1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/efi.h>
15 #include <linux/interrupt.h>
16 #include <linux/iommu.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
23 #include <linux/msi.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
40 #include "irq-gic-common.h"
41 #include "irq-msi-lib.h"
43 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
45 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2)
46 #define ITS_FLAGS_FORCE_NON_SHAREABLE (1ULL << 3)
48 #define RD_LOCAL_LPI_ENABLED BIT(0)
49 #define RD_LOCAL_PENDTABLE_PREALLOCATED BIT(1)
50 #define RD_LOCAL_MEMRESERVE_DONE BIT(2)
52 static u32 lpi_id_bits;
55 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
56 * deal with (one configuration byte per interrupt). PENDBASE has to
57 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
59 #define LPI_NRBITS lpi_id_bits
60 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K)
61 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
63 static u8 __ro_after_init lpi_prop_prio;
66 * Collection structure - just an ID, and a redistributor address to
67 * ping. We use one per CPU as a bag of interrupts assigned to this
70 struct its_collection {
76 * The ITS_BASER structure - contains memory information, cached
77 * value of BASER register configuration and ITS page size.
89 * The ITS structure - contains most of the infrastructure, with the
90 * top-level MSI domain, the command queue, the collections, and the
91 * list of devices writing to it.
93 * dev_alloc_lock has to be taken for device allocations, while the
94 * spinlock must be taken to parse data structures such as the device
99 struct mutex dev_alloc_lock;
100 struct list_head entry;
102 void __iomem *sgir_base;
103 phys_addr_t phys_base;
104 struct its_cmd_block *cmd_base;
105 struct its_cmd_block *cmd_write;
106 struct its_baser tables[GITS_BASER_NR_REGS];
107 struct its_collection *collections;
108 struct fwnode_handle *fwnode_handle;
109 u64 (*get_msi_base)(struct its_device *its_dev);
114 struct list_head its_device_list;
116 unsigned long list_nr;
118 unsigned int msi_domain_flags;
119 u32 pre_its_base; /* for Socionext Synquacer */
120 int vlpi_redist_offset;
123 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS))
124 #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP))
125 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
127 #define ITS_ITT_ALIGN SZ_256
129 /* The maximum number of VPEID bits supported by VLPI commands */
130 #define ITS_MAX_VPEID_BITS \
133 if (gic_rdists->has_rvpeid && \
134 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \
135 nvpeid = 1 + (gic_rdists->gicd_typer2 & \
140 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS))
142 /* Convert page order to size in bytes */
143 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
145 struct event_lpi_map {
146 unsigned long *lpi_map;
148 irq_hw_number_t lpi_base;
150 raw_spinlock_t vlpi_lock;
152 struct its_vlpi_map *vlpi_maps;
157 * The ITS view of a device - belongs to an ITS, owns an interrupt
158 * translation table, and a list of interrupts. If it some of its
159 * LPIs are injected into a guest (GICv4), the event_map.vm field
160 * indicates which one.
163 struct list_head entry;
164 struct its_node *its;
165 struct event_lpi_map event_map;
174 struct its_device *dev;
175 struct its_vpe **vpes;
179 struct cpu_lpi_count {
184 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
186 static LIST_HEAD(its_nodes);
187 static DEFINE_RAW_SPINLOCK(its_lock);
188 static struct rdists *gic_rdists;
189 static struct irq_domain *its_parent;
191 static unsigned long its_list_map;
192 static u16 vmovp_seq_num;
193 static DEFINE_RAW_SPINLOCK(vmovp_lock);
195 static DEFINE_IDA(its_vpeid_ida);
197 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
198 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu))
199 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
200 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K)
203 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
204 * always have vSGIs mapped.
206 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
208 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
211 static bool rdists_support_shareable(void)
213 return !(gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE);
216 static u16 get_its_list(struct its_vm *vm)
218 struct its_node *its;
219 unsigned long its_list = 0;
221 list_for_each_entry(its, &its_nodes, entry) {
225 if (require_its_list_vmovp(vm, its))
226 __set_bit(its->list_nr, &its_list);
229 return (u16)its_list;
232 static inline u32 its_get_event_id(struct irq_data *d)
234 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
235 return d->hwirq - its_dev->event_map.lpi_base;
238 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
241 struct its_node *its = its_dev->its;
243 return its->collections + its_dev->event_map.col_map[event];
246 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
249 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
252 return &its_dev->event_map.vlpi_maps[event];
255 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
257 if (irqd_is_forwarded_to_vcpu(d)) {
258 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
259 u32 event = its_get_event_id(d);
261 return dev_event_to_vlpi_map(its_dev, event);
267 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
269 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
273 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
275 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
278 static struct irq_chip its_vpe_irq_chip;
280 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
282 struct its_vpe *vpe = NULL;
285 if (d->chip == &its_vpe_irq_chip) {
286 vpe = irq_data_get_irq_chip_data(d);
288 struct its_vlpi_map *map = get_vlpi_map(d);
294 cpu = vpe_to_cpuid_lock(vpe, flags);
296 /* Physical LPIs are already locked via the irq_desc lock */
297 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
298 cpu = its_dev->event_map.col_map[its_get_event_id(d)];
299 /* Keep GCC quiet... */
306 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
308 struct its_vpe *vpe = NULL;
310 if (d->chip == &its_vpe_irq_chip) {
311 vpe = irq_data_get_irq_chip_data(d);
313 struct its_vlpi_map *map = get_vlpi_map(d);
319 vpe_to_cpuid_unlock(vpe, flags);
322 static struct its_collection *valid_col(struct its_collection *col)
324 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
330 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
332 if (valid_col(its->collections + vpe->col_idx))
339 * ITS command descriptors - parameters to be encoded in a command
342 struct its_cmd_desc {
345 struct its_device *dev;
350 struct its_device *dev;
355 struct its_device *dev;
360 struct its_device *dev;
365 struct its_collection *col;
370 struct its_device *dev;
376 struct its_device *dev;
377 struct its_collection *col;
382 struct its_device *dev;
387 struct its_collection *col;
396 struct its_collection *col;
402 struct its_device *dev;
410 struct its_device *dev;
417 struct its_collection *col;
438 * The ITS command block, which is what the ITS actually parses.
440 struct its_cmd_block {
443 __le64 raw_cmd_le[4];
447 #define ITS_CMD_QUEUE_SZ SZ_64K
448 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
450 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
451 struct its_cmd_block *,
452 struct its_cmd_desc *);
454 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
455 struct its_cmd_block *,
456 struct its_cmd_desc *);
458 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
460 u64 mask = GENMASK_ULL(h, l);
462 *raw_cmd |= (val << l) & mask;
465 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
467 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
470 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
472 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
475 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
477 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
480 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
482 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
485 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
487 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
490 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
492 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
495 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
497 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
500 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
502 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
505 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
507 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
510 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
512 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
515 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
517 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
520 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
522 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
525 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
527 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
530 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
532 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
535 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
537 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
540 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
542 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
545 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
547 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
550 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
552 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
555 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
557 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
560 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
562 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
565 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
568 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
571 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
574 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
577 static void its_encode_db(struct its_cmd_block *cmd, bool db)
579 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
582 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
584 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
587 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
589 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
592 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
594 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
597 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
599 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
602 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
604 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
607 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
609 /* Let's fixup BE commands */
610 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
611 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
612 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
613 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
616 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
617 struct its_cmd_block *cmd,
618 struct its_cmd_desc *desc)
620 unsigned long itt_addr;
621 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
623 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
624 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
626 its_encode_cmd(cmd, GITS_CMD_MAPD);
627 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
628 its_encode_size(cmd, size - 1);
629 its_encode_itt(cmd, itt_addr);
630 its_encode_valid(cmd, desc->its_mapd_cmd.valid);
637 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
638 struct its_cmd_block *cmd,
639 struct its_cmd_desc *desc)
641 its_encode_cmd(cmd, GITS_CMD_MAPC);
642 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
643 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
644 its_encode_valid(cmd, desc->its_mapc_cmd.valid);
648 return desc->its_mapc_cmd.col;
651 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
652 struct its_cmd_block *cmd,
653 struct its_cmd_desc *desc)
655 struct its_collection *col;
657 col = dev_event_to_col(desc->its_mapti_cmd.dev,
658 desc->its_mapti_cmd.event_id);
660 its_encode_cmd(cmd, GITS_CMD_MAPTI);
661 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
662 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
663 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
664 its_encode_collection(cmd, col->col_id);
668 return valid_col(col);
671 static struct its_collection *its_build_movi_cmd(struct its_node *its,
672 struct its_cmd_block *cmd,
673 struct its_cmd_desc *desc)
675 struct its_collection *col;
677 col = dev_event_to_col(desc->its_movi_cmd.dev,
678 desc->its_movi_cmd.event_id);
680 its_encode_cmd(cmd, GITS_CMD_MOVI);
681 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
682 its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
683 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
687 return valid_col(col);
690 static struct its_collection *its_build_discard_cmd(struct its_node *its,
691 struct its_cmd_block *cmd,
692 struct its_cmd_desc *desc)
694 struct its_collection *col;
696 col = dev_event_to_col(desc->its_discard_cmd.dev,
697 desc->its_discard_cmd.event_id);
699 its_encode_cmd(cmd, GITS_CMD_DISCARD);
700 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
701 its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
705 return valid_col(col);
708 static struct its_collection *its_build_inv_cmd(struct its_node *its,
709 struct its_cmd_block *cmd,
710 struct its_cmd_desc *desc)
712 struct its_collection *col;
714 col = dev_event_to_col(desc->its_inv_cmd.dev,
715 desc->its_inv_cmd.event_id);
717 its_encode_cmd(cmd, GITS_CMD_INV);
718 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
719 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
723 return valid_col(col);
726 static struct its_collection *its_build_int_cmd(struct its_node *its,
727 struct its_cmd_block *cmd,
728 struct its_cmd_desc *desc)
730 struct its_collection *col;
732 col = dev_event_to_col(desc->its_int_cmd.dev,
733 desc->its_int_cmd.event_id);
735 its_encode_cmd(cmd, GITS_CMD_INT);
736 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
737 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
741 return valid_col(col);
744 static struct its_collection *its_build_clear_cmd(struct its_node *its,
745 struct its_cmd_block *cmd,
746 struct its_cmd_desc *desc)
748 struct its_collection *col;
750 col = dev_event_to_col(desc->its_clear_cmd.dev,
751 desc->its_clear_cmd.event_id);
753 its_encode_cmd(cmd, GITS_CMD_CLEAR);
754 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
755 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
759 return valid_col(col);
762 static struct its_collection *its_build_invall_cmd(struct its_node *its,
763 struct its_cmd_block *cmd,
764 struct its_cmd_desc *desc)
766 its_encode_cmd(cmd, GITS_CMD_INVALL);
767 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
771 return desc->its_invall_cmd.col;
774 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
775 struct its_cmd_block *cmd,
776 struct its_cmd_desc *desc)
778 its_encode_cmd(cmd, GITS_CMD_VINVALL);
779 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
783 return valid_vpe(its, desc->its_vinvall_cmd.vpe);
786 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
787 struct its_cmd_block *cmd,
788 struct its_cmd_desc *desc)
790 struct its_vpe *vpe = valid_vpe(its, desc->its_vmapp_cmd.vpe);
791 unsigned long vpt_addr, vconf_addr;
795 its_encode_cmd(cmd, GITS_CMD_VMAPP);
796 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
797 its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
799 if (!desc->its_vmapp_cmd.valid) {
801 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
802 its_encode_alloc(cmd, alloc);
804 * Unmapping a VPE is self-synchronizing on GICv4.1,
805 * no need to issue a VSYNC.
813 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
814 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
816 its_encode_target(cmd, target);
817 its_encode_vpt_addr(cmd, vpt_addr);
818 its_encode_vpt_size(cmd, LPI_NRBITS - 1);
823 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
825 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
827 its_encode_alloc(cmd, alloc);
830 * GICv4.1 provides a way to get the VLPI state, which needs the vPE
831 * to be unmapped first, and in this case, we may remap the vPE
832 * back while the VPT is not empty. So we can't assume that the
833 * VPT is empty on map. This is why we never advertise PTZ.
