]> Git Repo - linux.git/blob - drivers/md/raid10.c
crypto: akcipher - Drop sign/verify operations
[linux.git] / drivers / md / raid10.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22
23 #define RAID_1_10_NAME "raid10"
24 #include "raid10.h"
25 #include "raid0.h"
26 #include "md-bitmap.h"
27
28 /*
29  * RAID10 provides a combination of RAID0 and RAID1 functionality.
30  * The layout of data is defined by
31  *    chunk_size
32  *    raid_disks
33  *    near_copies (stored in low byte of layout)
34  *    far_copies (stored in second byte of layout)
35  *    far_offset (stored in bit 16 of layout )
36  *    use_far_sets (stored in bit 17 of layout )
37  *    use_far_sets_bugfixed (stored in bit 18 of layout )
38  *
39  * The data to be stored is divided into chunks using chunksize.  Each device
40  * is divided into far_copies sections.   In each section, chunks are laid out
41  * in a style similar to raid0, but near_copies copies of each chunk is stored
42  * (each on a different drive).  The starting device for each section is offset
43  * near_copies from the starting device of the previous section.  Thus there
44  * are (near_copies * far_copies) of each chunk, and each is on a different
45  * drive.  near_copies and far_copies must be at least one, and their product
46  * is at most raid_disks.
47  *
48  * If far_offset is true, then the far_copies are handled a bit differently.
49  * The copies are still in different stripes, but instead of being very far
50  * apart on disk, there are adjacent stripes.
51  *
52  * The far and offset algorithms are handled slightly differently if
53  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
54  * sets that are (near_copies * far_copies) in size.  The far copied stripes
55  * are still shifted by 'near_copies' devices, but this shifting stays confined
56  * to the set rather than the entire array.  This is done to improve the number
57  * of device combinations that can fail without causing the array to fail.
58  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
59  * on a device):
60  *    A B C D    A B C D E
61  *      ...         ...
62  *    D A B C    E A B C D
63  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
64  *    [A B] [C D]    [A B] [C D E]
65  *    |...| |...|    |...| | ... |
66  *    [B A] [D C]    [B A] [E C D]
67  */
68
69 static void allow_barrier(struct r10conf *conf);
70 static void lower_barrier(struct r10conf *conf);
71 static int _enough(struct r10conf *conf, int previous, int ignore);
72 static int enough(struct r10conf *conf, int ignore);
73 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
74                                 int *skipped);
75 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
76 static void end_reshape_write(struct bio *bio);
77 static void end_reshape(struct r10conf *conf);
78
79 #include "raid1-10.c"
80
81 #define NULL_CMD
82 #define cmd_before(conf, cmd) \
83         do { \
84                 write_sequnlock_irq(&(conf)->resync_lock); \
85                 cmd; \
86         } while (0)
87 #define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock)
88
89 #define wait_event_barrier_cmd(conf, cond, cmd) \
90         wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \
91                        cmd_after(conf))
92
93 #define wait_event_barrier(conf, cond) \
94         wait_event_barrier_cmd(conf, cond, NULL_CMD)
95
96 /*
97  * for resync bio, r10bio pointer can be retrieved from the per-bio
98  * 'struct resync_pages'.
99  */
100 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
101 {
102         return get_resync_pages(bio)->raid_bio;
103 }
104
105 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
106 {
107         struct r10conf *conf = data;
108         int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
109
110         /* allocate a r10bio with room for raid_disks entries in the
111          * bios array */
112         return kzalloc(size, gfp_flags);
113 }
114
115 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
116 /* amount of memory to reserve for resync requests */
117 #define RESYNC_WINDOW (1024*1024)
118 /* maximum number of concurrent requests, memory permitting */
119 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
120 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
121 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
122
123 /*
124  * When performing a resync, we need to read and compare, so
125  * we need as many pages are there are copies.
126  * When performing a recovery, we need 2 bios, one for read,
127  * one for write (we recover only one drive per r10buf)
128  *
129  */
130 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
131 {
132         struct r10conf *conf = data;
133         struct r10bio *r10_bio;
134         struct bio *bio;
135         int j;
136         int nalloc, nalloc_rp;
137         struct resync_pages *rps;
138
139         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
140         if (!r10_bio)
141                 return NULL;
142
143         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
144             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
145                 nalloc = conf->copies; /* resync */
146         else
147                 nalloc = 2; /* recovery */
148
149         /* allocate once for all bios */
150         if (!conf->have_replacement)
151                 nalloc_rp = nalloc;
152         else
153                 nalloc_rp = nalloc * 2;
154         rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
155         if (!rps)
156                 goto out_free_r10bio;
157
158         /*
159          * Allocate bios.
160          */
161         for (j = nalloc ; j-- ; ) {
162                 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
163                 if (!bio)
164                         goto out_free_bio;
165                 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
166                 r10_bio->devs[j].bio = bio;
167                 if (!conf->have_replacement)
168                         continue;
169                 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
170                 if (!bio)
171                         goto out_free_bio;
172                 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
173                 r10_bio->devs[j].repl_bio = bio;
174         }
175         /*
176          * Allocate RESYNC_PAGES data pages and attach them
177          * where needed.
178          */
179         for (j = 0; j < nalloc; j++) {
180                 struct bio *rbio = r10_bio->devs[j].repl_bio;
181                 struct resync_pages *rp, *rp_repl;
182
183                 rp = &rps[j];
184                 if (rbio)
185                         rp_repl = &rps[nalloc + j];
186
187                 bio = r10_bio->devs[j].bio;
188
189                 if (!j || test_bit(MD_RECOVERY_SYNC,
190                                    &conf->mddev->recovery)) {
191                         if (resync_alloc_pages(rp, gfp_flags))
192                                 goto out_free_pages;
193                 } else {
194                         memcpy(rp, &rps[0], sizeof(*rp));
195                         resync_get_all_pages(rp);
196                 }
197
198                 rp->raid_bio = r10_bio;
199                 bio->bi_private = rp;
200                 if (rbio) {
201                         memcpy(rp_repl, rp, sizeof(*rp));
202                         rbio->bi_private = rp_repl;
203                 }
204         }
205
206         return r10_bio;
207
208 out_free_pages:
209         while (--j >= 0)
210                 resync_free_pages(&rps[j]);
211
212         j = 0;
213 out_free_bio:
214         for ( ; j < nalloc; j++) {
215                 if (r10_bio->devs[j].bio)
216                         bio_uninit(r10_bio->devs[j].bio);
217                 kfree(r10_bio->devs[j].bio);
218                 if (r10_bio->devs[j].repl_bio)
219                         bio_uninit(r10_bio->devs[j].repl_bio);
220                 kfree(r10_bio->devs[j].repl_bio);
221         }
222         kfree(rps);
223 out_free_r10bio:
224         rbio_pool_free(r10_bio, conf);
225         return NULL;
226 }
227
228 static void r10buf_pool_free(void *__r10_bio, void *data)
229 {
230         struct r10conf *conf = data;
231         struct r10bio *r10bio = __r10_bio;
232         int j;
233         struct resync_pages *rp = NULL;
234
235         for (j = conf->copies; j--; ) {
236                 struct bio *bio = r10bio->devs[j].bio;
237
238                 if (bio) {
239                         rp = get_resync_pages(bio);
240                         resync_free_pages(rp);
241                         bio_uninit(bio);
242                         kfree(bio);
243                 }
244
245                 bio = r10bio->devs[j].repl_bio;
246                 if (bio) {
247                         bio_uninit(bio);
248                         kfree(bio);
249                 }
250         }
251
252         /* resync pages array stored in the 1st bio's .bi_private */
253         kfree(rp);
254
255         rbio_pool_free(r10bio, conf);
256 }
257
258 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
259 {
260         int i;
261
262         for (i = 0; i < conf->geo.raid_disks; i++) {
263                 struct bio **bio = & r10_bio->devs[i].bio;
264                 if (!BIO_SPECIAL(*bio))
265                         bio_put(*bio);
266                 *bio = NULL;
267                 bio = &r10_bio->devs[i].repl_bio;
268                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
269                         bio_put(*bio);
270                 *bio = NULL;
271         }
272 }
273
274 static void free_r10bio(struct r10bio *r10_bio)
275 {
276         struct r10conf *conf = r10_bio->mddev->private;
277
278         put_all_bios(conf, r10_bio);
279         mempool_free(r10_bio, &conf->r10bio_pool);
280 }
281
282 static void put_buf(struct r10bio *r10_bio)
283 {
284         struct r10conf *conf = r10_bio->mddev->private;
285
286         mempool_free(r10_bio, &conf->r10buf_pool);
287
288         lower_barrier(conf);
289 }
290
291 static void wake_up_barrier(struct r10conf *conf)
292 {
293         if (wq_has_sleeper(&conf->wait_barrier))
294                 wake_up(&conf->wait_barrier);
295 }
296
297 static void reschedule_retry(struct r10bio *r10_bio)
298 {
299         unsigned long flags;
300         struct mddev *mddev = r10_bio->mddev;
301         struct r10conf *conf = mddev->private;
302
303         spin_lock_irqsave(&conf->device_lock, flags);
304         list_add(&r10_bio->retry_list, &conf->retry_list);
305         conf->nr_queued ++;
306         spin_unlock_irqrestore(&conf->device_lock, flags);
307
308         /* wake up frozen array... */
309         wake_up(&conf->wait_barrier);
310
311         md_wakeup_thread(mddev->thread);
312 }
313
314 /*
315  * raid_end_bio_io() is called when we have finished servicing a mirrored
316  * operation and are ready to return a success/failure code to the buffer
317  * cache layer.
318  */
319 static void raid_end_bio_io(struct r10bio *r10_bio)
320 {
321         struct bio *bio = r10_bio->master_bio;
322         struct r10conf *conf = r10_bio->mddev->private;
323
324         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
325                 bio->bi_status = BLK_STS_IOERR;
326
327         bio_endio(bio);
328         /*
329          * Wake up any possible resync thread that waits for the device
330          * to go idle.
331          */
332         allow_barrier(conf);
333
334         free_r10bio(r10_bio);
335 }
336
337 /*
338  * Update disk head position estimator based on IRQ completion info.
339  */
340 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
341 {
342         struct r10conf *conf = r10_bio->mddev->private;
343
344         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
345                 r10_bio->devs[slot].addr + (r10_bio->sectors);
346 }
347
348 /*
349  * Find the disk number which triggered given bio
350  */
351 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
352                          struct bio *bio, int *slotp, int *replp)
353 {
354         int slot;
355         int repl = 0;
356
357         for (slot = 0; slot < conf->geo.raid_disks; slot++) {
358                 if (r10_bio->devs[slot].bio == bio)
359                         break;
360                 if (r10_bio->devs[slot].repl_bio == bio) {
361                         repl = 1;
362                         break;
363                 }
364         }
365
366         update_head_pos(slot, r10_bio);
367
368         if (slotp)
369                 *slotp = slot;
370         if (replp)
371                 *replp = repl;
372         return r10_bio->devs[slot].devnum;
373 }
374
375 static void raid10_end_read_request(struct bio *bio)
376 {
377         int uptodate = !bio->bi_status;
378         struct r10bio *r10_bio = bio->bi_private;
379         int slot;
380         struct md_rdev *rdev;
381         struct r10conf *conf = r10_bio->mddev->private;
382
383         slot = r10_bio->read_slot;
384         rdev = r10_bio->devs[slot].rdev;
385         /*
386          * this branch is our 'one mirror IO has finished' event handler:
387          */
388         update_head_pos(slot, r10_bio);
389
390         if (uptodate) {
391                 /*
392                  * Set R10BIO_Uptodate in our master bio, so that
393                  * we will return a good error code to the higher
394                  * levels even if IO on some other mirrored buffer fails.
395                  *
396                  * The 'master' represents the composite IO operation to
397                  * user-side. So if something waits for IO, then it will
398                  * wait for the 'master' bio.
399                  */
400                 set_bit(R10BIO_Uptodate, &r10_bio->state);
401         } else {
402                 /* If all other devices that store this block have
403                  * failed, we want to return the error upwards rather
404                  * than fail the last device.  Here we redefine
405                  * "uptodate" to mean "Don't want to retry"
406                  */
407                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
408                              rdev->raid_disk))
409                         uptodate = 1;
410         }
411         if (uptodate) {
412                 raid_end_bio_io(r10_bio);
413                 rdev_dec_pending(rdev, conf->mddev);
414         } else {
415                 /*
416                  * oops, read error - keep the refcount on the rdev
417                  */
418                 pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
419                                    mdname(conf->mddev),
420                                    rdev->bdev,
421                                    (unsigned long long)r10_bio->sector);
422                 set_bit(R10BIO_ReadError, &r10_bio->state);
423                 reschedule_retry(r10_bio);
424         }
425 }
426
427 static void close_write(struct r10bio *r10_bio)
428 {
429         struct mddev *mddev = r10_bio->mddev;
430
431         /* clear the bitmap if all writes complete successfully */
432         mddev->bitmap_ops->endwrite(mddev, r10_bio->sector, r10_bio->sectors,
433                                     !test_bit(R10BIO_Degraded, &r10_bio->state),
434                                     false);
435         md_write_end(mddev);
436 }
437
438 static void one_write_done(struct r10bio *r10_bio)
439 {
440         if (atomic_dec_and_test(&r10_bio->remaining)) {
441                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
442                         reschedule_retry(r10_bio);
443                 else {
444                         close_write(r10_bio);
445                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
446                                 reschedule_retry(r10_bio);
447                         else
448                                 raid_end_bio_io(r10_bio);
449                 }
450         }
451 }
452
453 static void raid10_end_write_request(struct bio *bio)
454 {
455         struct r10bio *r10_bio = bio->bi_private;
456         int dev;
457         int dec_rdev = 1;
458         struct r10conf *conf = r10_bio->mddev->private;
459         int slot, repl;
460         struct md_rdev *rdev = NULL;
461         struct bio *to_put = NULL;
462         bool discard_error;
463
464         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
465
466         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
467
468         if (repl)
469                 rdev = conf->mirrors[dev].replacement;
470         if (!rdev) {
471                 smp_rmb();
472                 repl = 0;
473                 rdev = conf->mirrors[dev].rdev;
474         }
475         /*
476          * this branch is our 'one mirror IO has finished' event handler:
477          */
478         if (bio->bi_status && !discard_error) {
479                 if (repl)
480                         /* Never record new bad blocks to replacement,
481                          * just fail it.
482                          */
483                         md_error(rdev->mddev, rdev);
484                 else {
485                         set_bit(WriteErrorSeen, &rdev->flags);
486                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
487                                 set_bit(MD_RECOVERY_NEEDED,
488                                         &rdev->mddev->recovery);
489
490                         dec_rdev = 0;
491                         if (test_bit(FailFast, &rdev->flags) &&
492                             (bio->bi_opf & MD_FAILFAST)) {
493                                 md_error(rdev->mddev, rdev);
494                         }
495
496                         /*
497                          * When the device is faulty, it is not necessary to
498                          * handle write error.
499                          */
500                         if (!test_bit(Faulty, &rdev->flags))
501                                 set_bit(R10BIO_WriteError, &r10_bio->state);
502                         else {
503                                 /* Fail the request */
504                                 set_bit(R10BIO_Degraded, &r10_bio->state);
505                                 r10_bio->devs[slot].bio = NULL;
506                                 to_put = bio;
507                                 dec_rdev = 1;
508                         }
509                 }
510         } else {
511                 /*
512                  * Set R10BIO_Uptodate in our master bio, so that
513                  * we will return a good error code for to the higher
514                  * levels even if IO on some other mirrored buffer fails.
515                  *
516                  * The 'master' represents the composite IO operation to
517                  * user-side. So if something waits for IO, then it will
518                  * wait for the 'master' bio.
519                  *
520                  * Do not set R10BIO_Uptodate if the current device is
521                  * rebuilding or Faulty. This is because we cannot use
522                  * such device for properly reading the data back (we could
523                  * potentially use it, if the current write would have felt
524                  * before rdev->recovery_offset, but for simplicity we don't
525                  * check this here.
526                  */
527                 if (test_bit(In_sync, &rdev->flags) &&
528                     !test_bit(Faulty, &rdev->flags))
529                         set_bit(R10BIO_Uptodate, &r10_bio->state);
530
531                 /* Maybe we can clear some bad blocks. */
532                 if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr,
533                                       r10_bio->sectors) &&
534                     !discard_error) {
535                         bio_put(bio);
536                         if (repl)
537                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
538                         else
539                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
540                         dec_rdev = 0;
541                         set_bit(R10BIO_MadeGood, &r10_bio->state);
542                 }
543         }
544
545         /*
546          *
547          * Let's see if all mirrored write operations have finished
548          * already.
549          */
550         one_write_done(r10_bio);
551         if (dec_rdev)
552                 rdev_dec_pending(rdev, conf->mddev);
553         if (to_put)
554                 bio_put(to_put);
555 }
556
557 /*
558  * RAID10 layout manager
559  * As well as the chunksize and raid_disks count, there are two
560  * parameters: near_copies and far_copies.
561  * near_copies * far_copies must be <= raid_disks.
562  * Normally one of these will be 1.
563  * If both are 1, we get raid0.
564  * If near_copies == raid_disks, we get raid1.
565  *
566  * Chunks are laid out in raid0 style with near_copies copies of the
567  * first chunk, followed by near_copies copies of the next chunk and
568  * so on.
569  * If far_copies > 1, then after 1/far_copies of the array has been assigned
570  * as described above, we start again with a device offset of near_copies.
571  * So we effectively have another copy of the whole array further down all
572  * the drives, but with blocks on different drives.
573  * With this layout, and block is never stored twice on the one device.
574  *
575  * raid10_find_phys finds the sector offset of a given virtual sector
576  * on each device that it is on.
577  *
578  * raid10_find_virt does the reverse mapping, from a device and a
579  * sector offset to a virtual address
580  */
581
582 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
583 {
584         int n,f;
585         sector_t sector;
586         sector_t chunk;
587         sector_t stripe;
588         int dev;
589         int slot = 0;
590         int last_far_set_start, last_far_set_size;
591
592         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
593         last_far_set_start *= geo->far_set_size;
594
595         last_far_set_size = geo->far_set_size;
596         last_far_set_size += (geo->raid_disks % geo->far_set_size);
597
598         /* now calculate first sector/dev */
599         chunk = r10bio->sector >> geo->chunk_shift;
600         sector = r10bio->sector & geo->chunk_mask;
601
602         chunk *= geo->near_copies;
603         stripe = chunk;
604         dev = sector_div(stripe, geo->raid_disks);
605         if (geo->far_offset)
606                 stripe *= geo->far_copies;
607
608         sector += stripe << geo->chunk_shift;
609
610         /* and calculate all the others */
611         for (n = 0; n < geo->near_copies; n++) {
612                 int d = dev;
613                 int set;
614                 sector_t s = sector;
615                 r10bio->devs[slot].devnum = d;
616                 r10bio->devs[slot].addr = s;
617                 slot++;
618
619                 for (f = 1; f < geo->far_copies; f++) {
620                         set = d / geo->far_set_size;
621                         d += geo->near_copies;
622
623                         if ((geo->raid_disks % geo->far_set_size) &&
624                             (d > last_far_set_start)) {
625                                 d -= last_far_set_start;
626                                 d %= last_far_set_size;
627                                 d += last_far_set_start;
628                         } else {
629                                 d %= geo->far_set_size;
630                                 d += geo->far_set_size * set;
631                         }
632                         s += geo->stride;
633                         r10bio->devs[slot].devnum = d;
634                         r10bio->devs[slot].addr = s;
635                         slot++;
636                 }
637                 dev++;
638                 if (dev >= geo->raid_disks) {
639                         dev = 0;
640                         sector += (geo->chunk_mask + 1);
641                 }
642         }
643 }
644
645 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
646 {
647         struct geom *geo = &conf->geo;
648
649         if (conf->reshape_progress != MaxSector &&
650             ((r10bio->sector >= conf->reshape_progress) !=
651              conf->mddev->reshape_backwards)) {
652                 set_bit(R10BIO_Previous, &r10bio->state);
653                 geo = &conf->prev;
654         } else
655                 clear_bit(R10BIO_Previous, &r10bio->state);
656
657         __raid10_find_phys(geo, r10bio);
658 }
659
660 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
661 {
662         sector_t offset, chunk, vchunk;
663         /* Never use conf->prev as this is only called during resync
664          * or recovery, so reshape isn't happening
665          */
666         struct geom *geo = &conf->geo;
667         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
668         int far_set_size = geo->far_set_size;
669         int last_far_set_start;
670
671         if (geo->raid_disks % geo->far_set_size) {
672                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
673                 last_far_set_start *= geo->far_set_size;
674
675                 if (dev >= last_far_set_start) {
676                         far_set_size = geo->far_set_size;
677                         far_set_size += (geo->raid_disks % geo->far_set_size);
678                         far_set_start = last_far_set_start;
679                 }
680         }
681
682         offset = sector & geo->chunk_mask;
683         if (geo->far_offset) {
684                 int fc;
685                 chunk = sector >> geo->chunk_shift;
686                 fc = sector_div(chunk, geo->far_copies);
687                 dev -= fc * geo->near_copies;
688                 if (dev < far_set_start)
689                         dev += far_set_size;
690         } else {
691                 while (sector >= geo->stride) {
692                         sector -= geo->stride;
693                         if (dev < (geo->near_copies + far_set_start))
694                                 dev += far_set_size - geo->near_copies;
695                         else
696                                 dev -= geo->near_copies;
697                 }
698                 chunk = sector >> geo->chunk_shift;
699         }
700         vchunk = chunk * geo->raid_disks + dev;
701         sector_div(vchunk, geo->near_copies);
702         return (vchunk << geo->chunk_shift) + offset;
703 }
704
705 /*
706  * This routine returns the disk from which the requested read should
707  * be done. There is a per-array 'next expected sequential IO' sector
708  * number - if this matches on the next IO then we use the last disk.
709  * There is also a per-disk 'last know head position' sector that is
710  * maintained from IRQ contexts, both the normal and the resync IO
711  * completion handlers update this position correctly. If there is no
712  * perfect sequential match then we pick the disk whose head is closest.
