]> Git Repo - linux.git/blob - drivers/gpu/drm/amd/amdkfd/kfd_process.c
crypto: akcipher - Drop sign/verify operations
[linux.git] / drivers / gpu / drm / amd / amdkfd / kfd_process.c
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23
24 #include <linux/mutex.h>
25 #include <linux/log2.h>
26 #include <linux/sched.h>
27 #include <linux/sched/mm.h>
28 #include <linux/sched/task.h>
29 #include <linux/mmu_context.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/compat.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/pm_runtime.h>
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu.h"
38
39 struct mm_struct;
40
41 #include "kfd_priv.h"
42 #include "kfd_device_queue_manager.h"
43 #include "kfd_svm.h"
44 #include "kfd_smi_events.h"
45 #include "kfd_debug.h"
46
47 /*
48  * List of struct kfd_process (field kfd_process).
49  * Unique/indexed by mm_struct*
50  */
51 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
52 DEFINE_MUTEX(kfd_processes_mutex);
53
54 DEFINE_SRCU(kfd_processes_srcu);
55
56 /* For process termination handling */
57 static struct workqueue_struct *kfd_process_wq;
58
59 /* Ordered, single-threaded workqueue for restoring evicted
60  * processes. Restoring multiple processes concurrently under memory
61  * pressure can lead to processes blocking each other from validating
62  * their BOs and result in a live-lock situation where processes
63  * remain evicted indefinitely.
64  */
65 static struct workqueue_struct *kfd_restore_wq;
66
67 static struct kfd_process *find_process(const struct task_struct *thread,
68                                         bool ref);
69 static void kfd_process_ref_release(struct kref *ref);
70 static struct kfd_process *create_process(const struct task_struct *thread);
71
72 static void evict_process_worker(struct work_struct *work);
73 static void restore_process_worker(struct work_struct *work);
74
75 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
76
77 struct kfd_procfs_tree {
78         struct kobject *kobj;
79 };
80
81 static struct kfd_procfs_tree procfs;
82
83 /*
84  * Structure for SDMA activity tracking
85  */
86 struct kfd_sdma_activity_handler_workarea {
87         struct work_struct sdma_activity_work;
88         struct kfd_process_device *pdd;
89         uint64_t sdma_activity_counter;
90 };
91
92 struct temp_sdma_queue_list {
93         uint64_t __user *rptr;
94         uint64_t sdma_val;
95         unsigned int queue_id;
96         struct list_head list;
97 };
98
99 static void kfd_sdma_activity_worker(struct work_struct *work)
100 {
101         struct kfd_sdma_activity_handler_workarea *workarea;
102         struct kfd_process_device *pdd;
103         uint64_t val;
104         struct mm_struct *mm;
105         struct queue *q;
106         struct qcm_process_device *qpd;
107         struct device_queue_manager *dqm;
108         int ret = 0;
109         struct temp_sdma_queue_list sdma_q_list;
110         struct temp_sdma_queue_list *sdma_q, *next;
111
112         workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
113                                 sdma_activity_work);
114
115         pdd = workarea->pdd;
116         if (!pdd)
117                 return;
118         dqm = pdd->dev->dqm;
119         qpd = &pdd->qpd;
120         if (!dqm || !qpd)
121                 return;
122         /*
123          * Total SDMA activity is current SDMA activity + past SDMA activity
124          * Past SDMA count is stored in pdd.
125          * To get the current activity counters for all active SDMA queues,
126          * we loop over all SDMA queues and get their counts from user-space.
127          *
128          * We cannot call get_user() with dqm_lock held as it can cause
129          * a circular lock dependency situation. To read the SDMA stats,
130          * we need to do the following:
131          *
132          * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
133          *    with dqm_lock/dqm_unlock().
134          * 2. Call get_user() for each node in temporary list without dqm_lock.
135          *    Save the SDMA count for each node and also add the count to the total
136          *    SDMA count counter.
137          *    Its possible, during this step, a few SDMA queue nodes got deleted
138          *    from the qpd->queues_list.
139          * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
140          *    If any node got deleted, its SDMA count would be captured in the sdma
141          *    past activity counter. So subtract the SDMA counter stored in step 2
142          *    for this node from the total SDMA count.
143          */
144         INIT_LIST_HEAD(&sdma_q_list.list);
145
146         /*
147          * Create the temp list of all SDMA queues
148          */
149         dqm_lock(dqm);
150
151         list_for_each_entry(q, &qpd->queues_list, list) {
152                 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
153                     (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
154                         continue;
155
156                 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
157                 if (!sdma_q) {
158                         dqm_unlock(dqm);
159                         goto cleanup;
160                 }
161
162                 INIT_LIST_HEAD(&sdma_q->list);
163                 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
164                 sdma_q->queue_id = q->properties.queue_id;
165                 list_add_tail(&sdma_q->list, &sdma_q_list.list);
166         }
167
168         /*
169          * If the temp list is empty, then no SDMA queues nodes were found in
170          * qpd->queues_list. Return the past activity count as the total sdma
171          * count
172          */
173         if (list_empty(&sdma_q_list.list)) {
174                 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
175                 dqm_unlock(dqm);
176                 return;
177         }
178
179         dqm_unlock(dqm);
180
181         /*
182          * Get the usage count for each SDMA queue in temp_list.
183          */
184         mm = get_task_mm(pdd->process->lead_thread);
185         if (!mm)
186                 goto cleanup;
187
188         kthread_use_mm(mm);
189
190         list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
191                 val = 0;
192                 ret = read_sdma_queue_counter(sdma_q->rptr, &val);
193                 if (ret) {
194                         pr_debug("Failed to read SDMA queue active counter for queue id: %d",
195                                  sdma_q->queue_id);
196                 } else {
197                         sdma_q->sdma_val = val;
198                         workarea->sdma_activity_counter += val;
199                 }
200         }
201
202         kthread_unuse_mm(mm);
203         mmput(mm);
204
205         /*
206          * Do a second iteration over qpd_queues_list to check if any SDMA
207          * nodes got deleted while fetching SDMA counter.
208          */
209         dqm_lock(dqm);
210
211         workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
212
213         list_for_each_entry(q, &qpd->queues_list, list) {
214                 if (list_empty(&sdma_q_list.list))
215                         break;
216
217                 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
218                     (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
219                         continue;
220
221                 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
222                         if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
223                              (sdma_q->queue_id == q->properties.queue_id)) {
224                                 list_del(&sdma_q->list);
225                                 kfree(sdma_q);
226                                 break;
227                         }
228                 }
229         }
230
231         dqm_unlock(dqm);
232
233         /*
234          * If temp list is not empty, it implies some queues got deleted
235          * from qpd->queues_list during SDMA usage read. Subtract the SDMA
236          * count for each node from the total SDMA count.
237          */
238         list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
239                 workarea->sdma_activity_counter -= sdma_q->sdma_val;
240                 list_del(&sdma_q->list);
241                 kfree(sdma_q);
242         }
243
244         return;
245
246 cleanup:
247         list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
248                 list_del(&sdma_q->list);
249                 kfree(sdma_q);
250         }
251 }
252
253 /**
254  * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
255  * by current process. Translates acquired wave count into number of compute units
256  * that are occupied.
257  *
258  * @attr: Handle of attribute that allows reporting of wave count. The attribute
259  * handle encapsulates GPU device it is associated with, thereby allowing collection
260  * of waves in flight, etc
261  * @buffer: Handle of user provided buffer updated with wave count
262  *
263  * Return: Number of bytes written to user buffer or an error value
264  */
265 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
266 {
267         int cu_cnt;
268         int wave_cnt;
269         int max_waves_per_cu;
270         struct kfd_node *dev = NULL;
271         struct kfd_process *proc = NULL;
272         struct kfd_process_device *pdd = NULL;
273         int i;
274         struct kfd_cu_occupancy cu_occupancy[AMDGPU_MAX_QUEUES];
275         u32 queue_format;
276
277         memset(cu_occupancy, 0x0, sizeof(cu_occupancy));
278
279         pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
280         dev = pdd->dev;
281         if (dev->kfd2kgd->get_cu_occupancy == NULL)
282                 return -EINVAL;
283
284         cu_cnt = 0;
285         proc = pdd->process;
286         if (pdd->qpd.queue_count == 0) {
287                 pr_debug("Gpu-Id: %d has no active queues for process %d\n",
288                          dev->id, proc->pasid);
289                 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
290         }
291
292         /* Collect wave count from device if it supports */
293         wave_cnt = 0;
294         max_waves_per_cu = 0;
295
296         /*
297          * For GFX 9.4.3, fetch the CU occupancy from the first XCC in the partition.
298          * For AQL queues, because of cooperative dispatch we multiply the wave count
299          * by number of XCCs in the partition to get the total wave counts across all
300          * XCCs in the partition.