835 its_encode_ptz(cmd, false);
836 its_encode_vconf_addr(cmd, vconf_addr);
837 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
845 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
846 struct its_cmd_block *cmd,
847 struct its_cmd_desc *desc)
851 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
852 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
856 its_encode_cmd(cmd, GITS_CMD_VMAPTI);
857 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
858 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
859 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
860 its_encode_db_phys_id(cmd, db);
861 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
865 return valid_vpe(its, desc->its_vmapti_cmd.vpe);
868 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
869 struct its_cmd_block *cmd,
870 struct its_cmd_desc *desc)
874 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
875 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
879 its_encode_cmd(cmd, GITS_CMD_VMOVI);
880 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
881 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
882 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
883 its_encode_db_phys_id(cmd, db);
884 its_encode_db_valid(cmd, true);
888 return valid_vpe(its, desc->its_vmovi_cmd.vpe);
891 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
892 struct its_cmd_block *cmd,
893 struct its_cmd_desc *desc)
897 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
898 its_encode_cmd(cmd, GITS_CMD_VMOVP);
899 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
900 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
901 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
902 its_encode_target(cmd, target);
905 its_encode_db(cmd, true);
906 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
911 return valid_vpe(its, desc->its_vmovp_cmd.vpe);
914 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
915 struct its_cmd_block *cmd,
916 struct its_cmd_desc *desc)
918 struct its_vlpi_map *map;
920 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
921 desc->its_inv_cmd.event_id);
923 its_encode_cmd(cmd, GITS_CMD_INV);
924 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
925 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
929 return valid_vpe(its, map->vpe);
932 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
933 struct its_cmd_block *cmd,
934 struct its_cmd_desc *desc)
936 struct its_vlpi_map *map;
938 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
939 desc->its_int_cmd.event_id);
941 its_encode_cmd(cmd, GITS_CMD_INT);
942 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
943 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
947 return valid_vpe(its, map->vpe);
950 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
951 struct its_cmd_block *cmd,
952 struct its_cmd_desc *desc)
954 struct its_vlpi_map *map;
956 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
957 desc->its_clear_cmd.event_id);
959 its_encode_cmd(cmd, GITS_CMD_CLEAR);
960 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
961 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
965 return valid_vpe(its, map->vpe);
968 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
969 struct its_cmd_block *cmd,
970 struct its_cmd_desc *desc)
972 if (WARN_ON(!is_v4_1(its)))
975 its_encode_cmd(cmd, GITS_CMD_INVDB);
976 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
980 return valid_vpe(its, desc->its_invdb_cmd.vpe);
983 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
984 struct its_cmd_block *cmd,
985 struct its_cmd_desc *desc)
987 if (WARN_ON(!is_v4_1(its)))
990 its_encode_cmd(cmd, GITS_CMD_VSGI);
991 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
992 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
993 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
994 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
995 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
996 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
1000 return valid_vpe(its, desc->its_vsgi_cmd.vpe);
1003 static u64 its_cmd_ptr_to_offset(struct its_node *its,
1004 struct its_cmd_block *ptr)
1006 return (ptr - its->cmd_base) * sizeof(*ptr);
1009 static int its_queue_full(struct its_node *its)
1014 widx = its->cmd_write - its->cmd_base;
1015 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
1017 /* This is incredibly unlikely to happen, unless the ITS locks up. */
1018 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
1024 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
1026 struct its_cmd_block *cmd;
1027 u32 count = 1000000; /* 1s! */
1029 while (its_queue_full(its)) {
1032 pr_err_ratelimited("ITS queue not draining\n");
1039 cmd = its->cmd_write++;
1041 /* Handle queue wrapping */
1042 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1043 its->cmd_write = its->cmd_base;
1046 cmd->raw_cmd[0] = 0;
1047 cmd->raw_cmd[1] = 0;
1048 cmd->raw_cmd[2] = 0;
1049 cmd->raw_cmd[3] = 0;
1054 static struct its_cmd_block *its_post_commands(struct its_node *its)
1056 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1058 writel_relaxed(wr, its->base + GITS_CWRITER);
1060 return its->cmd_write;
1063 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1066 * Make sure the commands written to memory are observable by
1069 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1070 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1075 static int its_wait_for_range_completion(struct its_node *its,
1077 struct its_cmd_block *to)
1079 u64 rd_idx, to_idx, linear_idx;
1080 u32 count = 1000000; /* 1s! */
1082 /* Linearize to_idx if the command set has wrapped around */
1083 to_idx = its_cmd_ptr_to_offset(its, to);
1084 if (to_idx < prev_idx)
1085 to_idx += ITS_CMD_QUEUE_SZ;
1087 linear_idx = prev_idx;
1092 rd_idx = readl_relaxed(its->base + GITS_CREADR);
1095 * Compute the read pointer progress, taking the
1096 * potential wrap-around into account.
1098 delta = rd_idx - prev_idx;
1099 if (rd_idx < prev_idx)
1100 delta += ITS_CMD_QUEUE_SZ;
1102 linear_idx += delta;
1103 if (linear_idx >= to_idx)
1108 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1109 to_idx, linear_idx);
1120 /* Warning, macro hell follows */
1121 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \
1122 void name(struct its_node *its, \
1123 buildtype builder, \
1124 struct its_cmd_desc *desc) \
1126 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \
1127 synctype *sync_obj; \
1128 unsigned long flags; \
1131 raw_spin_lock_irqsave(&its->lock, flags); \
1133 cmd = its_allocate_entry(its); \
1134 if (!cmd) { /* We're soooooo screewed... */ \
1135 raw_spin_unlock_irqrestore(&its->lock, flags); \
1138 sync_obj = builder(its, cmd, desc); \
1139 its_flush_cmd(its, cmd); \
1142 sync_cmd = its_allocate_entry(its); \
1146 buildfn(its, sync_cmd, sync_obj); \
1147 its_flush_cmd(its, sync_cmd); \
1151 rd_idx = readl_relaxed(its->base + GITS_CREADR); \
1152 next_cmd = its_post_commands(its); \
1153 raw_spin_unlock_irqrestore(&its->lock, flags); \
1155 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \
1156 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \
1159 static void its_build_sync_cmd(struct its_node *its,
1160 struct its_cmd_block *sync_cmd,
1161 struct its_collection *sync_col)
1163 its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1164 its_encode_target(sync_cmd, sync_col->target_address);
1166 its_fixup_cmd(sync_cmd);
1169 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1170 struct its_collection, its_build_sync_cmd)
1172 static void its_build_vsync_cmd(struct its_node *its,
1173 struct its_cmd_block *sync_cmd,
1174 struct its_vpe *sync_vpe)
1176 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1177 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1179 its_fixup_cmd(sync_cmd);
1182 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1183 struct its_vpe, its_build_vsync_cmd)
1185 static void its_send_int(struct its_device *dev, u32 event_id)
1187 struct its_cmd_desc desc;
1189 desc.its_int_cmd.dev = dev;
1190 desc.its_int_cmd.event_id = event_id;
1192 its_send_single_command(dev->its, its_build_int_cmd, &desc);
1195 static void its_send_clear(struct its_device *dev, u32 event_id)
1197 struct its_cmd_desc desc;
1199 desc.its_clear_cmd.dev = dev;
1200 desc.its_clear_cmd.event_id = event_id;
1202 its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1205 static void its_send_inv(struct its_device *dev, u32 event_id)
1207 struct its_cmd_desc desc;
1209 desc.its_inv_cmd.dev = dev;
1210 desc.its_inv_cmd.event_id = event_id;
1212 its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1215 static void its_send_mapd(struct its_device *dev, int valid)
1217 struct its_cmd_desc desc;
1219 desc.its_mapd_cmd.dev = dev;
1220 desc.its_mapd_cmd.valid = !!valid;
1222 its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1225 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1228 struct its_cmd_desc desc;
1230 desc.its_mapc_cmd.col = col;
1231 desc.its_mapc_cmd.valid = !!valid;
1233 its_send_single_command(its, its_build_mapc_cmd, &desc);
1236 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1238 struct its_cmd_desc desc;
1240 desc.its_mapti_cmd.dev = dev;
1241 desc.its_mapti_cmd.phys_id = irq_id;
1242 desc.its_mapti_cmd.event_id = id;
1244 its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1247 static void its_send_movi(struct its_device *dev,
1248 struct its_collection *col, u32 id)
1250 struct its_cmd_desc desc;
1252 desc.its_movi_cmd.dev = dev;
1253 desc.its_movi_cmd.col = col;
1254 desc.its_movi_cmd.event_id = id;
1256 its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1259 static void its_send_discard(struct its_device *dev, u32 id)
1261 struct its_cmd_desc desc;
1263 desc.its_discard_cmd.dev = dev;
1264 desc.its_discard_cmd.event_id = id;
1266 its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1269 static void its_send_invall(struct its_node *its, struct its_collection *col)
1271 struct its_cmd_desc desc;
1273 desc.its_invall_cmd.col = col;
1275 its_send_single_command(its, its_build_invall_cmd, &desc);
1278 static void its_send_vmapti(struct its_device *dev, u32 id)
1280 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1281 struct its_cmd_desc desc;
1283 desc.its_vmapti_cmd.vpe = map->vpe;
1284 desc.its_vmapti_cmd.dev = dev;
1285 desc.its_vmapti_cmd.virt_id = map->vintid;
1286 desc.its_vmapti_cmd.event_id = id;
1287 desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1289 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1292 static void its_send_vmovi(struct its_device *dev, u32 id)
1294 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1295 struct its_cmd_desc desc;
1297 desc.its_vmovi_cmd.vpe = map->vpe;
1298 desc.its_vmovi_cmd.dev = dev;
1299 desc.its_vmovi_cmd.event_id = id;
1300 desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1302 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1305 static void its_send_vmapp(struct its_node *its,
1306 struct its_vpe *vpe, bool valid)
1308 struct its_cmd_desc desc;
1310 desc.its_vmapp_cmd.vpe = vpe;
1311 desc.its_vmapp_cmd.valid = valid;
1312 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1314 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1317 static void its_send_vmovp(struct its_vpe *vpe)
1319 struct its_cmd_desc desc = {};
1320 struct its_node *its;
1321 int col_id = vpe->col_idx;
1323 desc.its_vmovp_cmd.vpe = vpe;
1325 if (!its_list_map) {
1326 its = list_first_entry(&its_nodes, struct its_node, entry);
1327 desc.its_vmovp_cmd.col = &its->collections[col_id];
1328 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1333 * Yet another marvel of the architecture. If using the
1334 * its_list "feature", we need to make sure that all ITSs
1335 * receive all VMOVP commands in the same order. The only way
1336 * to guarantee this is to make vmovp a serialization point.
1340 guard(raw_spinlock)(&vmovp_lock);
1341 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1342 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1345 list_for_each_entry(its, &its_nodes, entry) {
1349 if (!require_its_list_vmovp(vpe->its_vm, its))
1352 desc.its_vmovp_cmd.col = &its->collections[col_id];
1353 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1357 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1359 struct its_cmd_desc desc;
1361 desc.its_vinvall_cmd.vpe = vpe;
1362 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1365 static void its_send_vinv(struct its_device *dev, u32 event_id)
1367 struct its_cmd_desc desc;
1370 * There is no real VINV command. This is just a normal INV,
1371 * with a VSYNC instead of a SYNC.
1373 desc.its_inv_cmd.dev = dev;
1374 desc.its_inv_cmd.event_id = event_id;
1376 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1379 static void its_send_vint(struct its_device *dev, u32 event_id)
1381 struct its_cmd_desc desc;
1384 * There is no real VINT command. This is just a normal INT,
1385 * with a VSYNC instead of a SYNC.
1387 desc.its_int_cmd.dev = dev;
1388 desc.its_int_cmd.event_id = event_id;
1390 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1393 static void its_send_vclear(struct its_device *dev, u32 event_id)
1395 struct its_cmd_desc desc;
1398 * There is no real VCLEAR command. This is just a normal CLEAR,
1399 * with a VSYNC instead of a SYNC.
1401 desc.its_clear_cmd.dev = dev;
1402 desc.its_clear_cmd.event_id = event_id;
1404 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1407 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1409 struct its_cmd_desc desc;
1411 desc.its_invdb_cmd.vpe = vpe;
1412 its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1416 * irqchip functions - assumes MSI, mostly.
1418 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1420 struct its_vlpi_map *map = get_vlpi_map(d);
1421 irq_hw_number_t hwirq;
1426 va = page_address(map->vm->vprop_page);
1427 hwirq = map->vintid;
1429 /* Remember the updated property */
1430 map->properties &= ~clr;
1431 map->properties |= set | LPI_PROP_GROUP1;
1433 va = gic_rdists->prop_table_va;
1437 cfg = va + hwirq - 8192;
1439 *cfg |= set | LPI_PROP_GROUP1;
1442 * Make the above write visible to the redistributors.
1443 * And yes, we're flushing exactly: One. Single. Byte.
1446 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1447 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1452 static void wait_for_syncr(void __iomem *rdbase)
1454 while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1458 static void __direct_lpi_inv(struct irq_data *d, u64 val)
1460 void __iomem *rdbase;
1461 unsigned long flags;
1464 /* Target the redistributor this LPI is currently routed to */
1465 cpu = irq_to_cpuid_lock(d, &flags);
1466 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1468 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1469 gic_write_lpir(val, rdbase + GICR_INVLPIR);
1470 wait_for_syncr(rdbase);
1472 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1473 irq_to_cpuid_unlock(d, flags);
1476 static void direct_lpi_inv(struct irq_data *d)
1478 struct its_vlpi_map *map = get_vlpi_map(d);
1482 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1484 WARN_ON(!is_v4_1(its_dev->its));
1486 val = GICR_INVLPIR_V;
1487 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1488 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1493 __direct_lpi_inv(d, val);
1496 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1498 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1500 lpi_write_config(d, clr, set);
1501 if (gic_rdists->has_direct_lpi &&
1502 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1504 else if (!irqd_is_forwarded_to_vcpu(d))
1505 its_send_inv(its_dev, its_get_event_id(d));
1507 its_send_vinv(its_dev, its_get_event_id(d));
1510 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1512 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1513 u32 event = its_get_event_id(d);
1514 struct its_vlpi_map *map;
1517 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1520 if (is_v4_1(its_dev->its))
1523 map = dev_event_to_vlpi_map(its_dev, event);
1525 if (map->db_enabled == enable)
1528 map->db_enabled = enable;
1531 * More fun with the architecture:
1533 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1534 * value or to 1023, depending on the enable bit. But that
1535 * would be issuing a mapping for an /existing/ DevID+EventID
1536 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1537 * to the /same/ vPE, using this opportunity to adjust the
1538 * doorbell. Mouahahahaha. We loves it, Precious.
1540 its_send_vmovi(its_dev, event);
1543 static void its_mask_irq(struct irq_data *d)
1545 if (irqd_is_forwarded_to_vcpu(d))
1546 its_vlpi_set_doorbell(d, false);
1548 lpi_update_config(d, LPI_PROP_ENABLED, 0);
1551 static void its_unmask_irq(struct irq_data *d)
1553 if (irqd_is_forwarded_to_vcpu(d))
1554 its_vlpi_set_doorbell(d, true);
1556 lpi_update_config(d, 0, LPI_PROP_ENABLED);
1559 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1561 if (irqd_affinity_is_managed(d))
1562 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1564 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1567 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1569 if (irqd_affinity_is_managed(d))
1570 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1572 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1575 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1577 if (irqd_affinity_is_managed(d))
1578 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1580 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1583 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1584 const struct cpumask *cpu_mask)
1586 unsigned int cpu = nr_cpu_ids, tmp;
1587 int count = S32_MAX;
1589 for_each_cpu(tmp, cpu_mask) {
1590 int this_count = its_read_lpi_count(d, tmp);
1591 if (this_count < count) {
1601 * As suggested by Thomas Gleixner in:
1604 static int its_select_cpu(struct irq_data *d,
1605 const struct cpumask *aff_mask)
1607 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1608 static DEFINE_RAW_SPINLOCK(tmpmask_lock);
1609 static struct cpumask __tmpmask;
1610 struct cpumask *tmpmask;
1611 unsigned long flags;
1613 node = its_dev->its->numa_node;
1614 tmpmask = &__tmpmask;
1616 raw_spin_lock_irqsave(&tmpmask_lock, flags);
1618 if (!irqd_affinity_is_managed(d)) {
1619 /* First try the NUMA node */
1620 if (node != NUMA_NO_NODE) {
1622 * Try the intersection of the affinity mask and the
1623 * node mask (and the online mask, just to be safe).