713  *
714  * If there are 2 mirrors in the same 2 devices, performance degrades
715  * because position is mirror, not device based.
716  *
717  * The rdev for the device selected will have nr_pending incremented.
718  */
719
720 /*
721  * FIXME: possibly should rethink readbalancing and do it differently
722  * depending on near_copies / far_copies geometry.
723  */
724 static struct md_rdev *read_balance(struct r10conf *conf,
725                                     struct r10bio *r10_bio,
726                                     int *max_sectors)
727 {
728         const sector_t this_sector = r10_bio->sector;
729         int disk, slot;
730         int sectors = r10_bio->sectors;
731         int best_good_sectors;
732         sector_t new_distance, best_dist;
733         struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
734         int do_balance;
735         int best_dist_slot, best_pending_slot;
736         bool has_nonrot_disk = false;
737         unsigned int min_pending;
738         struct geom *geo = &conf->geo;
739
740         raid10_find_phys(conf, r10_bio);
741         best_dist_slot = -1;
742         min_pending = UINT_MAX;
743         best_dist_rdev = NULL;
744         best_pending_rdev = NULL;
745         best_dist = MaxSector;
746         best_good_sectors = 0;
747         do_balance = 1;
748         clear_bit(R10BIO_FailFast, &r10_bio->state);
749
750         if (raid1_should_read_first(conf->mddev, this_sector, sectors))
751                 do_balance = 0;
752
753         for (slot = 0; slot < conf->copies ; slot++) {
754                 sector_t first_bad;
755                 int bad_sectors;
756                 sector_t dev_sector;
757                 unsigned int pending;
758                 bool nonrot;
759
760                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
761                         continue;
762                 disk = r10_bio->devs[slot].devnum;
763                 rdev = conf->mirrors[disk].replacement;
764                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
765                     r10_bio->devs[slot].addr + sectors >
766                     rdev->recovery_offset)
767                         rdev = conf->mirrors[disk].rdev;
768                 if (rdev == NULL ||
769                     test_bit(Faulty, &rdev->flags))
770                         continue;
771                 if (!test_bit(In_sync, &rdev->flags) &&
772                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
773                         continue;
774
775                 dev_sector = r10_bio->devs[slot].addr;
776                 if (is_badblock(rdev, dev_sector, sectors,
777                                 &first_bad, &bad_sectors)) {
778                         if (best_dist < MaxSector)
779                                 /* Already have a better slot */
780                                 continue;
781                         if (first_bad <= dev_sector) {
782                                 /* Cannot read here.  If this is the
783                                  * 'primary' device, then we must not read
784                                  * beyond 'bad_sectors' from another device.
785                                  */
786                                 bad_sectors -= (dev_sector - first_bad);
787                                 if (!do_balance && sectors > bad_sectors)
788                                         sectors = bad_sectors;
789                                 if (best_good_sectors > sectors)
790                                         best_good_sectors = sectors;
791                         } else {
792                                 sector_t good_sectors =
793                                         first_bad - dev_sector;
794                                 if (good_sectors > best_good_sectors) {
795                                         best_good_sectors = good_sectors;
796                                         best_dist_slot = slot;
797                                         best_dist_rdev = rdev;
798                                 }
799                                 if (!do_balance)
800                                         /* Must read from here */
801                                         break;
802                         }
803                         continue;
804                 } else
805                         best_good_sectors = sectors;
806
807                 if (!do_balance)
808                         break;
809
810                 nonrot = bdev_nonrot(rdev->bdev);
811                 has_nonrot_disk |= nonrot;
812                 pending = atomic_read(&rdev->nr_pending);
813                 if (min_pending > pending && nonrot) {
814                         min_pending = pending;
815                         best_pending_slot = slot;
816                         best_pending_rdev = rdev;
817                 }
818
819                 if (best_dist_slot >= 0)
820                         /* At least 2 disks to choose from so failfast is OK */
821                         set_bit(R10BIO_FailFast, &r10_bio->state);
822                 /* This optimisation is debatable, and completely destroys
823                  * sequential read speed for 'far copies' arrays.  So only
824                  * keep it for 'near' arrays, and review those later.
825                  */
826                 if (geo->near_copies > 1 && !pending)
827                         new_distance = 0;
828
829                 /* for far > 1 always use the lowest address */
830                 else if (geo->far_copies > 1)
831                         new_distance = r10_bio->devs[slot].addr;
832                 else
833                         new_distance = abs(r10_bio->devs[slot].addr -
834                                            conf->mirrors[disk].head_position);
835
836                 if (new_distance < best_dist) {
837                         best_dist = new_distance;
838                         best_dist_slot = slot;
839                         best_dist_rdev = rdev;
840                 }
841         }
842         if (slot >= conf->copies) {
843                 if (has_nonrot_disk) {
844                         slot = best_pending_slot;
845                         rdev = best_pending_rdev;
846                 } else {
847                         slot = best_dist_slot;
848                         rdev = best_dist_rdev;
849                 }
850         }
851
852         if (slot >= 0) {
853                 atomic_inc(&rdev->nr_pending);
854                 r10_bio->read_slot = slot;
855         } else
856                 rdev = NULL;
857         *max_sectors = best_good_sectors;
858
859         return rdev;
860 }
861
862 static void flush_pending_writes(struct r10conf *conf)
863 {
864         /* Any writes that have been queued but are awaiting
865          * bitmap updates get flushed here.
866          */
867         spin_lock_irq(&conf->device_lock);
868
869         if (conf->pending_bio_list.head) {
870                 struct blk_plug plug;
871                 struct bio *bio;
872
873                 bio = bio_list_get(&conf->pending_bio_list);
874                 spin_unlock_irq(&conf->device_lock);
875
876                 /*
877                  * As this is called in a wait_event() loop (see freeze_array),
878                  * current->state might be TASK_UNINTERRUPTIBLE which will
879                  * cause a warning when we prepare to wait again.  As it is
880                  * rare that this path is taken, it is perfectly safe to force
881                  * us to go around the wait_event() loop again, so the warning
882                  * is a false-positive. Silence the warning by resetting
883                  * thread state
884                  */
885                 __set_current_state(TASK_RUNNING);
886
887                 blk_start_plug(&plug);
888                 raid1_prepare_flush_writes(conf->mddev);
889                 wake_up(&conf->wait_barrier);
890
891                 while (bio) { /* submit pending writes */
892                         struct bio *next = bio->bi_next;
893
894                         raid1_submit_write(bio);
895                         bio = next;
896                         cond_resched();
897                 }
898                 blk_finish_plug(&plug);
899         } else
900                 spin_unlock_irq(&conf->device_lock);
901 }
902
903 /* Barriers....
904  * Sometimes we need to suspend IO while we do something else,
905  * either some resync/recovery, or reconfigure the array.
906  * To do this we raise a 'barrier'.
907  * The 'barrier' is a counter that can be raised multiple times
908  * to count how many activities are happening which preclude
909  * normal IO.
910  * We can only raise the barrier if there is no pending IO.
911  * i.e. if nr_pending == 0.
912  * We choose only to raise the barrier if no-one is waiting for the
913  * barrier to go down.  This means that as soon as an IO request
914  * is ready, no other operations which require a barrier will start
915  * until the IO request has had a chance.
916  *
917  * So: regular IO calls 'wait_barrier'.  When that returns there
918  *    is no backgroup IO happening,  It must arrange to call
919  *    allow_barrier when it has finished its IO.
920  * backgroup IO calls must call raise_barrier.  Once that returns
921  *    there is no normal IO happeing.  It must arrange to call
922  *    lower_barrier when the particular background IO completes.
923  */
924
925 static void raise_barrier(struct r10conf *conf, int force)
926 {
927         write_seqlock_irq(&conf->resync_lock);
928
929         if (WARN_ON_ONCE(force && !conf->barrier))
930                 force = false;
931
932         /* Wait until no block IO is waiting (unless 'force') */
933         wait_event_barrier(conf, force || !conf->nr_waiting);
934
935         /* block any new IO from starting */
936         WRITE_ONCE(conf->barrier, conf->barrier + 1);
937
938         /* Now wait for all pending IO to complete */
939         wait_event_barrier(conf, !atomic_read(&conf->nr_pending) &&
940                                  conf->barrier < RESYNC_DEPTH);
941
942         write_sequnlock_irq(&conf->resync_lock);
943 }
944
945 static void lower_barrier(struct r10conf *conf)
946 {
947         unsigned long flags;
948
949         write_seqlock_irqsave(&conf->resync_lock, flags);
950         WRITE_ONCE(conf->barrier, conf->barrier - 1);
951         write_sequnlock_irqrestore(&conf->resync_lock, flags);
952         wake_up(&conf->wait_barrier);
953 }
954
955 static bool stop_waiting_barrier(struct r10conf *conf)
956 {
957         struct bio_list *bio_list = current->bio_list;
958         struct md_thread *thread;
959
960         /* barrier is dropped */
961         if (!conf->barrier)
962                 return true;
963
964         /*
965          * If there are already pending requests (preventing the barrier from
966          * rising completely), and the pre-process bio queue isn't empty, then
967          * don't wait, as we need to empty that queue to get the nr_pending
968          * count down.
969          */
970         if (atomic_read(&conf->nr_pending) && bio_list &&
971             (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1])))
972                 return true;
973
974         /* daemon thread must exist while handling io */
975         thread = rcu_dereference_protected(conf->mddev->thread, true);
976         /*
977          * move on if io is issued from raid10d(), nr_pending is not released
978          * from original io(see handle_read_error()). All raise barrier is
979          * blocked until this io is done.
980          */
981         if (thread->tsk == current) {
982                 WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0);
983                 return true;
984         }
985
986         return false;
987 }
988
989 static bool wait_barrier_nolock(struct r10conf *conf)
990 {
991         unsigned int seq = read_seqbegin(&conf->resync_lock);
992
993         if (READ_ONCE(conf->barrier))
994                 return false;
995
996         atomic_inc(&conf->nr_pending);
997         if (!read_seqretry(&conf->resync_lock, seq))
998                 return true;
999
1000         if (atomic_dec_and_test(&conf->nr_pending))
1001                 wake_up_barrier(conf);
1002
1003         return false;
1004 }
1005
1006 static bool wait_barrier(struct r10conf *conf, bool nowait)
1007 {
1008         bool ret = true;
1009
1010         if (wait_barrier_nolock(conf))
1011                 return true;
1012
1013         write_seqlock_irq(&conf->resync_lock);
1014         if (conf->barrier) {
1015                 /* Return false when nowait flag is set */
1016                 if (nowait) {
1017                         ret = false;
1018                 } else {
1019                         conf->nr_waiting++;
1020                         mddev_add_trace_msg(conf->mddev, "raid10 wait barrier");
1021                         wait_event_barrier(conf, stop_waiting_barrier(conf));
1022                         conf->nr_waiting--;
1023                 }
1024                 if (!conf->nr_waiting)
1025                         wake_up(&conf->wait_barrier);
1026         }
1027         /* Only increment nr_pending when we wait */
1028         if (ret)
1029                 atomic_inc(&conf->nr_pending);
1030         write_sequnlock_irq(&conf->resync_lock);
1031         return ret;
1032 }
1033
1034 static void allow_barrier(struct r10conf *conf)
1035 {
1036         if ((atomic_dec_and_test(&conf->nr_pending)) ||
1037                         (conf->array_freeze_pending))
1038                 wake_up_barrier(conf);
1039 }
1040
1041 static void freeze_array(struct r10conf *conf, int extra)
1042 {
1043         /* stop syncio and normal IO and wait for everything to
1044          * go quiet.
1045          * We increment barrier and nr_waiting, and then
1046          * wait until nr_pending match nr_queued+extra
1047          * This is called in the context of one normal IO request
1048          * that has failed. Thus any sync request that might be pending
1049          * will be blocked by nr_pending, and we need to wait for
1050          * pending IO requests to complete or be queued for re-try.
1051          * Thus the number queued (nr_queued) plus this request (extra)
1052          * must match the number of pending IOs (nr_pending) before
1053          * we continue.
1054          */
1055         write_seqlock_irq(&conf->resync_lock);
1056         conf->array_freeze_pending++;
1057         WRITE_ONCE(conf->barrier, conf->barrier + 1);
1058         conf->nr_waiting++;
1059         wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) ==
1060                         conf->nr_queued + extra, flush_pending_writes(conf));
1061         conf->array_freeze_pending--;
1062         write_sequnlock_irq(&conf->resync_lock);
1063 }
1064
1065 static void unfreeze_array(struct r10conf *conf)
1066 {
1067         /* reverse the effect of the freeze */
1068         write_seqlock_irq(&conf->resync_lock);
1069         WRITE_ONCE(conf->barrier, conf->barrier - 1);
1070         conf->nr_waiting--;
1071         wake_up(&conf->wait_barrier);
1072         write_sequnlock_irq(&conf->resync_lock);
1073 }
1074
1075 static sector_t choose_data_offset(struct r10bio *r10_bio,
1076                                    struct md_rdev *rdev)
1077 {
1078         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1079             test_bit(R10BIO_Previous, &r10_bio->state))
1080                 return rdev->data_offset;
1081         else
1082                 return rdev->new_data_offset;
1083 }
1084
1085 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1086 {
1087         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
1088         struct mddev *mddev = plug->cb.data;
1089         struct r10conf *conf = mddev->private;
1090         struct bio *bio;
1091
1092         if (from_schedule) {
1093                 spin_lock_irq(&conf->device_lock);
1094                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1095                 spin_unlock_irq(&conf->device_lock);
1096                 wake_up_barrier(conf);
1097                 md_wakeup_thread(mddev->thread);
1098                 kfree(plug);
1099                 return;
1100         }
1101
1102         /* we aren't scheduling, so we can do the write-out directly. */
1103         bio = bio_list_get(&plug->pending);
1104         raid1_prepare_flush_writes(mddev);
1105         wake_up_barrier(conf);
1106
1107         while (bio) { /* submit pending writes */
1108                 struct bio *next = bio->bi_next;
1109
1110                 raid1_submit_write(bio);
1111                 bio = next;
1112                 cond_resched();
1113         }
1114         kfree(plug);
1115 }
1116
1117 /*
1118  * 1. Register the new request and wait if the reconstruction thread has put
1119  * up a bar for new requests. Continue immediately if no resync is active
1120  * currently.
1121  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1122  */
1123 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1124                                  struct bio *bio, sector_t sectors)
1125 {
1126         /* Bail out if REQ_NOWAIT is set for the bio */
1127         if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1128                 bio_wouldblock_error(bio);
1129                 return false;
1130         }
1131         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1132             bio->bi_iter.bi_sector < conf->reshape_progress &&
1133             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1134                 allow_barrier(conf);
1135                 if (bio->bi_opf & REQ_NOWAIT) {
1136                         bio_wouldblock_error(bio);
1137                         return false;
1138                 }
1139                 mddev_add_trace_msg(conf->mddev, "raid10 wait reshape");
1140                 wait_event(conf->wait_barrier,
1141                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1142                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1143                            sectors);
1144                 wait_barrier(conf, false);
1145         }
1146         return true;
1147 }
1148
1149 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1150                                 struct r10bio *r10_bio, bool io_accounting)
1151 {
1152         struct r10conf *conf = mddev->private;
1153         struct bio *read_bio;
1154         const enum req_op op = bio_op(bio);
1155         const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1156         int max_sectors;
1157         struct md_rdev *rdev;
1158         char b[BDEVNAME_SIZE];
1159         int slot = r10_bio->read_slot;
1160         struct md_rdev *err_rdev = NULL;
1161         gfp_t gfp = GFP_NOIO;
1162
1163         if (slot >= 0 && r10_bio->devs[slot].rdev) {
1164                 /*
1165                  * This is an error retry, but we cannot
1166                  * safely dereference the rdev in the r10_bio,
1167                  * we must use the one in conf.
1168                  * If it has already been disconnected (unlikely)
1169                  * we lose the device name in error messages.
1170                  */
1171                 int disk;
1172                 /*
1173                  * As we are blocking raid10, it is a little safer to
1174                  * use __GFP_HIGH.
1175                  */
1176                 gfp = GFP_NOIO | __GFP_HIGH;
1177
1178                 disk = r10_bio->devs[slot].devnum;
1179                 err_rdev = conf->mirrors[disk].rdev;
1180                 if (err_rdev)
1181                         snprintf(b, sizeof(b), "%pg", err_rdev->bdev);
1182                 else {
1183                         strcpy(b, "???");
1184                         /* This never gets dereferenced */
1185                         err_rdev = r10_bio->devs[slot].rdev;
1186                 }
1187         }
1188
1189         if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
1190                 return;
1191         rdev = read_balance(conf, r10_bio, &max_sectors);
1192         if (!rdev) {
1193                 if (err_rdev) {
1194                         pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1195                                             mdname(mddev), b,
1196                                             (unsigned long long)r10_bio->sector);
1197                 }
1198                 raid_end_bio_io(r10_bio);
1199                 return;
1200         }
1201         if (err_rdev)
1202                 pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
1203                                    mdname(mddev),
1204                                    rdev->bdev,
1205                                    (unsigned long long)r10_bio->sector);
1206         if (max_sectors < bio_sectors(bio)) {
1207                 struct bio *split = bio_split(bio, max_sectors,
1208                                               gfp, &conf->bio_split);
1209                 bio_chain(split, bio);
1210                 allow_barrier(conf);
1211                 submit_bio_noacct(bio);
1212                 wait_barrier(conf, false);
1213                 bio = split;
1214                 r10_bio->master_bio = bio;
1215                 r10_bio->sectors = max_sectors;
1216         }
1217         slot = r10_bio->read_slot;
1218
1219         if (io_accounting) {
1220                 md_account_bio(mddev, &bio);
1221                 r10_bio->master_bio = bio;
1222         }
1223         read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
1224
1225         r10_bio->devs[slot].bio = read_bio;
1226         r10_bio->devs[slot].rdev = rdev;
1227
1228         read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1229                 choose_data_offset(r10_bio, rdev);
1230         read_bio->bi_end_io = raid10_end_read_request;
1231         read_bio->bi_opf = op | do_sync;
1232         if (test_bit(FailFast, &rdev->flags) &&
1233             test_bit(R10BIO_FailFast, &r10_bio->state))
1234                 read_bio->bi_opf |= MD_FAILFAST;
1235         read_bio->bi_private = r10_bio;
1236         mddev_trace_remap(mddev, read_bio, r10_bio->sector);
1237         submit_bio_noacct(read_bio);
1238         return;
1239 }
1240
1241 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1242                                   struct bio *bio, bool replacement,
1243                                   int n_copy)
1244 {
1245         const enum req_op op = bio_op(bio);
1246         const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1247         const blk_opf_t do_fua = bio->bi_opf & REQ_FUA;
1248         unsigned long flags;
1249         struct r10conf *conf = mddev->private;
1250         struct md_rdev *rdev;
1251         int devnum = r10_bio->devs[n_copy].devnum;
1252         struct bio *mbio;
1253
1254         rdev = replacement ? conf->mirrors[devnum].replacement :
1255                              conf->mirrors[devnum].rdev;
1256
1257         mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
1258         if (replacement)
1259                 r10_bio->devs[n_copy].repl_bio = mbio;
1260         else
1261                 r10_bio->devs[n_copy].bio = mbio;
1262
1263         mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1264                                    choose_data_offset(r10_bio, rdev));
1265         mbio->bi_end_io = raid10_end_write_request;
1266         mbio->bi_opf = op | do_sync | do_fua;
1267         if (!replacement && test_bit(FailFast,
1268                                      &conf->mirrors[devnum].rdev->flags)
1269                          && enough(conf, devnum))
1270                 mbio->bi_opf |= MD_FAILFAST;
1271         mbio->bi_private = r10_bio;
1272         mddev_trace_remap(mddev, mbio, r10_bio->sector);
1273         /* flush_pending_writes() needs access to the rdev so...*/
1274         mbio->bi_bdev = (void *)rdev;
1275
1276         atomic_inc(&r10_bio->remaining);
1277
1278         if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) {
1279                 spin_lock_irqsave(&conf->device_lock, flags);
1280                 bio_list_add(&conf->pending_bio_list, mbio);
1281                 spin_unlock_irqrestore(&conf->device_lock, flags);
1282                 md_wakeup_thread(mddev->thread);
1283         }
1284 }
1285
1286 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1287 {
1288         int i;
1289         struct r10conf *conf = mddev->private;
1290         struct md_rdev *blocked_rdev;
1291
1292 retry_wait:
1293         blocked_rdev = NULL;
1294         for (i = 0; i < conf->copies; i++) {
1295                 struct md_rdev *rdev, *rrdev;
1296
1297                 rdev = conf->mirrors[i].rdev;
1298                 rrdev = conf->mirrors[i].replacement;
1299                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1300                         atomic_inc(&rdev->nr_pending);
1301                         blocked_rdev = rdev;
1302                         break;
1303                 }
1304                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1305                         atomic_inc(&rrdev->nr_pending);
1306                         blocked_rdev = rrdev;
1307                         break;
1308                 }
1309
1310                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1311                         sector_t dev_sector = r10_bio->devs[i].addr;
1312
1313                         /*
1314                          * Discard request doesn't care the write result
1315                          * so it doesn't need to wait blocked disk here.
