]> Git Repo - linux.git/blob - drivers/i3c/master/svc-i3c-master.c
crypto: akcipher - Drop sign/verify operations
[linux.git] / drivers / i3c / master / svc-i3c-master.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Silvaco dual-role I3C master driver
4  *
5  * Copyright (C) 2020 Silvaco
6  * Author: Miquel RAYNAL <[email protected]>
7  * Based on a work from: Conor Culhane <[email protected]>
8  */
9
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/completion.h>
13 #include <linux/errno.h>
14 #include <linux/i3c/master.h>
15 #include <linux/interrupt.h>
16 #include <linux/iopoll.h>
17 #include <linux/list.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/pinctrl/consumer.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23
24 /* Master Mode Registers */
25 #define SVC_I3C_MCONFIG      0x000
26 #define   SVC_I3C_MCONFIG_MASTER_EN BIT(0)
27 #define   SVC_I3C_MCONFIG_DISTO(x) FIELD_PREP(BIT(3), (x))
28 #define   SVC_I3C_MCONFIG_HKEEP(x) FIELD_PREP(GENMASK(5, 4), (x))
29 #define   SVC_I3C_MCONFIG_ODSTOP(x) FIELD_PREP(BIT(6), (x))
30 #define   SVC_I3C_MCONFIG_PPBAUD(x) FIELD_PREP(GENMASK(11, 8), (x))
31 #define   SVC_I3C_MCONFIG_PPLOW(x) FIELD_PREP(GENMASK(15, 12), (x))
32 #define   SVC_I3C_MCONFIG_ODBAUD(x) FIELD_PREP(GENMASK(23, 16), (x))
33 #define   SVC_I3C_MCONFIG_ODHPP(x) FIELD_PREP(BIT(24), (x))
34 #define   SVC_I3C_MCONFIG_SKEW(x) FIELD_PREP(GENMASK(27, 25), (x))
35 #define   SVC_I3C_MCONFIG_I2CBAUD(x) FIELD_PREP(GENMASK(31, 28), (x))
36
37 #define SVC_I3C_MCTRL        0x084
38 #define   SVC_I3C_MCTRL_REQUEST_MASK GENMASK(2, 0)
39 #define   SVC_I3C_MCTRL_REQUEST_NONE 0
40 #define   SVC_I3C_MCTRL_REQUEST_START_ADDR 1
41 #define   SVC_I3C_MCTRL_REQUEST_STOP 2
42 #define   SVC_I3C_MCTRL_REQUEST_IBI_ACKNACK 3
43 #define   SVC_I3C_MCTRL_REQUEST_PROC_DAA 4
44 #define   SVC_I3C_MCTRL_REQUEST_AUTO_IBI 7
45 #define   SVC_I3C_MCTRL_TYPE_I3C 0
46 #define   SVC_I3C_MCTRL_TYPE_I2C BIT(4)
47 #define   SVC_I3C_MCTRL_IBIRESP_AUTO 0
48 #define   SVC_I3C_MCTRL_IBIRESP_ACK_WITHOUT_BYTE 0
49 #define   SVC_I3C_MCTRL_IBIRESP_ACK_WITH_BYTE BIT(7)
50 #define   SVC_I3C_MCTRL_IBIRESP_NACK BIT(6)
51 #define   SVC_I3C_MCTRL_IBIRESP_MANUAL GENMASK(7, 6)
52 #define   SVC_I3C_MCTRL_DIR(x) FIELD_PREP(BIT(8), (x))
53 #define   SVC_I3C_MCTRL_DIR_WRITE 0
54 #define   SVC_I3C_MCTRL_DIR_READ 1
55 #define   SVC_I3C_MCTRL_ADDR(x) FIELD_PREP(GENMASK(15, 9), (x))
56 #define   SVC_I3C_MCTRL_RDTERM(x) FIELD_PREP(GENMASK(23, 16), (x))
57
58 #define SVC_I3C_MSTATUS      0x088
59 #define   SVC_I3C_MSTATUS_STATE(x) FIELD_GET(GENMASK(2, 0), (x))
60 #define   SVC_I3C_MSTATUS_STATE_DAA(x) (SVC_I3C_MSTATUS_STATE(x) == 5)
61 #define   SVC_I3C_MSTATUS_STATE_IDLE(x) (SVC_I3C_MSTATUS_STATE(x) == 0)
62 #define   SVC_I3C_MSTATUS_BETWEEN(x) FIELD_GET(BIT(4), (x))
63 #define   SVC_I3C_MSTATUS_NACKED(x) FIELD_GET(BIT(5), (x))
64 #define   SVC_I3C_MSTATUS_IBITYPE(x) FIELD_GET(GENMASK(7, 6), (x))
65 #define   SVC_I3C_MSTATUS_IBITYPE_IBI 1
66 #define   SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST 2
67 #define   SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN 3
68 #define   SVC_I3C_MINT_SLVSTART BIT(8)
69 #define   SVC_I3C_MINT_MCTRLDONE BIT(9)
70 #define   SVC_I3C_MINT_COMPLETE BIT(10)
71 #define   SVC_I3C_MINT_RXPEND BIT(11)
72 #define   SVC_I3C_MINT_TXNOTFULL BIT(12)
73 #define   SVC_I3C_MINT_IBIWON BIT(13)
74 #define   SVC_I3C_MINT_ERRWARN BIT(15)
75 #define   SVC_I3C_MSTATUS_SLVSTART(x) FIELD_GET(SVC_I3C_MINT_SLVSTART, (x))
76 #define   SVC_I3C_MSTATUS_MCTRLDONE(x) FIELD_GET(SVC_I3C_MINT_MCTRLDONE, (x))
77 #define   SVC_I3C_MSTATUS_COMPLETE(x) FIELD_GET(SVC_I3C_MINT_COMPLETE, (x))
78 #define   SVC_I3C_MSTATUS_RXPEND(x) FIELD_GET(SVC_I3C_MINT_RXPEND, (x))
79 #define   SVC_I3C_MSTATUS_TXNOTFULL(x) FIELD_GET(SVC_I3C_MINT_TXNOTFULL, (x))
80 #define   SVC_I3C_MSTATUS_IBIWON(x) FIELD_GET(SVC_I3C_MINT_IBIWON, (x))
81 #define   SVC_I3C_MSTATUS_ERRWARN(x) FIELD_GET(SVC_I3C_MINT_ERRWARN, (x))
82 #define   SVC_I3C_MSTATUS_IBIADDR(x) FIELD_GET(GENMASK(30, 24), (x))
83
84 #define SVC_I3C_IBIRULES     0x08C
85 #define   SVC_I3C_IBIRULES_ADDR(slot, addr) FIELD_PREP(GENMASK(29, 0), \
86                                                        ((addr) & 0x3F) << ((slot) * 6))
87 #define   SVC_I3C_IBIRULES_ADDRS 5
88 #define   SVC_I3C_IBIRULES_MSB0 BIT(30)
89 #define   SVC_I3C_IBIRULES_NOBYTE BIT(31)
90 #define   SVC_I3C_IBIRULES_MANDBYTE 0
91 #define SVC_I3C_MINTSET      0x090
92 #define SVC_I3C_MINTCLR      0x094
93 #define SVC_I3C_MINTMASKED   0x098
94 #define SVC_I3C_MERRWARN     0x09C
95 #define   SVC_I3C_MERRWARN_NACK BIT(2)
96 #define   SVC_I3C_MERRWARN_TIMEOUT BIT(20)
97 #define SVC_I3C_MDMACTRL     0x0A0
98 #define SVC_I3C_MDATACTRL    0x0AC
99 #define   SVC_I3C_MDATACTRL_FLUSHTB BIT(0)
100 #define   SVC_I3C_MDATACTRL_FLUSHRB BIT(1)
101 #define   SVC_I3C_MDATACTRL_UNLOCK_TRIG BIT(3)
102 #define   SVC_I3C_MDATACTRL_TXTRIG_FIFO_NOT_FULL GENMASK(5, 4)
103 #define   SVC_I3C_MDATACTRL_RXTRIG_FIFO_NOT_EMPTY 0
104 #define   SVC_I3C_MDATACTRL_RXCOUNT(x) FIELD_GET(GENMASK(28, 24), (x))
105 #define   SVC_I3C_MDATACTRL_TXFULL BIT(30)
106 #define   SVC_I3C_MDATACTRL_RXEMPTY BIT(31)
107
108 #define SVC_I3C_MWDATAB      0x0B0
109 #define   SVC_I3C_MWDATAB_END BIT(8)
110
111 #define SVC_I3C_MWDATABE     0x0B4
112 #define SVC_I3C_MWDATAH      0x0B8
113 #define SVC_I3C_MWDATAHE     0x0BC
114 #define SVC_I3C_MRDATAB      0x0C0
115 #define SVC_I3C_MRDATAH      0x0C8
116 #define SVC_I3C_MWMSG_SDR    0x0D0
117 #define SVC_I3C_MRMSG_SDR    0x0D4
118 #define SVC_I3C_MWMSG_DDR    0x0D8
119 #define SVC_I3C_MRMSG_DDR    0x0DC
120
121 #define SVC_I3C_MDYNADDR     0x0E4
122 #define   SVC_MDYNADDR_VALID BIT(0)
123 #define   SVC_MDYNADDR_ADDR(x) FIELD_PREP(GENMASK(7, 1), (x))
124
125 #define SVC_I3C_MAX_DEVS 32
126 #define SVC_I3C_PM_TIMEOUT_MS 1000
127
128 /* This parameter depends on the implementation and may be tuned */
129 #define SVC_I3C_FIFO_SIZE 16
130 #define SVC_I3C_PPBAUD_MAX 15
131 #define SVC_I3C_QUICK_I2C_CLK 4170000
132
133 #define SVC_I3C_EVENT_IBI       BIT(0)
134 #define SVC_I3C_EVENT_HOTJOIN   BIT(1)
135
136 struct svc_i3c_cmd {
137         u8 addr;
138         bool rnw;
139         u8 *in;
140         const void *out;
141         unsigned int len;
142         unsigned int actual_len;
143         struct i3c_priv_xfer *xfer;
144         bool continued;
145 };
146
147 struct svc_i3c_xfer {
148         struct list_head node;
149         struct completion comp;
150         int ret;
151         unsigned int type;
152         unsigned int ncmds;
153         struct svc_i3c_cmd cmds[] __counted_by(ncmds);
154 };
155
156 struct svc_i3c_regs_save {
157         u32 mconfig;
158         u32 mdynaddr;
159 };
160
161 /**
162  * struct svc_i3c_master - Silvaco I3C Master structure
163  * @base: I3C master controller
164  * @dev: Corresponding device
165  * @regs: Memory mapping
166  * @saved_regs: Volatile values for PM operations
167  * @free_slots: Bit array of available slots
168  * @addrs: Array containing the dynamic addresses of each attached device
169  * @descs: Array of descriptors, one per attached device
170  * @hj_work: Hot-join work
171  * @ibi_work: IBI work
172  * @irq: Main interrupt
173  * @pclk: System clock
174  * @fclk: Fast clock (bus)
175  * @sclk: Slow clock (other events)
176  * @xferqueue: Transfer queue structure
177  * @xferqueue.list: List member
178  * @xferqueue.cur: Current ongoing transfer
179  * @xferqueue.lock: Queue lock
180  * @ibi: IBI structure
181  * @ibi.num_slots: Number of slots available in @ibi.slots
182  * @ibi.slots: Available IBI slots
183  * @ibi.tbq_slot: To be queued IBI slot
184  * @ibi.lock: IBI lock
185  * @lock: Transfer lock, protect between IBI work thread and callbacks from master
186  * @enabled_events: Bit masks for enable events (IBI, HotJoin).
