]> Git Repo - linux.git/blob - drivers/irqchip/irq-gic-v3-its.c
crypto: akcipher - Drop sign/verify operations
[linux.git] / drivers / irqchip / irq-gic-v3-its.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <[email protected]>
5  */
6
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/efi.h>
15 #include <linux/interrupt.h>
16 #include <linux/iommu.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
22 #include <linux/mm.h>
23 #include <linux/msi.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
32
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
36
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39
40 #include "irq-gic-common.h"
41 #include "irq-msi-lib.h"
42
43 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING           (1ULL << 0)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375       (1ULL << 1)
45 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144       (1ULL << 2)
46 #define ITS_FLAGS_FORCE_NON_SHAREABLE           (1ULL << 3)
47
48 #define RD_LOCAL_LPI_ENABLED                    BIT(0)
49 #define RD_LOCAL_PENDTABLE_PREALLOCATED         BIT(1)
50 #define RD_LOCAL_MEMRESERVE_DONE                BIT(2)
51
52 static u32 lpi_id_bits;
53
54 /*
55  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
56  * deal with (one configuration byte per interrupt). PENDBASE has to
57  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
58  */
59 #define LPI_NRBITS              lpi_id_bits
60 #define LPI_PROPBASE_SZ         ALIGN(BIT(LPI_NRBITS), SZ_64K)
61 #define LPI_PENDBASE_SZ         ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
62
63 static u8 __ro_after_init lpi_prop_prio;
64
65 /*
66  * Collection structure - just an ID, and a redistributor address to
67  * ping. We use one per CPU as a bag of interrupts assigned to this
68  * CPU.
69  */
70 struct its_collection {
71         u64                     target_address;
72         u16                     col_id;
73 };
74
75 /*
76  * The ITS_BASER structure - contains memory information, cached
77  * value of BASER register configuration and ITS page size.
78  */
79 struct its_baser {
80         void            *base;
81         u64             val;
82         u32             order;
83         u32             psz;
84 };
85
86 struct its_device;
87
88 /*
89  * The ITS structure - contains most of the infrastructure, with the
90  * top-level MSI domain, the command queue, the collections, and the
91  * list of devices writing to it.
92  *
93  * dev_alloc_lock has to be taken for device allocations, while the
94  * spinlock must be taken to parse data structures such as the device
95  * list.
96  */
97 struct its_node {
98         raw_spinlock_t          lock;
99         struct mutex            dev_alloc_lock;
100         struct list_head        entry;
101         void __iomem            *base;
102         void __iomem            *sgir_base;
103         phys_addr_t             phys_base;
104         struct its_cmd_block    *cmd_base;
105         struct its_cmd_block    *cmd_write;
106         struct its_baser        tables[GITS_BASER_NR_REGS];
107         struct its_collection   *collections;
108         struct fwnode_handle    *fwnode_handle;
109         u64                     (*get_msi_base)(struct its_device *its_dev);
110         u64                     typer;
111         u64                     cbaser_save;
112         u32                     ctlr_save;
113         u32                     mpidr;
114         struct list_head        its_device_list;
115         u64                     flags;
116         unsigned long           list_nr;
117         int                     numa_node;
118         unsigned int            msi_domain_flags;
119         u32                     pre_its_base; /* for Socionext Synquacer */
120         int                     vlpi_redist_offset;
121 };
122
123 #define is_v4(its)              (!!((its)->typer & GITS_TYPER_VLPIS))
124 #define is_v4_1(its)            (!!((its)->typer & GITS_TYPER_VMAPP))
125 #define device_ids(its)         (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
126
127 #define ITS_ITT_ALIGN           SZ_256
128
129 /* The maximum number of VPEID bits supported by VLPI commands */
130 #define ITS_MAX_VPEID_BITS                                              \
131         ({                                                              \
132                 int nvpeid = 16;                                        \
133                 if (gic_rdists->has_rvpeid &&                           \
134                     gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)          \
135                         nvpeid = 1 + (gic_rdists->gicd_typer2 &         \
136                                       GICD_TYPER2_VID);                 \
137                                                                         \
138                 nvpeid;                                                 \
139         })
140 #define ITS_MAX_VPEID           (1 << (ITS_MAX_VPEID_BITS))
141
142 /* Convert page order to size in bytes */
143 #define PAGE_ORDER_TO_SIZE(o)   (PAGE_SIZE << (o))
144
145 struct event_lpi_map {
146         unsigned long           *lpi_map;
147         u16                     *col_map;
148         irq_hw_number_t         lpi_base;
149         int                     nr_lpis;
150         raw_spinlock_t          vlpi_lock;
151         struct its_vm           *vm;
152         struct its_vlpi_map     *vlpi_maps;
153         int                     nr_vlpis;
154 };
155
156 /*
157  * The ITS view of a device - belongs to an ITS, owns an interrupt
158  * translation table, and a list of interrupts.  If it some of its
159  * LPIs are injected into a guest (GICv4), the event_map.vm field
160  * indicates which one.
161  */
162 struct its_device {
163         struct list_head        entry;
164         struct its_node         *its;
165         struct event_lpi_map    event_map;
166         void                    *itt;
167         u32                     nr_ites;
168         u32                     device_id;
169         bool                    shared;
170 };
171
172 static struct {
173         raw_spinlock_t          lock;
174         struct its_device       *dev;
175         struct its_vpe          **vpes;
176         int                     next_victim;
177 } vpe_proxy;
178
179 struct cpu_lpi_count {
180         atomic_t        managed;
181         atomic_t        unmanaged;
182 };
183
184 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
185
186 static LIST_HEAD(its_nodes);
187 static DEFINE_RAW_SPINLOCK(its_lock);
188 static struct rdists *gic_rdists;
189 static struct irq_domain *its_parent;
190
191 static unsigned long its_list_map;
192 static u16 vmovp_seq_num;
193 static DEFINE_RAW_SPINLOCK(vmovp_lock);
194
195 static DEFINE_IDA(its_vpeid_ida);
196
197 #define gic_data_rdist()                (raw_cpu_ptr(gic_rdists->rdist))
198 #define gic_data_rdist_cpu(cpu)         (per_cpu_ptr(gic_rdists->rdist, cpu))
199 #define gic_data_rdist_rd_base()        (gic_data_rdist()->rd_base)
200 #define gic_data_rdist_vlpi_base()      (gic_data_rdist_rd_base() + SZ_128K)
201
202 /*
203  * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
204  * always have vSGIs mapped.
205  */
206 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
207 {
208         return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
209 }
210
211 static bool rdists_support_shareable(void)
212 {
213         return !(gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE);
214 }
215
216 static u16 get_its_list(struct its_vm *vm)
217 {
218         struct its_node *its;
219         unsigned long its_list = 0;
220
221         list_for_each_entry(its, &its_nodes, entry) {
222                 if (!is_v4(its))
223                         continue;
224
225                 if (require_its_list_vmovp(vm, its))
226                         __set_bit(its->list_nr, &its_list);
227         }
228
229         return (u16)its_list;
230 }
231
232 static inline u32 its_get_event_id(struct irq_data *d)
233 {
234         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
235         return d->hwirq - its_dev->event_map.lpi_base;
236 }
237
238 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
239                                                u32 event)
240 {
241         struct its_node *its = its_dev->its;
242
243         return its->collections + its_dev->event_map.col_map[event];
244 }
245
246 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
247                                                u32 event)
248 {
249         if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
250                 return NULL;
251
252         return &its_dev->event_map.vlpi_maps[event];
253 }
254
255 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
256 {
257         if (irqd_is_forwarded_to_vcpu(d)) {
258                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
259                 u32 event = its_get_event_id(d);
260
261                 return dev_event_to_vlpi_map(its_dev, event);
262         }
263
264         return NULL;
265 }
266
267 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
268 {
269         raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
270         return vpe->col_idx;
271 }
272
273 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
274 {
275         raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
276 }
277
278 static struct irq_chip its_vpe_irq_chip;
279
280 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
281 {
282         struct its_vpe *vpe = NULL;
283         int cpu;
284
285         if (d->chip == &its_vpe_irq_chip) {
286                 vpe = irq_data_get_irq_chip_data(d);
287         } else {
288                 struct its_vlpi_map *map = get_vlpi_map(d);
289                 if (map)
290                         vpe = map->vpe;
291         }
292
293         if (vpe) {
294                 cpu = vpe_to_cpuid_lock(vpe, flags);
295         } else {
296                 /* Physical LPIs are already locked via the irq_desc lock */
297                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
298                 cpu = its_dev->event_map.col_map[its_get_event_id(d)];
299                 /* Keep GCC quiet... */
300                 *flags = 0;
301         }
302
303         return cpu;
304 }
305
306 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
307 {
308         struct its_vpe *vpe = NULL;
309
310         if (d->chip == &its_vpe_irq_chip) {
311                 vpe = irq_data_get_irq_chip_data(d);
312         } else {
313                 struct its_vlpi_map *map = get_vlpi_map(d);
314                 if (map)
315                         vpe = map->vpe;
316         }
317
318         if (vpe)
319                 vpe_to_cpuid_unlock(vpe, flags);
320 }
321
322 static struct its_collection *valid_col(struct its_collection *col)
323 {
324         if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
325                 return NULL;
326
327         return col;
328 }
329
330 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
331 {
332         if (valid_col(its->collections + vpe->col_idx))
333                 return vpe;
334
335         return NULL;
336 }
337
338 /*
339  * ITS command descriptors - parameters to be encoded in a command
340  * block.
341  */
342 struct its_cmd_desc {
343         union {
344                 struct {
345                         struct its_device *dev;
346                         u32 event_id;
347                 } its_inv_cmd;
348
349                 struct {
350                         struct its_device *dev;
351                         u32 event_id;
352                 } its_clear_cmd;
353
354                 struct {
355                         struct its_device *dev;
356                         u32 event_id;
357                 } its_int_cmd;
358
359                 struct {
360                         struct its_device *dev;
361                         int valid;
362                 } its_mapd_cmd;
363
364                 struct {
365                         struct its_collection *col;
366                         int valid;
367                 } its_mapc_cmd;
368
369                 struct {
370                         struct its_device *dev;
371                         u32 phys_id;
372                         u32 event_id;
373                 } its_mapti_cmd;
374
375                 struct {
376                         struct its_device *dev;
377                         struct its_collection *col;
378                         u32 event_id;
379                 } its_movi_cmd;
380
381                 struct {
382                         struct its_device *dev;
383                         u32 event_id;
384                 } its_discard_cmd;
385
386                 struct {
387                         struct its_collection *col;
388                 } its_invall_cmd;
389
390                 struct {
391                         struct its_vpe *vpe;
392                 } its_vinvall_cmd;
393
394                 struct {
395                         struct its_vpe *vpe;
396                         struct its_collection *col;
397                         bool valid;
398                 } its_vmapp_cmd;
399
400                 struct {
401                         struct its_vpe *vpe;
402                         struct its_device *dev;
403                         u32 virt_id;
404                         u32 event_id;
405                         bool db_enabled;
406                 } its_vmapti_cmd;
407
408                 struct {
409                         struct its_vpe *vpe;
410                         struct its_device *dev;
411                         u32 event_id;
412                         bool db_enabled;
413                 } its_vmovi_cmd;
414
415                 struct {
416                         struct its_vpe *vpe;
417                         struct its_collection *col;
418                         u16 seq_num;
419                         u16 its_list;
420                 } its_vmovp_cmd;
421
422                 struct {
423                         struct its_vpe *vpe;
424                 } its_invdb_cmd;
425
426                 struct {
427                         struct its_vpe *vpe;
428                         u8 sgi;
429                         u8 priority;
430                         bool enable;
431                         bool group;
432                         bool clear;
433                 } its_vsgi_cmd;
434         };
435 };
436
437 /*
438  * The ITS command block, which is what the ITS actually parses.
439  */
440 struct its_cmd_block {
441         union {
442                 u64     raw_cmd[4];
443                 __le64  raw_cmd_le[4];
444         };
445 };
446
447 #define ITS_CMD_QUEUE_SZ                SZ_64K
448 #define ITS_CMD_QUEUE_NR_ENTRIES        (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
449
450 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
451                                                     struct its_cmd_block *,
452                                                     struct its_cmd_desc *);
453
454 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
455                                               struct its_cmd_block *,
456                                               struct its_cmd_desc *);
457
458 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
459 {
460         u64 mask = GENMASK_ULL(h, l);
461         *raw_cmd &= ~mask;
462         *raw_cmd |= (val << l) & mask;
463 }
464
465 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
466 {
467         its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
468 }
469
470 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
471 {
472         its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
473 }
474
475 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
476 {
477         its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
478 }
479
480 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
481 {
482         its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
483 }
484
485 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
486 {
487         its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
488 }
489
490 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
491 {
492         its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
493 }
494
495 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
496 {
497         its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
498 }
499
500 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
501 {
502         its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
503 }
504
505 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
506 {
507         its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
508 }
509
510 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
511 {
512         its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
513 }
514
515 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
516 {
517         its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
518 }
519
520 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
521 {
522         its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
523 }
524
525 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
526 {
527         its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
528 }
529
530 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
531 {
532         its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
533 }
534
535 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
536 {
537         its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
538 }
539
540 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
541 {
542         its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
543 }
544
545 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
546 {
547         its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
548 }
549
550 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
551 {
552         its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
553 }
554
555 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
556 {
557         its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
558 }
559
560 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
561 {
562         its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
563 }
564
565 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
566                                         u32 vpe_db_lpi)
567 {
568         its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
569 }
570
571 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
572                                         u32 vpe_db_lpi)
573 {
574         its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
575 }
576
577 static void its_encode_db(struct its_cmd_block *cmd, bool db)
578 {
579         its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
580 }
581
582 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
583 {
584         its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
585 }
586
587 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
588 {
589         its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
590 }
591
592 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
593 {
594         its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
595 }
596
597 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
598 {
599         its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
600 }
601
602 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
603 {
604         its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
605 }
606
607 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
608 {
609         /* Let's fixup BE commands */
610         cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
611         cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
612         cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
613         cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
614 }
615
616 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
617                                                  struct its_cmd_block *cmd,
618                                                  struct its_cmd_desc *desc)
619 {
620         unsigned long itt_addr;
621         u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
622
623         itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
624         itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
625
626         its_encode_cmd(cmd, GITS_CMD_MAPD);
627         its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
628         its_encode_size(cmd, size - 1);
629         its_encode_itt(cmd, itt_addr);
630         its_encode_valid(cmd, desc->its_mapd_cmd.valid);
631
632         its_fixup_cmd(cmd);
633
634         return NULL;
635 }
636
637 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
638                                                  struct its_cmd_block *cmd,
639                                                  struct its_cmd_desc *desc)
640 {
641         its_encode_cmd(cmd, GITS_CMD_MAPC);
642         its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
643         its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
644         its_encode_valid(cmd, desc->its_mapc_cmd.valid);
645
646         its_fixup_cmd(cmd);
647
648         return desc->its_mapc_cmd.col;
649 }
650
651 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
652                                                   struct its_cmd_block *cmd,
653                                                   struct its_cmd_desc *desc)
654 {
655         struct its_collection *col;
656
657         col = dev_event_to_col(desc->its_mapti_cmd.dev,
658                                desc->its_mapti_cmd.event_id);
659
660         its_encode_cmd(cmd, GITS_CMD_MAPTI);
661         its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
662         its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
663         its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
664         its_encode_collection(cmd, col->col_id);
665
666         its_fixup_cmd(cmd);
667
668         return valid_col(col);
669 }
670
671 static struct its_collection *its_build_movi_cmd(struct its_node *its,
672                                                  struct its_cmd_block *cmd,
673                                                  struct its_cmd_desc *desc)
674 {
675         struct its_collection *col;
676
677         col = dev_event_to_col(desc->its_movi_cmd.dev,
678                                desc->its_movi_cmd.event_id);
679
680         its_encode_cmd(cmd, GITS_CMD_MOVI);
681         its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
682         its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
683         its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
684
685         its_fixup_cmd(cmd);
686
687         return valid_col(col);
688 }
689
690 static struct its_collection *its_build_discard_cmd(struct its_node *its,
691                                                     struct its_cmd_block *cmd,
692                                                     struct its_cmd_desc *desc)
693 {
694         struct its_collection *col;
695
696         col = dev_event_to_col(desc->its_discard_cmd.dev,
697                                desc->its_discard_cmd.event_id);
698
699         its_encode_cmd(cmd, GITS_CMD_DISCARD);
700         its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
701         its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
702
703         its_fixup_cmd(cmd);
704
705         return valid_col(col);
706 }
707
708 static struct its_collection *its_build_inv_cmd(struct its_node *its,
709                                                 struct its_cmd_block *cmd,
710                                                 struct its_cmd_desc *desc)
711 {
712         struct its_collection *col;
713
714         col = dev_event_to_col(desc->its_inv_cmd.dev,
715                                desc->its_inv_cmd.event_id);
716
717         its_encode_cmd(cmd, GITS_CMD_INV);
718         its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
719         its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
720
721         its_fixup_cmd(cmd);
722
723         return valid_col(col);
724 }
725
726 static struct its_collection *its_build_int_cmd(struct its_node *its,
727                                                 struct its_cmd_block *cmd,
728                                                 struct its_cmd_desc *desc)
729 {
730         struct its_collection *col;
731
732         col = dev_event_to_col(desc->its_int_cmd.dev,
733                                desc->its_int_cmd.event_id);
734
735         its_encode_cmd(cmd, GITS_CMD_INT);
736         its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
737         its_encode_event_id(cmd, desc->its_int_cmd.event_id);
738
739         its_fixup_cmd(cmd);
740
741         return valid_col(col);
742 }
743
744 static struct its_collection *its_build_clear_cmd(struct its_node *its,
745                                                   struct its_cmd_block *cmd,
746                                                   struct its_cmd_desc *desc)
747 {
748         struct its_collection *col;
749
750         col = dev_event_to_col(desc->its_clear_cmd.dev,
751                                desc->its_clear_cmd.event_id);
752
753         its_encode_cmd(cmd, GITS_CMD_CLEAR);
754         its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
755         its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
756
757         its_fixup_cmd(cmd);
758
759         return valid_col(col);
760 }
761
762 static struct its_collection *its_build_invall_cmd(struct its_node *its,
763                                                    struct its_cmd_block *cmd,
764                                                    struct its_cmd_desc *desc)
765 {
766         its_encode_cmd(cmd, GITS_CMD_INVALL);
767         its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
768
769         its_fixup_cmd(cmd);
770
771         return desc->its_invall_cmd.col;
772 }
773
774 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
775                                              struct its_cmd_block *cmd,
776                                              struct its_cmd_desc *desc)
777 {
778         its_encode_cmd(cmd, GITS_CMD_VINVALL);
779         its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
780
781         its_fixup_cmd(cmd);
782
783         return valid_vpe(its, desc->its_vinvall_cmd.vpe);
784 }
785
786 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
787                                            struct its_cmd_block *cmd,
788                                            struct its_cmd_desc *desc)
789 {
790         struct its_vpe *vpe = valid_vpe(its, desc->its_vmapp_cmd.vpe);
791         unsigned long vpt_addr, vconf_addr;
792         u64 target;
793         bool alloc;
794
795         its_encode_cmd(cmd, GITS_CMD_VMAPP);
796         its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
797         its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
798
799         if (!desc->its_vmapp_cmd.valid) {
800                 if (is_v4_1(its)) {
801                         alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
802                         its_encode_alloc(cmd, alloc);
803                         /*
804                          * Unmapping a VPE is self-synchronizing on GICv4.1,
805                          * no need to issue a VSYNC.
806                          */
807                         vpe = NULL;
808                 }
809
810                 goto out;
811         }
812
813         vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
814         target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
815
816         its_encode_target(cmd, target);
817         its_encode_vpt_addr(cmd, vpt_addr);
818         its_encode_vpt_size(cmd, LPI_NRBITS - 1);
819
820         if (!is_v4_1(its))
821                 goto out;
822
823         vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
824
825         alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
826
827         its_encode_alloc(cmd, alloc);
828
829         /*
830          * GICv4.1 provides a way to get the VLPI state, which needs the vPE
831          * to be unmapped first, and in this case, we may remap the vPE
832          * back while the VPT is not empty. So we can't assume that the
833          * VPT is empty on map. This is why we never advertise PTZ.
