]> Git Repo - linux.git/blob - drivers/cpufreq/acpi-cpufreq.c
crypto: akcipher - Drop sign/verify operations
[linux.git] / drivers / cpufreq / acpi-cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * acpi-cpufreq.c - ACPI Processor P-States Driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <[email protected]>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <[email protected]>
7  *  Copyright (C) 2002 - 2004 Dominik Brodowski <[email protected]>
8  *  Copyright (C) 2006       Denis Sadykov <[email protected]>
9  */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/sched.h>
18 #include <linux/cpufreq.h>
19 #include <linux/compiler.h>
20 #include <linux/dmi.h>
21 #include <linux/slab.h>
22 #include <linux/string_helpers.h>
23 #include <linux/platform_device.h>
24
25 #include <linux/acpi.h>
26 #include <linux/io.h>
27 #include <linux/delay.h>
28 #include <linux/uaccess.h>
29
30 #include <acpi/processor.h>
31 #include <acpi/cppc_acpi.h>
32
33 #include <asm/msr.h>
34 #include <asm/processor.h>
35 #include <asm/cpufeature.h>
36 #include <asm/cpu_device_id.h>
37
38 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
39 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
40 MODULE_LICENSE("GPL");
41
42 enum {
43         UNDEFINED_CAPABLE = 0,
44         SYSTEM_INTEL_MSR_CAPABLE,
45         SYSTEM_AMD_MSR_CAPABLE,
46         SYSTEM_IO_CAPABLE,
47 };
48
49 #define INTEL_MSR_RANGE         (0xffff)
50 #define AMD_MSR_RANGE           (0x7)
51 #define HYGON_MSR_RANGE         (0x7)
52
53 struct acpi_cpufreq_data {
54         unsigned int resume;
55         unsigned int cpu_feature;
56         unsigned int acpi_perf_cpu;
57         cpumask_var_t freqdomain_cpus;
58         void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
59         u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
60 };
61
62 /* acpi_perf_data is a pointer to percpu data. */
63 static struct acpi_processor_performance __percpu *acpi_perf_data;
64
65 static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
66 {
67         return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
68 }
69
70 static struct cpufreq_driver acpi_cpufreq_driver;
71
72 static unsigned int acpi_pstate_strict;
73
74 static bool boost_state(unsigned int cpu)
75 {
76         u32 lo, hi;
77         u64 msr;
78
79         switch (boot_cpu_data.x86_vendor) {
80         case X86_VENDOR_INTEL:
81         case X86_VENDOR_CENTAUR:
82         case X86_VENDOR_ZHAOXIN:
83                 rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
84                 msr = lo | ((u64)hi << 32);
85                 return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
86         case X86_VENDOR_HYGON:
87         case X86_VENDOR_AMD:
88                 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
89                 msr = lo | ((u64)hi << 32);
90                 return !(msr & MSR_K7_HWCR_CPB_DIS);
91         }
92         return false;
93 }
94
95 static int boost_set_msr(bool enable)
96 {
97         u32 msr_addr;
98         u64 msr_mask, val;
99
100         switch (boot_cpu_data.x86_vendor) {
101         case X86_VENDOR_INTEL:
102         case X86_VENDOR_CENTAUR:
103         case X86_VENDOR_ZHAOXIN:
104                 msr_addr = MSR_IA32_MISC_ENABLE;
105                 msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
106                 break;
107         case X86_VENDOR_HYGON:
108         case X86_VENDOR_AMD:
109                 msr_addr = MSR_K7_HWCR;
110                 msr_mask = MSR_K7_HWCR_CPB_DIS;
111                 break;
112         default:
113                 return -EINVAL;
114         }
115
116         rdmsrl(msr_addr, val);
117
118         if (enable)
119                 val &= ~msr_mask;
120         else
121                 val |= msr_mask;
122
123         wrmsrl(msr_addr, val);
124         return 0;
125 }
126
127 static void boost_set_msr_each(void *p_en)
128 {
129         bool enable = (bool) p_en;
130
131         boost_set_msr(enable);
132 }
133
134 static int set_boost(struct cpufreq_policy *policy, int val)
135 {
136         on_each_cpu_mask(policy->cpus, boost_set_msr_each,
137                          (void *)(long)val, 1);
138         pr_debug("CPU %*pbl: Core Boosting %s.\n",
139                  cpumask_pr_args(policy->cpus), str_enabled_disabled(val));
140
141         return 0;
142 }
143
144 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
145 {
146         struct acpi_cpufreq_data *data = policy->driver_data;
147
148         if (unlikely(!data))
149                 return -ENODEV;
150
151         return cpufreq_show_cpus(data->freqdomain_cpus, buf);
