]> Git Repo - linux.git/blob - drivers/i2c/busses/i2c-nomadik.c
crypto: akcipher - Drop sign/verify operations
[linux.git] / drivers / i2c / busses / i2c-nomadik.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2009 ST-Ericsson SA
4  * Copyright (C) 2009 STMicroelectronics
5  *
6  * I2C master mode controller driver, used in Nomadik 8815
7  * and Ux500 platforms.
8  *
9  * The Mobileye EyeQ5 platform is also supported; it uses
10  * the same Ux500/DB8500 IP block with two quirks:
11  *  - The memory bus only supports 32-bit accesses.
12  *  - A register must be configured for the I2C speed mode;
13  *    it is located in a shared register region called OLB.
14  *
15  * Author: Srinidhi Kasagar <[email protected]>
16  * Author: Sachin Verma <[email protected]>
17  */
18 #include <linux/amba/bus.h>
19 #include <linux/bitfield.h>
20 #include <linux/clk.h>
21 #include <linux/err.h>
22 #include <linux/i2c.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/io.h>
26 #include <linux/mfd/syscon.h>
27 #include <linux/module.h>
28 #include <linux/of.h>
29 #include <linux/pinctrl/consumer.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/regmap.h>
32 #include <linux/slab.h>
33
34 #define DRIVER_NAME "nmk-i2c"
35
36 /* I2C Controller register offsets */
37 #define I2C_CR          (0x000)
38 #define I2C_SCR         (0x004)
39 #define I2C_HSMCR       (0x008)
40 #define I2C_MCR         (0x00C)
41 #define I2C_TFR         (0x010)
42 #define I2C_SR          (0x014)
43 #define I2C_RFR         (0x018)
44 #define I2C_TFTR        (0x01C)
45 #define I2C_RFTR        (0x020)
46 #define I2C_DMAR        (0x024)
47 #define I2C_BRCR        (0x028)
48 #define I2C_IMSCR       (0x02C)
49 #define I2C_RISR        (0x030)
50 #define I2C_MISR        (0x034)
51 #define I2C_ICR         (0x038)
52
53 /* Control registers */
54 #define I2C_CR_PE               BIT(0)          /* Peripheral Enable */
55 #define I2C_CR_OM               GENMASK(2, 1)   /* Operating mode */
56 #define I2C_CR_SAM              BIT(3)          /* Slave addressing mode */
57 #define I2C_CR_SM               GENMASK(5, 4)   /* Speed mode */
58 #define I2C_CR_SGCM             BIT(6)          /* Slave general call mode */
59 #define I2C_CR_FTX              BIT(7)          /* Flush Transmit */
60 #define I2C_CR_FRX              BIT(8)          /* Flush Receive */
61 #define I2C_CR_DMA_TX_EN        BIT(9)          /* DMA Tx enable */
62 #define I2C_CR_DMA_RX_EN        BIT(10)         /* DMA Rx Enable */
63 #define I2C_CR_DMA_SLE          BIT(11)         /* DMA sync. logic enable */
64 #define I2C_CR_LM               BIT(12)         /* Loopback mode */
65 #define I2C_CR_FON              GENMASK(14, 13) /* Filtering on */
66 #define I2C_CR_FS               GENMASK(16, 15) /* Force stop enable */
67
68 /* Slave control register (SCR) */
69 #define I2C_SCR_SLSU            GENMASK(31, 16) /* Slave data setup time */
70
71 /* Master controller (MCR) register */
72 #define I2C_MCR_OP              BIT(0)          /* Operation */
73 #define I2C_MCR_A7              GENMASK(7, 1)   /* 7-bit address */
74 #define I2C_MCR_EA10            GENMASK(10, 8)  /* 10-bit Extended address */
75 #define I2C_MCR_SB              BIT(11)         /* Extended address */
76 #define I2C_MCR_AM              GENMASK(13, 12) /* Address type */
77 #define I2C_MCR_STOP            BIT(14)         /* Stop condition */
78 #define I2C_MCR_LENGTH          GENMASK(25, 15) /* Transaction length */
79
80 /* Status register (SR) */
81 #define I2C_SR_OP               GENMASK(1, 0)   /* Operation */
82 #define I2C_SR_STATUS           GENMASK(3, 2)   /* controller status */
83 #define I2C_SR_CAUSE            GENMASK(6, 4)   /* Abort cause */
84 #define I2C_SR_TYPE             GENMASK(8, 7)   /* Receive type */
85 #define I2C_SR_LENGTH           GENMASK(19, 9)  /* Transfer length */
86
87 /* Baud-rate counter register (BRCR) */
88 #define I2C_BRCR_BRCNT1         GENMASK(31, 16) /* Baud-rate counter 1 */
89 #define I2C_BRCR_BRCNT2         GENMASK(15, 0)  /* Baud-rate counter 2 */
90
91 /* Interrupt mask set/clear (IMSCR) bits */
92 #define I2C_IT_TXFE             BIT(0)
93 #define I2C_IT_TXFNE            BIT(1)
94 #define I2C_IT_TXFF             BIT(2)
95 #define I2C_IT_TXFOVR           BIT(3)
96 #define I2C_IT_RXFE             BIT(4)
97 #define I2C_IT_RXFNF            BIT(5)
98 #define I2C_IT_RXFF             BIT(6)
99 #define I2C_IT_RFSR             BIT(16)
100 #define I2C_IT_RFSE             BIT(17)
101 #define I2C_IT_WTSR             BIT(18)
102 #define I2C_IT_MTD              BIT(19)
103 #define I2C_IT_STD              BIT(20)
104 #define I2C_IT_MAL              BIT(24)
105 #define I2C_IT_BERR             BIT(25)
106 #define I2C_IT_MTDWS            BIT(28)
107
108 /* some bits in ICR are reserved */
109 #define I2C_CLEAR_ALL_INTS      0x131f007f
110
111 /* maximum threshold value */
112 #define MAX_I2C_FIFO_THRESHOLD  15
113
114 enum i2c_freq_mode {
115         I2C_FREQ_MODE_STANDARD,         /* up to 100 Kb/s */
116         I2C_FREQ_MODE_FAST,             /* up to 400 Kb/s */
117         I2C_FREQ_MODE_HIGH_SPEED,       /* up to 3.4 Mb/s */
118         I2C_FREQ_MODE_FAST_PLUS,        /* up to 1 Mb/s */
119 };
120