834          */
835         its_encode_ptz(cmd, false);
836         its_encode_vconf_addr(cmd, vconf_addr);
837         its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
838
839 out:
840         its_fixup_cmd(cmd);
841
842         return vpe;
843 }
844
845 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
846                                             struct its_cmd_block *cmd,
847                                             struct its_cmd_desc *desc)
848 {
849         u32 db;
850
851         if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
852                 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
853         else
854                 db = 1023;
855
856         its_encode_cmd(cmd, GITS_CMD_VMAPTI);
857         its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
858         its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
859         its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
860         its_encode_db_phys_id(cmd, db);
861         its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
862
863         its_fixup_cmd(cmd);
864
865         return valid_vpe(its, desc->its_vmapti_cmd.vpe);
866 }
867
868 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
869                                            struct its_cmd_block *cmd,
870                                            struct its_cmd_desc *desc)
871 {
872         u32 db;
873
874         if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
875                 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
876         else
877                 db = 1023;
878
879         its_encode_cmd(cmd, GITS_CMD_VMOVI);
880         its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
881         its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
882         its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
883         its_encode_db_phys_id(cmd, db);
884         its_encode_db_valid(cmd, true);
885
886         its_fixup_cmd(cmd);
887
888         return valid_vpe(its, desc->its_vmovi_cmd.vpe);
889 }
890
891 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
892                                            struct its_cmd_block *cmd,
893                                            struct its_cmd_desc *desc)
894 {
895         u64 target;
896
897         target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
898         its_encode_cmd(cmd, GITS_CMD_VMOVP);
899         its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
900         its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
901         its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
902         its_encode_target(cmd, target);
903
904         if (is_v4_1(its)) {
905                 its_encode_db(cmd, true);
906                 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
907         }
908
909         its_fixup_cmd(cmd);
910
911         return valid_vpe(its, desc->its_vmovp_cmd.vpe);
912 }
913
914 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
915                                           struct its_cmd_block *cmd,
916                                           struct its_cmd_desc *desc)
917 {
918         struct its_vlpi_map *map;
919
920         map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
921                                     desc->its_inv_cmd.event_id);
922
923         its_encode_cmd(cmd, GITS_CMD_INV);
924         its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
925         its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
926
927         its_fixup_cmd(cmd);
928
929         return valid_vpe(its, map->vpe);
930 }
931
932 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
933                                           struct its_cmd_block *cmd,
934                                           struct its_cmd_desc *desc)
935 {
936         struct its_vlpi_map *map;
937
938         map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
939                                     desc->its_int_cmd.event_id);
940
941         its_encode_cmd(cmd, GITS_CMD_INT);
942         its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
943         its_encode_event_id(cmd, desc->its_int_cmd.event_id);
944
945         its_fixup_cmd(cmd);
946
947         return valid_vpe(its, map->vpe);
948 }
949
950 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
951                                             struct its_cmd_block *cmd,
952                                             struct its_cmd_desc *desc)
953 {
954         struct its_vlpi_map *map;
955
956         map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
957                                     desc->its_clear_cmd.event_id);
958
959         its_encode_cmd(cmd, GITS_CMD_CLEAR);
960         its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
961         its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
962
963         its_fixup_cmd(cmd);
964
965         return valid_vpe(its, map->vpe);
966 }
967
968 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
969                                            struct its_cmd_block *cmd,
970                                            struct its_cmd_desc *desc)
971 {
972         if (WARN_ON(!is_v4_1(its)))
973                 return NULL;
974
975         its_encode_cmd(cmd, GITS_CMD_INVDB);
976         its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
977
978         its_fixup_cmd(cmd);
979
980         return valid_vpe(its, desc->its_invdb_cmd.vpe);
981 }
982
983 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
984                                           struct its_cmd_block *cmd,
985                                           struct its_cmd_desc *desc)
986 {
987         if (WARN_ON(!is_v4_1(its)))
988                 return NULL;
989
990         its_encode_cmd(cmd, GITS_CMD_VSGI);
991         its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
992         its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
993         its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
994         its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
995         its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
996         its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
997
998         its_fixup_cmd(cmd);
999
1000         return valid_vpe(its, desc->its_vsgi_cmd.vpe);
1001 }
1002
1003 static u64 its_cmd_ptr_to_offset(struct its_node *its,
1004                                  struct its_cmd_block *ptr)
1005 {
1006         return (ptr - its->cmd_base) * sizeof(*ptr);
1007 }
1008
1009 static int its_queue_full(struct its_node *its)
1010 {
1011         int widx;
1012         int ridx;
1013
1014         widx = its->cmd_write - its->cmd_base;
1015         ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
1016
1017         /* This is incredibly unlikely to happen, unless the ITS locks up. */
1018         if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
1019                 return 1;
1020
1021         return 0;
1022 }
1023
1024 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
1025 {
1026         struct its_cmd_block *cmd;
1027         u32 count = 1000000;    /* 1s! */
1028
1029         while (its_queue_full(its)) {
1030                 count--;
1031                 if (!count) {
1032                         pr_err_ratelimited("ITS queue not draining\n");
1033                         return NULL;
1034                 }
1035                 cpu_relax();
1036                 udelay(1);
1037         }
1038
1039         cmd = its->cmd_write++;
1040
1041         /* Handle queue wrapping */
1042         if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1043                 its->cmd_write = its->cmd_base;
1044
1045         /* Clear command  */
1046         cmd->raw_cmd[0] = 0;
1047         cmd->raw_cmd[1] = 0;
1048         cmd->raw_cmd[2] = 0;
1049         cmd->raw_cmd[3] = 0;
1050
1051         return cmd;
1052 }
1053
1054 static struct its_cmd_block *its_post_commands(struct its_node *its)
1055 {
1056         u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1057
1058         writel_relaxed(wr, its->base + GITS_CWRITER);
1059
1060         return its->cmd_write;
1061 }
1062
1063 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1064 {
1065         /*
1066          * Make sure the commands written to memory are observable by
1067          * the ITS.
1068          */
1069         if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1070                 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1071         else
1072                 dsb(ishst);
1073 }
1074
1075 static int its_wait_for_range_completion(struct its_node *its,
1076                                          u64    prev_idx,
1077                                          struct its_cmd_block *to)
1078 {
1079         u64 rd_idx, to_idx, linear_idx;
1080         u32 count = 1000000;    /* 1s! */
1081
1082         /* Linearize to_idx if the command set has wrapped around */
1083         to_idx = its_cmd_ptr_to_offset(its, to);
1084         if (to_idx < prev_idx)
1085                 to_idx += ITS_CMD_QUEUE_SZ;
1086
1087         linear_idx = prev_idx;
1088
1089         while (1) {
1090                 s64 delta;
1091
1092                 rd_idx = readl_relaxed(its->base + GITS_CREADR);
1093
1094                 /*
1095                  * Compute the read pointer progress, taking the
1096                  * potential wrap-around into account.
1097                  */
1098                 delta = rd_idx - prev_idx;
1099                 if (rd_idx < prev_idx)
1100                         delta += ITS_CMD_QUEUE_SZ;
1101
1102                 linear_idx += delta;
1103                 if (linear_idx >= to_idx)
1104                         break;
1105
1106                 count--;
1107                 if (!count) {
1108                         pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1109                                            to_idx, linear_idx);
1110                         return -1;
1111                 }
1112                 prev_idx = rd_idx;
1113                 cpu_relax();
1114                 udelay(1);
1115         }
1116
1117         return 0;
1118 }
1119
1120 /* Warning, macro hell follows */
1121 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)       \
1122 void name(struct its_node *its,                                         \
1123           buildtype builder,                                            \
1124           struct its_cmd_desc *desc)                                    \
1125 {                                                                       \
1126         struct its_cmd_block *cmd, *sync_cmd, *next_cmd;                \
1127         synctype *sync_obj;                                             \
1128         unsigned long flags;                                            \
1129         u64 rd_idx;                                                     \
1130                                                                         \
1131         raw_spin_lock_irqsave(&its->lock, flags);                       \
1132                                                                         \
1133         cmd = its_allocate_entry(its);                                  \
1134         if (!cmd) {             /* We're soooooo screewed... */         \
1135                 raw_spin_unlock_irqrestore(&its->lock, flags);          \
1136                 return;                                                 \
1137         }                                                               \
1138         sync_obj = builder(its, cmd, desc);                             \
1139         its_flush_cmd(its, cmd);                                        \
1140                                                                         \
1141         if (sync_obj) {                                                 \
1142                 sync_cmd = its_allocate_entry(its);                     \
1143                 if (!sync_cmd)                                          \
1144                         goto post;                                      \
1145                                                                         \
1146                 buildfn(its, sync_cmd, sync_obj);                       \
1147                 its_flush_cmd(its, sync_cmd);                           \
1148         }                                                               \
1149                                                                         \
1150 post:                                                                   \
1151         rd_idx = readl_relaxed(its->base + GITS_CREADR);                \
1152         next_cmd = its_post_commands(its);                              \
1153         raw_spin_unlock_irqrestore(&its->lock, flags);                  \
1154                                                                         \
1155         if (its_wait_for_range_completion(its, rd_idx, next_cmd))       \
1156                 pr_err_ratelimited("ITS cmd %ps failed\n", builder);    \
1157 }
1158
1159 static void its_build_sync_cmd(struct its_node *its,
1160                                struct its_cmd_block *sync_cmd,
1161                                struct its_collection *sync_col)
1162 {
1163         its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1164         its_encode_target(sync_cmd, sync_col->target_address);
1165
1166         its_fixup_cmd(sync_cmd);
1167 }
1168
1169 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1170                              struct its_collection, its_build_sync_cmd)
1171
1172 static void its_build_vsync_cmd(struct its_node *its,
1173                                 struct its_cmd_block *sync_cmd,
1174                                 struct its_vpe *sync_vpe)
1175 {
1176         its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1177         its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1178
1179         its_fixup_cmd(sync_cmd);
1180 }
1181
1182 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1183                              struct its_vpe, its_build_vsync_cmd)
1184
1185 static void its_send_int(struct its_device *dev, u32 event_id)
1186 {
1187         struct its_cmd_desc desc;
1188
1189         desc.its_int_cmd.dev = dev;
1190         desc.its_int_cmd.event_id = event_id;
1191
1192         its_send_single_command(dev->its, its_build_int_cmd, &desc);
1193 }
1194
1195 static void its_send_clear(struct its_device *dev, u32 event_id)
1196 {
1197         struct its_cmd_desc desc;
1198
1199         desc.its_clear_cmd.dev = dev;
1200         desc.its_clear_cmd.event_id = event_id;
1201
1202         its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1203 }
1204
1205 static void its_send_inv(struct its_device *dev, u32 event_id)
1206 {
1207         struct its_cmd_desc desc;
1208
1209         desc.its_inv_cmd.dev = dev;
1210         desc.its_inv_cmd.event_id = event_id;
1211
1212         its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1213 }
1214
1215 static void its_send_mapd(struct its_device *dev, int valid)
1216 {
1217         struct its_cmd_desc desc;
1218
1219         desc.its_mapd_cmd.dev = dev;
1220         desc.its_mapd_cmd.valid = !!valid;
1221
1222         its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1223 }
1224
1225 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1226                           int valid)
1227 {
1228         struct its_cmd_desc desc;
1229
1230         desc.its_mapc_cmd.col = col;
1231         desc.its_mapc_cmd.valid = !!valid;
1232
1233         its_send_single_command(its, its_build_mapc_cmd, &desc);
1234 }
1235
1236 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1237 {
1238         struct its_cmd_desc desc;
1239
1240         desc.its_mapti_cmd.dev = dev;
1241         desc.its_mapti_cmd.phys_id = irq_id;
1242         desc.its_mapti_cmd.event_id = id;
1243
1244         its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1245 }
1246
1247 static void its_send_movi(struct its_device *dev,
1248                           struct its_collection *col, u32 id)
1249 {
1250         struct its_cmd_desc desc;
1251
1252         desc.its_movi_cmd.dev = dev;
1253         desc.its_movi_cmd.col = col;
1254         desc.its_movi_cmd.event_id = id;
1255
1256         its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1257 }
1258
1259 static void its_send_discard(struct its_device *dev, u32 id)
1260 {
1261         struct its_cmd_desc desc;
1262
1263         desc.its_discard_cmd.dev = dev;
1264         desc.its_discard_cmd.event_id = id;
1265
1266         its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1267 }
1268
1269 static void its_send_invall(struct its_node *its, struct its_collection *col)
1270 {
1271         struct its_cmd_desc desc;
1272
1273         desc.its_invall_cmd.col = col;
1274
1275         its_send_single_command(its, its_build_invall_cmd, &desc);
1276 }
1277
1278 static void its_send_vmapti(struct its_device *dev, u32 id)
1279 {
1280         struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1281         struct its_cmd_desc desc;
1282
1283         desc.its_vmapti_cmd.vpe = map->vpe;
1284         desc.its_vmapti_cmd.dev = dev;
1285         desc.its_vmapti_cmd.virt_id = map->vintid;
1286         desc.its_vmapti_cmd.event_id = id;
1287         desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1288
1289         its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1290 }
1291
1292 static void its_send_vmovi(struct its_device *dev, u32 id)
1293 {
1294         struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1295         struct its_cmd_desc desc;
1296
1297         desc.its_vmovi_cmd.vpe = map->vpe;
1298         desc.its_vmovi_cmd.dev = dev;
1299         desc.its_vmovi_cmd.event_id = id;
1300         desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1301
1302         its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1303 }
1304
1305 static void its_send_vmapp(struct its_node *its,
1306                            struct its_vpe *vpe, bool valid)
1307 {
1308         struct its_cmd_desc desc;
1309
1310         desc.its_vmapp_cmd.vpe = vpe;
1311         desc.its_vmapp_cmd.valid = valid;
1312         desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1313
1314         its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1315 }
1316
1317 static void its_send_vmovp(struct its_vpe *vpe)
1318 {
1319         struct its_cmd_desc desc = {};
1320         struct its_node *its;
1321         int col_id = vpe->col_idx;
1322
1323         desc.its_vmovp_cmd.vpe = vpe;
1324
1325         if (!its_list_map) {
1326                 its = list_first_entry(&its_nodes, struct its_node, entry);
1327                 desc.its_vmovp_cmd.col = &its->collections[col_id];
1328                 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1329                 return;
1330         }
1331
1332         /*
1333          * Yet another marvel of the architecture. If using the
1334          * its_list "feature", we need to make sure that all ITSs
1335          * receive all VMOVP commands in the same order. The only way
1336          * to guarantee this is to make vmovp a serialization point.
1337          *
1338          * Wall <-- Head.
1339          */
1340         guard(raw_spinlock)(&vmovp_lock);
1341         desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1342         desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1343
1344         /* Emit VMOVPs */
1345         list_for_each_entry(its, &its_nodes, entry) {
1346                 if (!is_v4(its))
1347                         continue;
1348
1349                 if (!require_its_list_vmovp(vpe->its_vm, its))
1350                         continue;
1351
1352                 desc.its_vmovp_cmd.col = &its->collections[col_id];
1353                 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1354         }
1355 }
1356
1357 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1358 {
1359         struct its_cmd_desc desc;
1360
1361         desc.its_vinvall_cmd.vpe = vpe;
1362         its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1363 }
1364
1365 static void its_send_vinv(struct its_device *dev, u32 event_id)
1366 {
1367         struct its_cmd_desc desc;
1368
1369         /*
1370          * There is no real VINV command. This is just a normal INV,
1371          * with a VSYNC instead of a SYNC.
1372          */
1373         desc.its_inv_cmd.dev = dev;
1374         desc.its_inv_cmd.event_id = event_id;
1375
1376         its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1377 }
1378
1379 static void its_send_vint(struct its_device *dev, u32 event_id)
1380 {
1381         struct its_cmd_desc desc;
1382
1383         /*
1384          * There is no real VINT command. This is just a normal INT,
1385          * with a VSYNC instead of a SYNC.
1386          */
1387         desc.its_int_cmd.dev = dev;
1388         desc.its_int_cmd.event_id = event_id;
1389
1390         its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1391 }
1392
1393 static void its_send_vclear(struct its_device *dev, u32 event_id)
1394 {
1395         struct its_cmd_desc desc;
1396
1397         /*
1398          * There is no real VCLEAR command. This is just a normal CLEAR,
1399          * with a VSYNC instead of a SYNC.
1400          */
1401         desc.its_clear_cmd.dev = dev;
1402         desc.its_clear_cmd.event_id = event_id;
1403
1404         its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1405 }
1406
1407 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1408 {
1409         struct its_cmd_desc desc;
1410
1411         desc.its_invdb_cmd.vpe = vpe;
1412         its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1413 }
1414
1415 /*
1416  * irqchip functions - assumes MSI, mostly.
1417  */
1418 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1419 {
1420         struct its_vlpi_map *map = get_vlpi_map(d);
1421         irq_hw_number_t hwirq;
1422         void *va;
1423         u8 *cfg;
1424
1425         if (map) {
1426                 va = page_address(map->vm->vprop_page);
1427                 hwirq = map->vintid;
1428
1429                 /* Remember the updated property */
1430                 map->properties &= ~clr;
1431                 map->properties |= set | LPI_PROP_GROUP1;
1432         } else {
1433                 va = gic_rdists->prop_table_va;
1434                 hwirq = d->hwirq;
1435         }
1436
1437         cfg = va + hwirq - 8192;
1438         *cfg &= ~clr;
1439         *cfg |= set | LPI_PROP_GROUP1;
1440
1441         /*
1442          * Make the above write visible to the redistributors.
1443          * And yes, we're flushing exactly: One. Single. Byte.
1444          * Humpf...
1445          */
1446         if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1447                 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1448         else
1449                 dsb(ishst);
1450 }
1451
1452 static void wait_for_syncr(void __iomem *rdbase)
1453 {
1454         while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1455                 cpu_relax();
1456 }
1457
1458 static void __direct_lpi_inv(struct irq_data *d, u64 val)
1459 {
1460         void __iomem *rdbase;
1461         unsigned long flags;
1462         int cpu;
1463
1464         /* Target the redistributor this LPI is currently routed to */
1465         cpu = irq_to_cpuid_lock(d, &flags);
1466         raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1467
1468         rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1469         gic_write_lpir(val, rdbase + GICR_INVLPIR);
1470         wait_for_syncr(rdbase);
1471
1472         raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1473         irq_to_cpuid_unlock(d, flags);
1474 }
1475
1476 static void direct_lpi_inv(struct irq_data *d)
1477 {
1478         struct its_vlpi_map *map = get_vlpi_map(d);
1479         u64 val;
1480
1481         if (map) {
1482                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1483
1484                 WARN_ON(!is_v4_1(its_dev->its));
1485
1486                 val  = GICR_INVLPIR_V;
1487                 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1488                 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1489         } else {
1490                 val = d->hwirq;
1491         }
1492
1493         __direct_lpi_inv(d, val);
1494 }
1495
1496 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1497 {
1498         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1499
1500         lpi_write_config(d, clr, set);
1501         if (gic_rdists->has_direct_lpi &&
1502             (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1503                 direct_lpi_inv(d);
1504         else if (!irqd_is_forwarded_to_vcpu(d))
1505                 its_send_inv(its_dev, its_get_event_id(d));
1506         else
1507                 its_send_vinv(its_dev, its_get_event_id(d));
1508 }
1509
1510 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1511 {
1512         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1513         u32 event = its_get_event_id(d);
1514         struct its_vlpi_map *map;
1515
1516         /*
1517          * GICv4.1 does away with the per-LPI nonsense, nothing to do
1518          * here.
1519          */
1520         if (is_v4_1(its_dev->its))
1521                 return;
1522
1523         map = dev_event_to_vlpi_map(its_dev, event);
1524
1525         if (map->db_enabled == enable)
1526                 return;
1527
1528         map->db_enabled = enable;
1529
1530         /*
1531          * More fun with the architecture:
1532          *
1533          * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1534          * value or to 1023, depending on the enable bit. But that
1535          * would be issuing a mapping for an /existing/ DevID+EventID
1536          * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1537          * to the /same/ vPE, using this opportunity to adjust the
1538          * doorbell. Mouahahahaha. We loves it, Precious.