187  * @mctrl_config: Configuration value in SVC_I3C_MCTRL for setting speed back.
188  */
189 struct svc_i3c_master {
190         struct i3c_master_controller base;
191         struct device *dev;
192         void __iomem *regs;
193         struct svc_i3c_regs_save saved_regs;
194         u32 free_slots;
195         u8 addrs[SVC_I3C_MAX_DEVS];
196         struct i3c_dev_desc *descs[SVC_I3C_MAX_DEVS];
197         struct work_struct hj_work;
198         struct work_struct ibi_work;
199         int irq;
200         struct clk *pclk;
201         struct clk *fclk;
202         struct clk *sclk;
203         struct {
204                 struct list_head list;
205                 struct svc_i3c_xfer *cur;
206                 /* Prevent races between transfers */
207                 spinlock_t lock;
208         } xferqueue;
209         struct {
210                 unsigned int num_slots;
211                 struct i3c_dev_desc **slots;
212                 struct i3c_ibi_slot *tbq_slot;
213                 /* Prevent races within IBI handlers */
214                 spinlock_t lock;
215         } ibi;
216         struct mutex lock;
217         int enabled_events;
218         u32 mctrl_config;
219 };
220
221 /**
222  * struct svc_i3c_i2c_dev_data - Device specific data
223  * @index: Index in the master tables corresponding to this device
224  * @ibi: IBI slot index in the master structure
225  * @ibi_pool: IBI pool associated to this device
226  */
227 struct svc_i3c_i2c_dev_data {
228         u8 index;
229         int ibi;
230         struct i3c_generic_ibi_pool *ibi_pool;
231 };
232
233 static inline bool is_events_enabled(struct svc_i3c_master *master, u32 mask)
234 {
235         return !!(master->enabled_events & mask);
236 }
237
238 static bool svc_i3c_master_error(struct svc_i3c_master *master)
239 {
240         u32 mstatus, merrwarn;
241
242         mstatus = readl(master->regs + SVC_I3C_MSTATUS);
243         if (SVC_I3C_MSTATUS_ERRWARN(mstatus)) {
244                 merrwarn = readl(master->regs + SVC_I3C_MERRWARN);
245                 writel(merrwarn, master->regs + SVC_I3C_MERRWARN);
246
247                 /* Ignore timeout error */
248                 if (merrwarn & SVC_I3C_MERRWARN_TIMEOUT) {
249                         dev_dbg(master->dev, "Warning condition: MSTATUS 0x%08x, MERRWARN 0x%08x\n",
250                                 mstatus, merrwarn);
251                         return false;
252                 }
253
254                 dev_err(master->dev,
255                         "Error condition: MSTATUS 0x%08x, MERRWARN 0x%08x\n",
256                         mstatus, merrwarn);
257
258                 return true;
259         }
260
261         return false;
262 }
263
264 static void svc_i3c_master_enable_interrupts(struct svc_i3c_master *master, u32 mask)
265 {
266         writel(mask, master->regs + SVC_I3C_MINTSET);
267 }
268
269 static void svc_i3c_master_disable_interrupts(struct svc_i3c_master *master)
270 {
271         u32 mask = readl(master->regs + SVC_I3C_MINTSET);
272
273         writel(mask, master->regs + SVC_I3C_MINTCLR);
274 }
275
276 static void svc_i3c_master_clear_merrwarn(struct svc_i3c_master *master)
277 {
278         /* Clear pending warnings */
279         writel(readl(master->regs + SVC_I3C_MERRWARN),
280                master->regs + SVC_I3C_MERRWARN);
281 }
282
283 static void svc_i3c_master_flush_fifo(struct svc_i3c_master *master)
284 {
285         /* Flush FIFOs */
286         writel(SVC_I3C_MDATACTRL_FLUSHTB | SVC_I3C_MDATACTRL_FLUSHRB,
287                master->regs + SVC_I3C_MDATACTRL);
288 }
289
290 static void svc_i3c_master_reset_fifo_trigger(struct svc_i3c_master *master)
291 {
292         u32 reg;
293
294         /* Set RX and TX tigger levels, flush FIFOs */
295         reg = SVC_I3C_MDATACTRL_FLUSHTB |
296               SVC_I3C_MDATACTRL_FLUSHRB |
297               SVC_I3C_MDATACTRL_UNLOCK_TRIG |
298               SVC_I3C_MDATACTRL_TXTRIG_FIFO_NOT_FULL |
299               SVC_I3C_MDATACTRL_RXTRIG_FIFO_NOT_EMPTY;
300         writel(reg, master->regs + SVC_I3C_MDATACTRL);
301 }
302
303 static void svc_i3c_master_reset(struct svc_i3c_master *master)
304 {
305         svc_i3c_master_clear_merrwarn(master);
306         svc_i3c_master_reset_fifo_trigger(master);
307         svc_i3c_master_disable_interrupts(master);
308 }
309
310 static inline struct svc_i3c_master *
311 to_svc_i3c_master(struct i3c_master_controller *master)
312 {
313         return container_of(master, struct svc_i3c_master, base);
314 }
315
316 static void svc_i3c_master_hj_work(struct work_struct *work)
317 {
318         struct svc_i3c_master *master;
319
320         master = container_of(work, struct svc_i3c_master, hj_work);
321         i3c_master_do_daa(&master->base);
322 }
323
324 static struct i3c_dev_desc *
325 svc_i3c_master_dev_from_addr(struct svc_i3c_master *master,
326                              unsigned int ibiaddr)
327 {
328         int i;
329
330         for (i = 0; i < SVC_I3C_MAX_DEVS; i++)
331                 if (master->addrs[i] == ibiaddr)
332                         break;
333
334         if (i == SVC_I3C_MAX_DEVS)
335                 return NULL;
336
337         return master->descs[i];
338 }
339
340 static void svc_i3c_master_emit_stop(struct svc_i3c_master *master)
341 {
342         writel(SVC_I3C_MCTRL_REQUEST_STOP, master->regs + SVC_I3C_MCTRL);
343
344         /*
345          * This delay is necessary after the emission of a stop, otherwise eg.
346          * repeating IBIs do not get detected. There is a note in the manual
347          * about it, stating that the stop condition might not be settled
348          * correctly if a start condition follows too rapidly.
349          */
350         udelay(1);
351 }
352
353 static int svc_i3c_master_handle_ibi(struct svc_i3c_master *master,
354                                      struct i3c_dev_desc *dev)
355 {
356         struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
357         struct i3c_ibi_slot *slot;
358         unsigned int count;
359         u32 mdatactrl;
360         int ret, val;
361         u8 *buf;
362
363         slot = i3c_generic_ibi_get_free_slot(data->ibi_pool);
364         if (!slot)
365                 return -ENOSPC;
366
367         slot->len = 0;
368         buf = slot->data;
369
370         ret = readl_relaxed_poll_timeout(master->regs + SVC_I3C_MSTATUS, val,
371                                                 SVC_I3C_MSTATUS_COMPLETE(val), 0, 1000);
372         if (ret) {
373                 dev_err(master->dev, "Timeout when polling for COMPLETE\n");
374                 return ret;
375         }
376
377         while (SVC_I3C_MSTATUS_RXPEND(readl(master->regs + SVC_I3C_MSTATUS))  &&
378                slot->len < SVC_I3C_FIFO_SIZE) {
379                 mdatactrl = readl(master->regs + SVC_I3C_MDATACTRL);
380                 count = SVC_I3C_MDATACTRL_RXCOUNT(mdatactrl);
381                 readsl(master->regs + SVC_I3C_MRDATAB, buf, count);
382                 slot->len += count;
383                 buf += count;
384         }
385
386         master->ibi.tbq_slot = slot;
387
388         return 0;
389 }
390
391 static void svc_i3c_master_ack_ibi(struct svc_i3c_master *master,
392                                    bool mandatory_byte)
393 {
394         unsigned int ibi_ack_nack;
395
396         ibi_ack_nack = SVC_I3C_MCTRL_REQUEST_IBI_ACKNACK;
397         if (mandatory_byte)
398                 ibi_ack_nack |= SVC_I3C_MCTRL_IBIRESP_ACK_WITH_BYTE;
399         else
400                 ibi_ack_nack |= SVC_I3C_MCTRL_IBIRESP_ACK_WITHOUT_BYTE;
401
402         writel(ibi_ack_nack, master->regs + SVC_I3C_MCTRL);
403 }
404
405 static void svc_i3c_master_nack_ibi(struct svc_i3c_master *master)
406 {
407         writel(SVC_I3C_MCTRL_REQUEST_IBI_ACKNACK |
408                SVC_I3C_MCTRL_IBIRESP_NACK,
409                master->regs + SVC_I3C_MCTRL);
410 }
411
412 static void svc_i3c_master_ibi_work(struct work_struct *work)
413 {
414         struct svc_i3c_master *master = container_of(work, struct svc_i3c_master, ibi_work);
415         struct svc_i3c_i2c_dev_data *data;
416         unsigned int ibitype, ibiaddr;
417         struct i3c_dev_desc *dev;
418         u32 status, val;
419         int ret;
420
421         mutex_lock(&master->lock);
422         /*
423          * IBIWON may be set before SVC_I3C_MCTRL_REQUEST_AUTO_IBI, causing
424          * readl_relaxed_poll_timeout() to return immediately. Consequently,
425          * ibitype will be 0 since it was last updated only after the 8th SCL
426          * cycle, leading to missed client IBI handlers.