121 /* Mobileye EyeQ5 offset into a shared register region (called OLB) */
122 #define NMK_I2C_EYEQ5_OLB_IOCR2                 0x0B8
123
124 enum i2c_eyeq5_speed {
125         I2C_EYEQ5_SPEED_FAST,
126         I2C_EYEQ5_SPEED_FAST_PLUS,
127         I2C_EYEQ5_SPEED_HIGH_SPEED,
128 };
129
130 /**
131  * struct i2c_vendor_data - per-vendor variations
132  * @has_mtdws: variant has the MTDWS bit
133  * @fifodepth: variant FIFO depth
134  */
135 struct i2c_vendor_data {
136         bool has_mtdws;
137         u32 fifodepth;
138 };
139
140 enum i2c_status {
141         I2C_NOP,
142         I2C_ON_GOING,
143         I2C_OK,
144         I2C_ABORT
145 };
146
147 /* operation */
148 enum i2c_operation {
149         I2C_NO_OPERATION = 0xff,
150         I2C_WRITE = 0x00,
151         I2C_READ = 0x01
152 };
153
154 enum i2c_operating_mode {
155         I2C_OM_SLAVE,
156         I2C_OM_MASTER,
157         I2C_OM_MASTER_OR_SLAVE,
158 };
159
160 /**
161  * struct i2c_nmk_client - client specific data
162  * @slave_adr: 7-bit slave address
163  * @count: no. bytes to be transferred
164  * @buffer: client data buffer
165  * @xfer_bytes: bytes transferred till now
166  * @operation: current I2C operation
167  */
168 struct i2c_nmk_client {
169         unsigned short          slave_adr;
170         unsigned long           count;
171         unsigned char           *buffer;
172         unsigned long           xfer_bytes;
173         enum i2c_operation      operation;
174 };
175
176 /**
177  * struct nmk_i2c_dev - private data structure of the controller.
178  * @vendor: vendor data for this variant.
179  * @adev: parent amba device.
180  * @adap: corresponding I2C adapter.
181  * @irq: interrupt line for the controller.
182  * @virtbase: virtual io memory area.
183  * @clk: hardware i2c block clock.
184  * @cli: holder of client specific data.
185  * @clk_freq: clock frequency for the operation mode
186  * @tft: Tx FIFO Threshold in bytes
187  * @rft: Rx FIFO Threshold in bytes
188  * @timeout_usecs: Slave response timeout
189  * @sm: speed mode
190  * @stop: stop condition.
191  * @xfer_wq: xfer done wait queue.
192  * @xfer_done: xfer done boolean.
193  * @result: controller propogated result.
194  * @has_32b_bus: controller is on a bus that only supports 32-bit accesses.
195  */
196 struct nmk_i2c_dev {
197         struct i2c_vendor_data          *vendor;
198         struct amba_device              *adev;
199         struct i2c_adapter              adap;
200         int                             irq;
201         void __iomem                    *virtbase;
202         struct clk                      *clk;
203         struct i2c_nmk_client           cli;
204         u32                             clk_freq;
205         unsigned char                   tft;
206         unsigned char                   rft;
207         u32                             timeout_usecs;
208         enum i2c_freq_mode              sm;
209         int                             stop;
210         struct wait_queue_head          xfer_wq;
211         bool                            xfer_done;
212         int                             result;
213         bool                            has_32b_bus;
214 };
215
216 /* controller's abort causes */
217 static const char *abort_causes[] = {
218         "no ack received after address transmission",
219         "no ack received during data phase",
220         "ack received after xmission of master code",
221         "master lost arbitration",
222         "slave restarts",
223         "slave reset",
224         "overflow, maxsize is 2047 bytes",
225 };
226
227 static inline void i2c_set_bit(void __iomem *reg, u32 mask)
228 {
229         writel(readl(reg) | mask, reg);
230 }
231
232 static inline void i2c_clr_bit(void __iomem *reg, u32 mask)
233 {
234         writel(readl(reg) & ~mask, reg);
235 }
236
237 static inline u8 nmk_i2c_readb(const struct nmk_i2c_dev *priv,
238                                unsigned long reg)
239 {
240         if (priv->has_32b_bus)
241                 return readl(priv->virtbase + reg);
242         else
243                 return readb(priv->virtbase + reg);
244 }
245
246 static inline void nmk_i2c_writeb(const struct nmk_i2c_dev *priv, u32 val,
247                                   unsigned long reg)
248 {
249         if (priv->has_32b_bus)
250                 writel(val, priv->virtbase + reg);
251         else
252                 writeb(val, priv->virtbase + reg);
253 }
254
255 /**
256  * flush_i2c_fifo() - This function flushes the I2C FIFO
257  * @priv: private data of I2C Driver
258  *
259  * This function flushes the I2C Tx and Rx FIFOs. It returns
260  * 0 on successful flushing of FIFO
261  */
262 static int flush_i2c_fifo(struct nmk_i2c_dev *priv)
263 {
264 #define LOOP_ATTEMPTS 10
265         ktime_t timeout;
266         int i;
267
268         /*
269          * flush the transmit and receive FIFO. The flushing
270          * operation takes several cycles before to be completed.
271          * On the completion, the I2C internal logic clears these
272          * bits, until then no one must access Tx, Rx FIFO and
273          * should poll on these bits waiting for the completion.
