311 * @hw: pointer to the hardware structure
4312 * @vsi_handle: VSI handle to configure
4313 * @promisc_mask: mask of promiscuous config bits
4314 * @vid: VLAN ID to set VLAN promiscuous
4317 ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, u16 vid)
4319 enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR };
4320 struct ice_fltr_list_entry f_list_entry;
4321 struct ice_fltr_info new_fltr;
4328 if (!ice_is_vsi_valid(hw, vsi_handle))
4330 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4332 memset(&new_fltr, 0, sizeof(new_fltr));
4334 if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) {
4335 new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN;
4336 new_fltr.l_data.mac_vlan.vlan_id = vid;
4337 recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4339 new_fltr.lkup_type = ICE_SW_LKUP_PROMISC;
4340 recipe_id = ICE_SW_LKUP_PROMISC;
4343 /* Separate filters must be set for each direction/packet type
4344 * combination, so we will loop over the mask value, store the
4345 * individual type, and clear it out in the input mask as it
4348 while (promisc_mask) {
4354 if (promisc_mask & ICE_PROMISC_UCAST_RX) {
4355 promisc_mask &= ~ICE_PROMISC_UCAST_RX;
4356 pkt_type = UCAST_FLTR;
4357 } else if (promisc_mask & ICE_PROMISC_UCAST_TX) {
4358 promisc_mask &= ~ICE_PROMISC_UCAST_TX;
4359 pkt_type = UCAST_FLTR;
4361 } else if (promisc_mask & ICE_PROMISC_MCAST_RX) {
4362 promisc_mask &= ~ICE_PROMISC_MCAST_RX;
4363 pkt_type = MCAST_FLTR;
4364 } else if (promisc_mask & ICE_PROMISC_MCAST_TX) {
4365 promisc_mask &= ~ICE_PROMISC_MCAST_TX;
4366 pkt_type = MCAST_FLTR;
4368 } else if (promisc_mask & ICE_PROMISC_BCAST_RX) {
4369 promisc_mask &= ~ICE_PROMISC_BCAST_RX;
4370 pkt_type = BCAST_FLTR;
4371 } else if (promisc_mask & ICE_PROMISC_BCAST_TX) {
4372 promisc_mask &= ~ICE_PROMISC_BCAST_TX;
4373 pkt_type = BCAST_FLTR;
4377 /* Check for VLAN promiscuous flag */
4378 if (promisc_mask & ICE_PROMISC_VLAN_RX) {
4379 promisc_mask &= ~ICE_PROMISC_VLAN_RX;
4380 } else if (promisc_mask & ICE_PROMISC_VLAN_TX) {
4381 promisc_mask &= ~ICE_PROMISC_VLAN_TX;
4385 /* Set filter DA based on packet type */
4386 mac_addr = new_fltr.l_data.mac.mac_addr;
4387 if (pkt_type == BCAST_FLTR) {
4388 eth_broadcast_addr(mac_addr);
4389 } else if (pkt_type == MCAST_FLTR ||
4390 pkt_type == UCAST_FLTR) {
4391 /* Use the dummy ether header DA */
4392 ether_addr_copy(mac_addr, dummy_eth_header);
4393 if (pkt_type == MCAST_FLTR)
4394 mac_addr[0] |= 0x1; /* Set multicast bit */
4397 /* Need to reset this to zero for all iterations */
4400 new_fltr.flag |= ICE_FLTR_TX;
4401 new_fltr.src = hw_vsi_id;
4403 new_fltr.flag |= ICE_FLTR_RX;
4404 new_fltr.src = hw->port_info->lport;
4407 new_fltr.fltr_act = ICE_FWD_TO_VSI;
4408 new_fltr.vsi_handle = vsi_handle;
4409 new_fltr.fwd_id.hw_vsi_id = hw_vsi_id;
4410 f_list_entry.fltr_info = new_fltr;
4412 status = ice_add_rule_internal(hw, recipe_id, &f_list_entry);
4414 goto set_promisc_exit;
4422 * ice_set_vlan_vsi_promisc
4423 * @hw: pointer to the hardware structure
4424 * @vsi_handle: VSI handle to configure
4425 * @promisc_mask: mask of promiscuous config bits
4426 * @rm_vlan_promisc: Clear VLANs VSI promisc mode
4428 * Configure VSI with all associated VLANs to given promiscuous mode(s)
4431 ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4432 bool rm_vlan_promisc)
4434 struct ice_switch_info *sw = hw->switch_info;
4435 struct ice_fltr_list_entry *list_itr, *tmp;
4436 struct list_head vsi_list_head;
4437 struct list_head *vlan_head;
4438 struct mutex *vlan_lock; /* Lock to protect filter rule list */
4442 INIT_LIST_HEAD(&vsi_list_head);
4443 vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
4444 vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
4445 mutex_lock(vlan_lock);
4446 status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head,
4448 mutex_unlock(vlan_lock);
4450 goto free_fltr_list;
4452 list_for_each_entry(list_itr, &vsi_list_head, list_entry) {
4453 /* Avoid enabling or disabling VLAN zero twice when in double
4456 if (ice_is_dvm_ena(hw) &&
4457 list_itr->fltr_info.l_data.vlan.tpid == 0)
4460 vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id;
4461 if (rm_vlan_promisc)
4462 status = ice_clear_vsi_promisc(hw, vsi_handle,
4463 promisc_mask, vlan_id);
4465 status = ice_set_vsi_promisc(hw, vsi_handle,
4466 promisc_mask, vlan_id);
4467 if (status && status != -EEXIST)
4472 list_for_each_entry_safe(list_itr, tmp, &vsi_list_head, list_entry) {
4473 list_del(&list_itr->list_entry);
4474 devm_kfree(ice_hw_to_dev(hw), list_itr);
4480 * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI
4481 * @hw: pointer to the hardware structure
4482 * @vsi_handle: VSI handle to remove filters from
4483 * @lkup: switch rule filter lookup type
4486 ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle,
4487 enum ice_sw_lkup_type lkup)
4489 struct ice_switch_info *sw = hw->switch_info;
4490 struct ice_fltr_list_entry *fm_entry;
4491 struct list_head remove_list_head;
4492 struct list_head *rule_head;
4493 struct ice_fltr_list_entry *tmp;
4494 struct mutex *rule_lock; /* Lock to protect filter rule list */
4497 INIT_LIST_HEAD(&remove_list_head);
4498 rule_lock = &sw->recp_list[lkup].filt_rule_lock;
4499 rule_head = &sw->recp_list[lkup].filt_rules;
4500 mutex_lock(rule_lock);
4501 status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head,
4503 mutex_unlock(rule_lock);
4505 goto free_fltr_list;
4508 case ICE_SW_LKUP_MAC:
4509 ice_remove_mac(hw, &remove_list_head);
4511 case ICE_SW_LKUP_VLAN:
4512 ice_remove_vlan(hw, &remove_list_head);
4514 case ICE_SW_LKUP_PROMISC:
4515 case ICE_SW_LKUP_PROMISC_VLAN:
4516 ice_remove_promisc(hw, lkup, &remove_list_head);
4518 case ICE_SW_LKUP_MAC_VLAN:
4519 case ICE_SW_LKUP_ETHERTYPE:
4520 case ICE_SW_LKUP_ETHERTYPE_MAC:
4521 case ICE_SW_LKUP_DFLT:
4522 case ICE_SW_LKUP_LAST:
4524 ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type %d\n", lkup);
4529 list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4530 list_del(&fm_entry->list_entry);
4531 devm_kfree(ice_hw_to_dev(hw), fm_entry);
4536 * ice_remove_vsi_fltr - Remove all filters for a VSI
4537 * @hw: pointer to the hardware structure
4538 * @vsi_handle: VSI handle to remove filters from
4540 void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle)
4542 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC);
4543 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC_VLAN);
4544 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC);
4545 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_VLAN);
4546 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_DFLT);
4547 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE);
4548 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE_MAC);
4549 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC_VLAN);
4553 * ice_alloc_res_cntr - allocating resource counter
4554 * @hw: pointer to the hardware structure
4555 * @type: type of resource
4556 * @alloc_shared: if set it is shared else dedicated
4557 * @num_items: number of entries requested for FD resource type
4558 * @counter_id: counter index returned by AQ call
4561 ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4564 DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4565 u16 buf_len = __struct_size(buf);
4568 buf->num_elems = cpu_to_le16(num_items);
4569 buf->res_type = cpu_to_le16(FIELD_PREP(ICE_AQC_RES_TYPE_M, type) |
4572 status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
4576 *counter_id = le16_to_cpu(buf->elem[0].e.sw_resp);
4581 * ice_free_res_cntr - free resource counter
4582 * @hw: pointer to the hardware structure
4583 * @type: type of resource
4584 * @alloc_shared: if set it is shared else dedicated
4585 * @num_items: number of entries to be freed for FD resource type
4586 * @counter_id: counter ID resource which needs to be freed
4589 ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4592 DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4593 u16 buf_len = __struct_size(buf);
4596 buf->num_elems = cpu_to_le16(num_items);
4597 buf->res_type = cpu_to_le16(FIELD_PREP(ICE_AQC_RES_TYPE_M, type) |
4599 buf->elem[0].e.sw_resp = cpu_to_le16(counter_id);
4601 status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
4603 ice_debug(hw, ICE_DBG_SW, "counter resource could not be freed\n");
4608 #define ICE_PROTOCOL_ENTRY(id, ...) { \
4610 .offs = {__VA_ARGS__}, \
4614 * ice_share_res - set a resource as shared or dedicated
4615 * @hw: hw struct of original owner of resource
4616 * @type: resource type
4617 * @shared: is the resource being set to shared
4618 * @res_id: resource id (descriptor)
4620 int ice_share_res(struct ice_hw *hw, u16 type, u8 shared, u16 res_id)
4622 DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4623 u16 buf_len = __struct_size(buf);
4627 buf->num_elems = cpu_to_le16(1);
4628 res_type = FIELD_PREP(ICE_AQC_RES_TYPE_M, type);
4630 res_type |= ICE_AQC_RES_TYPE_FLAG_SHARED;
4632 buf->res_type = cpu_to_le16(res_type);
4633 buf->elem[0].e.sw_resp = cpu_to_le16(res_id);
4634 status = ice_aq_alloc_free_res(hw, buf, buf_len,
4635 ice_aqc_opc_share_res);
4637 ice_debug(hw, ICE_DBG_SW, "Could not set resource type %u id %u to %s\n",
4638 type, res_id, shared ? "SHARED" : "DEDICATED");
4643 /* This is mapping table entry that maps every word within a given protocol
4644 * structure to the real byte offset as per the specification of that
4646 * for example dst address is 3 words in ethertype header and corresponding
4647 * bytes are 0, 2, 3 in the actual packet header and src address is at 4, 6, 8
4648 * IMPORTANT: Every structure part of "ice_prot_hdr" union should have a
4649 * matching entry describing its field. This needs to be updated if new
4650 * structure is added to that union.