427          *
428          * A typical scenario is when IBIWON occurs and bus arbitration is lost
429          * at svc_i3c_master_priv_xfers().
430          *
431          * Clear SVC_I3C_MINT_IBIWON before sending SVC_I3C_MCTRL_REQUEST_AUTO_IBI.
432          */
433         writel(SVC_I3C_MINT_IBIWON, master->regs + SVC_I3C_MSTATUS);
434
435         /* Acknowledge the incoming interrupt with the AUTOIBI mechanism */
436         writel(SVC_I3C_MCTRL_REQUEST_AUTO_IBI |
437                SVC_I3C_MCTRL_IBIRESP_AUTO,
438                master->regs + SVC_I3C_MCTRL);
439
440         /* Wait for IBIWON, should take approximately 100us */
441         ret = readl_relaxed_poll_timeout(master->regs + SVC_I3C_MSTATUS, val,
442                                          SVC_I3C_MSTATUS_IBIWON(val), 0, 1000);
443         if (ret) {
444                 dev_err(master->dev, "Timeout when polling for IBIWON\n");
445                 svc_i3c_master_emit_stop(master);
446                 goto reenable_ibis;
447         }
448
449         status = readl(master->regs + SVC_I3C_MSTATUS);
450         ibitype = SVC_I3C_MSTATUS_IBITYPE(status);
451         ibiaddr = SVC_I3C_MSTATUS_IBIADDR(status);
452
453         /* Handle the critical responses to IBI's */
454         switch (ibitype) {
455         case SVC_I3C_MSTATUS_IBITYPE_IBI:
456                 dev = svc_i3c_master_dev_from_addr(master, ibiaddr);
457                 if (!dev || !is_events_enabled(master, SVC_I3C_EVENT_IBI))
458                         svc_i3c_master_nack_ibi(master);
459                 else
460                         svc_i3c_master_handle_ibi(master, dev);
461                 break;
462         case SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN:
463                 if (is_events_enabled(master, SVC_I3C_EVENT_HOTJOIN))
464                         svc_i3c_master_ack_ibi(master, false);
465                 else
466                         svc_i3c_master_nack_ibi(master);
467                 break;
468         case SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST:
469                 svc_i3c_master_nack_ibi(master);
470                 break;
471         default:
472                 break;
473         }
474
475         /*
476          * If an error happened, we probably got interrupted and the exchange
477          * timedout. In this case we just drop everything, emit a stop and wait
478          * for the slave to interrupt again.
479          */
480         if (svc_i3c_master_error(master)) {
481                 if (master->ibi.tbq_slot) {
482                         data = i3c_dev_get_master_data(dev);
483                         i3c_generic_ibi_recycle_slot(data->ibi_pool,
484                                                      master->ibi.tbq_slot);
485                         master->ibi.tbq_slot = NULL;
486                 }
487
488                 svc_i3c_master_emit_stop(master);
489
490                 goto reenable_ibis;
491         }
492
493         /* Handle the non critical tasks */
494         switch (ibitype) {
495         case SVC_I3C_MSTATUS_IBITYPE_IBI:
496                 if (dev) {
497                         i3c_master_queue_ibi(dev, master->ibi.tbq_slot);
498                         master->ibi.tbq_slot = NULL;
499                 }
500                 svc_i3c_master_emit_stop(master);
501                 break;
502         case SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN:
503                 svc_i3c_master_emit_stop(master);
504                 if (is_events_enabled(master, SVC_I3C_EVENT_HOTJOIN))
505                         queue_work(master->base.wq, &master->hj_work);
506                 break;
507         case SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST:
508         default:
509                 break;
510         }
511
512 reenable_ibis:
513         svc_i3c_master_enable_interrupts(master, SVC_I3C_MINT_SLVSTART);
514         mutex_unlock(&master->lock);
515 }
516
517 static irqreturn_t svc_i3c_master_irq_handler(int irq, void *dev_id)
518 {
519         struct svc_i3c_master *master = (struct svc_i3c_master *)dev_id;
520         u32 active = readl(master->regs + SVC_I3C_MSTATUS);
521
522         if (!SVC_I3C_MSTATUS_SLVSTART(active))
523                 return IRQ_NONE;
524
525         /* Clear the interrupt status */
526         writel(SVC_I3C_MINT_SLVSTART, master->regs + SVC_I3C_MSTATUS);
527
528         svc_i3c_master_disable_interrupts(master);
529
530         /* Handle the interrupt in a non atomic context */
531         queue_work(master->base.wq, &master->ibi_work);
532
533         return IRQ_HANDLED;
534 }
535
536 static int svc_i3c_master_set_speed(struct i3c_master_controller *m,
537                                      enum i3c_open_drain_speed speed)
538 {
539         struct svc_i3c_master *master = to_svc_i3c_master(m);
540         struct i3c_bus *bus = i3c_master_get_bus(&master->base);
541         u32 ppbaud, odbaud, odhpp, mconfig;
542         unsigned long fclk_rate;
543         int ret;
544
545         ret = pm_runtime_resume_and_get(master->dev);
546         if (ret < 0) {
547                 dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
548                 return ret;
549         }
550
551         switch (speed) {
552         case I3C_OPEN_DRAIN_SLOW_SPEED:
553                 fclk_rate = clk_get_rate(master->fclk);
554                 if (!fclk_rate) {
555                         ret = -EINVAL;
556                         goto rpm_out;
557                 }
558                 /*
559                  * Set 50% duty-cycle I2C speed to I3C OPEN-DRAIN mode, so the first
560                  * broadcast address is visible to all I2C/I3C devices on the I3C bus.
561                  * I3C device working as a I2C device will turn off its 50ns Spike
562                  * Filter to change to I3C mode.
563                  */
564                 mconfig = master->mctrl_config;
565                 ppbaud = FIELD_GET(GENMASK(11, 8), mconfig);
566                 odhpp = 0;
567                 odbaud = DIV_ROUND_UP(fclk_rate, bus->scl_rate.i2c * (2 + 2 * ppbaud)) - 1;
568                 mconfig &= ~GENMASK(24, 16);
569                 mconfig |= SVC_I3C_MCONFIG_ODBAUD(odbaud) | SVC_I3C_MCONFIG_ODHPP(odhpp);
570                 writel(mconfig, master->regs + SVC_I3C_MCONFIG);
571                 break;
572         case I3C_OPEN_DRAIN_NORMAL_SPEED:
573                 writel(master->mctrl_config, master->regs + SVC_I3C_MCONFIG);
574                 break;
575         }
576
577 rpm_out:
578         pm_runtime_mark_last_busy(master->dev);
579         pm_runtime_put_autosuspend(master->dev);
580
581         return ret;
582 }
583
584 static int svc_i3c_master_bus_init(struct i3c_master_controller *m)
585 {
586         struct svc_i3c_master *master = to_svc_i3c_master(m);
587         struct i3c_bus *bus = i3c_master_get_bus(m);
588         struct i3c_device_info info = {};
589         unsigned long fclk_rate, fclk_period_ns;
590         unsigned long i2c_period_ns, i2c_scl_rate, i3c_scl_rate;
591         unsigned int high_period_ns, od_low_period_ns;
592         u32 ppbaud, pplow, odhpp, odbaud, odstop, i2cbaud, reg;
593         int ret;
594
595         ret = pm_runtime_resume_and_get(master->dev);
596         if (ret < 0) {
597                 dev_err(master->dev,
598                         "<%s> cannot resume i3c bus master, err: %d\n",
599                         __func__, ret);
600                 return ret;
601         }
602
603         /* Timings derivation */
604         fclk_rate = clk_get_rate(master->fclk);
605         if (!fclk_rate) {
606                 ret = -EINVAL;
607                 goto rpm_out;
608         }
609
610         fclk_period_ns = DIV_ROUND_UP(1000000000, fclk_rate);
611         i2c_period_ns = DIV_ROUND_UP(1000000000, bus->scl_rate.i2c);
612         i2c_scl_rate = bus->scl_rate.i2c;
613         i3c_scl_rate = bus->scl_rate.i3c;
614
615         /*
616          * Using I3C Push-Pull mode, target is 12.5MHz/80ns period.
617          * Simplest configuration is using a 50% duty-cycle of 40ns.
618          */
619         ppbaud = DIV_ROUND_UP(fclk_rate / 2, i3c_scl_rate) - 1;
620         pplow = 0;
621
622         /*
623          * Using I3C Open-Drain mode, target is 4.17MHz/240ns with a
624          * duty-cycle tuned so that high levels are filetered out by
625          * the 50ns filter (target being 40ns).
626          */
627         odhpp = 1;
628         high_period_ns = (ppbaud + 1) * fclk_period_ns;
629         odbaud = DIV_ROUND_UP(fclk_rate, SVC_I3C_QUICK_I2C_CLK * (1 + ppbaud)) - 2;
630         od_low_period_ns = (odbaud + 1) * high_period_ns;
631
632         switch (bus->mode) {
633         case I3C_BUS_MODE_PURE:
634                 i2cbaud = 0;
635                 odstop = 0;
636                 break;
637         case I3C_BUS_MODE_MIXED_FAST:
638                 /*
639                  * Using I2C Fm+ mode, target is 1MHz/1000ns, the difference
640                  * between the high and low period does not really matter.