1539          */
1540         its_send_vmovi(its_dev, event);
1541 }
1542
1543 static void its_mask_irq(struct irq_data *d)
1544 {
1545         if (irqd_is_forwarded_to_vcpu(d))
1546                 its_vlpi_set_doorbell(d, false);
1547
1548         lpi_update_config(d, LPI_PROP_ENABLED, 0);
1549 }
1550
1551 static void its_unmask_irq(struct irq_data *d)
1552 {
1553         if (irqd_is_forwarded_to_vcpu(d))
1554                 its_vlpi_set_doorbell(d, true);
1555
1556         lpi_update_config(d, 0, LPI_PROP_ENABLED);
1557 }
1558
1559 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1560 {
1561         if (irqd_affinity_is_managed(d))
1562                 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1563
1564         return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1565 }
1566
1567 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1568 {
1569         if (irqd_affinity_is_managed(d))
1570                 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1571         else
1572                 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1573 }
1574
1575 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1576 {
1577         if (irqd_affinity_is_managed(d))
1578                 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1579         else
1580                 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1581 }
1582
1583 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1584                                               const struct cpumask *cpu_mask)
1585 {
1586         unsigned int cpu = nr_cpu_ids, tmp;
1587         int count = S32_MAX;
1588
1589         for_each_cpu(tmp, cpu_mask) {
1590                 int this_count = its_read_lpi_count(d, tmp);
1591                 if (this_count < count) {
1592                         cpu = tmp;
1593                         count = this_count;
1594                 }
1595         }
1596
1597         return cpu;
1598 }
1599
1600 /*
1601  * As suggested by Thomas Gleixner in:
1602  * https://lore.kernel.org/r/[email protected]
1603  */
1604 static int its_select_cpu(struct irq_data *d,
1605                           const struct cpumask *aff_mask)
1606 {
1607         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1608         static DEFINE_RAW_SPINLOCK(tmpmask_lock);
1609         static struct cpumask __tmpmask;
1610         struct cpumask *tmpmask;
1611         unsigned long flags;
1612         int cpu, node;
1613         node = its_dev->its->numa_node;
1614         tmpmask = &__tmpmask;
1615
1616         raw_spin_lock_irqsave(&tmpmask_lock, flags);
1617
1618         if (!irqd_affinity_is_managed(d)) {
1619                 /* First try the NUMA node */
1620                 if (node != NUMA_NO_NODE) {
1621                         /*
1622                          * Try the intersection of the affinity mask and the
1623                          * node mask (and the online mask, just to be safe).
1624                          */
1625                         cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1626                         cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1627
1628                         /*
1629                          * Ideally, we would check if the mask is empty, and
1630                          * try again on the full node here.
1631                          *
1632                          * But it turns out that the way ACPI describes the
1633                          * affinity for ITSs only deals about memory, and
1634                          * not target CPUs, so it cannot describe a single
1635                          * ITS placed next to two NUMA nodes.
1636                          *
1637                          * Instead, just fallback on the online mask. This
1638                          * diverges from Thomas' suggestion above.
1639                          */
1640                         cpu = cpumask_pick_least_loaded(d, tmpmask);
1641                         if (cpu < nr_cpu_ids)
1642                                 goto out;
1643
1644                         /* If we can't cross sockets, give up */
1645                         if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1646                                 goto out;
1647
1648                         /* If the above failed, expand the search */
1649                 }
1650
1651                 /* Try the intersection of the affinity and online masks */
1652                 cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1653
1654                 /* If that doesn't fly, the online mask is the last resort */
1655                 if (cpumask_empty(tmpmask))
1656                         cpumask_copy(tmpmask, cpu_online_mask);
1657
1658                 cpu = cpumask_pick_least_loaded(d, tmpmask);
1659         } else {
1660                 cpumask_copy(tmpmask, aff_mask);
1661
1662                 /* If we cannot cross sockets, limit the search to that node */
1663                 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1664                     node != NUMA_NO_NODE)
1665                         cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1666
1667                 cpu = cpumask_pick_least_loaded(d, tmpmask);
1668         }
1669 out:
1670         raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
1671
1672         pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1673         return cpu;
1674 }
1675
1676 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1677                             bool force)
1678 {
1679         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1680         struct its_collection *target_col;
1681         u32 id = its_get_event_id(d);
1682         int cpu, prev_cpu;
1683
1684         /* A forwarded interrupt should use irq_set_vcpu_affinity */
1685         if (irqd_is_forwarded_to_vcpu(d))
1686                 return -EINVAL;
1687
1688         prev_cpu = its_dev->event_map.col_map[id];
1689         its_dec_lpi_count(d, prev_cpu);
1690
1691         if (!force)
1692                 cpu = its_select_cpu(d, mask_val);
1693         else
1694                 cpu = cpumask_pick_least_loaded(d, mask_val);
1695
1696         if (cpu < 0 || cpu >= nr_cpu_ids)
1697                 goto err;
1698
1699         /* don't set the affinity when the target cpu is same as current one */
1700         if (cpu != prev_cpu) {
1701                 target_col = &its_dev->its->collections[cpu];
1702                 its_send_movi(its_dev, target_col, id);
1703                 its_dev->event_map.col_map[id] = cpu;
1704                 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1705         }
1706
1707         its_inc_lpi_count(d, cpu);
1708
1709         return IRQ_SET_MASK_OK_DONE;
1710
1711 err:
1712         its_inc_lpi_count(d, prev_cpu);
1713         return -EINVAL;
1714 }
1715
1716 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1717 {
1718         struct its_node *its = its_dev->its;
1719
1720         return its->phys_base + GITS_TRANSLATER;
1721 }
1722
1723 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1724 {
1725         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1726         struct its_node *its;
1727         u64 addr;
1728
1729         its = its_dev->its;
1730         addr = its->get_msi_base(its_dev);
1731
1732         msg->address_lo         = lower_32_bits(addr);
1733         msg->address_hi         = upper_32_bits(addr);
1734         msg->data               = its_get_event_id(d);
1735
1736         iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1737 }
1738
1739 static int its_irq_set_irqchip_state(struct irq_data *d,
1740                                      enum irqchip_irq_state which,
1741                                      bool state)
1742 {
1743         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1744         u32 event = its_get_event_id(d);
1745
1746         if (which != IRQCHIP_STATE_PENDING)
1747                 return -EINVAL;
1748
1749         if (irqd_is_forwarded_to_vcpu(d)) {
1750                 if (state)
1751                         its_send_vint(its_dev, event);
1752                 else
1753                         its_send_vclear(its_dev, event);
1754         } else {
1755                 if (state)
1756                         its_send_int(its_dev, event);
1757                 else
1758                         its_send_clear(its_dev, event);
1759         }
1760
1761         return 0;
1762 }
1763
1764 static int its_irq_retrigger(struct irq_data *d)
1765 {
1766         return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1767 }
1768
1769 /*
1770  * Two favourable cases:
1771  *
1772  * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1773  *     for vSGI delivery
1774  *
1775  * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1776  *     and we're better off mapping all VPEs always
1777  *
1778  * If neither (a) nor (b) is true, then we map vPEs on demand.
1779  *
1780  */
1781 static bool gic_requires_eager_mapping(void)
1782 {
1783         if (!its_list_map || gic_rdists->has_rvpeid)
1784                 return true;
1785
1786         return false;
1787 }
1788
1789 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1790 {
1791         if (gic_requires_eager_mapping())
1792                 return;
1793
1794         guard(raw_spinlock_irqsave)(&vm->vmapp_lock);
1795
1796         /*
1797          * If the VM wasn't mapped yet, iterate over the vpes and get
1798          * them mapped now.
1799          */
1800         vm->vlpi_count[its->list_nr]++;
1801
1802         if (vm->vlpi_count[its->list_nr] == 1) {
1803                 int i;
1804
1805                 for (i = 0; i < vm->nr_vpes; i++) {
1806                         struct its_vpe *vpe = vm->vpes[i];
1807
1808                         scoped_guard(raw_spinlock, &vpe->vpe_lock)
1809                                 its_send_vmapp(its, vpe, true);
1810
1811                         its_send_vinvall(its, vpe);
1812                 }
1813         }
1814 }
1815
1816 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1817 {
1818         /* Not using the ITS list? Everything is always mapped. */
1819         if (gic_requires_eager_mapping())
1820                 return;
1821
1822         guard(raw_spinlock_irqsave)(&vm->vmapp_lock);
1823
1824         if (!--vm->vlpi_count[its->list_nr]) {
1825                 int i;
1826
1827                 for (i = 0; i < vm->nr_vpes; i++) {
1828                         guard(raw_spinlock)(&vm->vpes[i]->vpe_lock);
1829                         its_send_vmapp(its, vm->vpes[i], false);
1830                 }
1831         }
1832 }
1833
1834 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1835 {
1836         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1837         u32 event = its_get_event_id(d);
1838
1839         if (!info->map)
1840                 return -EINVAL;
1841
1842         if (!its_dev->event_map.vm) {
1843                 struct its_vlpi_map *maps;
1844
1845                 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1846                                GFP_ATOMIC);
1847                 if (!maps)
1848                         return -ENOMEM;
1849
1850                 its_dev->event_map.vm = info->map->vm;
1851                 its_dev->event_map.vlpi_maps = maps;
1852         } else if (its_dev->event_map.vm != info->map->vm) {
1853                 return -EINVAL;
1854         }
1855
1856         /* Get our private copy of the mapping information */
1857         its_dev->event_map.vlpi_maps[event] = *info->map;
1858
1859         if (irqd_is_forwarded_to_vcpu(d)) {
1860                 /* Already mapped, move it around */
1861                 its_send_vmovi(its_dev, event);
1862         } else {
1863                 /* Ensure all the VPEs are mapped on this ITS */
1864                 its_map_vm(its_dev->its, info->map->vm);
1865
1866                 /*
1867                  * Flag the interrupt as forwarded so that we can
1868                  * start poking the virtual property table.
1869                  */
1870                 irqd_set_forwarded_to_vcpu(d);
1871
1872                 /* Write out the property to the prop table */
1873                 lpi_write_config(d, 0xff, info->map->properties);
1874
1875                 /* Drop the physical mapping */
1876                 its_send_discard(its_dev, event);
1877
1878                 /* and install the virtual one */
1879                 its_send_vmapti(its_dev, event);
1880
1881                 /* Increment the number of VLPIs */
1882                 its_dev->event_map.nr_vlpis++;
1883         }
1884
1885         return 0;
1886 }
1887
1888 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1889 {
1890         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1891         struct its_vlpi_map *map;
1892
1893         map = get_vlpi_map(d);
1894
1895         if (!its_dev->event_map.vm || !map)
1896                 return -EINVAL;
1897
1898         /* Copy our mapping information to the incoming request */
1899         *info->map = *map;
1900
1901         return 0;
1902 }
1903
1904 static int its_vlpi_unmap(struct irq_data *d)
1905 {
1906         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1907         u32 event = its_get_event_id(d);
1908
1909         if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1910                 return -EINVAL;
1911
1912         /* Drop the virtual mapping */
1913         its_send_discard(its_dev, event);
1914
1915         /* and restore the physical one */
1916         irqd_clr_forwarded_to_vcpu(d);
1917         its_send_mapti(its_dev, d->hwirq, event);
1918         lpi_update_config(d, 0xff, (lpi_prop_prio |
1919                                     LPI_PROP_ENABLED |
1920                                     LPI_PROP_GROUP1));
1921
1922         /* Potentially unmap the VM from this ITS */
1923         its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1924
1925         /*
1926          * Drop the refcount and make the device available again if
1927          * this was the last VLPI.
1928          */
1929         if (!--its_dev->event_map.nr_vlpis) {
1930                 its_dev->event_map.vm = NULL;
1931                 kfree(its_dev->event_map.vlpi_maps);
1932         }
1933
1934         return 0;
1935 }
1936
1937 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1938 {
1939         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1940
1941         if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1942                 return -EINVAL;
1943
1944         if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1945                 lpi_update_config(d, 0xff, info->config);
1946         else
1947                 lpi_write_config(d, 0xff, info->config);
1948         its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1949
1950         return 0;
1951 }
1952
1953 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1954 {
1955         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1956         struct its_cmd_info *info = vcpu_info;
1957
1958         /* Need a v4 ITS */
1959         if (!is_v4(its_dev->its))
1960                 return -EINVAL;
1961
1962         guard(raw_spinlock_irq)(&its_dev->event_map.vlpi_lock);
1963
1964         /* Unmap request? */
1965         if (!info)
1966                 return its_vlpi_unmap(d);
1967
1968         switch (info->cmd_type) {
1969         case MAP_VLPI:
1970                 return its_vlpi_map(d, info);
1971
1972         case GET_VLPI:
1973                 return its_vlpi_get(d, info);
1974
1975         case PROP_UPDATE_VLPI:
1976         case PROP_UPDATE_AND_INV_VLPI:
1977                 return its_vlpi_prop_update(d, info);
1978
1979         default:
1980                 return -EINVAL;
1981         }
1982 }
1983
1984 static struct irq_chip its_irq_chip = {
1985         .name                   = "ITS",
1986         .irq_mask               = its_mask_irq,
1987         .irq_unmask             = its_unmask_irq,
1988         .irq_eoi                = irq_chip_eoi_parent,
1989         .irq_set_affinity       = its_set_affinity,
1990         .irq_compose_msi_msg    = its_irq_compose_msi_msg,
1991         .irq_set_irqchip_state  = its_irq_set_irqchip_state,
1992         .irq_retrigger          = its_irq_retrigger,
1993         .irq_set_vcpu_affinity  = its_irq_set_vcpu_affinity,
1994 };
1995
1996
1997 /*
1998  * How we allocate LPIs:
1999  *
2000  * lpi_range_list contains ranges of LPIs that are to available to
2001  * allocate from. To allocate LPIs, just pick the first range that
2002  * fits the required allocation, and reduce it by the required
2003  * amount. Once empty, remove the range from the list.
2004  *
2005  * To free a range of LPIs, add a free range to the list, sort it and
2006  * merge the result if the new range happens to be adjacent to an
2007  * already free block.
2008  *
2009  * The consequence of the above is that allocation is cost is low, but
2010  * freeing is expensive. We assumes that freeing rarely occurs.
2011  */
2012 #define ITS_MAX_LPI_NRBITS      16 /* 64K LPIs */
2013
2014 static DEFINE_MUTEX(lpi_range_lock);
2015 static LIST_HEAD(lpi_range_list);
2016
2017 struct lpi_range {
2018         struct list_head        entry;
2019         u32                     base_id;
2020         u32                     span;
2021 };
2022
2023 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2024 {
2025         struct lpi_range *range;
2026
2027         range = kmalloc(sizeof(*range), GFP_KERNEL);
2028         if (range) {
2029                 range->base_id = base;
2030                 range->span = span;
2031         }
2032
2033         return range;
2034 }
2035
2036 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2037 {
2038         struct lpi_range *range, *tmp;
2039         int err = -ENOSPC;
2040
2041         mutex_lock(&lpi_range_lock);
2042
2043         list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2044                 if (range->span >= nr_lpis) {
2045                         *base = range->base_id;
2046                         range->base_id += nr_lpis;
2047                         range->span -= nr_lpis;
2048
2049                         if (range->span == 0) {
2050                                 list_del(&range->entry);
2051                                 kfree(range);
2052                         }
2053
2054                         err = 0;
2055                         break;
2056                 }
2057         }
2058
2059         mutex_unlock(&lpi_range_lock);
2060
2061         pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2062         return err;
2063 }
2064
2065 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2066 {
2067         if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2068                 return;
2069         if (a->base_id + a->span != b->base_id)
2070                 return;
2071         b->base_id = a->base_id;
2072         b->span += a->span;
2073         list_del(&a->entry);
2074         kfree(a);
2075 }
2076
2077 static int free_lpi_range(u32 base, u32 nr_lpis)
2078 {
2079         struct lpi_range *new, *old;
2080
2081         new = mk_lpi_range(base, nr_lpis);
2082         if (!new)
2083                 return -ENOMEM;
2084
2085         mutex_lock(&lpi_range_lock);
2086
2087         list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2088                 if (old->base_id < base)
2089                         break;
2090         }
2091         /*
2092          * old is the last element with ->base_id smaller than base,
2093          * so new goes right after it. If there are no elements with
2094          * ->base_id smaller than base, &old->entry ends up pointing
2095          * at the head of the list, and inserting new it the start of
2096          * the list is the right thing to do in that case as well.
2097          */
2098         list_add(&new->entry, &old->entry);
2099         /*
2100          * Now check if we can merge with the preceding and/or
2101          * following ranges.
2102          */
2103         merge_lpi_ranges(old, new);
2104         merge_lpi_ranges(new, list_next_entry(new, entry));
2105
2106         mutex_unlock(&lpi_range_lock);
2107         return 0;
2108 }
2109
2110 static int __init its_lpi_init(u32 id_bits)
2111 {
2112         u32 lpis = (1UL << id_bits) - 8192;
2113         u32 numlpis;
2114         int err;
2115
2116         numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2117
2118         if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2119                 lpis = numlpis;
2120                 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2121                         lpis);
2122         }
2123
2124         /*
2125          * Initializing the allocator is just the same as freeing the
2126          * full range of LPIs.
2127          */
2128         err = free_lpi_range(8192, lpis);
2129         pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2130         return err;
2131 }
2132
2133 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2134 {
2135         unsigned long *bitmap = NULL;
2136         int err = 0;
2137
2138         do {
2139                 err = alloc_lpi_range(nr_irqs, base);
2140                 if (!err)
2141                         break;
2142
2143                 nr_irqs /= 2;
2144         } while (nr_irqs > 0);
2145
2146         if (!nr_irqs)
2147                 err = -ENOSPC;
2148
2149         if (err)
2150                 goto out;
2151
2152         bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2153         if (!bitmap)
2154                 goto out;
2155
2156         *nr_ids = nr_irqs;
2157
2158 out:
2159         if (!bitmap)
2160                 *base = *nr_ids = 0;
2161
2162         return bitmap;
2163 }
2164
2165 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2166 {
2167         WARN_ON(free_lpi_range(base, nr_ids));
2168         bitmap_free(bitmap);
2169 }
2170
2171 static void gic_reset_prop_table(void *va)
2172 {
2173         /* Regular IRQ priority, Group-1, disabled */
2174         memset(va, lpi_prop_prio | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2175
2176         /* Make sure the GIC will observe the written configuration */
2177         gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2178 }
2179
2180 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2181 {
2182         struct page *prop_page;
2183
2184         prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2185         if (!prop_page)
2186                 return NULL;
2187
2188         gic_reset_prop_table(page_address(prop_page));
2189
2190         return prop_page;
2191 }
2192
2193 static void its_free_prop_table(struct page *prop_page)
2194 {
2195         free_pages((unsigned long)page_address(prop_page),
2196                    get_order(LPI_PROPBASE_SZ));
2197 }
2198
2199 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2200 {
2201         phys_addr_t start, end, addr_end;
2202         u64 i;
2203
2204         /*
2205          * We don't bother checking for a kdump kernel as by
2206          * construction, the LPI tables are out of this kernel's
2207          * memory map.