4652 static const struct ice_prot_ext_tbl_entry ice_prot_ext[ICE_PROTOCOL_LAST] = {
4653 ICE_PROTOCOL_ENTRY(ICE_MAC_OFOS, 0, 2, 4, 6, 8, 10, 12),
4654 ICE_PROTOCOL_ENTRY(ICE_MAC_IL, 0, 2, 4, 6, 8, 10, 12),
4655 ICE_PROTOCOL_ENTRY(ICE_ETYPE_OL, 0),
4656 ICE_PROTOCOL_ENTRY(ICE_ETYPE_IL, 0),
4657 ICE_PROTOCOL_ENTRY(ICE_VLAN_OFOS, 2, 0),
4658 ICE_PROTOCOL_ENTRY(ICE_IPV4_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18),
4659 ICE_PROTOCOL_ENTRY(ICE_IPV4_IL, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18),
4660 ICE_PROTOCOL_ENTRY(ICE_IPV6_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18,
4661 20, 22, 24, 26, 28, 30, 32, 34, 36, 38),
4662 ICE_PROTOCOL_ENTRY(ICE_IPV6_IL, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20,
4663 22, 24, 26, 28, 30, 32, 34, 36, 38),
4664 ICE_PROTOCOL_ENTRY(ICE_TCP_IL, 0, 2),
4665 ICE_PROTOCOL_ENTRY(ICE_UDP_OF, 0, 2),
4666 ICE_PROTOCOL_ENTRY(ICE_UDP_ILOS, 0, 2),
4667 ICE_PROTOCOL_ENTRY(ICE_VXLAN, 8, 10, 12, 14),
4668 ICE_PROTOCOL_ENTRY(ICE_GENEVE, 8, 10, 12, 14),
4669 ICE_PROTOCOL_ENTRY(ICE_NVGRE, 0, 2, 4, 6),
4670 ICE_PROTOCOL_ENTRY(ICE_GTP, 8, 10, 12, 14, 16, 18, 20, 22),
4671 ICE_PROTOCOL_ENTRY(ICE_GTP_NO_PAY, 8, 10, 12, 14),
4672 ICE_PROTOCOL_ENTRY(ICE_PFCP, 8, 10, 12, 14, 16, 18, 20, 22),
4673 ICE_PROTOCOL_ENTRY(ICE_PPPOE, 0, 2, 4, 6),
4674 ICE_PROTOCOL_ENTRY(ICE_L2TPV3, 0, 2, 4, 6, 8, 10),
4675 ICE_PROTOCOL_ENTRY(ICE_VLAN_EX, 2, 0),
4676 ICE_PROTOCOL_ENTRY(ICE_VLAN_IN, 2, 0),
4677 ICE_PROTOCOL_ENTRY(ICE_HW_METADATA,
4678 ICE_SOURCE_PORT_MDID_OFFSET,
4679 ICE_PTYPE_MDID_OFFSET,
4680 ICE_PACKET_LENGTH_MDID_OFFSET,
4681 ICE_SOURCE_VSI_MDID_OFFSET,
4682 ICE_PKT_VLAN_MDID_OFFSET,
4683 ICE_PKT_TUNNEL_MDID_OFFSET,
4684 ICE_PKT_TCP_MDID_OFFSET,
4685 ICE_PKT_ERROR_MDID_OFFSET),
4688 static struct ice_protocol_entry ice_prot_id_tbl[ICE_PROTOCOL_LAST] = {
4689 { ICE_MAC_OFOS, ICE_MAC_OFOS_HW },
4690 { ICE_MAC_IL, ICE_MAC_IL_HW },
4691 { ICE_ETYPE_OL, ICE_ETYPE_OL_HW },
4692 { ICE_ETYPE_IL, ICE_ETYPE_IL_HW },
4693 { ICE_VLAN_OFOS, ICE_VLAN_OL_HW },
4694 { ICE_IPV4_OFOS, ICE_IPV4_OFOS_HW },
4695 { ICE_IPV4_IL, ICE_IPV4_IL_HW },
4696 { ICE_IPV6_OFOS, ICE_IPV6_OFOS_HW },
4697 { ICE_IPV6_IL, ICE_IPV6_IL_HW },
4698 { ICE_TCP_IL, ICE_TCP_IL_HW },
4699 { ICE_UDP_OF, ICE_UDP_OF_HW },
4700 { ICE_UDP_ILOS, ICE_UDP_ILOS_HW },
4701 { ICE_VXLAN, ICE_UDP_OF_HW },
4702 { ICE_GENEVE, ICE_UDP_OF_HW },
4703 { ICE_NVGRE, ICE_GRE_OF_HW },
4704 { ICE_GTP, ICE_UDP_OF_HW },
4705 { ICE_GTP_NO_PAY, ICE_UDP_ILOS_HW },
4706 { ICE_PFCP, ICE_UDP_ILOS_HW },
4707 { ICE_PPPOE, ICE_PPPOE_HW },
4708 { ICE_L2TPV3, ICE_L2TPV3_HW },
4709 { ICE_VLAN_EX, ICE_VLAN_OF_HW },
4710 { ICE_VLAN_IN, ICE_VLAN_OL_HW },
4711 { ICE_HW_METADATA, ICE_META_DATA_ID_HW },
4715 * ice_find_recp - find a recipe
4716 * @hw: pointer to the hardware structure
4717 * @lkup_exts: extension sequence to match
4718 * @rinfo: information regarding the rule e.g. priority and action info
4719 * @is_add: flag of adding recipe
4721 * Returns index of matching recipe, or ICE_MAX_NUM_RECIPES if not found.
4724 ice_find_recp(struct ice_hw *hw, struct ice_prot_lkup_ext *lkup_exts,
4725 const struct ice_adv_rule_info *rinfo, bool is_add)
4727 bool refresh_required = true;
4728 struct ice_sw_recipe *recp;
4731 /* Walk through existing recipes to find a match */
4732 recp = hw->switch_info->recp_list;
4733 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4734 /* If recipe was not created for this ID, in SW bookkeeping,
4735 * check if FW has an entry for this recipe. If the FW has an
4736 * entry update it in our SW bookkeeping and continue with the
4739 if (hw->recp_reuse) {
4740 if (ice_get_recp_frm_fw(hw,
4741 hw->switch_info->recp_list, i,
4742 &refresh_required, is_add))
4746 /* if number of words we are looking for match */
4747 if (lkup_exts->n_val_words == recp[i].lkup_exts.n_val_words) {
4748 struct ice_fv_word *ar = recp[i].lkup_exts.fv_words;
4749 struct ice_fv_word *be = lkup_exts->fv_words;
4750 u16 *cr = recp[i].lkup_exts.field_mask;
4751 u16 *de = lkup_exts->field_mask;
4755 /* ar, cr, and qr are related to the recipe words, while
4756 * be, de, and pe are related to the lookup words
4758 for (pe = 0; pe < lkup_exts->n_val_words; pe++) {
4759 for (qr = 0; qr < recp[i].lkup_exts.n_val_words;
4761 if (ar[qr].off == be[pe].off &&
4762 ar[qr].prot_id == be[pe].prot_id &&
4764 /* Found the "pe"th word in the
4769 /* After walking through all the words in the
4770 * "i"th recipe if "p"th word was not found then
4771 * this recipe is not what we are looking for.
4772 * So break out from this loop and try the next
4775 if (qr >= recp[i].lkup_exts.n_val_words) {
4780 /* If for "i"th recipe the found was never set to false
4781 * then it means we found our match
4782 * Also tun type and *_pass_l2 of recipe needs to be
4785 if (found && recp[i].tun_type == rinfo->tun_type &&
4786 recp[i].need_pass_l2 == rinfo->need_pass_l2 &&
4787 recp[i].allow_pass_l2 == rinfo->allow_pass_l2)
4788 return i; /* Return the recipe ID */
4791 return ICE_MAX_NUM_RECIPES;
4795 * ice_change_proto_id_to_dvm - change proto id in prot_id_tbl
4797 * As protocol id for outer vlan is different in dvm and svm, if dvm is
4798 * supported protocol array record for outer vlan has to be modified to
4799 * reflect the value proper for DVM.
