1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (c) 1999-2002 Vojtech Pavlik
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/device.h>
25 #include <linux/kstrtox.h>
26 #include <linux/mutex.h>
27 #include <linux/rcupdate.h>
28 #include "input-compat.h"
29 #include "input-core-private.h"
30 #include "input-poller.h"
33 MODULE_DESCRIPTION("Input core");
34 MODULE_LICENSE("GPL");
36 #define INPUT_MAX_CHAR_DEVICES 1024
37 #define INPUT_FIRST_DYNAMIC_DEV 256
38 static DEFINE_IDA(input_ida);
40 static LIST_HEAD(input_dev_list);
41 static LIST_HEAD(input_handler_list);
44 * input_mutex protects access to both input_dev_list and input_handler_list.
45 * This also causes input_[un]register_device and input_[un]register_handler
46 * be mutually exclusive which simplifies locking in drivers implementing
49 static DEFINE_MUTEX(input_mutex);
51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
53 static const unsigned int input_max_code[EV_CNT] = {
64 static inline int is_event_supported(unsigned int code,
65 unsigned long *bm, unsigned int max)
67 return code <= max && test_bit(code, bm);
70 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
73 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
76 if (value > old_val - fuzz && value < old_val + fuzz)
77 return (old_val * 3 + value) / 4;
79 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
80 return (old_val + value) / 2;
86 static void input_start_autorepeat(struct input_dev *dev, int code)
88 if (test_bit(EV_REP, dev->evbit) &&
89 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
90 dev->timer.function) {
91 dev->repeat_key = code;
92 mod_timer(&dev->timer,
93 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
97 static void input_stop_autorepeat(struct input_dev *dev)
99 del_timer(&dev->timer);
103 * Pass values first through all filters and then, if event has not been
104 * filtered out, through all open handles. This order is achieved by placing
105 * filters at the head of the list of handles attached to the device, and
106 * placing regular handles at the tail of the list.
108 * This function is called with dev->event_lock held and interrupts disabled.
110 static void input_pass_values(struct input_dev *dev,
111 struct input_value *vals, unsigned int count)
113 struct input_handle *handle;
114 struct input_value *v;
116 lockdep_assert_held(&dev->event_lock);
120 handle = rcu_dereference(dev->grab);
122 count = handle->handler->events(handle, vals, count);
124 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
126 count = handle->handler->events(handle, vals,
135 /* trigger auto repeat for key events */
136 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
137 for (v = vals; v != vals + count; v++) {
138 if (v->type == EV_KEY && v->value != 2) {
140 input_start_autorepeat(dev, v->code);
142 input_stop_autorepeat(dev);
148 #define INPUT_IGNORE_EVENT 0
149 #define INPUT_PASS_TO_HANDLERS 1
150 #define INPUT_PASS_TO_DEVICE 2
152 #define INPUT_FLUSH 8
153 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
155 static int input_handle_abs_event(struct input_dev *dev,
156 unsigned int code, int *pval)
158 struct input_mt *mt = dev->mt;
159 bool is_new_slot = false;
163 if (code == ABS_MT_SLOT) {
165 * "Stage" the event; we'll flush it later, when we
166 * get actual touch data.
168 if (mt && *pval >= 0 && *pval < mt->num_slots)
171 return INPUT_IGNORE_EVENT;
174 is_mt_event = input_is_mt_value(code);
177 pold = &dev->absinfo[code].value;
179 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
180 is_new_slot = mt->slot != dev->absinfo[ABS_MT_SLOT].value;
183 * Bypass filtering for multi-touch events when
184 * not employing slots.
190 *pval = input_defuzz_abs_event(*pval, *pold,
191 dev->absinfo[code].fuzz);
193 return INPUT_IGNORE_EVENT;
198 /* Flush pending "slot" event */
200 dev->absinfo[ABS_MT_SLOT].value = mt->slot;
201 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
204 return INPUT_PASS_TO_HANDLERS;
207 static int input_get_disposition(struct input_dev *dev,
208 unsigned int type, unsigned int code, int *pval)
210 int disposition = INPUT_IGNORE_EVENT;
213 /* filter-out events from inhibited devices */
215 return INPUT_IGNORE_EVENT;
222 disposition = INPUT_PASS_TO_ALL;
226 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
229 disposition = INPUT_PASS_TO_HANDLERS;
235 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
237 /* auto-repeat bypasses state updates */
239 disposition = INPUT_PASS_TO_HANDLERS;
243 if (!!test_bit(code, dev->key) != !!value) {
245 __change_bit(code, dev->key);
246 disposition = INPUT_PASS_TO_HANDLERS;
252 if (is_event_supported(code, dev->swbit, SW_MAX) &&
253 !!test_bit(code, dev->sw) != !!value) {
255 __change_bit(code, dev->sw);
256 disposition = INPUT_PASS_TO_HANDLERS;
261 if (is_event_supported(code, dev->absbit, ABS_MAX))
262 disposition = input_handle_abs_event(dev, code, &value);
267 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
268 disposition = INPUT_PASS_TO_HANDLERS;
273 if (is_event_supported(code, dev->mscbit, MSC_MAX))
274 disposition = INPUT_PASS_TO_ALL;
279 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
280 !!test_bit(code, dev->led) != !!value) {
282 __change_bit(code, dev->led);
283 disposition = INPUT_PASS_TO_ALL;
288 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
290 if (!!test_bit(code, dev->snd) != !!value)
291 __change_bit(code, dev->snd);
292 disposition = INPUT_PASS_TO_ALL;
297 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
298 dev->rep[code] = value;
299 disposition = INPUT_PASS_TO_ALL;
305 disposition = INPUT_PASS_TO_ALL;
309 disposition = INPUT_PASS_TO_ALL;
317 static void input_event_dispose(struct input_dev *dev, int disposition,
318 unsigned int type, unsigned int code, int value)
320 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
321 dev->event(dev, type, code, value);
323 if (disposition & INPUT_PASS_TO_HANDLERS) {
324 struct input_value *v;
326 if (disposition & INPUT_SLOT) {
327 v = &dev->vals[dev->num_vals++];
329 v->code = ABS_MT_SLOT;
330 v->value = dev->mt->slot;
333 v = &dev->vals[dev->num_vals++];
339 if (disposition & INPUT_FLUSH) {
340 if (dev->num_vals >= 2)
341 input_pass_values(dev, dev->vals, dev->num_vals);
344 * Reset the timestamp on flush so we won't end up
345 * with a stale one. Note we only need to reset the
346 * monolithic one as we use its presence when deciding
347 * whether to generate a synthetic timestamp.
349 dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
350 } else if (dev->num_vals >= dev->max_vals - 2) {
351 dev->vals[dev->num_vals++] = input_value_sync;
352 input_pass_values(dev, dev->vals, dev->num_vals);
357 void input_handle_event(struct input_dev *dev,
358 unsigned int type, unsigned int code, int value)
362 lockdep_assert_held(&dev->event_lock);
364 disposition = input_get_disposition(dev, type, code, &value);
365 if (disposition != INPUT_IGNORE_EVENT) {
367 add_input_randomness(type, code, value);
369 input_event_dispose(dev, disposition, type, code, value);
374 * input_event() - report new input event
375 * @dev: device that generated the event
376 * @type: type of the event
378 * @value: value of the event
380 * This function should be used by drivers implementing various input
381 * devices to report input events. See also input_inject_event().
383 * NOTE: input_event() may be safely used right after input device was
384 * allocated with input_allocate_device(), even before it is registered
385 * with input_register_device(), but the event will not reach any of the
386 * input handlers. Such early invocation of input_event() may be used
387 * to 'seed' initial state of a switch or initial position of absolute
390 void input_event(struct input_dev *dev,
391 unsigned int type, unsigned int code, int value)
395 if (is_event_supported(type, dev->evbit, EV_MAX)) {
397 spin_lock_irqsave(&dev->event_lock, flags);
398 input_handle_event(dev, type, code, value);
399 spin_unlock_irqrestore(&dev->event_lock, flags);
402 EXPORT_SYMBOL(input_event);
405 * input_inject_event() - send input event from input handler
406 * @handle: input handle to send event through
407 * @type: type of the event
409 * @value: value of the event
411 * Similar to input_event() but will ignore event if device is
412 * "grabbed" and handle injecting event is not the one that owns
415 void input_inject_event(struct input_handle *handle,
416 unsigned int type, unsigned int code, int value)
418 struct input_dev *dev = handle->dev;
419 struct input_handle *grab;
422 if (is_event_supported(type, dev->evbit, EV_MAX)) {
423 spin_lock_irqsave(&dev->event_lock, flags);
426 grab = rcu_dereference(dev->grab);
427 if (!grab || grab == handle)
428 input_handle_event(dev, type, code, value);
431 spin_unlock_irqrestore(&dev->event_lock, flags);
434 EXPORT_SYMBOL(input_inject_event);
437 * input_alloc_absinfo - allocates array of input_absinfo structs
438 * @dev: the input device emitting absolute events
440 * If the absinfo struct the caller asked for is already allocated, this
441 * functions will not do anything.