1625 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1626 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1629 * Ideally, we would check if the mask is empty, and
1630 * try again on the full node here.
1632 * But it turns out that the way ACPI describes the
1633 * affinity for ITSs only deals about memory, and
1634 * not target CPUs, so it cannot describe a single
1635 * ITS placed next to two NUMA nodes.
1637 * Instead, just fallback on the online mask. This
1638 * diverges from Thomas' suggestion above.
1640 cpu = cpumask_pick_least_loaded(d, tmpmask);
1641 if (cpu < nr_cpu_ids)
1644 /* If we can't cross sockets, give up */
1645 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1648 /* If the above failed, expand the search */
1651 /* Try the intersection of the affinity and online masks */
1652 cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1654 /* If that doesn't fly, the online mask is the last resort */
1655 if (cpumask_empty(tmpmask))
1656 cpumask_copy(tmpmask, cpu_online_mask);
1658 cpu = cpumask_pick_least_loaded(d, tmpmask);
1660 cpumask_copy(tmpmask, aff_mask);
1662 /* If we cannot cross sockets, limit the search to that node */
1663 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1664 node != NUMA_NO_NODE)
1665 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1667 cpu = cpumask_pick_least_loaded(d, tmpmask);
1670 raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
1672 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1676 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1679 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1680 struct its_collection *target_col;
1681 u32 id = its_get_event_id(d);
1684 /* A forwarded interrupt should use irq_set_vcpu_affinity */
1685 if (irqd_is_forwarded_to_vcpu(d))
1688 prev_cpu = its_dev->event_map.col_map[id];
1689 its_dec_lpi_count(d, prev_cpu);
1692 cpu = its_select_cpu(d, mask_val);
1694 cpu = cpumask_pick_least_loaded(d, mask_val);
1696 if (cpu < 0 || cpu >= nr_cpu_ids)
1699 /* don't set the affinity when the target cpu is same as current one */
1700 if (cpu != prev_cpu) {
1701 target_col = &its_dev->its->collections[cpu];
1702 its_send_movi(its_dev, target_col, id);
1703 its_dev->event_map.col_map[id] = cpu;
1704 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1707 its_inc_lpi_count(d, cpu);
1709 return IRQ_SET_MASK_OK_DONE;
1712 its_inc_lpi_count(d, prev_cpu);
1716 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1718 struct its_node *its = its_dev->its;
1720 return its->phys_base + GITS_TRANSLATER;
1723 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1725 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1726 struct its_node *its;
1730 addr = its->get_msi_base(its_dev);
1732 msg->address_lo = lower_32_bits(addr);
1733 msg->address_hi = upper_32_bits(addr);
1734 msg->data = its_get_event_id(d);
1736 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1739 static int its_irq_set_irqchip_state(struct irq_data *d,
1740 enum irqchip_irq_state which,
1743 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1744 u32 event = its_get_event_id(d);
1746 if (which != IRQCHIP_STATE_PENDING)
1749 if (irqd_is_forwarded_to_vcpu(d)) {
1751 its_send_vint(its_dev, event);
1753 its_send_vclear(its_dev, event);
1756 its_send_int(its_dev, event);
1758 its_send_clear(its_dev, event);
1764 static int its_irq_retrigger(struct irq_data *d)
1766 return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1770 * Two favourable cases:
1772 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1775 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1776 * and we're better off mapping all VPEs always
1778 * If neither (a) nor (b) is true, then we map vPEs on demand.
1781 static bool gic_requires_eager_mapping(void)
1783 if (!its_list_map || gic_rdists->has_rvpeid)
1789 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1791 if (gic_requires_eager_mapping())
1794 guard(raw_spinlock_irqsave)(&vm->vmapp_lock);
1797 * If the VM wasn't mapped yet, iterate over the vpes and get
1800 vm->vlpi_count[its->list_nr]++;
1802 if (vm->vlpi_count[its->list_nr] == 1) {
1805 for (i = 0; i < vm->nr_vpes; i++) {
1806 struct its_vpe *vpe = vm->vpes[i];
1808 scoped_guard(raw_spinlock, &vpe->vpe_lock)
1809 its_send_vmapp(its, vpe, true);
1811 its_send_vinvall(its, vpe);
1816 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1818 /* Not using the ITS list? Everything is always mapped. */
1819 if (gic_requires_eager_mapping())
1822 guard(raw_spinlock_irqsave)(&vm->vmapp_lock);
1824 if (!--vm->vlpi_count[its->list_nr]) {
1827 for (i = 0; i < vm->nr_vpes; i++) {
1828 guard(raw_spinlock)(&vm->vpes[i]->vpe_lock);
1829 its_send_vmapp(its, vm->vpes[i], false);
1834 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1836 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1837 u32 event = its_get_event_id(d);
1842 if (!its_dev->event_map.vm) {
1843 struct its_vlpi_map *maps;
1845 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1850 its_dev->event_map.vm = info->map->vm;
1851 its_dev->event_map.vlpi_maps = maps;
1852 } else if (its_dev->event_map.vm != info->map->vm) {
1856 /* Get our private copy of the mapping information */
1857 its_dev->event_map.vlpi_maps[event] = *info->map;
1859 if (irqd_is_forwarded_to_vcpu(d)) {
1860 /* Already mapped, move it around */
1861 its_send_vmovi(its_dev, event);
1863 /* Ensure all the VPEs are mapped on this ITS */
1864 its_map_vm(its_dev->its, info->map->vm);
1867 * Flag the interrupt as forwarded so that we can
1868 * start poking the virtual property table.
1870 irqd_set_forwarded_to_vcpu(d);
1872 /* Write out the property to the prop table */
1873 lpi_write_config(d, 0xff, info->map->properties);
1875 /* Drop the physical mapping */
1876 its_send_discard(its_dev, event);
1878 /* and install the virtual one */
1879 its_send_vmapti(its_dev, event);
1881 /* Increment the number of VLPIs */
1882 its_dev->event_map.nr_vlpis++;
1888 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1890 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1891 struct its_vlpi_map *map;
1893 map = get_vlpi_map(d);
1895 if (!its_dev->event_map.vm || !map)
1898 /* Copy our mapping information to the incoming request */
1904 static int its_vlpi_unmap(struct irq_data *d)
1906 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1907 u32 event = its_get_event_id(d);
1909 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1912 /* Drop the virtual mapping */
1913 its_send_discard(its_dev, event);
1915 /* and restore the physical one */
1916 irqd_clr_forwarded_to_vcpu(d);
1917 its_send_mapti(its_dev, d->hwirq, event);
1918 lpi_update_config(d, 0xff, (lpi_prop_prio |
1922 /* Potentially unmap the VM from this ITS */
1923 its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1926 * Drop the refcount and make the device available again if
1927 * this was the last VLPI.
1929 if (!--its_dev->event_map.nr_vlpis) {
1930 its_dev->event_map.vm = NULL;
1931 kfree(its_dev->event_map.vlpi_maps);
1937 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1939 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1941 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1944 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1945 lpi_update_config(d, 0xff, info->config);
1947 lpi_write_config(d, 0xff, info->config);
1948 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1953 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1955 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1956 struct its_cmd_info *info = vcpu_info;
1959 if (!is_v4(its_dev->its))
1962 guard(raw_spinlock_irq)(&its_dev->event_map.vlpi_lock);
1964 /* Unmap request? */
1966 return its_vlpi_unmap(d);
1968 switch (info->cmd_type) {
1970 return its_vlpi_map(d, info);
1973 return its_vlpi_get(d, info);
1975 case PROP_UPDATE_VLPI:
1976 case PROP_UPDATE_AND_INV_VLPI:
1977 return its_vlpi_prop_update(d, info);
1984 static struct irq_chip its_irq_chip = {
1986 .irq_mask = its_mask_irq,
1987 .irq_unmask = its_unmask_irq,
1988 .irq_eoi = irq_chip_eoi_parent,
1989 .irq_set_affinity = its_set_affinity,
1990 .irq_compose_msi_msg = its_irq_compose_msi_msg,
1991 .irq_set_irqchip_state = its_irq_set_irqchip_state,
1992 .irq_retrigger = its_irq_retrigger,
1993 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity,
1998 * How we allocate LPIs:
2000 * lpi_range_list contains ranges of LPIs that are to available to
2001 * allocate from. To allocate LPIs, just pick the first range that
2002 * fits the required allocation, and reduce it by the required
2003 * amount. Once empty, remove the range from the list.
2005 * To free a range of LPIs, add a free range to the list, sort it and
2006 * merge the result if the new range happens to be adjacent to an
2007 * already free block.
2009 * The consequence of the above is that allocation is cost is low, but
2010 * freeing is expensive. We assumes that freeing rarely occurs.
2012 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */
2014 static DEFINE_MUTEX(lpi_range_lock);
2015 static LIST_HEAD(lpi_range_list);
2018 struct list_head entry;
2023 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2025 struct lpi_range *range;
2027 range = kmalloc(sizeof(*range), GFP_KERNEL);
2029 range->base_id = base;
2036 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2038 struct lpi_range *range, *tmp;
2041 mutex_lock(&lpi_range_lock);
2043 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2044 if (range->span >= nr_lpis) {
2045 *base = range->base_id;
2046 range->base_id += nr_lpis;
2047 range->span -= nr_lpis;
2049 if (range->span == 0) {
2050 list_del(&range->entry);
2059 mutex_unlock(&lpi_range_lock);
2061 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2065 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2067 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2069 if (a->base_id + a->span != b->base_id)
2071 b->base_id = a->base_id;
2073 list_del(&a->entry);
2077 static int free_lpi_range(u32 base, u32 nr_lpis)
2079 struct lpi_range *new, *old;
2081 new = mk_lpi_range(base, nr_lpis);
2085 mutex_lock(&lpi_range_lock);
2087 list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2088 if (old->base_id < base)
2092 * old is the last element with ->base_id smaller than base,
2093 * so new goes right after it. If there are no elements with
2094 * ->base_id smaller than base, &old->entry ends up pointing
2095 * at the head of the list, and inserting new it the start of
2096 * the list is the right thing to do in that case as well.
2098 list_add(&new->entry, &old->entry);
2100 * Now check if we can merge with the preceding and/or
2103 merge_lpi_ranges(old, new);
2104 merge_lpi_ranges(new, list_next_entry(new, entry));
2106 mutex_unlock(&lpi_range_lock);
2110 static int __init its_lpi_init(u32 id_bits)
2112 u32 lpis = (1UL << id_bits) - 8192;
2116 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2118 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2120 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2125 * Initializing the allocator is just the same as freeing the
2126 * full range of LPIs.
2128 err = free_lpi_range(8192, lpis);
2129 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2133 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2135 unsigned long *bitmap = NULL;
2139 err = alloc_lpi_range(nr_irqs, base);
2144 } while (nr_irqs > 0);
2152 bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2160 *base = *nr_ids = 0;
2165 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2167 WARN_ON(free_lpi_range(base, nr_ids));
2168 bitmap_free(bitmap);
2171 static void gic_reset_prop_table(void *va)
2173 /* Regular IRQ priority, Group-1, disabled */
2174 memset(va, lpi_prop_prio | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2176 /* Make sure the GIC will observe the written configuration */
2177 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2180 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2182 struct page *prop_page;
2184 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2188 gic_reset_prop_table(page_address(prop_page));
2193 static void its_free_prop_table(struct page *prop_page)
2195 free_pages((unsigned long)page_address(prop_page),
2196 get_order(LPI_PROPBASE_SZ));
2199 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2201 phys_addr_t start, end, addr_end;
2205 * We don't bother checking for a kdump kernel as by
2206 * construction, the LPI tables are out of this kernel's
2209 if (is_kdump_kernel())
2212 addr_end = addr + size - 1;
2214 for_each_reserved_mem_range(i, &start, &end) {
2215 if (addr >= start && addr_end <= end)
2219 /* Not found, not a good sign... */
2220 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2222 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2226 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2228 if (efi_enabled(EFI_CONFIG_TABLES))
2229 return efi_mem_reserve_persistent(addr, size);
2234 static int __init its_setup_lpi_prop_table(void)
2236 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2239 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2240 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2242 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2243 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2246 gic_reset_prop_table(gic_rdists->prop_table_va);
2250 lpi_id_bits = min_t(u32,
2251 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2252 ITS_MAX_LPI_NRBITS);
2253 page = its_allocate_prop_table(GFP_NOWAIT);
2255 pr_err("Failed to allocate PROPBASE\n");
2259 gic_rdists->prop_table_pa = page_to_phys(page);
2260 gic_rdists->prop_table_va = page_address(page);
2261 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2265 pr_info("GICv3: using LPI property table @%pa\n",
2266 &gic_rdists->prop_table_pa);
2268 return its_lpi_init(lpi_id_bits);
2271 static const char *its_base_type_string[] = {
2272 [GITS_BASER_TYPE_DEVICE] = "Devices",
2273 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs",
2274 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)",
2275 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections",
2276 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)",
2277 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)",
2278 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)",
2281 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2283 u32 idx = baser - its->tables;
2285 return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2288 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2291 u32 idx = baser - its->tables;
2293 gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2294 baser->val = its_read_baser(its, baser);
2297 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2298 u64 cache, u64 shr, u32 order, bool indirect)
2300 u64 val = its_read_baser(its, baser);
2301 u64 esz = GITS_BASER_ENTRY_SIZE(val);
2302 u64 type = GITS_BASER_TYPE(val);
2303 u64 baser_phys, tmp;
2304 u32 alloc_pages, psz;
2309 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2310 if (alloc_pages > GITS_BASER_PAGES_MAX) {
2311 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2312 &its->phys_base, its_base_type_string[type],
2313 alloc_pages, GITS_BASER_PAGES_MAX);
2314 alloc_pages = GITS_BASER_PAGES_MAX;
2315 order = get_order(GITS_BASER_PAGES_MAX * psz);
2318 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2322 base = (void *)page_address(page);
2323 baser_phys = virt_to_phys(base);
2325 /* Check if the physical address of the memory is above 48bits */
2326 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2328 /* 52bit PA is supported only when PageSize=64K */
2329 if (psz != SZ_64K) {
2330 pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2331 free_pages((unsigned long)base, order);
2335 /* Convert 52bit PA to 48bit field */
2336 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2341 (type << GITS_BASER_TYPE_SHIFT) |
2342 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
2343 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) |
2348 val |= indirect ? GITS_BASER_INDIRECT : 0x0;
2352 val |= GITS_BASER_PAGE_SIZE_4K;
2355 val |= GITS_BASER_PAGE_SIZE_16K;
2358 val |= GITS_BASER_PAGE_SIZE_64K;
2363 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2365 its_write_baser(its, baser, val);
2368 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2370 * Shareability didn't stick. Just use
2371 * whatever the read reported, which is likely
2372 * to be the only thing this redistributor
2373 * supports. If that's zero, make it
2374 * non-cacheable as well.