301          * For PM4 queues, there is no cooperative dispatch so wave_cnt stay as it is.
302          */
303         dev->kfd2kgd->get_cu_occupancy(dev->adev, cu_occupancy,
304                         &max_waves_per_cu, ffs(dev->xcc_mask) - 1);
305
306         for (i = 0; i < AMDGPU_MAX_QUEUES; i++) {
307                 if (cu_occupancy[i].wave_cnt != 0 &&
308                     kfd_dqm_is_queue_in_process(dev->dqm, &pdd->qpd,
309                                                 cu_occupancy[i].doorbell_off,
310                                                 &queue_format)) {
311                         if (unlikely(queue_format == KFD_QUEUE_FORMAT_PM4))
312                                 wave_cnt += cu_occupancy[i].wave_cnt;
313                         else
314                                 wave_cnt += (NUM_XCC(dev->xcc_mask) *
315                                                 cu_occupancy[i].wave_cnt);
316                 }
317         }
318
319         /* Translate wave count to number of compute units */
320         cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
321         return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
322 }
323
324 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
325                                char *buffer)
326 {
327         if (strcmp(attr->name, "pasid") == 0) {
328                 struct kfd_process *p = container_of(attr, struct kfd_process,
329                                                      attr_pasid);
330
331                 return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
332         } else if (strncmp(attr->name, "vram_", 5) == 0) {
333                 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
334                                                               attr_vram);
335                 return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
336         } else if (strncmp(attr->name, "sdma_", 5) == 0) {
337                 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
338                                                               attr_sdma);
339                 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
340
341                 INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
342                                         kfd_sdma_activity_worker);
343
344                 sdma_activity_work_handler.pdd = pdd;
345                 sdma_activity_work_handler.sdma_activity_counter = 0;
346
347                 schedule_work(&sdma_activity_work_handler.sdma_activity_work);
348
349                 flush_work(&sdma_activity_work_handler.sdma_activity_work);
350
351                 return snprintf(buffer, PAGE_SIZE, "%llu\n",
352                                 (sdma_activity_work_handler.sdma_activity_counter)/
353                                  SDMA_ACTIVITY_DIVISOR);
354         } else {
355                 pr_err("Invalid attribute");
356                 return -EINVAL;
357         }
358
359         return 0;
360 }
361
362 static void kfd_procfs_kobj_release(struct kobject *kobj)
363 {
364         kfree(kobj);
365 }
366
367 static const struct sysfs_ops kfd_procfs_ops = {
368         .show = kfd_procfs_show,
369 };
370
371 static const struct kobj_type procfs_type = {
372         .release = kfd_procfs_kobj_release,
373         .sysfs_ops = &kfd_procfs_ops,
374 };
375
376 void kfd_procfs_init(void)
377 {
378         int ret = 0;
379
380         procfs.kobj = kfd_alloc_struct(procfs.kobj);
381         if (!procfs.kobj)
382                 return;
383
384         ret = kobject_init_and_add(procfs.kobj, &procfs_type,
385                                    &kfd_device->kobj, "proc");
386         if (ret) {
387                 pr_warn("Could not create procfs proc folder");
388                 /* If we fail to create the procfs, clean up */
389                 kfd_procfs_shutdown();
390         }
391 }
392
393 void kfd_procfs_shutdown(void)
394 {
395         if (procfs.kobj) {
396                 kobject_del(procfs.kobj);
397                 kobject_put(procfs.kobj);
398                 procfs.kobj = NULL;
399         }
400 }
401
402 static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
403                                      struct attribute *attr, char *buffer)
404 {
405         struct queue *q = container_of(kobj, struct queue, kobj);
406
407         if (!strcmp(attr->name, "size"))
408                 return snprintf(buffer, PAGE_SIZE, "%llu",
409                                 q->properties.queue_size);
410         else if (!strcmp(attr->name, "type"))
411                 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
412         else if (!strcmp(attr->name, "gpuid"))
413                 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
414         else
415                 pr_err("Invalid attribute");
416
417         return 0;
418 }
419
420 static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
421                                      struct attribute *attr, char *buffer)
422 {
423         if (strcmp(attr->name, "evicted_ms") == 0) {
424                 struct kfd_process_device *pdd = container_of(attr,
425                                 struct kfd_process_device,
426                                 attr_evict);
427                 uint64_t evict_jiffies;
428
429                 evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
430
431                 return snprintf(buffer,
432                                 PAGE_SIZE,
433                                 "%llu\n",
434                                 jiffies64_to_msecs(evict_jiffies));
435
436         /* Sysfs handle that gets CU occupancy is per device */
437         } else if (strcmp(attr->name, "cu_occupancy") == 0) {
438                 return kfd_get_cu_occupancy(attr, buffer);
439         } else {
440                 pr_err("Invalid attribute");
441         }
442
443         return 0;
444 }
445
446 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
447                                        struct attribute *attr, char *buf)
448 {
449         struct kfd_process_device *pdd;
450
451         if (!strcmp(attr->name, "faults")) {
452                 pdd = container_of(attr, struct kfd_process_device,
453                                    attr_faults);
454                 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
455         }
456         if (!strcmp(attr->name, "page_in")) {
457                 pdd = container_of(attr, struct kfd_process_device,
458                                    attr_page_in);
459                 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
460         }
461         if (!strcmp(attr->name, "page_out")) {
462                 pdd = container_of(attr, struct kfd_process_device,
463                                    attr_page_out);
464                 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
465         }
466         return 0;
467 }
468
469 static struct attribute attr_queue_size = {
470         .name = "size",
471         .mode = KFD_SYSFS_FILE_MODE
472 };
473
474 static struct attribute attr_queue_type = {
475         .name = "type",
476         .mode = KFD_SYSFS_FILE_MODE
477 };
478
479 static struct attribute attr_queue_gpuid = {
480         .name = "gpuid",
481         .mode = KFD_SYSFS_FILE_MODE
482 };
483
484 static struct attribute *procfs_queue_attrs[] = {
485         &attr_queue_size,
486         &attr_queue_type,
487         &attr_queue_gpuid,
488         NULL
489 };
490 ATTRIBUTE_GROUPS(procfs_queue);
491
492 static const struct sysfs_ops procfs_queue_ops = {
493         .show = kfd_procfs_queue_show,
494 };
495
496 static const struct kobj_type procfs_queue_type = {
497         .sysfs_ops = &procfs_queue_ops,
498         .default_groups = procfs_queue_groups,
499 };
500
501 static const struct sysfs_ops procfs_stats_ops = {
502         .show = kfd_procfs_stats_show,
503 };
504
505 static const struct kobj_type procfs_stats_type = {
506         .sysfs_ops = &procfs_stats_ops,
507         .release = kfd_procfs_kobj_release,
508 };
509
510 static const struct sysfs_ops sysfs_counters_ops = {
511         .show = kfd_sysfs_counters_show,
512 };
513
514 static const struct kobj_type sysfs_counters_type = {
515         .sysfs_ops = &sysfs_counters_ops,
516         .release = kfd_procfs_kobj_release,
517 };
518
519 int kfd_procfs_add_queue(struct queue *q)
520 {
521         struct kfd_process *proc;
522         int ret;
523
524         if (!q || !q->process)
525                 return -EINVAL;
526         proc = q->process;
527
528         /* Create proc/<pid>/queues/<queue id> folder */
529         if (!proc->kobj_queues)
530                 return -EFAULT;
531         ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
532                         proc->kobj_queues, "%u", q->properties.queue_id);
533         if (ret < 0) {
534                 pr_warn("Creating proc/<pid>/queues/%u failed",
535                         q->properties.queue_id);
536                 kobject_put(&q->kobj);
537                 return ret;
538         }
539
540         return 0;
541 }
542
543 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
544                                  char *name)
545 {
546         int ret;
547
548         if (!kobj || !attr || !name)
549                 return;
550
551         attr->name = name;
552         attr->mode = KFD_SYSFS_FILE_MODE;
553         sysfs_attr_init(attr);
554
555         ret = sysfs_create_file(kobj, attr);
556         if (ret)
557                 pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
558 }
559
560 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
561 {
562         int ret;
563         int i;
564         char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
565
566         if (!p || !p->kobj)
567                 return;
568
569         /*
570          * Create sysfs files for each GPU:
571          * - proc/<pid>/stats_<gpuid>/
572          * - proc/<pid>/stats_<gpuid>/evicted_ms
573          * - proc/<pid>/stats_<gpuid>/cu_occupancy
574          */
575         for (i = 0; i < p->n_pdds; i++) {
576                 struct kfd_process_device *pdd = p->pdds[i];
577
578                 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
579                                 "stats_%u", pdd->dev->id);
580                 pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
581                 if (!pdd->kobj_stats)
582                         return;
583
584                 ret = kobject_init_and_add(pdd->kobj_stats,
585                                            &procfs_stats_type,