443 void input_alloc_absinfo(struct input_dev *dev)
448 dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
450 dev_err(dev->dev.parent ?: &dev->dev,
451 "%s: unable to allocate memory\n", __func__);
453 * We will handle this allocation failure in
454 * input_register_device() when we refuse to register input
455 * device with ABS bits but without absinfo.
459 EXPORT_SYMBOL(input_alloc_absinfo);
461 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
462 int min, int max, int fuzz, int flat)
464 struct input_absinfo *absinfo;
466 __set_bit(EV_ABS, dev->evbit);
467 __set_bit(axis, dev->absbit);
469 input_alloc_absinfo(dev);
473 absinfo = &dev->absinfo[axis];
474 absinfo->minimum = min;
475 absinfo->maximum = max;
476 absinfo->fuzz = fuzz;
477 absinfo->flat = flat;
479 EXPORT_SYMBOL(input_set_abs_params);
482 * input_copy_abs - Copy absinfo from one input_dev to another
483 * @dst: Destination input device to copy the abs settings to
484 * @dst_axis: ABS_* value selecting the destination axis
485 * @src: Source input device to copy the abs settings from
486 * @src_axis: ABS_* value selecting the source axis
488 * Set absinfo for the selected destination axis by copying it from
489 * the specified source input device's source axis.
490 * This is useful to e.g. setup a pen/stylus input-device for combined
491 * touchscreen/pen hardware where the pen uses the same coordinates as
494 void input_copy_abs(struct input_dev *dst, unsigned int dst_axis,
495 const struct input_dev *src, unsigned int src_axis)
497 /* src must have EV_ABS and src_axis set */
498 if (WARN_ON(!(test_bit(EV_ABS, src->evbit) &&
499 test_bit(src_axis, src->absbit))))
503 * input_alloc_absinfo() may have failed for the source. Our caller is
504 * expected to catch this when registering the input devices, which may
505 * happen after the input_copy_abs() call.
510 input_set_capability(dst, EV_ABS, dst_axis);
514 dst->absinfo[dst_axis] = src->absinfo[src_axis];
516 EXPORT_SYMBOL(input_copy_abs);
519 * input_grab_device - grabs device for exclusive use
520 * @handle: input handle that wants to own the device
522 * When a device is grabbed by an input handle all events generated by
523 * the device are delivered only to this handle. Also events injected
524 * by other input handles are ignored while device is grabbed.
526 int input_grab_device(struct input_handle *handle)
528 struct input_dev *dev = handle->dev;
531 retval = mutex_lock_interruptible(&dev->mutex);
540 rcu_assign_pointer(dev->grab, handle);
543 mutex_unlock(&dev->mutex);
546 EXPORT_SYMBOL(input_grab_device);
548 static void __input_release_device(struct input_handle *handle)
550 struct input_dev *dev = handle->dev;
551 struct input_handle *grabber;
553 grabber = rcu_dereference_protected(dev->grab,
554 lockdep_is_held(&dev->mutex));
555 if (grabber == handle) {
556 rcu_assign_pointer(dev->grab, NULL);
557 /* Make sure input_pass_values() notices that grab is gone */
560 list_for_each_entry(handle, &dev->h_list, d_node)
561 if (handle->open && handle->handler->start)
562 handle->handler->start(handle);
567 * input_release_device - release previously grabbed device
568 * @handle: input handle that owns the device
570 * Releases previously grabbed device so that other input handles can
571 * start receiving input events. Upon release all handlers attached
572 * to the device have their start() method called so they have a change
573 * to synchronize device state with the rest of the system.
575 void input_release_device(struct input_handle *handle)
577 struct input_dev *dev = handle->dev;
579 mutex_lock(&dev->mutex);
580 __input_release_device(handle);
581 mutex_unlock(&dev->mutex);
583 EXPORT_SYMBOL(input_release_device);
586 * input_open_device - open input device
587 * @handle: handle through which device is being accessed
589 * This function should be called by input handlers when they
590 * want to start receive events from given input device.
592 int input_open_device(struct input_handle *handle)
594 struct input_dev *dev = handle->dev;
597 retval = mutex_lock_interruptible(&dev->mutex);
601 if (dev->going_away) {
608 if (dev->users++ || dev->inhibited) {
610 * Device is already opened and/or inhibited,
611 * so we can exit immediately and report success.
617 retval = dev->open(dev);
622 * Make sure we are not delivering any more events
623 * through this handle
631 input_dev_poller_start(dev->poller);
634 mutex_unlock(&dev->mutex);
637 EXPORT_SYMBOL(input_open_device);
639 int input_flush_device(struct input_handle *handle, struct file *file)
641 struct input_dev *dev = handle->dev;
644 retval = mutex_lock_interruptible(&dev->mutex);
649 retval = dev->flush(dev, file);
651 mutex_unlock(&dev->mutex);
654 EXPORT_SYMBOL(input_flush_device);
657 * input_close_device - close input device
658 * @handle: handle through which device is being accessed
660 * This function should be called by input handlers when they
661 * want to stop receive events from given input device.
663 void input_close_device(struct input_handle *handle)
665 struct input_dev *dev = handle->dev;
667 mutex_lock(&dev->mutex);
669 __input_release_device(handle);
671 if (!--dev->users && !dev->inhibited) {
673 input_dev_poller_stop(dev->poller);
678 if (!--handle->open) {
680 * synchronize_rcu() makes sure that input_pass_values()
681 * completed and that no more input events are delivered
682 * through this handle
687 mutex_unlock(&dev->mutex);
689 EXPORT_SYMBOL(input_close_device);
692 * Simulate keyup events for all keys that are marked as pressed.
693 * The function must be called with dev->event_lock held.
695 static bool input_dev_release_keys(struct input_dev *dev)
697 bool need_sync = false;
700 lockdep_assert_held(&dev->event_lock);
702 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
703 for_each_set_bit(code, dev->key, KEY_CNT) {
704 input_handle_event(dev, EV_KEY, code, 0);
713 * Prepare device for unregistering
715 static void input_disconnect_device(struct input_dev *dev)
717 struct input_handle *handle;
720 * Mark device as going away. Note that we take dev->mutex here
721 * not to protect access to dev->going_away but rather to ensure
722 * that there are no threads in the middle of input_open_device()
724 mutex_lock(&dev->mutex);
725 dev->going_away = true;
726 mutex_unlock(&dev->mutex);
728 spin_lock_irq(&dev->event_lock);
731 * Simulate keyup events for all pressed keys so that handlers
732 * are not left with "stuck" keys. The driver may continue
733 * generate events even after we done here but they will not
734 * reach any handlers.
736 if (input_dev_release_keys(dev))
737 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
739 list_for_each_entry(handle, &dev->h_list, d_node)
742 spin_unlock_irq(&dev->event_lock);
746 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
747 * @ke: keymap entry containing scancode to be converted.
748 * @scancode: pointer to the location where converted scancode should
751 * This function is used to convert scancode stored in &struct keymap_entry
752 * into scalar form understood by legacy keymap handling methods. These
753 * methods expect scancodes to be represented as 'unsigned int'.
755 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
756 unsigned int *scancode)
760 *scancode = *((u8 *)ke->scancode);
764 *scancode = *((u16 *)ke->scancode);
768 *scancode = *((u32 *)ke->scancode);
777 EXPORT_SYMBOL(input_scancode_to_scalar);
780 * Those routines handle the default case where no [gs]etkeycode() is
781 * defined. In this case, an array indexed by the scancode is used.