1316                          */
1317                         if (!r10_bio->sectors)
1318                                 continue;
1319
1320                         if (rdev_has_badblock(rdev, dev_sector,
1321                                               r10_bio->sectors) < 0) {
1322                                 /*
1323                                  * Mustn't write here until the bad block
1324                                  * is acknowledged
1325                                  */
1326                                 atomic_inc(&rdev->nr_pending);
1327                                 set_bit(BlockedBadBlocks, &rdev->flags);
1328                                 blocked_rdev = rdev;
1329                                 break;
1330                         }
1331                 }
1332         }
1333
1334         if (unlikely(blocked_rdev)) {
1335                 /* Have to wait for this device to get unblocked, then retry */
1336                 allow_barrier(conf);
1337                 mddev_add_trace_msg(conf->mddev,
1338                         "raid10 %s wait rdev %d blocked",
1339                         __func__, blocked_rdev->raid_disk);
1340                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1341                 wait_barrier(conf, false);
1342                 goto retry_wait;
1343         }
1344 }
1345
1346 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1347                                  struct r10bio *r10_bio)
1348 {
1349         struct r10conf *conf = mddev->private;
1350         int i;
1351         sector_t sectors;
1352         int max_sectors;
1353
1354         if ((mddev_is_clustered(mddev) &&
1355              md_cluster_ops->area_resyncing(mddev, WRITE,
1356                                             bio->bi_iter.bi_sector,
1357                                             bio_end_sector(bio)))) {
1358                 DEFINE_WAIT(w);
1359                 /* Bail out if REQ_NOWAIT is set for the bio */
1360                 if (bio->bi_opf & REQ_NOWAIT) {
1361                         bio_wouldblock_error(bio);
1362                         return;
1363                 }
1364                 for (;;) {
1365                         prepare_to_wait(&conf->wait_barrier,
1366                                         &w, TASK_IDLE);
1367                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1368                                  bio->bi_iter.bi_sector, bio_end_sector(bio)))
1369                                 break;
1370                         schedule();
1371                 }
1372                 finish_wait(&conf->wait_barrier, &w);
1373         }
1374
1375         sectors = r10_bio->sectors;
1376         if (!regular_request_wait(mddev, conf, bio, sectors))
1377                 return;
1378         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1379             (mddev->reshape_backwards
1380              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1381                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1382              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1383                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1384                 /* Need to update reshape_position in metadata */
1385                 mddev->reshape_position = conf->reshape_progress;
1386                 set_mask_bits(&mddev->sb_flags, 0,
1387                               BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1388                 md_wakeup_thread(mddev->thread);
1389                 if (bio->bi_opf & REQ_NOWAIT) {
1390                         allow_barrier(conf);
1391                         bio_wouldblock_error(bio);
1392                         return;
1393                 }
1394                 mddev_add_trace_msg(conf->mddev,
1395                         "raid10 wait reshape metadata");
1396                 wait_event(mddev->sb_wait,
1397                            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1398
1399                 conf->reshape_safe = mddev->reshape_position;
1400         }
1401
1402         /* first select target devices under rcu_lock and
1403          * inc refcount on their rdev.  Record them by setting
1404          * bios[x] to bio
1405          * If there are known/acknowledged bad blocks on any device
1406          * on which we have seen a write error, we want to avoid
1407          * writing to those blocks.  This potentially requires several
1408          * writes to write around the bad blocks.  Each set of writes
1409          * gets its own r10_bio with a set of bios attached.
1410          */
1411
1412         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1413         raid10_find_phys(conf, r10_bio);
1414
1415         wait_blocked_dev(mddev, r10_bio);
1416
1417         max_sectors = r10_bio->sectors;
1418
1419         for (i = 0;  i < conf->copies; i++) {
1420                 int d = r10_bio->devs[i].devnum;
1421                 struct md_rdev *rdev, *rrdev;
1422
1423                 rdev = conf->mirrors[d].rdev;
1424                 rrdev = conf->mirrors[d].replacement;
1425                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1426                         rdev = NULL;
1427                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1428                         rrdev = NULL;
1429
1430                 r10_bio->devs[i].bio = NULL;
1431                 r10_bio->devs[i].repl_bio = NULL;
1432
1433                 if (!rdev && !rrdev) {
1434                         set_bit(R10BIO_Degraded, &r10_bio->state);
1435                         continue;
1436                 }
1437                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1438                         sector_t first_bad;
1439                         sector_t dev_sector = r10_bio->devs[i].addr;
1440                         int bad_sectors;
1441                         int is_bad;
1442
1443                         is_bad = is_badblock(rdev, dev_sector, max_sectors,
1444                                              &first_bad, &bad_sectors);
1445                         if (is_bad && first_bad <= dev_sector) {
1446                                 /* Cannot write here at all */
1447                                 bad_sectors -= (dev_sector - first_bad);
1448                                 if (bad_sectors < max_sectors)
1449                                         /* Mustn't write more than bad_sectors
1450                                          * to other devices yet
1451                                          */
1452                                         max_sectors = bad_sectors;
1453                                 /* We don't set R10BIO_Degraded as that
1454                                  * only applies if the disk is missing,
1455                                  * so it might be re-added, and we want to
1456                                  * know to recover this chunk.
1457                                  * In this case the device is here, and the
1458                                  * fact that this chunk is not in-sync is
1459                                  * recorded in the bad block log.
1460                                  */
1461                                 continue;
1462                         }
1463                         if (is_bad) {
1464                                 int good_sectors = first_bad - dev_sector;
1465                                 if (good_sectors < max_sectors)
1466                                         max_sectors = good_sectors;
1467                         }
1468                 }
1469                 if (rdev) {
1470                         r10_bio->devs[i].bio = bio;
1471                         atomic_inc(&rdev->nr_pending);
1472                 }
1473                 if (rrdev) {
1474                         r10_bio->devs[i].repl_bio = bio;
1475                         atomic_inc(&rrdev->nr_pending);
1476                 }
1477         }
1478
1479         if (max_sectors < r10_bio->sectors)
1480                 r10_bio->sectors = max_sectors;
1481
1482         if (r10_bio->sectors < bio_sectors(bio)) {
1483                 struct bio *split = bio_split(bio, r10_bio->sectors,
1484                                               GFP_NOIO, &conf->bio_split);
1485                 bio_chain(split, bio);
1486                 allow_barrier(conf);
1487                 submit_bio_noacct(bio);
1488                 wait_barrier(conf, false);
1489                 bio = split;
1490                 r10_bio->master_bio = bio;
1491         }
1492
1493         md_account_bio(mddev, &bio);
1494         r10_bio->master_bio = bio;
1495         atomic_set(&r10_bio->remaining, 1);
1496         mddev->bitmap_ops->startwrite(mddev, r10_bio->sector, r10_bio->sectors,
1497                                       false);
1498
1499         for (i = 0; i < conf->copies; i++) {
1500                 if (r10_bio->devs[i].bio)
1501                         raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1502                 if (r10_bio->devs[i].repl_bio)
1503                         raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1504         }
1505         one_write_done(r10_bio);
1506 }
1507
1508 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1509 {
1510         struct r10conf *conf = mddev->private;
1511         struct r10bio *r10_bio;
1512
1513         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1514
1515         r10_bio->master_bio = bio;
1516         r10_bio->sectors = sectors;
1517
1518         r10_bio->mddev = mddev;
1519         r10_bio->sector = bio->bi_iter.bi_sector;
1520         r10_bio->state = 0;
1521         r10_bio->read_slot = -1;
1522         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1523                         conf->geo.raid_disks);
1524
1525         if (bio_data_dir(bio) == READ)
1526                 raid10_read_request(mddev, bio, r10_bio, true);
1527         else
1528                 raid10_write_request(mddev, bio, r10_bio);
1529 }
1530
1531 static void raid_end_discard_bio(struct r10bio *r10bio)
1532 {
1533         struct r10conf *conf = r10bio->mddev->private;
1534         struct r10bio *first_r10bio;
1535
1536         while (atomic_dec_and_test(&r10bio->remaining)) {
1537
1538                 allow_barrier(conf);
1539
1540                 if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1541                         first_r10bio = (struct r10bio *)r10bio->master_bio;
1542                         free_r10bio(r10bio);
1543                         r10bio = first_r10bio;
1544                 } else {
1545                         md_write_end(r10bio->mddev);
1546                         bio_endio(r10bio->master_bio);
1547                         free_r10bio(r10bio);
1548                         break;
1549                 }
1550         }
1551 }
1552
1553 static void raid10_end_discard_request(struct bio *bio)
1554 {
1555         struct r10bio *r10_bio = bio->bi_private;
1556         struct r10conf *conf = r10_bio->mddev->private;
1557         struct md_rdev *rdev = NULL;
1558         int dev;
1559         int slot, repl;
1560
1561         /*
1562          * We don't care the return value of discard bio
1563          */
1564         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1565                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1566
1567         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1568         rdev = repl ? conf->mirrors[dev].replacement :
1569                       conf->mirrors[dev].rdev;
1570
1571         raid_end_discard_bio(r10_bio);
1572         rdev_dec_pending(rdev, conf->mddev);
1573 }
1574
1575 /*
1576  * There are some limitations to handle discard bio
1577  * 1st, the discard size is bigger than stripe_size*2.
1578  * 2st, if the discard bio spans reshape progress, we use the old way to
1579  * handle discard bio
1580  */
1581 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1582 {
1583         struct r10conf *conf = mddev->private;
1584         struct geom *geo = &conf->geo;
1585         int far_copies = geo->far_copies;
1586         bool first_copy = true;
1587         struct r10bio *r10_bio, *first_r10bio;
1588         struct bio *split;
1589         int disk;
1590         sector_t chunk;
1591         unsigned int stripe_size;
1592         unsigned int stripe_data_disks;
1593         sector_t split_size;
1594         sector_t bio_start, bio_end;
1595         sector_t first_stripe_index, last_stripe_index;
1596         sector_t start_disk_offset;
1597         unsigned int start_disk_index;
1598         sector_t end_disk_offset;
1599         unsigned int end_disk_index;
1600         unsigned int remainder;
1601
1602         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1603                 return -EAGAIN;
1604
1605         if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) {
1606                 bio_wouldblock_error(bio);
1607                 return 0;
1608         }
1609         wait_barrier(conf, false);
1610
1611         /*
1612          * Check reshape again to avoid reshape happens after checking
1613          * MD_RECOVERY_RESHAPE and before wait_barrier
1614          */
1615         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1616                 goto out;
1617
1618         if (geo->near_copies)
1619                 stripe_data_disks = geo->raid_disks / geo->near_copies +
1620                                         geo->raid_disks % geo->near_copies;
1621         else
1622                 stripe_data_disks = geo->raid_disks;
1623
1624         stripe_size = stripe_data_disks << geo->chunk_shift;
1625
1626         bio_start = bio->bi_iter.bi_sector;
1627         bio_end = bio_end_sector(bio);
1628
1629         /*
1630          * Maybe one discard bio is smaller than strip size or across one
1631          * stripe and discard region is larger than one stripe size. For far
1632          * offset layout, if the discard region is not aligned with stripe
1633          * size, there is hole when we submit discard bio to member disk.
1634          * For simplicity, we only handle discard bio which discard region
1635          * is bigger than stripe_size * 2
1636          */
1637         if (bio_sectors(bio) < stripe_size*2)
1638                 goto out;
1639
1640         /*
1641          * Keep bio aligned with strip size.
1642          */
1643         div_u64_rem(bio_start, stripe_size, &remainder);
1644         if (remainder) {
1645                 split_size = stripe_size - remainder;
1646                 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1647                 bio_chain(split, bio);
1648                 allow_barrier(conf);
1649                 /* Resend the fist split part */
1650                 submit_bio_noacct(split);
1651                 wait_barrier(conf, false);
1652         }
1653         div_u64_rem(bio_end, stripe_size, &remainder);
1654         if (remainder) {
1655                 split_size = bio_sectors(bio) - remainder;
1656                 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1657                 bio_chain(split, bio);
1658                 allow_barrier(conf);
1659                 /* Resend the second split part */
1660                 submit_bio_noacct(bio);
1661                 bio = split;
1662                 wait_barrier(conf, false);
1663         }
1664
1665         bio_start = bio->bi_iter.bi_sector;
1666         bio_end = bio_end_sector(bio);
1667
1668         /*
1669          * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1670          * One stripe contains the chunks from all member disk (one chunk from
1671          * one disk at the same HBA address). For layout detail, see 'man md 4'
1672          */
1673         chunk = bio_start >> geo->chunk_shift;
1674         chunk *= geo->near_copies;
1675         first_stripe_index = chunk;
1676         start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1677         if (geo->far_offset)
1678                 first_stripe_index *= geo->far_copies;
1679         start_disk_offset = (bio_start & geo->chunk_mask) +
1680                                 (first_stripe_index << geo->chunk_shift);
1681
1682         chunk = bio_end >> geo->chunk_shift;
1683         chunk *= geo->near_copies;
1684         last_stripe_index = chunk;
1685         end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1686         if (geo->far_offset)
1687                 last_stripe_index *= geo->far_copies;
1688         end_disk_offset = (bio_end & geo->chunk_mask) +
1689                                 (last_stripe_index << geo->chunk_shift);
1690
1691 retry_discard:
1692         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1693         r10_bio->mddev = mddev;
1694         r10_bio->state = 0;
1695         r10_bio->sectors = 0;
1696         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1697         wait_blocked_dev(mddev, r10_bio);
1698
1699         /*
1700          * For far layout it needs more than one r10bio to cover all regions.
1701          * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1702          * to record the discard bio. Other r10bio->master_bio record the first
1703          * r10bio. The first r10bio only release after all other r10bios finish.
1704          * The discard bio returns only first r10bio finishes
1705          */
1706         if (first_copy) {
1707                 r10_bio->master_bio = bio;
1708                 set_bit(R10BIO_Discard, &r10_bio->state);
1709                 first_copy = false;
1710                 first_r10bio = r10_bio;
1711         } else
1712                 r10_bio->master_bio = (struct bio *)first_r10bio;
1713
1714         /*
1715          * first select target devices under rcu_lock and
1716          * inc refcount on their rdev.  Record them by setting
1717          * bios[x] to bio
1718          */
1719         for (disk = 0; disk < geo->raid_disks; disk++) {
1720                 struct md_rdev *rdev, *rrdev;
1721
1722                 rdev = conf->mirrors[disk].rdev;
1723                 rrdev = conf->mirrors[disk].replacement;
1724                 r10_bio->devs[disk].bio = NULL;
1725                 r10_bio->devs[disk].repl_bio = NULL;
1726
1727                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1728                         rdev = NULL;
1729                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1730                         rrdev = NULL;
1731                 if (!rdev && !rrdev)
1732                         continue;
1733
1734                 if (rdev) {
1735                         r10_bio->devs[disk].bio = bio;
1736                         atomic_inc(&rdev->nr_pending);
1737                 }
1738                 if (rrdev) {
1739                         r10_bio->devs[disk].repl_bio = bio;
1740                         atomic_inc(&rrdev->nr_pending);
1741                 }
1742         }
1743
1744         atomic_set(&r10_bio->remaining, 1);
1745         for (disk = 0; disk < geo->raid_disks; disk++) {
1746                 sector_t dev_start, dev_end;
1747                 struct bio *mbio, *rbio = NULL;
1748
1749                 /*
1750                  * Now start to calculate the start and end address for each disk.
1751                  * The space between dev_start and dev_end is the discard region.
1752                  *
1753                  * For dev_start, it needs to consider three conditions:
1754                  * 1st, the disk is before start_disk, you can imagine the disk in
1755                  * the next stripe. So the dev_start is the start address of next
1756                  * stripe.
1757                  * 2st, the disk is after start_disk, it means the disk is at the
1758                  * same stripe of first disk
1759                  * 3st, the first disk itself, we can use start_disk_offset directly
1760                  */
1761                 if (disk < start_disk_index)
1762                         dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1763                 else if (disk > start_disk_index)
1764                         dev_start = first_stripe_index * mddev->chunk_sectors;
1765                 else
1766                         dev_start = start_disk_offset;
1767
1768                 if (disk < end_disk_index)
1769                         dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1770                 else if (disk > end_disk_index)
1771                         dev_end = last_stripe_index * mddev->chunk_sectors;
1772                 else
1773                         dev_end = end_disk_offset;
1774
1775                 /*
1776                  * It only handles discard bio which size is >= stripe size, so
1777                  * dev_end > dev_start all the time.
1778                  * It doesn't need to use rcu lock to get rdev here. We already
1779                  * add rdev->nr_pending in the first loop.
1780                  */
1781                 if (r10_bio->devs[disk].bio) {
1782                         struct md_rdev *rdev = conf->mirrors[disk].rdev;
1783                         mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1784                                                &mddev->bio_set);
1785                         mbio->bi_end_io = raid10_end_discard_request;
1786                         mbio->bi_private = r10_bio;
1787                         r10_bio->devs[disk].bio = mbio;
1788                         r10_bio->devs[disk].devnum = disk;
1789                         atomic_inc(&r10_bio->remaining);
1790                         md_submit_discard_bio(mddev, rdev, mbio,
1791                                         dev_start + choose_data_offset(r10_bio, rdev),
1792                                         dev_end - dev_start);
1793                         bio_endio(mbio);
1794                 }
1795                 if (r10_bio->devs[disk].repl_bio) {
1796                         struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1797                         rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1798                                                &mddev->bio_set);
1799                         rbio->bi_end_io = raid10_end_discard_request;
1800                         rbio->bi_private = r10_bio;
1801                         r10_bio->devs[disk].repl_bio = rbio;
1802                         r10_bio->devs[disk].devnum = disk;
1803                         atomic_inc(&r10_bio->remaining);
1804                         md_submit_discard_bio(mddev, rrdev, rbio,
1805                                         dev_start + choose_data_offset(r10_bio, rrdev),
1806                                         dev_end - dev_start);
1807                         bio_endio(rbio);
1808                 }
1809         }
1810
1811         if (!geo->far_offset && --far_copies) {
1812                 first_stripe_index += geo->stride >> geo->chunk_shift;
1813                 start_disk_offset += geo->stride;
1814                 last_stripe_index += geo->stride >> geo->chunk_shift;
1815                 end_disk_offset += geo->stride;
1816                 atomic_inc(&first_r10bio->remaining);
1817                 raid_end_discard_bio(r10_bio);
1818                 wait_barrier(conf, false);
1819                 goto retry_discard;
1820         }
1821
1822         raid_end_discard_bio(r10_bio);
1823
1824         return 0;
1825 out:
1826         allow_barrier(conf);
1827         return -EAGAIN;
1828 }
1829
1830 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1831 {
1832         struct r10conf *conf = mddev->private;
1833         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1834         int chunk_sects = chunk_mask + 1;
1835         int sectors = bio_sectors(bio);
1836
1837         if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1838             && md_flush_request(mddev, bio))
1839                 return true;
1840
1841         md_write_start(mddev, bio);
1842
1843         if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1844                 if (!raid10_handle_discard(mddev, bio))
1845                         return true;
1846
1847         /*
1848          * If this request crosses a chunk boundary, we need to split
1849          * it.
1850          */
1851         if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1852                      sectors > chunk_sects
1853                      && (conf->geo.near_copies < conf->geo.raid_disks
1854                          || conf->prev.near_copies <
1855                          conf->prev.raid_disks)))
1856                 sectors = chunk_sects -
1857                         (bio->bi_iter.bi_sector &
1858                          (chunk_sects - 1));
1859         __make_request(mddev, bio, sectors);
1860
1861         /* In case raid10d snuck in to freeze_array */
1862         wake_up_barrier(conf);
1863         return true;
1864 }
1865
1866 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1867 {
1868         struct r10conf *conf = mddev->private;
1869         int i;
1870
1871         lockdep_assert_held(&mddev->lock);
1872
1873         if (conf->geo.near_copies < conf->geo.raid_disks)
1874                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1875         if (conf->geo.near_copies > 1)
1876                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1877         if (conf->geo.far_copies > 1) {
1878                 if (conf->geo.far_offset)
1879                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1880                 else
1881                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1882                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1883                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1884         }
1885         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1886                                         conf->geo.raid_disks - mddev->degraded);
1887         for (i = 0; i < conf->geo.raid_disks; i++) {
1888                 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1889
1890                 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1891         }
1892         seq_printf(seq, "]");
1893 }
1894
1895 /* check if there are enough drives for
1896  * every block to appear on atleast one.
1897  * Don't consider the device numbered 'ignore'
1898  * as we might be about to remove it.
1899  */
1900 static int _enough(struct r10conf *conf, int previous, int ignore)
1901 {
1902         int first = 0;
1903         int has_enough = 0;
1904         int disks, ncopies;
1905         if (previous) {
1906                 disks = conf->prev.raid_disks;
1907                 ncopies = conf->prev.near_copies;
1908         } else {
1909                 disks = conf->geo.raid_disks;
1910                 ncopies = conf->geo.near_copies;
1911         }
1912
1913         do {
1914                 int n = conf->copies;
1915                 int cnt = 0;
1916                 int this = first;
1917                 while (n--) {
1918                         struct md_rdev *rdev;
1919                         if (this != ignore &&
1920                             (rdev = conf->mirrors[this].rdev) &&
1921                             test_bit(In_sync, &rdev->flags))
1922                                 cnt++;
1923                         this = (this+1) % disks;
1924                 }
1925                 if (cnt == 0)
1926                         goto out;
1927                 first = (first + ncopies) % disks;
1928         } while (first != 0);
1929         has_enough = 1;
1930 out:
1931         return has_enough;
1932 }
1933
1934 static int enough(struct r10conf *conf, int ignore)
1935 {
1936         /* when calling 'enough', both 'prev' and 'geo' must
1937          * be stable.
1938          * This is ensured if ->reconfig_mutex or ->device_lock
1939          * is held.
1940          */
1941         return _enough(conf, 0, ignore) &&
1942                 _enough(conf, 1, ignore);
1943 }
1944
1945 /**
1946  * raid10_error() - RAID10 error handler.
1947  * @mddev: affected md device.
1948  * @rdev: member device to fail.
1949  *
1950  * The routine acknowledges &rdev failure and determines new @mddev state.
1951  * If it failed, then:
1952  *      - &MD_BROKEN flag is set in &mddev->flags.
1953  * Otherwise, it must be degraded:
1954  *      - recovery is interrupted.
1955  *      - &mddev->degraded is bumped.
1956  *
1957  * @rdev is marked as &Faulty excluding case when array is failed and
1958  * &mddev->fail_last_dev is off.