586                                            p->kobj,
587                                            stats_dir_filename);
588
589                 if (ret) {
590                         pr_warn("Creating KFD proc/stats_%s folder failed",
591                                 stats_dir_filename);
592                         kobject_put(pdd->kobj_stats);
593                         pdd->kobj_stats = NULL;
594                         return;
595                 }
596
597                 kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
598                                       "evicted_ms");
599                 /* Add sysfs file to report compute unit occupancy */
600                 if (pdd->dev->kfd2kgd->get_cu_occupancy)
601                         kfd_sysfs_create_file(pdd->kobj_stats,
602                                               &pdd->attr_cu_occupancy,
603                                               "cu_occupancy");
604         }
605 }
606
607 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
608 {
609         int ret = 0;
610         int i;
611         char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
612
613         if (!p || !p->kobj)
614                 return;
615
616         /*
617          * Create sysfs files for each GPU which supports SVM
618          * - proc/<pid>/counters_<gpuid>/
619          * - proc/<pid>/counters_<gpuid>/faults
620          * - proc/<pid>/counters_<gpuid>/page_in
621          * - proc/<pid>/counters_<gpuid>/page_out
622          */
623         for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
624                 struct kfd_process_device *pdd = p->pdds[i];
625                 struct kobject *kobj_counters;
626
627                 snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
628                         "counters_%u", pdd->dev->id);
629                 kobj_counters = kfd_alloc_struct(kobj_counters);
630                 if (!kobj_counters)
631                         return;
632
633                 ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
634                                            p->kobj, counters_dir_filename);
635                 if (ret) {
636                         pr_warn("Creating KFD proc/%s folder failed",
637                                 counters_dir_filename);
638                         kobject_put(kobj_counters);
639                         return;
640                 }
641
642                 pdd->kobj_counters = kobj_counters;
643                 kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
644                                       "faults");
645                 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
646                                       "page_in");
647                 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
648                                       "page_out");
649         }
650 }
651
652 static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
653 {
654         int i;
655
656         if (!p || !p->kobj)
657                 return;
658
659         /*
660          * Create sysfs files for each GPU:
661          * - proc/<pid>/vram_<gpuid>
662          * - proc/<pid>/sdma_<gpuid>
663          */
664         for (i = 0; i < p->n_pdds; i++) {
665                 struct kfd_process_device *pdd = p->pdds[i];
666
667                 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
668                          pdd->dev->id);
669                 kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
670                                       pdd->vram_filename);
671
672                 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
673                          pdd->dev->id);
674                 kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
675                                             pdd->sdma_filename);
676         }
677 }
678
679 void kfd_procfs_del_queue(struct queue *q)
680 {
681         if (!q)
682                 return;
683
684         kobject_del(&q->kobj);
685         kobject_put(&q->kobj);
686 }
687
688 int kfd_process_create_wq(void)
689 {
690         if (!kfd_process_wq)
691                 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
692         if (!kfd_restore_wq)
693                 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq",
694                                                          WQ_FREEZABLE);
695
696         if (!kfd_process_wq || !kfd_restore_wq) {
697                 kfd_process_destroy_wq();
698                 return -ENOMEM;
699         }
700
701         return 0;
702 }
703
704 void kfd_process_destroy_wq(void)
705 {
706         if (kfd_process_wq) {
707                 destroy_workqueue(kfd_process_wq);
708                 kfd_process_wq = NULL;
709         }
710         if (kfd_restore_wq) {
711                 destroy_workqueue(kfd_restore_wq);
712                 kfd_restore_wq = NULL;
713         }
714 }
715
716 static void kfd_process_free_gpuvm(struct kgd_mem *mem,
717                         struct kfd_process_device *pdd, void **kptr)
718 {
719         struct kfd_node *dev = pdd->dev;
720
721         if (kptr && *kptr) {
722                 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
723                 *kptr = NULL;
724         }
725
726         amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
727         amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
728                                                NULL);
729 }
730
731 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
732  *      This function should be only called right after the process
733  *      is created and when kfd_processes_mutex is still being held
734  *      to avoid concurrency. Because of that exclusiveness, we do
735  *      not need to take p->mutex.
736  */
737 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
738                                    uint64_t gpu_va, uint32_t size,
739                                    uint32_t flags, struct kgd_mem **mem, void **kptr)
740 {
741         struct kfd_node *kdev = pdd->dev;
742         int err;
743
744         err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
745                                                  pdd->drm_priv, mem, NULL,
746                                                  flags, false);
747         if (err)
748                 goto err_alloc_mem;
749
750         err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
751                         pdd->drm_priv);
752         if (err)
753                 goto err_map_mem;
754
755         err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
756         if (err) {
757                 pr_debug("Sync memory failed, wait interrupted by user signal\n");
758                 goto sync_memory_failed;
759         }
760
761         if (kptr) {
762                 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
763                                 (struct kgd_mem *)*mem, kptr, NULL);
764                 if (err) {
765                         pr_debug("Map GTT BO to kernel failed\n");
766                         goto sync_memory_failed;
767                 }
768         }
769
770         return err;
771
772 sync_memory_failed:
773         amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
774
775 err_map_mem:
776         amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
777                                                NULL);
778 err_alloc_mem:
779         *mem = NULL;
780         *kptr = NULL;
781         return err;
782 }
783
784 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the
785  *      process for IB usage The memory reserved is for KFD to submit
786  *      IB to AMDGPU from kernel.  If the memory is reserved
787  *      successfully, ib_kaddr will have the CPU/kernel
788  *      address. Check ib_kaddr before accessing the memory.
789  */
790 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
791 {
792         struct qcm_process_device *qpd = &pdd->qpd;
793         uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
794                         KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
795                         KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
796                         KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
797         struct kgd_mem *mem;
798         void *kaddr;
799         int ret;
800
801         if (qpd->ib_kaddr || !qpd->ib_base)
802                 return 0;
803
804         /* ib_base is only set for dGPU */
805         ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
806                                       &mem, &kaddr);
807         if (ret)
808                 return ret;
809
810         qpd->ib_mem = mem;
811         qpd->ib_kaddr = kaddr;
812
813         return 0;
814 }
815
816 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
817 {
818         struct qcm_process_device *qpd = &pdd->qpd;
819
820         if (!qpd->ib_kaddr || !qpd->ib_base)
821                 return;
822
823         kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
824 }
825
826 struct kfd_process *kfd_create_process(struct task_struct *thread)
827 {
828         struct kfd_process *process;
829         int ret;
830
831         if (!(thread->mm && mmget_not_zero(thread->mm)))
832                 return ERR_PTR(-EINVAL);
833
834         /* Only the pthreads threading model is supported. */
835         if (thread->group_leader->mm != thread->mm) {
836                 mmput(thread->mm);
837                 return ERR_PTR(-EINVAL);
838         }
839
840         /*
841          * take kfd processes mutex before starting of process creation
842          * so there won't be a case where two threads of the same process
843          * create two kfd_process structures
844          */
845         mutex_lock(&kfd_processes_mutex);
846
847         if (kfd_is_locked()) {
848                 pr_debug("KFD is locked! Cannot create process");
849                 process = ERR_PTR(-EINVAL);
850                 goto out;
851         }
852
853         /* A prior open of /dev/kfd could have already created the process. */
854         process = find_process(thread, false);
855         if (process) {
856                 pr_debug("Process already found\n");
857         } else {
858                 /* If the process just called exec(3), it is possible that the
859                  * cleanup of the kfd_process (following the release of the mm
860                  * of the old process image) is still in the cleanup work queue.
861                  * Make sure to drain any job before trying to recreate any
862                  * resource for this process.