4801 void ice_change_proto_id_to_dvm(void)
4805 for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4806 if (ice_prot_id_tbl[i].type == ICE_VLAN_OFOS &&
4807 ice_prot_id_tbl[i].protocol_id != ICE_VLAN_OF_HW)
4808 ice_prot_id_tbl[i].protocol_id = ICE_VLAN_OF_HW;
4812 * ice_prot_type_to_id - get protocol ID from protocol type
4813 * @type: protocol type
4814 * @id: pointer to variable that will receive the ID
4816 * Returns true if found, false otherwise
4818 static bool ice_prot_type_to_id(enum ice_protocol_type type, u8 *id)
4822 for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4823 if (ice_prot_id_tbl[i].type == type) {
4824 *id = ice_prot_id_tbl[i].protocol_id;
4831 * ice_fill_valid_words - count valid words
4832 * @rule: advanced rule with lookup information
4833 * @lkup_exts: byte offset extractions of the words that are valid
4835 * calculate valid words in a lookup rule using mask value
4838 ice_fill_valid_words(struct ice_adv_lkup_elem *rule,
4839 struct ice_prot_lkup_ext *lkup_exts)
4841 u8 j, word, prot_id, ret_val;
4843 if (!ice_prot_type_to_id(rule->type, &prot_id))
4846 word = lkup_exts->n_val_words;
4848 for (j = 0; j < sizeof(rule->m_u) / sizeof(u16); j++)
4849 if (((u16 *)&rule->m_u)[j] &&
4850 rule->type < ARRAY_SIZE(ice_prot_ext)) {
4851 /* No more space to accommodate */
4852 if (word >= ICE_MAX_CHAIN_WORDS)
4854 lkup_exts->fv_words[word].off =
4855 ice_prot_ext[rule->type].offs[j];
4856 lkup_exts->fv_words[word].prot_id =
4857 ice_prot_id_tbl[rule->type].protocol_id;
4858 lkup_exts->field_mask[word] =
4859 be16_to_cpu(((__force __be16 *)&rule->m_u)[j]);
4863 ret_val = word - lkup_exts->n_val_words;
4864 lkup_exts->n_val_words = word;
4870 * ice_fill_fv_word_index - fill in the field vector indices for a recipe group
4871 * @hw: pointer to the hardware structure
4872 * @rm: recipe management list entry
4874 * Helper function to fill in the field vector indices for protocol-offset
4875 * pairs. These indexes are then ultimately programmed into a recipe.
4878 ice_fill_fv_word_index(struct ice_hw *hw, struct ice_sw_recipe *rm)
4880 struct ice_sw_fv_list_entry *fv;
4881 struct ice_fv_word *fv_ext;
4884 if (list_empty(&rm->fv_list))
4887 fv = list_first_entry(&rm->fv_list, struct ice_sw_fv_list_entry,
4889 fv_ext = fv->fv_ptr->ew;
4891 /* Add switch id as the first word. */
4892 rm->fv_idx[0] = ICE_AQ_SW_ID_LKUP_IDX;
4893 rm->fv_mask[0] = ICE_AQ_SW_ID_LKUP_MASK;
4896 for (i = 1; i < rm->n_ext_words; i++) {
4897 struct ice_fv_word *fv_word = &rm->ext_words[i - 1];
4898 u16 fv_mask = rm->word_masks[i - 1];
4902 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++) {
4903 if (fv_ext[j].prot_id == fv_word->prot_id &&
4904 fv_ext[j].off == fv_word->off) {
4907 /* Store index of field vector */
4909 rm->fv_mask[i] = fv_mask;
4914 /* Protocol/offset could not be found, caller gave an invalid
4925 * ice_find_free_recp_res_idx - find free result indexes for recipe
4926 * @hw: pointer to hardware structure
4927 * @profiles: bitmap of profiles that will be associated with the new recipe
4928 * @free_idx: pointer to variable to receive the free index bitmap
4930 * The algorithm used here is:
4931 * 1. When creating a new recipe, create a set P which contains all
4932 * Profiles that will be associated with our new recipe
4934 * 2. For each Profile p in set P:
4935 * a. Add all recipes associated with Profile p into set R
4936 * b. Optional : PossibleIndexes &= profile[p].possibleIndexes
4937 * [initially PossibleIndexes should be 0xFFFFFFFFFFFFFFFF]
4938 * i. Or just assume they all have the same possible indexes:
4940 * i.e., PossibleIndexes = 0x0000F00000000000
4942 * 3. For each Recipe r in set R:
4943 * a. UsedIndexes |= (bitwise or ) recipe[r].res_indexes
4944 * b. FreeIndexes = UsedIndexes ^ PossibleIndexes
4946 * FreeIndexes will contain the bits indicating the indexes free for use,
4947 * then the code needs to update the recipe[r].used_result_idx_bits to
4948 * indicate which indexes were selected for use by this recipe.
4951 ice_find_free_recp_res_idx(struct ice_hw *hw, const unsigned long *profiles,
4952 unsigned long *free_idx)
4954 DECLARE_BITMAP(possible_idx, ICE_MAX_FV_WORDS);
4955 DECLARE_BITMAP(recipes, ICE_MAX_NUM_RECIPES);
4956 DECLARE_BITMAP(used_idx, ICE_MAX_FV_WORDS);
4959 bitmap_zero(recipes, ICE_MAX_NUM_RECIPES);
4960 bitmap_zero(used_idx, ICE_MAX_FV_WORDS);
4962 bitmap_fill(possible_idx, ICE_MAX_FV_WORDS);
4964 /* For each profile we are going to associate the recipe with, add the
4965 * recipes that are associated with that profile. This will give us
4966 * the set of recipes that our recipe may collide with. Also, determine
4967 * what possible result indexes are usable given this set of profiles.
4969 for_each_set_bit(bit, profiles, ICE_MAX_NUM_PROFILES) {
4970 bitmap_or(recipes, recipes, profile_to_recipe[bit],
4971 ICE_MAX_NUM_RECIPES);
4972 bitmap_and(possible_idx, possible_idx,
4973 hw->switch_info->prof_res_bm[bit],
4977 /* For each recipe that our new recipe may collide with, determine
4978 * which indexes have been used.
4980 for_each_set_bit(bit, recipes, ICE_MAX_NUM_RECIPES)
4981 bitmap_or(used_idx, used_idx,
4982 hw->switch_info->recp_list[bit].res_idxs,
4985 bitmap_xor(free_idx, used_idx, possible_idx, ICE_MAX_FV_WORDS);
4987 /* return number of free indexes */
4988 return (u16)bitmap_weight(free_idx, ICE_MAX_FV_WORDS);
4992 * ice_calc_recp_cnt - calculate number of recipes based on word count
4993 * @word_cnt: number of lookup words
4995 * Word count should include switch ID word and regular lookup words.
4996 * Returns: number of recipes required to fit @word_cnt, including extra recipes
4997 * needed for recipe chaining (if needed).
4999 static int ice_calc_recp_cnt(u8 word_cnt)
5001 /* All words fit in a single recipe, no need for chaining. */
5002 if (word_cnt <= ICE_NUM_WORDS_RECIPE)
5005 /* Recipe chaining required. Result indexes are fitted right after
5006 * regular lookup words. In some cases a new recipe must be added in
5007 * order to fit result indexes.
5009 * While the word count increases, every 5 words an extra recipe needs
5010 * to be added. However, by adding a recipe, one word for its result
5011 * index must also be added, therefore every 4 words recipe count
5012 * increases by 1. This calculation does not apply to word count == 1,
5013 * which is handled above.
5015 return (word_cnt + 2) / (ICE_NUM_WORDS_RECIPE - 1);
5018 static void fill_recipe_template(struct ice_aqc_recipe_data_elem *recp, u16 rid,
5019 const struct ice_sw_recipe *rm)
5023 recp->recipe_indx = rid;
5024 recp->content.act_ctrl |= ICE_AQ_RECIPE_ACT_PRUNE_INDX_M;
5026 for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) {
5027 recp->content.lkup_indx[i] = ICE_AQ_RECIPE_LKUP_IGNORE;
5028 recp->content.mask[i] = cpu_to_le16(0);
5031 set_bit(rid, (unsigned long *)recp->recipe_bitmap);
5032 recp->content.act_ctrl_fwd_priority = rm->priority;
5034 if (rm->need_pass_l2)
5035 recp->content.act_ctrl |= ICE_AQ_RECIPE_ACT_NEED_PASS_L2;
5037 if (rm->allow_pass_l2)
5038 recp->content.act_ctrl |= ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2;
5041 static void bookkeep_recipe(struct ice_sw_recipe *recipe,
5042 struct ice_aqc_recipe_data_elem *r,
5043 const struct ice_sw_recipe *rm)
5045 memcpy(recipe->r_bitmap, r->recipe_bitmap, sizeof(recipe->r_bitmap));
5047 recipe->priority = r->content.act_ctrl_fwd_priority;
5048 recipe->tun_type = rm->tun_type;
5049 recipe->need_pass_l2 = rm->need_pass_l2;
5050 recipe->allow_pass_l2 = rm->allow_pass_l2;
5051 recipe->recp_created = true;
5054 /* For memcpy in ice_add_sw_recipe. */
5055 static_assert(sizeof_field(struct ice_aqc_recipe_data_elem, recipe_bitmap) ==
5056 sizeof_field(struct ice_sw_recipe, r_bitmap));
5059 * ice_add_sw_recipe - function to call AQ calls to create switch recipe
5060 * @hw: pointer to hardware structure
5061 * @rm: recipe management list entry
5062 * @profiles: bitmap of profiles that will be associated.
5065 ice_add_sw_recipe(struct ice_hw *hw, struct ice_sw_recipe *rm,
5066 unsigned long *profiles)
5068 struct ice_aqc_recipe_data_elem *buf __free(kfree) = NULL;
5069 DECLARE_BITMAP(result_idx_bm, ICE_MAX_FV_WORDS);
5070 struct ice_aqc_recipe_data_elem *root;
5071 struct ice_sw_recipe *recipe;
5072 u16 free_res_idx, rid;
5079 recp_cnt = ice_calc_recp_cnt(rm->n_ext_words);
5081 bitmap_zero(result_idx_bm, ICE_MAX_FV_WORDS);
5082 bitmap_zero(rm->r_bitmap, ICE_MAX_NUM_RECIPES);
5084 /* Check number of free result indices */
5085 free_res_idx = ice_find_free_recp_res_idx(hw, profiles, result_idx_bm);
5087 ice_debug(hw, ICE_DBG_SW, "Result idx slots: %d, need %d\n",
5088 free_res_idx, recp_cnt);
5090 /* Last recipe doesn't need result index */
5091 if (recp_cnt - 1 > free_res_idx)
5094 if (recp_cnt > ICE_MAX_CHAIN_RECIPE_RES)
5097 buf = kcalloc(recp_cnt, sizeof(*buf), GFP_KERNEL);
5101 /* Setup the non-root subrecipes. These do not contain lookups for other
5102 * subrecipes results. Set associated recipe only to own recipe index.