274          */
275         writel((I2C_CR_FTX | I2C_CR_FRX), priv->virtbase + I2C_CR);
276
277         for (i = 0; i < LOOP_ATTEMPTS; i++) {
278                 timeout = ktime_add_us(ktime_get(), priv->timeout_usecs);
279
280                 while (ktime_after(timeout, ktime_get())) {
281                         if ((readl(priv->virtbase + I2C_CR) &
282                                 (I2C_CR_FTX | I2C_CR_FRX)) == 0)
283                                 return 0;
284                 }
285         }
286
287         dev_err(&priv->adev->dev,
288                 "flushing operation timed out giving up after %d attempts",
289                 LOOP_ATTEMPTS);
290
291         return -ETIMEDOUT;
292 }
293
294 /**
295  * disable_all_interrupts() - Disable all interrupts of this I2c Bus
296  * @priv: private data of I2C Driver
297  */
298 static void disable_all_interrupts(struct nmk_i2c_dev *priv)
299 {
300         writel(0, priv->virtbase + I2C_IMSCR);
301 }
302
303 /**
304  * clear_all_interrupts() - Clear all interrupts of I2C Controller
305  * @priv: private data of I2C Driver
306  */
307 static void clear_all_interrupts(struct nmk_i2c_dev *priv)
308 {
309         writel(I2C_CLEAR_ALL_INTS, priv->virtbase + I2C_ICR);
310 }
311
312 /**
313  * init_hw() - initialize the I2C hardware
314  * @priv: private data of I2C Driver
315  */
316 static int init_hw(struct nmk_i2c_dev *priv)
317 {
318         int stat;
319
320         stat = flush_i2c_fifo(priv);
321         if (stat)
322                 goto exit;
323
324         /* disable the controller */
325         i2c_clr_bit(priv->virtbase + I2C_CR, I2C_CR_PE);
326
327         disable_all_interrupts(priv);
328
329         clear_all_interrupts(priv);
330
331         priv->cli.operation = I2C_NO_OPERATION;
332
333 exit:
334         return stat;
335 }
336
337 /* enable peripheral, master mode operation */
338 #define DEFAULT_I2C_REG_CR      (FIELD_PREP(I2C_CR_OM, I2C_OM_MASTER) | I2C_CR_PE)
339
340 /* grab top three bits from extended I2C addresses */
341 #define ADR_3MSB_BITS           GENMASK(9, 7)
342
343 /**
344  * load_i2c_mcr_reg() - load the MCR register
345  * @priv: private data of controller
346  * @flags: message flags
347  */
348 static u32 load_i2c_mcr_reg(struct nmk_i2c_dev *priv, u16 flags)
349 {
350         u32 mcr = 0;
351         unsigned short slave_adr_3msb_bits;
352
353         mcr |= FIELD_PREP(I2C_MCR_A7, priv->cli.slave_adr);
354
355         if (unlikely(flags & I2C_M_TEN)) {
356                 /* 10-bit address transaction */
357                 mcr |= FIELD_PREP(I2C_MCR_AM, 2);
358                 /*
359                  * Get the top 3 bits.
360                  * EA10 represents extended address in MCR. This includes
361                  * the extension (MSB bits) of the 7 bit address loaded
362                  * in A7
363                  */
364                 slave_adr_3msb_bits = FIELD_GET(ADR_3MSB_BITS,
365                                                 priv->cli.slave_adr);
366
367                 mcr |= FIELD_PREP(I2C_MCR_EA10, slave_adr_3msb_bits);
368         } else {
369                 /* 7-bit address transaction */
370                 mcr |= FIELD_PREP(I2C_MCR_AM, 1);
371         }
372
373         /* start byte procedure not applied */
374         mcr |= FIELD_PREP(I2C_MCR_SB, 0);
375
376         /* check the operation, master read/write? */
377         if (priv->cli.operation == I2C_WRITE)
378                 mcr |= FIELD_PREP(I2C_MCR_OP, I2C_WRITE);
379         else
380                 mcr |= FIELD_PREP(I2C_MCR_OP, I2C_READ);
381
382         /* stop or repeated start? */
383         if (priv->stop)
384                 mcr |= FIELD_PREP(I2C_MCR_STOP, 1);
385         else
386                 mcr &= ~FIELD_PREP(I2C_MCR_STOP, 1);
387
388         mcr |= FIELD_PREP(I2C_MCR_LENGTH, priv->cli.count);
389
390         return mcr;
391 }
392
393 /**
394  * setup_i2c_controller() - setup the controller
395  * @priv: private data of controller
396  */
397 static void setup_i2c_controller(struct nmk_i2c_dev *priv)
398 {
399         u32 brcr1, brcr2;
400         u32 i2c_clk, div;
401         u32 ns;
402         u16 slsu;
403
404         writel(0x0, priv->virtbase + I2C_CR);
405         writel(0x0, priv->virtbase + I2C_HSMCR);
406         writel(0x0, priv->virtbase + I2C_TFTR);
407         writel(0x0, priv->virtbase + I2C_RFTR);
408         writel(0x0, priv->virtbase + I2C_DMAR);
409
410         i2c_clk = clk_get_rate(priv->clk);
411
412         /*
413          * set the slsu:
414          *
415          * slsu defines the data setup time after SCL clock
416          * stretching in terms of i2c clk cycles + 1 (zero means
417          * "wait one cycle"), the needed setup time for the three
418          * modes are 250ns, 100ns, 10ns respectively.
419          *
420          * As the time for one cycle T in nanoseconds is
421          * T = (1/f) * 1000000000 =>
422          * slsu = cycles / (1000000000 / f) + 1
423          */
424         ns = DIV_ROUND_UP_ULL(1000000000ULL, i2c_clk);
425         switch (priv->sm) {
426         case I2C_FREQ_MODE_FAST:
427         case I2C_FREQ_MODE_FAST_PLUS:
428                 slsu = DIV_ROUND_UP(100, ns); /* Fast */
429                 break;
430         case I2C_FREQ_MODE_HIGH_SPEED:
431                 slsu = DIV_ROUND_UP(10, ns); /* High */
432                 break;
433         case I2C_FREQ_MODE_STANDARD:
434         default:
435                 slsu = DIV_ROUND_UP(250, ns); /* Standard */
436                 break;
437         }
438         slsu += 1;
439
440         dev_dbg(&priv->adev->dev, "calculated SLSU = %04x\n", slsu);
441         writel(FIELD_PREP(I2C_SCR_SLSU, slsu), priv->virtbase + I2C_SCR);
442
443         /*
444          * The spec says, in case of std. mode the divider is
445          * 2 whereas it is 3 for fast and fastplus mode of
446          * operation. TODO - high speed support.