863                  */
864                 flush_workqueue(kfd_process_wq);
865
866                 process = create_process(thread);
867                 if (IS_ERR(process))
868                         goto out;
869
870                 if (!procfs.kobj)
871                         goto out;
872
873                 process->kobj = kfd_alloc_struct(process->kobj);
874                 if (!process->kobj) {
875                         pr_warn("Creating procfs kobject failed");
876                         goto out;
877                 }
878                 ret = kobject_init_and_add(process->kobj, &procfs_type,
879                                            procfs.kobj, "%d",
880                                            (int)process->lead_thread->pid);
881                 if (ret) {
882                         pr_warn("Creating procfs pid directory failed");
883                         kobject_put(process->kobj);
884                         goto out;
885                 }
886
887                 kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
888                                       "pasid");
889
890                 process->kobj_queues = kobject_create_and_add("queues",
891                                                         process->kobj);
892                 if (!process->kobj_queues)
893                         pr_warn("Creating KFD proc/queues folder failed");
894
895                 kfd_procfs_add_sysfs_stats(process);
896                 kfd_procfs_add_sysfs_files(process);
897                 kfd_procfs_add_sysfs_counters(process);
898
899                 init_waitqueue_head(&process->wait_irq_drain);
900         }
901 out:
902         if (!IS_ERR(process))
903                 kref_get(&process->ref);
904         mutex_unlock(&kfd_processes_mutex);
905         mmput(thread->mm);
906
907         return process;
908 }
909
910 struct kfd_process *kfd_get_process(const struct task_struct *thread)
911 {
912         struct kfd_process *process;
913
914         if (!thread->mm)
915                 return ERR_PTR(-EINVAL);
916
917         /* Only the pthreads threading model is supported. */
918         if (thread->group_leader->mm != thread->mm)
919                 return ERR_PTR(-EINVAL);
920
921         process = find_process(thread, false);
922         if (!process)
923                 return ERR_PTR(-EINVAL);
924
925         return process;
926 }
927
928 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
929 {
930         struct kfd_process *process;
931
932         hash_for_each_possible_rcu(kfd_processes_table, process,
933                                         kfd_processes, (uintptr_t)mm)
934                 if (process->mm == mm)
935                         return process;
936
937         return NULL;
938 }
939
940 static struct kfd_process *find_process(const struct task_struct *thread,
941                                         bool ref)
942 {
943         struct kfd_process *p;
944         int idx;
945
946         idx = srcu_read_lock(&kfd_processes_srcu);
947         p = find_process_by_mm(thread->mm);
948         if (p && ref)
949                 kref_get(&p->ref);
950         srcu_read_unlock(&kfd_processes_srcu, idx);
951
952         return p;
953 }
954
955 void kfd_unref_process(struct kfd_process *p)
956 {
957         kref_put(&p->ref, kfd_process_ref_release);
958 }
959
960 /* This increments the process->ref counter. */
961 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
962 {
963         struct task_struct *task = NULL;
964         struct kfd_process *p    = NULL;
965
966         if (!pid) {
967                 task = current;
968                 get_task_struct(task);
969         } else {
970                 task = get_pid_task(pid, PIDTYPE_PID);
971         }
972
973         if (task) {
974                 p = find_process(task, true);
975                 put_task_struct(task);
976         }
977
978         return p;
979 }
980
981 static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
982 {
983         struct kfd_process *p = pdd->process;
984         void *mem;
985         int id;
986         int i;
987
988         /*
989          * Remove all handles from idr and release appropriate
990          * local memory object
991          */
992         idr_for_each_entry(&pdd->alloc_idr, mem, id) {
993
994                 for (i = 0; i < p->n_pdds; i++) {
995                         struct kfd_process_device *peer_pdd = p->pdds[i];
996
997                         if (!peer_pdd->drm_priv)
998                                 continue;
999                         amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1000                                 peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
1001                 }
1002
1003                 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
1004                                                        pdd->drm_priv, NULL);
1005                 kfd_process_device_remove_obj_handle(pdd, id);
1006         }
1007 }
1008
1009 /*
1010  * Just kunmap and unpin signal BO here. It will be freed in
1011  * kfd_process_free_outstanding_kfd_bos()
1012  */
1013 static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
1014 {
1015         struct kfd_process_device *pdd;
1016         struct kfd_node *kdev;
1017         void *mem;
1018
1019         kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
1020         if (!kdev)
1021                 return;
1022
1023         mutex_lock(&p->mutex);
1024
1025         pdd = kfd_get_process_device_data(kdev, p);
1026         if (!pdd)
1027                 goto out;
1028
1029         mem = kfd_process_device_translate_handle(
1030                 pdd, GET_IDR_HANDLE(p->signal_handle));
1031         if (!mem)
1032                 goto out;
1033
1034         amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
1035
1036 out:
1037         mutex_unlock(&p->mutex);
1038 }
1039
1040 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1041 {
1042         int i;
1043
1044         for (i = 0; i < p->n_pdds; i++)
1045                 kfd_process_device_free_bos(p->pdds[i]);
1046 }
1047
1048 static void kfd_process_destroy_pdds(struct kfd_process *p)
1049 {
1050         int i;
1051
1052         for (i = 0; i < p->n_pdds; i++) {
1053                 struct kfd_process_device *pdd = p->pdds[i];
1054
1055                 pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
1056                                 pdd->dev->id, p->pasid);
1057
1058                 kfd_process_device_destroy_cwsr_dgpu(pdd);
1059                 kfd_process_device_destroy_ib_mem(pdd);
1060
1061                 if (pdd->drm_file) {
1062                         amdgpu_amdkfd_gpuvm_release_process_vm(
1063                                         pdd->dev->adev, pdd->drm_priv);
1064                         fput(pdd->drm_file);
1065                 }
1066
1067                 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1068                         free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1069                                 get_order(KFD_CWSR_TBA_TMA_SIZE));
1070
1071                 idr_destroy(&pdd->alloc_idr);
1072
1073                 kfd_free_process_doorbells(pdd->dev->kfd, pdd);
1074
1075                 if (pdd->dev->kfd->shared_resources.enable_mes)
1076                         amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
1077                                                    &pdd->proc_ctx_bo);
1078                 /*
1079                  * before destroying pdd, make sure to report availability
1080                  * for auto suspend
1081                  */
1082                 if (pdd->runtime_inuse) {
1083                         pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev);
1084                         pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
1085                         pdd->runtime_inuse = false;
1086                 }
1087
1088                 kfree(pdd);
1089                 p->pdds[i] = NULL;
1090         }
1091         p->n_pdds = 0;
1092 }
1093
1094 static void kfd_process_remove_sysfs(struct kfd_process *p)
1095 {
1096         struct kfd_process_device *pdd;
1097         int i;
1098
1099         if (!p->kobj)
1100                 return;
1101
1102         sysfs_remove_file(p->kobj, &p->attr_pasid);
1103         kobject_del(p->kobj_queues);
1104         kobject_put(p->kobj_queues);
1105         p->kobj_queues = NULL;
1106
1107         for (i = 0; i < p->n_pdds; i++) {
1108                 pdd = p->pdds[i];
1109
1110                 sysfs_remove_file(p->kobj, &pdd->attr_vram);
1111                 sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1112
1113                 sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1114                 if (pdd->dev->kfd2kgd->get_cu_occupancy)
1115                         sysfs_remove_file(pdd->kobj_stats,
1116                                           &pdd->attr_cu_occupancy);
1117                 kobject_del(pdd->kobj_stats);
1118                 kobject_put(pdd->kobj_stats);
1119                 pdd->kobj_stats = NULL;
1120         }
1121
1122         for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1123                 pdd = p->pdds[i];
1124
1125                 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1126                 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1127                 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1128                 kobject_del(pdd->kobj_counters);
1129                 kobject_put(pdd->kobj_counters);
1130                 pdd->kobj_counters = NULL;
1131         }
1132
1133         kobject_del(p->kobj);
1134         kobject_put(p->kobj);
1135         p->kobj = NULL;
1136 }
1137
1138 /* No process locking is needed in this function, because the process
1139  * is not findable any more. We must assume that no other thread is
1140  * using it any more, otherwise we couldn't safely free the process
1141  * structure in the end.
1142  */
1143 static void kfd_process_wq_release(struct work_struct *work)
1144 {
1145         struct kfd_process *p = container_of(work, struct kfd_process,
1146                                              release_work);
1147         struct dma_fence *ef;
1148
1149         kfd_process_dequeue_from_all_devices(p);
1150         pqm_uninit(&p->pqm);
1151
1152         /* Signal the eviction fence after user mode queues are
1153          * destroyed. This allows any BOs to be freed without
1154          * triggering pointless evictions or waiting for fences.