5103 * Each non-root subrecipe needs a free result index from FV.
5105 * Note: only done if there is more than one recipe.
5107 for (i = 0; i < recp_cnt - 1; i++) {
5108 struct ice_aqc_recipe_content *content;
5111 status = ice_alloc_recipe(hw, &rid);
5115 fill_recipe_template(&buf[i], rid, rm);
5117 result_idx = find_first_bit(result_idx_bm, ICE_MAX_FV_WORDS);
5118 /* Check if there really is a valid result index that can be
5121 if (result_idx >= ICE_MAX_FV_WORDS) {
5122 ice_debug(hw, ICE_DBG_SW, "No chain index available\n");
5125 clear_bit(result_idx, result_idx_bm);
5127 content = &buf[i].content;
5128 content->result_indx = ICE_AQ_RECIPE_RESULT_EN |
5129 FIELD_PREP(ICE_AQ_RECIPE_RESULT_DATA_M,
5132 /* Set recipe association to be used for root recipe */
5133 set_bit(rid, rm->r_bitmap);
5136 while (lookup < rm->n_ext_words &&
5137 word < ICE_NUM_WORDS_RECIPE) {
5138 content->lkup_indx[word] = rm->fv_idx[lookup];
5139 content->mask[word] = cpu_to_le16(rm->fv_mask[lookup]);
5145 recipe = &hw->switch_info->recp_list[rid];
5146 set_bit(result_idx, recipe->res_idxs);
5147 bookkeep_recipe(recipe, &buf[i], rm);
5150 /* Setup the root recipe */
5151 status = ice_alloc_recipe(hw, &rid);
5155 recipe = &hw->switch_info->recp_list[rid];
5156 root = &buf[recp_cnt - 1];
5157 fill_recipe_template(root, rid, rm);
5159 /* Set recipe association, use previously set bitmap and own rid */
5160 set_bit(rid, rm->r_bitmap);
5161 memcpy(root->recipe_bitmap, rm->r_bitmap, sizeof(root->recipe_bitmap));
5163 /* For non-root recipes rid should be 0, for root it should be correct
5164 * rid value ored with 0x80 (is root bit).
5166 root->content.rid = rid | ICE_AQ_RECIPE_ID_IS_ROOT;
5168 /* Fill remaining lookups in root recipe */
5170 while (lookup < rm->n_ext_words &&
5171 word < ICE_NUM_WORDS_RECIPE /* should always be true */) {
5172 root->content.lkup_indx[word] = rm->fv_idx[lookup];
5173 root->content.mask[word] = cpu_to_le16(rm->fv_mask[lookup]);
5179 /* Fill result indexes as lookups */
5181 while (i < recp_cnt - 1 &&
5182 word < ICE_NUM_WORDS_RECIPE /* should always be true */) {
5183 root->content.lkup_indx[word] = buf[i].content.result_indx &
5184 ~ICE_AQ_RECIPE_RESULT_EN;
5185 root->content.mask[word] = cpu_to_le16(0xffff);
5186 /* For bookkeeping, it is needed to mark FV index as used for
5187 * intermediate result.
5189 set_bit(root->content.lkup_indx[word], recipe->res_idxs);
5196 bookkeep_recipe(&hw->switch_info->recp_list[rid], root, rm);
5198 /* Program the recipe */
5199 status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5203 status = ice_aq_add_recipe(hw, buf, recp_cnt, NULL);
5204 ice_release_change_lock(hw);
5211 /* ice_get_compat_fv_bitmap - Get compatible field vector bitmap for rule
5212 * @hw: pointer to hardware structure
5213 * @rinfo: other information regarding the rule e.g. priority and action info
5214 * @bm: pointer to memory for returning the bitmap of field vectors
5217 ice_get_compat_fv_bitmap(struct ice_hw *hw, struct ice_adv_rule_info *rinfo,
5220 enum ice_prof_type prof_type;
5222 bitmap_zero(bm, ICE_MAX_NUM_PROFILES);
5224 switch (rinfo->tun_type) {
5226 prof_type = ICE_PROF_NON_TUN;
5228 case ICE_ALL_TUNNELS:
5229 prof_type = ICE_PROF_TUN_ALL;
5231 case ICE_SW_TUN_GENEVE:
5232 case ICE_SW_TUN_VXLAN:
5233 prof_type = ICE_PROF_TUN_UDP;
5235 case ICE_SW_TUN_NVGRE:
5236 prof_type = ICE_PROF_TUN_GRE;
5238 case ICE_SW_TUN_GTPU:
5239 prof_type = ICE_PROF_TUN_GTPU;
5241 case ICE_SW_TUN_GTPC:
5242 prof_type = ICE_PROF_TUN_GTPC;
5244 case ICE_SW_TUN_PFCP:
5245 prof_type = ICE_PROF_TUN_PFCP;
5247 case ICE_SW_TUN_AND_NON_TUN:
5249 prof_type = ICE_PROF_ALL;
5253 ice_get_sw_fv_bitmap(hw, prof_type, bm);
5257 * ice_subscribe_recipe - subscribe to an existing recipe
5258 * @hw: pointer to the hardware structure
5259 * @rid: recipe ID to subscribe to
5261 * Return: 0 on success, and others on error
5263 static int ice_subscribe_recipe(struct ice_hw *hw, u16 rid)
5265 DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1);
5266 u16 buf_len = __struct_size(sw_buf);
5270 /* Prepare buffer to allocate resource */
5271 sw_buf->num_elems = cpu_to_le16(1);
5272 res_type = FIELD_PREP(ICE_AQC_RES_TYPE_M, ICE_AQC_RES_TYPE_RECIPE) |
5273 ICE_AQC_RES_TYPE_FLAG_SUBSCRIBE_SHARED |
5274 ICE_AQC_RES_TYPE_FLAG_SUBSCRIBE_CTL;
5275 sw_buf->res_type = cpu_to_le16(res_type);
5277 sw_buf->elem[0].e.sw_resp = cpu_to_le16(rid);
5279 status = ice_aq_alloc_free_res(hw, sw_buf, buf_len,
5280 ice_aqc_opc_alloc_res);
5286 * ice_subscribable_recp_shared - share an existing subscribable recipe
5287 * @hw: pointer to the hardware structure
5288 * @rid: recipe ID to subscribe to
5290 static void ice_subscribable_recp_shared(struct ice_hw *hw, u16 rid)
5292 struct ice_sw_recipe *recps = hw->switch_info->recp_list;
5295 for_each_set_bit(sub_rid, recps[rid].r_bitmap, ICE_MAX_NUM_RECIPES)
5296 ice_subscribe_recipe(hw, sub_rid);
5300 * ice_add_adv_recipe - Add an advanced recipe that is not part of the default
5301 * @hw: pointer to hardware structure
5302 * @lkups: lookup elements or match criteria for the advanced recipe, one
5303 * structure per protocol header
5304 * @lkups_cnt: number of protocols
5305 * @rinfo: other information regarding the rule e.g. priority and action info
5306 * @rid: return the recipe ID of the recipe created
5309 ice_add_adv_recipe(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5310 u16 lkups_cnt, struct ice_adv_rule_info *rinfo, u16 *rid)
5312 DECLARE_BITMAP(fv_bitmap, ICE_MAX_NUM_PROFILES);
5313 DECLARE_BITMAP(profiles, ICE_MAX_NUM_PROFILES);
5314 struct ice_prot_lkup_ext *lkup_exts;
5315 struct ice_sw_fv_list_entry *fvit;
5316 struct ice_sw_fv_list_entry *tmp;
5317 struct ice_sw_recipe *rm;
5325 lkup_exts = kzalloc(sizeof(*lkup_exts), GFP_KERNEL);
5329 /* Determine the number of words to be matched and if it exceeds a
5330 * recipe's restrictions
5332 for (i = 0; i < lkups_cnt; i++) {
5335 if (lkups[i].type >= ICE_PROTOCOL_LAST) {
5337 goto err_free_lkup_exts;
5340 count = ice_fill_valid_words(&lkups[i], lkup_exts);
5343 goto err_free_lkup_exts;
5347 rm = kzalloc(sizeof(*rm), GFP_KERNEL);
5350 goto err_free_lkup_exts;
5353 /* Get field vectors that contain fields extracted from all the protocol
5354 * headers being programmed.
5356 INIT_LIST_HEAD(&rm->fv_list);
5358 /* Get bitmap of field vectors (profiles) that are compatible with the
5359 * rule request; only these will be searched in the subsequent call to
5360 * ice_get_sw_fv_list.
5362 ice_get_compat_fv_bitmap(hw, rinfo, fv_bitmap);
5364 status = ice_get_sw_fv_list(hw, lkup_exts, fv_bitmap, &rm->fv_list);
5368 /* Copy FV words and masks from lkup_exts to recipe struct. */
5369 rm->n_ext_words = lkup_exts->n_val_words;
5370 memcpy(rm->ext_words, lkup_exts->fv_words, sizeof(rm->ext_words));
5371 memcpy(rm->word_masks, lkup_exts->field_mask, sizeof(rm->word_masks));
5373 /* set the recipe priority if specified */
5374 rm->priority = (u8)rinfo->priority;
5376 rm->need_pass_l2 = rinfo->need_pass_l2;
5377 rm->allow_pass_l2 = rinfo->allow_pass_l2;
5379 /* Find offsets from the field vector. Pick the first one for all the
5382 status = ice_fill_fv_word_index(hw, rm);
5386 /* get bitmap of all profiles the recipe will be associated with */
5387 bitmap_zero(profiles, ICE_MAX_NUM_PROFILES);
5388 list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5389 ice_debug(hw, ICE_DBG_SW, "profile: %d\n", fvit->profile_id);
5390 set_bit((u16)fvit->profile_id, profiles);
5393 /* Look for a recipe which matches our requested fv / mask list */
5394 *rid = ice_find_recp(hw, lkup_exts, rinfo, true);
5395 if (*rid < ICE_MAX_NUM_RECIPES) {
5396 /* Success if found a recipe that match the existing criteria */
5398 ice_subscribable_recp_shared(hw, *rid);
5403 rm->tun_type = rinfo->tun_type;
5404 /* Recipe we need does not exist, add a recipe */
5405 status = ice_add_sw_recipe(hw, rm, profiles);
5409 /* Associate all the recipes created with all the profiles in the
5410 * common field vector.