447          */
448         div = (priv->clk_freq > I2C_MAX_STANDARD_MODE_FREQ) ? 3 : 2;
449
450         /*
451          * generate the mask for baud rate counters. The controller
452          * has two baud rate counters. One is used for High speed
453          * operation, and the other is for std, fast mode, fast mode
454          * plus operation. Currently we do not supprt high speed mode
455          * so set brcr1 to 0.
456          */
457         brcr1 = FIELD_PREP(I2C_BRCR_BRCNT1, 0);
458         brcr2 = FIELD_PREP(I2C_BRCR_BRCNT2, i2c_clk / (priv->clk_freq * div));
459
460         /* set the baud rate counter register */
461         writel((brcr1 | brcr2), priv->virtbase + I2C_BRCR);
462
463         /*
464          * set the speed mode. Currently we support
465          * only standard and fast mode of operation
466          * TODO - support for fast mode plus (up to 1Mb/s)
467          * and high speed (up to 3.4 Mb/s)
468          */
469         if (priv->sm > I2C_FREQ_MODE_FAST) {
470                 dev_err(&priv->adev->dev,
471                         "do not support this mode defaulting to std. mode\n");
472                 brcr2 = FIELD_PREP(I2C_BRCR_BRCNT2,
473                                    i2c_clk / (I2C_MAX_STANDARD_MODE_FREQ * 2));
474                 writel((brcr1 | brcr2), priv->virtbase + I2C_BRCR);
475                 writel(FIELD_PREP(I2C_CR_SM, I2C_FREQ_MODE_STANDARD),
476                        priv->virtbase + I2C_CR);
477         }
478         writel(FIELD_PREP(I2C_CR_SM, priv->sm), priv->virtbase + I2C_CR);
479
480         /* set the Tx and Rx FIFO threshold */
481         writel(priv->tft, priv->virtbase + I2C_TFTR);
482         writel(priv->rft, priv->virtbase + I2C_RFTR);
483 }
484
485 static bool nmk_i2c_wait_xfer_done(struct nmk_i2c_dev *priv)
486 {
487         if (priv->timeout_usecs < jiffies_to_usecs(1)) {
488                 unsigned long timeout_usecs = priv->timeout_usecs;
489                 ktime_t timeout = ktime_set(0, timeout_usecs * NSEC_PER_USEC);
490
491                 wait_event_hrtimeout(priv->xfer_wq, priv->xfer_done, timeout);
492         } else {
493                 unsigned long timeout = usecs_to_jiffies(priv->timeout_usecs);
494
495                 wait_event_timeout(priv->xfer_wq, priv->xfer_done, timeout);
496         }
497
498         return priv->xfer_done;
499 }
500
501 /**
502  * read_i2c() - Read from I2C client device
503  * @priv: private data of I2C Driver
504  * @flags: message flags
505  *
506  * This function reads from i2c client device when controller is in
507  * master mode. There is a completion timeout. If there is no transfer
508  * before timeout error is returned.
509  */
510 static int read_i2c(struct nmk_i2c_dev *priv, u16 flags)
511 {
512         u32 mcr, irq_mask;
513         int status = 0;
514         bool xfer_done;
515
516         mcr = load_i2c_mcr_reg(priv, flags);
517         writel(mcr, priv->virtbase + I2C_MCR);
518
519         /* load the current CR value */
520         writel(readl(priv->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR,
521                priv->virtbase + I2C_CR);
522
523         /* enable the controller */
524         i2c_set_bit(priv->virtbase + I2C_CR, I2C_CR_PE);
525
526         init_waitqueue_head(&priv->xfer_wq);
527         priv->xfer_done = false;
528
529         /* enable interrupts by setting the mask */
530         irq_mask = (I2C_IT_RXFNF | I2C_IT_RXFF |
531                         I2C_IT_MAL | I2C_IT_BERR);
532
533         if (priv->stop || !priv->vendor->has_mtdws)
534                 irq_mask |= I2C_IT_MTD;
535         else
536                 irq_mask |= I2C_IT_MTDWS;
537
538         irq_mask &= I2C_CLEAR_ALL_INTS;
539
540         writel(readl(priv->virtbase + I2C_IMSCR) | irq_mask,
541                priv->virtbase + I2C_IMSCR);
542
543         xfer_done = nmk_i2c_wait_xfer_done(priv);
544
545         if (!xfer_done)
546                 status = -ETIMEDOUT;
547
548         return status;
549 }
550
551 static void fill_tx_fifo(struct nmk_i2c_dev *priv, int no_bytes)
552 {
553         int count;
554
555         for (count = (no_bytes - 2);
556                         (count > 0) &&
557                         (priv->cli.count != 0);
558                         count--) {
559                 /* write to the Tx FIFO */
560                 nmk_i2c_writeb(priv, *priv->cli.buffer, I2C_TFR);
561                 priv->cli.buffer++;
562                 priv->cli.count--;
563                 priv->cli.xfer_bytes++;
564         }
565
566 }
567
568 /**
569  * write_i2c() - Write data to I2C client.