2376 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2378 cache = GITS_BASER_nC;
2384 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2385 &its->phys_base, its_base_type_string[type],
2387 free_pages((unsigned long)base, order);
2391 baser->order = order;
2394 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2396 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2397 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2398 its_base_type_string[type],
2399 (unsigned long)virt_to_phys(base),
2400 indirect ? "indirect" : "flat", (int)esz,
2401 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2406 static bool its_parse_indirect_baser(struct its_node *its,
2407 struct its_baser *baser,
2408 u32 *order, u32 ids)
2410 u64 tmp = its_read_baser(its, baser);
2411 u64 type = GITS_BASER_TYPE(tmp);
2412 u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2413 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2414 u32 new_order = *order;
2415 u32 psz = baser->psz;
2416 bool indirect = false;
2418 /* No need to enable Indirection if memory requirement < (psz*2)bytes */
2419 if ((esz << ids) > (psz * 2)) {
2421 * Find out whether hw supports a single or two-level table by
2422 * table by reading bit at offset '62' after writing '1' to it.
2424 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2425 indirect = !!(baser->val & GITS_BASER_INDIRECT);
2429 * The size of the lvl2 table is equal to ITS page size
2430 * which is 'psz'. For computing lvl1 table size,
2431 * subtract ID bits that sparse lvl2 table from 'ids'
2432 * which is reported by ITS hardware times lvl1 table
2435 ids -= ilog2(psz / (int)esz);
2436 esz = GITS_LVL1_ENTRY_SIZE;
2441 * Allocate as many entries as required to fit the
2442 * range of device IDs that the ITS can grok... The ID
2443 * space being incredibly sparse, this results in a
2444 * massive waste of memory if two-level device table
2445 * feature is not supported by hardware.
2447 new_order = max_t(u32, get_order(esz << ids), new_order);
2448 if (new_order > MAX_PAGE_ORDER) {
2449 new_order = MAX_PAGE_ORDER;
2450 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2451 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2452 &its->phys_base, its_base_type_string[type],
2453 device_ids(its), ids);
2461 static u32 compute_common_aff(u64 val)
2465 aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2466 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2468 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2471 static u32 compute_its_aff(struct its_node *its)
2477 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2478 * the resulting affinity. We then use that to see if this match
2481 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2482 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2483 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2484 return compute_common_aff(val);
2487 static struct its_node *find_sibling_its(struct its_node *cur_its)
2489 struct its_node *its;
2492 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2495 aff = compute_its_aff(cur_its);
2497 list_for_each_entry(its, &its_nodes, entry) {
2500 if (!is_v4_1(its) || its == cur_its)
2503 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2506 if (aff != compute_its_aff(its))
2509 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2510 baser = its->tables[2].val;
2511 if (!(baser & GITS_BASER_VALID))
2520 static void its_free_tables(struct its_node *its)
2524 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2525 if (its->tables[i].base) {
2526 free_pages((unsigned long)its->tables[i].base,
2527 its->tables[i].order);
2528 its->tables[i].base = NULL;
2533 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2540 val = its_read_baser(its, baser);
2541 val &= ~GITS_BASER_PAGE_SIZE_MASK;
2545 gpsz = GITS_BASER_PAGE_SIZE_64K;
2548 gpsz = GITS_BASER_PAGE_SIZE_16K;
2552 gpsz = GITS_BASER_PAGE_SIZE_4K;
2556 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2558 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2559 its_write_baser(its, baser, val);
2561 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2581 static int its_alloc_tables(struct its_node *its)
2583 u64 shr = GITS_BASER_InnerShareable;
2584 u64 cache = GITS_BASER_RaWaWb;
2587 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2588 /* erratum 24313: ignore memory access type */
2589 cache = GITS_BASER_nCnB;
2591 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) {
2592 cache = GITS_BASER_nC;
2596 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2597 struct its_baser *baser = its->tables + i;
2598 u64 val = its_read_baser(its, baser);
2599 u64 type = GITS_BASER_TYPE(val);
2600 bool indirect = false;
2603 if (type == GITS_BASER_TYPE_NONE)
2606 if (its_probe_baser_psz(its, baser)) {
2607 its_free_tables(its);
2611 order = get_order(baser->psz);
2614 case GITS_BASER_TYPE_DEVICE:
2615 indirect = its_parse_indirect_baser(its, baser, &order,
2619 case GITS_BASER_TYPE_VCPU:
2621 struct its_node *sibling;
2624 if ((sibling = find_sibling_its(its))) {
2625 *baser = sibling->tables[2];
2626 its_write_baser(its, baser, baser->val);
2631 indirect = its_parse_indirect_baser(its, baser, &order,
2632 ITS_MAX_VPEID_BITS);
2636 err = its_setup_baser(its, baser, cache, shr, order, indirect);
2638 its_free_tables(its);
2642 /* Update settings which will be used for next BASERn */
2643 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2644 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2650 static u64 inherit_vpe_l1_table_from_its(void)
2652 struct its_node *its;
2656 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2657 aff = compute_common_aff(val);
2659 list_for_each_entry(its, &its_nodes, entry) {
2665 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2668 if (aff != compute_its_aff(its))
2671 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2672 baser = its->tables[2].val;
2673 if (!(baser & GITS_BASER_VALID))
2676 /* We have a winner! */
2677 gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2679 val = GICR_VPROPBASER_4_1_VALID;
2680 if (baser & GITS_BASER_INDIRECT)
2681 val |= GICR_VPROPBASER_4_1_INDIRECT;
2682 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2683 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2684 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2685 case GIC_PAGE_SIZE_64K:
2686 addr = GITS_BASER_ADDR_48_to_52(baser);
2689 addr = baser & GENMASK_ULL(47, 12);
2692 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2693 if (rdists_support_shareable()) {
2694 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2695 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2696 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2697 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2699 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2707 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2713 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2714 aff = compute_common_aff(val);
2716 for_each_possible_cpu(cpu) {
2717 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2719 if (!base || cpu == smp_processor_id())
2722 val = gic_read_typer(base + GICR_TYPER);
2723 if (aff != compute_common_aff(val))
2727 * At this point, we have a victim. This particular CPU
2728 * has already booted, and has an affinity that matches
2729 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2730 * Make sure we don't write the Z bit in that case.
2732 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2733 val &= ~GICR_VPROPBASER_4_1_Z;
2735 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2736 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2744 static bool allocate_vpe_l2_table(int cpu, u32 id)
2746 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2747 unsigned int psz, esz, idx, npg, gpsz;
2752 if (!gic_rdists->has_rvpeid)
2755 /* Skip non-present CPUs */
2759 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2761 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2762 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2763 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2769 case GIC_PAGE_SIZE_4K:
2772 case GIC_PAGE_SIZE_16K:
2775 case GIC_PAGE_SIZE_64K:
2780 /* Don't allow vpe_id that exceeds single, flat table limit */
2781 if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2782 return (id < (npg * psz / (esz * SZ_8)));
2784 /* Compute 1st level table index & check if that exceeds table limit */
2785 idx = id >> ilog2(psz / (esz * SZ_8));
2786 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2789 table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2791 /* Allocate memory for 2nd level table */
2793 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2797 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2798 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2799 gic_flush_dcache_to_poc(page_address(page), psz);
2801 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2803 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2804 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2805 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2807 /* Ensure updated table contents are visible to RD hardware */
2814 static int allocate_vpe_l1_table(void)
2816 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2817 u64 val, gpsz, npg, pa;
2818 unsigned int psz = SZ_64K;
2819 unsigned int np, epp, esz;
2822 if (!gic_rdists->has_rvpeid)
2826 * if VPENDBASER.Valid is set, disable any previously programmed
2827 * VPE by setting PendingLast while clearing Valid. This has the
2828 * effect of making sure no doorbell will be generated and we can
2829 * then safely clear VPROPBASER.Valid.
2831 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2832 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2833 vlpi_base + GICR_VPENDBASER);
2836 * If we can inherit the configuration from another RD, let's do
2837 * so. Otherwise, we have to go through the allocation process. We
2838 * assume that all RDs have the exact same requirements, as
2839 * nothing will work otherwise.
2841 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2842 if (val & GICR_VPROPBASER_4_1_VALID)
2845 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2846 if (!gic_data_rdist()->vpe_table_mask)
2849 val = inherit_vpe_l1_table_from_its();
2850 if (val & GICR_VPROPBASER_4_1_VALID)
2853 /* First probe the page size */
2854 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2855 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2856 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2857 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2858 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2862 gpsz = GIC_PAGE_SIZE_4K;
2864 case GIC_PAGE_SIZE_4K:
2867 case GIC_PAGE_SIZE_16K:
2870 case GIC_PAGE_SIZE_64K:
2876 * Start populating the register from scratch, including RO fields
2877 * (which we want to print in debug cases...)
2880 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2881 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2883 /* How many entries per GIC page? */
2885 epp = psz / (esz * SZ_8);
2888 * If we need more than just a single L1 page, flag the table
2889 * as indirect and compute the number of required L1 pages.
2891 if (epp < ITS_MAX_VPEID) {
2894 val |= GICR_VPROPBASER_4_1_INDIRECT;
2896 /* Number of L2 pages required to cover the VPEID space */
2897 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2899 /* Number of L1 pages to point to the L2 pages */
2900 npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2905 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2907 /* Right, that's the number of CPU pages we need for L1 */
2908 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2910 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2911 np, npg, psz, epp, esz);
2912 page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2916 gic_data_rdist()->vpe_l1_base = page_address(page);
2917 pa = virt_to_phys(page_address(page));
2918 WARN_ON(!IS_ALIGNED(pa, psz));
2920 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2921 if (rdists_support_shareable()) {
2922 val |= GICR_VPROPBASER_RaWb;
2923 val |= GICR_VPROPBASER_InnerShareable;
2925 val |= GICR_VPROPBASER_4_1_Z;
2926 val |= GICR_VPROPBASER_4_1_VALID;
2929 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2930 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2932 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2933 smp_processor_id(), val,
2934 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2939 static int its_alloc_collections(struct its_node *its)
2943 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2945 if (!its->collections)
2948 for (i = 0; i < nr_cpu_ids; i++)
2949 its->collections[i].target_address = ~0ULL;
2954 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2956 struct page *pend_page;
2958 pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2959 get_order(LPI_PENDBASE_SZ));
2963 /* Make sure the GIC will observe the zero-ed page */
2964 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2969 static void its_free_pending_table(struct page *pt)
2971 free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2975 * Booting with kdump and LPIs enabled is generally fine. Any other
2976 * case is wrong in the absence of firmware/EFI support.
2978 static bool enabled_lpis_allowed(void)
2983 /* Check whether the property table is in a reserved region */
2984 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2985 addr = val & GENMASK_ULL(51, 12);
2987 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2990 static int __init allocate_lpi_tables(void)
2996 * If LPIs are enabled while we run this from the boot CPU,
2997 * flag the RD tables as pre-allocated if the stars do align.
2999 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
3000 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
3001 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
3002 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
3003 pr_info("GICv3: Using preallocated redistributor tables\n");
3006 err = its_setup_lpi_prop_table();
3011 * We allocate all the pending tables anyway, as we may have a
3012 * mix of RDs that have had LPIs enabled, and some that
3013 * don't. We'll free the unused ones as each CPU comes online.
3015 for_each_possible_cpu(cpu) {
3016 struct page *pend_page;
3018 pend_page = its_allocate_pending_table(GFP_NOWAIT);
3020 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3024 gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3030 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3032 u32 count = 1000000; /* 1s! */
3037 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3038 clean = !(val & GICR_VPENDBASER_Dirty);
3044 } while (!clean && count);
3046 if (unlikely(!clean))
3047 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3052 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3056 /* Make sure we wait until the RD is done with the initial scan */
3057 val = read_vpend_dirty_clear(vlpi_base);
3058 val &= ~GICR_VPENDBASER_Valid;
3061 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3063 val = read_vpend_dirty_clear(vlpi_base);
3064 if (unlikely(val & GICR_VPENDBASER_Dirty))
3065 val |= GICR_VPENDBASER_PendingLast;
3070 static void its_cpu_init_lpis(void)
3072 void __iomem *rbase = gic_data_rdist_rd_base();
3073 struct page *pend_page;
3077 if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3080 val = readl_relaxed(rbase + GICR_CTLR);
3081 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3082 (val & GICR_CTLR_ENABLE_LPIS)) {
3084 * Check that we get the same property table on all
3085 * RDs. If we don't, this is hopeless.