5412 list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5413 DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
5417 status = ice_aq_get_recipe_to_profile(hw, fvit->profile_id,
5420 goto err_free_recipe;
5422 bitmap_from_arr64(r_bitmap, &recp_assoc, ICE_MAX_NUM_RECIPES);
5423 bitmap_or(r_bitmap, r_bitmap, rm->r_bitmap,
5424 ICE_MAX_NUM_RECIPES);
5425 status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5427 goto err_free_recipe;
5429 bitmap_to_arr64(&recp_assoc, r_bitmap, ICE_MAX_NUM_RECIPES);
5430 status = ice_aq_map_recipe_to_profile(hw, fvit->profile_id,
5432 ice_release_change_lock(hw);
5435 goto err_free_recipe;
5437 /* Update profile to recipe bitmap array */
5438 bitmap_copy(profile_to_recipe[fvit->profile_id], r_bitmap,
5439 ICE_MAX_NUM_RECIPES);
5441 /* Update recipe to profile bitmap array */
5442 for_each_set_bit(j, rm->r_bitmap, ICE_MAX_NUM_RECIPES)
5443 set_bit((u16)fvit->profile_id, recipe_to_profile[j]);
5446 *rid = rm->root_rid;
5447 memcpy(&hw->switch_info->recp_list[*rid].lkup_exts, lkup_exts,
5448 sizeof(*lkup_exts));
5452 if (hw->recp_reuse) {
5453 for_each_set_bit(rid_tmp, rm->r_bitmap, ICE_MAX_NUM_RECIPES) {
5454 if (!ice_free_recipe_res(hw, rid_tmp))
5455 clear_bit(rid_tmp, rm->r_bitmap);
5460 list_for_each_entry_safe(fvit, tmp, &rm->fv_list, list_entry) {
5461 list_del(&fvit->list_entry);
5462 devm_kfree(ice_hw_to_dev(hw), fvit);
5474 * ice_dummy_packet_add_vlan - insert VLAN header to dummy pkt
5476 * @dummy_pkt: dummy packet profile pattern to which VLAN tag(s) will be added
5477 * @num_vlan: number of VLAN tags
5479 static struct ice_dummy_pkt_profile *
5480 ice_dummy_packet_add_vlan(const struct ice_dummy_pkt_profile *dummy_pkt,
5483 struct ice_dummy_pkt_profile *profile;
5484 struct ice_dummy_pkt_offsets *offsets;
5485 u32 buf_len, off, etype_off, i;
5488 if (num_vlan < 1 || num_vlan > 2)
5489 return ERR_PTR(-EINVAL);
5491 off = num_vlan * VLAN_HLEN;
5493 buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet_offsets)) +
5494 dummy_pkt->offsets_len;
5495 offsets = kzalloc(buf_len, GFP_KERNEL);
5497 return ERR_PTR(-ENOMEM);
5499 offsets[0] = dummy_pkt->offsets[0];
5500 if (num_vlan == 2) {
5501 offsets[1] = ice_dummy_qinq_packet_offsets[0];
5502 offsets[2] = ice_dummy_qinq_packet_offsets[1];
5503 } else if (num_vlan == 1) {
5504 offsets[1] = ice_dummy_vlan_packet_offsets[0];
5507 for (i = 1; dummy_pkt->offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5508 offsets[i + num_vlan].type = dummy_pkt->offsets[i].type;
5509 offsets[i + num_vlan].offset =
5510 dummy_pkt->offsets[i].offset + off;
5512 offsets[i + num_vlan] = dummy_pkt->offsets[i];
5514 etype_off = dummy_pkt->offsets[1].offset;
5516 buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet)) +
5518 pkt = kzalloc(buf_len, GFP_KERNEL);
5521 return ERR_PTR(-ENOMEM);
5524 memcpy(pkt, dummy_pkt->pkt, etype_off);
5525 memcpy(pkt + etype_off,
5526 num_vlan == 2 ? ice_dummy_qinq_packet : ice_dummy_vlan_packet,
5528 memcpy(pkt + etype_off + off, dummy_pkt->pkt + etype_off,
5529 dummy_pkt->pkt_len - etype_off);
5531 profile = kzalloc(sizeof(*profile), GFP_KERNEL);
5535 return ERR_PTR(-ENOMEM);
5538 profile->offsets = offsets;
5540 profile->pkt_len = buf_len;
5541 profile->match |= ICE_PKT_KMALLOC;
5547 * ice_find_dummy_packet - find dummy packet
5549 * @lkups: lookup elements or match criteria for the advanced recipe, one
5550 * structure per protocol header
5551 * @lkups_cnt: number of protocols
5552 * @tun_type: tunnel type
5554 * Returns the &ice_dummy_pkt_profile corresponding to these lookup params.
5556 static const struct ice_dummy_pkt_profile *
5557 ice_find_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5558 enum ice_sw_tunnel_type tun_type)
5560 const struct ice_dummy_pkt_profile *ret = ice_dummy_pkt_profiles;
5561 u32 match = 0, vlan_count = 0;
5565 case ICE_SW_TUN_GTPC:
5566 match |= ICE_PKT_TUN_GTPC;
5568 case ICE_SW_TUN_GTPU:
5569 match |= ICE_PKT_TUN_GTPU;
5571 case ICE_SW_TUN_NVGRE:
5572 match |= ICE_PKT_TUN_NVGRE;
5574 case ICE_SW_TUN_GENEVE:
5575 case ICE_SW_TUN_VXLAN:
5576 match |= ICE_PKT_TUN_UDP;
5578 case ICE_SW_TUN_PFCP:
5579 match |= ICE_PKT_PFCP;
5585 for (i = 0; i < lkups_cnt; i++) {
5586 if (lkups[i].type == ICE_UDP_ILOS)
5587 match |= ICE_PKT_INNER_UDP;
5588 else if (lkups[i].type == ICE_TCP_IL)
5589 match |= ICE_PKT_INNER_TCP;
5590 else if (lkups[i].type == ICE_IPV6_OFOS)
5591 match |= ICE_PKT_OUTER_IPV6;
5592 else if (lkups[i].type == ICE_VLAN_OFOS ||
5593 lkups[i].type == ICE_VLAN_EX)
5595 else if (lkups[i].type == ICE_VLAN_IN)
5597 else if (lkups[i].type == ICE_ETYPE_OL &&
5598 lkups[i].h_u.ethertype.ethtype_id ==
5599 cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5600 lkups[i].m_u.ethertype.ethtype_id ==
5601 cpu_to_be16(0xFFFF))
5602 match |= ICE_PKT_OUTER_IPV6;
5603 else if (lkups[i].type == ICE_ETYPE_IL &&
5604 lkups[i].h_u.ethertype.ethtype_id ==
5605 cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5606 lkups[i].m_u.ethertype.ethtype_id ==
5607 cpu_to_be16(0xFFFF))
5608 match |= ICE_PKT_INNER_IPV6;
5609 else if (lkups[i].type == ICE_IPV6_IL)
5610 match |= ICE_PKT_INNER_IPV6;
5611 else if (lkups[i].type == ICE_GTP_NO_PAY)
5612 match |= ICE_PKT_GTP_NOPAY;
5613 else if (lkups[i].type == ICE_PPPOE) {
5614 match |= ICE_PKT_PPPOE;
5615 if (lkups[i].h_u.pppoe_hdr.ppp_prot_id ==
5617 match |= ICE_PKT_OUTER_IPV6;
5618 } else if (lkups[i].type == ICE_L2TPV3)
5619 match |= ICE_PKT_L2TPV3;
5622 while (ret->match && (match & ret->match) != ret->match)
5625 if (vlan_count != 0)
5626 ret = ice_dummy_packet_add_vlan(ret, vlan_count);
5632 * ice_fill_adv_dummy_packet - fill a dummy packet with given match criteria
5634 * @lkups: lookup elements or match criteria for the advanced recipe, one
5635 * structure per protocol header
5636 * @lkups_cnt: number of protocols
5637 * @s_rule: stores rule information from the match criteria
5638 * @profile: dummy packet profile (the template, its size and header offsets)
5641 ice_fill_adv_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5642 struct ice_sw_rule_lkup_rx_tx *s_rule,
5643 const struct ice_dummy_pkt_profile *profile)
5648 /* Start with a packet with a pre-defined/dummy content. Then, fill
5649 * in the header values to be looked up or matched.
5651 pkt = s_rule->hdr_data;
5653 memcpy(pkt, profile->pkt, profile->pkt_len);
5655 for (i = 0; i < lkups_cnt; i++) {
5656 const struct ice_dummy_pkt_offsets *offsets = profile->offsets;
5657 enum ice_protocol_type type;
5658 u16 offset = 0, len = 0, j;
5661 /* find the start of this layer; it should be found since this
5662 * was already checked when search for the dummy packet
5664 type = lkups[i].type;
5665 /* metadata isn't present in the packet */
5666 if (type == ICE_HW_METADATA)
5669 for (j = 0; offsets[j].type != ICE_PROTOCOL_LAST; j++) {
5670 if (type == offsets[j].type) {
5671 offset = offsets[j].offset;
5676 /* this should never happen in a correct calling sequence */
5680 switch (lkups[i].type) {
5683 len = sizeof(struct ice_ether_hdr);
5687 len = sizeof(struct ice_ethtype_hdr);
5692 len = sizeof(struct ice_vlan_hdr);
5696 len = sizeof(struct ice_ipv4_hdr);
5700 len = sizeof(struct ice_ipv6_hdr);
5705 len = sizeof(struct ice_l4_hdr);
5708 len = sizeof(struct ice_sctp_hdr);
5711 len = sizeof(struct ice_nvgre_hdr);
5715 len = sizeof(struct ice_udp_tnl_hdr);
5717 case ICE_GTP_NO_PAY:
5719 len = sizeof(struct ice_udp_gtp_hdr);
5722 len = sizeof(struct ice_pfcp_hdr);
5725 len = sizeof(struct ice_pppoe_hdr);
5728 len = sizeof(struct ice_l2tpv3_sess_hdr);
5734 /* the length should be a word multiple */
5735 if (len % ICE_BYTES_PER_WORD)
5738 /* We have the offset to the header start, the length, the
5739 * caller's header values and mask. Use this information to
5740 * copy the data into the dummy packet appropriately based on
5741 * the mask. Note that we need to only write the bits as
5742 * indicated by the mask to make sure we don't improperly write
5743 * over any significant packet data.