1959  */
1960 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1961 {
1962         struct r10conf *conf = mddev->private;
1963         unsigned long flags;
1964
1965         spin_lock_irqsave(&conf->device_lock, flags);
1966
1967         if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
1968                 set_bit(MD_BROKEN, &mddev->flags);
1969
1970                 if (!mddev->fail_last_dev) {
1971                         spin_unlock_irqrestore(&conf->device_lock, flags);
1972                         return;
1973                 }
1974         }
1975         if (test_and_clear_bit(In_sync, &rdev->flags))
1976                 mddev->degraded++;
1977
1978         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1979         set_bit(Blocked, &rdev->flags);
1980         set_bit(Faulty, &rdev->flags);
1981         set_mask_bits(&mddev->sb_flags, 0,
1982                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1983         spin_unlock_irqrestore(&conf->device_lock, flags);
1984         pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
1985                 "md/raid10:%s: Operation continuing on %d devices.\n",
1986                 mdname(mddev), rdev->bdev,
1987                 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1988 }
1989
1990 static void print_conf(struct r10conf *conf)
1991 {
1992         int i;
1993         struct md_rdev *rdev;
1994
1995         pr_debug("RAID10 conf printout:\n");
1996         if (!conf) {
1997                 pr_debug("(!conf)\n");
1998                 return;
1999         }
2000         pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
2001                  conf->geo.raid_disks);
2002
2003         lockdep_assert_held(&conf->mddev->reconfig_mutex);
2004         for (i = 0; i < conf->geo.raid_disks; i++) {
2005                 rdev = conf->mirrors[i].rdev;
2006                 if (rdev)
2007                         pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
2008                                  i, !test_bit(In_sync, &rdev->flags),
2009                                  !test_bit(Faulty, &rdev->flags),
2010                                  rdev->bdev);
2011         }
2012 }
2013
2014 static void close_sync(struct r10conf *conf)
2015 {
2016         wait_barrier(conf, false);
2017         allow_barrier(conf);
2018
2019         mempool_exit(&conf->r10buf_pool);
2020 }
2021
2022 static int raid10_spare_active(struct mddev *mddev)
2023 {
2024         int i;
2025         struct r10conf *conf = mddev->private;
2026         struct raid10_info *tmp;
2027         int count = 0;
2028         unsigned long flags;
2029
2030         /*
2031          * Find all non-in_sync disks within the RAID10 configuration
2032          * and mark them in_sync
2033          */
2034         for (i = 0; i < conf->geo.raid_disks; i++) {
2035                 tmp = conf->mirrors + i;
2036                 if (tmp->replacement
2037                     && tmp->replacement->recovery_offset == MaxSector
2038                     && !test_bit(Faulty, &tmp->replacement->flags)
2039                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2040                         /* Replacement has just become active */
2041                         if (!tmp->rdev
2042                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2043                                 count++;
2044                         if (tmp->rdev) {
2045                                 /* Replaced device not technically faulty,
2046                                  * but we need to be sure it gets removed
2047                                  * and never re-added.
2048                                  */
2049                                 set_bit(Faulty, &tmp->rdev->flags);
2050                                 sysfs_notify_dirent_safe(
2051                                         tmp->rdev->sysfs_state);
2052                         }
2053                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2054                 } else if (tmp->rdev
2055                            && tmp->rdev->recovery_offset == MaxSector
2056                            && !test_bit(Faulty, &tmp->rdev->flags)
2057                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2058                         count++;
2059                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2060                 }
2061         }
2062         spin_lock_irqsave(&conf->device_lock, flags);
2063         mddev->degraded -= count;
2064         spin_unlock_irqrestore(&conf->device_lock, flags);
2065
2066         print_conf(conf);
2067         return count;
2068 }
2069
2070 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2071 {
2072         struct r10conf *conf = mddev->private;
2073         int err = -EEXIST;
2074         int mirror, repl_slot = -1;
2075         int first = 0;
2076         int last = conf->geo.raid_disks - 1;
2077         struct raid10_info *p;
2078
2079         if (mddev->recovery_cp < MaxSector)
2080                 /* only hot-add to in-sync arrays, as recovery is
2081                  * very different from resync
2082                  */
2083                 return -EBUSY;
2084         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2085                 return -EINVAL;
2086
2087         if (rdev->raid_disk >= 0)
2088                 first = last = rdev->raid_disk;
2089
2090         if (rdev->saved_raid_disk >= first &&
2091             rdev->saved_raid_disk < conf->geo.raid_disks &&
2092             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2093                 mirror = rdev->saved_raid_disk;
2094         else
2095                 mirror = first;
2096         for ( ; mirror <= last ; mirror++) {
2097                 p = &conf->mirrors[mirror];
2098                 if (p->recovery_disabled == mddev->recovery_disabled)
2099                         continue;
2100                 if (p->rdev) {
2101                         if (test_bit(WantReplacement, &p->rdev->flags) &&
2102                             p->replacement == NULL && repl_slot < 0)
2103                                 repl_slot = mirror;
2104                         continue;
2105                 }
2106
2107                 err = mddev_stack_new_rdev(mddev, rdev);
2108                 if (err)
2109                         return err;
2110                 p->head_position = 0;
2111                 p->recovery_disabled = mddev->recovery_disabled - 1;
2112                 rdev->raid_disk = mirror;
2113                 err = 0;
2114                 if (rdev->saved_raid_disk != mirror)
2115                         conf->fullsync = 1;
2116                 WRITE_ONCE(p->rdev, rdev);
2117                 break;
2118         }
2119
2120         if (err && repl_slot >= 0) {
2121                 p = &conf->mirrors[repl_slot];
2122                 clear_bit(In_sync, &rdev->flags);
2123                 set_bit(Replacement, &rdev->flags);
2124                 rdev->raid_disk = repl_slot;
2125                 err = mddev_stack_new_rdev(mddev, rdev);
2126                 if (err)
2127                         return err;
2128                 conf->fullsync = 1;
2129                 WRITE_ONCE(p->replacement, rdev);
2130         }
2131
2132         print_conf(conf);
2133         return err;
2134 }
2135
2136 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2137 {
2138         struct r10conf *conf = mddev->private;
2139         int err = 0;
2140         int number = rdev->raid_disk;
2141         struct md_rdev **rdevp;
2142         struct raid10_info *p;
2143
2144         print_conf(conf);
2145         if (unlikely(number >= mddev->raid_disks))
2146                 return 0;
2147         p = conf->mirrors + number;
2148         if (rdev == p->rdev)
2149                 rdevp = &p->rdev;
2150         else if (rdev == p->replacement)
2151                 rdevp = &p->replacement;
2152         else
2153                 return 0;
2154
2155         if (test_bit(In_sync, &rdev->flags) ||
2156             atomic_read(&rdev->nr_pending)) {
2157                 err = -EBUSY;
2158                 goto abort;
2159         }
2160         /* Only remove non-faulty devices if recovery
2161          * is not possible.
2162          */
2163         if (!test_bit(Faulty, &rdev->flags) &&
2164             mddev->recovery_disabled != p->recovery_disabled &&
2165             (!p->replacement || p->replacement == rdev) &&
2166             number < conf->geo.raid_disks &&
2167             enough(conf, -1)) {
2168                 err = -EBUSY;
2169                 goto abort;
2170         }
2171         WRITE_ONCE(*rdevp, NULL);
2172         if (p->replacement) {
2173                 /* We must have just cleared 'rdev' */
2174                 WRITE_ONCE(p->rdev, p->replacement);
2175                 clear_bit(Replacement, &p->replacement->flags);
2176                 WRITE_ONCE(p->replacement, NULL);
2177         }
2178
2179         clear_bit(WantReplacement, &rdev->flags);
2180         err = md_integrity_register(mddev);
2181
2182 abort:
2183
2184         print_conf(conf);
2185         return err;
2186 }
2187
2188 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2189 {
2190         struct r10conf *conf = r10_bio->mddev->private;
2191
2192         if (!bio->bi_status)
2193                 set_bit(R10BIO_Uptodate, &r10_bio->state);
2194         else
2195                 /* The write handler will notice the lack of
2196                  * R10BIO_Uptodate and record any errors etc
2197                  */
2198                 atomic_add(r10_bio->sectors,
2199                            &conf->mirrors[d].rdev->corrected_errors);
2200
2201         /* for reconstruct, we always reschedule after a read.
2202          * for resync, only after all reads
2203          */
2204         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2205         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2206             atomic_dec_and_test(&r10_bio->remaining)) {
2207                 /* we have read all the blocks,
2208                  * do the comparison in process context in raid10d
2209                  */
2210                 reschedule_retry(r10_bio);
2211         }
2212 }
2213
2214 static void end_sync_read(struct bio *bio)
2215 {
2216         struct r10bio *r10_bio = get_resync_r10bio(bio);
2217         struct r10conf *conf = r10_bio->mddev->private;
2218         int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2219
2220         __end_sync_read(r10_bio, bio, d);
2221 }
2222
2223 static void end_reshape_read(struct bio *bio)
2224 {
2225         /* reshape read bio isn't allocated from r10buf_pool */
2226         struct r10bio *r10_bio = bio->bi_private;
2227
2228         __end_sync_read(r10_bio, bio, r10_bio->read_slot);
2229 }
2230
2231 static void end_sync_request(struct r10bio *r10_bio)
2232 {
2233         struct mddev *mddev = r10_bio->mddev;
2234
2235         while (atomic_dec_and_test(&r10_bio->remaining)) {
2236                 if (r10_bio->master_bio == NULL) {
2237                         /* the primary of several recovery bios */
2238                         sector_t s = r10_bio->sectors;
2239                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2240                             test_bit(R10BIO_WriteError, &r10_bio->state))
2241                                 reschedule_retry(r10_bio);
2242                         else
2243                                 put_buf(r10_bio);
2244                         md_done_sync(mddev, s, 1);
2245                         break;
2246                 } else {
2247                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2248                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2249                             test_bit(R10BIO_WriteError, &r10_bio->state))
2250                                 reschedule_retry(r10_bio);
2251                         else
2252                                 put_buf(r10_bio);
2253                         r10_bio = r10_bio2;
2254                 }
2255         }
2256 }
2257
2258 static void end_sync_write(struct bio *bio)
2259 {
2260         struct r10bio *r10_bio = get_resync_r10bio(bio);
2261         struct mddev *mddev = r10_bio->mddev;
2262         struct r10conf *conf = mddev->private;
2263         int d;
2264         int slot;
2265         int repl;
2266         struct md_rdev *rdev = NULL;
2267
2268         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2269         if (repl)
2270                 rdev = conf->mirrors[d].replacement;
2271         else
2272                 rdev = conf->mirrors[d].rdev;
2273
2274         if (bio->bi_status) {
2275                 if (repl)
2276                         md_error(mddev, rdev);
2277                 else {
2278                         set_bit(WriteErrorSeen, &rdev->flags);
2279                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2280                                 set_bit(MD_RECOVERY_NEEDED,
2281                                         &rdev->mddev->recovery);
2282                         set_bit(R10BIO_WriteError, &r10_bio->state);
2283                 }
2284         } else if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr,
2285                                      r10_bio->sectors)) {
2286                 set_bit(R10BIO_MadeGood, &r10_bio->state);
2287         }
2288
2289         rdev_dec_pending(rdev, mddev);
2290
2291         end_sync_request(r10_bio);
2292 }
2293
2294 /*
2295  * Note: sync and recover and handled very differently for raid10
2296  * This code is for resync.
2297  * For resync, we read through virtual addresses and read all blocks.
2298  * If there is any error, we schedule a write.  The lowest numbered
2299  * drive is authoritative.
2300  * However requests come for physical address, so we need to map.
2301  * For every physical address there are raid_disks/copies virtual addresses,
2302  * which is always are least one, but is not necessarly an integer.
2303  * This means that a physical address can span multiple chunks, so we may
2304  * have to submit multiple io requests for a single sync request.
2305  */
2306 /*
2307  * We check if all blocks are in-sync and only write to blocks that
2308  * aren't in sync
2309  */
2310 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2311 {
2312         struct r10conf *conf = mddev->private;
2313         int i, first;
2314         struct bio *tbio, *fbio;
2315         int vcnt;
2316         struct page **tpages, **fpages;
2317
2318         atomic_set(&r10_bio->remaining, 1);
2319
2320         /* find the first device with a block */
2321         for (i=0; i<conf->copies; i++)
2322                 if (!r10_bio->devs[i].bio->bi_status)
2323                         break;
2324
2325         if (i == conf->copies)
2326                 goto done;
2327
2328         first = i;
2329         fbio = r10_bio->devs[i].bio;
2330         fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2331         fbio->bi_iter.bi_idx = 0;
2332         fpages = get_resync_pages(fbio)->pages;
2333
2334         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2335         /* now find blocks with errors */
2336         for (i=0 ; i < conf->copies ; i++) {
2337                 int  j, d;
2338                 struct md_rdev *rdev;
2339                 struct resync_pages *rp;
2340
2341                 tbio = r10_bio->devs[i].bio;
2342
2343                 if (tbio->bi_end_io != end_sync_read)
2344                         continue;
2345                 if (i == first)
2346                         continue;
2347
2348                 tpages = get_resync_pages(tbio)->pages;
2349                 d = r10_bio->devs[i].devnum;
2350                 rdev = conf->mirrors[d].rdev;
2351                 if (!r10_bio->devs[i].bio->bi_status) {
2352                         /* We know that the bi_io_vec layout is the same for
2353                          * both 'first' and 'i', so we just compare them.
2354                          * All vec entries are PAGE_SIZE;
2355                          */
2356                         int sectors = r10_bio->sectors;
2357                         for (j = 0; j < vcnt; j++) {
2358                                 int len = PAGE_SIZE;
2359                                 if (sectors < (len / 512))
2360                                         len = sectors * 512;
2361                                 if (memcmp(page_address(fpages[j]),
2362                                            page_address(tpages[j]),
2363                                            len))
2364                                         break;
2365                                 sectors -= len/512;
2366                         }
2367                         if (j == vcnt)
2368                                 continue;
2369                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2370                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2371                                 /* Don't fix anything. */
2372                                 continue;
2373                 } else if (test_bit(FailFast, &rdev->flags)) {
2374                         /* Just give up on this device */
2375                         md_error(rdev->mddev, rdev);
2376                         continue;
2377                 }
2378                 /* Ok, we need to write this bio, either to correct an
2379                  * inconsistency or to correct an unreadable block.
2380                  * First we need to fixup bv_offset, bv_len and
2381                  * bi_vecs, as the read request might have corrupted these
2382                  */
2383                 rp = get_resync_pages(tbio);
2384                 bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
2385
2386                 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2387
2388                 rp->raid_bio = r10_bio;
2389                 tbio->bi_private = rp;
2390                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2391                 tbio->bi_end_io = end_sync_write;
2392
2393                 bio_copy_data(tbio, fbio);
2394
2395                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2396                 atomic_inc(&r10_bio->remaining);
2397                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2398
2399                 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2400                         tbio->bi_opf |= MD_FAILFAST;
2401                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2402                 submit_bio_noacct(tbio);
2403         }
2404
2405         /* Now write out to any replacement devices
2406          * that are active
2407          */
2408         for (i = 0; i < conf->copies; i++) {
2409                 int d;
2410
2411                 tbio = r10_bio->devs[i].repl_bio;
2412                 if (!tbio || !tbio->bi_end_io)
2413                         continue;
2414                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2415                     && r10_bio->devs[i].bio != fbio)
2416                         bio_copy_data(tbio, fbio);
2417                 d = r10_bio->devs[i].devnum;
2418                 atomic_inc(&r10_bio->remaining);
2419                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2420                              bio_sectors(tbio));
2421                 submit_bio_noacct(tbio);
2422         }
2423
2424 done:
2425         if (atomic_dec_and_test(&r10_bio->remaining)) {
2426                 md_done_sync(mddev, r10_bio->sectors, 1);
2427                 put_buf(r10_bio);
2428         }
2429 }
2430
2431 /*
2432  * Now for the recovery code.
2433  * Recovery happens across physical sectors.
2434  * We recover all non-is_sync drives by finding the virtual address of
2435  * each, and then choose a working drive that also has that virt address.
2436  * There is a separate r10_bio for each non-in_sync drive.
2437  * Only the first two slots are in use. The first for reading,
2438  * The second for writing.
2439  *
2440  */
2441 static void fix_recovery_read_error(struct r10bio *r10_bio)
2442 {
2443         /* We got a read error during recovery.
2444          * We repeat the read in smaller page-sized sections.
2445          * If a read succeeds, write it to the new device or record
2446          * a bad block if we cannot.
2447          * If a read fails, record a bad block on both old and
2448          * new devices.
2449          */
2450         struct mddev *mddev = r10_bio->mddev;
2451         struct r10conf *conf = mddev->private;
2452         struct bio *bio = r10_bio->devs[0].bio;
2453         sector_t sect = 0;
2454         int sectors = r10_bio->sectors;
2455         int idx = 0;
2456         int dr = r10_bio->devs[0].devnum;
2457         int dw = r10_bio->devs[1].devnum;
2458         struct page **pages = get_resync_pages(bio)->pages;
2459
2460         while (sectors) {
2461                 int s = sectors;
2462                 struct md_rdev *rdev;
2463                 sector_t addr;
2464                 int ok;
2465
2466                 if (s > (PAGE_SIZE>>9))
2467                         s = PAGE_SIZE >> 9;
2468
2469                 rdev = conf->mirrors[dr].rdev;
2470                 addr = r10_bio->devs[0].addr + sect;
2471                 ok = sync_page_io(rdev,
2472                                   addr,
2473                                   s << 9,
2474                                   pages[idx],
2475                                   REQ_OP_READ, false);
2476                 if (ok) {
2477                         rdev = conf->mirrors[dw].rdev;
2478                         addr = r10_bio->devs[1].addr + sect;
2479                         ok = sync_page_io(rdev,
2480                                           addr,
2481                                           s << 9,
2482                                           pages[idx],
2483                                           REQ_OP_WRITE, false);
2484                         if (!ok) {
2485                                 set_bit(WriteErrorSeen, &rdev->flags);
2486                                 if (!test_and_set_bit(WantReplacement,
2487                                                       &rdev->flags))
2488                                         set_bit(MD_RECOVERY_NEEDED,
2489                                                 &rdev->mddev->recovery);
2490                         }
2491                 }
2492                 if (!ok) {
2493                         /* We don't worry if we cannot set a bad block -
2494                          * it really is bad so there is no loss in not
2495                          * recording it yet
2496                          */
2497                         rdev_set_badblocks(rdev, addr, s, 0);
2498
2499                         if (rdev != conf->mirrors[dw].rdev) {
2500                                 /* need bad block on destination too */
2501                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2502                                 addr = r10_bio->devs[1].addr + sect;
2503                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2504                                 if (!ok) {
2505                                         /* just abort the recovery */
2506                                         pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2507                                                   mdname(mddev));
2508
2509                                         conf->mirrors[dw].recovery_disabled
2510                                                 = mddev->recovery_disabled;
2511                                         set_bit(MD_RECOVERY_INTR,
2512                                                 &mddev->recovery);
2513                                         break;
2514                                 }
2515                         }
2516                 }
2517
2518                 sectors -= s;
2519                 sect += s;
2520                 idx++;
2521         }
2522 }
2523
2524 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2525 {
2526         struct r10conf *conf = mddev->private;
2527         int d;
2528         struct bio *wbio = r10_bio->devs[1].bio;
2529         struct bio *wbio2 = r10_bio->devs[1].repl_bio;
2530
2531         /* Need to test wbio2->bi_end_io before we call
2532          * submit_bio_noacct as if the former is NULL,
2533          * the latter is free to free wbio2.
2534          */
2535         if (wbio2 && !wbio2->bi_end_io)
2536                 wbio2 = NULL;
2537
2538         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2539                 fix_recovery_read_error(r10_bio);
2540                 if (wbio->bi_end_io)
2541                         end_sync_request(r10_bio);
2542                 if (wbio2)
2543                         end_sync_request(r10_bio);
2544                 return;
2545         }
2546
2547         /*
2548          * share the pages with the first bio
2549          * and submit the write request
2550          */
2551         d = r10_bio->devs[1].devnum;
2552         if (wbio->bi_end_io) {
2553                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2554                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2555                 submit_bio_noacct(wbio);
2556         }
2557         if (wbio2) {
2558                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2559                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2560                              bio_sectors(wbio2));
2561                 submit_bio_noacct(wbio2);
2562         }
2563 }
2564
2565 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2566                             int sectors, struct page *page, enum req_op op)
2567 {
2568         if (rdev_has_badblock(rdev, sector, sectors) &&
2569             (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags)))
2570                 return -1;
2571         if (sync_page_io(rdev, sector, sectors << 9, page, op, false))
2572                 /* success */
2573                 return 1;
2574         if (op == REQ_OP_WRITE) {
2575                 set_bit(WriteErrorSeen, &rdev->flags);
2576                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2577                         set_bit(MD_RECOVERY_NEEDED,
2578                                 &rdev->mddev->recovery);
2579         }
2580         /* need to record an error - either for the block or the device */
2581         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2582                 md_error(rdev->mddev, rdev);
2583         return 0;
2584 }
2585
2586 /*
2587  * This is a kernel thread which:
2588  *
2589  *      1.      Retries failed read operations on working mirrors.
2590  *      2.      Updates the raid superblock when problems encounter.
2591  *      3.      Performs writes following reads for array synchronising.
2592  */
2593
2594 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2595 {
2596         int sect = 0; /* Offset from r10_bio->sector */
2597         int sectors = r10_bio->sectors, slot = r10_bio->read_slot;
2598         struct md_rdev *rdev;
2599         int d = r10_bio->devs[slot].devnum;
2600
2601         /* still own a reference to this rdev, so it cannot
2602          * have been cleared recently.
2603          */
2604         rdev = conf->mirrors[d].rdev;
2605
2606         if (test_bit(Faulty, &rdev->flags))
2607                 /* drive has already been failed, just ignore any
2608                    more fix_read_error() attempts */
2609                 return;
2610
2611         if (exceed_read_errors(mddev, rdev)) {
2612                 r10_bio->devs[slot].bio = IO_BLOCKED;
2613                 return;
2614         }
2615
2616         while(sectors) {
2617                 int s = sectors;
2618                 int sl = slot;
2619                 int success = 0;
2620                 int start;
2621
2622                 if (s > (PAGE_SIZE>>9))
2623                         s = PAGE_SIZE >> 9;
2624
2625                 do {
2626                         d = r10_bio->devs[sl].devnum;
2627                         rdev = conf->mirrors[d].rdev;
2628                         if (rdev &&
2629                             test_bit(In_sync, &rdev->flags) &&
2630                             !test_bit(Faulty, &rdev->flags) &&
2631                             rdev_has_badblock(rdev,
2632                                               r10_bio->devs[sl].addr + sect,
2633                                               s) == 0) {
2634                                 atomic_inc(&rdev->nr_pending);
2635                                 success = sync_page_io(rdev,
2636                                                        r10_bio->devs[sl].addr +
2637                                                        sect,
2638                                                        s<<9,
2639                                                        conf->tmppage,
2640                                                        REQ_OP_READ, false);
2641                                 rdev_dec_pending(rdev, mddev);
2642                                 if (success)
2643                                         break;
2644                         }
2645                         sl++;
2646                         if (sl == conf->copies)
2647                                 sl = 0;
2648                 } while (sl != slot);
2649
2650                 if (!success) {
2651                         /* Cannot read from anywhere, just mark the block
2652                          * as bad on the first device to discourage future
2653                          * reads.