152 }
153
154 cpufreq_freq_attr_ro(freqdomain_cpus);
155
156 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
157 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
158                          size_t count)
159 {
160         int ret;
161         unsigned int val = 0;
162
163         if (!acpi_cpufreq_driver.set_boost)
164                 return -EINVAL;
165
166         ret = kstrtouint(buf, 10, &val);
167         if (ret || val > 1)
168                 return -EINVAL;
169
170         cpus_read_lock();
171         set_boost(policy, val);
172         cpus_read_unlock();
173
174         return count;
175 }
176
177 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
178 {
179         return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
180 }
181
182 cpufreq_freq_attr_rw(cpb);
183 #endif
184
185 static int check_est_cpu(unsigned int cpuid)
186 {
187         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
188
189         return cpu_has(cpu, X86_FEATURE_EST);
190 }
191
192 static int check_amd_hwpstate_cpu(unsigned int cpuid)
193 {
194         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
195
196         return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
197 }
198
199 static unsigned extract_io(struct cpufreq_policy *policy, u32 value)
200 {
201         struct acpi_cpufreq_data *data = policy->driver_data;
202         struct acpi_processor_performance *perf;
203         int i;
204
205         perf = to_perf_data(data);
206
207         for (i = 0; i < perf->state_count; i++) {
208                 if (value == perf->states[i].status)
209                         return policy->freq_table[i].frequency;
210         }
211         return 0;
212 }
213
214 static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr)
215 {
216         struct acpi_cpufreq_data *data = policy->driver_data;
217         struct cpufreq_frequency_table *pos;
218         struct acpi_processor_performance *perf;
219
220         if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
221                 msr &= AMD_MSR_RANGE;
222         else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
223                 msr &= HYGON_MSR_RANGE;
224         else
225                 msr &= INTEL_MSR_RANGE;
226
227         perf = to_perf_data(data);
228
229         cpufreq_for_each_entry(pos, policy->freq_table)
230                 if (msr == perf->states[pos->driver_data].status)
231                         return pos->frequency;
232         return policy->freq_table[0].frequency;
233 }
234
235 static unsigned extract_freq(struct cpufreq_policy *policy, u32 val)
236 {
237         struct acpi_cpufreq_data *data = policy->driver_data;
238
239         switch (data->cpu_feature) {
240         case SYSTEM_INTEL_MSR_CAPABLE:
241         case SYSTEM_AMD_MSR_CAPABLE:
242                 return extract_msr(policy, val);
243         case SYSTEM_IO_CAPABLE:
244                 return extract_io(policy, val);
245         default:
246                 return 0;
247         }
248 }
249
250 static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
251 {
252         u32 val, dummy __always_unused;
253
254         rdmsr(MSR_IA32_PERF_CTL, val, dummy);
255         return val;
256 }
257
258 static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
259 {
260         u32 lo, hi;
261
262         rdmsr(MSR_IA32_PERF_CTL, lo, hi);
263         lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
264         wrmsr(MSR_IA32_PERF_CTL, lo, hi);
265 }
266
267 static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
268 {
269         u32 val, dummy __always_unused;
270
271         rdmsr(MSR_AMD_PERF_CTL, val, dummy);
272         return val;
273 }
274
275 static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
276 {
277         wrmsr(MSR_AMD_PERF_CTL, val, 0);
278 }
279
280 static u32 cpu_freq_read_io(struct acpi_pct_register *reg)
281 {
282         u32 val;
283
284         acpi_os_read_port(reg->address, &val, reg->bit_width);
285         return val;
286 }
287
288 static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
289 {
290         acpi_os_write_port(reg->address, val, reg->bit_width);
291 }
292
293 struct drv_cmd {
294         struct acpi_pct_register *reg;
295         u32 val;
296         union {
297                 void (*write)(struct acpi_pct_register *reg, u32 val);
298                 u32 (*read)(struct acpi_pct_register *reg);
299         } func;
300 };
301
302 /* Called via smp_call_function_single(), on the target CPU */
303 static void do_drv_read(void *_cmd)
304 {
305         struct drv_cmd *cmd = _cmd;
306