5745 for (j = 0; j < len / sizeof(u16); j++) {
5746 u16 *ptr = (u16 *)(pkt + offset);
5747 u16 mask = lkups[i].m_raw[j];
5752 ptr[j] = (ptr[j] & ~mask) | (lkups[i].h_raw[j] & mask);
5756 s_rule->hdr_len = cpu_to_le16(profile->pkt_len);
5762 * ice_fill_adv_packet_tun - fill dummy packet with udp tunnel port
5763 * @hw: pointer to the hardware structure
5764 * @tun_type: tunnel type
5765 * @pkt: dummy packet to fill in
5766 * @offsets: offset info for the dummy packet
5769 ice_fill_adv_packet_tun(struct ice_hw *hw, enum ice_sw_tunnel_type tun_type,
5770 u8 *pkt, const struct ice_dummy_pkt_offsets *offsets)
5775 case ICE_SW_TUN_VXLAN:
5776 if (!ice_get_open_tunnel_port(hw, &open_port, TNL_VXLAN))
5779 case ICE_SW_TUN_GENEVE:
5780 if (!ice_get_open_tunnel_port(hw, &open_port, TNL_GENEVE))
5784 /* Nothing needs to be done for this tunnel type */
5788 /* Find the outer UDP protocol header and insert the port number */
5789 for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5790 if (offsets[i].type == ICE_UDP_OF) {
5791 struct ice_l4_hdr *hdr;
5794 offset = offsets[i].offset;
5795 hdr = (struct ice_l4_hdr *)&pkt[offset];
5796 hdr->dst_port = cpu_to_be16(open_port);
5806 * ice_fill_adv_packet_vlan - fill dummy packet with VLAN tag type
5807 * @hw: pointer to hw structure
5808 * @vlan_type: VLAN tag type
5809 * @pkt: dummy packet to fill in
5810 * @offsets: offset info for the dummy packet
5813 ice_fill_adv_packet_vlan(struct ice_hw *hw, u16 vlan_type, u8 *pkt,
5814 const struct ice_dummy_pkt_offsets *offsets)
5818 /* Check if there is something to do */
5819 if (!vlan_type || !ice_is_dvm_ena(hw))
5822 /* Find VLAN header and insert VLAN TPID */
5823 for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5824 if (offsets[i].type == ICE_VLAN_OFOS ||
5825 offsets[i].type == ICE_VLAN_EX) {
5826 struct ice_vlan_hdr *hdr;
5829 offset = offsets[i].offset;
5830 hdr = (struct ice_vlan_hdr *)&pkt[offset];
5831 hdr->type = cpu_to_be16(vlan_type);
5840 static bool ice_rules_equal(const struct ice_adv_rule_info *first,
5841 const struct ice_adv_rule_info *second)
5843 return first->sw_act.flag == second->sw_act.flag &&
5844 first->tun_type == second->tun_type &&
5845 first->vlan_type == second->vlan_type &&
5846 first->src_vsi == second->src_vsi &&
5847 first->need_pass_l2 == second->need_pass_l2 &&
5848 first->allow_pass_l2 == second->allow_pass_l2;
5852 * ice_find_adv_rule_entry - Search a rule entry
5853 * @hw: pointer to the hardware structure
5854 * @lkups: lookup elements or match criteria for the advanced recipe, one
5855 * structure per protocol header
5856 * @lkups_cnt: number of protocols
5857 * @recp_id: recipe ID for which we are finding the rule
5858 * @rinfo: other information regarding the rule e.g. priority and action info
5860 * Helper function to search for a given advance rule entry
5861 * Returns pointer to entry storing the rule if found
5863 static struct ice_adv_fltr_mgmt_list_entry *
5864 ice_find_adv_rule_entry(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5865 u16 lkups_cnt, u16 recp_id,
5866 struct ice_adv_rule_info *rinfo)
5868 struct ice_adv_fltr_mgmt_list_entry *list_itr;
5869 struct ice_switch_info *sw = hw->switch_info;
5872 list_for_each_entry(list_itr, &sw->recp_list[recp_id].filt_rules,
5874 bool lkups_matched = true;
5876 if (lkups_cnt != list_itr->lkups_cnt)
5878 for (i = 0; i < list_itr->lkups_cnt; i++)
5879 if (memcmp(&list_itr->lkups[i], &lkups[i],
5881 lkups_matched = false;
5884 if (ice_rules_equal(rinfo, &list_itr->rule_info) &&
5892 * ice_adv_add_update_vsi_list
5893 * @hw: pointer to the hardware structure
5894 * @m_entry: pointer to current adv filter management list entry
5895 * @cur_fltr: filter information from the book keeping entry
5896 * @new_fltr: filter information with the new VSI to be added
5898 * Call AQ command to add or update previously created VSI list with new VSI.
5900 * Helper function to do book keeping associated with adding filter information
5901 * The algorithm to do the booking keeping is described below :
5902 * When a VSI needs to subscribe to a given advanced filter
5903 * if only one VSI has been added till now
5904 * Allocate a new VSI list and add two VSIs
5905 * to this list using switch rule command
5906 * Update the previously created switch rule with the
5907 * newly created VSI list ID
5908 * if a VSI list was previously created
5909 * Add the new VSI to the previously created VSI list set
5910 * using the update switch rule command
5913 ice_adv_add_update_vsi_list(struct ice_hw *hw,
5914 struct ice_adv_fltr_mgmt_list_entry *m_entry,
5915 struct ice_adv_rule_info *cur_fltr,
5916 struct ice_adv_rule_info *new_fltr)
5918 u16 vsi_list_id = 0;
5921 if (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5922 cur_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
5923 cur_fltr->sw_act.fltr_act == ICE_DROP_PACKET)
5926 if ((new_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5927 new_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP) &&
5928 (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI ||
5929 cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI_LIST))
5932 if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
5933 /* Only one entry existed in the mapping and it was not already
5934 * a part of a VSI list. So, create a VSI list with the old and
5937 struct ice_fltr_info tmp_fltr;
5938 u16 vsi_handle_arr[2];
5940 /* A rule already exists with the new VSI being added */
5941 if (cur_fltr->sw_act.fwd_id.hw_vsi_id ==
5942 new_fltr->sw_act.fwd_id.hw_vsi_id)
5945 vsi_handle_arr[0] = cur_fltr->sw_act.vsi_handle;
5946 vsi_handle_arr[1] = new_fltr->sw_act.vsi_handle;
5947 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
5953 memset(&tmp_fltr, 0, sizeof(tmp_fltr));
5954 tmp_fltr.flag = m_entry->rule_info.sw_act.flag;
5955 tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
5956 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
5957 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
5958 tmp_fltr.lkup_type = ICE_SW_LKUP_LAST;
5960 /* Update the previous switch rule of "forward to VSI" to
5963 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
5967 cur_fltr->sw_act.fwd_id.vsi_list_id = vsi_list_id;
5968 cur_fltr->sw_act.fltr_act = ICE_FWD_TO_VSI_LIST;
5969 m_entry->vsi_list_info =
5970 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
5973 u16 vsi_handle = new_fltr->sw_act.vsi_handle;
5975 if (!m_entry->vsi_list_info)
5978 /* A rule already exists with the new VSI being added */
5979 if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
5982 /* Update the previously created VSI list set with
5983 * the new VSI ID passed in
5985 vsi_list_id = cur_fltr->sw_act.fwd_id.vsi_list_id;
5987 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
5989 ice_aqc_opc_update_sw_rules,
5991 /* update VSI list mapping info with new VSI ID */
5993 set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
5996 m_entry->vsi_count++;
6000 void ice_rule_add_tunnel_metadata(struct ice_adv_lkup_elem *lkup)
6002 lkup->type = ICE_HW_METADATA;
6003 lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID21] |=
6004 cpu_to_be16(ICE_PKT_TUNNEL_MASK);
6007 void ice_rule_add_direction_metadata(struct ice_adv_lkup_elem *lkup)
6009 lkup->type = ICE_HW_METADATA;
6010 lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |=
6011 cpu_to_be16(ICE_PKT_FROM_NETWORK);
6014 void ice_rule_add_vlan_metadata(struct ice_adv_lkup_elem *lkup)
6016 lkup->type = ICE_HW_METADATA;
6017 lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |=
6018 cpu_to_be16(ICE_PKT_VLAN_MASK);
6021 void ice_rule_add_src_vsi_metadata(struct ice_adv_lkup_elem *lkup)
6023 lkup->type = ICE_HW_METADATA;
6024 lkup->m_u.metadata.source_vsi = cpu_to_be16(ICE_MDID_SOURCE_VSI_MASK);
6028 * ice_add_adv_rule - helper function to create an advanced switch rule
6029 * @hw: pointer to the hardware structure
6030 * @lkups: information on the words that needs to be looked up. All words
6031 * together makes one recipe
6032 * @lkups_cnt: num of entries in the lkups array
6033 * @rinfo: other information related to the rule that needs to be programmed
6034 * @added_entry: this will return recipe_id, rule_id and vsi_handle. should be
6035 * ignored is case of error.