3087 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3088 paddr &= GENMASK_ULL(51, 12);
3089 if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3090 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3092 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3093 paddr &= GENMASK_ULL(51, 16);
3095 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3096 gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
3101 pend_page = gic_data_rdist()->pend_page;
3102 paddr = page_to_phys(pend_page);
3105 val = (gic_rdists->prop_table_pa |
3106 GICR_PROPBASER_InnerShareable |
3107 GICR_PROPBASER_RaWaWb |
3108 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3110 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3111 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3113 if (!rdists_support_shareable())
3114 tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK;
3116 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3117 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3119 * The HW reports non-shareable, we must
3120 * remove the cacheability attributes as
3123 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3124 GICR_PROPBASER_CACHEABILITY_MASK);
3125 val |= GICR_PROPBASER_nC;
3126 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3128 pr_info_once("GIC: using cache flushing for LPI property table\n");
3129 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3133 val = (page_to_phys(pend_page) |
3134 GICR_PENDBASER_InnerShareable |
3135 GICR_PENDBASER_RaWaWb);
3137 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3138 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3140 if (!rdists_support_shareable())
3141 tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK;
3143 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3145 * The HW reports non-shareable, we must remove the
3146 * cacheability attributes as well.
3148 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3149 GICR_PENDBASER_CACHEABILITY_MASK);
3150 val |= GICR_PENDBASER_nC;
3151 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3155 val = readl_relaxed(rbase + GICR_CTLR);
3156 val |= GICR_CTLR_ENABLE_LPIS;
3157 writel_relaxed(val, rbase + GICR_CTLR);
3160 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3161 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3164 * It's possible for CPU to receive VLPIs before it is
3165 * scheduled as a vPE, especially for the first CPU, and the
3166 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3167 * as out of range and dropped by GIC.
3168 * So we initialize IDbits to known value to avoid VLPI drop.
3170 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3171 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3172 smp_processor_id(), val);
3173 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3176 * Also clear Valid bit of GICR_VPENDBASER, in case some
3177 * ancient programming gets left in and has possibility of
3178 * corrupting memory.
3180 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3183 if (allocate_vpe_l1_table()) {
3185 * If the allocation has failed, we're in massive trouble.
3186 * Disable direct injection, and pray that no VM was
3187 * already running...
3189 gic_rdists->has_rvpeid = false;
3190 gic_rdists->has_vlpis = false;
3193 /* Make sure the GIC has seen the above */
3195 gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3196 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3198 gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3199 "reserved" : "allocated",
3203 static void its_cpu_init_collection(struct its_node *its)
3205 int cpu = smp_processor_id();
3208 /* avoid cross node collections and its mapping */
3209 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3210 struct device_node *cpu_node;
3212 cpu_node = of_get_cpu_node(cpu, NULL);
3213 if (its->numa_node != NUMA_NO_NODE &&
3214 its->numa_node != of_node_to_nid(cpu_node))
3219 * We now have to bind each collection to its target
3222 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3224 * This ITS wants the physical address of the
3227 target = gic_data_rdist()->phys_base;
3229 /* This ITS wants a linear CPU number. */
3230 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3231 target = GICR_TYPER_CPU_NUMBER(target) << 16;
3234 /* Perform collection mapping */
3235 its->collections[cpu].target_address = target;
3236 its->collections[cpu].col_id = cpu;
3238 its_send_mapc(its, &its->collections[cpu], 1);
3239 its_send_invall(its, &its->collections[cpu]);
3242 static void its_cpu_init_collections(void)
3244 struct its_node *its;
3246 raw_spin_lock(&its_lock);
3248 list_for_each_entry(its, &its_nodes, entry)
3249 its_cpu_init_collection(its);
3251 raw_spin_unlock(&its_lock);
3254 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3256 struct its_device *its_dev = NULL, *tmp;
3257 unsigned long flags;
3259 raw_spin_lock_irqsave(&its->lock, flags);
3261 list_for_each_entry(tmp, &its->its_device_list, entry) {
3262 if (tmp->device_id == dev_id) {
3268 raw_spin_unlock_irqrestore(&its->lock, flags);
3273 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3277 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3278 if (GITS_BASER_TYPE(its->tables[i].val) == type)
3279 return &its->tables[i];
3285 static bool its_alloc_table_entry(struct its_node *its,
3286 struct its_baser *baser, u32 id)
3292 /* Don't allow device id that exceeds single, flat table limit */
3293 esz = GITS_BASER_ENTRY_SIZE(baser->val);
3294 if (!(baser->val & GITS_BASER_INDIRECT))
3295 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3297 /* Compute 1st level table index & check if that exceeds table limit */
3298 idx = id >> ilog2(baser->psz / esz);
3299 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3302 table = baser->base;
3304 /* Allocate memory for 2nd level table */
3306 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3307 get_order(baser->psz));
3311 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
3312 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3313 gic_flush_dcache_to_poc(page_address(page), baser->psz);
3315 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3317 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3318 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3319 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3321 /* Ensure updated table contents are visible to ITS hardware */
3328 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3330 struct its_baser *baser;
3332 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3334 /* Don't allow device id that exceeds ITS hardware limit */
3336 return (ilog2(dev_id) < device_ids(its));
3338 return its_alloc_table_entry(its, baser, dev_id);
3341 static bool its_alloc_vpe_table(u32 vpe_id)
3343 struct its_node *its;
3347 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3348 * could try and only do it on ITSs corresponding to devices
3349 * that have interrupts targeted at this VPE, but the
3350 * complexity becomes crazy (and you have tons of memory
3353 list_for_each_entry(its, &its_nodes, entry) {
3354 struct its_baser *baser;
3359 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3363 if (!its_alloc_table_entry(its, baser, vpe_id))
3367 /* Non v4.1? No need to iterate RDs and go back early. */
3368 if (!gic_rdists->has_rvpeid)
3372 * Make sure the L2 tables are allocated for all copies of
3373 * the L1 table on *all* v4.1 RDs.
3375 for_each_possible_cpu(cpu) {
3376 if (!allocate_vpe_l2_table(cpu, vpe_id))
3383 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3384 int nvecs, bool alloc_lpis)
3386 struct its_device *dev;
3387 unsigned long *lpi_map = NULL;
3388 unsigned long flags;
3389 u16 *col_map = NULL;
3396 if (!its_alloc_device_table(its, dev_id))
3399 if (WARN_ON(!is_power_of_2(nvecs)))
3400 nvecs = roundup_pow_of_two(nvecs);
3402 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3404 * Even if the device wants a single LPI, the ITT must be
3405 * sized as a power of two (and you need at least one bit...).
3407 nr_ites = max(2, nvecs);
3408 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3409 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3410 itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3412 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3414 col_map = kcalloc(nr_lpis, sizeof(*col_map),
3417 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3422 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) {
3425 bitmap_free(lpi_map);
3430 gic_flush_dcache_to_poc(itt, sz);
3434 dev->nr_ites = nr_ites;
3435 dev->event_map.lpi_map = lpi_map;
3436 dev->event_map.col_map = col_map;
3437 dev->event_map.lpi_base = lpi_base;
3438 dev->event_map.nr_lpis = nr_lpis;
3439 raw_spin_lock_init(&dev->event_map.vlpi_lock);
3440 dev->device_id = dev_id;
3441 INIT_LIST_HEAD(&dev->entry);
3443 raw_spin_lock_irqsave(&its->lock, flags);
3444 list_add(&dev->entry, &its->its_device_list);
3445 raw_spin_unlock_irqrestore(&its->lock, flags);
3447 /* Map device to its ITT */
3448 its_send_mapd(dev, 1);
3453 static void its_free_device(struct its_device *its_dev)
3455 unsigned long flags;
3457 raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3458 list_del(&its_dev->entry);
3459 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3460 kfree(its_dev->event_map.col_map);
3461 kfree(its_dev->itt);
3465 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3469 /* Find a free LPI region in lpi_map and allocate them. */
3470 idx = bitmap_find_free_region(dev->event_map.lpi_map,
3471 dev->event_map.nr_lpis,
3472 get_count_order(nvecs));
3476 *hwirq = dev->event_map.lpi_base + idx;
3481 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3482 int nvec, msi_alloc_info_t *info)
3484 struct its_node *its;
3485 struct its_device *its_dev;
3486 struct msi_domain_info *msi_info;
3491 * We ignore "dev" entirely, and rely on the dev_id that has
3492 * been passed via the scratchpad. This limits this domain's
3493 * usefulness to upper layers that definitely know that they
3494 * are built on top of the ITS.
3496 dev_id = info->scratchpad[0].ul;
3498 msi_info = msi_get_domain_info(domain);
3499 its = msi_info->data;
3501 if (!gic_rdists->has_direct_lpi &&
3503 vpe_proxy.dev->its == its &&
3504 dev_id == vpe_proxy.dev->device_id) {
3505 /* Bad luck. Get yourself a better implementation */
3506 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3511 mutex_lock(&its->dev_alloc_lock);
3512 its_dev = its_find_device(its, dev_id);
3515 * We already have seen this ID, probably through
3516 * another alias (PCI bridge of some sort). No need to
3517 * create the device.
3519 its_dev->shared = true;
3520 pr_debug("Reusing ITT for devID %x\n", dev_id);
3524 its_dev = its_create_device(its, dev_id, nvec, true);
3530 if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3531 its_dev->shared = true;
3533 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3535 mutex_unlock(&its->dev_alloc_lock);
3536 info->scratchpad[0].ptr = its_dev;
3540 static struct msi_domain_ops its_msi_domain_ops = {
3541 .msi_prepare = its_msi_prepare,
3544 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3546 irq_hw_number_t hwirq)
3548 struct irq_fwspec fwspec;
3550 if (irq_domain_get_of_node(domain->parent)) {
3551 fwspec.fwnode = domain->parent->fwnode;
3552 fwspec.param_count = 3;
3553 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3554 fwspec.param[1] = hwirq;
3555 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3556 } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3557 fwspec.fwnode = domain->parent->fwnode;
3558 fwspec.param_count = 2;
3559 fwspec.param[0] = hwirq;
3560 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3565 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3568 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3569 unsigned int nr_irqs, void *args)
3571 msi_alloc_info_t *info = args;
3572 struct its_device *its_dev = info->scratchpad[0].ptr;
3573 struct its_node *its = its_dev->its;
3574 struct irq_data *irqd;
3575 irq_hw_number_t hwirq;
3579 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3583 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3587 for (i = 0; i < nr_irqs; i++) {
3588 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3592 irq_domain_set_hwirq_and_chip(domain, virq + i,
3593 hwirq + i, &its_irq_chip, its_dev);
3594 irqd = irq_get_irq_data(virq + i);
3595 irqd_set_single_target(irqd);
3596 irqd_set_affinity_on_activate(irqd);
3597 irqd_set_resend_when_in_progress(irqd);
3598 pr_debug("ID:%d pID:%d vID:%d\n",
3599 (int)(hwirq + i - its_dev->event_map.lpi_base),
3600 (int)(hwirq + i), virq + i);
3606 static int its_irq_domain_activate(struct irq_domain *domain,
3607 struct irq_data *d, bool reserve)
3609 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3610 u32 event = its_get_event_id(d);
3613 cpu = its_select_cpu(d, cpu_online_mask);
3614 if (cpu < 0 || cpu >= nr_cpu_ids)
3617 its_inc_lpi_count(d, cpu);
3618 its_dev->event_map.col_map[event] = cpu;
3619 irq_data_update_effective_affinity(d, cpumask_of(cpu));
3621 /* Map the GIC IRQ and event to the device */
3622 its_send_mapti(its_dev, d->hwirq, event);
3626 static void its_irq_domain_deactivate(struct irq_domain *domain,
3629 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3630 u32 event = its_get_event_id(d);
3632 its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3633 /* Stop the delivery of interrupts */
3634 its_send_discard(its_dev, event);
3637 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3638 unsigned int nr_irqs)
3640 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3641 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3642 struct its_node *its = its_dev->its;
3645 bitmap_release_region(its_dev->event_map.lpi_map,
3646 its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3647 get_count_order(nr_irqs));
3649 for (i = 0; i < nr_irqs; i++) {
3650 struct irq_data *data = irq_domain_get_irq_data(domain,
3652 /* Nuke the entry in the domain */
3653 irq_domain_reset_irq_data(data);
3656 mutex_lock(&its->dev_alloc_lock);
3659 * If all interrupts have been freed, start mopping the
3660 * floor. This is conditioned on the device not being shared.
3662 if (!its_dev->shared &&
3663 bitmap_empty(its_dev->event_map.lpi_map,
3664 its_dev->event_map.nr_lpis)) {
3665 its_lpi_free(its_dev->event_map.lpi_map,
3666 its_dev->event_map.lpi_base,
3667 its_dev->event_map.nr_lpis);
3669 /* Unmap device/itt */
3670 its_send_mapd(its_dev, 0);
3671 its_free_device(its_dev);
3674 mutex_unlock(&its->dev_alloc_lock);
3676 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3679 static const struct irq_domain_ops its_domain_ops = {
3680 .select = msi_lib_irq_domain_select,
3681 .alloc = its_irq_domain_alloc,
3682 .free = its_irq_domain_free,
3683 .activate = its_irq_domain_activate,
3684 .deactivate = its_irq_domain_deactivate,
3690 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3691 * likely), the only way to perform an invalidate is to use a fake
3692 * device to issue an INV command, implying that the LPI has first
3693 * been mapped to some event on that device. Since this is not exactly
3694 * cheap, we try to keep that mapping around as long as possible, and
3695 * only issue an UNMAP if we're short on available slots.
3697 * Broken by design(tm).
3699 * GICv4.1, on the other hand, mandates that we're able to invalidate
3700 * by writing to a MMIO register. It doesn't implement the whole of
3701 * DirectLPI, but that's good enough. And most of the time, we don't
3702 * even have to invalidate anything, as the redistributor can be told
3703 * whether to generate a doorbell or not (we thus leave it enabled,
3706 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3708 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3709 if (gic_rdists->has_rvpeid)
3712 /* Already unmapped? */
3713 if (vpe->vpe_proxy_event == -1)
3716 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3717 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3720 * We don't track empty slots at all, so let's move the
3721 * next_victim pointer if we can quickly reuse that slot
3722 * instead of nuking an existing entry. Not clear that this is
3723 * always a win though, and this might just generate a ripple
3724 * effect... Let's just hope VPEs don't migrate too often.