784 static unsigned int input_fetch_keycode(struct input_dev *dev,
787 switch (dev->keycodesize) {
789 return ((u8 *)dev->keycode)[index];
792 return ((u16 *)dev->keycode)[index];
795 return ((u32 *)dev->keycode)[index];
799 static int input_default_getkeycode(struct input_dev *dev,
800 struct input_keymap_entry *ke)
805 if (!dev->keycodesize)
808 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
811 error = input_scancode_to_scalar(ke, &index);
816 if (index >= dev->keycodemax)
819 ke->keycode = input_fetch_keycode(dev, index);
821 ke->len = sizeof(index);
822 memcpy(ke->scancode, &index, sizeof(index));
827 static int input_default_setkeycode(struct input_dev *dev,
828 const struct input_keymap_entry *ke,
829 unsigned int *old_keycode)
835 if (!dev->keycodesize)
838 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
841 error = input_scancode_to_scalar(ke, &index);
846 if (index >= dev->keycodemax)
849 if (dev->keycodesize < sizeof(ke->keycode) &&
850 (ke->keycode >> (dev->keycodesize * 8)))
853 switch (dev->keycodesize) {
855 u8 *k = (u8 *)dev->keycode;
856 *old_keycode = k[index];
857 k[index] = ke->keycode;
861 u16 *k = (u16 *)dev->keycode;
862 *old_keycode = k[index];
863 k[index] = ke->keycode;
867 u32 *k = (u32 *)dev->keycode;
868 *old_keycode = k[index];
869 k[index] = ke->keycode;
874 if (*old_keycode <= KEY_MAX) {
875 __clear_bit(*old_keycode, dev->keybit);
876 for (i = 0; i < dev->keycodemax; i++) {
877 if (input_fetch_keycode(dev, i) == *old_keycode) {
878 __set_bit(*old_keycode, dev->keybit);
879 /* Setting the bit twice is useless, so break */
885 __set_bit(ke->keycode, dev->keybit);
890 * input_get_keycode - retrieve keycode currently mapped to a given scancode
891 * @dev: input device which keymap is being queried
894 * This function should be called by anyone interested in retrieving current
895 * keymap. Presently evdev handlers use it.
897 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
902 spin_lock_irqsave(&dev->event_lock, flags);
903 retval = dev->getkeycode(dev, ke);
904 spin_unlock_irqrestore(&dev->event_lock, flags);
908 EXPORT_SYMBOL(input_get_keycode);
911 * input_set_keycode - attribute a keycode to a given scancode
912 * @dev: input device which keymap is being updated
913 * @ke: new keymap entry
915 * This function should be called by anyone needing to update current
916 * keymap. Presently keyboard and evdev handlers use it.
918 int input_set_keycode(struct input_dev *dev,
919 const struct input_keymap_entry *ke)
922 unsigned int old_keycode;
925 if (ke->keycode > KEY_MAX)
928 spin_lock_irqsave(&dev->event_lock, flags);
930 retval = dev->setkeycode(dev, ke, &old_keycode);
934 /* Make sure KEY_RESERVED did not get enabled. */
935 __clear_bit(KEY_RESERVED, dev->keybit);
938 * Simulate keyup event if keycode is not present
939 * in the keymap anymore
941 if (old_keycode > KEY_MAX) {
942 dev_warn(dev->dev.parent ?: &dev->dev,
943 "%s: got too big old keycode %#x\n",
944 __func__, old_keycode);
945 } else if (test_bit(EV_KEY, dev->evbit) &&
946 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
947 __test_and_clear_bit(old_keycode, dev->key)) {
949 * We have to use input_event_dispose() here directly instead
950 * of input_handle_event() because the key we want to release
951 * here is considered no longer supported by the device and
952 * input_handle_event() will ignore it.
954 input_event_dispose(dev, INPUT_PASS_TO_HANDLERS,
955 EV_KEY, old_keycode, 0);
956 input_event_dispose(dev, INPUT_PASS_TO_HANDLERS | INPUT_FLUSH,
957 EV_SYN, SYN_REPORT, 1);
961 spin_unlock_irqrestore(&dev->event_lock, flags);
965 EXPORT_SYMBOL(input_set_keycode);
967 bool input_match_device_id(const struct input_dev *dev,
968 const struct input_device_id *id)
970 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
971 if (id->bustype != dev->id.bustype)
974 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
975 if (id->vendor != dev->id.vendor)
978 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
979 if (id->product != dev->id.product)
982 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
983 if (id->version != dev->id.version)
986 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
987 !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
988 !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
989 !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
990 !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
991 !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
992 !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
993 !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
994 !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
995 !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
1001 EXPORT_SYMBOL(input_match_device_id);
1003 static const struct input_device_id *input_match_device(struct input_handler *handler,
1004 struct input_dev *dev)
1006 const struct input_device_id *id;
1008 for (id = handler->id_table; id->flags || id->driver_info; id++) {
1009 if (input_match_device_id(dev, id) &&
1010 (!handler->match || handler->match(handler, dev))) {
1018 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1020 const struct input_device_id *id;
1023 id = input_match_device(handler, dev);
1027 error = handler->connect(handler, dev, id);
1028 if (error && error != -ENODEV)
1029 pr_err("failed to attach handler %s to device %s, error: %d\n",
1030 handler->name, kobject_name(&dev->dev.kobj), error);
1035 #ifdef CONFIG_COMPAT
1037 static int input_bits_to_string(char *buf, int buf_size,
1038 unsigned long bits, bool skip_empty)
1042 if (in_compat_syscall()) {
1043 u32 dword = bits >> 32;
1044 if (dword || !skip_empty)
1045 len += snprintf(buf, buf_size, "%x ", dword);
1047 dword = bits & 0xffffffffUL;
1048 if (dword || !skip_empty || len)
1049 len += snprintf(buf + len, max(buf_size - len, 0),
1052 if (bits || !skip_empty)
1053 len += snprintf(buf, buf_size, "%lx", bits);
1059 #else /* !CONFIG_COMPAT */
1061 static int input_bits_to_string(char *buf, int buf_size,
1062 unsigned long bits, bool skip_empty)
1064 return bits || !skip_empty ?
1065 snprintf(buf, buf_size, "%lx", bits) : 0;
1070 #ifdef CONFIG_PROC_FS
1072 static struct proc_dir_entry *proc_bus_input_dir;
1073 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1074 static int input_devices_state;
1076 static inline void input_wakeup_procfs_readers(void)
1078 input_devices_state++;
1079 wake_up(&input_devices_poll_wait);
1082 struct input_seq_state {
1084 bool mutex_acquired;
1085 int input_devices_state;
1088 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1090 struct seq_file *seq = file->private_data;
1091 struct input_seq_state *state = seq->private;
1093 poll_wait(file, &input_devices_poll_wait, wait);
1094 if (state->input_devices_state != input_devices_state) {
1095 state->input_devices_state = input_devices_state;
1096 return EPOLLIN | EPOLLRDNORM;
1102 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1104 struct input_seq_state *state = seq->private;
1107 error = mutex_lock_interruptible(&input_mutex);
1109 state->mutex_acquired = false;
1110 return ERR_PTR(error);
1113 state->mutex_acquired = true;
1115 return seq_list_start(&input_dev_list, *pos);
1118 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1120 return seq_list_next(v, &input_dev_list, pos);
1123 static void input_seq_stop(struct seq_file *seq, void *v)
1125 struct input_seq_state *state = seq->private;
1127 if (state->mutex_acquired)
1128 mutex_unlock(&input_mutex);
1131 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1132 unsigned long *bitmap, int max)
1135 bool skip_empty = true;
1138 seq_printf(seq, "B: %s=", name);
1140 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1141 if (input_bits_to_string(buf, sizeof(buf),
1142 bitmap[i], skip_empty)) {
1144 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1149 * If no output was produced print a single 0.