6037 * This function can program only 1 rule at a time. The lkups is used to
6038 * describe the all the words that forms the "lookup" portion of the recipe.
6039 * These words can span multiple protocols. Callers to this function need to
6040 * pass in a list of protocol headers with lookup information along and mask
6041 * that determines which words are valid from the given protocol header.
6042 * rinfo describes other information related to this rule such as forwarding
6043 * IDs, priority of this rule, etc.
6046 ice_add_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6047 u16 lkups_cnt, struct ice_adv_rule_info *rinfo,
6048 struct ice_rule_query_data *added_entry)
6050 struct ice_adv_fltr_mgmt_list_entry *m_entry, *adv_fltr = NULL;
6051 struct ice_sw_rule_lkup_rx_tx *s_rule = NULL;
6052 const struct ice_dummy_pkt_profile *profile;
6053 u16 rid = 0, i, rule_buf_sz, vsi_handle;
6054 struct list_head *rule_head;
6055 struct ice_switch_info *sw;
6061 /* Initialize profile to result index bitmap */
6062 if (!hw->switch_info->prof_res_bm_init) {
6063 hw->switch_info->prof_res_bm_init = 1;
6064 ice_init_prof_result_bm(hw);
6070 /* get # of words we need to match */
6072 for (i = 0; i < lkups_cnt; i++) {
6075 for (j = 0; j < ARRAY_SIZE(lkups->m_raw); j++)
6076 if (lkups[i].m_raw[j])
6083 if (word_cnt > ICE_MAX_CHAIN_WORDS)
6086 /* locate a dummy packet */
6087 profile = ice_find_dummy_packet(lkups, lkups_cnt, rinfo->tun_type);
6088 if (IS_ERR(profile))
6089 return PTR_ERR(profile);
6091 if (!(rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6092 rinfo->sw_act.fltr_act == ICE_FWD_TO_Q ||
6093 rinfo->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
6094 rinfo->sw_act.fltr_act == ICE_DROP_PACKET ||
6095 rinfo->sw_act.fltr_act == ICE_MIRROR_PACKET ||
6096 rinfo->sw_act.fltr_act == ICE_NOP)) {
6098 goto free_pkt_profile;
6101 vsi_handle = rinfo->sw_act.vsi_handle;
6102 if (!ice_is_vsi_valid(hw, vsi_handle)) {
6104 goto free_pkt_profile;
6107 if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6108 rinfo->sw_act.fltr_act == ICE_MIRROR_PACKET ||
6109 rinfo->sw_act.fltr_act == ICE_NOP) {
6110 rinfo->sw_act.fwd_id.hw_vsi_id =
6111 ice_get_hw_vsi_num(hw, vsi_handle);
6115 rinfo->sw_act.src = ice_get_hw_vsi_num(hw, rinfo->src_vsi);
6117 rinfo->sw_act.src = ice_get_hw_vsi_num(hw, vsi_handle);
6119 status = ice_add_adv_recipe(hw, lkups, lkups_cnt, rinfo, &rid);
6121 goto free_pkt_profile;
6122 m_entry = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6124 /* we have to add VSI to VSI_LIST and increment vsi_count.
6125 * Also Update VSI list so that we can change forwarding rule
6126 * if the rule already exists, we will check if it exists with
6127 * same vsi_id, if not then add it to the VSI list if it already
6128 * exists if not then create a VSI list and add the existing VSI
6129 * ID and the new VSI ID to the list
6130 * We will add that VSI to the list
6132 status = ice_adv_add_update_vsi_list(hw, m_entry,
6133 &m_entry->rule_info,
6136 added_entry->rid = rid;
6137 added_entry->rule_id = m_entry->rule_info.fltr_rule_id;
6138 added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6140 goto free_pkt_profile;
6142 rule_buf_sz = ICE_SW_RULE_RX_TX_HDR_SIZE(s_rule, profile->pkt_len);
6143 s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6146 goto free_pkt_profile;
6149 if (rinfo->sw_act.fltr_act != ICE_MIRROR_PACKET) {
6150 if (!rinfo->flags_info.act_valid) {
6151 act |= ICE_SINGLE_ACT_LAN_ENABLE;
6152 act |= ICE_SINGLE_ACT_LB_ENABLE;
6154 act |= rinfo->flags_info.act & (ICE_SINGLE_ACT_LAN_ENABLE |
6155 ICE_SINGLE_ACT_LB_ENABLE);
6159 switch (rinfo->sw_act.fltr_act) {
6160 case ICE_FWD_TO_VSI:
6161 act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6162 rinfo->sw_act.fwd_id.hw_vsi_id);
6163 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_VALID_BIT;
6166 act |= ICE_SINGLE_ACT_TO_Q;
6167 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
6168 rinfo->sw_act.fwd_id.q_id);
6170 case ICE_FWD_TO_QGRP:
6171 q_rgn = rinfo->sw_act.qgrp_size > 0 ?
6172 (u8)ilog2(rinfo->sw_act.qgrp_size) : 0;
6173 act |= ICE_SINGLE_ACT_TO_Q;
6174 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
6175 rinfo->sw_act.fwd_id.q_id);
6176 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_REGION_M, q_rgn);
6178 case ICE_DROP_PACKET:
6179 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
6180 ICE_SINGLE_ACT_VALID_BIT;
6182 case ICE_MIRROR_PACKET:
6183 act |= ICE_SINGLE_ACT_OTHER_ACTS;
6184 act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6185 rinfo->sw_act.fwd_id.hw_vsi_id);
6188 act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6189 rinfo->sw_act.fwd_id.hw_vsi_id);
6190 act &= ~ICE_SINGLE_ACT_VALID_BIT;
6194 goto err_ice_add_adv_rule;
6197 /* If there is no matching criteria for direction there
6198 * is only one difference between Rx and Tx:
6199 * - get switch id base on VSI number from source field (Tx)
6200 * - get switch id base on port number (Rx)
6202 * If matching on direction metadata is chose rule direction is
6203 * extracted from type value set here.
6205 if (rinfo->sw_act.flag & ICE_FLTR_TX) {
6206 s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
6207 s_rule->src = cpu_to_le16(rinfo->sw_act.src);
6209 s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX);
6210 s_rule->src = cpu_to_le16(hw->port_info->lport);
6213 s_rule->recipe_id = cpu_to_le16(rid);
6214 s_rule->act = cpu_to_le32(act);
6216 status = ice_fill_adv_dummy_packet(lkups, lkups_cnt, s_rule, profile);
6218 goto err_ice_add_adv_rule;
6220 status = ice_fill_adv_packet_tun(hw, rinfo->tun_type, s_rule->hdr_data,
6223 goto err_ice_add_adv_rule;
6225 status = ice_fill_adv_packet_vlan(hw, rinfo->vlan_type,
6229 goto err_ice_add_adv_rule;
6231 status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6232 rule_buf_sz, 1, ice_aqc_opc_add_sw_rules,
6235 goto err_ice_add_adv_rule;
6236 adv_fltr = devm_kzalloc(ice_hw_to_dev(hw),
6237 sizeof(struct ice_adv_fltr_mgmt_list_entry),
6241 goto err_ice_add_adv_rule;
6244 adv_fltr->lkups = devm_kmemdup(ice_hw_to_dev(hw), lkups,
6245 lkups_cnt * sizeof(*lkups), GFP_KERNEL);
6246 if (!adv_fltr->lkups) {
6248 goto err_ice_add_adv_rule;
6251 adv_fltr->lkups_cnt = lkups_cnt;
6252 adv_fltr->rule_info = *rinfo;
6253 adv_fltr->rule_info.fltr_rule_id = le16_to_cpu(s_rule->index);
6254 sw = hw->switch_info;
6255 sw->recp_list[rid].adv_rule = true;
6256 rule_head = &sw->recp_list[rid].filt_rules;
6258 if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI)
6259 adv_fltr->vsi_count = 1;
6261 /* Add rule entry to book keeping list */
6262 list_add(&adv_fltr->list_entry, rule_head);
6264 added_entry->rid = rid;
6265 added_entry->rule_id = adv_fltr->rule_info.fltr_rule_id;
6266 added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6268 err_ice_add_adv_rule:
6269 if (status && adv_fltr) {
6270 devm_kfree(ice_hw_to_dev(hw), adv_fltr->lkups);
6271 devm_kfree(ice_hw_to_dev(hw), adv_fltr);
6277 if (profile->match & ICE_PKT_KMALLOC) {
6278 kfree(profile->offsets);
6279 kfree(profile->pkt);
6287 * ice_replay_vsi_fltr - Replay filters for requested VSI
6288 * @hw: pointer to the hardware structure
6289 * @vsi_handle: driver VSI handle
6290 * @recp_id: Recipe ID for which rules need to be replayed
6291 * @list_head: list for which filters need to be replayed
6293 * Replays the filter of recipe recp_id for a VSI represented via vsi_handle.
6294 * It is required to pass valid VSI handle.