641                  */
642                 i2cbaud = DIV_ROUND_UP(i2c_period_ns, od_low_period_ns) - 2;
643                 odstop = 1;
644                 break;
645         case I3C_BUS_MODE_MIXED_LIMITED:
646         case I3C_BUS_MODE_MIXED_SLOW:
647                 /* I3C PP + I3C OP + I2C OP both use i2c clk rate */
648                 if (ppbaud > SVC_I3C_PPBAUD_MAX) {
649                         ppbaud = SVC_I3C_PPBAUD_MAX;
650                         pplow =  DIV_ROUND_UP(fclk_rate, i3c_scl_rate) - (2 + 2 * ppbaud);
651                 }
652
653                 high_period_ns = (ppbaud + 1) * fclk_period_ns;
654                 odhpp = 0;
655                 odbaud = DIV_ROUND_UP(fclk_rate, i2c_scl_rate * (2 + 2 * ppbaud)) - 1;
656
657                 od_low_period_ns = (odbaud + 1) * high_period_ns;
658                 i2cbaud = DIV_ROUND_UP(i2c_period_ns, od_low_period_ns) - 2;
659                 odstop = 1;
660                 break;
661         default:
662                 goto rpm_out;
663         }
664
665         reg = SVC_I3C_MCONFIG_MASTER_EN |
666               SVC_I3C_MCONFIG_DISTO(0) |
667               SVC_I3C_MCONFIG_HKEEP(0) |
668               SVC_I3C_MCONFIG_ODSTOP(odstop) |
669               SVC_I3C_MCONFIG_PPBAUD(ppbaud) |
670               SVC_I3C_MCONFIG_PPLOW(pplow) |
671               SVC_I3C_MCONFIG_ODBAUD(odbaud) |
672               SVC_I3C_MCONFIG_ODHPP(odhpp) |
673               SVC_I3C_MCONFIG_SKEW(0) |
674               SVC_I3C_MCONFIG_I2CBAUD(i2cbaud);
675         writel(reg, master->regs + SVC_I3C_MCONFIG);
676
677         master->mctrl_config = reg;
678         /* Master core's registration */
679         ret = i3c_master_get_free_addr(m, 0);
680         if (ret < 0)
681                 goto rpm_out;
682
683         info.dyn_addr = ret;
684
685         writel(SVC_MDYNADDR_VALID | SVC_MDYNADDR_ADDR(info.dyn_addr),
686                master->regs + SVC_I3C_MDYNADDR);
687
688         ret = i3c_master_set_info(&master->base, &info);
689         if (ret)
690                 goto rpm_out;
691
692 rpm_out:
693         pm_runtime_mark_last_busy(master->dev);
694         pm_runtime_put_autosuspend(master->dev);
695
696         return ret;
697 }
698
699 static void svc_i3c_master_bus_cleanup(struct i3c_master_controller *m)
700 {
701         struct svc_i3c_master *master = to_svc_i3c_master(m);
702         int ret;
703
704         ret = pm_runtime_resume_and_get(master->dev);
705         if (ret < 0) {
706                 dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
707                 return;
708         }
709
710         svc_i3c_master_disable_interrupts(master);
711
712         /* Disable master */
713         writel(0, master->regs + SVC_I3C_MCONFIG);
714
715         pm_runtime_mark_last_busy(master->dev);
716         pm_runtime_put_autosuspend(master->dev);
717 }
718
719 static int svc_i3c_master_reserve_slot(struct svc_i3c_master *master)
720 {
721         unsigned int slot;
722
723         if (!(master->free_slots & GENMASK(SVC_I3C_MAX_DEVS - 1, 0)))
724                 return -ENOSPC;
725
726         slot = ffs(master->free_slots) - 1;
727
728         master->free_slots &= ~BIT(slot);
729
730         return slot;
731 }
732
733 static void svc_i3c_master_release_slot(struct svc_i3c_master *master,
734                                         unsigned int slot)
735 {
736         master->free_slots |= BIT(slot);
737 }
738
739 static int svc_i3c_master_attach_i3c_dev(struct i3c_dev_desc *dev)
740 {
741         struct i3c_master_controller *m = i3c_dev_get_master(dev);
742         struct svc_i3c_master *master = to_svc_i3c_master(m);
743         struct svc_i3c_i2c_dev_data *data;
744         int slot;
745
746         slot = svc_i3c_master_reserve_slot(master);
747         if (slot < 0)
748                 return slot;
749
750         data = kzalloc(sizeof(*data), GFP_KERNEL);
751         if (!data) {
752                 svc_i3c_master_release_slot(master, slot);
753                 return -ENOMEM;
754         }
755
756         data->ibi = -1;
757         data->index = slot;
758         master->addrs[slot] = dev->info.dyn_addr ? dev->info.dyn_addr :
759                                                    dev->info.static_addr;
760         master->descs[slot] = dev;
761
762         i3c_dev_set_master_data(dev, data);
763
764         return 0;
765 }
766
767 static int svc_i3c_master_reattach_i3c_dev(struct i3c_dev_desc *dev,
768                                            u8 old_dyn_addr)
769 {
770         struct i3c_master_controller *m = i3c_dev_get_master(dev);
771         struct svc_i3c_master *master = to_svc_i3c_master(m);
772         struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
773
774         master->addrs[data->index] = dev->info.dyn_addr ? dev->info.dyn_addr :
775                                                           dev->info.static_addr;
776
777         return 0;
778 }
779
780 static void svc_i3c_master_detach_i3c_dev(struct i3c_dev_desc *dev)
781 {
782         struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
783         struct i3c_master_controller *m = i3c_dev_get_master(dev);
784         struct svc_i3c_master *master = to_svc_i3c_master(m);
785
786         master->addrs[data->index] = 0;
787         svc_i3c_master_release_slot(master, data->index);
788
789         kfree(data);
790 }
791
792 static int svc_i3c_master_attach_i2c_dev(struct i2c_dev_desc *dev)
793 {
794         struct i3c_master_controller *m = i2c_dev_get_master(dev);
795         struct svc_i3c_master *master = to_svc_i3c_master(m);
796         struct svc_i3c_i2c_dev_data *data;
797         int slot;
798
799         slot = svc_i3c_master_reserve_slot(master);
800         if (slot < 0)
801                 return slot;
802
803         data = kzalloc(sizeof(*data), GFP_KERNEL);
804         if (!data) {
805                 svc_i3c_master_release_slot(master, slot);
806                 return -ENOMEM;
807         }
808
809         data->index = slot;
810         master->addrs[slot] = dev->addr;
811
812         i2c_dev_set_master_data(dev, data);
813
814         return 0;
815 }
816
817 static void svc_i3c_master_detach_i2c_dev(struct i2c_dev_desc *dev)
818 {
819         struct svc_i3c_i2c_dev_data *data = i2c_dev_get_master_data(dev);
820         struct i3c_master_controller *m = i2c_dev_get_master(dev);
821         struct svc_i3c_master *master = to_svc_i3c_master(m);
822
823         svc_i3c_master_release_slot(master, data->index);
824
825         kfree(data);
826 }
827
828 static int svc_i3c_master_readb(struct svc_i3c_master *master, u8 *dst,
829                                 unsigned int len)
830 {
831         int ret, i;
832         u32 reg;
833
834         for (i = 0; i < len; i++) {
835                 ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS,
836                                                 reg,
837                                                 SVC_I3C_MSTATUS_RXPEND(reg),
838                                                 0, 1000);
839                 if (ret)
840                         return ret;
841
842                 dst[i] = readl(master->regs + SVC_I3C_MRDATAB);
843         }
844
845         return 0;
846 }
847
848 static int svc_i3c_master_do_daa_locked(struct svc_i3c_master *master,
849                                         u8 *addrs, unsigned int *count)
850 {
851         u64 prov_id[SVC_I3C_MAX_DEVS] = {}, nacking_prov_id = 0;
852         unsigned int dev_nb = 0, last_addr = 0;
853         u32 reg;
854         int ret, i;
855
856         while (true) {
857                 /* SVC_I3C_MCTRL_REQUEST_PROC_DAA have two mode, ENTER DAA or PROCESS DAA.
858                  *
859                  * ENTER DAA:
860                  *   1 will issue START, 7E, ENTDAA, and then emits 7E/R to process first target.
861                  *   2 Stops just before the new Dynamic Address (DA) is to be emitted.
862                  *
863                  * PROCESS DAA:
864                  *   1 The DA is written using MWDATAB or ADDR bits 6:0.
865                  *   2 ProcessDAA is requested again to write the new address, and then starts the
866                  *     next (START, 7E, ENTDAA)  unless marked to STOP; an MSTATUS indicating NACK
867                  *     means DA was not accepted (e.g. parity error). If PROCESSDAA is NACKed on the
868                  *     7E/R, which means no more Slaves need a DA, then a COMPLETE will be signaled
869                  *     (along with DONE), and a STOP issued automatically.
870                  */
871                 writel(SVC_I3C_MCTRL_REQUEST_PROC_DAA |
872                        SVC_I3C_MCTRL_TYPE_I3C |
873                        SVC_I3C_MCTRL_IBIRESP_NACK |
874                        SVC_I3C_MCTRL_DIR(SVC_I3C_MCTRL_DIR_WRITE),
875                        master->regs + SVC_I3C_MCTRL);
876
877                 /*
878                  * Either one slave will send its ID, or the assignment process
879                  * is done.
880                  */
881                 ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS,
882                                                 reg,
883                                                 SVC_I3C_MSTATUS_RXPEND(reg) |
884                                                 SVC_I3C_MSTATUS_MCTRLDONE(reg),
885                                                 1, 1000);
886                 if (ret)
887                         break;
888
889                 if (SVC_I3C_MSTATUS_RXPEND(reg)) {
890                         u8 data[6];
891
892                         /*
893                          * We only care about the 48-bit provisioned ID yet to
894                          * be sure a device does not nack an address twice.
895                          * Otherwise, we would just need to flush the RX FIFO.
896                          */
897                         ret = svc_i3c_master_readb(master, data, 6);
898                         if (ret)
899                                 break;
900
901                         for (i = 0; i < 6; i++)
902                                 prov_id[dev_nb] |= (u64)(data[i]) << (8 * (5 - i));
903
904                         /* We do not care about the BCR and DCR yet */
905                         ret = svc_i3c_master_readb(master, data, 2);
906                         if (ret)
907                                 break;
908                 } else if (SVC_I3C_MSTATUS_MCTRLDONE(reg)) {
909                         if (SVC_I3C_MSTATUS_STATE_IDLE(reg) &&
910                             SVC_I3C_MSTATUS_COMPLETE(reg)) {
911                                 /*
912                                  * All devices received and acked they dynamic
913                                  * address, this is the natural end of the DAA
914                                  * procedure.