1154 seq_putc(seq, '\n');
1157 static int input_devices_seq_show(struct seq_file *seq, void *v)
1159 struct input_dev *dev = container_of(v, struct input_dev, node);
1160 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1161 struct input_handle *handle;
1163 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1164 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1166 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1167 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1168 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1169 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1170 seq_puts(seq, "H: Handlers=");
1172 list_for_each_entry(handle, &dev->h_list, d_node)
1173 seq_printf(seq, "%s ", handle->name);
1174 seq_putc(seq, '\n');
1176 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1178 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1179 if (test_bit(EV_KEY, dev->evbit))
1180 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1181 if (test_bit(EV_REL, dev->evbit))
1182 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1183 if (test_bit(EV_ABS, dev->evbit))
1184 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1185 if (test_bit(EV_MSC, dev->evbit))
1186 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1187 if (test_bit(EV_LED, dev->evbit))
1188 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1189 if (test_bit(EV_SND, dev->evbit))
1190 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1191 if (test_bit(EV_FF, dev->evbit))
1192 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1193 if (test_bit(EV_SW, dev->evbit))
1194 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1196 seq_putc(seq, '\n');
1202 static const struct seq_operations input_devices_seq_ops = {
1203 .start = input_devices_seq_start,
1204 .next = input_devices_seq_next,
1205 .stop = input_seq_stop,
1206 .show = input_devices_seq_show,
1209 static int input_proc_devices_open(struct inode *inode, struct file *file)
1211 return seq_open_private(file, &input_devices_seq_ops,
1212 sizeof(struct input_seq_state));
1215 static const struct proc_ops input_devices_proc_ops = {
1216 .proc_open = input_proc_devices_open,
1217 .proc_poll = input_proc_devices_poll,
1218 .proc_read = seq_read,
1219 .proc_lseek = seq_lseek,
1220 .proc_release = seq_release_private,
1223 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1225 struct input_seq_state *state = seq->private;
1228 error = mutex_lock_interruptible(&input_mutex);
1230 state->mutex_acquired = false;
1231 return ERR_PTR(error);
1234 state->mutex_acquired = true;
1237 return seq_list_start(&input_handler_list, *pos);
1240 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1242 struct input_seq_state *state = seq->private;
1244 state->pos = *pos + 1;
1245 return seq_list_next(v, &input_handler_list, pos);
1248 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1250 struct input_handler *handler = container_of(v, struct input_handler, node);
1251 struct input_seq_state *state = seq->private;
1253 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1254 if (handler->filter)
1255 seq_puts(seq, " (filter)");
1256 if (handler->legacy_minors)
1257 seq_printf(seq, " Minor=%d", handler->minor);
1258 seq_putc(seq, '\n');
1263 static const struct seq_operations input_handlers_seq_ops = {
1264 .start = input_handlers_seq_start,
1265 .next = input_handlers_seq_next,
1266 .stop = input_seq_stop,
1267 .show = input_handlers_seq_show,
1270 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1272 return seq_open_private(file, &input_handlers_seq_ops,
1273 sizeof(struct input_seq_state));
1276 static const struct proc_ops input_handlers_proc_ops = {
1277 .proc_open = input_proc_handlers_open,
1278 .proc_read = seq_read,
1279 .proc_lseek = seq_lseek,
1280 .proc_release = seq_release_private,
1283 static int __init input_proc_init(void)
1285 struct proc_dir_entry *entry;
1287 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1288 if (!proc_bus_input_dir)
1291 entry = proc_create("devices", 0, proc_bus_input_dir,
1292 &input_devices_proc_ops);
1296 entry = proc_create("handlers", 0, proc_bus_input_dir,
1297 &input_handlers_proc_ops);
1303 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1304 fail1: remove_proc_entry("bus/input", NULL);
1308 static void input_proc_exit(void)
1310 remove_proc_entry("devices", proc_bus_input_dir);
1311 remove_proc_entry("handlers", proc_bus_input_dir);
1312 remove_proc_entry("bus/input", NULL);
1315 #else /* !CONFIG_PROC_FS */
1316 static inline void input_wakeup_procfs_readers(void) { }
1317 static inline int input_proc_init(void) { return 0; }
1318 static inline void input_proc_exit(void) { }
1321 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1322 static ssize_t input_dev_show_##name(struct device *dev, \
1323 struct device_attribute *attr, \
1326 struct input_dev *input_dev = to_input_dev(dev); \
1328 return sysfs_emit(buf, "%s\n", \
1329 input_dev->name ? input_dev->name : ""); \
1331 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1333 INPUT_DEV_STRING_ATTR_SHOW(name);
1334 INPUT_DEV_STRING_ATTR_SHOW(phys);
1335 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1337 static int input_print_modalias_bits(char *buf, int size,
1338 char name, const unsigned long *bm,
1339 unsigned int min_bit, unsigned int max_bit)
1344 len += snprintf(buf, max(size, 0), "%c", name);
1345 for_each_set_bit_from(bit, bm, max_bit)
1346 len += snprintf(buf + len, max(size - len, 0), "%X,", bit);
1350 static int input_print_modalias_parts(char *buf, int size, int full_len,
1351 const struct input_dev *id)
1353 int len, klen, remainder, space;
1355 len = snprintf(buf, max(size, 0),
1356 "input:b%04Xv%04Xp%04Xe%04X-",
1357 id->id.bustype, id->id.vendor,
1358 id->id.product, id->id.version);
1360 len += input_print_modalias_bits(buf + len, size - len,
1361 'e', id->evbit, 0, EV_MAX);
1364 * Calculate the remaining space in the buffer making sure we
1365 * have place for the terminating 0.
1367 space = max(size - (len + 1), 0);
1369 klen = input_print_modalias_bits(buf + len, size - len,
1370 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1374 * If we have more data than we can fit in the buffer, check
1375 * if we can trim key data to fit in the rest. We will indicate
1376 * that key data is incomplete by adding "+" sign at the end, like
1377 * this: * "k1,2,3,45,+,".
1379 * Note that we shortest key info (if present) is "k+," so we
1380 * can only try to trim if key data is longer than that.
1382 if (full_len && size < full_len + 1 && klen > 3) {
1383 remainder = full_len - len;
1385 * We can only trim if we have space for the remainder
1386 * and also for at least "k+," which is 3 more characters.
1388 if (remainder <= space - 3) {
1390 * We are guaranteed to have 'k' in the buffer, so
1391 * we need at least 3 additional bytes for storing
1392 * "+," in addition to the remainder.
1394 for (int i = size - 1 - remainder - 3; i >= 0; i--) {
1395 if (buf[i] == 'k' || buf[i] == ',') {
1396 strcpy(buf + i + 1, "+,");
1397 len = i + 3; /* Not counting '\0' */
1404 len += input_print_modalias_bits(buf + len, size - len,
1405 'r', id->relbit, 0, REL_MAX);
1406 len += input_print_modalias_bits(buf + len, size - len,
1407 'a', id->absbit, 0, ABS_MAX);
1408 len += input_print_modalias_bits(buf + len, size - len,
1409 'm', id->mscbit, 0, MSC_MAX);
1410 len += input_print_modalias_bits(buf + len, size - len,
1411 'l', id->ledbit, 0, LED_MAX);
1412 len += input_print_modalias_bits(buf + len, size - len,
1413 's', id->sndbit, 0, SND_MAX);
1414 len += input_print_modalias_bits(buf + len, size - len,
1415 'f', id->ffbit, 0, FF_MAX);
1416 len += input_print_modalias_bits(buf + len, size - len,
1417 'w', id->swbit, 0, SW_MAX);
1422 static int input_print_modalias(char *buf, int size, const struct input_dev *id)
1427 * Printing is done in 2 passes: first one figures out total length
1428 * needed for the modalias string, second one will try to trim key
1429 * data in case when buffer is too small for the entire modalias.
1430 * If the buffer is too small regardless, it will fill as much as it
1431 * can (without trimming key data) into the buffer and leave it to
1432 * the caller to figure out what to do with the result.