2208          */
2209         if (is_kdump_kernel())
2210                 return true;
2211
2212         addr_end = addr + size - 1;
2213
2214         for_each_reserved_mem_range(i, &start, &end) {
2215                 if (addr >= start && addr_end <= end)
2216                         return true;
2217         }
2218
2219         /* Not found, not a good sign... */
2220         pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2221                 &addr, &addr_end);
2222         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2223         return false;
2224 }
2225
2226 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2227 {
2228         if (efi_enabled(EFI_CONFIG_TABLES))
2229                 return efi_mem_reserve_persistent(addr, size);
2230
2231         return 0;
2232 }
2233
2234 static int __init its_setup_lpi_prop_table(void)
2235 {
2236         if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2237                 u64 val;
2238
2239                 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2240                 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2241
2242                 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2243                 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2244                                                      LPI_PROPBASE_SZ,
2245                                                      MEMREMAP_WB);
2246                 gic_reset_prop_table(gic_rdists->prop_table_va);
2247         } else {
2248                 struct page *page;
2249
2250                 lpi_id_bits = min_t(u32,
2251                                     GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2252                                     ITS_MAX_LPI_NRBITS);
2253                 page = its_allocate_prop_table(GFP_NOWAIT);
2254                 if (!page) {
2255                         pr_err("Failed to allocate PROPBASE\n");
2256                         return -ENOMEM;
2257                 }
2258
2259                 gic_rdists->prop_table_pa = page_to_phys(page);
2260                 gic_rdists->prop_table_va = page_address(page);
2261                 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2262                                           LPI_PROPBASE_SZ));
2263         }
2264
2265         pr_info("GICv3: using LPI property table @%pa\n",
2266                 &gic_rdists->prop_table_pa);
2267
2268         return its_lpi_init(lpi_id_bits);
2269 }
2270
2271 static const char *its_base_type_string[] = {
2272         [GITS_BASER_TYPE_DEVICE]        = "Devices",
2273         [GITS_BASER_TYPE_VCPU]          = "Virtual CPUs",
2274         [GITS_BASER_TYPE_RESERVED3]     = "Reserved (3)",
2275         [GITS_BASER_TYPE_COLLECTION]    = "Interrupt Collections",
2276         [GITS_BASER_TYPE_RESERVED5]     = "Reserved (5)",
2277         [GITS_BASER_TYPE_RESERVED6]     = "Reserved (6)",
2278         [GITS_BASER_TYPE_RESERVED7]     = "Reserved (7)",
2279 };
2280
2281 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2282 {
2283         u32 idx = baser - its->tables;
2284
2285         return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2286 }
2287
2288 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2289                             u64 val)
2290 {
2291         u32 idx = baser - its->tables;
2292
2293         gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2294         baser->val = its_read_baser(its, baser);
2295 }
2296
2297 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2298                            u64 cache, u64 shr, u32 order, bool indirect)
2299 {
2300         u64 val = its_read_baser(its, baser);
2301         u64 esz = GITS_BASER_ENTRY_SIZE(val);
2302         u64 type = GITS_BASER_TYPE(val);
2303         u64 baser_phys, tmp;
2304         u32 alloc_pages, psz;
2305         struct page *page;
2306         void *base;
2307
2308         psz = baser->psz;
2309         alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2310         if (alloc_pages > GITS_BASER_PAGES_MAX) {
2311                 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2312                         &its->phys_base, its_base_type_string[type],
2313                         alloc_pages, GITS_BASER_PAGES_MAX);
2314                 alloc_pages = GITS_BASER_PAGES_MAX;
2315                 order = get_order(GITS_BASER_PAGES_MAX * psz);
2316         }
2317
2318         page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2319         if (!page)
2320                 return -ENOMEM;
2321
2322         base = (void *)page_address(page);
2323         baser_phys = virt_to_phys(base);
2324
2325         /* Check if the physical address of the memory is above 48bits */
2326         if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2327
2328                 /* 52bit PA is supported only when PageSize=64K */
2329                 if (psz != SZ_64K) {
2330                         pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2331                         free_pages((unsigned long)base, order);
2332                         return -ENXIO;
2333                 }
2334
2335                 /* Convert 52bit PA to 48bit field */
2336                 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2337         }
2338
2339 retry_baser:
2340         val = (baser_phys                                        |
2341                 (type << GITS_BASER_TYPE_SHIFT)                  |
2342                 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)       |
2343                 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)    |
2344                 cache                                            |
2345                 shr                                              |
2346                 GITS_BASER_VALID);
2347
2348         val |=  indirect ? GITS_BASER_INDIRECT : 0x0;
2349
2350         switch (psz) {
2351         case SZ_4K:
2352                 val |= GITS_BASER_PAGE_SIZE_4K;
2353                 break;
2354         case SZ_16K:
2355                 val |= GITS_BASER_PAGE_SIZE_16K;
2356                 break;
2357         case SZ_64K:
2358                 val |= GITS_BASER_PAGE_SIZE_64K;
2359                 break;
2360         }
2361
2362         if (!shr)
2363                 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2364
2365         its_write_baser(its, baser, val);
2366         tmp = baser->val;
2367
2368         if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2369                 /*
2370                  * Shareability didn't stick. Just use
2371                  * whatever the read reported, which is likely
2372                  * to be the only thing this redistributor
2373                  * supports. If that's zero, make it
2374                  * non-cacheable as well.
2375                  */
2376                 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2377                 if (!shr)
2378                         cache = GITS_BASER_nC;
2379
2380                 goto retry_baser;
2381         }
2382
2383         if (val != tmp) {
2384                 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2385                        &its->phys_base, its_base_type_string[type],
2386                        val, tmp);
2387                 free_pages((unsigned long)base, order);
2388                 return -ENXIO;
2389         }
2390
2391         baser->order = order;
2392         baser->base = base;
2393         baser->psz = psz;
2394         tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2395
2396         pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2397                 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2398                 its_base_type_string[type],
2399                 (unsigned long)virt_to_phys(base),
2400                 indirect ? "indirect" : "flat", (int)esz,
2401                 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2402
2403         return 0;
2404 }
2405
2406 static bool its_parse_indirect_baser(struct its_node *its,
2407                                      struct its_baser *baser,
2408                                      u32 *order, u32 ids)
2409 {
2410         u64 tmp = its_read_baser(its, baser);
2411         u64 type = GITS_BASER_TYPE(tmp);
2412         u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2413         u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2414         u32 new_order = *order;
2415         u32 psz = baser->psz;
2416         bool indirect = false;
2417
2418         /* No need to enable Indirection if memory requirement < (psz*2)bytes */
2419         if ((esz << ids) > (psz * 2)) {
2420                 /*
2421                  * Find out whether hw supports a single or two-level table by
2422                  * table by reading bit at offset '62' after writing '1' to it.
2423                  */
2424                 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2425                 indirect = !!(baser->val & GITS_BASER_INDIRECT);
2426
2427                 if (indirect) {
2428                         /*
2429                          * The size of the lvl2 table is equal to ITS page size
2430                          * which is 'psz'. For computing lvl1 table size,
2431                          * subtract ID bits that sparse lvl2 table from 'ids'
2432                          * which is reported by ITS hardware times lvl1 table
2433                          * entry size.
2434                          */
2435                         ids -= ilog2(psz / (int)esz);
2436                         esz = GITS_LVL1_ENTRY_SIZE;
2437                 }
2438         }
2439
2440         /*
2441          * Allocate as many entries as required to fit the
2442          * range of device IDs that the ITS can grok... The ID
2443          * space being incredibly sparse, this results in a
2444          * massive waste of memory if two-level device table
2445          * feature is not supported by hardware.
2446          */
2447         new_order = max_t(u32, get_order(esz << ids), new_order);
2448         if (new_order > MAX_PAGE_ORDER) {
2449                 new_order = MAX_PAGE_ORDER;
2450                 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2451                 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2452                         &its->phys_base, its_base_type_string[type],
2453                         device_ids(its), ids);
2454         }
2455
2456         *order = new_order;
2457
2458         return indirect;
2459 }
2460
2461 static u32 compute_common_aff(u64 val)
2462 {
2463         u32 aff, clpiaff;
2464
2465         aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2466         clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2467
2468         return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2469 }
2470
2471 static u32 compute_its_aff(struct its_node *its)
2472 {
2473         u64 val;
2474         u32 svpet;
2475
2476         /*
2477          * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2478          * the resulting affinity. We then use that to see if this match
2479          * our own affinity.
2480          */
2481         svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2482         val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2483         val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2484         return compute_common_aff(val);
2485 }
2486
2487 static struct its_node *find_sibling_its(struct its_node *cur_its)
2488 {
2489         struct its_node *its;
2490         u32 aff;
2491
2492         if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2493                 return NULL;
2494
2495         aff = compute_its_aff(cur_its);
2496
2497         list_for_each_entry(its, &its_nodes, entry) {
2498                 u64 baser;
2499
2500                 if (!is_v4_1(its) || its == cur_its)
2501                         continue;
2502
2503                 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2504                         continue;
2505
2506                 if (aff != compute_its_aff(its))
2507                         continue;
2508
2509                 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2510                 baser = its->tables[2].val;
2511                 if (!(baser & GITS_BASER_VALID))
2512                         continue;
2513
2514                 return its;
2515         }
2516
2517         return NULL;
2518 }
2519
2520 static void its_free_tables(struct its_node *its)
2521 {
2522         int i;
2523
2524         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2525                 if (its->tables[i].base) {
2526                         free_pages((unsigned long)its->tables[i].base,
2527                                    its->tables[i].order);
2528                         its->tables[i].base = NULL;
2529                 }
2530         }
2531 }
2532
2533 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2534 {
2535         u64 psz = SZ_64K;
2536
2537         while (psz) {
2538                 u64 val, gpsz;
2539
2540                 val = its_read_baser(its, baser);
2541                 val &= ~GITS_BASER_PAGE_SIZE_MASK;
2542
2543                 switch (psz) {
2544                 case SZ_64K:
2545                         gpsz = GITS_BASER_PAGE_SIZE_64K;
2546                         break;
2547                 case SZ_16K:
2548                         gpsz = GITS_BASER_PAGE_SIZE_16K;
2549                         break;
2550                 case SZ_4K:
2551                 default:
2552                         gpsz = GITS_BASER_PAGE_SIZE_4K;
2553                         break;
2554                 }
2555
2556                 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2557
2558                 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2559                 its_write_baser(its, baser, val);
2560
2561                 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2562                         break;
2563
2564                 switch (psz) {
2565                 case SZ_64K:
2566                         psz = SZ_16K;
2567                         break;
2568                 case SZ_16K:
2569                         psz = SZ_4K;
2570                         break;
2571                 case SZ_4K:
2572                 default:
2573                         return -1;
2574                 }
2575         }
2576
2577         baser->psz = psz;
2578         return 0;
2579 }
2580
2581 static int its_alloc_tables(struct its_node *its)
2582 {
2583         u64 shr = GITS_BASER_InnerShareable;
2584         u64 cache = GITS_BASER_RaWaWb;
2585         int err, i;
2586
2587         if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2588                 /* erratum 24313: ignore memory access type */
2589                 cache = GITS_BASER_nCnB;
2590
2591         if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) {
2592                 cache = GITS_BASER_nC;
2593                 shr = 0;
2594         }
2595
2596         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2597                 struct its_baser *baser = its->tables + i;
2598                 u64 val = its_read_baser(its, baser);
2599                 u64 type = GITS_BASER_TYPE(val);
2600                 bool indirect = false;
2601                 u32 order;
2602
2603                 if (type == GITS_BASER_TYPE_NONE)
2604                         continue;
2605
2606                 if (its_probe_baser_psz(its, baser)) {
2607                         its_free_tables(its);
2608                         return -ENXIO;
2609                 }
2610
2611                 order = get_order(baser->psz);
2612
2613                 switch (type) {
2614                 case GITS_BASER_TYPE_DEVICE:
2615                         indirect = its_parse_indirect_baser(its, baser, &order,
2616                                                             device_ids(its));
2617                         break;
2618
2619                 case GITS_BASER_TYPE_VCPU:
2620                         if (is_v4_1(its)) {
2621                                 struct its_node *sibling;
2622
2623                                 WARN_ON(i != 2);
2624                                 if ((sibling = find_sibling_its(its))) {
2625                                         *baser = sibling->tables[2];
2626                                         its_write_baser(its, baser, baser->val);
2627                                         continue;
2628                                 }
2629                         }
2630
2631                         indirect = its_parse_indirect_baser(its, baser, &order,
2632                                                             ITS_MAX_VPEID_BITS);
2633                         break;
2634                 }
2635
2636                 err = its_setup_baser(its, baser, cache, shr, order, indirect);
2637                 if (err < 0) {
2638                         its_free_tables(its);
2639                         return err;
2640                 }
2641
2642                 /* Update settings which will be used for next BASERn */
2643                 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2644                 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2645         }
2646
2647         return 0;
2648 }
2649
2650 static u64 inherit_vpe_l1_table_from_its(void)
2651 {
2652         struct its_node *its;
2653         u64 val;
2654         u32 aff;
2655
2656         val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2657         aff = compute_common_aff(val);
2658
2659         list_for_each_entry(its, &its_nodes, entry) {
2660                 u64 baser, addr;
2661
2662                 if (!is_v4_1(its))
2663                         continue;
2664
2665                 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2666                         continue;
2667
2668                 if (aff != compute_its_aff(its))
2669                         continue;
2670
2671                 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2672                 baser = its->tables[2].val;
2673                 if (!(baser & GITS_BASER_VALID))
2674                         continue;
2675
2676                 /* We have a winner! */
2677                 gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2678
2679                 val  = GICR_VPROPBASER_4_1_VALID;
2680                 if (baser & GITS_BASER_INDIRECT)
2681                         val |= GICR_VPROPBASER_4_1_INDIRECT;
2682                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2683                                   FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2684                 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2685                 case GIC_PAGE_SIZE_64K:
2686                         addr = GITS_BASER_ADDR_48_to_52(baser);
2687                         break;
2688                 default:
2689                         addr = baser & GENMASK_ULL(47, 12);
2690                         break;
2691                 }
2692                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2693                 if (rdists_support_shareable()) {
2694                         val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2695                                           FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2696                         val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2697                                           FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2698                 }
2699                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2700
2701                 return val;
2702         }
2703
2704         return 0;
2705 }
2706
2707 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2708 {
2709         u32 aff;
2710         u64 val;
2711         int cpu;
2712
2713         val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2714         aff = compute_common_aff(val);
2715
2716         for_each_possible_cpu(cpu) {
2717                 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2718
2719                 if (!base || cpu == smp_processor_id())
2720                         continue;
2721
2722                 val = gic_read_typer(base + GICR_TYPER);
2723                 if (aff != compute_common_aff(val))
2724                         continue;
2725
2726                 /*
2727                  * At this point, we have a victim. This particular CPU
2728                  * has already booted, and has an affinity that matches
2729                  * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2730                  * Make sure we don't write the Z bit in that case.
2731                  */
2732                 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2733                 val &= ~GICR_VPROPBASER_4_1_Z;
2734
2735                 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2736                 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2737
2738                 return val;
2739         }
2740
2741         return 0;
2742 }
2743
2744 static bool allocate_vpe_l2_table(int cpu, u32 id)
2745 {
2746         void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2747         unsigned int psz, esz, idx, npg, gpsz;
2748         u64 val;
2749         struct page *page;
2750         __le64 *table;
2751
2752         if (!gic_rdists->has_rvpeid)
2753                 return true;
2754
2755         /* Skip non-present CPUs */
2756         if (!base)
2757                 return true;
2758
2759         val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2760
2761         esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2762         gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2763         npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2764
2765         switch (gpsz) {
2766         default:
2767                 WARN_ON(1);
2768                 fallthrough;
2769         case GIC_PAGE_SIZE_4K:
2770                 psz = SZ_4K;
2771                 break;
2772         case GIC_PAGE_SIZE_16K:
2773                 psz = SZ_16K;
2774                 break;
2775         case GIC_PAGE_SIZE_64K:
2776                 psz = SZ_64K;
2777                 break;
2778         }
2779
2780         /* Don't allow vpe_id that exceeds single, flat table limit */
2781         if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2782                 return (id < (npg * psz / (esz * SZ_8)));
2783
2784         /* Compute 1st level table index & check if that exceeds table limit */
2785         idx = id >> ilog2(psz / (esz * SZ_8));
2786         if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2787                 return false;
2788
2789         table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2790
2791         /* Allocate memory for 2nd level table */
2792         if (!table[idx]) {
2793                 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2794                 if (!page)
2795                         return false;
2796
2797                 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2798                 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2799                         gic_flush_dcache_to_poc(page_address(page), psz);
2800
2801                 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2802
2803                 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2804                 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2805                         gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2806
2807                 /* Ensure updated table contents are visible to RD hardware */
2808                 dsb(sy);
2809         }
2810
2811         return true;
2812 }
2813
2814 static int allocate_vpe_l1_table(void)
2815 {
2816         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2817         u64 val, gpsz, npg, pa;
2818         unsigned int psz = SZ_64K;
2819         unsigned int np, epp, esz;
2820         struct page *page;
2821
2822         if (!gic_rdists->has_rvpeid)
2823                 return 0;
2824
2825         /*
2826          * if VPENDBASER.Valid is set, disable any previously programmed
2827          * VPE by setting PendingLast while clearing Valid. This has the
2828          * effect of making sure no doorbell will be generated and we can
2829          * then safely clear VPROPBASER.Valid.
2830          */
2831         if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2832                 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2833                                       vlpi_base + GICR_VPENDBASER);
2834
2835         /*
2836          * If we can inherit the configuration from another RD, let's do
2837          * so. Otherwise, we have to go through the allocation process. We
2838          * assume that all RDs have the exact same requirements, as
2839          * nothing will work otherwise.
2840          */
2841         val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2842         if (val & GICR_VPROPBASER_4_1_VALID)
2843                 goto out;
2844
2845         gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2846         if (!gic_data_rdist()->vpe_table_mask)
2847                 return -ENOMEM;
2848
2849         val = inherit_vpe_l1_table_from_its();
2850         if (val & GICR_VPROPBASER_4_1_VALID)
2851                 goto out;
2852
2853         /* First probe the page size */
2854         val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2855         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2856         val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2857         gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2858         esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2859
2860         switch (gpsz) {
2861         default:
2862                 gpsz = GIC_PAGE_SIZE_4K;
2863                 fallthrough;
2864         case GIC_PAGE_SIZE_4K:
2865                 psz = SZ_4K;
2866                 break;
2867         case GIC_PAGE_SIZE_16K:
2868                 psz = SZ_16K;
2869                 break;
2870         case GIC_PAGE_SIZE_64K:
2871                 psz = SZ_64K;
2872                 break;
2873         }
2874
2875         /*
2876          * Start populating the register from scratch, including RO fields
2877          * (which we want to print in debug cases...)
2878          */
2879         val = 0;
2880         val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2881         val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2882
2883         /* How many entries per GIC page? */
2884         esz++;
2885         epp = psz / (esz * SZ_8);
2886
2887         /*
2888          * If we need more than just a single L1 page, flag the table
2889          * as indirect and compute the number of required L1 pages.
2890          */
2891         if (epp < ITS_MAX_VPEID) {
2892                 int nl2;
2893
2894                 val |= GICR_VPROPBASER_4_1_INDIRECT;
2895
2896                 /* Number of L2 pages required to cover the VPEID space */
2897                 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2898
2899                 /* Number of L1 pages to point to the L2 pages */
2900                 npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2901         } else {
2902                 npg = 1;
2903         }
2904
2905         val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2906
2907         /* Right, that's the number of CPU pages we need for L1 */
2908         np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2909
2910         pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2911                  np, npg, psz, epp, esz);
2912         page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2913         if (!page)
2914                 return -ENOMEM;
2915
2916         gic_data_rdist()->vpe_l1_base = page_address(page);
2917         pa = virt_to_phys(page_address(page));
2918         WARN_ON(!IS_ALIGNED(pa, psz));
2919
2920         val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2921         if (rdists_support_shareable()) {
2922                 val |= GICR_VPROPBASER_RaWb;
2923                 val |= GICR_VPROPBASER_InnerShareable;
2924         }
2925         val |= GICR_VPROPBASER_4_1_Z;
2926         val |= GICR_VPROPBASER_4_1_VALID;
2927
2928 out:
2929         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2930         cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2931
2932         pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2933                  smp_processor_id(), val,
2934                  cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2935
2936         return 0;
2937 }
2938
2939 static int its_alloc_collections(struct its_node *its)
2940 {
2941         int i;
2942
2943         its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2944                                    GFP_KERNEL);
2945         if (!its->collections)
2946                 return -ENOMEM;
2947
2948         for (i = 0; i < nr_cpu_ids; i++)
2949                 its->collections[i].target_address = ~0ULL;
2950
2951         return 0;
2952 }
2953
2954 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2955 {
2956         struct page *pend_page;
2957
2958         pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2959                                 get_order(LPI_PENDBASE_SZ));
2960         if (!pend_page)
2961                 return NULL;
2962
2963         /* Make sure the GIC will observe the zero-ed page */
2964         gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2965
2966         return pend_page;
2967 }
2968
2969 static void its_free_pending_table(struct page *pt)
2970 {
2971         free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2972 }
2973
2974 /*
2975  * Booting with kdump and LPIs enabled is generally fine. Any other
2976  * case is wrong in the absence of firmware/EFI support.