570  * @priv: private data of I2C Driver
571  * @flags: message flags
572  *
573  * This function writes data to I2C client
574  */
575 static int write_i2c(struct nmk_i2c_dev *priv, u16 flags)
576 {
577         u32 mcr, irq_mask;
578         u32 status = 0;
579         bool xfer_done;
580
581         mcr = load_i2c_mcr_reg(priv, flags);
582
583         writel(mcr, priv->virtbase + I2C_MCR);
584
585         /* load the current CR value */
586         writel(readl(priv->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR,
587                priv->virtbase + I2C_CR);
588
589         /* enable the controller */
590         i2c_set_bit(priv->virtbase + I2C_CR, I2C_CR_PE);
591
592         init_waitqueue_head(&priv->xfer_wq);
593         priv->xfer_done = false;
594
595         /* enable interrupts by settings the masks */
596         irq_mask = (I2C_IT_TXFOVR | I2C_IT_MAL | I2C_IT_BERR);
597
598         /* Fill the TX FIFO with transmit data */
599         fill_tx_fifo(priv, MAX_I2C_FIFO_THRESHOLD);
600
601         if (priv->cli.count != 0)
602                 irq_mask |= I2C_IT_TXFNE;
603
604         /*
605          * check if we want to transfer a single or multiple bytes, if so
606          * set the MTDWS bit (Master Transaction Done Without Stop)
607          * to start repeated start operation
608          */
609         if (priv->stop || !priv->vendor->has_mtdws)
610                 irq_mask |= I2C_IT_MTD;
611         else
612                 irq_mask |= I2C_IT_MTDWS;
613
614         irq_mask &= I2C_CLEAR_ALL_INTS;
615
616         writel(readl(priv->virtbase + I2C_IMSCR) | irq_mask,
617                priv->virtbase + I2C_IMSCR);
618
619         xfer_done = nmk_i2c_wait_xfer_done(priv);
620
621         if (!xfer_done) {
622                 /* Controller timed out */
623                 dev_err(&priv->adev->dev, "write to slave 0x%x timed out\n",
624                         priv->cli.slave_adr);
625                 status = -ETIMEDOUT;
626         }
627
628         return status;
629 }
630
631 /**
632  * nmk_i2c_xfer_one() - transmit a single I2C message
633  * @priv: device with a message encoded into it
634  * @flags: message flags
635  */
636 static int nmk_i2c_xfer_one(struct nmk_i2c_dev *priv, u16 flags)
637 {
638         int status;
639
640         if (flags & I2C_M_RD) {
641                 /* read operation */
642                 priv->cli.operation = I2C_READ;
643                 status = read_i2c(priv, flags);
644         } else {
645                 /* write operation */
646                 priv->cli.operation = I2C_WRITE;
647                 status = write_i2c(priv, flags);
648         }
649
650         if (status || priv->result) {
651                 u32 i2c_sr;
652                 u32 cause;
653
654                 i2c_sr = readl(priv->virtbase + I2C_SR);
655                 if (FIELD_GET(I2C_SR_STATUS, i2c_sr) == I2C_ABORT) {
656                         cause = FIELD_GET(I2C_SR_CAUSE, i2c_sr);
657                         dev_err(&priv->adev->dev, "%s\n",
658                                 cause >= ARRAY_SIZE(abort_causes) ?
659                                 "unknown reason" :
660                                 abort_causes[cause]);
661                 }
662
663                 init_hw(priv);
664
665                 status = status ? status : priv->result;
666         }
667
668         return status;
669 }
670
671 /**
672  * nmk_i2c_xfer() - I2C transfer function used by kernel framework
673  * @i2c_adap: Adapter pointer to the controller
674  * @msgs: Pointer to data to be written.
675  * @num_msgs: Number of messages to be executed
676  *
677  * This is the function called by the generic kernel i2c_transfer()
678  * or i2c_smbus...() API calls. Note that this code is protected by the
679  * semaphore set in the kernel i2c_transfer() function.
680  *
681  * NOTE:
682  * READ TRANSFER : We impose a restriction of the first message to be the
683  *              index message for any read transaction.
684  *              - a no index is coded as '0',
685  *              - 2byte big endian index is coded as '3'
686  *              !!! msg[0].buf holds the actual index.
687  *              This is compatible with generic messages of smbus emulator
688  *              that send a one byte index.
689  *              eg. a I2C transation to read 2 bytes from index 0
690  *                      idx = 0;
691  *                      msg[0].addr = client->addr;
692  *                      msg[0].flags = 0x0;
693  *                      msg[0].len = 1;
694  *                      msg[0].buf = &idx;
695  *
696  *                      msg[1].addr = client->addr;
697  *                      msg[1].flags = I2C_M_RD;
698  *                      msg[1].len = 2;
699  *                      msg[1].buf = rd_buff
700  *                      i2c_transfer(adap, msg, 2);
701  *
702  * WRITE TRANSFER : The I2C standard interface interprets all data as payload.
703  *              If you want to emulate an SMBUS write transaction put the
704  *              index as first byte(or first and second) in the payload.
705  *              eg. a I2C transation to write 2 bytes from index 1
706  *                      wr_buff[0] = 0x1;
707  *                      wr_buff[1] = 0x23;
708  *                      wr_buff[2] = 0x46;
709  *                      msg[0].flags = 0x0;
710  *                      msg[0].len = 3;
711  *                      msg[0].buf = wr_buff;
712  *                      i2c_transfer(adap, msg, 1);
713  *
714  * To read or write a block of data (multiple bytes) using SMBUS emulation
715  * please use the i2c_smbus_read_i2c_block_data()
716  * or i2c_smbus_write_i2c_block_data() API
717  */
718 static int nmk_i2c_xfer(struct i2c_adapter *i2c_adap,
719                 struct i2c_msg msgs[], int num_msgs)
720 {
721         int status = 0;
722         int i;
723         struct nmk_i2c_dev *priv = i2c_get_adapdata(i2c_adap);
724         int j;
725
726         pm_runtime_get_sync(&priv->adev->dev);
727
728         /* Attempt three times to send the message queue */
729         for (j = 0; j < 3; j++) {
730                 /* setup the i2c controller */
731                 setup_i2c_controller(priv);
732
733                 for (i = 0; i < num_msgs; i++) {
734                         priv->cli.slave_adr     = msgs[i].addr;
735                         priv->cli.buffer                = msgs[i].buf;
736                         priv->cli.count         = msgs[i].len;
737                         priv->stop = (i < (num_msgs - 1)) ? 0 : 1;
738                         priv->result = 0;
739
740                         status = nmk_i2c_xfer_one(priv, msgs[i].flags);
741                         if (status != 0)
742                                 break;
743                 }
744                 if (status == 0)
745                         break;
746         }
747
748         pm_runtime_put_sync(&priv->adev->dev);
749
750         /* return the no. messages processed */
751         if (status)
752                 return status;
753         else
754                 return num_msgs;
755 }
756
757 /**
758  * disable_interrupts() - disable the interrupts
759  * @priv: private data of controller
760  * @irq: interrupt number
761  */
762 static int disable_interrupts(struct nmk_i2c_dev *priv, u32 irq)
763 {
764         irq &= I2C_CLEAR_ALL_INTS;
765         writel(readl(priv->virtbase + I2C_IMSCR) & ~irq,
766                priv->virtbase + I2C_IMSCR);
767         return 0;
768 }
769
770 /**
771  * i2c_irq_handler() - interrupt routine
772  * @irq: interrupt number
773  * @arg: data passed to the handler
774  *
775  * This is the interrupt handler for the i2c driver. Currently
776  * it handles the major interrupts like Rx & Tx FIFO management
777  * interrupts, master transaction interrupts, arbitration and
778  * bus error interrupts. The rest of the interrupts are treated as
779  * unhandled.