307         cmd->val = cmd->func.read(cmd->reg);
308 }
309
310 static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
311 {
312         struct acpi_processor_performance *perf = to_perf_data(data);
313         struct drv_cmd cmd = {
314                 .reg = &perf->control_register,
315                 .func.read = data->cpu_freq_read,
316         };
317         int err;
318
319         err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
320         WARN_ON_ONCE(err);      /* smp_call_function_any() was buggy? */
321         return cmd.val;
322 }
323
324 /* Called via smp_call_function_many(), on the target CPUs */
325 static void do_drv_write(void *_cmd)
326 {
327         struct drv_cmd *cmd = _cmd;
328
329         cmd->func.write(cmd->reg, cmd->val);
330 }
331
332 static void drv_write(struct acpi_cpufreq_data *data,
333                       const struct cpumask *mask, u32 val)
334 {
335         struct acpi_processor_performance *perf = to_perf_data(data);
336         struct drv_cmd cmd = {
337                 .reg = &perf->control_register,
338                 .val = val,
339                 .func.write = data->cpu_freq_write,
340         };
341         int this_cpu;
342
343         this_cpu = get_cpu();
344         if (cpumask_test_cpu(this_cpu, mask))
345                 do_drv_write(&cmd);
346
347         smp_call_function_many(mask, do_drv_write, &cmd, 1);
348         put_cpu();
349 }
350
351 static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
352 {
353         u32 val;
354
355         if (unlikely(cpumask_empty(mask)))
356                 return 0;
357
358         val = drv_read(data, mask);
359
360         pr_debug("%s = %u\n", __func__, val);
361
362         return val;
363 }
364
365 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
366 {
367         struct acpi_cpufreq_data *data;
368         struct cpufreq_policy *policy;
369         unsigned int freq;
370         unsigned int cached_freq;
371
372         pr_debug("%s (%d)\n", __func__, cpu);
373
374         policy = cpufreq_cpu_get_raw(cpu);
375         if (unlikely(!policy))
376                 return 0;
377
378         data = policy->driver_data;
379         if (unlikely(!data || !policy->freq_table))
380                 return 0;
381
382         cached_freq = policy->freq_table[to_perf_data(data)->state].frequency;
383         freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data));
384         if (freq != cached_freq) {
385                 /*
386                  * The dreaded BIOS frequency change behind our back.
387                  * Force set the frequency on next target call.
388                  */
389                 data->resume = 1;
390         }
391
392         pr_debug("cur freq = %u\n", freq);
393
394         return freq;
395 }
396
397 static unsigned int check_freqs(struct cpufreq_policy *policy,
398                                 const struct cpumask *mask, unsigned int freq)
399 {
400         struct acpi_cpufreq_data *data = policy->driver_data;
401         unsigned int cur_freq;
402         unsigned int i;
403
404         for (i = 0; i < 100; i++) {
405                 cur_freq = extract_freq(policy, get_cur_val(mask, data));
406                 if (cur_freq == freq)
407                         return 1;
408                 udelay(10);
409         }
410         return 0;
411 }
412
413 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
414                                unsigned int index)
415 {
416         struct acpi_cpufreq_data *data = policy->driver_data;
417         struct acpi_processor_performance *perf;
418         const struct cpumask *mask;
419         unsigned int next_perf_state = 0; /* Index into perf table */
420         int result = 0;
421
422         if (unlikely(!data)) {
423                 return -ENODEV;
424         }
425
426         perf = to_perf_data(data);
427         next_perf_state = policy->freq_table[index].driver_data;
428         if (perf->state == next_perf_state) {
429                 if (unlikely(data->resume)) {
430                         pr_debug("Called after resume, resetting to P%d\n",
431                                 next_perf_state);
432                         data->resume = 0;
433                 } else {
434                         pr_debug("Already at target state (P%d)\n",
435                                 next_perf_state);
436                         return 0;
437                 }
438         }
439
440         /*
441          * The core won't allow CPUs to go away until the governor has been
442          * stopped, so we can rely on the stability of policy->cpus.