1434 full_len = input_print_modalias_parts(NULL, 0, 0, id);
1435 return input_print_modalias_parts(buf, size, full_len, id);
1438 static ssize_t input_dev_show_modalias(struct device *dev,
1439 struct device_attribute *attr,
1442 struct input_dev *id = to_input_dev(dev);
1445 len = input_print_modalias(buf, PAGE_SIZE, id);
1446 if (len < PAGE_SIZE - 2)
1447 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1449 return min_t(int, len, PAGE_SIZE);
1451 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1453 static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1454 int max, int add_cr);
1456 static ssize_t input_dev_show_properties(struct device *dev,
1457 struct device_attribute *attr,
1460 struct input_dev *input_dev = to_input_dev(dev);
1461 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1462 INPUT_PROP_MAX, true);
1463 return min_t(int, len, PAGE_SIZE);
1465 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1467 static int input_inhibit_device(struct input_dev *dev);
1468 static int input_uninhibit_device(struct input_dev *dev);
1470 static ssize_t inhibited_show(struct device *dev,
1471 struct device_attribute *attr,
1474 struct input_dev *input_dev = to_input_dev(dev);
1476 return sysfs_emit(buf, "%d\n", input_dev->inhibited);
1479 static ssize_t inhibited_store(struct device *dev,
1480 struct device_attribute *attr, const char *buf,
1483 struct input_dev *input_dev = to_input_dev(dev);
1487 if (kstrtobool(buf, &inhibited))
1491 rv = input_inhibit_device(input_dev);
1493 rv = input_uninhibit_device(input_dev);
1501 static DEVICE_ATTR_RW(inhibited);
1503 static struct attribute *input_dev_attrs[] = {
1504 &dev_attr_name.attr,
1505 &dev_attr_phys.attr,
1506 &dev_attr_uniq.attr,
1507 &dev_attr_modalias.attr,
1508 &dev_attr_properties.attr,
1509 &dev_attr_inhibited.attr,
1513 static const struct attribute_group input_dev_attr_group = {
1514 .attrs = input_dev_attrs,
1517 #define INPUT_DEV_ID_ATTR(name) \
1518 static ssize_t input_dev_show_id_##name(struct device *dev, \
1519 struct device_attribute *attr, \
1522 struct input_dev *input_dev = to_input_dev(dev); \
1523 return sysfs_emit(buf, "%04x\n", input_dev->id.name); \
1525 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1527 INPUT_DEV_ID_ATTR(bustype);
1528 INPUT_DEV_ID_ATTR(vendor);
1529 INPUT_DEV_ID_ATTR(product);
1530 INPUT_DEV_ID_ATTR(version);
1532 static struct attribute *input_dev_id_attrs[] = {
1533 &dev_attr_bustype.attr,
1534 &dev_attr_vendor.attr,
1535 &dev_attr_product.attr,
1536 &dev_attr_version.attr,
1540 static const struct attribute_group input_dev_id_attr_group = {
1542 .attrs = input_dev_id_attrs,
1545 static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1546 int max, int add_cr)
1550 bool skip_empty = true;
1552 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1553 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1554 bitmap[i], skip_empty);
1558 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1563 * If no output was produced print a single 0.
1566 len = snprintf(buf, buf_size, "%d", 0);
1569 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1574 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1575 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1576 struct device_attribute *attr, \
1579 struct input_dev *input_dev = to_input_dev(dev); \
1580 int len = input_print_bitmap(buf, PAGE_SIZE, \
1581 input_dev->bm##bit, ev##_MAX, \
1583 return min_t(int, len, PAGE_SIZE); \
1585 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1587 INPUT_DEV_CAP_ATTR(EV, ev);
1588 INPUT_DEV_CAP_ATTR(KEY, key);
1589 INPUT_DEV_CAP_ATTR(REL, rel);
1590 INPUT_DEV_CAP_ATTR(ABS, abs);
1591 INPUT_DEV_CAP_ATTR(MSC, msc);
1592 INPUT_DEV_CAP_ATTR(LED, led);
1593 INPUT_DEV_CAP_ATTR(SND, snd);
1594 INPUT_DEV_CAP_ATTR(FF, ff);
1595 INPUT_DEV_CAP_ATTR(SW, sw);
1597 static struct attribute *input_dev_caps_attrs[] = {
1610 static const struct attribute_group input_dev_caps_attr_group = {
1611 .name = "capabilities",
1612 .attrs = input_dev_caps_attrs,
1615 static const struct attribute_group *input_dev_attr_groups[] = {
1616 &input_dev_attr_group,
1617 &input_dev_id_attr_group,
1618 &input_dev_caps_attr_group,
1619 &input_poller_attribute_group,
1623 static void input_dev_release(struct device *device)
1625 struct input_dev *dev = to_input_dev(device);
1627 input_ff_destroy(dev);
1628 input_mt_destroy_slots(dev);
1630 kfree(dev->absinfo);
1634 module_put(THIS_MODULE);
1638 * Input uevent interface - loading event handlers based on
1641 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1642 const char *name, const unsigned long *bitmap, int max)
1646 if (add_uevent_var(env, "%s", name))
1649 len = input_print_bitmap(&env->buf[env->buflen - 1],
1650 sizeof(env->buf) - env->buflen,
1651 bitmap, max, false);
1652 if (len >= (sizeof(env->buf) - env->buflen))
1660 * This is a pretty gross hack. When building uevent data the driver core
1661 * may try adding more environment variables to kobj_uevent_env without
1662 * telling us, so we have no idea how much of the buffer we can use to
1663 * avoid overflows/-ENOMEM elsewhere. To work around this let's artificially
1664 * reduce amount of memory we will use for the modalias environment variable.
1666 * The potential additions are:
1668 * SEQNUM=18446744073709551615 - (%llu - 28 bytes)
1670 * PATH=/sbin:/bin:/usr/sbin:/usr/bin (34 bytes)
1672 * 68 bytes total. Allow extra buffer - 96 bytes
1674 #define UEVENT_ENV_EXTRA_LEN 96
1676 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1677 const struct input_dev *dev)
1681 if (add_uevent_var(env, "MODALIAS="))
1684 len = input_print_modalias(&env->buf[env->buflen - 1],
1685 (int)sizeof(env->buf) - env->buflen -
1686 UEVENT_ENV_EXTRA_LEN,
1688 if (len >= ((int)sizeof(env->buf) - env->buflen -
1689 UEVENT_ENV_EXTRA_LEN))
1696 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1698 int err = add_uevent_var(env, fmt, val); \
1703 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1705 int err = input_add_uevent_bm_var(env, name, bm, max); \
1710 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1712 int err = input_add_uevent_modalias_var(env, dev); \
1717 static int input_dev_uevent(const struct device *device, struct kobj_uevent_env *env)
1719 const struct input_dev *dev = to_input_dev(device);
1721 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1722 dev->id.bustype, dev->id.vendor,
1723 dev->id.product, dev->id.version);
1725 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1727 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1729 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1731 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1733 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1734 if (test_bit(EV_KEY, dev->evbit))
1735 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1736 if (test_bit(EV_REL, dev->evbit))
1737 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1738 if (test_bit(EV_ABS, dev->evbit))
1739 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1740 if (test_bit(EV_MSC, dev->evbit))
1741 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1742 if (test_bit(EV_LED, dev->evbit))
1743 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1744 if (test_bit(EV_SND, dev->evbit))
1745 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1746 if (test_bit(EV_FF, dev->evbit))
1747 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1748 if (test_bit(EV_SW, dev->evbit))
1749 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1751 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1756 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1761 if (!test_bit(EV_##type, dev->evbit)) \
1764 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
1765 active = test_bit(i, dev->bits); \
1766 if (!active && !on) \
1769 dev->event(dev, EV_##type, i, on ? active : 0); \
1773 static void input_dev_toggle(struct input_dev *dev, bool activate)
1778 INPUT_DO_TOGGLE(dev, LED, led, activate);
1779 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1781 if (activate && test_bit(EV_REP, dev->evbit)) {
1782 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1783 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1788 * input_reset_device() - reset/restore the state of input device
1789 * @dev: input device whose state needs to be reset
1791 * This function tries to reset the state of an opened input device and
1792 * bring internal state and state if the hardware in sync with each other.
1793 * We mark all keys as released, restore LED state, repeat rate, etc.