6297 ice_replay_vsi_fltr(struct ice_hw *hw, u16 vsi_handle, u8 recp_id,
6298 struct list_head *list_head)
6300 struct ice_fltr_mgmt_list_entry *itr;
6304 if (list_empty(list_head))
6306 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
6308 list_for_each_entry(itr, list_head, list_entry) {
6309 struct ice_fltr_list_entry f_entry;
6311 f_entry.fltr_info = itr->fltr_info;
6312 if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN &&
6313 itr->fltr_info.vsi_handle == vsi_handle) {
6314 /* update the src in case it is VSI num */
6315 if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6316 f_entry.fltr_info.src = hw_vsi_id;
6317 status = ice_add_rule_internal(hw, recp_id, &f_entry);
6322 if (!itr->vsi_list_info ||
6323 !test_bit(vsi_handle, itr->vsi_list_info->vsi_map))
6325 /* Clearing it so that the logic can add it back */
6326 clear_bit(vsi_handle, itr->vsi_list_info->vsi_map);
6327 f_entry.fltr_info.vsi_handle = vsi_handle;
6328 f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
6329 /* update the src in case it is VSI num */
6330 if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6331 f_entry.fltr_info.src = hw_vsi_id;
6332 if (recp_id == ICE_SW_LKUP_VLAN)
6333 status = ice_add_vlan_internal(hw, &f_entry);
6335 status = ice_add_rule_internal(hw, recp_id, &f_entry);
6344 * ice_adv_rem_update_vsi_list
6345 * @hw: pointer to the hardware structure
6346 * @vsi_handle: VSI handle of the VSI to remove
6347 * @fm_list: filter management entry for which the VSI list management needs to
6351 ice_adv_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
6352 struct ice_adv_fltr_mgmt_list_entry *fm_list)
6354 struct ice_vsi_list_map_info *vsi_list_info;
6355 enum ice_sw_lkup_type lkup_type;
6359 if (fm_list->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST ||
6360 fm_list->vsi_count == 0)
6363 /* A rule with the VSI being removed does not exist */
6364 if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
6367 lkup_type = ICE_SW_LKUP_LAST;
6368 vsi_list_id = fm_list->rule_info.sw_act.fwd_id.vsi_list_id;
6369 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
6370 ice_aqc_opc_update_sw_rules,
6375 fm_list->vsi_count--;
6376 clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
6377 vsi_list_info = fm_list->vsi_list_info;
6378 if (fm_list->vsi_count == 1) {
6379 struct ice_fltr_info tmp_fltr;
6382 rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
6384 if (!ice_is_vsi_valid(hw, rem_vsi_handle))
6387 /* Make sure VSI list is empty before removing it below */
6388 status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
6390 ice_aqc_opc_update_sw_rules,
6395 memset(&tmp_fltr, 0, sizeof(tmp_fltr));
6396 tmp_fltr.flag = fm_list->rule_info.sw_act.flag;
6397 tmp_fltr.fltr_rule_id = fm_list->rule_info.fltr_rule_id;
6398 fm_list->rule_info.sw_act.fltr_act = ICE_FWD_TO_VSI;
6399 tmp_fltr.fltr_act = ICE_FWD_TO_VSI;
6400 tmp_fltr.fwd_id.hw_vsi_id =
6401 ice_get_hw_vsi_num(hw, rem_vsi_handle);
6402 fm_list->rule_info.sw_act.fwd_id.hw_vsi_id =
6403 ice_get_hw_vsi_num(hw, rem_vsi_handle);
6404 fm_list->rule_info.sw_act.vsi_handle = rem_vsi_handle;
6406 /* Update the previous switch rule of "MAC forward to VSI" to
6407 * "MAC fwd to VSI list"
6409 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
6411 ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
6412 tmp_fltr.fwd_id.hw_vsi_id, status);
6415 fm_list->vsi_list_info->ref_cnt--;
6417 /* Remove the VSI list since it is no longer used */
6418 status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
6420 ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
6421 vsi_list_id, status);
6425 list_del(&vsi_list_info->list_entry);
6426 devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
6427 fm_list->vsi_list_info = NULL;
6434 * ice_rem_adv_rule - removes existing advanced switch rule
6435 * @hw: pointer to the hardware structure
6436 * @lkups: information on the words that needs to be looked up. All words
6437 * together makes one recipe
6438 * @lkups_cnt: num of entries in the lkups array
6439 * @rinfo: Its the pointer to the rule information for the rule
6441 * This function can be used to remove 1 rule at a time. The lkups is
6442 * used to describe all the words that forms the "lookup" portion of the
6443 * rule. These words can span multiple protocols. Callers to this function
6444 * need to pass in a list of protocol headers with lookup information along
6445 * and mask that determines which words are valid from the given protocol
6446 * header. rinfo describes other information related to this rule such as
6447 * forwarding IDs, priority of this rule, etc.
6450 ice_rem_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6451 u16 lkups_cnt, struct ice_adv_rule_info *rinfo)
6453 struct ice_adv_fltr_mgmt_list_entry *list_elem;
6454 struct ice_prot_lkup_ext lkup_exts;
6455 bool remove_rule = false;
6456 struct mutex *rule_lock; /* Lock to protect filter rule list */
6457 u16 i, rid, vsi_handle;
6460 memset(&lkup_exts, 0, sizeof(lkup_exts));
6461 for (i = 0; i < lkups_cnt; i++) {
6464 if (lkups[i].type >= ICE_PROTOCOL_LAST)
6467 count = ice_fill_valid_words(&lkups[i], &lkup_exts);
6472 rid = ice_find_recp(hw, &lkup_exts, rinfo, false);
6473 /* If did not find a recipe that match the existing criteria */
6474 if (rid == ICE_MAX_NUM_RECIPES)
6477 rule_lock = &hw->switch_info->recp_list[rid].filt_rule_lock;
6478 list_elem = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6479 /* the rule is already removed */
6482 mutex_lock(rule_lock);
6483 if (list_elem->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST) {
6485 } else if (list_elem->vsi_count > 1) {
6486 remove_rule = false;
6487 vsi_handle = rinfo->sw_act.vsi_handle;
6488 status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6490 vsi_handle = rinfo->sw_act.vsi_handle;
6491 status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6493 mutex_unlock(rule_lock);
6496 if (list_elem->vsi_count == 0)
6499 mutex_unlock(rule_lock);
6501 struct ice_sw_rule_lkup_rx_tx *s_rule;
6504 rule_buf_sz = ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule);
6505 s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6509 s_rule->index = cpu_to_le16(list_elem->rule_info.fltr_rule_id);
6510 s_rule->hdr_len = 0;
6511 status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6513 ice_aqc_opc_remove_sw_rules, NULL);
6514 if (!status || status == -ENOENT) {
6515 struct ice_switch_info *sw = hw->switch_info;
6516 struct ice_sw_recipe *r_list = sw->recp_list;
6518 mutex_lock(rule_lock);
6519 list_del(&list_elem->list_entry);
6520 devm_kfree(ice_hw_to_dev(hw), list_elem->lkups);
6521 devm_kfree(ice_hw_to_dev(hw), list_elem);
6522 mutex_unlock(rule_lock);
6523 if (list_empty(&r_list[rid].filt_rules)) {
6524 r_list[rid].adv_rule = false;
6526 /* All rules for this recipe are now removed */
6528 ice_release_recipe_res(hw,
6538 * ice_rem_adv_rule_by_id - removes existing advanced switch rule by ID
6539 * @hw: pointer to the hardware structure
6540 * @remove_entry: data struct which holds rule_id, VSI handle and recipe ID
6542 * This function is used to remove 1 rule at a time. The removal is based on
6543 * the remove_entry parameter. This function will remove rule for a given
6544 * vsi_handle with a given rule_id which is passed as parameter in remove_entry
6547 ice_rem_adv_rule_by_id(struct ice_hw *hw,
6548 struct ice_rule_query_data *remove_entry)
6550 struct ice_adv_fltr_mgmt_list_entry *list_itr;
6551 struct list_head *list_head;
6552 struct ice_adv_rule_info rinfo;
6553 struct ice_switch_info *sw;
6555 sw = hw->switch_info;
6556 if (!sw->recp_list[remove_entry->rid].recp_created)
6558 list_head = &sw->recp_list[remove_entry->rid].filt_rules;
6559 list_for_each_entry(list_itr, list_head, list_entry) {
6560 if (list_itr->rule_info.fltr_rule_id ==
6561 remove_entry->rule_id) {
6562 rinfo = list_itr->rule_info;
6563 rinfo.sw_act.vsi_handle = remove_entry->vsi_handle;
6564 return ice_rem_adv_rule(hw, list_itr->lkups,
6565 list_itr->lkups_cnt, &rinfo);
6568 /* either list is empty or unable to find rule */
6573 * ice_replay_vsi_adv_rule - Replay advanced rule for requested VSI
6574 * @hw: pointer to the hardware structure
6575 * @vsi_handle: driver VSI handle
6576 * @list_head: list for which filters need to be replayed
6578 * Replay the advanced rule for the given VSI.
6581 ice_replay_vsi_adv_rule(struct ice_hw *hw, u16 vsi_handle,
6582 struct list_head *list_head)
6584 struct ice_rule_query_data added_entry = { 0 };
6585 struct ice_adv_fltr_mgmt_list_entry *adv_fltr;
6588 if (list_empty(list_head))
6590 list_for_each_entry(adv_fltr, list_head, list_entry) {
6591 struct ice_adv_rule_info *rinfo = &adv_fltr->rule_info;
6592 u16 lk_cnt = adv_fltr->lkups_cnt;
6594 if (vsi_handle != rinfo->sw_act.vsi_handle)
6596 status = ice_add_adv_rule(hw, adv_fltr->lkups, lk_cnt, rinfo,
6605 * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists
6606 * @hw: pointer to the hardware structure
6607 * @vsi_handle: driver VSI handle
6609 * Replays filters for requested VSI via vsi_handle.
6611 int ice_replay_vsi_all_fltr(struct ice_hw *hw, u16 vsi_handle)
6613 struct ice_switch_info *sw = hw->switch_info;
6617 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6618 struct list_head *head;
6620 head = &sw->recp_list[i].filt_replay_rules;
6621 if (!sw->recp_list[i].adv_rule)
6622 status = ice_replay_vsi_fltr(hw, vsi_handle, i, head);
6624 status = ice_replay_vsi_adv_rule(hw, vsi_handle, head);
6632 * ice_rm_all_sw_replay_rule_info - deletes filter replay rules
6633 * @hw: pointer to the HW struct
6635 * Deletes the filter replay rules.
6637 void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw)
6639 struct ice_switch_info *sw = hw->switch_info;
6645 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6646 if (!list_empty(&sw->recp_list[i].filt_replay_rules)) {
6647 struct list_head *l_head;
6649 l_head = &sw->recp_list[i].filt_replay_rules;
6650 if (!sw->recp_list[i].adv_rule)
6651 ice_rem_sw_rule_info(hw, l_head);
6653 ice_rem_adv_rule_info(hw, l_head);