3726 if (vpe_proxy.vpes[vpe_proxy.next_victim])
3727 vpe_proxy.next_victim = vpe->vpe_proxy_event;
3729 vpe->vpe_proxy_event = -1;
3732 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3734 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3735 if (gic_rdists->has_rvpeid)
3738 if (!gic_rdists->has_direct_lpi) {
3739 unsigned long flags;
3741 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3742 its_vpe_db_proxy_unmap_locked(vpe);
3743 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3747 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3749 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3750 if (gic_rdists->has_rvpeid)
3753 /* Already mapped? */
3754 if (vpe->vpe_proxy_event != -1)
3757 /* This slot was already allocated. Kick the other VPE out. */
3758 if (vpe_proxy.vpes[vpe_proxy.next_victim])
3759 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3761 /* Map the new VPE instead */
3762 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3763 vpe->vpe_proxy_event = vpe_proxy.next_victim;
3764 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3766 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3767 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3770 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3772 unsigned long flags;
3773 struct its_collection *target_col;
3775 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3776 if (gic_rdists->has_rvpeid)
3779 if (gic_rdists->has_direct_lpi) {
3780 void __iomem *rdbase;
3782 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3783 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3784 wait_for_syncr(rdbase);
3789 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3791 its_vpe_db_proxy_map_locked(vpe);
3793 target_col = &vpe_proxy.dev->its->collections[to];
3794 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3795 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3797 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3800 static int its_vpe_set_affinity(struct irq_data *d,
3801 const struct cpumask *mask_val,
3804 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3805 unsigned int from, cpu = nr_cpu_ids;
3806 struct cpumask *table_mask;
3807 unsigned long flags;
3810 * Changing affinity is mega expensive, so let's be as lazy as
3811 * we can and only do it if we really have to. Also, if mapped
3812 * into the proxy device, we need to move the doorbell
3813 * interrupt to its new location.
3815 * Another thing is that changing the affinity of a vPE affects
3816 * *other interrupts* such as all the vLPIs that are routed to
3817 * this vPE. This means that the irq_desc lock is not enough to
3818 * protect us, and that we must ensure nobody samples vpe->col_idx
3819 * during the update, hence the lock below which must also be
3820 * taken on any vLPI handling path that evaluates vpe->col_idx.
3822 * Finally, we must protect ourselves against concurrent updates of
3823 * the mapping state on this VM should the ITS list be in use (see
3824 * the shortcut in its_send_vmovp() otherewise).
3827 raw_spin_lock(&vpe->its_vm->vmapp_lock);
3829 from = vpe_to_cpuid_lock(vpe, &flags);
3830 table_mask = gic_data_rdist_cpu(from)->vpe_table_mask;
3833 * If we are offered another CPU in the same GICv4.1 ITS
3834 * affinity, pick this one. Otherwise, any CPU will do.
3837 cpu = cpumask_any_and(mask_val, table_mask);
3838 if (cpu < nr_cpu_ids) {
3839 if (cpumask_test_cpu(from, mask_val) &&
3840 cpumask_test_cpu(from, table_mask))
3843 cpu = cpumask_first(mask_val);
3851 its_send_vmovp(vpe);
3852 its_vpe_db_proxy_move(vpe, from, cpu);
3855 irq_data_update_effective_affinity(d, cpumask_of(cpu));
3856 vpe_to_cpuid_unlock(vpe, flags);
3859 raw_spin_unlock(&vpe->its_vm->vmapp_lock);
3861 return IRQ_SET_MASK_OK_DONE;
3864 static void its_wait_vpt_parse_complete(void)
3866 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3869 if (!gic_rdists->has_vpend_valid_dirty)
3872 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3874 !(val & GICR_VPENDBASER_Dirty),
3878 static void its_vpe_schedule(struct its_vpe *vpe)
3880 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3883 /* Schedule the VPE */
3884 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3885 GENMASK_ULL(51, 12);
3886 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3887 if (rdists_support_shareable()) {
3888 val |= GICR_VPROPBASER_RaWb;
3889 val |= GICR_VPROPBASER_InnerShareable;
3891 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3893 val = virt_to_phys(page_address(vpe->vpt_page)) &
3894 GENMASK_ULL(51, 16);
3895 if (rdists_support_shareable()) {
3896 val |= GICR_VPENDBASER_RaWaWb;
3897 val |= GICR_VPENDBASER_InnerShareable;
3900 * There is no good way of finding out if the pending table is
3901 * empty as we can race against the doorbell interrupt very
3902 * easily. So in the end, vpe->pending_last is only an
3903 * indication that the vcpu has something pending, not one
3904 * that the pending table is empty. A good implementation
3905 * would be able to read its coarse map pretty quickly anyway,
3906 * making this a tolerable issue.
3908 val |= GICR_VPENDBASER_PendingLast;
3909 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3910 val |= GICR_VPENDBASER_Valid;
3911 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3914 static void its_vpe_deschedule(struct its_vpe *vpe)
3916 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3919 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3921 vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3922 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3925 static void its_vpe_invall(struct its_vpe *vpe)
3927 struct its_node *its;
3929 guard(raw_spinlock_irqsave)(&vpe->its_vm->vmapp_lock);
3931 list_for_each_entry(its, &its_nodes, entry) {
3935 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3939 * Sending a VINVALL to a single ITS is enough, as all
3940 * we need is to reach the redistributors.
3942 its_send_vinvall(its, vpe);
3947 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3949 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3950 struct its_cmd_info *info = vcpu_info;
3952 switch (info->cmd_type) {
3954 its_vpe_schedule(vpe);
3957 case DESCHEDULE_VPE:
3958 its_vpe_deschedule(vpe);
3962 its_wait_vpt_parse_complete();
3966 its_vpe_invall(vpe);
3974 static void its_vpe_send_cmd(struct its_vpe *vpe,
3975 void (*cmd)(struct its_device *, u32))
3977 unsigned long flags;
3979 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3981 its_vpe_db_proxy_map_locked(vpe);
3982 cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3984 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3987 static void its_vpe_send_inv(struct irq_data *d)
3989 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3991 if (gic_rdists->has_direct_lpi)
3992 __direct_lpi_inv(d, d->parent_data->hwirq);
3994 its_vpe_send_cmd(vpe, its_send_inv);
3997 static void its_vpe_mask_irq(struct irq_data *d)
4000 * We need to unmask the LPI, which is described by the parent
4001 * irq_data. Instead of calling into the parent (which won't
4002 * exactly do the right thing, let's simply use the
4003 * parent_data pointer. Yes, I'm naughty.
4005 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4006 its_vpe_send_inv(d);
4009 static void its_vpe_unmask_irq(struct irq_data *d)
4011 /* Same hack as above... */
4012 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4013 its_vpe_send_inv(d);
4016 static int its_vpe_set_irqchip_state(struct irq_data *d,
4017 enum irqchip_irq_state which,
4020 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4022 if (which != IRQCHIP_STATE_PENDING)
4025 if (gic_rdists->has_direct_lpi) {
4026 void __iomem *rdbase;
4028 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4030 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4032 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4033 wait_for_syncr(rdbase);
4037 its_vpe_send_cmd(vpe, its_send_int);
4039 its_vpe_send_cmd(vpe, its_send_clear);
4045 static int its_vpe_retrigger(struct irq_data *d)
4047 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4050 static struct irq_chip its_vpe_irq_chip = {
4051 .name = "GICv4-vpe",
4052 .irq_mask = its_vpe_mask_irq,
4053 .irq_unmask = its_vpe_unmask_irq,
4054 .irq_eoi = irq_chip_eoi_parent,
4055 .irq_set_affinity = its_vpe_set_affinity,
4056 .irq_retrigger = its_vpe_retrigger,
4057 .irq_set_irqchip_state = its_vpe_set_irqchip_state,
4058 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity,
4061 static struct its_node *find_4_1_its(void)
4063 static struct its_node *its = NULL;
4066 list_for_each_entry(its, &its_nodes, entry) {
4078 static void its_vpe_4_1_send_inv(struct irq_data *d)
4080 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4081 struct its_node *its;
4084 * GICv4.1 wants doorbells to be invalidated using the
4085 * INVDB command in order to be broadcast to all RDs. Send
4086 * it to the first valid ITS, and let the HW do its magic.
4088 its = find_4_1_its();
4090 its_send_invdb(its, vpe);
4093 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4095 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4096 its_vpe_4_1_send_inv(d);
4099 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4101 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4102 its_vpe_4_1_send_inv(d);
4105 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4106 struct its_cmd_info *info)
4108 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4111 /* Schedule the VPE */
4112 val |= GICR_VPENDBASER_Valid;
4113 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4114 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4115 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4117 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4120 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4121 struct its_cmd_info *info)
4123 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4127 unsigned long flags;
4130 * vPE is going to block: make the vPE non-resident with
4131 * PendingLast clear and DB set. The GIC guarantees that if
4132 * we read-back PendingLast clear, then a doorbell will be
4133 * delivered when an interrupt comes.
4135 * Note the locking to deal with the concurrent update of
4136 * pending_last from the doorbell interrupt handler that can
4139 raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4140 val = its_clear_vpend_valid(vlpi_base,
4141 GICR_VPENDBASER_PendingLast,
4142 GICR_VPENDBASER_4_1_DB);
4143 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4144 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4147 * We're not blocking, so just make the vPE non-resident
4148 * with PendingLast set, indicating that we'll be back.
4150 val = its_clear_vpend_valid(vlpi_base,
4152 GICR_VPENDBASER_PendingLast);
4153 vpe->pending_last = true;
4157 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4159 void __iomem *rdbase;
4160 unsigned long flags;
4164 val = GICR_INVALLR_V;
4165 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4167 /* Target the redistributor this vPE is currently known on */
4168 cpu = vpe_to_cpuid_lock(vpe, &flags);
4169 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4170 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4171 gic_write_lpir(val, rdbase + GICR_INVALLR);
4173 wait_for_syncr(rdbase);
4174 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4175 vpe_to_cpuid_unlock(vpe, flags);
4178 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4180 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4181 struct its_cmd_info *info = vcpu_info;
4183 switch (info->cmd_type) {
4185 its_vpe_4_1_schedule(vpe, info);
4188 case DESCHEDULE_VPE:
4189 its_vpe_4_1_deschedule(vpe, info);
4193 its_wait_vpt_parse_complete();
4197 its_vpe_4_1_invall(vpe);
4205 static struct irq_chip its_vpe_4_1_irq_chip = {
4206 .name = "GICv4.1-vpe",
4207 .irq_mask = its_vpe_4_1_mask_irq,
4208 .irq_unmask = its_vpe_4_1_unmask_irq,
4209 .irq_eoi = irq_chip_eoi_parent,
4210 .irq_set_affinity = its_vpe_set_affinity,
4211 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity,
4214 static void its_configure_sgi(struct irq_data *d, bool clear)
4216 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4217 struct its_cmd_desc desc;
4219 desc.its_vsgi_cmd.vpe = vpe;
4220 desc.its_vsgi_cmd.sgi = d->hwirq;
4221 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4222 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4223 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4224 desc.its_vsgi_cmd.clear = clear;
4227 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4228 * destination VPE is mapped there. Since we map them eagerly at
4229 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4231 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4234 static void its_sgi_mask_irq(struct irq_data *d)
4236 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4238 vpe->sgi_config[d->hwirq].enabled = false;
4239 its_configure_sgi(d, false);
4242 static void its_sgi_unmask_irq(struct irq_data *d)
4244 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4246 vpe->sgi_config[d->hwirq].enabled = true;
4247 its_configure_sgi(d, false);
4250 static int its_sgi_set_affinity(struct irq_data *d,
4251 const struct cpumask *mask_val,
4255 * There is no notion of affinity for virtual SGIs, at least
4256 * not on the host (since they can only be targeting a vPE).
4257 * Tell the kernel we've done whatever it asked for.
4259 irq_data_update_effective_affinity(d, mask_val);
4260 return IRQ_SET_MASK_OK;
4263 static int its_sgi_set_irqchip_state(struct irq_data *d,
4264 enum irqchip_irq_state which,
4267 if (which != IRQCHIP_STATE_PENDING)
4271 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4272 struct its_node *its = find_4_1_its();
4275 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4276 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4277 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4279 its_configure_sgi(d, true);
4285 static int its_sgi_get_irqchip_state(struct irq_data *d,
4286 enum irqchip_irq_state which, bool *val)
4288 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4290 unsigned long flags;
4291 u32 count = 1000000; /* 1s! */
4295 if (which != IRQCHIP_STATE_PENDING)
4299 * Locking galore! We can race against two different events:
4301 * - Concurrent vPE affinity change: we must make sure it cannot
4302 * happen, or we'll talk to the wrong redistributor. This is
4303 * identical to what happens with vLPIs.
4305 * - Concurrent VSGIPENDR access: As it involves accessing two
4306 * MMIO registers, this must be made atomic one way or another.