1155          */
1156         synchronize_rcu();
1157         ef = rcu_access_pointer(p->ef);
1158         dma_fence_signal(ef);
1159
1160         kfd_process_remove_sysfs(p);
1161
1162         kfd_process_kunmap_signal_bo(p);
1163         kfd_process_free_outstanding_kfd_bos(p);
1164         svm_range_list_fini(p);
1165
1166         kfd_process_destroy_pdds(p);
1167         dma_fence_put(ef);
1168
1169         kfd_event_free_process(p);
1170
1171         kfd_pasid_free(p->pasid);
1172         mutex_destroy(&p->mutex);
1173
1174         put_task_struct(p->lead_thread);
1175
1176         kfree(p);
1177 }
1178
1179 static void kfd_process_ref_release(struct kref *ref)
1180 {
1181         struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1182
1183         INIT_WORK(&p->release_work, kfd_process_wq_release);
1184         queue_work(kfd_process_wq, &p->release_work);
1185 }
1186
1187 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1188 {
1189         int idx = srcu_read_lock(&kfd_processes_srcu);
1190         struct kfd_process *p = find_process_by_mm(mm);
1191
1192         srcu_read_unlock(&kfd_processes_srcu, idx);
1193
1194         return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1195 }
1196
1197 static void kfd_process_free_notifier(struct mmu_notifier *mn)
1198 {
1199         kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1200 }
1201
1202 static void kfd_process_notifier_release_internal(struct kfd_process *p)
1203 {
1204         int i;
1205
1206         cancel_delayed_work_sync(&p->eviction_work);
1207         cancel_delayed_work_sync(&p->restore_work);
1208
1209         for (i = 0; i < p->n_pdds; i++) {
1210                 struct kfd_process_device *pdd = p->pdds[i];
1211
1212                 /* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */
1213                 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup)
1214                         amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
1215         }
1216
1217         /* Indicate to other users that MM is no longer valid */
1218         p->mm = NULL;
1219         kfd_dbg_trap_disable(p);
1220
1221         if (atomic_read(&p->debugged_process_count) > 0) {
1222                 struct kfd_process *target;
1223                 unsigned int temp;
1224                 int idx = srcu_read_lock(&kfd_processes_srcu);
1225
1226                 hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) {
1227                         if (target->debugger_process && target->debugger_process == p) {
1228                                 mutex_lock_nested(&target->mutex, 1);
1229                                 kfd_dbg_trap_disable(target);
1230                                 mutex_unlock(&target->mutex);
1231                                 if (atomic_read(&p->debugged_process_count) == 0)
1232                                         break;
1233                         }
1234                 }
1235
1236                 srcu_read_unlock(&kfd_processes_srcu, idx);
1237         }
1238
1239         mmu_notifier_put(&p->mmu_notifier);
1240 }
1241
1242 static void kfd_process_notifier_release(struct mmu_notifier *mn,
1243                                         struct mm_struct *mm)
1244 {
1245         struct kfd_process *p;
1246
1247         /*
1248          * The kfd_process structure can not be free because the
1249          * mmu_notifier srcu is read locked
1250          */
1251         p = container_of(mn, struct kfd_process, mmu_notifier);
1252         if (WARN_ON(p->mm != mm))
1253                 return;
1254
1255         mutex_lock(&kfd_processes_mutex);
1256         /*
1257          * Do early return if table is empty.
1258          *
1259          * This could potentially happen if this function is called concurrently
1260          * by mmu_notifier and by kfd_cleanup_pocesses.
1261          *
1262          */
1263         if (hash_empty(kfd_processes_table)) {
1264                 mutex_unlock(&kfd_processes_mutex);
1265                 return;
1266         }
1267         hash_del_rcu(&p->kfd_processes);
1268         mutex_unlock(&kfd_processes_mutex);
1269         synchronize_srcu(&kfd_processes_srcu);
1270
1271         kfd_process_notifier_release_internal(p);
1272 }
1273
1274 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1275         .release = kfd_process_notifier_release,
1276         .alloc_notifier = kfd_process_alloc_notifier,
1277         .free_notifier = kfd_process_free_notifier,
1278 };
1279
1280 /*
1281  * This code handles the case when driver is being unloaded before all
1282  * mm_struct are released.  We need to safely free the kfd_process and
1283  * avoid race conditions with mmu_notifier that might try to free them.
1284  *
1285  */
1286 void kfd_cleanup_processes(void)
1287 {
1288         struct kfd_process *p;
1289         struct hlist_node *p_temp;
1290         unsigned int temp;
1291         HLIST_HEAD(cleanup_list);
1292
1293         /*
1294          * Move all remaining kfd_process from the process table to a
1295          * temp list for processing.   Once done, callback from mmu_notifier
1296          * release will not see the kfd_process in the table and do early return,
1297          * avoiding double free issues.
1298          */
1299         mutex_lock(&kfd_processes_mutex);
1300         hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) {
1301                 hash_del_rcu(&p->kfd_processes);
1302                 synchronize_srcu(&kfd_processes_srcu);
1303                 hlist_add_head(&p->kfd_processes, &cleanup_list);
1304         }
1305         mutex_unlock(&kfd_processes_mutex);
1306
1307         hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes)
1308                 kfd_process_notifier_release_internal(p);
1309
1310         /*
1311          * Ensures that all outstanding free_notifier get called, triggering
1312          * the release of the kfd_process struct.
1313          */
1314         mmu_notifier_synchronize();
1315 }
1316
1317 int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1318 {
1319         unsigned long  offset;
1320         int i;
1321
1322         if (p->has_cwsr)
1323                 return 0;
1324
1325         for (i = 0; i < p->n_pdds; i++) {
1326                 struct kfd_node *dev = p->pdds[i]->dev;
1327                 struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1328
1329                 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1330                         continue;
1331
1332                 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1333                 qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1334                         KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1335                         MAP_SHARED, offset);
1336
1337                 if (IS_ERR_VALUE(qpd->tba_addr)) {
1338                         int err = qpd->tba_addr;
1339
1340                         dev_err(dev->adev->dev,
1341                                 "Failure to set tba address. error %d.\n", err);
1342                         qpd->tba_addr = 0;
1343                         qpd->cwsr_kaddr = NULL;
1344                         return err;
1345                 }
1346
1347                 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1348
1349                 kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled);
1350
1351                 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1352                 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1353                         qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1354         }
1355
1356         p->has_cwsr = true;
1357
1358         return 0;
1359 }
1360
1361 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1362 {
1363         struct kfd_node *dev = pdd->dev;
1364         struct qcm_process_device *qpd = &pdd->qpd;
1365         uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1366                         | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1367                         | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1368         struct kgd_mem *mem;
1369         void *kaddr;
1370         int ret;
1371
1372         if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1373                 return 0;
1374
1375         /* cwsr_base is only set for dGPU */
1376         ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1377                                       KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1378         if (ret)
1379                 return ret;
1380
1381         qpd->cwsr_mem = mem;
1382         qpd->cwsr_kaddr = kaddr;
1383         qpd->tba_addr = qpd->cwsr_base;
1384
1385         memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1386
1387         kfd_process_set_trap_debug_flag(&pdd->qpd,
1388                                         pdd->process->debug_trap_enabled);
1389
1390         qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1391         pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1392                  qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1393
1394         return 0;
1395 }
1396
1397 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1398 {
1399         struct kfd_node *dev = pdd->dev;
1400         struct qcm_process_device *qpd = &pdd->qpd;
1401
1402         if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1403                 return;
1404
1405         kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
1406 }
1407
1408 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1409                                   uint64_t tba_addr,
1410                                   uint64_t tma_addr)
1411 {
1412         if (qpd->cwsr_kaddr) {
1413                 /* KFD trap handler is bound, record as second-level TBA/TMA
1414                  * in first-level TMA. First-level trap will jump to second.
1415                  */
1416                 uint64_t *tma =
1417                         (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1418                 tma[0] = tba_addr;
1419                 tma[1] = tma_addr;
1420         } else {
1421                 /* No trap handler bound, bind as first-level TBA/TMA. */
1422                 qpd->tba_addr = tba_addr;
1423                 qpd->tma_addr = tma_addr;
1424         }
1425 }
1426
1427 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1428 {
1429         int i;
1430
1431         /* On most GFXv9 GPUs, the retry mode in the SQ must match the
1432          * boot time retry setting. Mixing processes with different
1433          * XNACK/retry settings can hang the GPU.
1434          *
1435          * Different GPUs can have different noretry settings depending
1436          * on HW bugs or limitations. We need to find at least one
1437          * XNACK mode for this process that's compatible with all GPUs.
1438          * Fortunately GPUs with retry enabled (noretry=0) can run code
1439          * built for XNACK-off. On GFXv9 it may perform slower.
1440          *
1441          * Therefore applications built for XNACK-off can always be
1442          * supported and will be our fallback if any GPU does not
1443          * support retry.
1444          */
1445         for (i = 0; i < p->n_pdds; i++) {
1446                 struct kfd_node *dev = p->pdds[i]->dev;
1447
1448                 /* Only consider GFXv9 and higher GPUs. Older GPUs don't
1449                  * support the SVM APIs and don't need to be considered
1450                  * for the XNACK mode selection.
1451                  */
1452                 if (!KFD_IS_SOC15(dev))
1453                         continue;
1454                 /* Aldebaran can always support XNACK because it can support
1455                  * per-process XNACK mode selection. But let the dev->noretry
1456                  * setting still influence the default XNACK mode.