915                                  *
916                                  * Hardware will auto emit STOP at this case.
917                                  */
918                                 *count = dev_nb;
919                                 return 0;
920
921                         } else if (SVC_I3C_MSTATUS_NACKED(reg)) {
922                                 /* No I3C devices attached */
923                                 if (dev_nb == 0) {
924                                         /*
925                                          * Hardware can't treat first NACK for ENTAA as normal
926                                          * COMPLETE. So need manual emit STOP.
927                                          */
928                                         ret = 0;
929                                         *count = 0;
930                                         break;
931                                 }
932
933                                 /*
934                                  * A slave device nacked the address, this is
935                                  * allowed only once, DAA will be stopped and
936                                  * then resumed. The same device is supposed to
937                                  * answer again immediately and shall ack the
938                                  * address this time.
939                                  */
940                                 if (prov_id[dev_nb] == nacking_prov_id) {
941                                         ret = -EIO;
942                                         break;
943                                 }
944
945                                 dev_nb--;
946                                 nacking_prov_id = prov_id[dev_nb];
947                                 svc_i3c_master_emit_stop(master);
948
949                                 continue;
950                         } else {
951                                 break;
952                         }
953                 }
954
955                 /* Wait for the slave to be ready to receive its address */
956                 ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS,
957                                                 reg,
958                                                 SVC_I3C_MSTATUS_MCTRLDONE(reg) &&
959                                                 SVC_I3C_MSTATUS_STATE_DAA(reg) &&
960                                                 SVC_I3C_MSTATUS_BETWEEN(reg),
961                                                 0, 1000);
962                 if (ret)
963                         break;
964
965                 /* Give the slave device a suitable dynamic address */
966                 ret = i3c_master_get_free_addr(&master->base, last_addr + 1);
967                 if (ret < 0)
968                         break;
969
970                 addrs[dev_nb] = ret;
971                 dev_dbg(master->dev, "DAA: device %d assigned to 0x%02x\n",
972                         dev_nb, addrs[dev_nb]);
973
974                 writel(addrs[dev_nb], master->regs + SVC_I3C_MWDATAB);
975                 last_addr = addrs[dev_nb++];
976         }
977
978         /* Need manual issue STOP except for Complete condition */
979         svc_i3c_master_emit_stop(master);
980         return ret;
981 }
982
983 static int svc_i3c_update_ibirules(struct svc_i3c_master *master)
984 {
985         struct i3c_dev_desc *dev;
986         u32 reg_mbyte = 0, reg_nobyte = SVC_I3C_IBIRULES_NOBYTE;
987         unsigned int mbyte_addr_ok = 0, mbyte_addr_ko = 0, nobyte_addr_ok = 0,
988                 nobyte_addr_ko = 0;
989         bool list_mbyte = false, list_nobyte = false;
990
991         /* Create the IBIRULES register for both cases */
992         i3c_bus_for_each_i3cdev(&master->base.bus, dev) {
993                 if (I3C_BCR_DEVICE_ROLE(dev->info.bcr) == I3C_BCR_I3C_MASTER)
994                         continue;
995
996                 if (dev->info.bcr & I3C_BCR_IBI_PAYLOAD) {
997                         reg_mbyte |= SVC_I3C_IBIRULES_ADDR(mbyte_addr_ok,
998                                                            dev->info.dyn_addr);
999
1000                         /* IBI rules cannot be applied to devices with MSb=1 */
1001                         if (dev->info.dyn_addr & BIT(7))
1002                                 mbyte_addr_ko++;
1003                         else
1004                                 mbyte_addr_ok++;
1005                 } else {
1006                         reg_nobyte |= SVC_I3C_IBIRULES_ADDR(nobyte_addr_ok,
1007                                                             dev->info.dyn_addr);
1008
1009                         /* IBI rules cannot be applied to devices with MSb=1 */
1010                         if (dev->info.dyn_addr & BIT(7))
1011                                 nobyte_addr_ko++;
1012                         else
1013                                 nobyte_addr_ok++;
1014                 }
1015         }
1016
1017         /* Device list cannot be handled by hardware */
1018         if (!mbyte_addr_ko && mbyte_addr_ok <= SVC_I3C_IBIRULES_ADDRS)
1019                 list_mbyte = true;
1020
1021         if (!nobyte_addr_ko && nobyte_addr_ok <= SVC_I3C_IBIRULES_ADDRS)
1022                 list_nobyte = true;
1023
1024         /* No list can be properly handled, return an error */
1025         if (!list_mbyte && !list_nobyte)
1026                 return -ERANGE;
1027
1028         /* Pick the first list that can be handled by hardware, randomly */
1029         if (list_mbyte)
1030                 writel(reg_mbyte, master->regs + SVC_I3C_IBIRULES);
1031         else
1032                 writel(reg_nobyte, master->regs + SVC_I3C_IBIRULES);
1033
1034         return 0;
1035 }
1036
1037 static int svc_i3c_master_do_daa(struct i3c_master_controller *m)
1038 {
1039         struct svc_i3c_master *master = to_svc_i3c_master(m);
1040         u8 addrs[SVC_I3C_MAX_DEVS];
1041         unsigned long flags;
1042         unsigned int dev_nb;
1043         int ret, i;
1044
1045         ret = pm_runtime_resume_and_get(master->dev);
1046         if (ret < 0) {
1047                 dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
1048                 return ret;
1049         }
1050
1051         spin_lock_irqsave(&master->xferqueue.lock, flags);
1052         ret = svc_i3c_master_do_daa_locked(master, addrs, &dev_nb);
1053         spin_unlock_irqrestore(&master->xferqueue.lock, flags);
1054
1055         svc_i3c_master_clear_merrwarn(master);
1056         if (ret)
1057                 goto rpm_out;
1058
1059         /* Register all devices who participated to the core */
1060         for (i = 0; i < dev_nb; i++) {
1061                 ret = i3c_master_add_i3c_dev_locked(m, addrs[i]);
1062                 if (ret)
1063                         goto rpm_out;
1064         }
1065
1066         /* Configure IBI auto-rules */
1067         ret = svc_i3c_update_ibirules(master);
1068         if (ret)
1069                 dev_err(master->dev, "Cannot handle such a list of devices");
1070
1071 rpm_out:
1072         pm_runtime_mark_last_busy(master->dev);
1073         pm_runtime_put_autosuspend(master->dev);
1074
1075         return ret;
1076 }
1077
1078 static int svc_i3c_master_read(struct svc_i3c_master *master,
1079                                u8 *in, unsigned int len)
1080 {
1081         int offset = 0, i;
1082         u32 mdctrl, mstatus;
1083         bool completed = false;
1084         unsigned int count;
1085         unsigned long start = jiffies;
1086
1087         while (!completed) {
1088                 mstatus = readl(master->regs + SVC_I3C_MSTATUS);
1089                 if (SVC_I3C_MSTATUS_COMPLETE(mstatus) != 0)
1090                         completed = true;
1091
1092                 if (time_after(jiffies, start + msecs_to_jiffies(1000))) {
1093                         dev_dbg(master->dev, "I3C read timeout\n");
1094                         return -ETIMEDOUT;
1095                 }
1096
1097                 mdctrl = readl(master->regs + SVC_I3C_MDATACTRL);
1098                 count = SVC_I3C_MDATACTRL_RXCOUNT(mdctrl);
1099                 if (offset + count > len) {
1100                         dev_err(master->dev, "I3C receive length too long!\n");
1101                         return -EINVAL;
1102                 }
1103                 for (i = 0; i < count; i++)
1104                         in[offset + i] = readl(master->regs + SVC_I3C_MRDATAB);
1105
1106                 offset += count;
1107         }
1108
1109         return offset;
1110 }
1111
1112 static int svc_i3c_master_write(struct svc_i3c_master *master,
1113                                 const u8 *out, unsigned int len)
1114 {
1115         int offset = 0, ret;
1116         u32 mdctrl;
1117
1118         while (offset < len) {
1119                 ret = readl_poll_timeout(master->regs + SVC_I3C_MDATACTRL,
1120                                          mdctrl,
1121                                          !(mdctrl & SVC_I3C_MDATACTRL_TXFULL),
1122                                          0, 1000);
1123                 if (ret)
1124                         return ret;
1125
1126                 /*
1127                  * The last byte to be sent over the bus must either have the
1128                  * "end" bit set or be written in MWDATABE.
1129                  */
1130                 if (likely(offset < (len - 1)))
1131                         writel(out[offset++], master->regs + SVC_I3C_MWDATAB);
1132                 else
1133                         writel(out[offset++], master->regs + SVC_I3C_MWDATABE);
1134         }
1135
1136         return 0;
1137 }
1138
1139 static int svc_i3c_master_xfer(struct svc_i3c_master *master,
1140                                bool rnw, unsigned int xfer_type, u8 addr,
1141                                u8 *in, const u8 *out, unsigned int xfer_len,
1142                                unsigned int *actual_len, bool continued)
1143 {
1144         int retry = 2;
1145         u32 reg;
1146         int ret;
1147
1148         /* clean SVC_I3C_MINT_IBIWON w1c bits */
1149         writel(SVC_I3C_MINT_IBIWON, master->regs + SVC_I3C_MSTATUS);
1150
1151
1152         while (retry--) {
1153                 writel(SVC_I3C_MCTRL_REQUEST_START_ADDR |
1154                        xfer_type |
1155                        SVC_I3C_MCTRL_IBIRESP_NACK |
1156                        SVC_I3C_MCTRL_DIR(rnw) |
1157                        SVC_I3C_MCTRL_ADDR(addr) |
1158                        SVC_I3C_MCTRL_RDTERM(*actual_len),
1159                        master->regs + SVC_I3C_MCTRL);
1160
1161                 ret = readl_poll_timeout(master->regs + SVC_I3C_MSTATUS, reg,
1162                                  SVC_I3C_MSTATUS_MCTRLDONE(reg), 0, 1000);
1163                 if (ret)
1164                         goto emit_stop;
1165
1166                 if (readl(master->regs + SVC_I3C_MERRWARN) & SVC_I3C_MERRWARN_NACK) {
1167                         /*
1168                          * According to I3C Spec 1.1.1, 11-Jun-2021, section: 5.1.2.2.3.