2654                          */
2655                         int dn = r10_bio->devs[slot].devnum;
2656                         rdev = conf->mirrors[dn].rdev;
2657
2658                         if (!rdev_set_badblocks(
2659                                     rdev,
2660                                     r10_bio->devs[slot].addr
2661                                     + sect,
2662                                     s, 0)) {
2663                                 md_error(mddev, rdev);
2664                                 r10_bio->devs[slot].bio
2665                                         = IO_BLOCKED;
2666                         }
2667                         break;
2668                 }
2669
2670                 start = sl;
2671                 /* write it back and re-read */
2672                 while (sl != slot) {
2673                         if (sl==0)
2674                                 sl = conf->copies;
2675                         sl--;
2676                         d = r10_bio->devs[sl].devnum;
2677                         rdev = conf->mirrors[d].rdev;
2678                         if (!rdev ||
2679                             test_bit(Faulty, &rdev->flags) ||
2680                             !test_bit(In_sync, &rdev->flags))
2681                                 continue;
2682
2683                         atomic_inc(&rdev->nr_pending);
2684                         if (r10_sync_page_io(rdev,
2685                                              r10_bio->devs[sl].addr +
2686                                              sect,
2687                                              s, conf->tmppage, REQ_OP_WRITE)
2688                             == 0) {
2689                                 /* Well, this device is dead */
2690                                 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
2691                                           mdname(mddev), s,
2692                                           (unsigned long long)(
2693                                                   sect +
2694                                                   choose_data_offset(r10_bio,
2695                                                                      rdev)),
2696                                           rdev->bdev);
2697                                 pr_notice("md/raid10:%s: %pg: failing drive\n",
2698                                           mdname(mddev),
2699                                           rdev->bdev);
2700                         }
2701                         rdev_dec_pending(rdev, mddev);
2702                 }
2703                 sl = start;
2704                 while (sl != slot) {
2705                         if (sl==0)
2706                                 sl = conf->copies;
2707                         sl--;
2708                         d = r10_bio->devs[sl].devnum;
2709                         rdev = conf->mirrors[d].rdev;
2710                         if (!rdev ||
2711                             test_bit(Faulty, &rdev->flags) ||
2712                             !test_bit(In_sync, &rdev->flags))
2713                                 continue;
2714
2715                         atomic_inc(&rdev->nr_pending);
2716                         switch (r10_sync_page_io(rdev,
2717                                              r10_bio->devs[sl].addr +
2718                                              sect,
2719                                              s, conf->tmppage, REQ_OP_READ)) {
2720                         case 0:
2721                                 /* Well, this device is dead */
2722                                 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
2723                                        mdname(mddev), s,
2724                                        (unsigned long long)(
2725                                                sect +
2726                                                choose_data_offset(r10_bio, rdev)),
2727                                        rdev->bdev);
2728                                 pr_notice("md/raid10:%s: %pg: failing drive\n",
2729                                        mdname(mddev),
2730                                        rdev->bdev);
2731                                 break;
2732                         case 1:
2733                                 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
2734                                        mdname(mddev), s,
2735                                        (unsigned long long)(
2736                                                sect +
2737                                                choose_data_offset(r10_bio, rdev)),
2738                                        rdev->bdev);
2739                                 atomic_add(s, &rdev->corrected_errors);
2740                         }
2741
2742                         rdev_dec_pending(rdev, mddev);
2743                 }
2744
2745                 sectors -= s;
2746                 sect += s;
2747         }
2748 }
2749
2750 static int narrow_write_error(struct r10bio *r10_bio, int i)
2751 {
2752         struct bio *bio = r10_bio->master_bio;
2753         struct mddev *mddev = r10_bio->mddev;
2754         struct r10conf *conf = mddev->private;
2755         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2756         /* bio has the data to be written to slot 'i' where
2757          * we just recently had a write error.
2758          * We repeatedly clone the bio and trim down to one block,
2759          * then try the write.  Where the write fails we record
2760          * a bad block.
2761          * It is conceivable that the bio doesn't exactly align with
2762          * blocks.  We must handle this.
2763          *
2764          * We currently own a reference to the rdev.
2765          */
2766
2767         int block_sectors;
2768         sector_t sector;
2769         int sectors;
2770         int sect_to_write = r10_bio->sectors;
2771         int ok = 1;
2772
2773         if (rdev->badblocks.shift < 0)
2774                 return 0;
2775
2776         block_sectors = roundup(1 << rdev->badblocks.shift,
2777                                 bdev_logical_block_size(rdev->bdev) >> 9);
2778         sector = r10_bio->sector;
2779         sectors = ((r10_bio->sector + block_sectors)
2780                    & ~(sector_t)(block_sectors - 1))
2781                 - sector;
2782
2783         while (sect_to_write) {
2784                 struct bio *wbio;
2785                 sector_t wsector;
2786                 if (sectors > sect_to_write)
2787                         sectors = sect_to_write;
2788                 /* Write at 'sector' for 'sectors' */
2789                 wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2790                                        &mddev->bio_set);
2791                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2792                 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2793                 wbio->bi_iter.bi_sector = wsector +
2794                                    choose_data_offset(r10_bio, rdev);
2795                 wbio->bi_opf = REQ_OP_WRITE;
2796
2797                 if (submit_bio_wait(wbio) < 0)
2798                         /* Failure! */
2799                         ok = rdev_set_badblocks(rdev, wsector,
2800                                                 sectors, 0)
2801                                 && ok;
2802
2803                 bio_put(wbio);
2804                 sect_to_write -= sectors;
2805                 sector += sectors;
2806                 sectors = block_sectors;
2807         }
2808         return ok;
2809 }
2810
2811 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2812 {
2813         int slot = r10_bio->read_slot;
2814         struct bio *bio;
2815         struct r10conf *conf = mddev->private;
2816         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2817
2818         /* we got a read error. Maybe the drive is bad.  Maybe just
2819          * the block and we can fix it.
2820          * We freeze all other IO, and try reading the block from
2821          * other devices.  When we find one, we re-write
2822          * and check it that fixes the read error.
2823          * This is all done synchronously while the array is
2824          * frozen.
2825          */
2826         bio = r10_bio->devs[slot].bio;
2827         bio_put(bio);
2828         r10_bio->devs[slot].bio = NULL;
2829
2830         if (mddev->ro)
2831                 r10_bio->devs[slot].bio = IO_BLOCKED;
2832         else if (!test_bit(FailFast, &rdev->flags)) {
2833                 freeze_array(conf, 1);
2834                 fix_read_error(conf, mddev, r10_bio);
2835                 unfreeze_array(conf);
2836         } else
2837                 md_error(mddev, rdev);
2838
2839         rdev_dec_pending(rdev, mddev);
2840         r10_bio->state = 0;
2841         raid10_read_request(mddev, r10_bio->master_bio, r10_bio, false);
2842         /*
2843          * allow_barrier after re-submit to ensure no sync io
2844          * can be issued while regular io pending.
2845          */
2846         allow_barrier(conf);
2847 }
2848
2849 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2850 {
2851         /* Some sort of write request has finished and it
2852          * succeeded in writing where we thought there was a
2853          * bad block.  So forget the bad block.
2854          * Or possibly if failed and we need to record
2855          * a bad block.
2856          */
2857         int m;
2858         struct md_rdev *rdev;
2859
2860         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2861             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2862                 for (m = 0; m < conf->copies; m++) {
2863                         int dev = r10_bio->devs[m].devnum;
2864                         rdev = conf->mirrors[dev].rdev;
2865                         if (r10_bio->devs[m].bio == NULL ||
2866                                 r10_bio->devs[m].bio->bi_end_io == NULL)
2867                                 continue;
2868                         if (!r10_bio->devs[m].bio->bi_status) {
2869                                 rdev_clear_badblocks(
2870                                         rdev,
2871                                         r10_bio->devs[m].addr,
2872                                         r10_bio->sectors, 0);
2873                         } else {
2874                                 if (!rdev_set_badblocks(
2875                                             rdev,
2876                                             r10_bio->devs[m].addr,
2877                                             r10_bio->sectors, 0))
2878                                         md_error(conf->mddev, rdev);
2879                         }
2880                         rdev = conf->mirrors[dev].replacement;
2881                         if (r10_bio->devs[m].repl_bio == NULL ||
2882                                 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2883                                 continue;
2884
2885                         if (!r10_bio->devs[m].repl_bio->bi_status) {
2886                                 rdev_clear_badblocks(
2887                                         rdev,
2888                                         r10_bio->devs[m].addr,
2889                                         r10_bio->sectors, 0);
2890                         } else {
2891                                 if (!rdev_set_badblocks(
2892                                             rdev,
2893                                             r10_bio->devs[m].addr,
2894                                             r10_bio->sectors, 0))
2895                                         md_error(conf->mddev, rdev);
2896                         }
2897                 }
2898                 put_buf(r10_bio);
2899         } else {
2900                 bool fail = false;
2901                 for (m = 0; m < conf->copies; m++) {
2902                         int dev = r10_bio->devs[m].devnum;
2903                         struct bio *bio = r10_bio->devs[m].bio;
2904                         rdev = conf->mirrors[dev].rdev;
2905                         if (bio == IO_MADE_GOOD) {
2906                                 rdev_clear_badblocks(
2907                                         rdev,
2908                                         r10_bio->devs[m].addr,
2909                                         r10_bio->sectors, 0);
2910                                 rdev_dec_pending(rdev, conf->mddev);
2911                         } else if (bio != NULL && bio->bi_status) {
2912                                 fail = true;
2913                                 if (!narrow_write_error(r10_bio, m)) {
2914                                         md_error(conf->mddev, rdev);
2915                                         set_bit(R10BIO_Degraded,
2916                                                 &r10_bio->state);
2917                                 }
2918                                 rdev_dec_pending(rdev, conf->mddev);
2919                         }
2920                         bio = r10_bio->devs[m].repl_bio;
2921                         rdev = conf->mirrors[dev].replacement;
2922                         if (rdev && bio == IO_MADE_GOOD) {
2923                                 rdev_clear_badblocks(
2924                                         rdev,
2925                                         r10_bio->devs[m].addr,
2926                                         r10_bio->sectors, 0);
2927                                 rdev_dec_pending(rdev, conf->mddev);
2928                         }
2929                 }
2930                 if (fail) {
2931                         spin_lock_irq(&conf->device_lock);
2932                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2933                         conf->nr_queued++;
2934                         spin_unlock_irq(&conf->device_lock);
2935                         /*
2936                          * In case freeze_array() is waiting for condition
2937                          * nr_pending == nr_queued + extra to be true.
2938                          */
2939                         wake_up(&conf->wait_barrier);
2940                         md_wakeup_thread(conf->mddev->thread);
2941                 } else {
2942                         if (test_bit(R10BIO_WriteError,
2943                                      &r10_bio->state))
2944                                 close_write(r10_bio);
2945                         raid_end_bio_io(r10_bio);
2946                 }
2947         }
2948 }
2949
2950 static void raid10d(struct md_thread *thread)
2951 {
2952         struct mddev *mddev = thread->mddev;
2953         struct r10bio *r10_bio;
2954         unsigned long flags;
2955         struct r10conf *conf = mddev->private;
2956         struct list_head *head = &conf->retry_list;
2957         struct blk_plug plug;
2958
2959         md_check_recovery(mddev);
2960
2961         if (!list_empty_careful(&conf->bio_end_io_list) &&
2962             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2963                 LIST_HEAD(tmp);
2964                 spin_lock_irqsave(&conf->device_lock, flags);
2965                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2966                         while (!list_empty(&conf->bio_end_io_list)) {
2967                                 list_move(conf->bio_end_io_list.prev, &tmp);
2968                                 conf->nr_queued--;
2969                         }
2970                 }
2971                 spin_unlock_irqrestore(&conf->device_lock, flags);
2972                 while (!list_empty(&tmp)) {
2973                         r10_bio = list_first_entry(&tmp, struct r10bio,
2974                                                    retry_list);
2975                         list_del(&r10_bio->retry_list);
2976                         if (mddev->degraded)
2977                                 set_bit(R10BIO_Degraded, &r10_bio->state);
2978
2979                         if (test_bit(R10BIO_WriteError,
2980                                      &r10_bio->state))
2981                                 close_write(r10_bio);
2982                         raid_end_bio_io(r10_bio);
2983                 }
2984         }
2985
2986         blk_start_plug(&plug);
2987         for (;;) {
2988
2989                 flush_pending_writes(conf);
2990
2991                 spin_lock_irqsave(&conf->device_lock, flags);
2992                 if (list_empty(head)) {
2993                         spin_unlock_irqrestore(&conf->device_lock, flags);
2994                         break;
2995                 }
2996                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2997                 list_del(head->prev);
2998                 conf->nr_queued--;
2999                 spin_unlock_irqrestore(&conf->device_lock, flags);
3000
3001                 mddev = r10_bio->mddev;
3002                 conf = mddev->private;
3003                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3004                     test_bit(R10BIO_WriteError, &r10_bio->state))
3005                         handle_write_completed(conf, r10_bio);
3006                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3007                         reshape_request_write(mddev, r10_bio);
3008                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3009                         sync_request_write(mddev, r10_bio);
3010                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3011                         recovery_request_write(mddev, r10_bio);
3012                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3013                         handle_read_error(mddev, r10_bio);
3014                 else
3015                         WARN_ON_ONCE(1);
3016
3017                 cond_resched();
3018                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3019                         md_check_recovery(mddev);
3020         }
3021         blk_finish_plug(&plug);
3022 }
3023
3024 static int init_resync(struct r10conf *conf)
3025 {
3026         int ret, buffs, i;
3027
3028         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3029         BUG_ON(mempool_initialized(&conf->r10buf_pool));
3030         conf->have_replacement = 0;
3031         for (i = 0; i < conf->geo.raid_disks; i++)
3032                 if (conf->mirrors[i].replacement)
3033                         conf->have_replacement = 1;
3034         ret = mempool_init(&conf->r10buf_pool, buffs,
3035                            r10buf_pool_alloc, r10buf_pool_free, conf);
3036         if (ret)
3037                 return ret;
3038         conf->next_resync = 0;
3039         return 0;
3040 }
3041
3042 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3043 {
3044         struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3045         struct rsync_pages *rp;
3046         struct bio *bio;
3047         int nalloc;
3048         int i;
3049
3050         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3051             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3052                 nalloc = conf->copies; /* resync */
3053         else
3054                 nalloc = 2; /* recovery */
3055
3056         for (i = 0; i < nalloc; i++) {
3057                 bio = r10bio->devs[i].bio;
3058                 rp = bio->bi_private;
3059                 bio_reset(bio, NULL, 0);
3060                 bio->bi_private = rp;
3061                 bio = r10bio->devs[i].repl_bio;
3062                 if (bio) {
3063                         rp = bio->bi_private;
3064                         bio_reset(bio, NULL, 0);
3065                         bio->bi_private = rp;
3066                 }
3067         }
3068         return r10bio;
3069 }
3070
3071 /*
3072  * Set cluster_sync_high since we need other nodes to add the
3073  * range [cluster_sync_low, cluster_sync_high] to suspend list.
3074  */
3075 static void raid10_set_cluster_sync_high(struct r10conf *conf)
3076 {
3077         sector_t window_size;
3078         int extra_chunk, chunks;
3079
3080         /*
3081          * First, here we define "stripe" as a unit which across
3082          * all member devices one time, so we get chunks by use
3083          * raid_disks / near_copies. Otherwise, if near_copies is
3084          * close to raid_disks, then resync window could increases
3085          * linearly with the increase of raid_disks, which means
3086          * we will suspend a really large IO window while it is not
3087          * necessary. If raid_disks is not divisible by near_copies,
3088          * an extra chunk is needed to ensure the whole "stripe" is
3089          * covered.
3090          */
3091
3092         chunks = conf->geo.raid_disks / conf->geo.near_copies;
3093         if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3094                 extra_chunk = 0;
3095         else
3096                 extra_chunk = 1;
3097         window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3098
3099         /*
3100          * At least use a 32M window to align with raid1's resync window
3101          */
3102         window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3103                         CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3104
3105         conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3106 }
3107
3108 /*
3109  * perform a "sync" on one "block"
3110  *
3111  * We need to make sure that no normal I/O request - particularly write
3112  * requests - conflict with active sync requests.
3113  *
3114  * This is achieved by tracking pending requests and a 'barrier' concept
3115  * that can be installed to exclude normal IO requests.
3116  *
3117  * Resync and recovery are handled very differently.
3118  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3119  *
3120  * For resync, we iterate over virtual addresses, read all copies,
3121  * and update if there are differences.  If only one copy is live,
3122  * skip it.
3123  * For recovery, we iterate over physical addresses, read a good
3124  * value for each non-in_sync drive, and over-write.
3125  *
3126  * So, for recovery we may have several outstanding complex requests for a
3127  * given address, one for each out-of-sync device.  We model this by allocating
3128  * a number of r10_bio structures, one for each out-of-sync device.
3129  * As we setup these structures, we collect all bio's together into a list
3130  * which we then process collectively to add pages, and then process again
3131  * to pass to submit_bio_noacct.
3132  *
3133  * The r10_bio structures are linked using a borrowed master_bio pointer.
3134  * This link is counted in ->remaining.  When the r10_bio that points to NULL
3135  * has its remaining count decremented to 0, the whole complex operation
3136  * is complete.
3137  *
3138  */
3139
3140 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3141                                     sector_t max_sector, int *skipped)
3142 {
3143         struct r10conf *conf = mddev->private;
3144         struct r10bio *r10_bio;
3145         struct bio *biolist = NULL, *bio;
3146         sector_t nr_sectors;
3147         int i;
3148         int max_sync;
3149         sector_t sync_blocks;
3150         sector_t sectors_skipped = 0;
3151         int chunks_skipped = 0;
3152         sector_t chunk_mask = conf->geo.chunk_mask;
3153         int page_idx = 0;
3154         int error_disk = -1;
3155
3156         /*
3157          * Allow skipping a full rebuild for incremental assembly
3158          * of a clean array, like RAID1 does.
3159          */
3160         if (mddev->bitmap == NULL &&
3161             mddev->recovery_cp == MaxSector &&
3162             mddev->reshape_position == MaxSector &&
3163             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3164             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3165             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3166             conf->fullsync == 0) {
3167                 *skipped = 1;
3168                 return mddev->dev_sectors - sector_nr;
3169         }
3170
3171         if (!mempool_initialized(&conf->r10buf_pool))
3172                 if (init_resync(conf))
3173                         return 0;
3174
3175  skipped:
3176         if (sector_nr >= max_sector) {
3177                 conf->cluster_sync_low = 0;
3178                 conf->cluster_sync_high = 0;
3179
3180                 /* If we aborted, we need to abort the
3181                  * sync on the 'current' bitmap chucks (there can
3182                  * be several when recovering multiple devices).
3183                  * as we may have started syncing it but not finished.
3184                  * We can find the current address in
3185                  * mddev->curr_resync, but for recovery,
3186                  * we need to convert that to several
3187                  * virtual addresses.
3188                  */
3189                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3190                         end_reshape(conf);
3191                         close_sync(conf);
3192                         return 0;
3193                 }
3194
3195                 if (mddev->curr_resync < max_sector) { /* aborted */
3196                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3197                                 mddev->bitmap_ops->end_sync(mddev,
3198                                                             mddev->curr_resync,
3199                                                             &sync_blocks);
3200                         else for (i = 0; i < conf->geo.raid_disks; i++) {
3201                                 sector_t sect =
3202                                         raid10_find_virt(conf, mddev->curr_resync, i);
3203
3204                                 mddev->bitmap_ops->end_sync(mddev, sect,
3205                                                             &sync_blocks);
3206                         }
3207                 } else {
3208                         /* completed sync */
3209                         if ((!mddev->bitmap || conf->fullsync)
3210                             && conf->have_replacement
3211                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3212                                 /* Completed a full sync so the replacements
3213                                  * are now fully recovered.
3214                                  */
3215                                 for (i = 0; i < conf->geo.raid_disks; i++) {
3216                                         struct md_rdev *rdev =
3217                                                 conf->mirrors[i].replacement;
3218
3219                                         if (rdev)
3220                                                 rdev->recovery_offset = MaxSector;
3221                                 }
3222                         }
3223                         conf->fullsync = 0;
3224                 }
3225                 mddev->bitmap_ops->close_sync(mddev);
3226                 close_sync(conf);
3227                 *skipped = 1;
3228                 return sectors_skipped;
3229         }
3230
3231         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3232                 return reshape_request(mddev, sector_nr, skipped);
3233
3234         if (chunks_skipped >= conf->geo.raid_disks) {
3235                 pr_err("md/raid10:%s: %s fails\n", mdname(mddev),
3236                         test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?  "resync" : "recovery");
3237                 if (error_disk >= 0 &&
3238                     !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3239                         /*
3240                          * recovery fails, set mirrors.recovery_disabled,
3241                          * device shouldn't be added to there.
3242                          */
3243                         conf->mirrors[error_disk].recovery_disabled =
3244                                                 mddev->recovery_disabled;
3245                         return 0;
3246                 }
3247                 /*
3248                  * if there has been nothing to do on any drive,
3249                  * then there is nothing to do at all.