1457                  */
1458                 if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) {
1459                         if (!amdgpu_sriov_xnack_support(dev->kfd->adev)) {
1460                                 pr_debug("SRIOV platform xnack not supported\n");
1461                                 return false;
1462                         }
1463                         continue;
1464                 }
1465
1466                 /* GFXv10 and later GPUs do not support shader preemption
1467                  * during page faults. This can lead to poor QoS for queue
1468                  * management and memory-manager-related preemptions or
1469                  * even deadlocks.
1470                  */
1471                 if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1472                         return false;
1473
1474                 if (dev->kfd->noretry)
1475                         return false;
1476         }
1477
1478         return true;
1479 }
1480
1481 void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
1482                                      bool enabled)
1483 {
1484         if (qpd->cwsr_kaddr) {
1485                 uint64_t *tma =
1486                         (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1487                 tma[2] = enabled;
1488         }
1489 }
1490
1491 /*
1492  * On return the kfd_process is fully operational and will be freed when the
1493  * mm is released
1494  */
1495 static struct kfd_process *create_process(const struct task_struct *thread)
1496 {
1497         struct kfd_process *process;
1498         struct mmu_notifier *mn;
1499         int err = -ENOMEM;
1500
1501         process = kzalloc(sizeof(*process), GFP_KERNEL);
1502         if (!process)
1503                 goto err_alloc_process;
1504
1505         kref_init(&process->ref);
1506         mutex_init(&process->mutex);
1507         process->mm = thread->mm;
1508         process->lead_thread = thread->group_leader;
1509         process->n_pdds = 0;
1510         process->queues_paused = false;
1511         INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1512         INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1513         process->last_restore_timestamp = get_jiffies_64();
1514         err = kfd_event_init_process(process);
1515         if (err)
1516                 goto err_event_init;
1517         process->is_32bit_user_mode = in_compat_syscall();
1518         process->debug_trap_enabled = false;
1519         process->debugger_process = NULL;
1520         process->exception_enable_mask = 0;
1521         atomic_set(&process->debugged_process_count, 0);
1522         sema_init(&process->runtime_enable_sema, 0);
1523
1524         process->pasid = kfd_pasid_alloc();
1525         if (process->pasid == 0) {
1526                 err = -ENOSPC;
1527                 goto err_alloc_pasid;
1528         }
1529
1530         err = pqm_init(&process->pqm, process);
1531         if (err != 0)
1532                 goto err_process_pqm_init;
1533
1534         /* init process apertures*/
1535         err = kfd_init_apertures(process);
1536         if (err != 0)
1537                 goto err_init_apertures;
1538
1539         /* Check XNACK support after PDDs are created in kfd_init_apertures */
1540         process->xnack_enabled = kfd_process_xnack_mode(process, false);
1541
1542         err = svm_range_list_init(process);
1543         if (err)
1544                 goto err_init_svm_range_list;
1545
1546         /* alloc_notifier needs to find the process in the hash table */
1547         hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1548                         (uintptr_t)process->mm);
1549
1550         /* Avoid free_notifier to start kfd_process_wq_release if
1551          * mmu_notifier_get failed because of pending signal.
1552          */
1553         kref_get(&process->ref);
1554
1555         /* MMU notifier registration must be the last call that can fail
1556          * because after this point we cannot unwind the process creation.
1557          * After this point, mmu_notifier_put will trigger the cleanup by
1558          * dropping the last process reference in the free_notifier.
1559          */
1560         mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1561         if (IS_ERR(mn)) {
1562                 err = PTR_ERR(mn);
1563                 goto err_register_notifier;
1564         }
1565         BUG_ON(mn != &process->mmu_notifier);
1566
1567         kfd_unref_process(process);
1568         get_task_struct(process->lead_thread);
1569
1570         INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler);
1571
1572         return process;
1573
1574 err_register_notifier:
1575         hash_del_rcu(&process->kfd_processes);
1576         svm_range_list_fini(process);
1577 err_init_svm_range_list:
1578         kfd_process_free_outstanding_kfd_bos(process);
1579         kfd_process_destroy_pdds(process);
1580 err_init_apertures:
1581         pqm_uninit(&process->pqm);
1582 err_process_pqm_init:
1583         kfd_pasid_free(process->pasid);
1584 err_alloc_pasid:
1585         kfd_event_free_process(process);
1586 err_event_init:
1587         mutex_destroy(&process->mutex);
1588         kfree(process);
1589 err_alloc_process:
1590         return ERR_PTR(err);
1591 }
1592
1593 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
1594                                                         struct kfd_process *p)
1595 {
1596         int i;
1597
1598         for (i = 0; i < p->n_pdds; i++)
1599                 if (p->pdds[i]->dev == dev)
1600                         return p->pdds[i];
1601
1602         return NULL;
1603 }
1604
1605 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1606                                                         struct kfd_process *p)
1607 {
1608         struct kfd_process_device *pdd = NULL;
1609         int retval = 0;
1610
1611         if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1612                 return NULL;
1613         pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1614         if (!pdd)
1615                 return NULL;
1616
1617         pdd->dev = dev;
1618         INIT_LIST_HEAD(&pdd->qpd.queues_list);
1619         INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1620         pdd->qpd.dqm = dev->dqm;
1621         pdd->qpd.pqm = &p->pqm;
1622         pdd->qpd.evicted = 0;
1623         pdd->qpd.mapped_gws_queue = false;
1624         pdd->process = p;
1625         pdd->bound = PDD_UNBOUND;
1626         pdd->already_dequeued = false;
1627         pdd->runtime_inuse = false;
1628         pdd->vram_usage = 0;
1629         pdd->sdma_past_activity_counter = 0;
1630         pdd->user_gpu_id = dev->id;
1631         atomic64_set(&pdd->evict_duration_counter, 0);
1632
1633         if (dev->kfd->shared_resources.enable_mes) {
1634                 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev,
1635                                                 AMDGPU_MES_PROC_CTX_SIZE,
1636                                                 &pdd->proc_ctx_bo,
1637                                                 &pdd->proc_ctx_gpu_addr,
1638                                                 &pdd->proc_ctx_cpu_ptr,
1639                                                 false);
1640                 if (retval) {
1641                         dev_err(dev->adev->dev,
1642                                 "failed to allocate process context bo\n");
1643                         goto err_free_pdd;
1644                 }
1645                 memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE);
1646         }
1647
1648         p->pdds[p->n_pdds++] = pdd;
1649         if (kfd_dbg_is_per_vmid_supported(pdd->dev))
1650                 pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap(
1651                                                         pdd->dev->adev,
1652                                                         false,
1653                                                         0);
1654
1655         /* Init idr used for memory handle translation */
1656         idr_init(&pdd->alloc_idr);
1657
1658         return pdd;
1659
1660 err_free_pdd:
1661         kfree(pdd);
1662         return NULL;
1663 }
1664
1665 /**
1666  * kfd_process_device_init_vm - Initialize a VM for a process-device
1667  *
1668  * @pdd: The process-device
1669  * @drm_file: Optional pointer to a DRM file descriptor
1670  *
1671  * If @drm_file is specified, it will be used to acquire the VM from
1672  * that file descriptor. If successful, the @pdd takes ownership of
1673  * the file descriptor.
1674  *
1675  * If @drm_file is NULL, a new VM is created.
1676  *
1677  * Returns 0 on success, -errno on failure.
1678  */
1679 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1680                                struct file *drm_file)
1681 {
1682         struct amdgpu_fpriv *drv_priv;
1683         struct amdgpu_vm *avm;
1684         struct kfd_process *p;
1685         struct dma_fence *ef;
1686         struct kfd_node *dev;
1687         int ret;
1688
1689         if (!drm_file)
1690                 return -EINVAL;
1691
1692         if (pdd->drm_priv)
1693                 return -EBUSY;
1694
1695         ret = amdgpu_file_to_fpriv(drm_file, &drv_priv);
1696         if (ret)
1697                 return ret;
1698         avm = &drv_priv->vm;
1699
1700         p = pdd->process;
1701         dev = pdd->dev;
1702
1703         ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm,
1704                                                      &p->kgd_process_info,
1705                                                      &ef);
1706         if (ret) {
1707                 dev_err(dev->adev->dev, "Failed to create process VM object\n");
1708                 return ret;
1709         }
1710         RCU_INIT_POINTER(p->ef, ef);
1711         pdd->drm_priv = drm_file->private_data;
1712
1713         ret = kfd_process_device_reserve_ib_mem(pdd);
1714         if (ret)
1715                 goto err_reserve_ib_mem;
1716         ret = kfd_process_device_init_cwsr_dgpu(pdd);
1717         if (ret)
1718                 goto err_init_cwsr;
1719
1720         ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, avm, p->pasid);
1721         if (ret)
1722                 goto err_set_pasid;
1723
1724         pdd->drm_file = drm_file;
1725
1726         return 0;
1727
1728 err_set_pasid:
1729         kfd_process_device_destroy_cwsr_dgpu(pdd);
1730 err_init_cwsr:
1731         kfd_process_device_destroy_ib_mem(pdd);
1732 err_reserve_ib_mem:
1733         pdd->drm_priv = NULL;
1734         amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm);
1735
1736         return ret;
1737 }
1738
1739 /*
1740  * Direct the IOMMU to bind the process (specifically the pasid->mm)
1741  * to the device.