2977  */
2978 static bool enabled_lpis_allowed(void)
2979 {
2980         phys_addr_t addr;
2981         u64 val;
2982
2983         /* Check whether the property table is in a reserved region */
2984         val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2985         addr = val & GENMASK_ULL(51, 12);
2986
2987         return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2988 }
2989
2990 static int __init allocate_lpi_tables(void)
2991 {
2992         u64 val;
2993         int err, cpu;
2994
2995         /*
2996          * If LPIs are enabled while we run this from the boot CPU,
2997          * flag the RD tables as pre-allocated if the stars do align.
2998          */
2999         val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
3000         if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
3001                 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
3002                                       RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
3003                 pr_info("GICv3: Using preallocated redistributor tables\n");
3004         }
3005
3006         err = its_setup_lpi_prop_table();
3007         if (err)
3008                 return err;
3009
3010         /*
3011          * We allocate all the pending tables anyway, as we may have a
3012          * mix of RDs that have had LPIs enabled, and some that
3013          * don't. We'll free the unused ones as each CPU comes online.
3014          */
3015         for_each_possible_cpu(cpu) {
3016                 struct page *pend_page;
3017
3018                 pend_page = its_allocate_pending_table(GFP_NOWAIT);
3019                 if (!pend_page) {
3020                         pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3021                         return -ENOMEM;
3022                 }
3023
3024                 gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3025         }
3026
3027         return 0;
3028 }
3029
3030 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3031 {
3032         u32 count = 1000000;    /* 1s! */
3033         bool clean;
3034         u64 val;
3035
3036         do {
3037                 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3038                 clean = !(val & GICR_VPENDBASER_Dirty);
3039                 if (!clean) {
3040                         count--;
3041                         cpu_relax();
3042                         udelay(1);
3043                 }
3044         } while (!clean && count);
3045
3046         if (unlikely(!clean))
3047                 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3048
3049         return val;
3050 }
3051
3052 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3053 {
3054         u64 val;
3055
3056         /* Make sure we wait until the RD is done with the initial scan */
3057         val = read_vpend_dirty_clear(vlpi_base);
3058         val &= ~GICR_VPENDBASER_Valid;
3059         val &= ~clr;
3060         val |= set;
3061         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3062
3063         val = read_vpend_dirty_clear(vlpi_base);
3064         if (unlikely(val & GICR_VPENDBASER_Dirty))
3065                 val |= GICR_VPENDBASER_PendingLast;
3066
3067         return val;
3068 }
3069
3070 static void its_cpu_init_lpis(void)
3071 {
3072         void __iomem *rbase = gic_data_rdist_rd_base();
3073         struct page *pend_page;
3074         phys_addr_t paddr;
3075         u64 val, tmp;
3076
3077         if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3078                 return;
3079
3080         val = readl_relaxed(rbase + GICR_CTLR);
3081         if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3082             (val & GICR_CTLR_ENABLE_LPIS)) {
3083                 /*
3084                  * Check that we get the same property table on all
3085                  * RDs. If we don't, this is hopeless.
3086                  */
3087                 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3088                 paddr &= GENMASK_ULL(51, 12);
3089                 if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3090                         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3091
3092                 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3093                 paddr &= GENMASK_ULL(51, 16);
3094
3095                 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3096                 gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
3097
3098                 goto out;
3099         }
3100
3101         pend_page = gic_data_rdist()->pend_page;
3102         paddr = page_to_phys(pend_page);
3103
3104         /* set PROPBASE */
3105         val = (gic_rdists->prop_table_pa |
3106                GICR_PROPBASER_InnerShareable |
3107                GICR_PROPBASER_RaWaWb |
3108                ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3109
3110         gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3111         tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3112
3113         if (!rdists_support_shareable())
3114                 tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK;
3115
3116         if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3117                 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3118                         /*
3119                          * The HW reports non-shareable, we must
3120                          * remove the cacheability attributes as
3121                          * well.
3122                          */
3123                         val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3124                                  GICR_PROPBASER_CACHEABILITY_MASK);
3125                         val |= GICR_PROPBASER_nC;
3126                         gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3127                 }
3128                 pr_info_once("GIC: using cache flushing for LPI property table\n");
3129                 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3130         }
3131
3132         /* set PENDBASE */
3133         val = (page_to_phys(pend_page) |
3134                GICR_PENDBASER_InnerShareable |
3135                GICR_PENDBASER_RaWaWb);
3136
3137         gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3138         tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3139
3140         if (!rdists_support_shareable())
3141                 tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK;
3142
3143         if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3144                 /*
3145                  * The HW reports non-shareable, we must remove the
3146                  * cacheability attributes as well.
3147                  */
3148                 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3149                          GICR_PENDBASER_CACHEABILITY_MASK);
3150                 val |= GICR_PENDBASER_nC;
3151                 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3152         }
3153
3154         /* Enable LPIs */
3155         val = readl_relaxed(rbase + GICR_CTLR);
3156         val |= GICR_CTLR_ENABLE_LPIS;
3157         writel_relaxed(val, rbase + GICR_CTLR);
3158
3159 out:
3160         if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3161                 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3162
3163                 /*
3164                  * It's possible for CPU to receive VLPIs before it is
3165                  * scheduled as a vPE, especially for the first CPU, and the
3166                  * VLPI with INTID larger than 2^(IDbits+1) will be considered
3167                  * as out of range and dropped by GIC.
3168                  * So we initialize IDbits to known value to avoid VLPI drop.
3169                  */
3170                 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3171                 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3172                         smp_processor_id(), val);
3173                 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3174
3175                 /*
3176                  * Also clear Valid bit of GICR_VPENDBASER, in case some
3177                  * ancient programming gets left in and has possibility of
3178                  * corrupting memory.
3179                  */
3180                 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3181         }
3182
3183         if (allocate_vpe_l1_table()) {
3184                 /*
3185                  * If the allocation has failed, we're in massive trouble.
3186                  * Disable direct injection, and pray that no VM was
3187                  * already running...
3188                  */
3189                 gic_rdists->has_rvpeid = false;
3190                 gic_rdists->has_vlpis = false;
3191         }
3192
3193         /* Make sure the GIC has seen the above */
3194         dsb(sy);
3195         gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3196         pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3197                 smp_processor_id(),
3198                 gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3199                 "reserved" : "allocated",
3200                 &paddr);
3201 }
3202
3203 static void its_cpu_init_collection(struct its_node *its)
3204 {
3205         int cpu = smp_processor_id();
3206         u64 target;
3207
3208         /* avoid cross node collections and its mapping */
3209         if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3210                 struct device_node *cpu_node;
3211
3212                 cpu_node = of_get_cpu_node(cpu, NULL);
3213                 if (its->numa_node != NUMA_NO_NODE &&
3214                         its->numa_node != of_node_to_nid(cpu_node))
3215                         return;
3216         }
3217
3218         /*
3219          * We now have to bind each collection to its target
3220          * redistributor.
3221          */
3222         if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3223                 /*
3224                  * This ITS wants the physical address of the
3225                  * redistributor.
3226                  */
3227                 target = gic_data_rdist()->phys_base;
3228         } else {
3229                 /* This ITS wants a linear CPU number. */
3230                 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3231                 target = GICR_TYPER_CPU_NUMBER(target) << 16;
3232         }
3233
3234         /* Perform collection mapping */
3235         its->collections[cpu].target_address = target;
3236         its->collections[cpu].col_id = cpu;
3237
3238         its_send_mapc(its, &its->collections[cpu], 1);
3239         its_send_invall(its, &its->collections[cpu]);
3240 }
3241
3242 static void its_cpu_init_collections(void)
3243 {
3244         struct its_node *its;
3245
3246         raw_spin_lock(&its_lock);
3247
3248         list_for_each_entry(its, &its_nodes, entry)
3249                 its_cpu_init_collection(its);
3250
3251         raw_spin_unlock(&its_lock);
3252 }
3253
3254 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3255 {
3256         struct its_device *its_dev = NULL, *tmp;
3257         unsigned long flags;
3258
3259         raw_spin_lock_irqsave(&its->lock, flags);
3260
3261         list_for_each_entry(tmp, &its->its_device_list, entry) {
3262                 if (tmp->device_id == dev_id) {
3263                         its_dev = tmp;
3264                         break;
3265                 }
3266         }
3267
3268         raw_spin_unlock_irqrestore(&its->lock, flags);
3269
3270         return its_dev;
3271 }
3272
3273 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3274 {
3275         int i;
3276
3277         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3278                 if (GITS_BASER_TYPE(its->tables[i].val) == type)
3279                         return &its->tables[i];
3280         }
3281
3282         return NULL;
3283 }
3284
3285 static bool its_alloc_table_entry(struct its_node *its,
3286                                   struct its_baser *baser, u32 id)
3287 {
3288         struct page *page;
3289         u32 esz, idx;
3290         __le64 *table;
3291
3292         /* Don't allow device id that exceeds single, flat table limit */
3293         esz = GITS_BASER_ENTRY_SIZE(baser->val);
3294         if (!(baser->val & GITS_BASER_INDIRECT))
3295                 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3296
3297         /* Compute 1st level table index & check if that exceeds table limit */
3298         idx = id >> ilog2(baser->psz / esz);
3299         if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3300                 return false;
3301
3302         table = baser->base;
3303
3304         /* Allocate memory for 2nd level table */
3305         if (!table[idx]) {
3306                 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3307                                         get_order(baser->psz));
3308                 if (!page)
3309                         return false;
3310
3311                 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
3312                 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3313                         gic_flush_dcache_to_poc(page_address(page), baser->psz);
3314
3315                 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3316
3317                 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3318                 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3319                         gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3320
3321                 /* Ensure updated table contents are visible to ITS hardware */
3322                 dsb(sy);
3323         }
3324
3325         return true;
3326 }
3327
3328 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3329 {
3330         struct its_baser *baser;
3331
3332         baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3333
3334         /* Don't allow device id that exceeds ITS hardware limit */
3335         if (!baser)
3336                 return (ilog2(dev_id) < device_ids(its));
3337
3338         return its_alloc_table_entry(its, baser, dev_id);
3339 }
3340
3341 static bool its_alloc_vpe_table(u32 vpe_id)
3342 {
3343         struct its_node *its;
3344         int cpu;
3345
3346         /*
3347          * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3348          * could try and only do it on ITSs corresponding to devices
3349          * that have interrupts targeted at this VPE, but the
3350          * complexity becomes crazy (and you have tons of memory
3351          * anyway, right?).
3352          */
3353         list_for_each_entry(its, &its_nodes, entry) {
3354                 struct its_baser *baser;
3355
3356                 if (!is_v4(its))
3357                         continue;
3358
3359                 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3360                 if (!baser)
3361                         return false;
3362
3363                 if (!its_alloc_table_entry(its, baser, vpe_id))
3364                         return false;
3365         }
3366
3367         /* Non v4.1? No need to iterate RDs and go back early. */
3368         if (!gic_rdists->has_rvpeid)
3369                 return true;
3370
3371         /*
3372          * Make sure the L2 tables are allocated for all copies of
3373          * the L1 table on *all* v4.1 RDs.
3374          */
3375         for_each_possible_cpu(cpu) {
3376                 if (!allocate_vpe_l2_table(cpu, vpe_id))
3377                         return false;
3378         }
3379
3380         return true;
3381 }
3382
3383 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3384                                             int nvecs, bool alloc_lpis)
3385 {
3386         struct its_device *dev;
3387         unsigned long *lpi_map = NULL;
3388         unsigned long flags;
3389         u16 *col_map = NULL;
3390         void *itt;
3391         int lpi_base;
3392         int nr_lpis;
3393         int nr_ites;
3394         int sz;
3395
3396         if (!its_alloc_device_table(its, dev_id))
3397                 return NULL;
3398
3399         if (WARN_ON(!is_power_of_2(nvecs)))
3400                 nvecs = roundup_pow_of_two(nvecs);
3401
3402         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3403         /*
3404          * Even if the device wants a single LPI, the ITT must be
3405          * sized as a power of two (and you need at least one bit...).
3406          */
3407         nr_ites = max(2, nvecs);
3408         sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3409         sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3410         itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3411         if (alloc_lpis) {
3412                 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3413                 if (lpi_map)
3414                         col_map = kcalloc(nr_lpis, sizeof(*col_map),
3415                                           GFP_KERNEL);
3416         } else {
3417                 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3418                 nr_lpis = 0;
3419                 lpi_base = 0;
3420         }
3421
3422         if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
3423                 kfree(dev);
3424                 kfree(itt);
3425                 bitmap_free(lpi_map);
3426                 kfree(col_map);
3427                 return NULL;
3428         }
3429
3430         gic_flush_dcache_to_poc(itt, sz);
3431
3432         dev->its = its;
3433         dev->itt = itt;
3434         dev->nr_ites = nr_ites;
3435         dev->event_map.lpi_map = lpi_map;
3436         dev->event_map.col_map = col_map;
3437         dev->event_map.lpi_base = lpi_base;
3438         dev->event_map.nr_lpis = nr_lpis;
3439         raw_spin_lock_init(&dev->event_map.vlpi_lock);
3440         dev->device_id = dev_id;
3441         INIT_LIST_HEAD(&dev->entry);
3442
3443         raw_spin_lock_irqsave(&its->lock, flags);
3444         list_add(&dev->entry, &its->its_device_list);
3445         raw_spin_unlock_irqrestore(&its->lock, flags);
3446
3447         /* Map device to its ITT */
3448         its_send_mapd(dev, 1);
3449
3450         return dev;
3451 }
3452
3453 static void its_free_device(struct its_device *its_dev)
3454 {
3455         unsigned long flags;
3456
3457         raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3458         list_del(&its_dev->entry);
3459         raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3460         kfree(its_dev->event_map.col_map);
3461         kfree(its_dev->itt);
3462         kfree(its_dev);
3463 }
3464
3465 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3466 {
3467         int idx;
3468
3469         /* Find a free LPI region in lpi_map and allocate them. */
3470         idx = bitmap_find_free_region(dev->event_map.lpi_map,
3471                                       dev->event_map.nr_lpis,
3472                                       get_count_order(nvecs));
3473         if (idx < 0)
3474                 return -ENOSPC;
3475
3476         *hwirq = dev->event_map.lpi_base + idx;
3477
3478         return 0;
3479 }
3480
3481 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3482                            int nvec, msi_alloc_info_t *info)
3483 {
3484         struct its_node *its;
3485         struct its_device *its_dev;
3486         struct msi_domain_info *msi_info;
3487         u32 dev_id;
3488         int err = 0;
3489
3490         /*
3491          * We ignore "dev" entirely, and rely on the dev_id that has
3492          * been passed via the scratchpad. This limits this domain's
3493          * usefulness to upper layers that definitely know that they
3494          * are built on top of the ITS.
3495          */
3496         dev_id = info->scratchpad[0].ul;
3497
3498         msi_info = msi_get_domain_info(domain);
3499         its = msi_info->data;
3500
3501         if (!gic_rdists->has_direct_lpi &&
3502             vpe_proxy.dev &&
3503             vpe_proxy.dev->its == its &&
3504             dev_id == vpe_proxy.dev->device_id) {
3505                 /* Bad luck. Get yourself a better implementation */
3506                 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3507                           dev_id);
3508                 return -EINVAL;
3509         }
3510
3511         mutex_lock(&its->dev_alloc_lock);
3512         its_dev = its_find_device(its, dev_id);
3513         if (its_dev) {
3514                 /*
3515                  * We already have seen this ID, probably through
3516                  * another alias (PCI bridge of some sort). No need to
3517                  * create the device.
3518                  */
3519                 its_dev->shared = true;
3520                 pr_debug("Reusing ITT for devID %x\n", dev_id);
3521                 goto out;
3522         }
3523
3524         its_dev = its_create_device(its, dev_id, nvec, true);
3525         if (!its_dev) {
3526                 err = -ENOMEM;
3527                 goto out;
3528         }
3529
3530         if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3531                 its_dev->shared = true;
3532
3533         pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3534 out:
3535         mutex_unlock(&its->dev_alloc_lock);
3536         info->scratchpad[0].ptr = its_dev;
3537         return err;
3538 }
3539
3540 static struct msi_domain_ops its_msi_domain_ops = {
3541         .msi_prepare    = its_msi_prepare,
3542 };
3543
3544 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3545                                     unsigned int virq,
3546                                     irq_hw_number_t hwirq)
3547 {
3548         struct irq_fwspec fwspec;
3549
3550         if (irq_domain_get_of_node(domain->parent)) {
3551                 fwspec.fwnode = domain->parent->fwnode;
3552                 fwspec.param_count = 3;
3553                 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3554                 fwspec.param[1] = hwirq;
3555                 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3556         } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3557                 fwspec.fwnode = domain->parent->fwnode;
3558                 fwspec.param_count = 2;
3559                 fwspec.param[0] = hwirq;
3560                 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3561         } else {
3562                 return -EINVAL;
3563         }
3564
3565         return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3566 }
3567
3568 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3569                                 unsigned int nr_irqs, void *args)
3570 {
3571         msi_alloc_info_t *info = args;
3572         struct its_device *its_dev = info->scratchpad[0].ptr;
3573         struct its_node *its = its_dev->its;
3574         struct irq_data *irqd;
3575         irq_hw_number_t hwirq;
3576         int err;
3577         int i;
3578
3579         err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3580         if (err)
3581                 return err;
3582
3583         err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3584         if (err)
3585                 return err;
3586
3587         for (i = 0; i < nr_irqs; i++) {
3588                 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3589                 if (err)
3590                         return err;
3591
3592                 irq_domain_set_hwirq_and_chip(domain, virq + i,
3593                                               hwirq + i, &its_irq_chip, its_dev);
3594                 irqd = irq_get_irq_data(virq + i);
3595                 irqd_set_single_target(irqd);
3596                 irqd_set_affinity_on_activate(irqd);
3597                 irqd_set_resend_when_in_progress(irqd);
3598                 pr_debug("ID:%d pID:%d vID:%d\n",
3599                          (int)(hwirq + i - its_dev->event_map.lpi_base),
3600                          (int)(hwirq + i), virq + i);
3601         }
3602
3603         return 0;
3604 }
3605
3606 static int its_irq_domain_activate(struct irq_domain *domain,
3607                                    struct irq_data *d, bool reserve)
3608 {
3609         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3610         u32 event = its_get_event_id(d);
3611         int cpu;
3612
3613         cpu = its_select_cpu(d, cpu_online_mask);
3614         if (cpu < 0 || cpu >= nr_cpu_ids)
3615                 return -EINVAL;
3616
3617         its_inc_lpi_count(d, cpu);
3618         its_dev->event_map.col_map[event] = cpu;
3619         irq_data_update_effective_affinity(d, cpumask_of(cpu));
3620
3621         /* Map the GIC IRQ and event to the device */
3622         its_send_mapti(its_dev, d->hwirq, event);
3623         return 0;
3624 }
3625
3626 static void its_irq_domain_deactivate(struct irq_domain *domain,
3627                                       struct irq_data *d)
3628 {
3629         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3630         u32 event = its_get_event_id(d);
3631
3632         its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3633         /* Stop the delivery of interrupts */
3634         its_send_discard(its_dev, event);
3635 }
3636
3637 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3638                                 unsigned int nr_irqs)
3639 {
3640         struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3641         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3642         struct its_node *its = its_dev->its;
3643         int i;
3644
3645         bitmap_release_region(its_dev->event_map.lpi_map,
3646                               its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3647                               get_count_order(nr_irqs));
3648
3649         for (i = 0; i < nr_irqs; i++) {
3650                 struct irq_data *data = irq_domain_get_irq_data(domain,
3651                                                                 virq + i);
3652                 /* Nuke the entry in the domain */
3653                 irq_domain_reset_irq_data(data);
3654         }
3655
3656         mutex_lock(&its->dev_alloc_lock);
3657
3658         /*
3659          * If all interrupts have been freed, start mopping the
3660          * floor. This is conditioned on the device not being shared.