3250                  */
3251                 *skipped = 1;
3252                 return (max_sector - sector_nr) + sectors_skipped;
3253         }
3254
3255         if (max_sector > mddev->resync_max)
3256                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3257
3258         /* make sure whole request will fit in a chunk - if chunks
3259          * are meaningful
3260          */
3261         if (conf->geo.near_copies < conf->geo.raid_disks &&
3262             max_sector > (sector_nr | chunk_mask))
3263                 max_sector = (sector_nr | chunk_mask) + 1;
3264
3265         /*
3266          * If there is non-resync activity waiting for a turn, then let it
3267          * though before starting on this new sync request.
3268          */
3269         if (conf->nr_waiting)
3270                 schedule_timeout_uninterruptible(1);
3271
3272         /* Again, very different code for resync and recovery.
3273          * Both must result in an r10bio with a list of bios that
3274          * have bi_end_io, bi_sector, bi_bdev set,
3275          * and bi_private set to the r10bio.
3276          * For recovery, we may actually create several r10bios
3277          * with 2 bios in each, that correspond to the bios in the main one.
3278          * In this case, the subordinate r10bios link back through a
3279          * borrowed master_bio pointer, and the counter in the master
3280          * includes a ref from each subordinate.
3281          */
3282         /* First, we decide what to do and set ->bi_end_io
3283          * To end_sync_read if we want to read, and
3284          * end_sync_write if we will want to write.
3285          */
3286
3287         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3288         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3289                 /* recovery... the complicated one */
3290                 int j;
3291                 r10_bio = NULL;
3292
3293                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3294                         bool still_degraded;
3295                         struct r10bio *rb2;
3296                         sector_t sect;
3297                         bool must_sync;
3298                         int any_working;
3299                         struct raid10_info *mirror = &conf->mirrors[i];
3300                         struct md_rdev *mrdev, *mreplace;
3301
3302                         mrdev = mirror->rdev;
3303                         mreplace = mirror->replacement;
3304
3305                         if (mrdev && (test_bit(Faulty, &mrdev->flags) ||
3306                             test_bit(In_sync, &mrdev->flags)))
3307                                 mrdev = NULL;
3308                         if (mreplace && test_bit(Faulty, &mreplace->flags))
3309                                 mreplace = NULL;
3310
3311                         if (!mrdev && !mreplace)
3312                                 continue;
3313
3314                         still_degraded = false;
3315                         /* want to reconstruct this device */
3316                         rb2 = r10_bio;
3317                         sect = raid10_find_virt(conf, sector_nr, i);
3318                         if (sect >= mddev->resync_max_sectors)
3319                                 /* last stripe is not complete - don't
3320                                  * try to recover this sector.
3321                                  */
3322                                 continue;
3323                         /* Unless we are doing a full sync, or a replacement
3324                          * we only need to recover the block if it is set in
3325                          * the bitmap
3326                          */
3327                         must_sync = mddev->bitmap_ops->start_sync(mddev, sect,
3328                                                                   &sync_blocks,
3329                                                                   true);
3330                         if (sync_blocks < max_sync)
3331                                 max_sync = sync_blocks;
3332                         if (!must_sync &&
3333                             mreplace == NULL &&
3334                             !conf->fullsync) {
3335                                 /* yep, skip the sync_blocks here, but don't assume
3336                                  * that there will never be anything to do here
3337                                  */
3338                                 chunks_skipped = -1;
3339                                 continue;
3340                         }
3341                         if (mrdev)
3342                                 atomic_inc(&mrdev->nr_pending);
3343                         if (mreplace)
3344                                 atomic_inc(&mreplace->nr_pending);
3345
3346                         r10_bio = raid10_alloc_init_r10buf(conf);
3347                         r10_bio->state = 0;
3348                         raise_barrier(conf, rb2 != NULL);
3349                         atomic_set(&r10_bio->remaining, 0);
3350
3351                         r10_bio->master_bio = (struct bio*)rb2;
3352                         if (rb2)
3353                                 atomic_inc(&rb2->remaining);
3354                         r10_bio->mddev = mddev;
3355                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3356                         r10_bio->sector = sect;
3357
3358                         raid10_find_phys(conf, r10_bio);
3359
3360                         /* Need to check if the array will still be
3361                          * degraded
3362                          */
3363                         for (j = 0; j < conf->geo.raid_disks; j++) {
3364                                 struct md_rdev *rdev = conf->mirrors[j].rdev;
3365
3366                                 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3367                                         still_degraded = false;
3368                                         break;
3369                                 }
3370                         }
3371
3372                         must_sync = mddev->bitmap_ops->start_sync(mddev, sect,
3373                                                 &sync_blocks, still_degraded);
3374
3375                         any_working = 0;
3376                         for (j=0; j<conf->copies;j++) {
3377                                 int k;
3378                                 int d = r10_bio->devs[j].devnum;
3379                                 sector_t from_addr, to_addr;
3380                                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3381                                 sector_t sector, first_bad;
3382                                 int bad_sectors;
3383                                 if (!rdev ||
3384                                     !test_bit(In_sync, &rdev->flags))
3385                                         continue;
3386                                 /* This is where we read from */
3387                                 any_working = 1;
3388                                 sector = r10_bio->devs[j].addr;
3389
3390                                 if (is_badblock(rdev, sector, max_sync,
3391                                                 &first_bad, &bad_sectors)) {
3392                                         if (first_bad > sector)
3393                                                 max_sync = first_bad - sector;
3394                                         else {
3395                                                 bad_sectors -= (sector
3396                                                                 - first_bad);
3397                                                 if (max_sync > bad_sectors)
3398                                                         max_sync = bad_sectors;
3399                                                 continue;
3400                                         }
3401                                 }
3402                                 bio = r10_bio->devs[0].bio;
3403                                 bio->bi_next = biolist;
3404                                 biolist = bio;
3405                                 bio->bi_end_io = end_sync_read;
3406                                 bio->bi_opf = REQ_OP_READ;
3407                                 if (test_bit(FailFast, &rdev->flags))
3408                                         bio->bi_opf |= MD_FAILFAST;
3409                                 from_addr = r10_bio->devs[j].addr;
3410                                 bio->bi_iter.bi_sector = from_addr +
3411                                         rdev->data_offset;
3412                                 bio_set_dev(bio, rdev->bdev);
3413                                 atomic_inc(&rdev->nr_pending);
3414                                 /* and we write to 'i' (if not in_sync) */
3415
3416                                 for (k=0; k<conf->copies; k++)
3417                                         if (r10_bio->devs[k].devnum == i)
3418                                                 break;
3419                                 BUG_ON(k == conf->copies);
3420                                 to_addr = r10_bio->devs[k].addr;
3421                                 r10_bio->devs[0].devnum = d;
3422                                 r10_bio->devs[0].addr = from_addr;
3423                                 r10_bio->devs[1].devnum = i;
3424                                 r10_bio->devs[1].addr = to_addr;
3425
3426                                 if (mrdev) {
3427                                         bio = r10_bio->devs[1].bio;
3428                                         bio->bi_next = biolist;
3429                                         biolist = bio;
3430                                         bio->bi_end_io = end_sync_write;
3431                                         bio->bi_opf = REQ_OP_WRITE;
3432                                         bio->bi_iter.bi_sector = to_addr
3433                                                 + mrdev->data_offset;
3434                                         bio_set_dev(bio, mrdev->bdev);
3435                                         atomic_inc(&r10_bio->remaining);
3436                                 } else
3437                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3438
3439                                 /* and maybe write to replacement */
3440                                 bio = r10_bio->devs[1].repl_bio;
3441                                 if (bio)
3442                                         bio->bi_end_io = NULL;
3443                                 /* Note: if replace is not NULL, then bio
3444                                  * cannot be NULL as r10buf_pool_alloc will
3445                                  * have allocated it.
3446                                  */
3447                                 if (!mreplace)
3448                                         break;
3449                                 bio->bi_next = biolist;
3450                                 biolist = bio;
3451                                 bio->bi_end_io = end_sync_write;
3452                                 bio->bi_opf = REQ_OP_WRITE;
3453                                 bio->bi_iter.bi_sector = to_addr +
3454                                         mreplace->data_offset;
3455                                 bio_set_dev(bio, mreplace->bdev);
3456                                 atomic_inc(&r10_bio->remaining);
3457                                 break;
3458                         }
3459                         if (j == conf->copies) {
3460                                 /* Cannot recover, so abort the recovery or
3461                                  * record a bad block */
3462                                 if (any_working) {
3463                                         /* problem is that there are bad blocks
3464                                          * on other device(s)
3465                                          */
3466                                         int k;
3467                                         for (k = 0; k < conf->copies; k++)
3468                                                 if (r10_bio->devs[k].devnum == i)
3469                                                         break;
3470                                         if (mrdev && !test_bit(In_sync,
3471                                                       &mrdev->flags)
3472                                             && !rdev_set_badblocks(
3473                                                     mrdev,
3474                                                     r10_bio->devs[k].addr,
3475                                                     max_sync, 0))
3476                                                 any_working = 0;
3477                                         if (mreplace &&
3478                                             !rdev_set_badblocks(
3479                                                     mreplace,
3480                                                     r10_bio->devs[k].addr,
3481                                                     max_sync, 0))
3482                                                 any_working = 0;
3483                                 }
3484                                 if (!any_working)  {
3485                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3486                                                               &mddev->recovery))
3487                                                 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3488                                                        mdname(mddev));
3489                                         mirror->recovery_disabled
3490                                                 = mddev->recovery_disabled;
3491                                 } else {
3492                                         error_disk = i;
3493                                 }
3494                                 put_buf(r10_bio);
3495                                 if (rb2)
3496                                         atomic_dec(&rb2->remaining);
3497                                 r10_bio = rb2;
3498                                 if (mrdev)
3499                                         rdev_dec_pending(mrdev, mddev);
3500                                 if (mreplace)
3501                                         rdev_dec_pending(mreplace, mddev);
3502                                 break;
3503                         }
3504                         if (mrdev)
3505                                 rdev_dec_pending(mrdev, mddev);
3506                         if (mreplace)
3507                                 rdev_dec_pending(mreplace, mddev);
3508                         if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3509                                 /* Only want this if there is elsewhere to
3510                                  * read from. 'j' is currently the first
3511                                  * readable copy.
3512                                  */
3513                                 int targets = 1;
3514                                 for (; j < conf->copies; j++) {
3515                                         int d = r10_bio->devs[j].devnum;
3516                                         if (conf->mirrors[d].rdev &&
3517                                             test_bit(In_sync,
3518                                                       &conf->mirrors[d].rdev->flags))
3519                                                 targets++;
3520                                 }
3521                                 if (targets == 1)
3522                                         r10_bio->devs[0].bio->bi_opf
3523                                                 &= ~MD_FAILFAST;
3524                         }
3525                 }
3526                 if (biolist == NULL) {
3527                         while (r10_bio) {
3528                                 struct r10bio *rb2 = r10_bio;
3529                                 r10_bio = (struct r10bio*) rb2->master_bio;
3530                                 rb2->master_bio = NULL;
3531                                 put_buf(rb2);
3532                         }
3533                         goto giveup;
3534                 }
3535         } else {
3536                 /* resync. Schedule a read for every block at this virt offset */
3537                 int count = 0;
3538
3539                 /*
3540                  * Since curr_resync_completed could probably not update in
3541                  * time, and we will set cluster_sync_low based on it.
3542                  * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3543                  * safety reason, which ensures curr_resync_completed is
3544                  * updated in bitmap_cond_end_sync.
3545                  */
3546                 mddev->bitmap_ops->cond_end_sync(mddev, sector_nr,
3547                                         mddev_is_clustered(mddev) &&
3548                                         (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3549
3550                 if (!mddev->bitmap_ops->start_sync(mddev, sector_nr,
3551                                                    &sync_blocks,
3552                                                    mddev->degraded) &&
3553                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3554                                                  &mddev->recovery)) {
3555                         /* We can skip this block */
3556                         *skipped = 1;
3557                         return sync_blocks + sectors_skipped;
3558                 }
3559                 if (sync_blocks < max_sync)
3560                         max_sync = sync_blocks;
3561                 r10_bio = raid10_alloc_init_r10buf(conf);
3562                 r10_bio->state = 0;
3563
3564                 r10_bio->mddev = mddev;
3565                 atomic_set(&r10_bio->remaining, 0);
3566                 raise_barrier(conf, 0);
3567                 conf->next_resync = sector_nr;
3568
3569                 r10_bio->master_bio = NULL;
3570                 r10_bio->sector = sector_nr;
3571                 set_bit(R10BIO_IsSync, &r10_bio->state);
3572                 raid10_find_phys(conf, r10_bio);
3573                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3574
3575                 for (i = 0; i < conf->copies; i++) {
3576                         int d = r10_bio->devs[i].devnum;
3577                         sector_t first_bad, sector;
3578                         int bad_sectors;
3579                         struct md_rdev *rdev;
3580
3581                         if (r10_bio->devs[i].repl_bio)
3582                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3583
3584                         bio = r10_bio->devs[i].bio;
3585                         bio->bi_status = BLK_STS_IOERR;
3586                         rdev = conf->mirrors[d].rdev;
3587                         if (rdev == NULL || test_bit(Faulty, &rdev->flags))
3588                                 continue;
3589
3590                         sector = r10_bio->devs[i].addr;
3591                         if (is_badblock(rdev, sector, max_sync,
3592                                         &first_bad, &bad_sectors)) {
3593                                 if (first_bad > sector)
3594                                         max_sync = first_bad - sector;
3595                                 else {
3596                                         bad_sectors -= (sector - first_bad);
3597                                         if (max_sync > bad_sectors)
3598                                                 max_sync = bad_sectors;
3599                                         continue;
3600                                 }
3601                         }
3602                         atomic_inc(&rdev->nr_pending);
3603                         atomic_inc(&r10_bio->remaining);
3604                         bio->bi_next = biolist;
3605                         biolist = bio;
3606                         bio->bi_end_io = end_sync_read;
3607                         bio->bi_opf = REQ_OP_READ;
3608                         if (test_bit(FailFast, &rdev->flags))
3609                                 bio->bi_opf |= MD_FAILFAST;
3610                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3611                         bio_set_dev(bio, rdev->bdev);
3612                         count++;
3613
3614                         rdev = conf->mirrors[d].replacement;
3615                         if (rdev == NULL || test_bit(Faulty, &rdev->flags))
3616                                 continue;
3617
3618                         atomic_inc(&rdev->nr_pending);
3619
3620                         /* Need to set up for writing to the replacement */
3621                         bio = r10_bio->devs[i].repl_bio;
3622                         bio->bi_status = BLK_STS_IOERR;
3623
3624                         sector = r10_bio->devs[i].addr;
3625                         bio->bi_next = biolist;
3626                         biolist = bio;
3627                         bio->bi_end_io = end_sync_write;
3628                         bio->bi_opf = REQ_OP_WRITE;
3629                         if (test_bit(FailFast, &rdev->flags))
3630                                 bio->bi_opf |= MD_FAILFAST;
3631                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3632                         bio_set_dev(bio, rdev->bdev);
3633                         count++;
3634                 }
3635
3636                 if (count < 2) {
3637                         for (i=0; i<conf->copies; i++) {
3638                                 int d = r10_bio->devs[i].devnum;
3639                                 if (r10_bio->devs[i].bio->bi_end_io)
3640                                         rdev_dec_pending(conf->mirrors[d].rdev,
3641                                                          mddev);
3642                                 if (r10_bio->devs[i].repl_bio &&
3643                                     r10_bio->devs[i].repl_bio->bi_end_io)
3644                                         rdev_dec_pending(
3645                                                 conf->mirrors[d].replacement,
3646                                                 mddev);
3647                         }
3648                         put_buf(r10_bio);
3649                         biolist = NULL;
3650                         goto giveup;
3651                 }
3652         }
3653
3654         nr_sectors = 0;
3655         if (sector_nr + max_sync < max_sector)
3656                 max_sector = sector_nr + max_sync;
3657         do {
3658                 struct page *page;
3659                 int len = PAGE_SIZE;
3660                 if (sector_nr + (len>>9) > max_sector)
3661                         len = (max_sector - sector_nr) << 9;
3662                 if (len == 0)
3663                         break;
3664                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3665                         struct resync_pages *rp = get_resync_pages(bio);
3666                         page = resync_fetch_page(rp, page_idx);
3667                         if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
3668                                 bio->bi_status = BLK_STS_RESOURCE;
3669                                 bio_endio(bio);
3670                                 goto giveup;
3671                         }
3672                 }
3673                 nr_sectors += len>>9;
3674                 sector_nr += len>>9;
3675         } while (++page_idx < RESYNC_PAGES);
3676         r10_bio->sectors = nr_sectors;
3677
3678         if (mddev_is_clustered(mddev) &&
3679             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3680                 /* It is resync not recovery */
3681                 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3682                         conf->cluster_sync_low = mddev->curr_resync_completed;
3683                         raid10_set_cluster_sync_high(conf);
3684                         /* Send resync message */
3685                         md_cluster_ops->resync_info_update(mddev,
3686                                                 conf->cluster_sync_low,
3687                                                 conf->cluster_sync_high);
3688                 }
3689         } else if (mddev_is_clustered(mddev)) {
3690                 /* This is recovery not resync */
3691                 sector_t sect_va1, sect_va2;
3692                 bool broadcast_msg = false;
3693
3694                 for (i = 0; i < conf->geo.raid_disks; i++) {
3695                         /*
3696                          * sector_nr is a device address for recovery, so we
3697                          * need translate it to array address before compare
3698                          * with cluster_sync_high.
3699                          */
3700                         sect_va1 = raid10_find_virt(conf, sector_nr, i);
3701
3702                         if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3703                                 broadcast_msg = true;
3704                                 /*
3705                                  * curr_resync_completed is similar as
3706                                  * sector_nr, so make the translation too.
3707                                  */
3708                                 sect_va2 = raid10_find_virt(conf,
3709                                         mddev->curr_resync_completed, i);
3710
3711                                 if (conf->cluster_sync_low == 0 ||
3712                                     conf->cluster_sync_low > sect_va2)
3713                                         conf->cluster_sync_low = sect_va2;
3714                         }
3715                 }
3716                 if (broadcast_msg) {
3717                         raid10_set_cluster_sync_high(conf);
3718                         md_cluster_ops->resync_info_update(mddev,
3719                                                 conf->cluster_sync_low,
3720                                                 conf->cluster_sync_high);
3721                 }
3722         }
3723
3724         while (biolist) {
3725                 bio = biolist;
3726                 biolist = biolist->bi_next;
3727
3728                 bio->bi_next = NULL;
3729                 r10_bio = get_resync_r10bio(bio);
3730                 r10_bio->sectors = nr_sectors;
3731
3732                 if (bio->bi_end_io == end_sync_read) {
3733                         md_sync_acct_bio(bio, nr_sectors);
3734                         bio->bi_status = 0;
3735                         submit_bio_noacct(bio);
3736                 }
3737         }
3738
3739         if (sectors_skipped)
3740                 /* pretend they weren't skipped, it makes
3741                  * no important difference in this case
3742                  */
3743                 md_done_sync(mddev, sectors_skipped, 1);
3744
3745         return sectors_skipped + nr_sectors;
3746  giveup:
3747         /* There is nowhere to write, so all non-sync
3748          * drives must be failed or in resync, all drives
3749          * have a bad block, so try the next chunk...
3750          */
3751         if (sector_nr + max_sync < max_sector)
3752                 max_sector = sector_nr + max_sync;
3753
3754         sectors_skipped += (max_sector - sector_nr);
3755         chunks_skipped ++;
3756         sector_nr = max_sector;
3757         goto skipped;
3758 }
3759
3760 static sector_t
3761 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3762 {
3763         sector_t size;
3764         struct r10conf *conf = mddev->private;
3765
3766         if (!raid_disks)
3767                 raid_disks = min(conf->geo.raid_disks,
3768                                  conf->prev.raid_disks);
3769         if (!sectors)
3770                 sectors = conf->dev_sectors;
3771
3772         size = sectors >> conf->geo.chunk_shift;
3773         sector_div(size, conf->geo.far_copies);
3774         size = size * raid_disks;
3775         sector_div(size, conf->geo.near_copies);
3776
3777         return size << conf->geo.chunk_shift;
3778 }
3779
3780 static void calc_sectors(struct r10conf *conf, sector_t size)
3781 {
3782         /* Calculate the number of sectors-per-device that will
3783          * actually be used, and set conf->dev_sectors and
3784          * conf->stride
3785          */
3786
3787         size = size >> conf->geo.chunk_shift;
3788         sector_div(size, conf->geo.far_copies);
3789         size = size * conf->geo.raid_disks;
3790         sector_div(size, conf->geo.near_copies);
3791         /* 'size' is now the number of chunks in the array */
3792         /* calculate "used chunks per device" */
3793         size = size * conf->copies;
3794
3795         /* We need to round up when dividing by raid_disks to
3796          * get the stride size.