1169                          * If the Controller chooses to start an I3C Message with an I3C Dynamic
1170                          * Address, then special provisions shall be made because that same I3C
1171                          * Target may be initiating an IBI or a Controller Role Request. So, one of
1172                          * three things may happen: (skip 1, 2)
1173                          *
1174                          * 3. The Addresses match and the RnW bits also match, and so neither
1175                          * Controller nor Target will ACK since both are expecting the other side to
1176                          * provide ACK. As a result, each side might think it had "won" arbitration,
1177                          * but neither side would continue, as each would subsequently see that the
1178                          * other did not provide ACK.
1179                          * ...
1180                          * For either value of RnW: Due to the NACK, the Controller shall defer the
1181                          * Private Write or Private Read, and should typically transmit the Target
1182                          * Address again after a Repeated START (i.e., the next one or any one prior
1183                          * to a STOP in the Frame). Since the Address Header following a Repeated
1184                          * START is not arbitrated, the Controller will always win (see Section
1185                          * 5.1.2.2.4).
1186                          */
1187                         if (retry && addr != 0x7e) {
1188                                 writel(SVC_I3C_MERRWARN_NACK, master->regs + SVC_I3C_MERRWARN);
1189                         } else {
1190                                 ret = -ENXIO;
1191                                 *actual_len = 0;
1192                                 goto emit_stop;
1193                         }
1194                 } else {
1195                         break;
1196                 }
1197         }
1198
1199         /*
1200          * According to I3C spec ver 1.1.1, 5.1.2.2.3 Consequence of Controller Starting a Frame
1201          * with I3C Target Address.
1202          *
1203          * The I3C Controller normally should start a Frame, the Address may be arbitrated, and so
1204          * the Controller shall monitor to see whether an In-Band Interrupt request, a Controller
1205          * Role Request (i.e., Secondary Controller requests to become the Active Controller), or
1206          * a Hot-Join Request has been made.
1207          *
1208          * If missed IBIWON check, the wrong data will be return. When IBIWON happen, return failure
1209          * and yield the above events handler.
1210          */
1211         if (SVC_I3C_MSTATUS_IBIWON(reg)) {
1212                 ret = -EAGAIN;
1213                 *actual_len = 0;
1214                 goto emit_stop;
1215         }
1216
1217         if (rnw)
1218                 ret = svc_i3c_master_read(master, in, xfer_len);
1219         else
1220                 ret = svc_i3c_master_write(master, out, xfer_len);
1221         if (ret < 0)
1222                 goto emit_stop;
1223
1224         if (rnw)
1225                 *actual_len = ret;
1226
1227         ret = readl_poll_timeout(master->regs + SVC_I3C_MSTATUS, reg,
1228                                  SVC_I3C_MSTATUS_COMPLETE(reg), 0, 1000);
1229         if (ret)
1230                 goto emit_stop;
1231
1232         writel(SVC_I3C_MINT_COMPLETE, master->regs + SVC_I3C_MSTATUS);
1233
1234         if (!continued) {
1235                 svc_i3c_master_emit_stop(master);
1236
1237                 /* Wait idle if stop is sent. */
1238                 readl_poll_timeout(master->regs + SVC_I3C_MSTATUS, reg,
1239                                    SVC_I3C_MSTATUS_STATE_IDLE(reg), 0, 1000);
1240         }
1241
1242         return 0;
1243
1244 emit_stop:
1245         svc_i3c_master_emit_stop(master);
1246         svc_i3c_master_clear_merrwarn(master);
1247
1248         return ret;
1249 }
1250
1251 static struct svc_i3c_xfer *
1252 svc_i3c_master_alloc_xfer(struct svc_i3c_master *master, unsigned int ncmds)
1253 {
1254         struct svc_i3c_xfer *xfer;
1255
1256         xfer = kzalloc(struct_size(xfer, cmds, ncmds), GFP_KERNEL);
1257         if (!xfer)
1258                 return NULL;
1259
1260         INIT_LIST_HEAD(&xfer->node);
1261         xfer->ncmds = ncmds;
1262         xfer->ret = -ETIMEDOUT;
1263
1264         return xfer;
1265 }
1266
1267 static void svc_i3c_master_free_xfer(struct svc_i3c_xfer *xfer)
1268 {
1269         kfree(xfer);
1270 }
1271
1272 static void svc_i3c_master_dequeue_xfer_locked(struct svc_i3c_master *master,
1273                                                struct svc_i3c_xfer *xfer)
1274 {
1275         if (master->xferqueue.cur == xfer)
1276                 master->xferqueue.cur = NULL;
1277         else
1278                 list_del_init(&xfer->node);
1279 }
1280
1281 static void svc_i3c_master_dequeue_xfer(struct svc_i3c_master *master,
1282                                         struct svc_i3c_xfer *xfer)
1283 {
1284         unsigned long flags;
1285
1286         spin_lock_irqsave(&master->xferqueue.lock, flags);
1287         svc_i3c_master_dequeue_xfer_locked(master, xfer);
1288         spin_unlock_irqrestore(&master->xferqueue.lock, flags);
1289 }
1290
1291 static void svc_i3c_master_start_xfer_locked(struct svc_i3c_master *master)
1292 {
1293         struct svc_i3c_xfer *xfer = master->xferqueue.cur;
1294         int ret, i;
1295
1296         if (!xfer)
1297                 return;
1298
1299         svc_i3c_master_clear_merrwarn(master);
1300         svc_i3c_master_flush_fifo(master);
1301
1302         for (i = 0; i < xfer->ncmds; i++) {
1303                 struct svc_i3c_cmd *cmd = &xfer->cmds[i];
1304
1305                 ret = svc_i3c_master_xfer(master, cmd->rnw, xfer->type,
1306                                           cmd->addr, cmd->in, cmd->out,
1307                                           cmd->len, &cmd->actual_len,
1308                                           cmd->continued);
1309                 /* cmd->xfer is NULL if I2C or CCC transfer */
1310                 if (cmd->xfer)
1311                         cmd->xfer->actual_len = cmd->actual_len;
1312
1313                 if (ret)
1314                         break;
1315         }
1316
1317         xfer->ret = ret;
1318         complete(&xfer->comp);
1319
1320         if (ret < 0)
1321                 svc_i3c_master_dequeue_xfer_locked(master, xfer);
1322
1323         xfer = list_first_entry_or_null(&master->xferqueue.list,
1324                                         struct svc_i3c_xfer,
1325                                         node);
1326         if (xfer)
1327                 list_del_init(&xfer->node);
1328
1329         master->xferqueue.cur = xfer;
1330         svc_i3c_master_start_xfer_locked(master);
1331 }
1332
1333 static void svc_i3c_master_enqueue_xfer(struct svc_i3c_master *master,
1334                                         struct svc_i3c_xfer *xfer)
1335 {
1336         unsigned long flags;
1337         int ret;
1338
1339         ret = pm_runtime_resume_and_get(master->dev);
1340         if (ret < 0) {
1341                 dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
1342                 return;
1343         }
1344
1345         init_completion(&xfer->comp);
1346         spin_lock_irqsave(&master->xferqueue.lock, flags);
1347         if (master->xferqueue.cur) {
1348                 list_add_tail(&xfer->node, &master->xferqueue.list);
1349         } else {
1350                 master->xferqueue.cur = xfer;
1351                 svc_i3c_master_start_xfer_locked(master);
1352         }
1353         spin_unlock_irqrestore(&master->xferqueue.lock, flags);
1354
1355         pm_runtime_mark_last_busy(master->dev);
1356         pm_runtime_put_autosuspend(master->dev);
1357 }
1358
1359 static bool
1360 svc_i3c_master_supports_ccc_cmd(struct i3c_master_controller *master,
1361                                 const struct i3c_ccc_cmd *cmd)
1362 {
1363         /* No software support for CCC commands targeting more than one slave */
1364         return (cmd->ndests == 1);
1365 }
1366
1367 static int svc_i3c_master_send_bdcast_ccc_cmd(struct svc_i3c_master *master,
1368                                               struct i3c_ccc_cmd *ccc)
1369 {
1370         unsigned int xfer_len = ccc->dests[0].payload.len + 1;
1371         struct svc_i3c_xfer *xfer;
1372         struct svc_i3c_cmd *cmd;
1373         u8 *buf;
1374         int ret;
1375
1376         xfer = svc_i3c_master_alloc_xfer(master, 1);
1377         if (!xfer)
1378                 return -ENOMEM;
1379
1380         buf = kmalloc(xfer_len, GFP_KERNEL);
1381         if (!buf) {
1382                 svc_i3c_master_free_xfer(xfer);
1383                 return -ENOMEM;
1384         }
1385
1386         buf[0] = ccc->id;
1387         memcpy(&buf[1], ccc->dests[0].payload.data, ccc->dests[0].payload.len);
1388
1389         xfer->type = SVC_I3C_MCTRL_TYPE_I3C;
1390
1391         cmd = &xfer->cmds[0];
1392         cmd->addr = ccc->dests[0].addr;
1393         cmd->rnw = ccc->rnw;
1394         cmd->in = NULL;
1395         cmd->out = buf;
1396         cmd->len = xfer_len;
1397         cmd->actual_len = 0;
1398         cmd->continued = false;
1399
1400         mutex_lock(&master->lock);
1401         svc_i3c_master_enqueue_xfer(master, xfer);
1402         if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000)))
1403                 svc_i3c_master_dequeue_xfer(master, xfer);
1404         mutex_unlock(&master->lock);