1795 void input_reset_device(struct input_dev *dev)
1797 unsigned long flags;
1799 mutex_lock(&dev->mutex);
1800 spin_lock_irqsave(&dev->event_lock, flags);
1802 input_dev_toggle(dev, true);
1803 if (input_dev_release_keys(dev))
1804 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1806 spin_unlock_irqrestore(&dev->event_lock, flags);
1807 mutex_unlock(&dev->mutex);
1809 EXPORT_SYMBOL(input_reset_device);
1811 static int input_inhibit_device(struct input_dev *dev)
1813 mutex_lock(&dev->mutex);
1822 input_dev_poller_stop(dev->poller);
1825 spin_lock_irq(&dev->event_lock);
1826 input_mt_release_slots(dev);
1827 input_dev_release_keys(dev);
1828 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1829 input_dev_toggle(dev, false);
1830 spin_unlock_irq(&dev->event_lock);
1832 dev->inhibited = true;
1835 mutex_unlock(&dev->mutex);
1839 static int input_uninhibit_device(struct input_dev *dev)
1843 mutex_lock(&dev->mutex);
1845 if (!dev->inhibited)
1850 ret = dev->open(dev);
1855 input_dev_poller_start(dev->poller);
1858 dev->inhibited = false;
1859 spin_lock_irq(&dev->event_lock);
1860 input_dev_toggle(dev, true);
1861 spin_unlock_irq(&dev->event_lock);
1864 mutex_unlock(&dev->mutex);
1868 static int input_dev_suspend(struct device *dev)
1870 struct input_dev *input_dev = to_input_dev(dev);
1872 spin_lock_irq(&input_dev->event_lock);
1875 * Keys that are pressed now are unlikely to be
1876 * still pressed when we resume.
1878 if (input_dev_release_keys(input_dev))
1879 input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1881 /* Turn off LEDs and sounds, if any are active. */
1882 input_dev_toggle(input_dev, false);
1884 spin_unlock_irq(&input_dev->event_lock);
1889 static int input_dev_resume(struct device *dev)
1891 struct input_dev *input_dev = to_input_dev(dev);
1893 spin_lock_irq(&input_dev->event_lock);
1895 /* Restore state of LEDs and sounds, if any were active. */
1896 input_dev_toggle(input_dev, true);
1898 spin_unlock_irq(&input_dev->event_lock);
1903 static int input_dev_freeze(struct device *dev)
1905 struct input_dev *input_dev = to_input_dev(dev);
1907 spin_lock_irq(&input_dev->event_lock);
1910 * Keys that are pressed now are unlikely to be
1911 * still pressed when we resume.
1913 if (input_dev_release_keys(input_dev))
1914 input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1916 spin_unlock_irq(&input_dev->event_lock);
1921 static int input_dev_poweroff(struct device *dev)
1923 struct input_dev *input_dev = to_input_dev(dev);
1925 spin_lock_irq(&input_dev->event_lock);
1927 /* Turn off LEDs and sounds, if any are active. */
1928 input_dev_toggle(input_dev, false);
1930 spin_unlock_irq(&input_dev->event_lock);
1935 static const struct dev_pm_ops input_dev_pm_ops = {
1936 .suspend = input_dev_suspend,
1937 .resume = input_dev_resume,
1938 .freeze = input_dev_freeze,
1939 .poweroff = input_dev_poweroff,
1940 .restore = input_dev_resume,
1943 static const struct device_type input_dev_type = {
1944 .groups = input_dev_attr_groups,
1945 .release = input_dev_release,
1946 .uevent = input_dev_uevent,
1947 .pm = pm_sleep_ptr(&input_dev_pm_ops),
1950 static char *input_devnode(const struct device *dev, umode_t *mode)
1952 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1955 const struct class input_class = {
1957 .devnode = input_devnode,
1959 EXPORT_SYMBOL_GPL(input_class);
1962 * input_allocate_device - allocate memory for new input device
1964 * Returns prepared struct input_dev or %NULL.
1966 * NOTE: Use input_free_device() to free devices that have not been
1967 * registered; input_unregister_device() should be used for already
1968 * registered devices.
1970 struct input_dev *input_allocate_device(void)
1972 static atomic_t input_no = ATOMIC_INIT(-1);
1973 struct input_dev *dev;
1975 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1980 * Start with space for SYN_REPORT + 7 EV_KEY/EV_MSC events + 2 spare,
1981 * see input_estimate_events_per_packet(). We will tune the number
1982 * when we register the device.
1985 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
1991 mutex_init(&dev->mutex);
1992 spin_lock_init(&dev->event_lock);
1993 timer_setup(&dev->timer, NULL, 0);
1994 INIT_LIST_HEAD(&dev->h_list);
1995 INIT_LIST_HEAD(&dev->node);
1997 dev->dev.type = &input_dev_type;
1998 dev->dev.class = &input_class;
1999 device_initialize(&dev->dev);
2001 * From this point on we can no longer simply "kfree(dev)", we need
2002 * to use input_free_device() so that device core properly frees its
2003 * resources associated with the input device.
2006 dev_set_name(&dev->dev, "input%lu",
2007 (unsigned long)atomic_inc_return(&input_no));
2009 __module_get(THIS_MODULE);
2013 EXPORT_SYMBOL(input_allocate_device);
2015 struct input_devres {
2016 struct input_dev *input;
2019 static int devm_input_device_match(struct device *dev, void *res, void *data)
2021 struct input_devres *devres = res;
2023 return devres->input == data;
2026 static void devm_input_device_release(struct device *dev, void *res)
2028 struct input_devres *devres = res;
2029 struct input_dev *input = devres->input;
2031 dev_dbg(dev, "%s: dropping reference to %s\n",
2032 __func__, dev_name(&input->dev));
2033 input_put_device(input);
2037 * devm_input_allocate_device - allocate managed input device
2038 * @dev: device owning the input device being created
2040 * Returns prepared struct input_dev or %NULL.
2042 * Managed input devices do not need to be explicitly unregistered or
2043 * freed as it will be done automatically when owner device unbinds from
2044 * its driver (or binding fails). Once managed input device is allocated,
2045 * it is ready to be set up and registered in the same fashion as regular
2046 * input device. There are no special devm_input_device_[un]register()
2047 * variants, regular ones work with both managed and unmanaged devices,
2048 * should you need them. In most cases however, managed input device need
2049 * not be explicitly unregistered or freed.
2051 * NOTE: the owner device is set up as parent of input device and users
2052 * should not override it.
2054 struct input_dev *devm_input_allocate_device(struct device *dev)
2056 struct input_dev *input;
2057 struct input_devres *devres;
2059 devres = devres_alloc(devm_input_device_release,
2060 sizeof(*devres), GFP_KERNEL);
2064 input = input_allocate_device();
2066 devres_free(devres);
2070 input->dev.parent = dev;
2071 input->devres_managed = true;
2073 devres->input = input;
2074 devres_add(dev, devres);
2078 EXPORT_SYMBOL(devm_input_allocate_device);
2081 * input_free_device - free memory occupied by input_dev structure
2082 * @dev: input device to free
2084 * This function should only be used if input_register_device()
2085 * was not called yet or if it failed. Once device was registered
2086 * use input_unregister_device() and memory will be freed once last
2087 * reference to the device is dropped.
2089 * Device should be allocated by input_allocate_device().
2091 * NOTE: If there are references to the input device then memory
2092 * will not be freed until last reference is dropped.
2094 void input_free_device(struct input_dev *dev)
2097 if (dev->devres_managed)
2098 WARN_ON(devres_destroy(dev->dev.parent,
2099 devm_input_device_release,
2100 devm_input_device_match,
2102 input_put_device(dev);
2105 EXPORT_SYMBOL(input_free_device);
2108 * input_set_timestamp - set timestamp for input events
2109 * @dev: input device to set timestamp for
2110 * @timestamp: the time at which the event has occurred
2111 * in CLOCK_MONOTONIC
2113 * This function is intended to provide to the input system a more
2114 * accurate time of when an event actually occurred. The driver should
2115 * call this function as soon as a timestamp is acquired ensuring
2116 * clock conversions in input_set_timestamp are done correctly.
2118 * The system entering suspend state between timestamp acquisition and
2119 * calling input_set_timestamp can result in inaccurate conversions.
2121 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
2123 dev->timestamp[INPUT_CLK_MONO] = timestamp;
2124 dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
2125 dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
2128 EXPORT_SYMBOL(input_set_timestamp);
2131 * input_get_timestamp - get timestamp for input events
2132 * @dev: input device to get timestamp from
2134 * A valid timestamp is a timestamp of non-zero value.
2136 ktime_t *input_get_timestamp(struct input_dev *dev)
2138 const ktime_t invalid_timestamp = ktime_set(0, 0);
2140 if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
2141 input_set_timestamp(dev, ktime_get());
2143 return dev->timestamp;
2145 EXPORT_SYMBOL(input_get_timestamp);
2148 * input_set_capability - mark device as capable of a certain event
2149 * @dev: device that is capable of emitting or accepting event
2150 * @type: type of the event (EV_KEY, EV_REL, etc...)