3797          */
3798         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3799
3800         conf->dev_sectors = size << conf->geo.chunk_shift;
3801
3802         if (conf->geo.far_offset)
3803                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3804         else {
3805                 sector_div(size, conf->geo.far_copies);
3806                 conf->geo.stride = size << conf->geo.chunk_shift;
3807         }
3808 }
3809
3810 enum geo_type {geo_new, geo_old, geo_start};
3811 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3812 {
3813         int nc, fc, fo;
3814         int layout, chunk, disks;
3815         switch (new) {
3816         case geo_old:
3817                 layout = mddev->layout;
3818                 chunk = mddev->chunk_sectors;
3819                 disks = mddev->raid_disks - mddev->delta_disks;
3820                 break;
3821         case geo_new:
3822                 layout = mddev->new_layout;
3823                 chunk = mddev->new_chunk_sectors;
3824                 disks = mddev->raid_disks;
3825                 break;
3826         default: /* avoid 'may be unused' warnings */
3827         case geo_start: /* new when starting reshape - raid_disks not
3828                          * updated yet. */
3829                 layout = mddev->new_layout;
3830                 chunk = mddev->new_chunk_sectors;
3831                 disks = mddev->raid_disks + mddev->delta_disks;
3832                 break;
3833         }
3834         if (layout >> 19)
3835                 return -1;
3836         if (chunk < (PAGE_SIZE >> 9) ||
3837             !is_power_of_2(chunk))
3838                 return -2;
3839         nc = layout & 255;
3840         fc = (layout >> 8) & 255;
3841         fo = layout & (1<<16);
3842         geo->raid_disks = disks;
3843         geo->near_copies = nc;
3844         geo->far_copies = fc;
3845         geo->far_offset = fo;
3846         switch (layout >> 17) {
3847         case 0: /* original layout.  simple but not always optimal */
3848                 geo->far_set_size = disks;
3849                 break;
3850         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3851                  * actually using this, but leave code here just in case.*/
3852                 geo->far_set_size = disks/fc;
3853                 WARN(geo->far_set_size < fc,
3854                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
3855                 break;
3856         case 2: /* "improved" layout fixed to match documentation */
3857                 geo->far_set_size = fc * nc;
3858                 break;
3859         default: /* Not a valid layout */
3860                 return -1;
3861         }
3862         geo->chunk_mask = chunk - 1;
3863         geo->chunk_shift = ffz(~chunk);
3864         return nc*fc;
3865 }
3866
3867 static void raid10_free_conf(struct r10conf *conf)
3868 {
3869         if (!conf)
3870                 return;
3871
3872         mempool_exit(&conf->r10bio_pool);
3873         kfree(conf->mirrors);
3874         kfree(conf->mirrors_old);
3875         kfree(conf->mirrors_new);
3876         safe_put_page(conf->tmppage);
3877         bioset_exit(&conf->bio_split);
3878         kfree(conf);
3879 }
3880
3881 static struct r10conf *setup_conf(struct mddev *mddev)
3882 {
3883         struct r10conf *conf = NULL;
3884         int err = -EINVAL;
3885         struct geom geo;
3886         int copies;
3887
3888         copies = setup_geo(&geo, mddev, geo_new);
3889
3890         if (copies == -2) {
3891                 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3892                         mdname(mddev), PAGE_SIZE);
3893                 goto out;
3894         }
3895
3896         if (copies < 2 || copies > mddev->raid_disks) {
3897                 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3898                         mdname(mddev), mddev->new_layout);
3899                 goto out;
3900         }
3901
3902         err = -ENOMEM;
3903         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3904         if (!conf)
3905                 goto out;
3906
3907         /* FIXME calc properly */
3908         conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3909                                 sizeof(struct raid10_info),
3910                                 GFP_KERNEL);
3911         if (!conf->mirrors)
3912                 goto out;
3913
3914         conf->tmppage = alloc_page(GFP_KERNEL);
3915         if (!conf->tmppage)
3916                 goto out;
3917
3918         conf->geo = geo;
3919         conf->copies = copies;
3920         err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3921                            rbio_pool_free, conf);
3922         if (err)
3923                 goto out;
3924
3925         err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3926         if (err)
3927                 goto out;
3928
3929         calc_sectors(conf, mddev->dev_sectors);
3930         if (mddev->reshape_position == MaxSector) {
3931                 conf->prev = conf->geo;
3932                 conf->reshape_progress = MaxSector;
3933         } else {
3934                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3935                         err = -EINVAL;
3936                         goto out;
3937                 }
3938                 conf->reshape_progress = mddev->reshape_position;
3939                 if (conf->prev.far_offset)
3940                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3941                 else
3942                         /* far_copies must be 1 */
3943                         conf->prev.stride = conf->dev_sectors;
3944         }
3945         conf->reshape_safe = conf->reshape_progress;
3946         spin_lock_init(&conf->device_lock);
3947         INIT_LIST_HEAD(&conf->retry_list);
3948         INIT_LIST_HEAD(&conf->bio_end_io_list);
3949
3950         seqlock_init(&conf->resync_lock);
3951         init_waitqueue_head(&conf->wait_barrier);
3952         atomic_set(&conf->nr_pending, 0);
3953
3954         err = -ENOMEM;
3955         rcu_assign_pointer(conf->thread,
3956                            md_register_thread(raid10d, mddev, "raid10"));
3957         if (!conf->thread)
3958                 goto out;
3959
3960         conf->mddev = mddev;
3961         return conf;
3962
3963  out:
3964         raid10_free_conf(conf);
3965         return ERR_PTR(err);
3966 }
3967
3968 static unsigned int raid10_nr_stripes(struct r10conf *conf)
3969 {
3970         unsigned int raid_disks = conf->geo.raid_disks;
3971
3972         if (conf->geo.raid_disks % conf->geo.near_copies)
3973                 return raid_disks;
3974         return raid_disks / conf->geo.near_copies;
3975 }
3976
3977 static int raid10_set_queue_limits(struct mddev *mddev)
3978 {
3979         struct r10conf *conf = mddev->private;
3980         struct queue_limits lim;
3981         int err;
3982
3983         md_init_stacking_limits(&lim);
3984         lim.max_write_zeroes_sectors = 0;
3985         lim.io_min = mddev->chunk_sectors << 9;
3986         lim.io_opt = lim.io_min * raid10_nr_stripes(conf);
3987         err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY);
3988         if (err) {
3989                 queue_limits_cancel_update(mddev->gendisk->queue);
3990                 return err;
3991         }
3992         return queue_limits_set(mddev->gendisk->queue, &lim);
3993 }
3994
3995 static int raid10_run(struct mddev *mddev)
3996 {
3997         struct r10conf *conf;
3998         int i, disk_idx;
3999         struct raid10_info *disk;
4000         struct md_rdev *rdev;
4001         sector_t size;
4002         sector_t min_offset_diff = 0;
4003         int first = 1;
4004         int ret = -EIO;
4005
4006         if (mddev->private == NULL) {
4007                 conf = setup_conf(mddev);
4008                 if (IS_ERR(conf))
4009                         return PTR_ERR(conf);
4010                 mddev->private = conf;
4011         }
4012         conf = mddev->private;
4013         if (!conf)
4014                 goto out;
4015
4016         rcu_assign_pointer(mddev->thread, conf->thread);
4017         rcu_assign_pointer(conf->thread, NULL);
4018
4019         if (mddev_is_clustered(conf->mddev)) {
4020                 int fc, fo;
4021
4022                 fc = (mddev->layout >> 8) & 255;
4023                 fo = mddev->layout & (1<<16);
4024                 if (fc > 1 || fo > 0) {
4025                         pr_err("only near layout is supported by clustered"
4026                                 " raid10\n");
4027                         goto out_free_conf;
4028                 }
4029         }
4030
4031         rdev_for_each(rdev, mddev) {
4032                 long long diff;
4033
4034                 disk_idx = rdev->raid_disk;
4035                 if (disk_idx < 0)
4036                         continue;
4037                 if (disk_idx >= conf->geo.raid_disks &&
4038                     disk_idx >= conf->prev.raid_disks)
4039                         continue;
4040                 disk = conf->mirrors + disk_idx;
4041
4042                 if (test_bit(Replacement, &rdev->flags)) {
4043                         if (disk->replacement)
4044                                 goto out_free_conf;
4045                         disk->replacement = rdev;
4046                 } else {
4047                         if (disk->rdev)
4048                                 goto out_free_conf;
4049                         disk->rdev = rdev;
4050                 }
4051                 diff = (rdev->new_data_offset - rdev->data_offset);
4052                 if (!mddev->reshape_backwards)
4053                         diff = -diff;
4054                 if (diff < 0)
4055                         diff = 0;
4056                 if (first || diff < min_offset_diff)
4057                         min_offset_diff = diff;
4058
4059                 disk->head_position = 0;
4060                 first = 0;
4061         }
4062
4063         if (!mddev_is_dm(conf->mddev)) {
4064                 ret = raid10_set_queue_limits(mddev);
4065                 if (ret)
4066                         goto out_free_conf;
4067         }
4068
4069         /* need to check that every block has at least one working mirror */
4070         if (!enough(conf, -1)) {
4071                 pr_err("md/raid10:%s: not enough operational mirrors.\n",
4072                        mdname(mddev));
4073                 goto out_free_conf;
4074         }
4075
4076         if (conf->reshape_progress != MaxSector) {
4077                 /* must ensure that shape change is supported */
4078                 if (conf->geo.far_copies != 1 &&
4079                     conf->geo.far_offset == 0)
4080                         goto out_free_conf;
4081                 if (conf->prev.far_copies != 1 &&
4082                     conf->prev.far_offset == 0)
4083                         goto out_free_conf;
4084         }
4085
4086         mddev->degraded = 0;
4087         for (i = 0;
4088              i < conf->geo.raid_disks
4089                      || i < conf->prev.raid_disks;
4090              i++) {
4091
4092                 disk = conf->mirrors + i;
4093
4094                 if (!disk->rdev && disk->replacement) {
4095                         /* The replacement is all we have - use it */
4096                         disk->rdev = disk->replacement;
4097                         disk->replacement = NULL;
4098                         clear_bit(Replacement, &disk->rdev->flags);
4099                 }
4100
4101                 if (!disk->rdev ||
4102                     !test_bit(In_sync, &disk->rdev->flags)) {
4103                         disk->head_position = 0;
4104                         mddev->degraded++;
4105                         if (disk->rdev &&
4106                             disk->rdev->saved_raid_disk < 0)
4107                                 conf->fullsync = 1;
4108                 }
4109
4110                 if (disk->replacement &&
4111                     !test_bit(In_sync, &disk->replacement->flags) &&
4112                     disk->replacement->saved_raid_disk < 0) {
4113                         conf->fullsync = 1;
4114                 }
4115
4116                 disk->recovery_disabled = mddev->recovery_disabled - 1;
4117         }
4118
4119         if (mddev->recovery_cp != MaxSector)
4120                 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4121                           mdname(mddev));
4122         pr_info("md/raid10:%s: active with %d out of %d devices\n",
4123                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4124                 conf->geo.raid_disks);
4125         /*
4126          * Ok, everything is just fine now
4127          */
4128         mddev->dev_sectors = conf->dev_sectors;
4129         size = raid10_size(mddev, 0, 0);
4130         md_set_array_sectors(mddev, size);
4131         mddev->resync_max_sectors = size;
4132         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4133
4134         if (md_integrity_register(mddev))
4135                 goto out_free_conf;
4136
4137         if (conf->reshape_progress != MaxSector) {
4138                 unsigned long before_length, after_length;
4139
4140                 before_length = ((1 << conf->prev.chunk_shift) *
4141                                  conf->prev.far_copies);
4142                 after_length = ((1 << conf->geo.chunk_shift) *
4143                                 conf->geo.far_copies);
4144
4145                 if (max(before_length, after_length) > min_offset_diff) {
4146                         /* This cannot work */
4147                         pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4148                         goto out_free_conf;
4149                 }
4150                 conf->offset_diff = min_offset_diff;
4151
4152                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4153                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4154                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4155                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4156         }
4157
4158         return 0;
4159
4160 out_free_conf:
4161         md_unregister_thread(mddev, &mddev->thread);
4162         raid10_free_conf(conf);
4163         mddev->private = NULL;
4164 out:
4165         return ret;
4166 }
4167
4168 static void raid10_free(struct mddev *mddev, void *priv)
4169 {
4170         raid10_free_conf(priv);
4171 }
4172
4173 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4174 {
4175         struct r10conf *conf = mddev->private;
4176
4177         if (quiesce)
4178                 raise_barrier(conf, 0);
4179         else
4180                 lower_barrier(conf);
4181 }
4182
4183 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4184 {
4185         /* Resize of 'far' arrays is not supported.
4186          * For 'near' and 'offset' arrays we can set the
4187          * number of sectors used to be an appropriate multiple
4188          * of the chunk size.
4189          * For 'offset', this is far_copies*chunksize.
4190          * For 'near' the multiplier is the LCM of
4191          * near_copies and raid_disks.
4192          * So if far_copies > 1 && !far_offset, fail.
4193          * Else find LCM(raid_disks, near_copy)*far_copies and
4194          * multiply by chunk_size.  Then round to this number.
4195          * This is mostly done by raid10_size()
4196          */
4197         struct r10conf *conf = mddev->private;
4198         sector_t oldsize, size;
4199         int ret;
4200
4201         if (mddev->reshape_position != MaxSector)
4202                 return -EBUSY;
4203
4204         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4205                 return -EINVAL;
4206
4207         oldsize = raid10_size(mddev, 0, 0);
4208         size = raid10_size(mddev, sectors, 0);
4209         if (mddev->external_size &&
4210             mddev->array_sectors > size)
4211                 return -EINVAL;
4212
4213         ret = mddev->bitmap_ops->resize(mddev, size, 0, false);
4214         if (ret)
4215                 return ret;
4216
4217         md_set_array_sectors(mddev, size);
4218         if (sectors > mddev->dev_sectors &&
4219             mddev->recovery_cp > oldsize) {
4220                 mddev->recovery_cp = oldsize;
4221                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4222         }
4223         calc_sectors(conf, sectors);
4224         mddev->dev_sectors = conf->dev_sectors;
4225         mddev->resync_max_sectors = size;
4226         return 0;
4227 }
4228
4229 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4230 {
4231         struct md_rdev *rdev;
4232         struct r10conf *conf;
4233
4234         if (mddev->degraded > 0) {
4235                 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4236                         mdname(mddev));
4237                 return ERR_PTR(-EINVAL);
4238         }
4239         sector_div(size, devs);
4240
4241         /* Set new parameters */
4242         mddev->new_level = 10;
4243         /* new layout: far_copies = 1, near_copies = 2 */
4244         mddev->new_layout = (1<<8) + 2;
4245         mddev->new_chunk_sectors = mddev->chunk_sectors;
4246         mddev->delta_disks = mddev->raid_disks;
4247         mddev->raid_disks *= 2;
4248         /* make sure it will be not marked as dirty */
4249         mddev->recovery_cp = MaxSector;
4250         mddev->dev_sectors = size;
4251
4252         conf = setup_conf(mddev);
4253         if (!IS_ERR(conf)) {
4254                 rdev_for_each(rdev, mddev)
4255                         if (rdev->raid_disk >= 0) {
4256                                 rdev->new_raid_disk = rdev->raid_disk * 2;
4257                                 rdev->sectors = size;
4258                         }
4259         }
4260
4261         return conf;
4262 }
4263
4264 static void *raid10_takeover(struct mddev *mddev)
4265 {
4266         struct r0conf *raid0_conf;
4267
4268         /* raid10 can take over:
4269          *  raid0 - providing it has only two drives
4270          */
4271         if (mddev->level == 0) {
4272                 /* for raid0 takeover only one zone is supported */
4273                 raid0_conf = mddev->private;
4274                 if (raid0_conf->nr_strip_zones > 1) {
4275                         pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4276                                 mdname(mddev));
4277                         return ERR_PTR(-EINVAL);
4278                 }
4279                 return raid10_takeover_raid0(mddev,
4280                         raid0_conf->strip_zone->zone_end,
4281                         raid0_conf->strip_zone->nb_dev);
4282         }
4283         return ERR_PTR(-EINVAL);
4284 }
4285
4286 static int raid10_check_reshape(struct mddev *mddev)
4287 {
4288         /* Called when there is a request to change
4289          * - layout (to ->new_layout)
4290          * - chunk size (to ->new_chunk_sectors)
4291          * - raid_disks (by delta_disks)
4292          * or when trying to restart a reshape that was ongoing.
4293          *
4294          * We need to validate the request and possibly allocate
4295          * space if that might be an issue later.
4296          *
4297          * Currently we reject any reshape of a 'far' mode array,
4298          * allow chunk size to change if new is generally acceptable,
4299          * allow raid_disks to increase, and allow
4300          * a switch between 'near' mode and 'offset' mode.
4301          */
4302         struct r10conf *conf = mddev->private;
4303         struct geom geo;
4304
4305         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4306                 return -EINVAL;
4307
4308         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4309                 /* mustn't change number of copies */
4310                 return -EINVAL;
4311         if (geo.far_copies > 1 && !geo.far_offset)
4312                 /* Cannot switch to 'far' mode */
4313                 return -EINVAL;
4314
4315         if (mddev->array_sectors & geo.chunk_mask)
4316                         /* not factor of array size */
4317                         return -EINVAL;
4318
4319         if (!enough(conf, -1))
4320                 return -EINVAL;
4321
4322         kfree(conf->mirrors_new);
4323         conf->mirrors_new = NULL;
4324         if (mddev->delta_disks > 0) {
4325                 /* allocate new 'mirrors' list */
4326                 conf->mirrors_new =
4327                         kcalloc(mddev->raid_disks + mddev->delta_disks,
4328                                 sizeof(struct raid10_info),
4329                                 GFP_KERNEL);
4330                 if (!conf->mirrors_new)
4331                         return -ENOMEM;
4332         }
4333         return 0;
4334 }
4335
4336 /*
4337  * Need to check if array has failed when deciding whether to:
4338  *  - start an array
4339  *  - remove non-faulty devices
4340  *  - add a spare
4341  *  - allow a reshape
4342  * This determination is simple when no reshape is happening.
4343  * However if there is a reshape, we need to carefully check
4344  * both the before and after sections.
4345  * This is because some failed devices may only affect one
4346  * of the two sections, and some non-in_sync devices may
4347  * be insync in the section most affected by failed devices.
4348  */
4349 static int calc_degraded(struct r10conf *conf)
4350 {
4351         int degraded, degraded2;
4352         int i;
4353
4354         degraded = 0;
4355         /* 'prev' section first */
4356         for (i = 0; i < conf->prev.raid_disks; i++) {
4357                 struct md_rdev *rdev = conf->mirrors[i].rdev;
4358
4359                 if (!rdev || test_bit(Faulty, &rdev->flags))
4360                         degraded++;
4361                 else if (!test_bit(In_sync, &rdev->flags))
4362                         /* When we can reduce the number of devices in
4363                          * an array, this might not contribute to
4364                          * 'degraded'.  It does now.
4365                          */
4366                         degraded++;
4367         }
4368         if (conf->geo.raid_disks == conf->prev.raid_disks)
4369                 return degraded;
4370         degraded2 = 0;
4371         for (i = 0; i < conf->geo.raid_disks; i++) {
4372                 struct md_rdev *rdev = conf->mirrors[i].rdev;
4373
4374                 if (!rdev || test_bit(Faulty, &rdev->flags))
4375                         degraded2++;
4376                 else if (!test_bit(In_sync, &rdev->flags)) {
4377                         /* If reshape is increasing the number of devices,
4378                          * this section has already been recovered, so
4379                          * it doesn't contribute to degraded.
4380                          * else it does.
4381                          */
4382                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4383                                 degraded2++;
4384                 }
4385         }
4386         if (degraded2 > degraded)
4387                 return degraded2;
4388         return degraded;
4389 }
4390
4391 static int raid10_start_reshape(struct mddev *mddev)
4392 {
4393         /* A 'reshape' has been requested. This commits
4394          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4395          * This also checks if there are enough spares and adds them
4396          * to the array.
4397          * We currently require enough spares to make the final
4398          * array non-degraded.  We also require that the difference
4399          * between old and new data_offset - on each device - is
4400          * enough that we never risk over-writing.
4401          */
4402
4403         unsigned long before_length, after_length;
4404         sector_t min_offset_diff = 0;
4405         int first = 1;
4406         struct geom new;
4407         struct r10conf *conf = mddev->private;
4408         struct md_rdev *rdev;
4409         int spares = 0;
4410         int ret;
4411
4412         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4413                 return -EBUSY;
4414
4415         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4416                 return -EINVAL;
4417
4418         before_length = ((1 << conf->prev.chunk_shift) *
4419                          conf->prev.far_copies);
4420         after_length = ((1 << conf->geo.chunk_shift) *
4421                         conf->geo.far_copies);
4422
4423         rdev_for_each(rdev, mddev) {
4424                 if (!test_bit(In_sync, &rdev->flags)
4425                     && !test_bit(Faulty, &rdev->flags))
4426                         spares++;
4427                 if (rdev->raid_disk >= 0) {
4428                         long long diff = (rdev->new_data_offset
4429                                           - rdev->data_offset);
4430                         if (!mddev->reshape_backwards)
4431                                 diff = -diff;
4432                         if (diff < 0)
4433                                 diff = 0;
4434                         if (first || diff < min_offset_diff)
4435                                 min_offset_diff = diff;
4436                         first = 0;
4437                 }
4438         }
4439
4440         if (max(before_length, after_length) > min_offset_diff)
4441                 return -EINVAL;
4442
4443         if (spares < mddev->delta_disks)
4444                 return -EINVAL;
4445
4446         conf->offset_diff = min_offset_diff;
4447         spin_lock_irq(&conf->device_lock);
4448         if (conf->mirrors_new) {
4449                 memcpy(conf->mirrors_new, conf->mirrors,
4450                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4451                 smp_mb();
4452                 kfree(conf->mirrors_old);
4453                 conf->mirrors_old = conf->mirrors;
4454                 conf->mirrors = conf->mirrors_new;
4455                 conf->mirrors_new = NULL;
4456         }
4457         setup_geo(&conf->geo, mddev, geo_start);
4458         smp_mb();
4459         if (mddev->reshape_backwards) {
4460                 sector_t size = raid10_size(mddev, 0, 0);
4461                 if (size < mddev->array_sectors) {
4462                         spin_unlock_irq(&conf->device_lock);
4463                         pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4464                                 mdname(mddev));
4465                         return -EINVAL;
4466                 }
4467                 mddev->resync_max_sectors = size;
4468                 conf->reshape_progress = size;
4469         } else
4470                 conf->reshape_progress = 0;
4471         conf->reshape_safe = conf->reshape_progress;
4472         spin_unlock_irq(&conf->device_lock);
4473
4474         if (mddev->delta_disks && mddev->bitmap) {
4475                 struct mdp_superblock_1 *sb = NULL;
4476                 sector_t oldsize, newsize;
4477
4478                 oldsize = raid10_size(mddev, 0, 0);
4479                 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4480
4481                 if (!mddev_is_clustered(mddev)) {
4482                         ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false);
4483                         if (ret)
4484                                 goto abort;
4485                         else
4486                                 goto out;
4487                 }
4488
4489                 rdev_for_each(rdev, mddev) {
4490                         if (rdev->raid_disk > -1 &&
4491                             !test_bit(Faulty, &rdev->flags))
4492                                 sb = page_address(rdev->sb_page);
4493                 }
4494
4495                 /*
4496                  * some node is already performing reshape, and no need to
4497                  * call bitmap_ops->resize again since it should be called when
4498                  * receiving BITMAP_RESIZE msg
4499                  */
4500                 if ((sb && (le32_to_cpu(sb->feature_map) &
4501                             MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4502                         goto out;
4503
4504                 ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false);
4505                 if (ret)
4506                         goto abort;
4507
4508                 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4509                 if (ret) {
4510                         mddev->bitmap_ops->resize(mddev, oldsize, 0, false);
4511                         goto abort;
4512                 }
4513         }
4514 out:
4515         if (mddev->delta_disks > 0) {
4516                 rdev_for_each(rdev, mddev)
4517                         if (rdev->raid_disk < 0 &&
4518                             !test_bit(Faulty, &rdev->flags)) {
4519                                 if (raid10_add_disk(mddev, rdev) == 0) {
4520                                         if (rdev->raid_disk >=
4521                                             conf->prev.raid_disks)
4522                                                 set_bit(In_sync, &rdev->flags);
4523                                         else
4524                                                 rdev->recovery_offset = 0;
4525
4526                                         /* Failure here is OK */
4527                                         sysfs_link_rdev(mddev, rdev);
4528                                 }
4529                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4530                                    && !test_bit(Faulty, &rdev->flags)) {
4531                                 /* This is a spare that was manually added */
4532                                 set_bit(In_sync, &rdev->flags);
4533                         }
4534         }
4535         /* When a reshape changes the number of devices,
4536          * ->degraded is measured against the larger of the
4537          * pre and  post numbers.