443          */
444         mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
445                 cpumask_of(policy->cpu) : policy->cpus;
446
447         drv_write(data, mask, perf->states[next_perf_state].control);
448
449         if (acpi_pstate_strict) {
450                 if (!check_freqs(policy, mask,
451                                  policy->freq_table[index].frequency)) {
452                         pr_debug("%s (%d)\n", __func__, policy->cpu);
453                         result = -EAGAIN;
454                 }
455         }
456
457         if (!result)
458                 perf->state = next_perf_state;
459
460         return result;
461 }
462
463 static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy,
464                                              unsigned int target_freq)
465 {
466         struct acpi_cpufreq_data *data = policy->driver_data;
467         struct acpi_processor_performance *perf;
468         struct cpufreq_frequency_table *entry;
469         unsigned int next_perf_state, next_freq, index;
470
471         /*
472          * Find the closest frequency above target_freq.
473          */
474         if (policy->cached_target_freq == target_freq)
475                 index = policy->cached_resolved_idx;
476         else
477                 index = cpufreq_table_find_index_dl(policy, target_freq,
478                                                     false);
479
480         entry = &policy->freq_table[index];
481         next_freq = entry->frequency;
482         next_perf_state = entry->driver_data;
483
484         perf = to_perf_data(data);
485         if (perf->state == next_perf_state) {
486                 if (unlikely(data->resume))
487                         data->resume = 0;
488                 else
489                         return next_freq;
490         }
491
492         data->cpu_freq_write(&perf->control_register,
493                              perf->states[next_perf_state].control);
494         perf->state = next_perf_state;
495         return next_freq;
496 }
497
498 static unsigned long
499 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
500 {
501         struct acpi_processor_performance *perf;
502
503         perf = to_perf_data(data);
504         if (cpu_khz) {
505                 /* search the closest match to cpu_khz */
506                 unsigned int i;
507                 unsigned long freq;
508                 unsigned long freqn = perf->states[0].core_frequency * 1000;
509
510                 for (i = 0; i < (perf->state_count-1); i++) {
511                         freq = freqn;
512                         freqn = perf->states[i+1].core_frequency * 1000;
513                         if ((2 * cpu_khz) > (freqn + freq)) {
514                                 perf->state = i;
515                                 return freq;
516                         }
517                 }
518                 perf->state = perf->state_count-1;
519                 return freqn;
520         } else {
521                 /* assume CPU is at P0... */
522                 perf->state = 0;
523                 return perf->states[0].core_frequency * 1000;
524         }
525 }
526
527 static void free_acpi_perf_data(void)
528 {
529         unsigned int i;
530
531         /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
532         for_each_possible_cpu(i)
533                 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
534                                  ->shared_cpu_map);
535         free_percpu(acpi_perf_data);
536 }
537
538 static int cpufreq_boost_down_prep(unsigned int cpu)
539 {
540         /*
541          * Clear the boost-disable bit on the CPU_DOWN path so that
542          * this cpu cannot block the remaining ones from boosting.
543          */
544         return boost_set_msr(1);
545 }
546
547 /*
548  * acpi_cpufreq_early_init - initialize ACPI P-States library
549  *
550  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
551  * in order to determine correct frequency and voltage pairings. We can
552  * do _PDC and _PSD and find out the processor dependency for the
553  * actual init that will happen later...