2153 * In addition to setting up corresponding bit in appropriate capability
2154 * bitmap the function also adjusts dev->evbit.
2156 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
2158 if (type < EV_CNT && input_max_code[type] &&
2159 code > input_max_code[type]) {
2160 pr_err("%s: invalid code %u for type %u\n", __func__, code,
2168 __set_bit(code, dev->keybit);
2172 __set_bit(code, dev->relbit);
2176 input_alloc_absinfo(dev);
2177 __set_bit(code, dev->absbit);
2181 __set_bit(code, dev->mscbit);
2185 __set_bit(code, dev->swbit);
2189 __set_bit(code, dev->ledbit);
2193 __set_bit(code, dev->sndbit);
2197 __set_bit(code, dev->ffbit);
2205 pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2210 __set_bit(type, dev->evbit);
2212 EXPORT_SYMBOL(input_set_capability);
2214 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2218 unsigned int events;
2221 mt_slots = dev->mt->num_slots;
2222 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2223 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2224 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1;
2225 mt_slots = clamp(mt_slots, 2, 32);
2226 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2232 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2234 if (test_bit(EV_ABS, dev->evbit))
2235 for_each_set_bit(i, dev->absbit, ABS_CNT)
2236 events += input_is_mt_axis(i) ? mt_slots : 1;
2238 if (test_bit(EV_REL, dev->evbit))
2239 events += bitmap_weight(dev->relbit, REL_CNT);
2241 /* Make room for KEY and MSC events */
2247 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
2249 if (!test_bit(EV_##type, dev->evbit)) \
2250 memset(dev->bits##bit, 0, \
2251 sizeof(dev->bits##bit)); \
2254 static void input_cleanse_bitmasks(struct input_dev *dev)
2256 INPUT_CLEANSE_BITMASK(dev, KEY, key);
2257 INPUT_CLEANSE_BITMASK(dev, REL, rel);
2258 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2259 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2260 INPUT_CLEANSE_BITMASK(dev, LED, led);
2261 INPUT_CLEANSE_BITMASK(dev, SND, snd);
2262 INPUT_CLEANSE_BITMASK(dev, FF, ff);
2263 INPUT_CLEANSE_BITMASK(dev, SW, sw);
2266 static void __input_unregister_device(struct input_dev *dev)
2268 struct input_handle *handle, *next;
2270 input_disconnect_device(dev);
2272 mutex_lock(&input_mutex);
2274 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2275 handle->handler->disconnect(handle);
2276 WARN_ON(!list_empty(&dev->h_list));
2278 del_timer_sync(&dev->timer);
2279 list_del_init(&dev->node);
2281 input_wakeup_procfs_readers();
2283 mutex_unlock(&input_mutex);
2285 device_del(&dev->dev);
2288 static void devm_input_device_unregister(struct device *dev, void *res)
2290 struct input_devres *devres = res;
2291 struct input_dev *input = devres->input;
2293 dev_dbg(dev, "%s: unregistering device %s\n",
2294 __func__, dev_name(&input->dev));
2295 __input_unregister_device(input);
2299 * Generate software autorepeat event. Note that we take
2300 * dev->event_lock here to avoid racing with input_event
2301 * which may cause keys get "stuck".
2303 static void input_repeat_key(struct timer_list *t)
2305 struct input_dev *dev = from_timer(dev, t, timer);
2306 unsigned long flags;
2308 spin_lock_irqsave(&dev->event_lock, flags);
2310 if (!dev->inhibited &&
2311 test_bit(dev->repeat_key, dev->key) &&
2312 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
2314 input_set_timestamp(dev, ktime_get());
2315 input_handle_event(dev, EV_KEY, dev->repeat_key, 2);
2316 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
2318 if (dev->rep[REP_PERIOD])
2319 mod_timer(&dev->timer, jiffies +
2320 msecs_to_jiffies(dev->rep[REP_PERIOD]));
2323 spin_unlock_irqrestore(&dev->event_lock, flags);
2327 * input_enable_softrepeat - enable software autorepeat
2328 * @dev: input device
2329 * @delay: repeat delay
2330 * @period: repeat period
2332 * Enable software autorepeat on the input device.
2334 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2336 dev->timer.function = input_repeat_key;
2337 dev->rep[REP_DELAY] = delay;
2338 dev->rep[REP_PERIOD] = period;
2340 EXPORT_SYMBOL(input_enable_softrepeat);
2342 bool input_device_enabled(struct input_dev *dev)
2344 lockdep_assert_held(&dev->mutex);
2346 return !dev->inhibited && dev->users > 0;
2348 EXPORT_SYMBOL_GPL(input_device_enabled);
2350 static int input_device_tune_vals(struct input_dev *dev)
2352 struct input_value *vals;
2353 unsigned int packet_size;
2354 unsigned int max_vals;
2356 packet_size = input_estimate_events_per_packet(dev);
2357 if (dev->hint_events_per_packet < packet_size)
2358 dev->hint_events_per_packet = packet_size;
2360 max_vals = dev->hint_events_per_packet + 2;
2361 if (dev->max_vals >= max_vals)
2364 vals = kcalloc(max_vals, sizeof(*vals), GFP_KERNEL);
2368 spin_lock_irq(&dev->event_lock);
2369 dev->max_vals = max_vals;
2370 swap(dev->vals, vals);
2371 spin_unlock_irq(&dev->event_lock);
2373 /* Because of swap() above, this frees the old vals memory */
2380 * input_register_device - register device with input core
2381 * @dev: device to be registered
2383 * This function registers device with input core. The device must be
2384 * allocated with input_allocate_device() and all it's capabilities
2385 * set up before registering.
2386 * If function fails the device must be freed with input_free_device().
2387 * Once device has been successfully registered it can be unregistered
2388 * with input_unregister_device(); input_free_device() should not be
2389 * called in this case.
2391 * Note that this function is also used to register managed input devices
2392 * (ones allocated with devm_input_allocate_device()). Such managed input
2393 * devices need not be explicitly unregistered or freed, their tear down
2394 * is controlled by the devres infrastructure. It is also worth noting
2395 * that tear down of managed input devices is internally a 2-step process:
2396 * registered managed input device is first unregistered, but stays in
2397 * memory and can still handle input_event() calls (although events will
2398 * not be delivered anywhere). The freeing of managed input device will
2399 * happen later, when devres stack is unwound to the point where device
2400 * allocation was made.
2402 int input_register_device(struct input_dev *dev)
2404 struct input_devres *devres = NULL;
2405 struct input_handler *handler;
2409 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2411 "Absolute device without dev->absinfo, refusing to register\n");
2415 if (dev->devres_managed) {
2416 devres = devres_alloc(devm_input_device_unregister,
2417 sizeof(*devres), GFP_KERNEL);
2421 devres->input = dev;
2424 /* Every input device generates EV_SYN/SYN_REPORT events. */
2425 __set_bit(EV_SYN, dev->evbit);
2427 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2428 __clear_bit(KEY_RESERVED, dev->keybit);
2430 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2431 input_cleanse_bitmasks(dev);
2433 error = input_device_tune_vals(dev);
2435 goto err_devres_free;
2438 * If delay and period are pre-set by the driver, then autorepeating
2439 * is handled by the driver itself and we don't do it in input.c.
2441 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2442 input_enable_softrepeat(dev, 250, 33);
2444 if (!dev->getkeycode)
2445 dev->getkeycode = input_default_getkeycode;
2447 if (!dev->setkeycode)
2448 dev->setkeycode = input_default_setkeycode;
2451 input_dev_poller_finalize(dev->poller);
2453 error = device_add(&dev->dev);
2455 goto err_devres_free;
2457 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2458 pr_info("%s as %s\n",
2459 dev->name ? dev->name : "Unspecified device",
2460 path ? path : "N/A");
2463 error = mutex_lock_interruptible(&input_mutex);
2465 goto err_device_del;
2467 list_add_tail(&dev->node, &input_dev_list);
2469 list_for_each_entry(handler, &input_handler_list, node)
2470 input_attach_handler(dev, handler);
2472 input_wakeup_procfs_readers();
2474 mutex_unlock(&input_mutex);
2476 if (dev->devres_managed) {
2477 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2478 __func__, dev_name(&dev->dev));
2479 devres_add(dev->dev.parent, devres);
2484 device_del(&dev->dev);
2486 devres_free(devres);
2489 EXPORT_SYMBOL(input_register_device);
2492 * input_unregister_device - unregister previously registered device
2493 * @dev: device to be unregistered
2495 * This function unregisters an input device. Once device is unregistered
2496 * the caller should not try to access it as it may get freed at any moment.