4538          */
4539         spin_lock_irq(&conf->device_lock);
4540         mddev->degraded = calc_degraded(conf);
4541         spin_unlock_irq(&conf->device_lock);
4542         mddev->raid_disks = conf->geo.raid_disks;
4543         mddev->reshape_position = conf->reshape_progress;
4544         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4545
4546         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4547         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4548         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4549         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4550         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4551         conf->reshape_checkpoint = jiffies;
4552         md_new_event();
4553         return 0;
4554
4555 abort:
4556         mddev->recovery = 0;
4557         spin_lock_irq(&conf->device_lock);
4558         conf->geo = conf->prev;
4559         mddev->raid_disks = conf->geo.raid_disks;
4560         rdev_for_each(rdev, mddev)
4561                 rdev->new_data_offset = rdev->data_offset;
4562         smp_wmb();
4563         conf->reshape_progress = MaxSector;
4564         conf->reshape_safe = MaxSector;
4565         mddev->reshape_position = MaxSector;
4566         spin_unlock_irq(&conf->device_lock);
4567         return ret;
4568 }
4569
4570 /* Calculate the last device-address that could contain
4571  * any block from the chunk that includes the array-address 's'
4572  * and report the next address.
4573  * i.e. the address returned will be chunk-aligned and after
4574  * any data that is in the chunk containing 's'.
4575  */
4576 static sector_t last_dev_address(sector_t s, struct geom *geo)
4577 {
4578         s = (s | geo->chunk_mask) + 1;
4579         s >>= geo->chunk_shift;
4580         s *= geo->near_copies;
4581         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4582         s *= geo->far_copies;
4583         s <<= geo->chunk_shift;
4584         return s;
4585 }
4586
4587 /* Calculate the first device-address that could contain
4588  * any block from the chunk that includes the array-address 's'.
4589  * This too will be the start of a chunk
4590  */
4591 static sector_t first_dev_address(sector_t s, struct geom *geo)
4592 {
4593         s >>= geo->chunk_shift;
4594         s *= geo->near_copies;
4595         sector_div(s, geo->raid_disks);
4596         s *= geo->far_copies;
4597         s <<= geo->chunk_shift;
4598         return s;
4599 }
4600
4601 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4602                                 int *skipped)
4603 {
4604         /* We simply copy at most one chunk (smallest of old and new)
4605          * at a time, possibly less if that exceeds RESYNC_PAGES,
4606          * or we hit a bad block or something.
4607          * This might mean we pause for normal IO in the middle of
4608          * a chunk, but that is not a problem as mddev->reshape_position
4609          * can record any location.
4610          *
4611          * If we will want to write to a location that isn't
4612          * yet recorded as 'safe' (i.e. in metadata on disk) then
4613          * we need to flush all reshape requests and update the metadata.
4614          *
4615          * When reshaping forwards (e.g. to more devices), we interpret
4616          * 'safe' as the earliest block which might not have been copied
4617          * down yet.  We divide this by previous stripe size and multiply
4618          * by previous stripe length to get lowest device offset that we
4619          * cannot write to yet.
4620          * We interpret 'sector_nr' as an address that we want to write to.
4621          * From this we use last_device_address() to find where we might
4622          * write to, and first_device_address on the  'safe' position.
4623          * If this 'next' write position is after the 'safe' position,
4624          * we must update the metadata to increase the 'safe' position.
4625          *
4626          * When reshaping backwards, we round in the opposite direction
4627          * and perform the reverse test:  next write position must not be
4628          * less than current safe position.
4629          *
4630          * In all this the minimum difference in data offsets
4631          * (conf->offset_diff - always positive) allows a bit of slack,
4632          * so next can be after 'safe', but not by more than offset_diff
4633          *
4634          * We need to prepare all the bios here before we start any IO
4635          * to ensure the size we choose is acceptable to all devices.
4636          * The means one for each copy for write-out and an extra one for
4637          * read-in.
4638          * We store the read-in bio in ->master_bio and the others in
4639          * ->devs[x].bio and ->devs[x].repl_bio.
4640          */
4641         struct r10conf *conf = mddev->private;
4642         struct r10bio *r10_bio;
4643         sector_t next, safe, last;
4644         int max_sectors;
4645         int nr_sectors;
4646         int s;
4647         struct md_rdev *rdev;
4648         int need_flush = 0;
4649         struct bio *blist;
4650         struct bio *bio, *read_bio;
4651         int sectors_done = 0;
4652         struct page **pages;
4653
4654         if (sector_nr == 0) {
4655                 /* If restarting in the middle, skip the initial sectors */
4656                 if (mddev->reshape_backwards &&
4657                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4658                         sector_nr = (raid10_size(mddev, 0, 0)
4659                                      - conf->reshape_progress);
4660                 } else if (!mddev->reshape_backwards &&
4661                            conf->reshape_progress > 0)
4662                         sector_nr = conf->reshape_progress;
4663                 if (sector_nr) {
4664                         mddev->curr_resync_completed = sector_nr;
4665                         sysfs_notify_dirent_safe(mddev->sysfs_completed);
4666                         *skipped = 1;
4667                         return sector_nr;
4668                 }
4669         }
4670
4671         /* We don't use sector_nr to track where we are up to
4672          * as that doesn't work well for ->reshape_backwards.
4673          * So just use ->reshape_progress.
4674          */
4675         if (mddev->reshape_backwards) {
4676                 /* 'next' is the earliest device address that we might
4677                  * write to for this chunk in the new layout
4678                  */
4679                 next = first_dev_address(conf->reshape_progress - 1,
4680                                          &conf->geo);
4681
4682                 /* 'safe' is the last device address that we might read from
4683                  * in the old layout after a restart
4684                  */
4685                 safe = last_dev_address(conf->reshape_safe - 1,
4686                                         &conf->prev);
4687
4688                 if (next + conf->offset_diff < safe)
4689                         need_flush = 1;
4690
4691                 last = conf->reshape_progress - 1;
4692                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4693                                                & conf->prev.chunk_mask);
4694                 if (sector_nr + RESYNC_SECTORS < last)
4695                         sector_nr = last + 1 - RESYNC_SECTORS;
4696         } else {
4697                 /* 'next' is after the last device address that we
4698                  * might write to for this chunk in the new layout
4699                  */
4700                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4701
4702                 /* 'safe' is the earliest device address that we might
4703                  * read from in the old layout after a restart
4704                  */
4705                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4706
4707                 /* Need to update metadata if 'next' might be beyond 'safe'
4708                  * as that would possibly corrupt data
4709                  */
4710                 if (next > safe + conf->offset_diff)
4711                         need_flush = 1;
4712
4713                 sector_nr = conf->reshape_progress;
4714                 last  = sector_nr | (conf->geo.chunk_mask
4715                                      & conf->prev.chunk_mask);
4716
4717                 if (sector_nr + RESYNC_SECTORS <= last)
4718                         last = sector_nr + RESYNC_SECTORS - 1;
4719         }
4720
4721         if (need_flush ||
4722             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4723                 /* Need to update reshape_position in metadata */
4724                 wait_barrier(conf, false);
4725                 mddev->reshape_position = conf->reshape_progress;
4726                 if (mddev->reshape_backwards)
4727                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4728                                 - conf->reshape_progress;
4729                 else
4730                         mddev->curr_resync_completed = conf->reshape_progress;
4731                 conf->reshape_checkpoint = jiffies;
4732                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4733                 md_wakeup_thread(mddev->thread);
4734                 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4735                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4736                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4737                         allow_barrier(conf);
4738                         return sectors_done;
4739                 }
4740                 conf->reshape_safe = mddev->reshape_position;
4741                 allow_barrier(conf);
4742         }
4743
4744         raise_barrier(conf, 0);
4745 read_more:
4746         /* Now schedule reads for blocks from sector_nr to last */
4747         r10_bio = raid10_alloc_init_r10buf(conf);
4748         r10_bio->state = 0;
4749         raise_barrier(conf, 1);
4750         atomic_set(&r10_bio->remaining, 0);
4751         r10_bio->mddev = mddev;
4752         r10_bio->sector = sector_nr;
4753         set_bit(R10BIO_IsReshape, &r10_bio->state);
4754         r10_bio->sectors = last - sector_nr + 1;
4755         rdev = read_balance(conf, r10_bio, &max_sectors);
4756         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4757
4758         if (!rdev) {
4759                 /* Cannot read from here, so need to record bad blocks
4760                  * on all the target devices.
4761                  */
4762                 // FIXME
4763                 mempool_free(r10_bio, &conf->r10buf_pool);
4764                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4765                 return sectors_done;
4766         }
4767
4768         read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4769                                     GFP_KERNEL, &mddev->bio_set);
4770         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4771                                + rdev->data_offset);
4772         read_bio->bi_private = r10_bio;
4773         read_bio->bi_end_io = end_reshape_read;
4774         r10_bio->master_bio = read_bio;
4775         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4776
4777         /*
4778          * Broadcast RESYNC message to other nodes, so all nodes would not
4779          * write to the region to avoid conflict.
4780         */
4781         if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4782                 struct mdp_superblock_1 *sb = NULL;
4783                 int sb_reshape_pos = 0;
4784
4785                 conf->cluster_sync_low = sector_nr;
4786                 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4787                 sb = page_address(rdev->sb_page);
4788                 if (sb) {
4789                         sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4790                         /*
4791                          * Set cluster_sync_low again if next address for array
4792                          * reshape is less than cluster_sync_low. Since we can't
4793                          * update cluster_sync_low until it has finished reshape.
4794                          */
4795                         if (sb_reshape_pos < conf->cluster_sync_low)
4796                                 conf->cluster_sync_low = sb_reshape_pos;
4797                 }
4798
4799                 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4800                                                           conf->cluster_sync_high);
4801         }
4802
4803         /* Now find the locations in the new layout */
4804         __raid10_find_phys(&conf->geo, r10_bio);
4805
4806         blist = read_bio;
4807         read_bio->bi_next = NULL;
4808
4809         for (s = 0; s < conf->copies*2; s++) {
4810                 struct bio *b;
4811                 int d = r10_bio->devs[s/2].devnum;
4812                 struct md_rdev *rdev2;
4813                 if (s&1) {
4814                         rdev2 = conf->mirrors[d].replacement;
4815                         b = r10_bio->devs[s/2].repl_bio;
4816                 } else {
4817                         rdev2 = conf->mirrors[d].rdev;
4818                         b = r10_bio->devs[s/2].bio;
4819                 }
4820                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4821                         continue;
4822
4823                 bio_set_dev(b, rdev2->bdev);
4824                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4825                         rdev2->new_data_offset;
4826                 b->bi_end_io = end_reshape_write;
4827                 b->bi_opf = REQ_OP_WRITE;
4828                 b->bi_next = blist;
4829                 blist = b;
4830         }
4831
4832         /* Now add as many pages as possible to all of these bios. */
4833
4834         nr_sectors = 0;
4835         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4836         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4837                 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4838                 int len = (max_sectors - s) << 9;
4839                 if (len > PAGE_SIZE)
4840                         len = PAGE_SIZE;
4841                 for (bio = blist; bio ; bio = bio->bi_next) {
4842                         if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
4843                                 bio->bi_status = BLK_STS_RESOURCE;
4844                                 bio_endio(bio);
4845                                 return sectors_done;
4846                         }
4847                 }
4848                 sector_nr += len >> 9;
4849                 nr_sectors += len >> 9;
4850         }
4851         r10_bio->sectors = nr_sectors;
4852
4853         /* Now submit the read */
4854         md_sync_acct_bio(read_bio, r10_bio->sectors);
4855         atomic_inc(&r10_bio->remaining);
4856         read_bio->bi_next = NULL;
4857         submit_bio_noacct(read_bio);
4858         sectors_done += nr_sectors;
4859         if (sector_nr <= last)
4860                 goto read_more;
4861
4862         lower_barrier(conf);
4863
4864         /* Now that we have done the whole section we can
4865          * update reshape_progress
4866          */
4867         if (mddev->reshape_backwards)
4868                 conf->reshape_progress -= sectors_done;
4869         else
4870                 conf->reshape_progress += sectors_done;
4871
4872         return sectors_done;
4873 }
4874
4875 static void end_reshape_request(struct r10bio *r10_bio);
4876 static int handle_reshape_read_error(struct mddev *mddev,
4877                                      struct r10bio *r10_bio);
4878 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4879 {
4880         /* Reshape read completed.  Hopefully we have a block
4881          * to write out.
4882          * If we got a read error then we do sync 1-page reads from
4883          * elsewhere until we find the data - or give up.
4884          */
4885         struct r10conf *conf = mddev->private;
4886         int s;
4887
4888         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4889                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4890                         /* Reshape has been aborted */
4891                         md_done_sync(mddev, r10_bio->sectors, 0);
4892                         return;
4893                 }
4894
4895         /* We definitely have the data in the pages, schedule the
4896          * writes.
4897          */
4898         atomic_set(&r10_bio->remaining, 1);
4899         for (s = 0; s < conf->copies*2; s++) {
4900                 struct bio *b;
4901                 int d = r10_bio->devs[s/2].devnum;
4902                 struct md_rdev *rdev;
4903                 if (s&1) {
4904                         rdev = conf->mirrors[d].replacement;
4905                         b = r10_bio->devs[s/2].repl_bio;
4906                 } else {
4907                         rdev = conf->mirrors[d].rdev;
4908                         b = r10_bio->devs[s/2].bio;
4909                 }
4910                 if (!rdev || test_bit(Faulty, &rdev->flags))
4911                         continue;
4912
4913                 atomic_inc(&rdev->nr_pending);
4914                 md_sync_acct_bio(b, r10_bio->sectors);
4915                 atomic_inc(&r10_bio->remaining);
4916                 b->bi_next = NULL;
4917                 submit_bio_noacct(b);
4918         }
4919         end_reshape_request(r10_bio);
4920 }
4921
4922 static void end_reshape(struct r10conf *conf)
4923 {
4924         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4925                 return;
4926
4927         spin_lock_irq(&conf->device_lock);
4928         conf->prev = conf->geo;
4929         md_finish_reshape(conf->mddev);
4930         smp_wmb();
4931         conf->reshape_progress = MaxSector;
4932         conf->reshape_safe = MaxSector;
4933         spin_unlock_irq(&conf->device_lock);
4934
4935         mddev_update_io_opt(conf->mddev, raid10_nr_stripes(conf));
4936         conf->fullsync = 0;
4937 }
4938
4939 static void raid10_update_reshape_pos(struct mddev *mddev)
4940 {
4941         struct r10conf *conf = mddev->private;
4942         sector_t lo, hi;
4943
4944         md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4945         if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4946             || mddev->reshape_position == MaxSector)
4947                 conf->reshape_progress = mddev->reshape_position;
4948         else
4949                 WARN_ON_ONCE(1);
4950 }
4951
4952 static int handle_reshape_read_error(struct mddev *mddev,
4953                                      struct r10bio *r10_bio)
4954 {
4955         /* Use sync reads to get the blocks from somewhere else */
4956         int sectors = r10_bio->sectors;
4957         struct r10conf *conf = mddev->private;
4958         struct r10bio *r10b;
4959         int slot = 0;
4960         int idx = 0;
4961         struct page **pages;
4962
4963         r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4964         if (!r10b) {
4965                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4966                 return -ENOMEM;
4967         }
4968
4969         /* reshape IOs share pages from .devs[0].bio */
4970         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4971
4972         r10b->sector = r10_bio->sector;
4973         __raid10_find_phys(&conf->prev, r10b);
4974
4975         while (sectors) {
4976                 int s = sectors;
4977                 int success = 0;
4978                 int first_slot = slot;
4979
4980                 if (s > (PAGE_SIZE >> 9))
4981                         s = PAGE_SIZE >> 9;
4982
4983                 while (!success) {
4984                         int d = r10b->devs[slot].devnum;
4985                         struct md_rdev *rdev = conf->mirrors[d].rdev;
4986                         sector_t addr;
4987                         if (rdev == NULL ||
4988                             test_bit(Faulty, &rdev->flags) ||
4989                             !test_bit(In_sync, &rdev->flags))
4990                                 goto failed;
4991
4992                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4993                         atomic_inc(&rdev->nr_pending);
4994                         success = sync_page_io(rdev,
4995                                                addr,
4996                                                s << 9,
4997                                                pages[idx],
4998                                                REQ_OP_READ, false);
4999                         rdev_dec_pending(rdev, mddev);
5000                         if (success)
5001                                 break;
5002                 failed:
5003                         slot++;
5004                         if (slot >= conf->copies)
5005                                 slot = 0;
5006                         if (slot == first_slot)
5007                                 break;
5008                 }
5009                 if (!success) {
5010                         /* couldn't read this block, must give up */
5011                         set_bit(MD_RECOVERY_INTR,
5012                                 &mddev->recovery);
5013                         kfree(r10b);
5014                         return -EIO;
5015                 }
5016                 sectors -= s;
5017                 idx++;
5018         }
5019         kfree(r10b);
5020         return 0;
5021 }
5022
5023 static void end_reshape_write(struct bio *bio)
5024 {
5025         struct r10bio *r10_bio = get_resync_r10bio(bio);
5026         struct mddev *mddev = r10_bio->mddev;
5027         struct r10conf *conf = mddev->private;
5028         int d;
5029         int slot;
5030         int repl;
5031         struct md_rdev *rdev = NULL;
5032
5033         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5034         rdev = repl ? conf->mirrors[d].replacement :
5035                       conf->mirrors[d].rdev;
5036
5037         if (bio->bi_status) {
5038                 /* FIXME should record badblock */
5039                 md_error(mddev, rdev);
5040         }
5041
5042         rdev_dec_pending(rdev, mddev);
5043         end_reshape_request(r10_bio);
5044 }
5045
5046 static void end_reshape_request(struct r10bio *r10_bio)
5047 {
5048         if (!atomic_dec_and_test(&r10_bio->remaining))
5049                 return;
5050         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5051         bio_put(r10_bio->master_bio);
5052         put_buf(r10_bio);
5053 }
5054
5055 static void raid10_finish_reshape(struct mddev *mddev)
5056 {
5057         struct r10conf *conf = mddev->private;
5058
5059         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5060                 return;
5061
5062         if (mddev->delta_disks > 0) {
5063                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
5064                         mddev->recovery_cp = mddev->resync_max_sectors;
5065                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5066                 }
5067                 mddev->resync_max_sectors = mddev->array_sectors;
5068         } else {
5069                 int d;
5070                 for (d = conf->geo.raid_disks ;
5071                      d < conf->geo.raid_disks - mddev->delta_disks;
5072                      d++) {
5073                         struct md_rdev *rdev = conf->mirrors[d].rdev;
5074                         if (rdev)
5075                                 clear_bit(In_sync, &rdev->flags);
5076                         rdev = conf->mirrors[d].replacement;
5077                         if (rdev)
5078                                 clear_bit(In_sync, &rdev->flags);
5079                 }
5080         }
5081         mddev->layout = mddev->new_layout;
5082         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5083         mddev->reshape_position = MaxSector;
5084         mddev->delta_disks = 0;
5085         mddev->reshape_backwards = 0;
5086 }
5087
5088 static struct md_personality raid10_personality =
5089 {
5090         .name           = "raid10",
5091         .level          = 10,
5092         .owner          = THIS_MODULE,
5093         .make_request   = raid10_make_request,
5094         .run            = raid10_run,
5095         .free           = raid10_free,
5096         .status         = raid10_status,
5097         .error_handler  = raid10_error,
5098         .hot_add_disk   = raid10_add_disk,
5099         .hot_remove_disk= raid10_remove_disk,
5100         .spare_active   = raid10_spare_active,
5101         .sync_request   = raid10_sync_request,
5102         .quiesce        = raid10_quiesce,
5103         .size           = raid10_size,
5104         .resize         = raid10_resize,
5105         .takeover       = raid10_takeover,
5106         .check_reshape  = raid10_check_reshape,
5107         .start_reshape  = raid10_start_reshape,
5108         .finish_reshape = raid10_finish_reshape,
5109         .update_reshape_pos = raid10_update_reshape_pos,
5110 };
5111
5112 static int __init raid_init(void)
5113 {
5114         return register_md_personality(&raid10_personality);
5115 }
5116
5117 static void raid_exit(void)
5118 {
5119         unregister_md_personality(&raid10_personality);
5120 }
5121
5122 module_init(raid_init);
5123 module_exit(raid_exit);
5124 MODULE_LICENSE("GPL");
5125 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5126 MODULE_ALIAS("md-personality-9"); /* RAID10 */
5127 MODULE_ALIAS("md-raid10");
5128 MODULE_ALIAS("md-level-10");
This page took 0.333224 seconds and 4 git commands to generate.