554  */
555 static int __init acpi_cpufreq_early_init(void)
556 {
557         unsigned int i;
558         pr_debug("%s\n", __func__);
559
560         acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
561         if (!acpi_perf_data) {
562                 pr_debug("Memory allocation error for acpi_perf_data.\n");
563                 return -ENOMEM;
564         }
565         for_each_possible_cpu(i) {
566                 if (!zalloc_cpumask_var_node(
567                         &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
568                         GFP_KERNEL, cpu_to_node(i))) {
569
570                         /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
571                         free_acpi_perf_data();
572                         return -ENOMEM;
573                 }
574         }
575
576         /* Do initialization in ACPI core */
577         acpi_processor_preregister_performance(acpi_perf_data);
578         return 0;
579 }
580
581 #ifdef CONFIG_SMP
582 /*
583  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
584  * or do it in BIOS firmware and won't inform about it to OS. If not
585  * detected, this has a side effect of making CPU run at a different speed
586  * than OS intended it to run at. Detect it and handle it cleanly.
587  */
588 static int bios_with_sw_any_bug;
589
590 static int sw_any_bug_found(const struct dmi_system_id *d)
591 {
592         bios_with_sw_any_bug = 1;
593         return 0;
594 }
595
596 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
597         {
598                 .callback = sw_any_bug_found,
599                 .ident = "Supermicro Server X6DLP",
600                 .matches = {
601                         DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
602                         DMI_MATCH(DMI_BIOS_VERSION, "080010"),
603                         DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
604                 },
605         },
606         { }
607 };
608
609 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
610 {
611         /* Intel Xeon Processor 7100 Series Specification Update
612          * https://www.intel.com/Assets/PDF/specupdate/314554.pdf
613          * AL30: A Machine Check Exception (MCE) Occurring during an
614          * Enhanced Intel SpeedStep Technology Ratio Change May Cause
615          * Both Processor Cores to Lock Up. */
616         if (c->x86_vendor == X86_VENDOR_INTEL) {
617                 if ((c->x86 == 15) &&
618                     (c->x86_model == 6) &&
619                     (c->x86_stepping == 8)) {
620                         pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n");
621                         return -ENODEV;
622                     }
623                 }
624         return 0;
625 }
626 #endif
627
628 #ifdef CONFIG_ACPI_CPPC_LIB
629 static u64 get_max_boost_ratio(unsigned int cpu)
630 {
631         struct cppc_perf_caps perf_caps;
632         u64 highest_perf, nominal_perf;
633         int ret;
634
635         if (acpi_pstate_strict)
636                 return 0;
637
638         ret = cppc_get_perf_caps(cpu, &perf_caps);
639         if (ret) {
640                 pr_debug("CPU%d: Unable to get performance capabilities (%d)\n",
641                          cpu, ret);
642                 return 0;
643         }
644
645         if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
646                 ret = amd_get_boost_ratio_numerator(cpu, &highest_perf);
647                 if (ret) {
648                         pr_debug("CPU%d: Unable to get boost ratio numerator (%d)\n",
649                                  cpu, ret);
650                         return 0;
651                 }
652         } else {
653                 highest_perf = perf_caps.highest_perf;
654         }
655
656         nominal_perf = perf_caps.nominal_perf;
657
658         if (!highest_perf || !nominal_perf) {
659                 pr_debug("CPU%d: highest or nominal performance missing\n", cpu);
660                 return 0;
661         }
662
663         if (highest_perf < nominal_perf) {
664                 pr_debug("CPU%d: nominal performance above highest\n", cpu);
665                 return 0;
666         }
667
668         return div_u64(highest_perf << SCHED_CAPACITY_SHIFT, nominal_perf);
669 }
670 #else
671 static inline u64 get_max_boost_ratio(unsigned int cpu) { return 0; }
672 #endif
673
674 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
675 {
676         struct cpufreq_frequency_table *freq_table;
677         struct acpi_processor_performance *perf;
678         struct acpi_cpufreq_data *data;
679         unsigned int cpu = policy->cpu;
680         struct cpuinfo_x86 *c = &cpu_data(cpu);
681         unsigned int valid_states = 0;
682         unsigned int result = 0;
683         u64 max_boost_ratio;
684         unsigned int i;
685 #ifdef CONFIG_SMP
686         static int blacklisted;
687 #endif
688
689         pr_debug("%s\n", __func__);
690
691 #ifdef CONFIG_SMP
692         if (blacklisted)
693                 return blacklisted;
694         blacklisted = acpi_cpufreq_blacklist(c);
695         if (blacklisted)
696                 return blacklisted;
697 #endif
698
699         data = kzalloc(sizeof(*data), GFP_KERNEL);
700         if (!data)
701                 return -ENOMEM;
702
703         if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
704                 result = -ENOMEM;
705                 goto err_free;
706         }
707
708         perf = per_cpu_ptr(acpi_perf_data, cpu);
709         data->acpi_perf_cpu = cpu;
710         policy->driver_data = data;
711
712         if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
713                 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
714
715         result = acpi_processor_register_performance(perf, cpu);
716         if (result)
717                 goto err_free_mask;
718
719         policy->shared_type = perf->shared_type;
720
721         /*
722          * Will let policy->cpus know about dependency only when software
723          * coordination is required.