2498 void input_unregister_device(struct input_dev *dev)
2500 if (dev->devres_managed) {
2501 WARN_ON(devres_destroy(dev->dev.parent,
2502 devm_input_device_unregister,
2503 devm_input_device_match,
2505 __input_unregister_device(dev);
2507 * We do not do input_put_device() here because it will be done
2508 * when 2nd devres fires up.
2511 __input_unregister_device(dev);
2512 input_put_device(dev);
2515 EXPORT_SYMBOL(input_unregister_device);
2517 static int input_handler_check_methods(const struct input_handler *handler)
2521 if (handler->filter)
2523 if (handler->events)
2529 pr_err("%s: only one event processing method can be defined (%s)\n",
2530 __func__, handler->name);
2538 * An implementation of input_handler's events() method that simply
2539 * invokes handler->event() method for each event one by one.
2541 static unsigned int input_handler_events_default(struct input_handle *handle,
2542 struct input_value *vals,
2545 struct input_handler *handler = handle->handler;
2546 struct input_value *v;
2548 for (v = vals; v != vals + count; v++)
2549 handler->event(handle, v->type, v->code, v->value);
2555 * An implementation of input_handler's events() method that invokes
2556 * handler->filter() method for each event one by one and removes events
2557 * that were filtered out from the "vals" array.
2559 static unsigned int input_handler_events_filter(struct input_handle *handle,
2560 struct input_value *vals,
2563 struct input_handler *handler = handle->handler;
2564 struct input_value *end = vals;
2565 struct input_value *v;
2567 for (v = vals; v != vals + count; v++) {
2568 if (handler->filter(handle, v->type, v->code, v->value))
2579 * An implementation of input_handler's events() method that does nothing.
2581 static unsigned int input_handler_events_null(struct input_handle *handle,
2582 struct input_value *vals,
2589 * input_register_handler - register a new input handler
2590 * @handler: handler to be registered
2592 * This function registers a new input handler (interface) for input
2593 * devices in the system and attaches it to all input devices that
2594 * are compatible with the handler.
2596 int input_register_handler(struct input_handler *handler)
2598 struct input_dev *dev;
2601 error = input_handler_check_methods(handler);
2605 INIT_LIST_HEAD(&handler->h_list);
2607 if (handler->filter)
2608 handler->events = input_handler_events_filter;
2609 else if (handler->event)
2610 handler->events = input_handler_events_default;
2611 else if (!handler->events)
2612 handler->events = input_handler_events_null;
2614 error = mutex_lock_interruptible(&input_mutex);
2618 list_add_tail(&handler->node, &input_handler_list);
2620 list_for_each_entry(dev, &input_dev_list, node)
2621 input_attach_handler(dev, handler);
2623 input_wakeup_procfs_readers();
2625 mutex_unlock(&input_mutex);
2628 EXPORT_SYMBOL(input_register_handler);
2631 * input_unregister_handler - unregisters an input handler
2632 * @handler: handler to be unregistered
2634 * This function disconnects a handler from its input devices and
2635 * removes it from lists of known handlers.
2637 void input_unregister_handler(struct input_handler *handler)
2639 struct input_handle *handle, *next;
2641 mutex_lock(&input_mutex);
2643 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2644 handler->disconnect(handle);
2645 WARN_ON(!list_empty(&handler->h_list));
2647 list_del_init(&handler->node);
2649 input_wakeup_procfs_readers();
2651 mutex_unlock(&input_mutex);
2653 EXPORT_SYMBOL(input_unregister_handler);
2656 * input_handler_for_each_handle - handle iterator
2657 * @handler: input handler to iterate
2658 * @data: data for the callback
2659 * @fn: function to be called for each handle
2661 * Iterate over @bus's list of devices, and call @fn for each, passing
2662 * it @data and stop when @fn returns a non-zero value. The function is
2663 * using RCU to traverse the list and therefore may be using in atomic
2664 * contexts. The @fn callback is invoked from RCU critical section and
2665 * thus must not sleep.
2667 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2668 int (*fn)(struct input_handle *, void *))
2670 struct input_handle *handle;
2675 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2676 retval = fn(handle, data);
2685 EXPORT_SYMBOL(input_handler_for_each_handle);
2688 * input_register_handle - register a new input handle
2689 * @handle: handle to register
2691 * This function puts a new input handle onto device's
2692 * and handler's lists so that events can flow through
2693 * it once it is opened using input_open_device().
2695 * This function is supposed to be called from handler's
2698 int input_register_handle(struct input_handle *handle)
2700 struct input_handler *handler = handle->handler;
2701 struct input_dev *dev = handle->dev;
2705 * We take dev->mutex here to prevent race with
2706 * input_release_device().
2708 error = mutex_lock_interruptible(&dev->mutex);
2713 * Filters go to the head of the list, normal handlers
2716 if (handler->filter)
2717 list_add_rcu(&handle->d_node, &dev->h_list);
2719 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2721 mutex_unlock(&dev->mutex);
2724 * Since we are supposed to be called from ->connect()
2725 * which is mutually exclusive with ->disconnect()
2726 * we can't be racing with input_unregister_handle()
2727 * and so separate lock is not needed here.
2729 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2732 handler->start(handle);
2736 EXPORT_SYMBOL(input_register_handle);
2739 * input_unregister_handle - unregister an input handle
2740 * @handle: handle to unregister
2742 * This function removes input handle from device's
2743 * and handler's lists.
2745 * This function is supposed to be called from handler's
2746 * disconnect() method.
2748 void input_unregister_handle(struct input_handle *handle)
2750 struct input_dev *dev = handle->dev;
2752 list_del_rcu(&handle->h_node);
2755 * Take dev->mutex to prevent race with input_release_device().
2757 mutex_lock(&dev->mutex);
2758 list_del_rcu(&handle->d_node);
2759 mutex_unlock(&dev->mutex);
2763 EXPORT_SYMBOL(input_unregister_handle);
2766 * input_get_new_minor - allocates a new input minor number
2767 * @legacy_base: beginning or the legacy range to be searched
2768 * @legacy_num: size of legacy range
2769 * @allow_dynamic: whether we can also take ID from the dynamic range
2771 * This function allocates a new device minor for from input major namespace.
2772 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2773 * parameters and whether ID can be allocated from dynamic range if there are
2774 * no free IDs in legacy range.
2776 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2780 * This function should be called from input handler's ->connect()
2781 * methods, which are serialized with input_mutex, so no additional
2782 * locking is needed here.
2784 if (legacy_base >= 0) {
2785 int minor = ida_alloc_range(&input_ida, legacy_base,
2786 legacy_base + legacy_num - 1,
2788 if (minor >= 0 || !allow_dynamic)
2792 return ida_alloc_range(&input_ida, INPUT_FIRST_DYNAMIC_DEV,
2793 INPUT_MAX_CHAR_DEVICES - 1, GFP_KERNEL);
2795 EXPORT_SYMBOL(input_get_new_minor);
2798 * input_free_minor - release previously allocated minor
2799 * @minor: minor to be released
2801 * This function releases previously allocated input minor so that it can be
2804 void input_free_minor(unsigned int minor)
2806 ida_free(&input_ida, minor);
2808 EXPORT_SYMBOL(input_free_minor);
2810 static int __init input_init(void)
2814 err = class_register(&input_class);
2816 pr_err("unable to register input_dev class\n");
2820 err = input_proc_init();
2824 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2825 INPUT_MAX_CHAR_DEVICES, "input");
2827 pr_err("unable to register char major %d", INPUT_MAJOR);
2833 fail2: input_proc_exit();
2834 fail1: class_unregister(&input_class);
2838 static void __exit input_exit(void)
2841 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2842 INPUT_MAX_CHAR_DEVICES);
2843 class_unregister(&input_class);
2846 subsys_initcall(input_init);
2847 module_exit(input_exit);