780  */
781 static irqreturn_t i2c_irq_handler(int irq, void *arg)
782 {
783         struct nmk_i2c_dev *priv = arg;
784         struct device *dev = &priv->adev->dev;
785         u32 tft, rft;
786         u32 count;
787         u32 misr, src;
788
789         /* load Tx FIFO and Rx FIFO threshold values */
790         tft = readl(priv->virtbase + I2C_TFTR);
791         rft = readl(priv->virtbase + I2C_RFTR);
792
793         /* read interrupt status register */
794         misr = readl(priv->virtbase + I2C_MISR);
795
796         src = __ffs(misr);
797         switch (BIT(src)) {
798
799         /* Transmit FIFO nearly empty interrupt */
800         case I2C_IT_TXFNE:
801         {
802                 if (priv->cli.operation == I2C_READ) {
803                         /*
804                          * in read operation why do we care for writing?
805                          * so disable the Transmit FIFO interrupt
806                          */
807                         disable_interrupts(priv, I2C_IT_TXFNE);
808                 } else {
809                         fill_tx_fifo(priv, (MAX_I2C_FIFO_THRESHOLD - tft));
810                         /*
811                          * if done, close the transfer by disabling the
812                          * corresponding TXFNE interrupt
813                          */
814                         if (priv->cli.count == 0)
815                                 disable_interrupts(priv,        I2C_IT_TXFNE);
816                 }
817         }
818         break;
819
820         /*
821          * Rx FIFO nearly full interrupt.
822          * This is set when the numer of entries in Rx FIFO is
823          * greater or equal than the threshold value programmed
824          * in RFT
825          */
826         case I2C_IT_RXFNF:
827                 for (count = rft; count > 0; count--) {
828                         /* Read the Rx FIFO */
829                         *priv->cli.buffer = nmk_i2c_readb(priv, I2C_RFR);
830                         priv->cli.buffer++;
831                 }
832                 priv->cli.count -= rft;
833                 priv->cli.xfer_bytes += rft;
834                 break;
835
836         /* Rx FIFO full */
837         case I2C_IT_RXFF:
838                 for (count = MAX_I2C_FIFO_THRESHOLD; count > 0; count--) {
839                         *priv->cli.buffer = nmk_i2c_readb(priv, I2C_RFR);
840                         priv->cli.buffer++;
841                 }
842                 priv->cli.count -= MAX_I2C_FIFO_THRESHOLD;
843                 priv->cli.xfer_bytes += MAX_I2C_FIFO_THRESHOLD;
844                 break;
845
846         /* Master Transaction Done with/without stop */
847         case I2C_IT_MTD:
848         case I2C_IT_MTDWS:
849                 if (priv->cli.operation == I2C_READ) {
850                         while (!(readl(priv->virtbase + I2C_RISR)
851                                  & I2C_IT_RXFE)) {
852                                 if (priv->cli.count == 0)
853                                         break;
854                                 *priv->cli.buffer =
855                                         nmk_i2c_readb(priv, I2C_RFR);
856                                 priv->cli.buffer++;
857                                 priv->cli.count--;
858                                 priv->cli.xfer_bytes++;
859                         }
860                 }
861
862                 disable_all_interrupts(priv);
863                 clear_all_interrupts(priv);
864
865                 if (priv->cli.count) {
866                         priv->result = -EIO;
867                         dev_err(dev, "%lu bytes still remain to be xfered\n",
868                                 priv->cli.count);
869                         init_hw(priv);
870                 }
871                 priv->xfer_done = true;
872                 wake_up(&priv->xfer_wq);
873
874
875                 break;
876
877         /* Master Arbitration lost interrupt */
878         case I2C_IT_MAL:
879                 priv->result = -EIO;
880                 init_hw(priv);
881
882                 i2c_set_bit(priv->virtbase + I2C_ICR, I2C_IT_MAL);
883                 priv->xfer_done = true;
884                 wake_up(&priv->xfer_wq);
885
886
887                 break;
888
889         /*
890          * Bus Error interrupt.
891          * This happens when an unexpected start/stop condition occurs
892          * during the transaction.
893          */
894         case I2C_IT_BERR:
895         {
896                 u32 sr;
897
898                 sr = readl(priv->virtbase + I2C_SR);
899                 priv->result = -EIO;
900                 if (FIELD_GET(I2C_SR_STATUS, sr) == I2C_ABORT)
901                         init_hw(priv);
902
903                 i2c_set_bit(priv->virtbase + I2C_ICR, I2C_IT_BERR);
904                 priv->xfer_done = true;
905                 wake_up(&priv->xfer_wq);
906
907         }
908         break;
909
910         /*
911          * Tx FIFO overrun interrupt.