724          */
725         if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
726             policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
727                 cpumask_copy(policy->cpus, perf->shared_cpu_map);
728         }
729         cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
730
731 #ifdef CONFIG_SMP
732         dmi_check_system(sw_any_bug_dmi_table);
733         if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
734                 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
735                 cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
736         }
737
738         if (check_amd_hwpstate_cpu(cpu) && boot_cpu_data.x86 < 0x19 &&
739             !acpi_pstate_strict) {
740                 cpumask_clear(policy->cpus);
741                 cpumask_set_cpu(cpu, policy->cpus);
742                 cpumask_copy(data->freqdomain_cpus,
743                              topology_sibling_cpumask(cpu));
744                 policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
745                 pr_info_once("overriding BIOS provided _PSD data\n");
746         }
747 #endif
748
749         /* capability check */
750         if (perf->state_count <= 1) {
751                 pr_debug("No P-States\n");
752                 result = -ENODEV;
753                 goto err_unreg;
754         }
755
756         if (perf->control_register.space_id != perf->status_register.space_id) {
757                 result = -ENODEV;
758                 goto err_unreg;
759         }
760
761         switch (perf->control_register.space_id) {
762         case ACPI_ADR_SPACE_SYSTEM_IO:
763                 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
764                     boot_cpu_data.x86 == 0xf) {
765                         pr_debug("AMD K8 systems must use native drivers.\n");
766                         result = -ENODEV;
767                         goto err_unreg;
768                 }
769                 pr_debug("SYSTEM IO addr space\n");
770                 data->cpu_feature = SYSTEM_IO_CAPABLE;
771                 data->cpu_freq_read = cpu_freq_read_io;
772                 data->cpu_freq_write = cpu_freq_write_io;
773                 break;
774         case ACPI_ADR_SPACE_FIXED_HARDWARE:
775                 pr_debug("HARDWARE addr space\n");
776                 if (check_est_cpu(cpu)) {
777                         data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
778                         data->cpu_freq_read = cpu_freq_read_intel;
779                         data->cpu_freq_write = cpu_freq_write_intel;
780                         break;
781                 }
782                 if (check_amd_hwpstate_cpu(cpu)) {
783                         data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
784                         data->cpu_freq_read = cpu_freq_read_amd;
785                         data->cpu_freq_write = cpu_freq_write_amd;
786                         break;
787                 }
788                 result = -ENODEV;
789                 goto err_unreg;
790         default:
791                 pr_debug("Unknown addr space %d\n",
792                         (u32) (perf->control_register.space_id));
793                 result = -ENODEV;
794                 goto err_unreg;
795         }
796
797         freq_table = kcalloc(perf->state_count + 1, sizeof(*freq_table),
798                              GFP_KERNEL);
799         if (!freq_table) {
800                 result = -ENOMEM;
801                 goto err_unreg;
802         }
803
804         /* detect transition latency */
805         policy->cpuinfo.transition_latency = 0;
806         for (i = 0; i < perf->state_count; i++) {
807                 if ((perf->states[i].transition_latency * 1000) >
808                     policy->cpuinfo.transition_latency)
809                         policy->cpuinfo.transition_latency =
810                             perf->states[i].transition_latency * 1000;
811         }
812
813         /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
814         if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
815             policy->cpuinfo.transition_latency > 20 * 1000) {
816                 policy->cpuinfo.transition_latency = 20 * 1000;
817                 pr_info_once("P-state transition latency capped at 20 uS\n");
818         }
819
820         /* table init */
821         for (i = 0; i < perf->state_count; i++) {
822                 if (i > 0 && perf->states[i].core_frequency >=
823                     freq_table[valid_states-1].frequency / 1000)
824                         continue;
825
826                 freq_table[valid_states].driver_data = i;
827                 freq_table[valid_states].frequency =
828                     perf->states[i].core_frequency * 1000;
829                 valid_states++;
830         }
831         freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
832
833         max_boost_ratio = get_max_boost_ratio(cpu);
834         if (max_boost_ratio) {
835                 unsigned int freq = freq_table[0].frequency;
836
837                 /*
838                  * Because the loop above sorts the freq_table entries in the
839                  * descending order, freq is the maximum frequency in the table.