3661          */
3662         if (!its_dev->shared &&
3663             bitmap_empty(its_dev->event_map.lpi_map,
3664                          its_dev->event_map.nr_lpis)) {
3665                 its_lpi_free(its_dev->event_map.lpi_map,
3666                              its_dev->event_map.lpi_base,
3667                              its_dev->event_map.nr_lpis);
3668
3669                 /* Unmap device/itt */
3670                 its_send_mapd(its_dev, 0);
3671                 its_free_device(its_dev);
3672         }
3673
3674         mutex_unlock(&its->dev_alloc_lock);
3675
3676         irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3677 }
3678
3679 static const struct irq_domain_ops its_domain_ops = {
3680         .select                 = msi_lib_irq_domain_select,
3681         .alloc                  = its_irq_domain_alloc,
3682         .free                   = its_irq_domain_free,
3683         .activate               = its_irq_domain_activate,
3684         .deactivate             = its_irq_domain_deactivate,
3685 };
3686
3687 /*
3688  * This is insane.
3689  *
3690  * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3691  * likely), the only way to perform an invalidate is to use a fake
3692  * device to issue an INV command, implying that the LPI has first
3693  * been mapped to some event on that device. Since this is not exactly
3694  * cheap, we try to keep that mapping around as long as possible, and
3695  * only issue an UNMAP if we're short on available slots.
3696  *
3697  * Broken by design(tm).
3698  *
3699  * GICv4.1, on the other hand, mandates that we're able to invalidate
3700  * by writing to a MMIO register. It doesn't implement the whole of
3701  * DirectLPI, but that's good enough. And most of the time, we don't
3702  * even have to invalidate anything, as the redistributor can be told
3703  * whether to generate a doorbell or not (we thus leave it enabled,
3704  * always).
3705  */
3706 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3707 {
3708         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3709         if (gic_rdists->has_rvpeid)
3710                 return;
3711
3712         /* Already unmapped? */
3713         if (vpe->vpe_proxy_event == -1)
3714                 return;
3715
3716         its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3717         vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3718
3719         /*
3720          * We don't track empty slots at all, so let's move the
3721          * next_victim pointer if we can quickly reuse that slot
3722          * instead of nuking an existing entry. Not clear that this is
3723          * always a win though, and this might just generate a ripple
3724          * effect... Let's just hope VPEs don't migrate too often.
3725          */
3726         if (vpe_proxy.vpes[vpe_proxy.next_victim])
3727                 vpe_proxy.next_victim = vpe->vpe_proxy_event;
3728
3729         vpe->vpe_proxy_event = -1;
3730 }
3731
3732 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3733 {
3734         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3735         if (gic_rdists->has_rvpeid)
3736                 return;
3737
3738         if (!gic_rdists->has_direct_lpi) {
3739                 unsigned long flags;
3740
3741                 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3742                 its_vpe_db_proxy_unmap_locked(vpe);
3743                 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3744         }
3745 }
3746
3747 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3748 {
3749         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3750         if (gic_rdists->has_rvpeid)
3751                 return;
3752
3753         /* Already mapped? */
3754         if (vpe->vpe_proxy_event != -1)
3755                 return;
3756
3757         /* This slot was already allocated. Kick the other VPE out. */
3758         if (vpe_proxy.vpes[vpe_proxy.next_victim])
3759                 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3760
3761         /* Map the new VPE instead */
3762         vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3763         vpe->vpe_proxy_event = vpe_proxy.next_victim;
3764         vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3765
3766         vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3767         its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3768 }
3769
3770 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3771 {
3772         unsigned long flags;
3773         struct its_collection *target_col;
3774
3775         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3776         if (gic_rdists->has_rvpeid)
3777                 return;
3778
3779         if (gic_rdists->has_direct_lpi) {
3780                 void __iomem *rdbase;
3781
3782                 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3783                 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3784                 wait_for_syncr(rdbase);
3785
3786                 return;
3787         }
3788
3789         raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3790
3791         its_vpe_db_proxy_map_locked(vpe);
3792
3793         target_col = &vpe_proxy.dev->its->collections[to];
3794         its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3795         vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3796
3797         raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3798 }
3799
3800 static int its_vpe_set_affinity(struct irq_data *d,
3801                                 const struct cpumask *mask_val,
3802                                 bool force)
3803 {
3804         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3805         unsigned int from, cpu = nr_cpu_ids;
3806         struct cpumask *table_mask;
3807         unsigned long flags;
3808
3809         /*
3810          * Changing affinity is mega expensive, so let's be as lazy as
3811          * we can and only do it if we really have to. Also, if mapped
3812          * into the proxy device, we need to move the doorbell
3813          * interrupt to its new location.
3814          *
3815          * Another thing is that changing the affinity of a vPE affects
3816          * *other interrupts* such as all the vLPIs that are routed to
3817          * this vPE. This means that the irq_desc lock is not enough to
3818          * protect us, and that we must ensure nobody samples vpe->col_idx
3819          * during the update, hence the lock below which must also be
3820          * taken on any vLPI handling path that evaluates vpe->col_idx.
3821          *
3822          * Finally, we must protect ourselves against concurrent updates of
3823          * the mapping state on this VM should the ITS list be in use (see
3824          * the shortcut in its_send_vmovp() otherewise).
3825          */
3826         if (its_list_map)
3827                 raw_spin_lock(&vpe->its_vm->vmapp_lock);
3828
3829         from = vpe_to_cpuid_lock(vpe, &flags);
3830         table_mask = gic_data_rdist_cpu(from)->vpe_table_mask;
3831
3832         /*
3833          * If we are offered another CPU in the same GICv4.1 ITS
3834          * affinity, pick this one. Otherwise, any CPU will do.
3835          */
3836         if (table_mask)
3837                 cpu = cpumask_any_and(mask_val, table_mask);
3838         if (cpu < nr_cpu_ids) {
3839                 if (cpumask_test_cpu(from, mask_val) &&
3840                     cpumask_test_cpu(from, table_mask))
3841                         cpu = from;
3842         } else {
3843                 cpu = cpumask_first(mask_val);
3844         }
3845
3846         if (from == cpu)
3847                 goto out;
3848
3849         vpe->col_idx = cpu;
3850
3851         its_send_vmovp(vpe);
3852         its_vpe_db_proxy_move(vpe, from, cpu);
3853
3854 out:
3855         irq_data_update_effective_affinity(d, cpumask_of(cpu));
3856         vpe_to_cpuid_unlock(vpe, flags);
3857
3858         if (its_list_map)
3859                 raw_spin_unlock(&vpe->its_vm->vmapp_lock);
3860
3861         return IRQ_SET_MASK_OK_DONE;
3862 }
3863
3864 static void its_wait_vpt_parse_complete(void)
3865 {
3866         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3867         u64 val;
3868
3869         if (!gic_rdists->has_vpend_valid_dirty)
3870                 return;
3871
3872         WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3873                                                        val,
3874                                                        !(val & GICR_VPENDBASER_Dirty),
3875                                                        1, 500));
3876 }
3877
3878 static void its_vpe_schedule(struct its_vpe *vpe)
3879 {
3880         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3881         u64 val;
3882
3883         /* Schedule the VPE */
3884         val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3885                 GENMASK_ULL(51, 12);
3886         val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3887         if (rdists_support_shareable()) {
3888                 val |= GICR_VPROPBASER_RaWb;
3889                 val |= GICR_VPROPBASER_InnerShareable;
3890         }
3891         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3892
3893         val  = virt_to_phys(page_address(vpe->vpt_page)) &
3894                 GENMASK_ULL(51, 16);
3895         if (rdists_support_shareable()) {
3896                 val |= GICR_VPENDBASER_RaWaWb;
3897                 val |= GICR_VPENDBASER_InnerShareable;
3898         }
3899         /*
3900          * There is no good way of finding out if the pending table is
3901          * empty as we can race against the doorbell interrupt very
3902          * easily. So in the end, vpe->pending_last is only an
3903          * indication that the vcpu has something pending, not one
3904          * that the pending table is empty. A good implementation
3905          * would be able to read its coarse map pretty quickly anyway,
3906          * making this a tolerable issue.
3907          */
3908         val |= GICR_VPENDBASER_PendingLast;
3909         val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3910         val |= GICR_VPENDBASER_Valid;
3911         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3912 }
3913
3914 static void its_vpe_deschedule(struct its_vpe *vpe)
3915 {
3916         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3917         u64 val;
3918
3919         val = its_clear_vpend_valid(vlpi_base, 0, 0);
3920
3921         vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3922         vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3923 }
3924
3925 static void its_vpe_invall(struct its_vpe *vpe)
3926 {
3927         struct its_node *its;
3928
3929         guard(raw_spinlock_irqsave)(&vpe->its_vm->vmapp_lock);
3930
3931         list_for_each_entry(its, &its_nodes, entry) {
3932                 if (!is_v4(its))
3933                         continue;
3934
3935                 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3936                         continue;
3937
3938                 /*
3939                  * Sending a VINVALL to a single ITS is enough, as all
3940                  * we need is to reach the redistributors.
3941                  */
3942                 its_send_vinvall(its, vpe);
3943                 return;
3944         }
3945 }
3946
3947 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3948 {
3949         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3950         struct its_cmd_info *info = vcpu_info;
3951
3952         switch (info->cmd_type) {
3953         case SCHEDULE_VPE:
3954                 its_vpe_schedule(vpe);
3955                 return 0;
3956
3957         case DESCHEDULE_VPE:
3958                 its_vpe_deschedule(vpe);
3959                 return 0;
3960
3961         case COMMIT_VPE:
3962                 its_wait_vpt_parse_complete();
3963                 return 0;
3964
3965         case INVALL_VPE:
3966                 its_vpe_invall(vpe);
3967                 return 0;
3968
3969         default:
3970                 return -EINVAL;
3971         }
3972 }
3973
3974 static void its_vpe_send_cmd(struct its_vpe *vpe,
3975                              void (*cmd)(struct its_device *, u32))
3976 {
3977         unsigned long flags;
3978
3979         raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3980
3981         its_vpe_db_proxy_map_locked(vpe);
3982         cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3983
3984         raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3985 }
3986
3987 static void its_vpe_send_inv(struct irq_data *d)
3988 {
3989         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3990
3991         if (gic_rdists->has_direct_lpi)
3992                 __direct_lpi_inv(d, d->parent_data->hwirq);
3993         else
3994                 its_vpe_send_cmd(vpe, its_send_inv);
3995 }
3996
3997 static void its_vpe_mask_irq(struct irq_data *d)
3998 {
3999         /*
4000          * We need to unmask the LPI, which is described by the parent
4001          * irq_data. Instead of calling into the parent (which won't
4002          * exactly do the right thing, let's simply use the
4003          * parent_data pointer. Yes, I'm naughty.
4004          */
4005         lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4006         its_vpe_send_inv(d);
4007 }
4008
4009 static void its_vpe_unmask_irq(struct irq_data *d)
4010 {
4011         /* Same hack as above... */
4012         lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4013         its_vpe_send_inv(d);
4014 }
4015
4016 static int its_vpe_set_irqchip_state(struct irq_data *d,
4017                                      enum irqchip_irq_state which,
4018                                      bool state)
4019 {
4020         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4021
4022         if (which != IRQCHIP_STATE_PENDING)
4023                 return -EINVAL;
4024
4025         if (gic_rdists->has_direct_lpi) {
4026                 void __iomem *rdbase;
4027
4028                 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4029                 if (state) {
4030                         gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4031                 } else {
4032                         gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4033                         wait_for_syncr(rdbase);
4034                 }
4035         } else {
4036                 if (state)
4037                         its_vpe_send_cmd(vpe, its_send_int);
4038                 else
4039                         its_vpe_send_cmd(vpe, its_send_clear);
4040         }
4041
4042         return 0;
4043 }
4044
4045 static int its_vpe_retrigger(struct irq_data *d)
4046 {
4047         return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4048 }
4049
4050 static struct irq_chip its_vpe_irq_chip = {
4051         .name                   = "GICv4-vpe",
4052         .irq_mask               = its_vpe_mask_irq,
4053         .irq_unmask             = its_vpe_unmask_irq,
4054         .irq_eoi                = irq_chip_eoi_parent,
4055         .irq_set_affinity       = its_vpe_set_affinity,
4056         .irq_retrigger          = its_vpe_retrigger,
4057         .irq_set_irqchip_state  = its_vpe_set_irqchip_state,
4058         .irq_set_vcpu_affinity  = its_vpe_set_vcpu_affinity,
4059 };
4060
4061 static struct its_node *find_4_1_its(void)
4062 {
4063         static struct its_node *its = NULL;
4064
4065         if (!its) {
4066                 list_for_each_entry(its, &its_nodes, entry) {
4067                         if (is_v4_1(its))
4068                                 return its;
4069                 }
4070
4071                 /* Oops? */
4072                 its = NULL;
4073         }
4074
4075         return its;
4076 }
4077
4078 static void its_vpe_4_1_send_inv(struct irq_data *d)
4079 {
4080         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4081         struct its_node *its;
4082
4083         /*
4084          * GICv4.1 wants doorbells to be invalidated using the
4085          * INVDB command in order to be broadcast to all RDs. Send
4086          * it to the first valid ITS, and let the HW do its magic.
4087          */
4088         its = find_4_1_its();
4089         if (its)
4090                 its_send_invdb(its, vpe);
4091 }
4092
4093 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4094 {
4095         lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4096         its_vpe_4_1_send_inv(d);
4097 }
4098
4099 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4100 {
4101         lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4102         its_vpe_4_1_send_inv(d);
4103 }
4104
4105 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4106                                  struct its_cmd_info *info)
4107 {
4108         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4109         u64 val = 0;
4110
4111         /* Schedule the VPE */
4112         val |= GICR_VPENDBASER_Valid;
4113         val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4114         val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4115         val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4116
4117         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4118 }
4119
4120 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4121                                    struct its_cmd_info *info)
4122 {
4123         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4124         u64 val;
4125
4126         if (info->req_db) {
4127                 unsigned long flags;
4128
4129                 /*
4130                  * vPE is going to block: make the vPE non-resident with
4131                  * PendingLast clear and DB set. The GIC guarantees that if
4132                  * we read-back PendingLast clear, then a doorbell will be
4133                  * delivered when an interrupt comes.
4134                  *
4135                  * Note the locking to deal with the concurrent update of
4136                  * pending_last from the doorbell interrupt handler that can
4137                  * run concurrently.
4138                  */
4139                 raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4140                 val = its_clear_vpend_valid(vlpi_base,
4141                                             GICR_VPENDBASER_PendingLast,
4142                                             GICR_VPENDBASER_4_1_DB);
4143                 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4144                 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4145         } else {
4146                 /*
4147                  * We're not blocking, so just make the vPE non-resident
4148                  * with PendingLast set, indicating that we'll be back.
4149                  */
4150                 val = its_clear_vpend_valid(vlpi_base,
4151                                             0,
4152                                             GICR_VPENDBASER_PendingLast);
4153                 vpe->pending_last = true;
4154         }
4155 }
4156
4157 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4158 {
4159         void __iomem *rdbase;
4160         unsigned long flags;
4161         u64 val;
4162         int cpu;
4163
4164         val  = GICR_INVALLR_V;
4165         val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4166
4167         /* Target the redistributor this vPE is currently known on */
4168         cpu = vpe_to_cpuid_lock(vpe, &flags);
4169         raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4170         rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4171         gic_write_lpir(val, rdbase + GICR_INVALLR);
4172
4173         wait_for_syncr(rdbase);
4174         raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4175         vpe_to_cpuid_unlock(vpe, flags);
4176 }
4177
4178 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4179 {
4180         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4181         struct its_cmd_info *info = vcpu_info;
4182
4183         switch (info->cmd_type) {
4184         case SCHEDULE_VPE:
4185                 its_vpe_4_1_schedule(vpe, info);
4186                 return 0;
4187
4188         case DESCHEDULE_VPE:
4189                 its_vpe_4_1_deschedule(vpe, info);
4190                 return 0;
4191
4192         case COMMIT_VPE:
4193                 its_wait_vpt_parse_complete();
4194                 return 0;
4195
4196         case INVALL_VPE:
4197                 its_vpe_4_1_invall(vpe);
4198                 return 0;
4199
4200         default:
4201                 return -EINVAL;
4202         }
4203 }
4204
4205 static struct irq_chip its_vpe_4_1_irq_chip = {
4206         .name                   = "GICv4.1-vpe",
4207         .irq_mask               = its_vpe_4_1_mask_irq,
4208         .irq_unmask             = its_vpe_4_1_unmask_irq,
4209         .irq_eoi                = irq_chip_eoi_parent,
4210         .irq_set_affinity       = its_vpe_set_affinity,
4211         .irq_set_vcpu_affinity  = its_vpe_4_1_set_vcpu_affinity,
4212 };
4213
4214 static void its_configure_sgi(struct irq_data *d, bool clear)
4215 {
4216         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4217         struct its_cmd_desc desc;
4218
4219         desc.its_vsgi_cmd.vpe = vpe;
4220         desc.its_vsgi_cmd.sgi = d->hwirq;
4221         desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4222         desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4223         desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4224         desc.its_vsgi_cmd.clear = clear;
4225
4226         /*
4227          * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4228          * destination VPE is mapped there. Since we map them eagerly at
4229          * activation time, we're pretty sure the first GICv4.1 ITS will do.
4230          */
4231         its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4232 }
4233
4234 static void its_sgi_mask_irq(struct irq_data *d)
4235 {
4236         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4237
4238         vpe->sgi_config[d->hwirq].enabled = false;
4239         its_configure_sgi(d, false);
4240 }
4241
4242 static void its_sgi_unmask_irq(struct irq_data *d)
4243 {
4244         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4245
4246         vpe->sgi_config[d->hwirq].enabled = true;
4247         its_configure_sgi(d, false);
4248 }
4249
4250 static int its_sgi_set_affinity(struct irq_data *d,
4251                                 const struct cpumask *mask_val,
4252                                 bool force)
4253 {
4254         /*
4255          * There is no notion of affinity for virtual SGIs, at least
4256          * not on the host (since they can only be targeting a vPE).
4257          * Tell the kernel we've done whatever it asked for.
4258          */
4259         irq_data_update_effective_affinity(d, mask_val);
4260         return IRQ_SET_MASK_OK;
4261 }
4262
4263 static int its_sgi_set_irqchip_state(struct irq_data *d,
4264                                      enum irqchip_irq_state which,
4265                                      bool state)
4266 {
4267         if (which != IRQCHIP_STATE_PENDING)
4268                 return -EINVAL;
4269
4270         if (state) {
4271                 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4272                 struct its_node *its = find_4_1_its();
4273                 u64 val;
4274
4275                 val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4276                 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4277                 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4278         } else {
4279                 its_configure_sgi(d, true);
4280         }
4281
4282         return 0;
4283 }
4284
4285 static int its_sgi_get_irqchip_state(struct irq_data *d,
4286                                      enum irqchip_irq_state which, bool *val)
4287 {
4288         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4289         void __iomem *base;
4290         unsigned long flags;
4291         u32 count = 1000000;    /* 1s! */
4292         u32 status;
4293         int cpu;
4294
4295         if (which != IRQCHIP_STATE_PENDING)
4296                 return -EINVAL;
4297
4298         /*
4299          * Locking galore! We can race against two different events:
4300          *
4301          * - Concurrent vPE affinity change: we must make sure it cannot
4302          *   happen, or we'll talk to the wrong redistributor. This is
4303          *   identical to what happens with vLPIs.
4304          *
4305          * - Concurrent VSGIPENDR access: As it involves accessing two
4306          *   MMIO registers, this must be made atomic one way or another.