912          * This is set when a write operation in Tx FIFO is performed and
913          * the Tx FIFO is full.
914          */
915         case I2C_IT_TXFOVR:
916                 priv->result = -EIO;
917                 init_hw(priv);
918
919                 dev_err(dev, "Tx Fifo Over run\n");
920                 priv->xfer_done = true;
921                 wake_up(&priv->xfer_wq);
922
923
924                 break;
925
926         /* unhandled interrupts by this driver - TODO*/
927         case I2C_IT_TXFE:
928         case I2C_IT_TXFF:
929         case I2C_IT_RXFE:
930         case I2C_IT_RFSR:
931         case I2C_IT_RFSE:
932         case I2C_IT_WTSR:
933         case I2C_IT_STD:
934                 dev_err(dev, "unhandled Interrupt\n");
935                 break;
936         default:
937                 dev_err(dev, "spurious Interrupt..\n");
938                 break;
939         }
940
941         return IRQ_HANDLED;
942 }
943
944 static int nmk_i2c_suspend_late(struct device *dev)
945 {
946         int ret;
947
948         ret = pm_runtime_force_suspend(dev);
949         if (ret)
950                 return ret;
951
952         pinctrl_pm_select_sleep_state(dev);
953         return 0;
954 }
955
956 static int nmk_i2c_resume_early(struct device *dev)
957 {
958         return pm_runtime_force_resume(dev);
959 }
960
961 static int nmk_i2c_runtime_suspend(struct device *dev)
962 {
963         struct amba_device *adev = to_amba_device(dev);
964         struct nmk_i2c_dev *priv = amba_get_drvdata(adev);
965
966         clk_disable_unprepare(priv->clk);
967         pinctrl_pm_select_idle_state(dev);
968         return 0;
969 }
970
971 static int nmk_i2c_runtime_resume(struct device *dev)
972 {
973         struct amba_device *adev = to_amba_device(dev);
974         struct nmk_i2c_dev *priv = amba_get_drvdata(adev);
975         int ret;
976
977         ret = clk_prepare_enable(priv->clk);
978         if (ret) {
979                 dev_err(dev, "can't prepare_enable clock\n");
980                 return ret;
981         }
982
983         pinctrl_pm_select_default_state(dev);
984
985         ret = init_hw(priv);
986         if (ret) {
987                 clk_disable_unprepare(priv->clk);
988                 pinctrl_pm_select_idle_state(dev);
989         }
990
991         return ret;
992 }
993
994 static const struct dev_pm_ops nmk_i2c_pm = {
995         LATE_SYSTEM_SLEEP_PM_OPS(nmk_i2c_suspend_late, nmk_i2c_resume_early)
996         RUNTIME_PM_OPS(nmk_i2c_runtime_suspend, nmk_i2c_runtime_resume, NULL)
997 };
998
999 static unsigned int nmk_i2c_functionality(struct i2c_adapter *adap)
1000 {
1001         return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_10BIT_ADDR;
1002 }
1003
1004 static const struct i2c_algorithm nmk_i2c_algo = {
1005         .master_xfer    = nmk_i2c_xfer,
1006         .functionality  = nmk_i2c_functionality
1007 };
1008
1009 static void nmk_i2c_of_probe(struct device_node *np,
1010                              struct nmk_i2c_dev *priv)
1011 {
1012         u32 timeout_usecs;
1013
1014         /* Default to 100 kHz if no frequency is given in the node */
1015         if (of_property_read_u32(np, "clock-frequency", &priv->clk_freq))
1016                 priv->clk_freq = I2C_MAX_STANDARD_MODE_FREQ;
1017
1018         /* This driver only supports 'standard' and 'fast' modes of operation. */
1019         if (priv->clk_freq <= I2C_MAX_STANDARD_MODE_FREQ)
1020                 priv->sm = I2C_FREQ_MODE_STANDARD;
1021         else
1022                 priv->sm = I2C_FREQ_MODE_FAST;
1023         priv->tft = 1; /* Tx FIFO threshold */
1024         priv->rft = 8; /* Rx FIFO threshold */
1025
1026         /* Slave response timeout */
1027         if (!of_property_read_u32(np, "i2c-transfer-timeout-us", &timeout_usecs))
1028                 priv->timeout_usecs = timeout_usecs;
1029         else
1030                 priv->timeout_usecs = 200 * USEC_PER_MSEC;
1031 }
1032
1033 static const unsigned int nmk_i2c_eyeq5_masks[] = {
1034         GENMASK(5, 4),
1035         GENMASK(7, 6),
1036         GENMASK(9, 8),
1037         GENMASK(11, 10),
1038         GENMASK(13, 12),
1039 };
1040
1041 static int nmk_i2c_eyeq5_probe(struct nmk_i2c_dev *priv)
1042 {
1043         struct device *dev = &priv->adev->dev;
1044         struct device_node *np = dev->of_node;
1045         unsigned int mask, speed_mode;
1046         struct regmap *olb;
1047         unsigned int id;
1048
1049         priv->has_32b_bus = true;
1050
1051         olb = syscon_regmap_lookup_by_phandle_args(np, "mobileye,olb", 1, &id);
1052         if (IS_ERR(olb))
1053                 return PTR_ERR(olb);
1054         if (id >= ARRAY_SIZE(nmk_i2c_eyeq5_masks))
1055                 return -ENOENT;
1056
1057         if (priv->clk_freq <= 400000)
1058                 speed_mode = I2C_EYEQ5_SPEED_FAST;
1059         else if (priv->clk_freq <= 1000000)
1060                 speed_mode = I2C_EYEQ5_SPEED_FAST_PLUS;
1061         else
1062                 speed_mode = I2C_EYEQ5_SPEED_HIGH_SPEED;
1063
1064         mask = nmk_i2c_eyeq5_masks[id];
1065         regmap_update_bits(olb, NMK_I2C_EYEQ5_OLB_IOCR2,
1066                            mask, speed_mode << __fls(mask));
1067