840                  * Assume that it corresponds to the CPPC nominal frequency and
841                  * use it to set cpuinfo.max_freq.
842                  */
843                 policy->cpuinfo.max_freq = freq * max_boost_ratio >> SCHED_CAPACITY_SHIFT;
844         } else {
845                 /*
846                  * If the maximum "boost" frequency is unknown, ask the arch
847                  * scale-invariance code to use the "nominal" performance for
848                  * CPU utilization scaling so as to prevent the schedutil
849                  * governor from selecting inadequate CPU frequencies.
850                  */
851                 arch_set_max_freq_ratio(true);
852         }
853
854         policy->freq_table = freq_table;
855         perf->state = 0;
856
857         switch (perf->control_register.space_id) {
858         case ACPI_ADR_SPACE_SYSTEM_IO:
859                 /*
860                  * The core will not set policy->cur, because
861                  * cpufreq_driver->get is NULL, so we need to set it here.
862                  * However, we have to guess it, because the current speed is
863                  * unknown and not detectable via IO ports.
864                  */
865                 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
866                 break;
867         case ACPI_ADR_SPACE_FIXED_HARDWARE:
868                 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
869                 break;
870         default:
871                 break;
872         }
873
874         /* notify BIOS that we exist */
875         acpi_processor_notify_smm(THIS_MODULE);
876
877         pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
878         for (i = 0; i < perf->state_count; i++)
879                 pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
880                         (i == perf->state ? '*' : ' '), i,
881                         (u32) perf->states[i].core_frequency,
882                         (u32) perf->states[i].power,
883                         (u32) perf->states[i].transition_latency);
884
885         /*
886          * the first call to ->target() should result in us actually
887          * writing something to the appropriate registers.
888          */
889         data->resume = 1;
890
891         policy->fast_switch_possible = !acpi_pstate_strict &&
892                 !(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY);
893
894         if (perf->states[0].core_frequency * 1000 != freq_table[0].frequency)
895                 pr_warn(FW_WARN "P-state 0 is not max freq\n");
896
897         if (acpi_cpufreq_driver.set_boost) {
898                 set_boost(policy, acpi_cpufreq_driver.boost_enabled);
899                 policy->boost_enabled = acpi_cpufreq_driver.boost_enabled;
900         }
901
902         return result;
903
904 err_unreg:
905         acpi_processor_unregister_performance(cpu);
906 err_free_mask:
907         free_cpumask_var(data->freqdomain_cpus);
908 err_free:
909         kfree(data);
910         policy->driver_data = NULL;
911
912         return result;
913 }
914
915 static void acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
916 {
917         struct acpi_cpufreq_data *data = policy->driver_data;
918
919         pr_debug("%s\n", __func__);
920
921         cpufreq_boost_down_prep(policy->cpu);
922         policy->fast_switch_possible = false;
923         policy->driver_data = NULL;
924         acpi_processor_unregister_performance(data->acpi_perf_cpu);
925         free_cpumask_var(data->freqdomain_cpus);
926         kfree(policy->freq_table);
927         kfree(data);
928 }
929
930 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
931 {
932         struct acpi_cpufreq_data *data = policy->driver_data;
933
934         pr_debug("%s\n", __func__);
935
936         data->resume = 1;
937
938         return 0;
939 }
940