4307          */
4308         cpu = vpe_to_cpuid_lock(vpe, &flags);
4309         raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4310         base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4311         writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4312         do {
4313                 status = readl_relaxed(base + GICR_VSGIPENDR);
4314                 if (!(status & GICR_VSGIPENDR_BUSY))
4315                         goto out;
4316
4317                 count--;
4318                 if (!count) {
4319                         pr_err_ratelimited("Unable to get SGI status\n");
4320                         goto out;
4321                 }
4322                 cpu_relax();
4323                 udelay(1);
4324         } while (count);
4325
4326 out:
4327         raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4328         vpe_to_cpuid_unlock(vpe, flags);
4329
4330         if (!count)
4331                 return -ENXIO;
4332
4333         *val = !!(status & (1 << d->hwirq));
4334
4335         return 0;
4336 }
4337
4338 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4339 {
4340         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4341         struct its_cmd_info *info = vcpu_info;
4342
4343         switch (info->cmd_type) {
4344         case PROP_UPDATE_VSGI:
4345                 vpe->sgi_config[d->hwirq].priority = info->priority;
4346                 vpe->sgi_config[d->hwirq].group = info->group;
4347                 its_configure_sgi(d, false);
4348                 return 0;
4349
4350         default:
4351                 return -EINVAL;
4352         }
4353 }
4354
4355 static struct irq_chip its_sgi_irq_chip = {
4356         .name                   = "GICv4.1-sgi",
4357         .irq_mask               = its_sgi_mask_irq,
4358         .irq_unmask             = its_sgi_unmask_irq,
4359         .irq_set_affinity       = its_sgi_set_affinity,
4360         .irq_set_irqchip_state  = its_sgi_set_irqchip_state,
4361         .irq_get_irqchip_state  = its_sgi_get_irqchip_state,
4362         .irq_set_vcpu_affinity  = its_sgi_set_vcpu_affinity,
4363 };
4364
4365 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4366                                     unsigned int virq, unsigned int nr_irqs,
4367                                     void *args)
4368 {
4369         struct its_vpe *vpe = args;
4370         int i;
4371
4372         /* Yes, we do want 16 SGIs */
4373         WARN_ON(nr_irqs != 16);
4374
4375         for (i = 0; i < 16; i++) {
4376                 vpe->sgi_config[i].priority = 0;
4377                 vpe->sgi_config[i].enabled = false;
4378                 vpe->sgi_config[i].group = false;
4379
4380                 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4381                                               &its_sgi_irq_chip, vpe);
4382                 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4383         }
4384
4385         return 0;
4386 }
4387
4388 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4389                                     unsigned int virq,
4390                                     unsigned int nr_irqs)
4391 {
4392         /* Nothing to do */
4393 }
4394
4395 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4396                                        struct irq_data *d, bool reserve)
4397 {
4398         /* Write out the initial SGI configuration */
4399         its_configure_sgi(d, false);
4400         return 0;
4401 }
4402
4403 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4404                                           struct irq_data *d)
4405 {
4406         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4407
4408         /*
4409          * The VSGI command is awkward:
4410          *
4411          * - To change the configuration, CLEAR must be set to false,
4412          *   leaving the pending bit unchanged.
4413          * - To clear the pending bit, CLEAR must be set to true, leaving
4414          *   the configuration unchanged.
4415          *
4416          * You just can't do both at once, hence the two commands below.
4417          */
4418         vpe->sgi_config[d->hwirq].enabled = false;
4419         its_configure_sgi(d, false);
4420         its_configure_sgi(d, true);
4421 }
4422
4423 static const struct irq_domain_ops its_sgi_domain_ops = {
4424         .alloc          = its_sgi_irq_domain_alloc,
4425         .free           = its_sgi_irq_domain_free,
4426         .activate       = its_sgi_irq_domain_activate,
4427         .deactivate     = its_sgi_irq_domain_deactivate,
4428 };
4429
4430 static int its_vpe_id_alloc(void)
4431 {
4432         return ida_alloc_max(&its_vpeid_ida, ITS_MAX_VPEID - 1, GFP_KERNEL);
4433 }
4434
4435 static void its_vpe_id_free(u16 id)
4436 {
4437         ida_free(&its_vpeid_ida, id);
4438 }
4439
4440 static int its_vpe_init(struct its_vpe *vpe)
4441 {
4442         struct page *vpt_page;
4443         int vpe_id;
4444
4445         /* Allocate vpe_id */
4446         vpe_id = its_vpe_id_alloc();
4447         if (vpe_id < 0)
4448                 return vpe_id;
4449
4450         /* Allocate VPT */
4451         vpt_page = its_allocate_pending_table(GFP_KERNEL);
4452         if (!vpt_page) {
4453                 its_vpe_id_free(vpe_id);
4454                 return -ENOMEM;
4455         }
4456
4457         if (!its_alloc_vpe_table(vpe_id)) {
4458                 its_vpe_id_free(vpe_id);
4459                 its_free_pending_table(vpt_page);
4460                 return -ENOMEM;
4461         }
4462
4463         raw_spin_lock_init(&vpe->vpe_lock);
4464         vpe->vpe_id = vpe_id;
4465         vpe->vpt_page = vpt_page;
4466         if (gic_rdists->has_rvpeid)
4467                 atomic_set(&vpe->vmapp_count, 0);
4468         else
4469                 vpe->vpe_proxy_event = -1;
4470
4471         return 0;
4472 }
4473
4474 static void its_vpe_teardown(struct its_vpe *vpe)
4475 {
4476         its_vpe_db_proxy_unmap(vpe);
4477         its_vpe_id_free(vpe->vpe_id);
4478         its_free_pending_table(vpe->vpt_page);
4479 }
4480
4481 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4482                                     unsigned int virq,
4483                                     unsigned int nr_irqs)
4484 {
4485         struct its_vm *vm = domain->host_data;
4486         int i;
4487
4488         irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4489
4490         for (i = 0; i < nr_irqs; i++) {
4491                 struct irq_data *data = irq_domain_get_irq_data(domain,
4492                                                                 virq + i);
4493                 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4494
4495                 BUG_ON(vm != vpe->its_vm);
4496
4497                 clear_bit(data->hwirq, vm->db_bitmap);
4498                 its_vpe_teardown(vpe);
4499                 irq_domain_reset_irq_data(data);
4500         }
4501
4502         if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4503                 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4504                 its_free_prop_table(vm->vprop_page);
4505         }
4506 }
4507
4508 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4509                                     unsigned int nr_irqs, void *args)
4510 {
4511         struct irq_chip *irqchip = &its_vpe_irq_chip;
4512         struct its_vm *vm = args;
4513         unsigned long *bitmap;
4514         struct page *vprop_page;
4515         int base, nr_ids, i, err = 0;
4516
4517         bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4518         if (!bitmap)
4519                 return -ENOMEM;
4520
4521         if (nr_ids < nr_irqs) {
4522                 its_lpi_free(bitmap, base, nr_ids);
4523                 return -ENOMEM;
4524         }
4525
4526         vprop_page = its_allocate_prop_table(GFP_KERNEL);
4527         if (!vprop_page) {
4528                 its_lpi_free(bitmap, base, nr_ids);
4529                 return -ENOMEM;
4530         }
4531
4532         vm->db_bitmap = bitmap;
4533         vm->db_lpi_base = base;
4534         vm->nr_db_lpis = nr_ids;
4535         vm->vprop_page = vprop_page;
4536         raw_spin_lock_init(&vm->vmapp_lock);
4537
4538         if (gic_rdists->has_rvpeid)
4539                 irqchip = &its_vpe_4_1_irq_chip;
4540
4541         for (i = 0; i < nr_irqs; i++) {
4542                 vm->vpes[i]->vpe_db_lpi = base + i;
4543                 err = its_vpe_init(vm->vpes[i]);
4544                 if (err)
4545                         break;
4546                 err = its_irq_gic_domain_alloc(domain, virq + i,
4547                                                vm->vpes[i]->vpe_db_lpi);
4548                 if (err)
4549                         break;
4550                 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4551                                               irqchip, vm->vpes[i]);
4552                 set_bit(i, bitmap);
4553                 irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i));
4554         }
4555
4556         if (err)
4557                 its_vpe_irq_domain_free(domain, virq, i);
4558
4559         return err;
4560 }
4561
4562 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4563                                        struct irq_data *d, bool reserve)
4564 {
4565         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4566         struct its_node *its;
4567
4568         /* Map the VPE to the first possible CPU */
4569         vpe->col_idx = cpumask_first(cpu_online_mask);
4570         irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4571
4572         /*
4573          * If we use the list map, we issue VMAPP on demand... Unless
4574          * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4575          * so that VSGIs can work.
4576          */
4577         if (!gic_requires_eager_mapping())
4578                 return 0;
4579
4580         list_for_each_entry(its, &its_nodes, entry) {
4581                 if (!is_v4(its))
4582                         continue;
4583
4584                 its_send_vmapp(its, vpe, true);
4585                 its_send_vinvall(its, vpe);
4586         }
4587
4588         return 0;
4589 }
4590
4591 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4592                                           struct irq_data *d)
4593 {
4594         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4595         struct its_node *its;
4596
4597         /*
4598          * If we use the list map on GICv4.0, we unmap the VPE once no
4599          * VLPIs are associated with the VM.
4600          */
4601         if (!gic_requires_eager_mapping())
4602                 return;
4603
4604         list_for_each_entry(its, &its_nodes, entry) {
4605                 if (!is_v4(its))
4606                         continue;
4607
4608                 its_send_vmapp(its, vpe, false);
4609         }
4610
4611         /*
4612          * There may be a direct read to the VPT after unmapping the
4613          * vPE, to guarantee the validity of this, we make the VPT
4614          * memory coherent with the CPU caches here.
4615          */
4616         if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4617                 gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4618                                         LPI_PENDBASE_SZ);
4619 }
4620
4621 static const struct irq_domain_ops its_vpe_domain_ops = {
4622         .alloc                  = its_vpe_irq_domain_alloc,
4623         .free                   = its_vpe_irq_domain_free,
4624         .activate               = its_vpe_irq_domain_activate,
4625         .deactivate             = its_vpe_irq_domain_deactivate,
4626 };
4627
4628 static int its_force_quiescent(void __iomem *base)
4629 {
4630         u32 count = 1000000;    /* 1s */
4631         u32 val;
4632
4633         val = readl_relaxed(base + GITS_CTLR);
4634         /*
4635          * GIC architecture specification requires the ITS to be both
4636          * disabled and quiescent for writes to GITS_BASER<n> or
4637          * GITS_CBASER to not have UNPREDICTABLE results.
4638          */
4639         if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4640                 return 0;
4641
4642         /* Disable the generation of all interrupts to this ITS */
4643         val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4644         writel_relaxed(val, base + GITS_CTLR);
4645
4646         /* Poll GITS_CTLR and wait until ITS becomes quiescent */
4647         while (1) {
4648                 val = readl_relaxed(base + GITS_CTLR);
4649                 if (val & GITS_CTLR_QUIESCENT)
4650                         return 0;
4651
4652                 count--;
4653                 if (!count)
4654                         return -EBUSY;
4655
4656                 cpu_relax();
4657                 udelay(1);
4658         }
4659 }
4660
4661 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4662 {
4663         struct its_node *its = data;
4664
4665         /* erratum 22375: only alloc 8MB table size (20 bits) */
4666         its->typer &= ~GITS_TYPER_DEVBITS;
4667         its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4668         its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4669
4670         return true;
4671 }
4672
4673 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4674 {
4675         struct its_node *its = data;
4676
4677         its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4678
4679         return true;
4680 }
4681
4682 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4683 {
4684         struct its_node *its = data;
4685
4686         /* On QDF2400, the size of the ITE is 16Bytes */
4687         its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4688         its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4689
4690         return true;
4691 }
4692
4693 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4694 {
4695         struct its_node *its = its_dev->its;
4696
4697         /*
4698          * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4699          * which maps 32-bit writes targeted at a separate window of
4700          * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4701          * with device ID taken from bits [device_id_bits + 1:2] of
4702          * the window offset.
4703          */
4704         return its->pre_its_base + (its_dev->device_id << 2);
4705 }
4706
4707 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4708 {
4709         struct its_node *its = data;
4710         u32 pre_its_window[2];
4711         u32 ids;
4712
4713         if (!fwnode_property_read_u32_array(its->fwnode_handle,
4714                                            "socionext,synquacer-pre-its",
4715                                            pre_its_window,
4716                                            ARRAY_SIZE(pre_its_window))) {
4717
4718                 its->pre_its_base = pre_its_window[0];
4719                 its->get_msi_base = its_irq_get_msi_base_pre_its;
4720
4721                 ids = ilog2(pre_its_window[1]) - 2;
4722                 if (device_ids(its) > ids) {
4723                         its->typer &= ~GITS_TYPER_DEVBITS;
4724                         its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4725                 }
4726
4727                 /* the pre-ITS breaks isolation, so disable MSI remapping */
4728                 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI;
4729                 return true;
4730         }
4731         return false;
4732 }
4733
4734 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4735 {
4736         struct its_node *its = data;
4737
4738         /*
4739          * Hip07 insists on using the wrong address for the VLPI
4740          * page. Trick it into doing the right thing...
4741          */
4742         its->vlpi_redist_offset = SZ_128K;
4743         return true;
4744 }
4745
4746 static bool __maybe_unused its_enable_rk3588001(void *data)
4747 {
4748         struct its_node *its = data;
4749
4750         if (!of_machine_is_compatible("rockchip,rk3588") &&
4751             !of_machine_is_compatible("rockchip,rk3588s"))
4752                 return false;
4753
4754         its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4755         gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
4756
4757         return true;
4758 }
4759
4760 static bool its_set_non_coherent(void *data)
4761 {
4762         struct its_node *its = data;
4763
4764         its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4765         return true;
4766 }
4767
4768 static const struct gic_quirk its_quirks[] = {
4769 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4770         {
4771                 .desc   = "ITS: Cavium errata 22375, 24313",
4772                 .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
4773                 .mask   = 0xffff0fff,
4774                 .init   = its_enable_quirk_cavium_22375,
4775         },
4776 #endif
4777 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4778         {
4779                 .desc   = "ITS: Cavium erratum 23144",
4780                 .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
4781                 .mask   = 0xffff0fff,
4782                 .init   = its_enable_quirk_cavium_23144,
4783         },
4784 #endif
4785 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4786         {
4787                 .desc   = "ITS: QDF2400 erratum 0065",
4788                 .iidr   = 0x00001070, /* QDF2400 ITS rev 1.x */
4789                 .mask   = 0xffffffff,
4790                 .init   = its_enable_quirk_qdf2400_e0065,
4791         },
4792 #endif
4793 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4794         {
4795                 /*
4796                  * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4797                  * implementation, but with a 'pre-ITS' added that requires
4798                  * special handling in software.
4799                  */
4800                 .desc   = "ITS: Socionext Synquacer pre-ITS",
4801                 .iidr   = 0x0001143b,
4802                 .mask   = 0xffffffff,
4803                 .init   = its_enable_quirk_socionext_synquacer,
4804         },
4805 #endif
4806 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4807         {
4808                 .desc   = "ITS: Hip07 erratum 161600802",
4809                 .iidr   = 0x00000004,
4810                 .mask   = 0xffffffff,
4811                 .init   = its_enable_quirk_hip07_161600802,
4812         },
4813 #endif
4814 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001
4815         {
4816                 .desc   = "ITS: Rockchip erratum RK3588001",
4817                 .iidr   = 0x0201743b,
4818                 .mask   = 0xffffffff,
4819                 .init   = its_enable_rk3588001,
4820         },
4821 #endif
4822         {
4823                 .desc   = "ITS: non-coherent attribute",
4824                 .property = "dma-noncoherent",
4825                 .init   = its_set_non_coherent,
4826         },
4827         {
4828         }
4829 };
4830
4831 static void its_enable_quirks(struct its_node *its)
4832 {
4833         u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4834
4835         gic_enable_quirks(iidr, its_quirks, its);
4836
4837         if (is_of_node(its->fwnode_handle))
4838                 gic_enable_of_quirks(to_of_node(its->fwnode_handle),
4839                                      its_quirks, its);
4840 }
4841
4842 static int its_save_disable(void)
4843 {
4844         struct its_node *its;
4845         int err = 0;
4846
4847         raw_spin_lock(&its_lock);
4848         list_for_each_entry(its, &its_nodes, entry) {
4849                 void __iomem *base;
4850
4851                 base = its->base;
4852                 its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4853                 err = its_force_quiescent(base);
4854                 if (err) {
4855                         pr_err("ITS@%pa: failed to quiesce: %d\n",
4856                                &its->phys_base, err);
4857                         writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4858                         goto err;
4859                 }
4860
4861                 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4862         }
4863
4864 err:
4865         if (err) {
4866                 list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4867                         void __iomem *base;
4868
4869                         base = its->base;
4870                         writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4871                 }
4872         }
4873         raw_spin_unlock(&its_lock);
4874
4875         return err;
4876 }
4877
4878 static void its_restore_enable(void)
4879 {
4880         struct its_node *its;
4881         int ret;
4882
4883         raw_spin_lock(&its_lock);
4884         list_for_each_entry(its, &its_nodes, entry) {
4885                 void __iomem *base;
4886                 int i;
4887
4888                 base = its->base;
4889
4890                 /*
4891                  * Make sure that the ITS is disabled. If it fails to quiesce,
4892                  * don't restore it since writing to CBASER or BASER<n>
4893                  * registers is undefined according to the GIC v3 ITS
4894                  * Specification.
4895                  *
4896                  * Firmware resuming with the ITS enabled is terminally broken.
4897                  */
4898                 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4899                 ret = its_force_quiescent(base);
4900                 if (ret) {
4901                         pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4902                                &its->phys_base, ret);
4903                         continue;
4904                 }
4905
4906                 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4907
4908                 /*
4909                  * Writing CBASER resets CREADR to 0, so make CWRITER and
4910                  * cmd_write line up with it.
4911                  */
4912                 its->cmd_write = its->cmd_base;
4913                 gits_write_cwriter(0, base + GITS_CWRITER);
4914
4915                 /* Restore GITS_BASER from the value cache. */
4916                 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4917                         struct its_baser *baser = &its->tables[i];
4918
4919                         if (!(baser->val & GITS_BASER_VALID))
4920                                 continue;
4921
4922                         its_write_baser(its, baser, baser->val);
4923                 }
4924                 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4925
4926                 /*
4927                  * Reinit the collection if it's stored in the ITS. This is
4928                  * indicated by the col_id being less than the HCC field.
4929                  * CID < HCC as specified in the GIC v3 Documentation.
4930                  */
4931                 if (its->collections[smp_processor_id()].col_id <
4932                     GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4933                         its_cpu_init_collection(its);
4934         }
4935         raw_spin_unlock(&its_lock);
4936 }
4937
4938 static struct syscore_ops its_syscore_ops = {
4939         .suspend = its_save_disable,
4940         .resume = its_restore_enable,
4941 };
4942
4943 static void __init __iomem *its_map_one(struct resource *res, int *err)
4944 {
4945         void __iomem *its_base;
4946         u32 val;
4947
4948         its_base = ioremap(res->start, SZ_64K);
4949         if (!its_base) {
4950                 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4951                 *err = -ENOMEM;
4952                 return NULL;
4953         }
4954
4955         val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4956         if (val != 0x30 && val != 0x40) {
4957                 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4958                 *err = -ENODEV;
4959                 goto out_unmap;
4960         }
4961
4962         *err = its_force_quiescent(its_base);
4963         if (*err) {
4964                 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4965                 goto out_unmap;
4966         }
4967
4968         return its_base;
4969
4970 out_unmap:
4971         iounmap(its_base);
4972         return NULL;
4973 }
4974
4975 static int its_init_domain(struct its_node *its)
4976 {
4977         struct irq_domain *inner_domain;
4978         struct msi_domain_info *info;
4979
4980         info = kzalloc(sizeof(*info), GFP_KERNEL);
4981         if (!info)
4982                 return -ENOMEM;
4983
4984         info->ops = &its_msi_domain_ops;
4985         info->data = its;
4986
4987         inner_domain = irq_domain_create_hierarchy(its_parent,
4988                                                    its->msi_domain_flags, 0,
4989                                                    its->fwnode_handle, &its_domain_ops,
4990                                                    info);
4991         if (!inner_domain) {
4992                 kfree(info);
4993                 return -ENOMEM;
4994         }
4995
4996         irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4997
4998         inner_domain->msi_parent_ops = &gic_v3_its_msi_parent_ops;
4999         inner_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT;
5000
5001         return 0;
5002 }
5003
5004 static int its_init_vpe_domain(void)
5005 {
5006         struct its_node *its;
5007         u32 devid;
5008         int entries;
5009
5010         if (gic_rdists->has_direct_lpi) {
5011                 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
5012                 return 0;
5013         }
5014
5015         /* Any ITS will do, even if not v4 */
5016         its = list_first_entry(&its_nodes, struct its_node, entry);
5017
5018         entries = roundup_pow_of_two(nr_cpu_ids);
5019         vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
5020                                  GFP_KERNEL);
5021         if (!vpe_proxy.vpes)
5022                 return -ENOMEM;
5023
5024         /* Use the last possible DevID */
5025         devid = GENMASK(device_ids(its) - 1, 0);
5026         vpe_proxy.dev = its_create_device(its, devid, entries, false);
5027         if (!vpe_proxy.dev) {
5028                 kfree(vpe_proxy.vpes);
5029                 pr_err("ITS: Can't allocate GICv4 proxy device\n");
5030                 return -ENOMEM;
5031         }
5032
5033         BUG_ON(entries > vpe_proxy.dev->nr_ites);
5034
5035         raw_spin_lock_init(&vpe_proxy.lock);
5036         vpe_proxy.next_victim = 0;
5037         pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
5038                 devid, vpe_proxy.dev->nr_ites);
5039
5040         return 0;
5041 }
5042
5043 static int __init its_compute_its_list_map(struct its_node *its)
5044 {
5045         int its_number;
5046         u32 ctlr;
5047
5048         /*
5049          * This is assumed to be done early enough that we're
5050          * guaranteed to be single-threaded, hence no
5051          * locking. Should this change, we should address
5052          * this.