1742  * Unbinding occurs when the process dies or the device is removed.
1743  *
1744  * Assumes that the process lock is held.
1745  */
1746 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1747                                                         struct kfd_process *p)
1748 {
1749         struct kfd_process_device *pdd;
1750         int err;
1751
1752         pdd = kfd_get_process_device_data(dev, p);
1753         if (!pdd) {
1754                 dev_err(dev->adev->dev, "Process device data doesn't exist\n");
1755                 return ERR_PTR(-ENOMEM);
1756         }
1757
1758         if (!pdd->drm_priv)
1759                 return ERR_PTR(-ENODEV);
1760
1761         /*
1762          * signal runtime-pm system to auto resume and prevent
1763          * further runtime suspend once device pdd is created until
1764          * pdd is destroyed.
1765          */
1766         if (!pdd->runtime_inuse) {
1767                 err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
1768                 if (err < 0) {
1769                         pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1770                         return ERR_PTR(err);
1771                 }
1772         }
1773
1774         /*
1775          * make sure that runtime_usage counter is incremented just once
1776          * per pdd
1777          */
1778         pdd->runtime_inuse = true;
1779
1780         return pdd;
1781 }
1782
1783 /* Create specific handle mapped to mem from process local memory idr
1784  * Assumes that the process lock is held.
1785  */
1786 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1787                                         void *mem)
1788 {
1789         return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1790 }
1791
1792 /* Translate specific handle from process local memory idr
1793  * Assumes that the process lock is held.
1794  */
1795 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1796                                         int handle)
1797 {
1798         if (handle < 0)
1799                 return NULL;
1800
1801         return idr_find(&pdd->alloc_idr, handle);
1802 }
1803
1804 /* Remove specific handle from process local memory idr
1805  * Assumes that the process lock is held.
1806  */
1807 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1808                                         int handle)
1809 {
1810         if (handle >= 0)
1811                 idr_remove(&pdd->alloc_idr, handle);
1812 }
1813
1814 /* This increments the process->ref counter. */
1815 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1816 {
1817         struct kfd_process *p, *ret_p = NULL;
1818         unsigned int temp;
1819
1820         int idx = srcu_read_lock(&kfd_processes_srcu);
1821
1822         hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1823                 if (p->pasid == pasid) {
1824                         kref_get(&p->ref);
1825                         ret_p = p;
1826                         break;
1827                 }
1828         }
1829
1830         srcu_read_unlock(&kfd_processes_srcu, idx);
1831
1832         return ret_p;
1833 }
1834
1835 /* This increments the process->ref counter. */
1836 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1837 {
1838         struct kfd_process *p;
1839
1840         int idx = srcu_read_lock(&kfd_processes_srcu);
1841
1842         p = find_process_by_mm(mm);
1843         if (p)
1844                 kref_get(&p->ref);
1845
1846         srcu_read_unlock(&kfd_processes_srcu, idx);
1847
1848         return p;
1849 }
1850
1851 /* kfd_process_evict_queues - Evict all user queues of a process
1852  *
1853  * Eviction is reference-counted per process-device. This means multiple
1854  * evictions from different sources can be nested safely.
1855  */
1856 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
1857 {
1858         int r = 0;
1859         int i;
1860         unsigned int n_evicted = 0;
1861
1862         for (i = 0; i < p->n_pdds; i++) {
1863                 struct kfd_process_device *pdd = p->pdds[i];
1864                 struct device *dev = pdd->dev->adev->dev;
1865
1866                 kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
1867                                              trigger);
1868
1869                 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1870                                                             &pdd->qpd);
1871                 /* evict return -EIO if HWS is hang or asic is resetting, in this case
1872                  * we would like to set all the queues to be in evicted state to prevent
1873                  * them been add back since they actually not be saved right now.
1874                  */
1875                 if (r && r != -EIO) {
1876                         dev_err(dev, "Failed to evict process queues\n");
1877                         goto fail;
1878                 }
1879                 n_evicted++;
1880
1881                 pdd->dev->dqm->is_hws_hang = false;
1882         }
1883
1884         return r;
1885
1886 fail:
1887         /* To keep state consistent, roll back partial eviction by
1888          * restoring queues
1889          */
1890         for (i = 0; i < p->n_pdds; i++) {
1891                 struct kfd_process_device *pdd = p->pdds[i];
1892
1893                 if (n_evicted == 0)
1894                         break;
1895
1896                 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1897
1898                 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1899                                                               &pdd->qpd))
1900                         dev_err(pdd->dev->adev->dev,
1901                                 "Failed to restore queues\n");
1902
1903                 n_evicted--;
1904         }
1905
1906         return r;
1907 }
1908
1909 /* kfd_process_restore_queues - Restore all user queues of a process */
1910 int kfd_process_restore_queues(struct kfd_process *p)
1911 {
1912         int r, ret = 0;
1913         int i;
1914
1915         for (i = 0; i < p->n_pdds; i++) {
1916                 struct kfd_process_device *pdd = p->pdds[i];
1917                 struct device *dev = pdd->dev->adev->dev;
1918
1919                 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1920
1921                 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1922                                                               &pdd->qpd);
1923                 if (r) {
1924                         dev_err(dev, "Failed to restore process queues\n");
1925                         if (!ret)
1926                                 ret = r;
1927                 }
1928         }
1929
1930         return ret;
1931 }
1932
1933 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1934 {
1935         int i;
1936
1937         for (i = 0; i < p->n_pdds; i++)
1938                 if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1939                         return i;
1940         return -EINVAL;
1941 }
1942
1943 int
1944 kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
1945                             uint32_t *gpuid, uint32_t *gpuidx)
1946 {
1947         int i;
1948
1949         for (i = 0; i < p->n_pdds; i++)
1950                 if (p->pdds[i] && p->pdds[i]->dev == node) {
1951                         *gpuid = p->pdds[i]->user_gpu_id;
1952                         *gpuidx = i;
1953                         return 0;
1954                 }
1955         return -EINVAL;
1956 }
1957
1958 static int signal_eviction_fence(struct kfd_process *p)
1959 {
1960         struct dma_fence *ef;
1961         int ret;
1962
1963         rcu_read_lock();
1964         ef = dma_fence_get_rcu_safe(&p->ef);
1965         rcu_read_unlock();
1966         if (!ef)
1967                 return -EINVAL;
1968
1969         ret = dma_fence_signal(ef);
1970         dma_fence_put(ef);
1971
1972         return ret;
1973 }
1974
1975 static void evict_process_worker(struct work_struct *work)
1976 {
1977         int ret;
1978         struct kfd_process *p;
1979         struct delayed_work *dwork;
1980
1981         dwork = to_delayed_work(work);
1982
1983         /* Process termination destroys this worker thread. So during the
1984          * lifetime of this thread, kfd_process p will be valid
1985          */
1986         p = container_of(dwork, struct kfd_process, eviction_work);
1987
1988         pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1989         ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
1990         if (!ret) {
1991                 /* If another thread already signaled the eviction fence,
1992                  * they are responsible stopping the queues and scheduling
1993                  * the restore work.
1994                  */
1995                 if (signal_eviction_fence(p) ||
1996                     mod_delayed_work(kfd_restore_wq, &p->restore_work,
1997                                      msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
1998                         kfd_process_restore_queues(p);
1999
2000                 pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
2001         } else
2002                 pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
2003 }
2004
2005 static int restore_process_helper(struct kfd_process *p)
2006 {
2007         int ret = 0;
2008
2009         /* VMs may not have been acquired yet during debugging. */
2010         if (p->kgd_process_info) {
2011                 ret = amdgpu_amdkfd_gpuvm_restore_process_bos(
2012                         p->kgd_process_info, &p->ef);
2013                 if (ret)
2014                         return ret;
2015         }
2016
2017         ret = kfd_process_restore_queues(p);
2018         if (!ret)
2019                 pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
2020         else
2021                 pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
2022
2023         return ret;
2024 }
2025
2026 static void restore_process_worker(struct work_struct *work)
2027 {
2028         struct delayed_work *dwork;
2029         struct kfd_process *p;
2030         int ret = 0;
2031
2032         dwork = to_delayed_work(work);
2033
2034         /* Process termination destroys this worker thread. So during the
2035          * lifetime of this thread, kfd_process p will be valid
2036          */
2037         p = container_of(dwork, struct kfd_process, restore_work);
2038         pr_debug("Started restoring pasid 0x%x\n", p->pasid);
2039
2040         /* Setting last_restore_timestamp before successful restoration.