941 static struct freq_attr *acpi_cpufreq_attr[] = {
942         &cpufreq_freq_attr_scaling_available_freqs,
943         &freqdomain_cpus,
944 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
945         &cpb,
946 #endif
947         NULL,
948 };
949
950 static struct cpufreq_driver acpi_cpufreq_driver = {
951         .verify         = cpufreq_generic_frequency_table_verify,
952         .target_index   = acpi_cpufreq_target,
953         .fast_switch    = acpi_cpufreq_fast_switch,
954         .bios_limit     = acpi_processor_get_bios_limit,
955         .init           = acpi_cpufreq_cpu_init,
956         .exit           = acpi_cpufreq_cpu_exit,
957         .resume         = acpi_cpufreq_resume,
958         .name           = "acpi-cpufreq",
959         .attr           = acpi_cpufreq_attr,
960 };
961
962 static void __init acpi_cpufreq_boost_init(void)
963 {
964         if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) {
965                 pr_debug("Boost capabilities not present in the processor\n");
966                 return;
967         }
968
969         acpi_cpufreq_driver.set_boost = set_boost;
970         acpi_cpufreq_driver.boost_enabled = boost_state(0);
971 }
972
973 static int __init acpi_cpufreq_probe(struct platform_device *pdev)
974 {
975         int ret;
976
977         if (acpi_disabled)
978                 return -ENODEV;
979
980         /* don't keep reloading if cpufreq_driver exists */
981         if (cpufreq_get_current_driver())
982                 return -ENODEV;
983
984         pr_debug("%s\n", __func__);
985
986         ret = acpi_cpufreq_early_init();
987         if (ret)
988                 return ret;
989
990 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
991         /* this is a sysfs file with a strange name and an even stranger
992          * semantic - per CPU instantiation, but system global effect.
993          * Lets enable it only on AMD CPUs for compatibility reasons and
994          * only if configured. This is considered legacy code, which
995          * will probably be removed at some point in the future.
996          */
997         if (!check_amd_hwpstate_cpu(0)) {
998                 struct freq_attr **attr;
999
1000                 pr_debug("CPB unsupported, do not expose it\n");
1001
1002                 for (attr = acpi_cpufreq_attr; *attr; attr++)
1003                         if (*attr == &cpb) {
1004                                 *attr = NULL;
1005                                 break;
1006                         }
1007         }
1008 #endif
1009         acpi_cpufreq_boost_init();
1010
1011         ret = cpufreq_register_driver(&acpi_cpufreq_driver);
1012         if (ret) {
1013                 free_acpi_perf_data();
1014         }
1015         return ret;
1016 }
1017
1018 static void acpi_cpufreq_remove(struct platform_device *pdev)
1019 {
1020         pr_debug("%s\n", __func__);
1021
1022         cpufreq_unregister_driver(&acpi_cpufreq_driver);
1023
1024         free_acpi_perf_data();
1025 }
1026
1027 static struct platform_driver acpi_cpufreq_platdrv = {
1028         .driver = {
1029                 .name   = "acpi-cpufreq",
1030         },
1031         .remove_new     = acpi_cpufreq_remove,
1032 };
1033
1034 static int __init acpi_cpufreq_init(void)
1035 {
1036         return platform_driver_probe(&acpi_cpufreq_platdrv, acpi_cpufreq_probe);
1037 }
1038
1039 static void __exit acpi_cpufreq_exit(void)
1040 {
1041         platform_driver_unregister(&acpi_cpufreq_platdrv);
1042 }
1043
1044 module_param(acpi_pstate_strict, uint, 0644);
1045 MODULE_PARM_DESC(acpi_pstate_strict,
1046         "value 0 or non-zero. non-zero -> strict ACPI checks are "
1047         "performed during frequency changes.");
1048
1049 late_initcall(acpi_cpufreq_init);
1050 module_exit(acpi_cpufreq_exit);
1051
1052 MODULE_ALIAS("platform:acpi-cpufreq");
This page took 0.091679 seconds and 4 git commands to generate.