5053          */
5054         its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
5055         if (its_number >= GICv4_ITS_LIST_MAX) {
5056                 pr_err("ITS@%pa: No ITSList entry available!\n",
5057                        &its->phys_base);
5058                 return -EINVAL;
5059         }
5060
5061         ctlr = readl_relaxed(its->base + GITS_CTLR);
5062         ctlr &= ~GITS_CTLR_ITS_NUMBER;
5063         ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
5064         writel_relaxed(ctlr, its->base + GITS_CTLR);
5065         ctlr = readl_relaxed(its->base + GITS_CTLR);
5066         if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
5067                 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
5068                 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
5069         }
5070
5071         if (test_and_set_bit(its_number, &its_list_map)) {
5072                 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
5073                        &its->phys_base, its_number);
5074                 return -EINVAL;
5075         }
5076
5077         return its_number;
5078 }
5079
5080 static int __init its_probe_one(struct its_node *its)
5081 {
5082         u64 baser, tmp;
5083         struct page *page;
5084         u32 ctlr;
5085         int err;
5086
5087         its_enable_quirks(its);
5088
5089         if (is_v4(its)) {
5090                 if (!(its->typer & GITS_TYPER_VMOVP)) {
5091                         err = its_compute_its_list_map(its);
5092                         if (err < 0)
5093                                 goto out;
5094
5095                         its->list_nr = err;
5096
5097                         pr_info("ITS@%pa: Using ITS number %d\n",
5098                                 &its->phys_base, err);
5099                 } else {
5100                         pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base);
5101                 }
5102
5103                 if (is_v4_1(its)) {
5104                         u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
5105
5106                         its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K);
5107                         if (!its->sgir_base) {
5108                                 err = -ENOMEM;
5109                                 goto out;
5110                         }
5111
5112                         its->mpidr = readl_relaxed(its->base + GITS_MPIDR);
5113
5114                         pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5115                                 &its->phys_base, its->mpidr, svpet);
5116                 }
5117         }
5118
5119         page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5120                                 get_order(ITS_CMD_QUEUE_SZ));
5121         if (!page) {
5122                 err = -ENOMEM;
5123                 goto out_unmap_sgir;
5124         }
5125         its->cmd_base = (void *)page_address(page);
5126         its->cmd_write = its->cmd_base;
5127
5128         err = its_alloc_tables(its);
5129         if (err)
5130                 goto out_free_cmd;
5131
5132         err = its_alloc_collections(its);
5133         if (err)
5134                 goto out_free_tables;
5135
5136         baser = (virt_to_phys(its->cmd_base)    |
5137                  GITS_CBASER_RaWaWb             |
5138                  GITS_CBASER_InnerShareable     |
5139                  (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
5140                  GITS_CBASER_VALID);
5141
5142         gits_write_cbaser(baser, its->base + GITS_CBASER);
5143         tmp = gits_read_cbaser(its->base + GITS_CBASER);
5144
5145         if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
5146                 tmp &= ~GITS_CBASER_SHAREABILITY_MASK;
5147
5148         if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5149                 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5150                         /*
5151                          * The HW reports non-shareable, we must
5152                          * remove the cacheability attributes as
5153                          * well.
5154                          */
5155                         baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5156                                    GITS_CBASER_CACHEABILITY_MASK);
5157                         baser |= GITS_CBASER_nC;
5158                         gits_write_cbaser(baser, its->base + GITS_CBASER);
5159                 }
5160                 pr_info("ITS: using cache flushing for cmd queue\n");
5161                 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5162         }
5163
5164         gits_write_cwriter(0, its->base + GITS_CWRITER);
5165         ctlr = readl_relaxed(its->base + GITS_CTLR);
5166         ctlr |= GITS_CTLR_ENABLE;
5167         if (is_v4(its))
5168                 ctlr |= GITS_CTLR_ImDe;
5169         writel_relaxed(ctlr, its->base + GITS_CTLR);
5170
5171         err = its_init_domain(its);
5172         if (err)
5173                 goto out_free_tables;
5174
5175         raw_spin_lock(&its_lock);
5176         list_add(&its->entry, &its_nodes);
5177         raw_spin_unlock(&its_lock);
5178
5179         return 0;
5180
5181 out_free_tables:
5182         its_free_tables(its);
5183 out_free_cmd:
5184         free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5185 out_unmap_sgir:
5186         if (its->sgir_base)
5187                 iounmap(its->sgir_base);
5188 out:
5189         pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err);
5190         return err;
5191 }
5192
5193 static bool gic_rdists_supports_plpis(void)
5194 {
5195         return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5196 }
5197
5198 static int redist_disable_lpis(void)
5199 {
5200         void __iomem *rbase = gic_data_rdist_rd_base();
5201         u64 timeout = USEC_PER_SEC;
5202         u64 val;
5203
5204         if (!gic_rdists_supports_plpis()) {
5205                 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5206                 return -ENXIO;
5207         }
5208
5209         val = readl_relaxed(rbase + GICR_CTLR);
5210         if (!(val & GICR_CTLR_ENABLE_LPIS))
5211                 return 0;
5212
5213         /*
5214          * If coming via a CPU hotplug event, we don't need to disable
5215          * LPIs before trying to re-enable them. They are already
5216          * configured and all is well in the world.
5217          *
5218          * If running with preallocated tables, there is nothing to do.
5219          */
5220         if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5221             (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5222                 return 0;
5223
5224         /*
5225          * From that point on, we only try to do some damage control.
5226          */
5227         pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5228                 smp_processor_id());
5229         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5230
5231         /* Disable LPIs */
5232         val &= ~GICR_CTLR_ENABLE_LPIS;
5233         writel_relaxed(val, rbase + GICR_CTLR);
5234
5235         /* Make sure any change to GICR_CTLR is observable by the GIC */
5236         dsb(sy);
5237
5238         /*
5239          * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5240          * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5241          * Error out if we time out waiting for RWP to clear.
5242          */
5243         while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5244                 if (!timeout) {
5245                         pr_err("CPU%d: Timeout while disabling LPIs\n",
5246                                smp_processor_id());
5247                         return -ETIMEDOUT;
5248                 }
5249                 udelay(1);
5250                 timeout--;
5251         }
5252
5253         /*
5254          * After it has been written to 1, it is IMPLEMENTATION
5255          * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5256          * cleared to 0. Error out if clearing the bit failed.
5257          */
5258         if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5259                 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5260                 return -EBUSY;
5261         }
5262
5263         return 0;
5264 }
5265
5266 int its_cpu_init(void)
5267 {
5268         if (!list_empty(&its_nodes)) {
5269                 int ret;
5270
5271                 ret = redist_disable_lpis();
5272                 if (ret)
5273                         return ret;
5274
5275                 its_cpu_init_lpis();
5276                 its_cpu_init_collections();
5277         }
5278
5279         return 0;
5280 }
5281
5282 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5283 {
5284         cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5285         gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5286 }
5287
5288 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5289                     rdist_memreserve_cpuhp_cleanup_workfn);
5290
5291 static int its_cpu_memreserve_lpi(unsigned int cpu)
5292 {
5293         struct page *pend_page;
5294         int ret = 0;
5295
5296         /* This gets to run exactly once per CPU */
5297         if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5298                 return 0;
5299
5300         pend_page = gic_data_rdist()->pend_page;
5301         if (WARN_ON(!pend_page)) {
5302                 ret = -ENOMEM;
5303                 goto out;
5304         }
5305         /*
5306          * If the pending table was pre-programmed, free the memory we
5307          * preemptively allocated. Otherwise, reserve that memory for
5308          * later kexecs.
5309          */
5310         if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5311                 its_free_pending_table(pend_page);
5312                 gic_data_rdist()->pend_page = NULL;
5313         } else {
5314                 phys_addr_t paddr = page_to_phys(pend_page);
5315                 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5316         }
5317
5318 out:
5319         /* Last CPU being brought up gets to issue the cleanup */
5320         if (!IS_ENABLED(CONFIG_SMP) ||
5321             cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5322                 schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5323
5324         gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5325         return ret;
5326 }
5327
5328 /* Mark all the BASER registers as invalid before they get reprogrammed */
5329 static int __init its_reset_one(struct resource *res)
5330 {
5331         void __iomem *its_base;
5332         int err, i;
5333
5334         its_base = its_map_one(res, &err);
5335         if (!its_base)
5336                 return err;
5337
5338         for (i = 0; i < GITS_BASER_NR_REGS; i++)
5339                 gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5340
5341         iounmap(its_base);
5342         return 0;
5343 }
5344
5345 static const struct of_device_id its_device_id[] = {
5346         {       .compatible     = "arm,gic-v3-its",     },
5347         {},
5348 };
5349
5350 static struct its_node __init *its_node_init(struct resource *res,
5351                                              struct fwnode_handle *handle, int numa_node)
5352 {
5353         void __iomem *its_base;
5354         struct its_node *its;
5355         int err;
5356
5357         its_base = its_map_one(res, &err);
5358         if (!its_base)
5359                 return NULL;
5360
5361         pr_info("ITS %pR\n", res);
5362
5363         its = kzalloc(sizeof(*its), GFP_KERNEL);
5364         if (!its)
5365                 goto out_unmap;
5366
5367         raw_spin_lock_init(&its->lock);
5368         mutex_init(&its->dev_alloc_lock);
5369         INIT_LIST_HEAD(&its->entry);
5370         INIT_LIST_HEAD(&its->its_device_list);
5371
5372         its->typer = gic_read_typer(its_base + GITS_TYPER);
5373         its->base = its_base;
5374         its->phys_base = res->start;
5375         its->get_msi_base = its_irq_get_msi_base;
5376         its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI;
5377
5378         its->numa_node = numa_node;
5379         its->fwnode_handle = handle;
5380
5381         return its;
5382
5383 out_unmap:
5384         iounmap(its_base);
5385         return NULL;
5386 }
5387
5388 static void its_node_destroy(struct its_node *its)
5389 {
5390         iounmap(its->base);
5391         kfree(its);
5392 }
5393
5394 static int __init its_of_probe(struct device_node *node)
5395 {
5396         struct device_node *np;
5397         struct resource res;
5398         int err;
5399
5400         /*
5401          * Make sure *all* the ITS are reset before we probe any, as
5402          * they may be sharing memory. If any of the ITS fails to
5403          * reset, don't even try to go any further, as this could
5404          * result in something even worse.
5405          */
5406         for (np = of_find_matching_node(node, its_device_id); np;
5407              np = of_find_matching_node(np, its_device_id)) {
5408                 if (!of_device_is_available(np) ||
5409                     !of_property_read_bool(np, "msi-controller") ||
5410                     of_address_to_resource(np, 0, &res))
5411                         continue;
5412
5413                 err = its_reset_one(&res);
5414                 if (err)
5415                         return err;
5416         }
5417
5418         for (np = of_find_matching_node(node, its_device_id); np;
5419              np = of_find_matching_node(np, its_device_id)) {
5420                 struct its_node *its;
5421
5422                 if (!of_device_is_available(np))
5423                         continue;
5424                 if (!of_property_read_bool(np, "msi-controller")) {
5425                         pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5426                                 np);
5427                         continue;
5428                 }
5429
5430                 if (of_address_to_resource(np, 0, &res)) {
5431                         pr_warn("%pOF: no regs?\n", np);
5432                         continue;
5433                 }
5434
5435
5436                 its = its_node_init(&res, &np->fwnode, of_node_to_nid(np));
5437                 if (!its)
5438                         return -ENOMEM;
5439
5440                 err = its_probe_one(its);
5441                 if (err)  {
5442                         its_node_destroy(its);
5443                         return err;
5444                 }
5445         }
5446         return 0;
5447 }
5448
5449 #ifdef CONFIG_ACPI
5450
5451 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5452
5453 #ifdef CONFIG_ACPI_NUMA
5454 struct its_srat_map {
5455         /* numa node id */
5456         u32     numa_node;
5457         /* GIC ITS ID */
5458         u32     its_id;
5459 };
5460
5461 static struct its_srat_map *its_srat_maps __initdata;
5462 static int its_in_srat __initdata;
5463
5464 static int __init acpi_get_its_numa_node(u32 its_id)
5465 {
5466         int i;
5467
5468         for (i = 0; i < its_in_srat; i++) {
5469                 if (its_id == its_srat_maps[i].its_id)
5470                         return its_srat_maps[i].numa_node;
5471         }
5472         return NUMA_NO_NODE;
5473 }
5474
5475 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5476                                           const unsigned long end)
5477 {
5478         return 0;
5479 }
5480
5481 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5482                          const unsigned long end)
5483 {
5484         int node;
5485         struct acpi_srat_gic_its_affinity *its_affinity;
5486
5487         its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5488         if (!its_affinity)
5489                 return -EINVAL;
5490
5491         if (its_affinity->header.length < sizeof(*its_affinity)) {
5492                 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5493                         its_affinity->header.length);
5494                 return -EINVAL;
5495         }
5496
5497         /*
5498          * Note that in theory a new proximity node could be created by this
5499          * entry as it is an SRAT resource allocation structure.
5500          * We do not currently support doing so.
5501          */
5502         node = pxm_to_node(its_affinity->proximity_domain);
5503
5504         if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5505                 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5506                 return 0;
5507         }
5508
5509         its_srat_maps[its_in_srat].numa_node = node;
5510         its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5511         its_in_srat++;
5512         pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5513                 its_affinity->proximity_domain, its_affinity->its_id, node);
5514
5515         return 0;
5516 }
5517
5518 static void __init acpi_table_parse_srat_its(void)
5519 {
5520         int count;
5521
5522         count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5523                         sizeof(struct acpi_table_srat),
5524                         ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5525                         gic_acpi_match_srat_its, 0);
5526         if (count <= 0)
5527                 return;
5528
5529         its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5530                                       GFP_KERNEL);
5531         if (!its_srat_maps)
5532                 return;
5533
5534         acpi_table_parse_entries(ACPI_SIG_SRAT,
5535                         sizeof(struct acpi_table_srat),
5536                         ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5537                         gic_acpi_parse_srat_its, 0);
5538 }
5539
5540 /* free the its_srat_maps after ITS probing */
5541 static void __init acpi_its_srat_maps_free(void)
5542 {
5543         kfree(its_srat_maps);
5544 }
5545 #else
5546 static void __init acpi_table_parse_srat_its(void)      { }
5547 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5548 static void __init acpi_its_srat_maps_free(void) { }
5549 #endif
5550
5551 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5552                                           const unsigned long end)
5553 {
5554         struct acpi_madt_generic_translator *its_entry;
5555         struct fwnode_handle *dom_handle;
5556         struct its_node *its;
5557         struct resource res;
5558         int err;
5559
5560         its_entry = (struct acpi_madt_generic_translator *)header;
5561         memset(&res, 0, sizeof(res));
5562         res.start = its_entry->base_address;
5563         res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5564         res.flags = IORESOURCE_MEM;
5565
5566         dom_handle = irq_domain_alloc_fwnode(&res.start);
5567         if (!dom_handle) {
5568                 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5569                        &res.start);
5570                 return -ENOMEM;
5571         }
5572
5573         err = iort_register_domain_token(its_entry->translation_id, res.start,
5574                                          dom_handle);
5575         if (err) {
5576                 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5577                        &res.start, its_entry->translation_id);
5578                 goto dom_err;
5579         }
5580
5581         its = its_node_init(&res, dom_handle,
5582                             acpi_get_its_numa_node(its_entry->translation_id));
5583         if (!its) {
5584                 err = -ENOMEM;
5585                 goto node_err;
5586         }
5587
5588         if (acpi_get_madt_revision() >= 7 &&
5589             (its_entry->flags & ACPI_MADT_ITS_NON_COHERENT))
5590                 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
5591
5592         err = its_probe_one(its);
5593         if (!err)
5594                 return 0;
5595
5596 node_err:
5597         iort_deregister_domain_token(its_entry->translation_id);
5598 dom_err:
5599         irq_domain_free_fwnode(dom_handle);
5600         return err;
5601 }
5602
5603 static int __init its_acpi_reset(union acpi_subtable_headers *header,
5604                                  const unsigned long end)
5605 {
5606         struct acpi_madt_generic_translator *its_entry;
5607         struct resource res;
5608
5609         its_entry = (struct acpi_madt_generic_translator *)header;
5610         res = (struct resource) {
5611                 .start  = its_entry->base_address,
5612                 .end    = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5613                 .flags  = IORESOURCE_MEM,
5614         };
5615
5616         return its_reset_one(&res);
5617 }
5618
5619 static void __init its_acpi_probe(void)
5620 {
5621         acpi_table_parse_srat_its();
5622         /*
5623          * Make sure *all* the ITS are reset before we probe any, as
5624          * they may be sharing memory. If any of the ITS fails to
5625          * reset, don't even try to go any further, as this could
5626          * result in something even worse.
5627          */
5628         if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5629                                   its_acpi_reset, 0) > 0)
5630                 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5631                                       gic_acpi_parse_madt_its, 0);
5632         acpi_its_srat_maps_free();
5633 }
5634 #else
5635 static void __init its_acpi_probe(void) { }
5636 #endif
5637
5638 int __init its_lpi_memreserve_init(void)
5639 {
5640         int state;
5641
5642         if (!efi_enabled(EFI_CONFIG_TABLES))
5643                 return 0;
5644
5645         if (list_empty(&its_nodes))
5646                 return 0;
5647
5648         gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5649         state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5650                                   "irqchip/arm/gicv3/memreserve:online",
5651                                   its_cpu_memreserve_lpi,
5652                                   NULL);
5653         if (state < 0)
5654                 return state;
5655
5656         gic_rdists->cpuhp_memreserve_state = state;
5657
5658         return 0;
5659 }
5660
5661 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5662                     struct irq_domain *parent_domain, u8 irq_prio)
5663 {
5664         struct device_node *of_node;
5665         struct its_node *its;
5666         bool has_v4 = false;
5667         bool has_v4_1 = false;
5668         int err;
5669
5670         gic_rdists = rdists;
5671
5672         lpi_prop_prio = irq_prio;
5673         its_parent = parent_domain;
5674         of_node = to_of_node(handle);
5675         if (of_node)
5676                 its_of_probe(of_node);
5677         else
5678                 its_acpi_probe();
5679
5680         if (list_empty(&its_nodes)) {
5681                 pr_warn("ITS: No ITS available, not enabling LPIs\n");
5682                 return -ENXIO;
5683         }
5684
5685         err = allocate_lpi_tables();
5686         if (err)
5687                 return err;
5688
5689         list_for_each_entry(its, &its_nodes, entry) {
5690                 has_v4 |= is_v4(its);
5691                 has_v4_1 |= is_v4_1(its);
5692         }
5693
5694         /* Don't bother with inconsistent systems */
5695         if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5696                 rdists->has_rvpeid = false;
5697
5698         if (has_v4 & rdists->has_vlpis) {
5699                 const struct irq_domain_ops *sgi_ops;
5700
5701                 if (has_v4_1)
5702                         sgi_ops = &its_sgi_domain_ops;
5703                 else
5704                         sgi_ops = NULL;
5705
5706                 if (its_init_vpe_domain() ||
5707                     its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5708                         rdists->has_vlpis = false;
5709                         pr_err("ITS: Disabling GICv4 support\n");
5710                 }
5711         }
5712
5713         register_syscore_ops(&its_syscore_ops);
5714
5715         return 0;
5716 }
This page took 0.35923 seconds and 4 git commands to generate.