4308 cpu = vpe_to_cpuid_lock(vpe, &flags);
4309 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4310 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4311 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4313 status = readl_relaxed(base + GICR_VSGIPENDR);
4314 if (!(status & GICR_VSGIPENDR_BUSY))
4319 pr_err_ratelimited("Unable to get SGI status\n");
4327 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4328 vpe_to_cpuid_unlock(vpe, flags);
4333 *val = !!(status & (1 << d->hwirq));
4338 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4340 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4341 struct its_cmd_info *info = vcpu_info;
4343 switch (info->cmd_type) {
4344 case PROP_UPDATE_VSGI:
4345 vpe->sgi_config[d->hwirq].priority = info->priority;
4346 vpe->sgi_config[d->hwirq].group = info->group;
4347 its_configure_sgi(d, false);
4355 static struct irq_chip its_sgi_irq_chip = {
4356 .name = "GICv4.1-sgi",
4357 .irq_mask = its_sgi_mask_irq,
4358 .irq_unmask = its_sgi_unmask_irq,
4359 .irq_set_affinity = its_sgi_set_affinity,
4360 .irq_set_irqchip_state = its_sgi_set_irqchip_state,
4361 .irq_get_irqchip_state = its_sgi_get_irqchip_state,
4362 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity,
4365 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4366 unsigned int virq, unsigned int nr_irqs,
4369 struct its_vpe *vpe = args;
4372 /* Yes, we do want 16 SGIs */
4373 WARN_ON(nr_irqs != 16);
4375 for (i = 0; i < 16; i++) {
4376 vpe->sgi_config[i].priority = 0;
4377 vpe->sgi_config[i].enabled = false;
4378 vpe->sgi_config[i].group = false;
4380 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4381 &its_sgi_irq_chip, vpe);
4382 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4388 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4390 unsigned int nr_irqs)
4395 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4396 struct irq_data *d, bool reserve)
4398 /* Write out the initial SGI configuration */
4399 its_configure_sgi(d, false);
4403 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4406 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4409 * The VSGI command is awkward:
4411 * - To change the configuration, CLEAR must be set to false,
4412 * leaving the pending bit unchanged.
4413 * - To clear the pending bit, CLEAR must be set to true, leaving
4414 * the configuration unchanged.
4416 * You just can't do both at once, hence the two commands below.
4418 vpe->sgi_config[d->hwirq].enabled = false;
4419 its_configure_sgi(d, false);
4420 its_configure_sgi(d, true);
4423 static const struct irq_domain_ops its_sgi_domain_ops = {
4424 .alloc = its_sgi_irq_domain_alloc,
4425 .free = its_sgi_irq_domain_free,
4426 .activate = its_sgi_irq_domain_activate,
4427 .deactivate = its_sgi_irq_domain_deactivate,
4430 static int its_vpe_id_alloc(void)
4432 return ida_alloc_max(&its_vpeid_ida, ITS_MAX_VPEID - 1, GFP_KERNEL);
4435 static void its_vpe_id_free(u16 id)
4437 ida_free(&its_vpeid_ida, id);
4440 static int its_vpe_init(struct its_vpe *vpe)
4442 struct page *vpt_page;
4445 /* Allocate vpe_id */
4446 vpe_id = its_vpe_id_alloc();
4451 vpt_page = its_allocate_pending_table(GFP_KERNEL);
4453 its_vpe_id_free(vpe_id);
4457 if (!its_alloc_vpe_table(vpe_id)) {
4458 its_vpe_id_free(vpe_id);
4459 its_free_pending_table(vpt_page);
4463 raw_spin_lock_init(&vpe->vpe_lock);
4464 vpe->vpe_id = vpe_id;
4465 vpe->vpt_page = vpt_page;
4466 if (gic_rdists->has_rvpeid)
4467 atomic_set(&vpe->vmapp_count, 0);
4469 vpe->vpe_proxy_event = -1;
4474 static void its_vpe_teardown(struct its_vpe *vpe)
4476 its_vpe_db_proxy_unmap(vpe);
4477 its_vpe_id_free(vpe->vpe_id);
4478 its_free_pending_table(vpe->vpt_page);
4481 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4483 unsigned int nr_irqs)
4485 struct its_vm *vm = domain->host_data;
4488 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4490 for (i = 0; i < nr_irqs; i++) {
4491 struct irq_data *data = irq_domain_get_irq_data(domain,
4493 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4495 BUG_ON(vm != vpe->its_vm);
4497 clear_bit(data->hwirq, vm->db_bitmap);
4498 its_vpe_teardown(vpe);
4499 irq_domain_reset_irq_data(data);
4502 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4503 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4504 its_free_prop_table(vm->vprop_page);
4508 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4509 unsigned int nr_irqs, void *args)
4511 struct irq_chip *irqchip = &its_vpe_irq_chip;
4512 struct its_vm *vm = args;
4513 unsigned long *bitmap;
4514 struct page *vprop_page;
4515 int base, nr_ids, i, err = 0;
4517 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4521 if (nr_ids < nr_irqs) {
4522 its_lpi_free(bitmap, base, nr_ids);
4526 vprop_page = its_allocate_prop_table(GFP_KERNEL);
4528 its_lpi_free(bitmap, base, nr_ids);
4532 vm->db_bitmap = bitmap;
4533 vm->db_lpi_base = base;
4534 vm->nr_db_lpis = nr_ids;
4535 vm->vprop_page = vprop_page;
4536 raw_spin_lock_init(&vm->vmapp_lock);
4538 if (gic_rdists->has_rvpeid)
4539 irqchip = &its_vpe_4_1_irq_chip;
4541 for (i = 0; i < nr_irqs; i++) {
4542 vm->vpes[i]->vpe_db_lpi = base + i;
4543 err = its_vpe_init(vm->vpes[i]);
4546 err = its_irq_gic_domain_alloc(domain, virq + i,
4547 vm->vpes[i]->vpe_db_lpi);
4550 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4551 irqchip, vm->vpes[i]);
4553 irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i));
4557 its_vpe_irq_domain_free(domain, virq, i);
4562 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4563 struct irq_data *d, bool reserve)
4565 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4566 struct its_node *its;
4568 /* Map the VPE to the first possible CPU */
4569 vpe->col_idx = cpumask_first(cpu_online_mask);
4570 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4573 * If we use the list map, we issue VMAPP on demand... Unless
4574 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4575 * so that VSGIs can work.
4577 if (!gic_requires_eager_mapping())
4580 list_for_each_entry(its, &its_nodes, entry) {
4584 its_send_vmapp(its, vpe, true);
4585 its_send_vinvall(its, vpe);
4591 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4594 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4595 struct its_node *its;
4598 * If we use the list map on GICv4.0, we unmap the VPE once no
4599 * VLPIs are associated with the VM.
4601 if (!gic_requires_eager_mapping())
4604 list_for_each_entry(its, &its_nodes, entry) {
4608 its_send_vmapp(its, vpe, false);
4612 * There may be a direct read to the VPT after unmapping the
4613 * vPE, to guarantee the validity of this, we make the VPT
4614 * memory coherent with the CPU caches here.
4616 if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4617 gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4621 static const struct irq_domain_ops its_vpe_domain_ops = {
4622 .alloc = its_vpe_irq_domain_alloc,
4623 .free = its_vpe_irq_domain_free,
4624 .activate = its_vpe_irq_domain_activate,
4625 .deactivate = its_vpe_irq_domain_deactivate,
4628 static int its_force_quiescent(void __iomem *base)
4630 u32 count = 1000000; /* 1s */
4633 val = readl_relaxed(base + GITS_CTLR);
4635 * GIC architecture specification requires the ITS to be both
4636 * disabled and quiescent for writes to GITS_BASER<n> or
4637 * GITS_CBASER to not have UNPREDICTABLE results.
4639 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4642 /* Disable the generation of all interrupts to this ITS */
4643 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4644 writel_relaxed(val, base + GITS_CTLR);
4646 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
4648 val = readl_relaxed(base + GITS_CTLR);
4649 if (val & GITS_CTLR_QUIESCENT)
4661 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4663 struct its_node *its = data;
4665 /* erratum 22375: only alloc 8MB table size (20 bits) */
4666 its->typer &= ~GITS_TYPER_DEVBITS;
4667 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4668 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4673 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4675 struct its_node *its = data;
4677 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4682 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4684 struct its_node *its = data;
4686 /* On QDF2400, the size of the ITE is 16Bytes */
4687 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4688 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4693 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4695 struct its_node *its = its_dev->its;
4698 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4699 * which maps 32-bit writes targeted at a separate window of
4700 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4701 * with device ID taken from bits [device_id_bits + 1:2] of
4702 * the window offset.
4704 return its->pre_its_base + (its_dev->device_id << 2);
4707 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4709 struct its_node *its = data;
4710 u32 pre_its_window[2];
4713 if (!fwnode_property_read_u32_array(its->fwnode_handle,
4714 "socionext,synquacer-pre-its",
4716 ARRAY_SIZE(pre_its_window))) {
4718 its->pre_its_base = pre_its_window[0];
4719 its->get_msi_base = its_irq_get_msi_base_pre_its;
4721 ids = ilog2(pre_its_window[1]) - 2;
4722 if (device_ids(its) > ids) {
4723 its->typer &= ~GITS_TYPER_DEVBITS;
4724 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4727 /* the pre-ITS breaks isolation, so disable MSI remapping */
4728 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI;
4734 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4736 struct its_node *its = data;
4739 * Hip07 insists on using the wrong address for the VLPI
4740 * page. Trick it into doing the right thing...
4742 its->vlpi_redist_offset = SZ_128K;
4746 static bool __maybe_unused its_enable_rk3588001(void *data)
4748 struct its_node *its = data;
4750 if (!of_machine_is_compatible("rockchip,rk3588") &&
4751 !of_machine_is_compatible("rockchip,rk3588s"))
4754 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4755 gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
4760 static bool its_set_non_coherent(void *data)
4762 struct its_node *its = data;
4764 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4768 static const struct gic_quirk its_quirks[] = {
4769 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4771 .desc = "ITS: Cavium errata 22375, 24313",
4772 .iidr = 0xa100034c, /* ThunderX pass 1.x */
4774 .init = its_enable_quirk_cavium_22375,
4777 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4779 .desc = "ITS: Cavium erratum 23144",
4780 .iidr = 0xa100034c, /* ThunderX pass 1.x */
4782 .init = its_enable_quirk_cavium_23144,
4785 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4787 .desc = "ITS: QDF2400 erratum 0065",
4788 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */
4790 .init = its_enable_quirk_qdf2400_e0065,
4793 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4796 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4797 * implementation, but with a 'pre-ITS' added that requires
4798 * special handling in software.
4800 .desc = "ITS: Socionext Synquacer pre-ITS",
4803 .init = its_enable_quirk_socionext_synquacer,
4806 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4808 .desc = "ITS: Hip07 erratum 161600802",
4811 .init = its_enable_quirk_hip07_161600802,
4814 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001
4816 .desc = "ITS: Rockchip erratum RK3588001",
4819 .init = its_enable_rk3588001,
4823 .desc = "ITS: non-coherent attribute",
4824 .property = "dma-noncoherent",
4825 .init = its_set_non_coherent,
4831 static void its_enable_quirks(struct its_node *its)
4833 u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4835 gic_enable_quirks(iidr, its_quirks, its);
4837 if (is_of_node(its->fwnode_handle))
4838 gic_enable_of_quirks(to_of_node(its->fwnode_handle),
4842 static int its_save_disable(void)
4844 struct its_node *its;
4847 raw_spin_lock(&its_lock);
4848 list_for_each_entry(its, &its_nodes, entry) {
4852 its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4853 err = its_force_quiescent(base);
4855 pr_err("ITS@%pa: failed to quiesce: %d\n",
4856 &its->phys_base, err);
4857 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4861 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4866 list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4870 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4873 raw_spin_unlock(&its_lock);
4878 static void its_restore_enable(void)
4880 struct its_node *its;
4883 raw_spin_lock(&its_lock);
4884 list_for_each_entry(its, &its_nodes, entry) {
4891 * Make sure that the ITS is disabled. If it fails to quiesce,
4892 * don't restore it since writing to CBASER or BASER<n>
4893 * registers is undefined according to the GIC v3 ITS
4896 * Firmware resuming with the ITS enabled is terminally broken.
4898 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4899 ret = its_force_quiescent(base);
4901 pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4902 &its->phys_base, ret);
4906 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4909 * Writing CBASER resets CREADR to 0, so make CWRITER and
4910 * cmd_write line up with it.
4912 its->cmd_write = its->cmd_base;
4913 gits_write_cwriter(0, base + GITS_CWRITER);
4915 /* Restore GITS_BASER from the value cache. */
4916 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4917 struct its_baser *baser = &its->tables[i];
4919 if (!(baser->val & GITS_BASER_VALID))
4922 its_write_baser(its, baser, baser->val);
4924 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4927 * Reinit the collection if it's stored in the ITS. This is
4928 * indicated by the col_id being less than the HCC field.
4929 * CID < HCC as specified in the GIC v3 Documentation.