1068         return 0;
1069 }
1070
1071 static int nmk_i2c_probe(struct amba_device *adev, const struct amba_id *id)
1072 {
1073         int ret = 0;
1074         struct nmk_i2c_dev *priv;
1075         struct device_node *np = adev->dev.of_node;
1076         struct device *dev = &adev->dev;
1077         struct i2c_adapter *adap;
1078         struct i2c_vendor_data *vendor = id->data;
1079         u32 max_fifo_threshold = (vendor->fifodepth / 2) - 1;
1080
1081         priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
1082         if (!priv)
1083                 return -ENOMEM;
1084
1085         priv->vendor = vendor;
1086         priv->adev = adev;
1087         priv->has_32b_bus = false;
1088         nmk_i2c_of_probe(np, priv);
1089
1090         if (of_device_is_compatible(np, "mobileye,eyeq5-i2c")) {
1091                 ret = nmk_i2c_eyeq5_probe(priv);
1092                 if (ret)
1093                         return dev_err_probe(dev, ret, "failed OLB lookup\n");
1094         }
1095
1096         if (priv->tft > max_fifo_threshold) {
1097                 dev_warn(dev, "requested TX FIFO threshold %u, adjusted down to %u\n",
1098                          priv->tft, max_fifo_threshold);
1099                 priv->tft = max_fifo_threshold;
1100         }
1101
1102         if (priv->rft > max_fifo_threshold) {
1103                 dev_warn(dev, "requested RX FIFO threshold %u, adjusted down to %u\n",
1104                          priv->rft, max_fifo_threshold);
1105                 priv->rft = max_fifo_threshold;
1106         }
1107
1108         amba_set_drvdata(adev, priv);
1109
1110         priv->virtbase = devm_ioremap(dev, adev->res.start,
1111                                       resource_size(&adev->res));
1112         if (!priv->virtbase)
1113                 return -ENOMEM;
1114
1115         priv->irq = adev->irq[0];
1116         ret = devm_request_irq(dev, priv->irq, i2c_irq_handler, 0,
1117                                DRIVER_NAME, priv);
1118         if (ret)
1119                 return dev_err_probe(dev, ret,
1120                                      "cannot claim the irq %d\n", priv->irq);
1121
1122         priv->clk = devm_clk_get_enabled(dev, NULL);
1123         if (IS_ERR(priv->clk))
1124                 return dev_err_probe(dev, PTR_ERR(priv->clk),
1125                                      "could enable i2c clock\n");
1126
1127         init_hw(priv);
1128
1129         adap = &priv->adap;
1130         adap->dev.of_node = np;
1131         adap->dev.parent = dev;
1132         adap->owner = THIS_MODULE;
1133         adap->class = I2C_CLASS_DEPRECATED;
1134         adap->algo = &nmk_i2c_algo;
1135         adap->timeout = usecs_to_jiffies(priv->timeout_usecs);
1136         snprintf(adap->name, sizeof(adap->name),
1137                  "Nomadik I2C at %pR", &adev->res);
1138
1139         i2c_set_adapdata(adap, priv);
1140
1141         dev_info(dev,
1142                  "initialize %s on virtual base %p\n",
1143                  adap->name, priv->virtbase);
1144
1145         ret = i2c_add_adapter(adap);
1146         if (ret)
1147                 return ret;
1148
1149         pm_runtime_put(dev);
1150
1151         return 0;
1152 }
1153
1154 static void nmk_i2c_remove(struct amba_device *adev)
1155 {
1156         struct nmk_i2c_dev *priv = amba_get_drvdata(adev);
1157
1158         i2c_del_adapter(&priv->adap);
1159         flush_i2c_fifo(priv);
1160         disable_all_interrupts(priv);
1161         clear_all_interrupts(priv);
1162         /* disable the controller */
1163         i2c_clr_bit(priv->virtbase + I2C_CR, I2C_CR_PE);
1164 }
1165
1166 static struct i2c_vendor_data vendor_stn8815 = {
1167         .has_mtdws = false,
1168         .fifodepth = 16, /* Guessed from TFTR/RFTR = 7 */
1169 };
1170
1171 static struct i2c_vendor_data vendor_db8500 = {
1172         .has_mtdws = true,
1173         .fifodepth = 32, /* Guessed from TFTR/RFTR = 15 */
1174 };
1175
1176 static const struct amba_id nmk_i2c_ids[] = {
1177         {
1178                 .id     = 0x00180024,
1179                 .mask   = 0x00ffffff,
1180                 .data   = &vendor_stn8815,
1181         },
1182         {
1183                 .id     = 0x00380024,
1184                 .mask   = 0x00ffffff,
1185                 .data   = &vendor_db8500,
1186         },
1187         {},
1188 };
1189
1190 MODULE_DEVICE_TABLE(amba, nmk_i2c_ids);
1191
1192 static struct amba_driver nmk_i2c_driver = {
1193         .drv = {
1194                 .name = DRIVER_NAME,
1195                 .pm = pm_ptr(&nmk_i2c_pm),
1196         },
1197         .id_table = nmk_i2c_ids,
1198         .probe = nmk_i2c_probe,
1199         .remove = nmk_i2c_remove,
1200 };
1201
1202 static int __init nmk_i2c_init(void)
1203 {
1204         return amba_driver_register(&nmk_i2c_driver);
1205 }
1206
1207 static void __exit nmk_i2c_exit(void)
1208 {
1209         amba_driver_unregister(&nmk_i2c_driver);
1210 }
1211
1212 subsys_initcall(nmk_i2c_init);
1213 module_exit(nmk_i2c_exit);
1214
1215 MODULE_AUTHOR("Sachin Verma");
1216 MODULE_AUTHOR("Srinidhi KASAGAR");
1217 MODULE_DESCRIPTION("Nomadik/Ux500 I2C driver");
1218 MODULE_LICENSE("GPL");
This page took 0.108172 seconds and 4 git commands to generate.