1405
1406         ret = xfer->ret;
1407         kfree(buf);
1408         svc_i3c_master_free_xfer(xfer);
1409
1410         return ret;
1411 }
1412
1413 static int svc_i3c_master_send_direct_ccc_cmd(struct svc_i3c_master *master,
1414                                               struct i3c_ccc_cmd *ccc)
1415 {
1416         unsigned int xfer_len = ccc->dests[0].payload.len;
1417         unsigned int actual_len = ccc->rnw ? xfer_len : 0;
1418         struct svc_i3c_xfer *xfer;
1419         struct svc_i3c_cmd *cmd;
1420         int ret;
1421
1422         xfer = svc_i3c_master_alloc_xfer(master, 2);
1423         if (!xfer)
1424                 return -ENOMEM;
1425
1426         xfer->type = SVC_I3C_MCTRL_TYPE_I3C;
1427
1428         /* Broadcasted message */
1429         cmd = &xfer->cmds[0];
1430         cmd->addr = I3C_BROADCAST_ADDR;
1431         cmd->rnw = 0;
1432         cmd->in = NULL;
1433         cmd->out = &ccc->id;
1434         cmd->len = 1;
1435         cmd->actual_len = 0;
1436         cmd->continued = true;
1437
1438         /* Directed message */
1439         cmd = &xfer->cmds[1];
1440         cmd->addr = ccc->dests[0].addr;
1441         cmd->rnw = ccc->rnw;
1442         cmd->in = ccc->rnw ? ccc->dests[0].payload.data : NULL;
1443         cmd->out = ccc->rnw ? NULL : ccc->dests[0].payload.data;
1444         cmd->len = xfer_len;
1445         cmd->actual_len = actual_len;
1446         cmd->continued = false;
1447
1448         mutex_lock(&master->lock);
1449         svc_i3c_master_enqueue_xfer(master, xfer);
1450         if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000)))
1451                 svc_i3c_master_dequeue_xfer(master, xfer);
1452         mutex_unlock(&master->lock);
1453
1454         if (cmd->actual_len != xfer_len)
1455                 ccc->dests[0].payload.len = cmd->actual_len;
1456
1457         ret = xfer->ret;
1458         svc_i3c_master_free_xfer(xfer);
1459
1460         return ret;
1461 }
1462
1463 static int svc_i3c_master_send_ccc_cmd(struct i3c_master_controller *m,
1464                                        struct i3c_ccc_cmd *cmd)
1465 {
1466         struct svc_i3c_master *master = to_svc_i3c_master(m);
1467         bool broadcast = cmd->id < 0x80;
1468         int ret;
1469
1470         if (broadcast)
1471                 ret = svc_i3c_master_send_bdcast_ccc_cmd(master, cmd);
1472         else
1473                 ret = svc_i3c_master_send_direct_ccc_cmd(master, cmd);
1474
1475         if (ret)
1476                 cmd->err = I3C_ERROR_M2;
1477
1478         return ret;
1479 }
1480
1481 static int svc_i3c_master_priv_xfers(struct i3c_dev_desc *dev,
1482                                      struct i3c_priv_xfer *xfers,
1483                                      int nxfers)
1484 {
1485         struct i3c_master_controller *m = i3c_dev_get_master(dev);
1486         struct svc_i3c_master *master = to_svc_i3c_master(m);
1487         struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
1488         struct svc_i3c_xfer *xfer;
1489         int ret, i;
1490
1491         xfer = svc_i3c_master_alloc_xfer(master, nxfers);
1492         if (!xfer)
1493                 return -ENOMEM;
1494
1495         xfer->type = SVC_I3C_MCTRL_TYPE_I3C;
1496
1497         for (i = 0; i < nxfers; i++) {
1498                 struct svc_i3c_cmd *cmd = &xfer->cmds[i];
1499
1500                 cmd->xfer = &xfers[i];
1501                 cmd->addr = master->addrs[data->index];
1502                 cmd->rnw = xfers[i].rnw;
1503                 cmd->in = xfers[i].rnw ? xfers[i].data.in : NULL;
1504                 cmd->out = xfers[i].rnw ? NULL : xfers[i].data.out;
1505                 cmd->len = xfers[i].len;
1506                 cmd->actual_len = xfers[i].rnw ? xfers[i].len : 0;
1507                 cmd->continued = (i + 1) < nxfers;
1508         }
1509
1510         mutex_lock(&master->lock);
1511         svc_i3c_master_enqueue_xfer(master, xfer);
1512         if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000)))
1513                 svc_i3c_master_dequeue_xfer(master, xfer);
1514         mutex_unlock(&master->lock);
1515
1516         ret = xfer->ret;
1517         svc_i3c_master_free_xfer(xfer);
1518
1519         return ret;
1520 }
1521
1522 static int svc_i3c_master_i2c_xfers(struct i2c_dev_desc *dev,
1523                                     const struct i2c_msg *xfers,
1524                                     int nxfers)
1525 {
1526         struct i3c_master_controller *m = i2c_dev_get_master(dev);
1527         struct svc_i3c_master *master = to_svc_i3c_master(m);
1528         struct svc_i3c_i2c_dev_data *data = i2c_dev_get_master_data(dev);
1529         struct svc_i3c_xfer *xfer;
1530         int ret, i;
1531
1532         xfer = svc_i3c_master_alloc_xfer(master, nxfers);
1533         if (!xfer)
1534                 return -ENOMEM;
1535
1536         xfer->type = SVC_I3C_MCTRL_TYPE_I2C;
1537
1538         for (i = 0; i < nxfers; i++) {
1539                 struct svc_i3c_cmd *cmd = &xfer->cmds[i];
1540
1541                 cmd->addr = master->addrs[data->index];
1542                 cmd->rnw = xfers[i].flags & I2C_M_RD;
1543                 cmd->in = cmd->rnw ? xfers[i].buf : NULL;
1544                 cmd->out = cmd->rnw ? NULL : xfers[i].buf;
1545                 cmd->len = xfers[i].len;
1546                 cmd->actual_len = cmd->rnw ? xfers[i].len : 0;
1547                 cmd->continued = (i + 1 < nxfers);
1548         }
1549
1550         mutex_lock(&master->lock);
1551         svc_i3c_master_enqueue_xfer(master, xfer);
1552         if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000)))
1553                 svc_i3c_master_dequeue_xfer(master, xfer);
1554         mutex_unlock(&master->lock);
1555
1556         ret = xfer->ret;
1557         svc_i3c_master_free_xfer(xfer);
1558
1559         return ret;
1560 }
1561
1562 static int svc_i3c_master_request_ibi(struct i3c_dev_desc *dev,
1563                                       const struct i3c_ibi_setup *req)
1564 {
1565         struct i3c_master_controller *m = i3c_dev_get_master(dev);
1566         struct svc_i3c_master *master = to_svc_i3c_master(m);
1567         struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
1568         unsigned long flags;
1569         unsigned int i;
1570
1571         if (dev->ibi->max_payload_len > SVC_I3C_FIFO_SIZE) {
1572                 dev_err(master->dev, "IBI max payload %d should be < %d\n",
1573                         dev->ibi->max_payload_len, SVC_I3C_FIFO_SIZE);
1574                 return -ERANGE;
1575         }
1576
1577         data->ibi_pool = i3c_generic_ibi_alloc_pool(dev, req);
1578         if (IS_ERR(data->ibi_pool))
1579                 return PTR_ERR(data->ibi_pool);
1580
1581         spin_lock_irqsave(&master->ibi.lock, flags);
1582         for (i = 0; i < master->ibi.num_slots; i++) {
1583                 if (!master->ibi.slots[i]) {
1584                         data->ibi = i;
1585                         master->ibi.slots[i] = dev;
1586                         break;
1587                 }
1588         }
1589         spin_unlock_irqrestore(&master->ibi.lock, flags);
1590
1591         if (i < master->ibi.num_slots)
1592                 return 0;
1593
1594         i3c_generic_ibi_free_pool(data->ibi_pool);
1595         data->ibi_pool = NULL;
1596
1597         return -ENOSPC;
1598 }
1599
1600 static void svc_i3c_master_free_ibi(struct i3c_dev_desc *dev)
1601 {
1602         struct i3c_master_controller *m = i3c_dev_get_master(dev);
1603         struct svc_i3c_master *master = to_svc_i3c_master(m);
1604         struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
1605         unsigned long flags;
1606
1607         spin_lock_irqsave(&master->ibi.lock, flags);
1608         master->ibi.slots[data->ibi] = NULL;
1609         data->ibi = -1;
1610         spin_unlock_irqrestore(&master->ibi.lock, flags);
1611
1612         i3c_generic_ibi_free_pool(data->ibi_pool);
1613 }
1614
1615 static int svc_i3c_master_enable_ibi(struct i3c_dev_desc *dev)
1616 {
1617         struct i3c_master_controller *m = i3c_dev_get_master(dev);
1618         struct svc_i3c_master *master = to_svc_i3c_master(m);
1619         int ret;
1620
1621         ret = pm_runtime_resume_and_get(master->dev);
1622         if (ret < 0) {
1623                 dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
1624                 return ret;
1625         }
1626
1627         master->enabled_events |= SVC_I3C_EVENT_IBI;
1628         svc_i3c_master_enable_interrupts(master, SVC_I3C_MINT_SLVSTART);
1629
1630         return i3c_master_enec_locked(m, dev->info.dyn_addr, I3C_CCC_EVENT_SIR);
1631 }
1632
1633 static int svc_i3c_master_disable_ibi(struct i3c_dev_desc *dev)
1634 {
1635         struct i3c_master_controller *m = i3c_dev_get_master(dev);
1636         struct svc_i3c_master *master = to_svc_i3c_master(m);
1637         int ret;
1638
1639         master->enabled_events &= ~SVC_I3C_EVENT_IBI;
1640         if (!master->enabled_events)
1641                 svc_i3c_master_disable_interrupts(master);
1642
1643         ret = i3c_master_disec_locked(m, dev->info.dyn_addr, I3C_CCC_EVENT_SIR);
1644
1645         pm_runtime_mark_last_busy(master->dev);
1646         pm_runtime_put_autosuspend(master->dev);
1647
1648         return ret;
1649 }
1650
1651 static int svc_i3c_master_enable_hotjoin(struct i3c_master_controller *m)
1652 {
1653         struct svc_i3c_master *master = to_svc_i3c_master(m);
1654         int ret;
1655
1656         ret = pm_runtime_resume_and_get(master->dev);
1657         if (ret < 0) {
1658                 dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