4931 if (its->collections[smp_processor_id()].col_id <
4932 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4933 its_cpu_init_collection(its);
4935 raw_spin_unlock(&its_lock);
4938 static struct syscore_ops its_syscore_ops = {
4939 .suspend = its_save_disable,
4940 .resume = its_restore_enable,
4943 static void __init __iomem *its_map_one(struct resource *res, int *err)
4945 void __iomem *its_base;
4948 its_base = ioremap(res->start, SZ_64K);
4950 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4955 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4956 if (val != 0x30 && val != 0x40) {
4957 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4962 *err = its_force_quiescent(its_base);
4964 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4975 static int its_init_domain(struct its_node *its)
4977 struct irq_domain *inner_domain;
4978 struct msi_domain_info *info;
4980 info = kzalloc(sizeof(*info), GFP_KERNEL);
4984 info->ops = &its_msi_domain_ops;
4987 inner_domain = irq_domain_create_hierarchy(its_parent,
4988 its->msi_domain_flags, 0,
4989 its->fwnode_handle, &its_domain_ops,
4991 if (!inner_domain) {
4996 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4998 inner_domain->msi_parent_ops = &gic_v3_its_msi_parent_ops;
4999 inner_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT;
5004 static int its_init_vpe_domain(void)
5006 struct its_node *its;
5010 if (gic_rdists->has_direct_lpi) {
5011 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
5015 /* Any ITS will do, even if not v4 */
5016 its = list_first_entry(&its_nodes, struct its_node, entry);
5018 entries = roundup_pow_of_two(nr_cpu_ids);
5019 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
5021 if (!vpe_proxy.vpes)
5024 /* Use the last possible DevID */
5025 devid = GENMASK(device_ids(its) - 1, 0);
5026 vpe_proxy.dev = its_create_device(its, devid, entries, false);
5027 if (!vpe_proxy.dev) {
5028 kfree(vpe_proxy.vpes);
5029 pr_err("ITS: Can't allocate GICv4 proxy device\n");
5033 BUG_ON(entries > vpe_proxy.dev->nr_ites);
5035 raw_spin_lock_init(&vpe_proxy.lock);
5036 vpe_proxy.next_victim = 0;
5037 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
5038 devid, vpe_proxy.dev->nr_ites);
5043 static int __init its_compute_its_list_map(struct its_node *its)
5049 * This is assumed to be done early enough that we're
5050 * guaranteed to be single-threaded, hence no
5051 * locking. Should this change, we should address
5054 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
5055 if (its_number >= GICv4_ITS_LIST_MAX) {
5056 pr_err("ITS@%pa: No ITSList entry available!\n",
5061 ctlr = readl_relaxed(its->base + GITS_CTLR);
5062 ctlr &= ~GITS_CTLR_ITS_NUMBER;
5063 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
5064 writel_relaxed(ctlr, its->base + GITS_CTLR);
5065 ctlr = readl_relaxed(its->base + GITS_CTLR);
5066 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
5067 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
5068 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
5071 if (test_and_set_bit(its_number, &its_list_map)) {
5072 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
5073 &its->phys_base, its_number);
5080 static int __init its_probe_one(struct its_node *its)
5087 its_enable_quirks(its);
5090 if (!(its->typer & GITS_TYPER_VMOVP)) {
5091 err = its_compute_its_list_map(its);
5097 pr_info("ITS@%pa: Using ITS number %d\n",
5098 &its->phys_base, err);
5100 pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base);
5104 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
5106 its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K);
5107 if (!its->sgir_base) {
5112 its->mpidr = readl_relaxed(its->base + GITS_MPIDR);
5114 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5115 &its->phys_base, its->mpidr, svpet);
5119 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5120 get_order(ITS_CMD_QUEUE_SZ));
5123 goto out_unmap_sgir;
5125 its->cmd_base = (void *)page_address(page);
5126 its->cmd_write = its->cmd_base;
5128 err = its_alloc_tables(its);
5132 err = its_alloc_collections(its);
5134 goto out_free_tables;
5136 baser = (virt_to_phys(its->cmd_base) |
5137 GITS_CBASER_RaWaWb |
5138 GITS_CBASER_InnerShareable |
5139 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
5142 gits_write_cbaser(baser, its->base + GITS_CBASER);
5143 tmp = gits_read_cbaser(its->base + GITS_CBASER);
5145 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
5146 tmp &= ~GITS_CBASER_SHAREABILITY_MASK;
5148 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5149 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5151 * The HW reports non-shareable, we must
5152 * remove the cacheability attributes as
5155 baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5156 GITS_CBASER_CACHEABILITY_MASK);
5157 baser |= GITS_CBASER_nC;
5158 gits_write_cbaser(baser, its->base + GITS_CBASER);
5160 pr_info("ITS: using cache flushing for cmd queue\n");
5161 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5164 gits_write_cwriter(0, its->base + GITS_CWRITER);
5165 ctlr = readl_relaxed(its->base + GITS_CTLR);
5166 ctlr |= GITS_CTLR_ENABLE;
5168 ctlr |= GITS_CTLR_ImDe;
5169 writel_relaxed(ctlr, its->base + GITS_CTLR);
5171 err = its_init_domain(its);
5173 goto out_free_tables;
5175 raw_spin_lock(&its_lock);
5176 list_add(&its->entry, &its_nodes);
5177 raw_spin_unlock(&its_lock);
5182 its_free_tables(its);
5184 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5187 iounmap(its->sgir_base);
5189 pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err);
5193 static bool gic_rdists_supports_plpis(void)
5195 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5198 static int redist_disable_lpis(void)
5200 void __iomem *rbase = gic_data_rdist_rd_base();
5201 u64 timeout = USEC_PER_SEC;
5204 if (!gic_rdists_supports_plpis()) {
5205 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5209 val = readl_relaxed(rbase + GICR_CTLR);
5210 if (!(val & GICR_CTLR_ENABLE_LPIS))
5214 * If coming via a CPU hotplug event, we don't need to disable
5215 * LPIs before trying to re-enable them. They are already
5216 * configured and all is well in the world.
5218 * If running with preallocated tables, there is nothing to do.
5220 if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5221 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5225 * From that point on, we only try to do some damage control.
5227 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5228 smp_processor_id());
5229 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5232 val &= ~GICR_CTLR_ENABLE_LPIS;
5233 writel_relaxed(val, rbase + GICR_CTLR);
5235 /* Make sure any change to GICR_CTLR is observable by the GIC */
5239 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5240 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5241 * Error out if we time out waiting for RWP to clear.
5243 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5245 pr_err("CPU%d: Timeout while disabling LPIs\n",
5246 smp_processor_id());
5254 * After it has been written to 1, it is IMPLEMENTATION
5255 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5256 * cleared to 0. Error out if clearing the bit failed.
5258 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5259 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5266 int its_cpu_init(void)
5268 if (!list_empty(&its_nodes)) {
5271 ret = redist_disable_lpis();
5275 its_cpu_init_lpis();
5276 its_cpu_init_collections();
5282 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5284 cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5285 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5288 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5289 rdist_memreserve_cpuhp_cleanup_workfn);
5291 static int its_cpu_memreserve_lpi(unsigned int cpu)
5293 struct page *pend_page;
5296 /* This gets to run exactly once per CPU */
5297 if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5300 pend_page = gic_data_rdist()->pend_page;
5301 if (WARN_ON(!pend_page)) {
5306 * If the pending table was pre-programmed, free the memory we
5307 * preemptively allocated. Otherwise, reserve that memory for
5310 if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5311 its_free_pending_table(pend_page);
5312 gic_data_rdist()->pend_page = NULL;
5314 phys_addr_t paddr = page_to_phys(pend_page);
5315 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5319 /* Last CPU being brought up gets to issue the cleanup */
5320 if (!IS_ENABLED(CONFIG_SMP) ||
5321 cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5322 schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5324 gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5328 /* Mark all the BASER registers as invalid before they get reprogrammed */
5329 static int __init its_reset_one(struct resource *res)
5331 void __iomem *its_base;
5334 its_base = its_map_one(res, &err);
5338 for (i = 0; i < GITS_BASER_NR_REGS; i++)
5339 gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5345 static const struct of_device_id its_device_id[] = {
5346 { .compatible = "arm,gic-v3-its", },
5350 static struct its_node __init *its_node_init(struct resource *res,
5351 struct fwnode_handle *handle, int numa_node)
5353 void __iomem *its_base;
5354 struct its_node *its;
5357 its_base = its_map_one(res, &err);
5361 pr_info("ITS %pR\n", res);
5363 its = kzalloc(sizeof(*its), GFP_KERNEL);
5367 raw_spin_lock_init(&its->lock);
5368 mutex_init(&its->dev_alloc_lock);
5369 INIT_LIST_HEAD(&its->entry);
5370 INIT_LIST_HEAD(&its->its_device_list);
5372 its->typer = gic_read_typer(its_base + GITS_TYPER);
5373 its->base = its_base;
5374 its->phys_base = res->start;
5375 its->get_msi_base = its_irq_get_msi_base;
5376 its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI;
5378 its->numa_node = numa_node;
5379 its->fwnode_handle = handle;
5388 static void its_node_destroy(struct its_node *its)
5394 static int __init its_of_probe(struct device_node *node)
5396 struct device_node *np;
5397 struct resource res;
5401 * Make sure *all* the ITS are reset before we probe any, as
5402 * they may be sharing memory. If any of the ITS fails to
5403 * reset, don't even try to go any further, as this could
5404 * result in something even worse.
5406 for (np = of_find_matching_node(node, its_device_id); np;
5407 np = of_find_matching_node(np, its_device_id)) {
5408 if (!of_device_is_available(np) ||
5409 !of_property_read_bool(np, "msi-controller") ||
5410 of_address_to_resource(np, 0, &res))
5413 err = its_reset_one(&res);
5418 for (np = of_find_matching_node(node, its_device_id); np;
5419 np = of_find_matching_node(np, its_device_id)) {
5420 struct its_node *its;
5422 if (!of_device_is_available(np))
5424 if (!of_property_read_bool(np, "msi-controller")) {
5425 pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5430 if (of_address_to_resource(np, 0, &res)) {
5431 pr_warn("%pOF: no regs?\n", np);
5436 its = its_node_init(&res, &np->fwnode, of_node_to_nid(np));
5440 err = its_probe_one(its);
5442 its_node_destroy(its);
5451 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5453 #ifdef CONFIG_ACPI_NUMA
5454 struct its_srat_map {
5461 static struct its_srat_map *its_srat_maps __initdata;
5462 static int its_in_srat __initdata;
5464 static int __init acpi_get_its_numa_node(u32 its_id)
5468 for (i = 0; i < its_in_srat; i++) {
5469 if (its_id == its_srat_maps[i].its_id)
5470 return its_srat_maps[i].numa_node;
5472 return NUMA_NO_NODE;
5475 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5476 const unsigned long end)
5481 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5482 const unsigned long end)
5485 struct acpi_srat_gic_its_affinity *its_affinity;
5487 its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5491 if (its_affinity->header.length < sizeof(*its_affinity)) {
5492 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5493 its_affinity->header.length);
5498 * Note that in theory a new proximity node could be created by this
5499 * entry as it is an SRAT resource allocation structure.
5500 * We do not currently support doing so.
5502 node = pxm_to_node(its_affinity->proximity_domain);
5504 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5505 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5509 its_srat_maps[its_in_srat].numa_node = node;
5510 its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5512 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5513 its_affinity->proximity_domain, its_affinity->its_id, node);
5518 static void __init acpi_table_parse_srat_its(void)
5522 count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5523 sizeof(struct acpi_table_srat),
5524 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5525 gic_acpi_match_srat_its, 0);
5529 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5534 acpi_table_parse_entries(ACPI_SIG_SRAT,
5535 sizeof(struct acpi_table_srat),
5536 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5537 gic_acpi_parse_srat_its, 0);
5540 /* free the its_srat_maps after ITS probing */
5541 static void __init acpi_its_srat_maps_free(void)
5543 kfree(its_srat_maps);
5546 static void __init acpi_table_parse_srat_its(void) { }
5547 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5548 static void __init acpi_its_srat_maps_free(void) { }
5551 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5552 const unsigned long end)
5554 struct acpi_madt_generic_translator *its_entry;
5555 struct fwnode_handle *dom_handle;
5556 struct its_node *its;
5557 struct resource res;
5560 its_entry = (struct acpi_madt_generic_translator *)header;
5561 memset(&res, 0, sizeof(res));
5562 res.start = its_entry->base_address;
5563 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5564 res.flags = IORESOURCE_MEM;
5566 dom_handle = irq_domain_alloc_fwnode(&res.start);
5568 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5573 err = iort_register_domain_token(its_entry->translation_id, res.start,
5576 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5577 &res.start, its_entry->translation_id);
5581 its = its_node_init(&res, dom_handle,
5582 acpi_get_its_numa_node(its_entry->translation_id));
5588 if (acpi_get_madt_revision() >= 7 &&
5589 (its_entry->flags & ACPI_MADT_ITS_NON_COHERENT))
5590 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
5592 err = its_probe_one(its);
5597 iort_deregister_domain_token(its_entry->translation_id);
5599 irq_domain_free_fwnode(dom_handle);
5603 static int __init its_acpi_reset(union acpi_subtable_headers *header,
5604 const unsigned long end)
5606 struct acpi_madt_generic_translator *its_entry;
5607 struct resource res;
5609 its_entry = (struct acpi_madt_generic_translator *)header;
5610 res = (struct resource) {
5611 .start = its_entry->base_address,
5612 .end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5613 .flags = IORESOURCE_MEM,
5616 return its_reset_one(&res);
5619 static void __init its_acpi_probe(void)
5621 acpi_table_parse_srat_its();
5623 * Make sure *all* the ITS are reset before we probe any, as
5624 * they may be sharing memory. If any of the ITS fails to
5625 * reset, don't even try to go any further, as this could
5626 * result in something even worse.
5628 if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5629 its_acpi_reset, 0) > 0)
5630 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5631 gic_acpi_parse_madt_its, 0);
5632 acpi_its_srat_maps_free();
5635 static void __init its_acpi_probe(void) { }
5638 int __init its_lpi_memreserve_init(void)
5642 if (!efi_enabled(EFI_CONFIG_TABLES))
5645 if (list_empty(&its_nodes))
5648 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5649 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5650 "irqchip/arm/gicv3/memreserve:online",
5651 its_cpu_memreserve_lpi,
5656 gic_rdists->cpuhp_memreserve_state = state;
5661 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5662 struct irq_domain *parent_domain, u8 irq_prio)
5664 struct device_node *of_node;
5665 struct its_node *its;
5666 bool has_v4 = false;
5667 bool has_v4_1 = false;
5670 gic_rdists = rdists;
5672 lpi_prop_prio = irq_prio;
5673 its_parent = parent_domain;
5674 of_node = to_of_node(handle);
5676 its_of_probe(of_node);
5680 if (list_empty(&its_nodes)) {
5681 pr_warn("ITS: No ITS available, not enabling LPIs\n");
5685 err = allocate_lpi_tables();
5689 list_for_each_entry(its, &its_nodes, entry) {
5690 has_v4 |= is_v4(its);
5691 has_v4_1 |= is_v4_1(its);
5694 /* Don't bother with inconsistent systems */
5695 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5696 rdists->has_rvpeid = false;
5698 if (has_v4 & rdists->has_vlpis) {
5699 const struct irq_domain_ops *sgi_ops;
5702 sgi_ops = &its_sgi_domain_ops;
5706 if (its_init_vpe_domain() ||
5707 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5708 rdists->has_vlpis = false;
5709 pr_err("ITS: Disabling GICv4 support\n");
5713 register_syscore_ops(&its_syscore_ops);