2041          * Otherwise this would have to be set by KGD (restore_process_bos)
2042          * before KFD BOs are unreserved. If not, the process can be evicted
2043          * again before the timestamp is set.
2044          * If restore fails, the timestamp will be set again in the next
2045          * attempt. This would mean that the minimum GPU quanta would be
2046          * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
2047          * functions)
2048          */
2049
2050         p->last_restore_timestamp = get_jiffies_64();
2051
2052         ret = restore_process_helper(p);
2053         if (ret) {
2054                 pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
2055                          p->pasid, PROCESS_BACK_OFF_TIME_MS);
2056                 if (mod_delayed_work(kfd_restore_wq, &p->restore_work,
2057                                      msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
2058                         kfd_process_restore_queues(p);
2059         }
2060 }
2061
2062 void kfd_suspend_all_processes(void)
2063 {
2064         struct kfd_process *p;
2065         unsigned int temp;
2066         int idx = srcu_read_lock(&kfd_processes_srcu);
2067
2068         WARN(debug_evictions, "Evicting all processes");
2069         hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2070                 if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
2071                         pr_err("Failed to suspend process 0x%x\n", p->pasid);
2072                 signal_eviction_fence(p);
2073         }
2074         srcu_read_unlock(&kfd_processes_srcu, idx);
2075 }
2076
2077 int kfd_resume_all_processes(void)
2078 {
2079         struct kfd_process *p;
2080         unsigned int temp;
2081         int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
2082
2083         hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2084                 if (restore_process_helper(p)) {
2085                         pr_err("Restore process %d failed during resume\n",
2086                                p->pasid);
2087                         ret = -EFAULT;
2088                 }
2089         }
2090         srcu_read_unlock(&kfd_processes_srcu, idx);
2091         return ret;
2092 }
2093
2094 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
2095                           struct vm_area_struct *vma)
2096 {
2097         struct kfd_process_device *pdd;
2098         struct qcm_process_device *qpd;
2099
2100         if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
2101                 dev_err(dev->adev->dev, "Incorrect CWSR mapping size.\n");
2102                 return -EINVAL;
2103         }
2104
2105         pdd = kfd_get_process_device_data(dev, process);
2106         if (!pdd)
2107                 return -EINVAL;
2108         qpd = &pdd->qpd;
2109
2110         qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2111                                         get_order(KFD_CWSR_TBA_TMA_SIZE));
2112         if (!qpd->cwsr_kaddr) {
2113                 dev_err(dev->adev->dev,
2114                         "Error allocating per process CWSR buffer.\n");
2115                 return -ENOMEM;
2116         }
2117
2118         vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND
2119                 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP);
2120         /* Mapping pages to user process */
2121         return remap_pfn_range(vma, vma->vm_start,
2122                                PFN_DOWN(__pa(qpd->cwsr_kaddr)),
2123                                KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
2124 }
2125
2126 /* assumes caller holds process lock. */
2127 int kfd_process_drain_interrupts(struct kfd_process_device *pdd)
2128 {
2129         uint32_t irq_drain_fence[8];
2130         uint8_t node_id = 0;
2131         int r = 0;
2132
2133         if (!KFD_IS_SOC15(pdd->dev))
2134                 return 0;
2135
2136         pdd->process->irq_drain_is_open = true;
2137
2138         memset(irq_drain_fence, 0, sizeof(irq_drain_fence));
2139         irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) |
2140                                                         KFD_IRQ_FENCE_CLIENTID;
2141         irq_drain_fence[3] = pdd->process->pasid;
2142
2143         /*
2144          * For GFX 9.4.3, send the NodeId also in IH cookie DW[3]
2145          */
2146         if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3) ||
2147             KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 4)) {
2148                 node_id = ffs(pdd->dev->interrupt_bitmap) - 1;
2149                 irq_drain_fence[3] |= node_id << 16;
2150         }
2151
2152         /* ensure stale irqs scheduled KFD interrupts and send drain fence. */
2153         if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev,
2154                                                      irq_drain_fence)) {
2155                 pdd->process->irq_drain_is_open = false;
2156                 return 0;
2157         }
2158
2159         r = wait_event_interruptible(pdd->process->wait_irq_drain,
2160                                      !READ_ONCE(pdd->process->irq_drain_is_open));
2161         if (r)
2162                 pdd->process->irq_drain_is_open = false;
2163
2164         return r;
2165 }
2166
2167 void kfd_process_close_interrupt_drain(unsigned int pasid)
2168 {
2169         struct kfd_process *p;
2170
2171         p = kfd_lookup_process_by_pasid(pasid);
2172
2173         if (!p)
2174                 return;
2175
2176         WRITE_ONCE(p->irq_drain_is_open, false);
2177         wake_up_all(&p->wait_irq_drain);
2178         kfd_unref_process(p);
2179 }
2180
2181 struct send_exception_work_handler_workarea {
2182         struct work_struct work;
2183         struct kfd_process *p;
2184         unsigned int queue_id;
2185         uint64_t error_reason;
2186 };
2187
2188 static void send_exception_work_handler(struct work_struct *work)
2189 {
2190         struct send_exception_work_handler_workarea *workarea;
2191         struct kfd_process *p;
2192         struct queue *q;
2193         struct mm_struct *mm;
2194         struct kfd_context_save_area_header __user *csa_header;
2195         uint64_t __user *err_payload_ptr;
2196         uint64_t cur_err;
2197         uint32_t ev_id;
2198
2199         workarea = container_of(work,
2200                                 struct send_exception_work_handler_workarea,
2201                                 work);
2202         p = workarea->p;
2203
2204         mm = get_task_mm(p->lead_thread);
2205
2206         if (!mm)
2207                 return;
2208
2209         kthread_use_mm(mm);
2210
2211         q = pqm_get_user_queue(&p->pqm, workarea->queue_id);
2212
2213         if (!q)
2214                 goto out;
2215
2216         csa_header = (void __user *)q->properties.ctx_save_restore_area_address;
2217
2218         get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr);
2219         get_user(cur_err, err_payload_ptr);
2220         cur_err |= workarea->error_reason;
2221         put_user(cur_err, err_payload_ptr);
2222         get_user(ev_id, &csa_header->err_event_id);
2223
2224         kfd_set_event(p, ev_id);
2225
2226 out:
2227         kthread_unuse_mm(mm);
2228         mmput(mm);
2229 }
2230
2231 int kfd_send_exception_to_runtime(struct kfd_process *p,
2232                         unsigned int queue_id,
2233                         uint64_t error_reason)
2234 {
2235         struct send_exception_work_handler_workarea worker;
2236
2237         INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler);
2238
2239         worker.p = p;
2240         worker.queue_id = queue_id;
2241         worker.error_reason = error_reason;
2242
2243         schedule_work(&worker.work);
2244         flush_work(&worker.work);
2245         destroy_work_on_stack(&worker.work);
2246
2247         return 0;
2248 }
2249
2250 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2251 {
2252         int i;
2253
2254         if (gpu_id) {
2255                 for (i = 0; i < p->n_pdds; i++) {
2256                         struct kfd_process_device *pdd = p->pdds[i];
2257
2258                         if (pdd->user_gpu_id == gpu_id)
2259                                 return pdd;
2260                 }
2261         }
2262         return NULL;
2263 }
2264
2265 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2266 {
2267         int i;
2268
2269         if (!actual_gpu_id)
2270                 return 0;
2271
2272         for (i = 0; i < p->n_pdds; i++) {
2273                 struct kfd_process_device *pdd = p->pdds[i];
2274
2275                 if (pdd->dev->id == actual_gpu_id)
2276                         return pdd->user_gpu_id;
2277         }
2278         return -EINVAL;
2279 }
2280
2281 #if defined(CONFIG_DEBUG_FS)
2282
2283 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2284 {
2285         struct kfd_process *p;
2286         unsigned int temp;
2287         int r = 0;
2288
2289         int idx = srcu_read_lock(&kfd_processes_srcu);
2290
2291         hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2292                 seq_printf(m, "Process %d PASID 0x%x:\n",
2293                            p->lead_thread->tgid, p->pasid);
2294
2295                 mutex_lock(&p->mutex);
2296                 r = pqm_debugfs_mqds(m, &p->pqm);
2297                 mutex_unlock(&p->mutex);
2298
2299                 if (r)
2300                         break;
2301         }
2302
2303         srcu_read_unlock(&kfd_processes_srcu, idx);
2304
2305         return r;
2306 }
2307
2308 #endif
This page took 0.165547 seconds and 4 git commands to generate.