1659                 return ret;
1660         }
1661
1662         master->enabled_events |= SVC_I3C_EVENT_HOTJOIN;
1663
1664         svc_i3c_master_enable_interrupts(master, SVC_I3C_MINT_SLVSTART);
1665
1666         return 0;
1667 }
1668
1669 static int svc_i3c_master_disable_hotjoin(struct i3c_master_controller *m)
1670 {
1671         struct svc_i3c_master *master = to_svc_i3c_master(m);
1672
1673         master->enabled_events &= ~SVC_I3C_EVENT_HOTJOIN;
1674
1675         if (!master->enabled_events)
1676                 svc_i3c_master_disable_interrupts(master);
1677
1678         pm_runtime_mark_last_busy(master->dev);
1679         pm_runtime_put_autosuspend(master->dev);
1680
1681         return 0;
1682 }
1683
1684 static void svc_i3c_master_recycle_ibi_slot(struct i3c_dev_desc *dev,
1685                                             struct i3c_ibi_slot *slot)
1686 {
1687         struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
1688
1689         i3c_generic_ibi_recycle_slot(data->ibi_pool, slot);
1690 }
1691
1692 static const struct i3c_master_controller_ops svc_i3c_master_ops = {
1693         .bus_init = svc_i3c_master_bus_init,
1694         .bus_cleanup = svc_i3c_master_bus_cleanup,
1695         .attach_i3c_dev = svc_i3c_master_attach_i3c_dev,
1696         .detach_i3c_dev = svc_i3c_master_detach_i3c_dev,
1697         .reattach_i3c_dev = svc_i3c_master_reattach_i3c_dev,
1698         .attach_i2c_dev = svc_i3c_master_attach_i2c_dev,
1699         .detach_i2c_dev = svc_i3c_master_detach_i2c_dev,
1700         .do_daa = svc_i3c_master_do_daa,
1701         .supports_ccc_cmd = svc_i3c_master_supports_ccc_cmd,
1702         .send_ccc_cmd = svc_i3c_master_send_ccc_cmd,
1703         .priv_xfers = svc_i3c_master_priv_xfers,
1704         .i2c_xfers = svc_i3c_master_i2c_xfers,
1705         .request_ibi = svc_i3c_master_request_ibi,
1706         .free_ibi = svc_i3c_master_free_ibi,
1707         .recycle_ibi_slot = svc_i3c_master_recycle_ibi_slot,
1708         .enable_ibi = svc_i3c_master_enable_ibi,
1709         .disable_ibi = svc_i3c_master_disable_ibi,
1710         .enable_hotjoin = svc_i3c_master_enable_hotjoin,
1711         .disable_hotjoin = svc_i3c_master_disable_hotjoin,
1712         .set_speed = svc_i3c_master_set_speed,
1713 };
1714
1715 static int svc_i3c_master_prepare_clks(struct svc_i3c_master *master)
1716 {
1717         int ret = 0;
1718
1719         ret = clk_prepare_enable(master->pclk);
1720         if (ret)
1721                 return ret;
1722
1723         ret = clk_prepare_enable(master->fclk);
1724         if (ret) {
1725                 clk_disable_unprepare(master->pclk);
1726                 return ret;
1727         }
1728
1729         ret = clk_prepare_enable(master->sclk);
1730         if (ret) {
1731                 clk_disable_unprepare(master->pclk);
1732                 clk_disable_unprepare(master->fclk);
1733                 return ret;
1734         }
1735
1736         return 0;
1737 }
1738
1739 static void svc_i3c_master_unprepare_clks(struct svc_i3c_master *master)
1740 {
1741         clk_disable_unprepare(master->pclk);
1742         clk_disable_unprepare(master->fclk);
1743         clk_disable_unprepare(master->sclk);
1744 }
1745
1746 static int svc_i3c_master_probe(struct platform_device *pdev)
1747 {
1748         struct device *dev = &pdev->dev;
1749         struct svc_i3c_master *master;
1750         int ret;
1751
1752         master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
1753         if (!master)
1754                 return -ENOMEM;
1755
1756         master->regs = devm_platform_ioremap_resource(pdev, 0);
1757         if (IS_ERR(master->regs))
1758                 return PTR_ERR(master->regs);
1759
1760         master->pclk = devm_clk_get(dev, "pclk");
1761         if (IS_ERR(master->pclk))
1762                 return PTR_ERR(master->pclk);
1763
1764         master->fclk = devm_clk_get(dev, "fast_clk");
1765         if (IS_ERR(master->fclk))
1766                 return PTR_ERR(master->fclk);
1767
1768         master->sclk = devm_clk_get(dev, "slow_clk");
1769         if (IS_ERR(master->sclk))
1770                 return PTR_ERR(master->sclk);
1771
1772         master->irq = platform_get_irq(pdev, 0);
1773         if (master->irq < 0)
1774                 return master->irq;
1775
1776         master->dev = dev;
1777
1778         ret = svc_i3c_master_prepare_clks(master);
1779         if (ret)
1780                 return ret;
1781
1782         INIT_WORK(&master->hj_work, svc_i3c_master_hj_work);
1783         INIT_WORK(&master->ibi_work, svc_i3c_master_ibi_work);
1784         mutex_init(&master->lock);
1785
1786         ret = devm_request_irq(dev, master->irq, svc_i3c_master_irq_handler,
1787                                IRQF_NO_SUSPEND, "svc-i3c-irq", master);
1788         if (ret)
1789                 goto err_disable_clks;
1790
1791         master->free_slots = GENMASK(SVC_I3C_MAX_DEVS - 1, 0);
1792
1793         spin_lock_init(&master->xferqueue.lock);
1794         INIT_LIST_HEAD(&master->xferqueue.list);
1795
1796         spin_lock_init(&master->ibi.lock);
1797         master->ibi.num_slots = SVC_I3C_MAX_DEVS;
1798         master->ibi.slots = devm_kcalloc(&pdev->dev, master->ibi.num_slots,
1799                                          sizeof(*master->ibi.slots),
1800                                          GFP_KERNEL);
1801         if (!master->ibi.slots) {
1802                 ret = -ENOMEM;
1803                 goto err_disable_clks;
1804         }
1805
1806         platform_set_drvdata(pdev, master);
1807
1808         pm_runtime_set_autosuspend_delay(&pdev->dev, SVC_I3C_PM_TIMEOUT_MS);
1809         pm_runtime_use_autosuspend(&pdev->dev);
1810         pm_runtime_get_noresume(&pdev->dev);
1811         pm_runtime_set_active(&pdev->dev);
1812         pm_runtime_enable(&pdev->dev);
1813
1814         svc_i3c_master_reset(master);
1815
1816         /* Register the master */
1817         ret = i3c_master_register(&master->base, &pdev->dev,
1818                                   &svc_i3c_master_ops, false);
1819         if (ret)
1820                 goto rpm_disable;
1821
1822         pm_runtime_mark_last_busy(&pdev->dev);
1823         pm_runtime_put_autosuspend(&pdev->dev);
1824
1825         return 0;
1826
1827 rpm_disable:
1828         pm_runtime_dont_use_autosuspend(&pdev->dev);
1829         pm_runtime_put_noidle(&pdev->dev);
1830         pm_runtime_set_suspended(&pdev->dev);
1831         pm_runtime_disable(&pdev->dev);
1832
1833 err_disable_clks:
1834         svc_i3c_master_unprepare_clks(master);
1835
1836         return ret;
1837 }
1838
1839 static void svc_i3c_master_remove(struct platform_device *pdev)
1840 {
1841         struct svc_i3c_master *master = platform_get_drvdata(pdev);
1842
1843         cancel_work_sync(&master->hj_work);
1844         i3c_master_unregister(&master->base);
1845
1846         pm_runtime_dont_use_autosuspend(&pdev->dev);
1847         pm_runtime_disable(&pdev->dev);
1848 }
1849
1850 static void svc_i3c_save_regs(struct svc_i3c_master *master)
1851 {
1852         master->saved_regs.mconfig = readl(master->regs + SVC_I3C_MCONFIG);
1853         master->saved_regs.mdynaddr = readl(master->regs + SVC_I3C_MDYNADDR);
1854 }
1855
1856 static void svc_i3c_restore_regs(struct svc_i3c_master *master)
1857 {
1858         if (readl(master->regs + SVC_I3C_MDYNADDR) !=
1859             master->saved_regs.mdynaddr) {
1860                 writel(master->saved_regs.mconfig,
1861                        master->regs + SVC_I3C_MCONFIG);
1862                 writel(master->saved_regs.mdynaddr,
1863                        master->regs + SVC_I3C_MDYNADDR);
1864         }
1865 }
1866
1867 static int __maybe_unused svc_i3c_runtime_suspend(struct device *dev)
1868 {
1869         struct svc_i3c_master *master = dev_get_drvdata(dev);
1870
1871         svc_i3c_save_regs(master);
1872         svc_i3c_master_unprepare_clks(master);
1873         pinctrl_pm_select_sleep_state(dev);
1874
1875         return 0;
1876 }
1877
1878 static int __maybe_unused svc_i3c_runtime_resume(struct device *dev)
1879 {
1880         struct svc_i3c_master *master = dev_get_drvdata(dev);
1881
1882         pinctrl_pm_select_default_state(dev);
1883         svc_i3c_master_prepare_clks(master);
1884
1885         svc_i3c_restore_regs(master);
1886
1887         return 0;
1888 }
1889
1890 static const struct dev_pm_ops svc_i3c_pm_ops = {
1891         SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1892                                       pm_runtime_force_resume)
1893         SET_RUNTIME_PM_OPS(svc_i3c_runtime_suspend,
1894                            svc_i3c_runtime_resume, NULL)
1895 };
1896
1897 static const struct of_device_id svc_i3c_master_of_match_tbl[] = {
1898         { .compatible = "silvaco,i3c-master-v1"},
1899         { /* sentinel */ },
1900 };
1901 MODULE_DEVICE_TABLE(of, svc_i3c_master_of_match_tbl);
1902
1903 static struct platform_driver svc_i3c_master = {
1904         .probe = svc_i3c_master_probe,
1905         .remove_new = svc_i3c_master_remove,
1906         .driver = {
1907                 .name = "silvaco-i3c-master",
1908                 .of_match_table = svc_i3c_master_of_match_tbl,
1909                 .pm = &svc_i3c_pm_ops,
1910         },
1911 };
1912 module_platform_driver(svc_i3c_master);
1913
1914 MODULE_AUTHOR("Conor Culhane <[email protected]>");
1915 MODULE_AUTHOR("Miquel Raynal <[email protected]>");
1916 MODULE_DESCRIPTION("Silvaco dual-role I3C master driver");
1917 MODULE_LICENSE("GPL v2");
This page took 0.143552 seconds and 4 git commands to generate.